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ABSTRACT 

 

There is increasing recognition of the importance of gelatinous zooplankton (GZ) 

within the ocean. However, observations of GZ and understanding of their ecosystem 

role, lags behind other zooplankton. Increasing pressures on the ocean, including 

climate change and overfishing, will likely impact GZ. This thesis aims to identify the 

role of GZ in the marine ecosystem and carbon cycle using observations and a model. 

This is achieved by (1) an analysis of GZ abundance and biomass from a global 

database, (2) the addition of GZ as a Plankton Functional Type in the global 

biogeochemical model PlankTOM11, (3) an analysis of the effect of GZ on carbon 

export in PlankTOM11 and (4) a case study on the effects of overfishing and climate 

change on GZ in PlankTOM11. Model developments made use of available vital rates 

and biomass data. Parameterisation of mortality was the largest source of uncertainty 

for GZ; therefore, mortality was tuned based on the resulting biomass generated by 

PlankTOM11. GZ had the largest influence on macrozooplankton biomass and 

influenced the whole plankton ecosystem through trophic cascades. PlankTOM11 

showed trophic level as the most important characteristic of GZ for increasing export. 

There is evidence that GZ mortality plays an important role in export, but this is not 

replicated in PlankTOM11, likely due to particulate organic carbon (OC) 

representation as smaller and with slower sinking speeds than GZ carcases. Further 

partitioning of OC should improve the representation of GZ mortality and its influence 

on export. The case study found overfishing reduced GZ biomass, in opposition to 

other studies. The lack of fish predation on GZ may be a key factor. Climate and 

overfishing acted synergistically on the ecosystem. GZ play a key role in marine 

ecosystems by influencing plankton community structures through trophic cascades, 

thus influencing carbon export.  
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line; grazing preference), PlankTOM10.5b (green line; growth), 

PlankTOM10.5c (light blue line; respiration) and 

PlankTOM10.5d (red line; mortality). The top row of panels is 

results averaged for the Northern Hemisphere (30-90ºN), the 

middle row is the Tropics (30ºS-30ºN) and the bottom row is 

the Southern Hemisphere (30-90ºS). The left column of panels 

is for primary production (mol/m2/year), the middle column is 

export production (mol/m2/year) and the right column is total 

zooplankton biomass (µm C L-1). All results are averaged for 

1985 – 2015. 
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Figure 4.7 Annual mean (left) primary production from 0-100m and 

(right) carbon export at 100m (mol/m2/year). Results shown for 

(top) PlankTOM11, then below the difference between 

PlankTOM11 and the other simulations, in descending order 

PlankTOM10.5, PlankTOM10.5a (grazing), PlankTOM10.5b 

(growth), PlankTOM10.5c (respiration) and PlankTOM10.5d 

(mortality). All model results are averaged for 1985-2015. For 

the difference between PlankTOM11 and other simulations, 

warm colours indicate that the values of the other simulation 

are higher than PlankTOM11, while cold colours indicate that 

the values of the other simulation are lower than PlankTOM11. 
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Figure 4.8 Mean seasonal primary production, export production and the 

ef ratio for PlankTOM11 and the five PlankTOM10.5 

simulations for the North (30-90ºN). The ef ratio (dashed black 

line) is on the left vertical axis. Primary production (mol/m2; 

green line) and export production (mol/m2; black line) are on 

the right vertical axis. Export production is multiplied by a 

factor of 10 for visual clarity in comparison to primary 

production. Results are shown for (top left) PlankTOM11, (top 

right) PlankTOM10.5, (middle left) PlankTOM10.5a, (middle 

right) PlankTOM10.5b, (bottom left) PlankTOM10.5c, (bottom 

right) PlankTOM10.5d. All data are averaged for 1985-2015. 
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Figure 4.9 Mean seasonal PFT biomass for PlankTOM11 and the five 

PlankTOM10.5 simulations for the North (30-90ºN). The PFTs 

are total phytoplankton (green), protozooplankton (orange), 

mesozooplankton (red), macrozooplankton (purple) and 

jellyfish (blue). PFT biomass is averaged from 0 – 100m. 

Results are shown for (top left) PlankTOM11, (top right) 

PlankTOM10.5, (middle left) PlankTOM10.5a, (middle right) 

PlankTOM10.5b, (bottom left) PlankTOM10.5c, (bottom right) 

PlankTOM10.5d. All data are averaged for 1985-2015. 
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Figure 5.1 The Benguela Current System with the key oceanographic 

features which form the Northern Benguela and Southern 

Benguela ecosystems. Upwelling cells (dark grey circles), the 

Angola-Benguela Front (light grey rectangle) and ocean 

currents (black arrows) are denoted in their approximate 

positions. See text for detail. 
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Figure 5.2 Stacked (top) fisheries catch and (bottom) fish biomass in 

million tons in the (left) Northern Benguela and (right) 

Southern Benguela for sardines and anchovies. Fisheries catch 

data from (FAO, 2017)) and fish biomass data collated from 

(FAO, 2017)) and Crawford (2007) . Note that the catch and 

biomass panels have difference scale bars. 

184 

Figure 5.3 The top panel shows the normalised fish biomass for the 

Northern Benguela (dark blue) and Southern Benguela (cyan) 

as used in PlankTOM11 to simulate fish PP. The normalised 

fish biomass is masked to the Northern and Southern Benguela, 

the area of these masks is shown in the bottom panel using the 

same colour key. The fish biomass data ends in 2012 so after 

this time the normalised fish biomass returns to 1. 
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Figure 5.4 Zooplankton biomass and upwelling for the BCS region. 

PlankTOM11 jellyfish (top left), macrozooplankton (top right) 

and mesozooplankton (middle left) biomass are in µmolC L-1 
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averaged over 0-200m. Upwelling is the vertical velocity in m 

day-1, positive values indicate upwelling. PlankTOM11 

upwelling (middle right) is averaged over 40-50m and 

upwelling modelled by Small et al. (2015) is at 45m (bottom; 

panels are adapted from Figure 5 in Small et al., 2015). All 

PlankTOM11 results are averaged over 1950 – 2015. 

Figure 5.5 The effect of climate and fishing on zooplankton and 

chlorophyll in the Northern Benguela. Each of the simulations 

TOM11-CF (red line), TOM11-CN (black line), TOM11-NF 

(green line) and TOM11-NN (dashed black line), is subtracted 

from TOM11-NN, so that the y-axis is the difference due to 

fish PP, climate or fish PP and climate. Results are shown for 

(top left) jellyfish, (top right) macrozooplankton, (middle left) 

mesozooplankton, (middle right) protozooplankton and (bottom 

left) surface chlorophyll.  Fish PP (bottom right) for the 

Northern Benguela as in Figure 5.3 with the dashed line at 1 

where fish predation does not have an influence on proxy 

predator biomass (Eq. 5.2). All simulation results are 

seasonally smoothed to show year to year variability, 

zooplankton are averaged over 0-200 meters in µmol C L-1 and 

chlorophyll is averaged over 0-10 meters in µmol chl L-1. 

197 

Figure 5.6 The effect of climate and fishing on zooplankton and 

chlorophyll in the Southern Benguela. Each of the simulations 

TOM11-CF (red line), TOM11-CN (black line), TOM11-NF 

(green line) and TOM11-NN (dashed black line), is subtracted 

from TOM11-NN, so that the y-axis is the difference due to 

fishing, climate or fishing and climate. Results are shown for 

(top left) jellyfish, (top right) macrozooplankton, (middle left) 

mesozooplankton, (middle right) protozooplankton and (bottom 

left) surface chlorophyll.  Fish PP (bottom right) for the 

Northern Benguela as in Figure 5.3 with the dashed line at 1 

where fish predation does not have an influence on proxy 

predator biomass (Eq. 5.3). All simulation results are 

seasonally smoothed to show year to year variability, 

zooplankton are averaged over 0-200 meters in µmol C L-1 and 

chlorophyll is averaged over 0-10 meters µmol chl L-1. 

202 

Figure 5.7 The correlation over time of jellyfish with (top) upwelling and 

(bottom) SST for the simulations (left) TOM11-CN (Climate & 

No fish predation) and (right) TOM11-CF (Climate & Fish 

predation). Correlations are calculated for 1950-2012 for the 

Northern and Southern Benguela masks where fish predation is 

applied, as shown in Figure 5.3. Warms colours indicate 

positive correlation and cold colours indicate negative 
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correlation. Cross-hatched grid cells are where the correlation 

is not statistically significant (p values less than 0.05). 

Figure 5.8 The spatial correlation of macrozooplankton with (top) 

upwelling and (bottom) SST for the simulations (left) TOM11-

CN (climate and no fish PP) and (right) TOM11-CF (climate 

and fish PP). Correlations are calculated for 1950-2012 for the 

Northern and Southern Benguela masks where fish predation is 

applied, as shown in Figure 3. Warms colours indicate positive 

correlation and cold colours indicate negative correlation. 

Cross-hatched grid cells are where the correlation is not 

statistically significant (p values less than 0.05). 
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Figure 5.9 Annual average maps of (left) jellyfish and (right) 

macrozooplankton biomass (µmol C L-1) for TOM11-CF from 

1975 – 1984, covering a period of rapid increase in 

macrozooplankton biomass in the Northern Benguela. Note that 

the zooplankton are mapped to different scales. 
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1.1 Opening Statement 

 

There is a widespread perception that gelatinous zooplankton (GZ; defined below) 

populations are increasing globally due to climate change. There is, however, a severe 

paucity of data within the scientific literature backing up this claim, which has come to 

be known as the ‘jellyfish paradigm’ (Condon et al., 2012). There are several factors 

other than climate change thought to influence GZ abundance including overfishing, 

eutrophication and climate variability (Pitt et al., 2018). GZ blooms are responsible for 

economic losses to coastal industries and play a significant role within ecosystems. It 

is therefore important to improve our understanding of the relative impacts of these 

different factors on GZ occurrence and potential additive effects, to guide future 

management and mitigation. Studies of past climate variability have shown a link 

between warmer temperatures and increased GZ abundance, but we lack both the long-

term observations and adequate models to infer the role of climate change (Condon et 

al., 2012, Condon et al., 2014, Lucas et al., 2014, Pitt et al., 2014). 

 

1.2 What are Gelatinous Zooplankton? 

 

The term GZ encompasses a wide range of organisms with the shared characteristics of 

gelatinous bodies, slow moving, a tendency to aggregate in large numbers (form 

blooms) and a (mostly) pelagic life feeding on plankton, which colloquially are often 

called jellyfish (Lucas and Dawson, 2014). The gelatinous bodies of GZ have an 

average wet weight water content of 96% and an average carbon content of 0.5% 

(Lucas et al., 2011), in comparison to other marine animals which have an average 

water content of 75% and carbon content of 8-10% (Vinоgrаdоv, 1953). GZ can be 

separated into three main groups; Cnidaria, often termed ‘true-jellyfish’, including the 

classes Scyphozoa, Cubozoa and Hydrozoa; Ctenophora, often termed ‘comb-jellies’, 

including the classes Tentaculata and Nuda; and the subphylum Tunicata, often termed 

‘salps and doliolids’, including the classes Thaliacea, Ascidiacea and Appendicularia 

(Table 1, Fig. 1.1; Lucas and Dawson, 2014, Mills, 1995). For Cnidaria, the body 

form is characterised by a bell-shaped body (medusae) used for swimming by 

muscular pulsing contractions, below the medusae are tentacles and oral arms which 

contain stinging cells (nematocysts; Fig. 1.2). Cnidaria are largely non-visual 

generalist predators, feeding on zooplankton. For Ctenophores, the body-form is   
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Table 1.1 Taxonomic classification of groups of gelatinous zooplankton (see Appendices 1). 

Phylum Subphylum Class Subclass Order 

Chordata Tunicata Thaliacea 

Ascidiacea 

Appendicularia 

  

Cnidaria Medusozoa Cubozoa   

  Hydrozoa  Limnomedusae 

   Trachylina Trachymedusae 

   Hydroidolina Anthoathecata 

    Leptothecata 

    Siphonophorae 

  Scyphozoa   

Ctenophora  Nuda   

  Tentaculata   
 

   

  

  

Figure 1.1 Photos of gelatinous zooplankton. (a) Lions mane jellyfish (Cnidaria; Smithsonian, 2017), (b) 

Moon jellyfish (Cnidaria; New England Aquarium, 2015), (c) Box jellyfish (Cnidaria; Generate Change, 

2019), (d) Sea gooseberries (Ctenophora; Microscopy UK, 2019), (e) Sea walnut (Ctenophora; NIOZ, 

2015), (f) Salp oozooid (Tunicata; Plankton Chronicles, 2016), (g) Salp chain (Tunicata; Plankton 

Chronicles, 2016). 

(a) 
(b) 

(c) 

(d) (e) 

(f) (g) 
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Figure 1.2 Simplified anatomy of gelatinous zooplankton for typical Cnidaria (top; Exploring Our Fluid  

Earth, 2019), Ctenophora (middle; Canal Cederj, 2011) and Tunicata (bottom; Pascual, 2016). 
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characterised by eight rows of cilia evenly distributed around a normally egg-shaped 

body; Ctenophores beat the cilia to propel them through the water and occur with and 

without tentacles (Fig. 1.2). They are non-visual generalist predators feeding on 

zooplankton. (Richardson et al., 2009). For Tunicata, the body-form is cylindrical and 

species are either solitary or colonial, forming long chains (Fig. 1.2). They are filter 

feeders of particles between 1 – 10 µm, ranging from small bacteria to large 

phytoplankton (Lucas and Dawson, 2014). In this thesis GZ will refer to all three 

groups outlined above (Cnidaria, Ctenophora and Tunicata), individual groups or 

species will be referred to where appropriate.  

 

1.2.1 Life Cycle 

 

GZ have many life cycle strategies, but they can be categorised into two groups;  

holoplanktonic, remaining in the plankton throughout their life cycle, and 

meroplanktonic, spending some of their life cycle in the plankton (Lucas and Dawson, 

2014). Most Cnidaria are meroplanktonic species which spawn as adults (medusa) in 

the water column, the eggs are fertilized and develop into planula larvae, which settle 

onto hard substrate and develop into a polyp (scyphistomae). Polyps are often 

transparent and barely a couple of millimetres in length. The polyps of multiple species 

have been found to form hard protective casings known as cysts. The polyp can stay at 

this stage for several months over winter, until an environmental trigger causes the 

polyp to undergo asexual reproduction (strobilation) and bud multiple juveniles 

(ephyrae). Under favourable environmental conditions the ephyrae can rapidly grow 

into adult medusa, reach sexual maturity, and spawn. Strobilation and budding of 

ephyrae can occur multiple times during a season (Fig. 1.3). Ctenophora and some 

Cnidaria are holoplanktonic, skipping the benthic stage, with the planula larvae 

developing straight into ephyrae within the plankton (Fig. 1.3). In some species a small 

proportion of the adult population overwinters and spawns the following spring 

(Costello et al., 2006, Lucas et al., 2012, Lucas and Dawson, 2014). Tunicata are also 

holoplanktonic but reproduce in markedly different ways to Ctenophora and Cnidaria. 

Generally, the Tunicata life cycle begins with a solitary stage (oozoids) which 

asexually reproduce to form multiple chains (blastozooids), the blastozooids are 

hermaphrodites which internally fertilise, and then release an embryo which develops 

into an oozoid (Fig. 1.3; Loeb and Santora, 2012). These life cycle strategies, 
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particularly meroplanktonic species, allow GZ to survive when conditions are poor, 

and rapidly reproduce and grow when conditions improve (Brotz et al., 2012). The 

budding of multiple ephyrae from an individual polyp, essentially invisible to humans, 

and the rapid growth of ephyrae into adult medusa is the reason for apparent large and 

sudden aggregations of GZ, known as blooms. Blooms are generally short lived, 

lasting a few weeks, during which time spawning occurs. Intertidal stranding and death 

of GZ often follow coastal blooms (Lucas et al., 2012, Lucas and Dawson, 2014). 

Blooms can be categorised into two types; ‘true’ and ‘apparent’.  A ‘true’ bloom is the 

increase in biomass in a region due to reproduction and growth, whilst an ‘apparent’ 

bloom is the increase in biomass in a region due to hydrodynamics and wind amassing 

individuals into one area (Graham et al., 2001, Lucas and Dawson, 2014). 

 

1.2.2 The Benefits of Blooming 

 

GZ blooms are a natural ephemeral feature of marine ecosystems, with fossil evidence 

of large bloom formations dating back to the Cambrian Period (Graham et al., 2001, 

Young and Hagadorn, 2010). Bloom-forming gelatinous taxa have evolved 

independently multiple times, indicating its success as an adaptive strategy in the 

marine environment, which is characterized by patchy and ephemeral favourable 

conditions (Hamner and Dawson, 2009). The elements of a bloom-forming life cycle 

that take advantage of ephemeral conditions include rapid growth and development, 

early reproduction, high fecundity and a condensed period of sexual reproduction 

(Lucas et al., 2012, Lucas and Dawson, 2014). Another attribute of GZ that enables 

them to survive and thrive in harsh environments is high plasticity in feeding and 

physiology. This includes a generalized diet, continuous touch-feeding and the ability 

to shrink body size when prey abundance is low (Richardson et al., 2009). The same 

strategies that make GZ good survivors and adaptors also make them successful 

invaders. It is often the rapid proliferation of invasive GZ species that cause the most 

interference to, and attention from, humans (Richardson et al., 2009, Bayha and 

Graham, 2014). For example the Ctenophora, Mnemiopsis leidyi, invaded the Black 

Sea in the 1980s and has since spread into the Mediterranean (Boero, 2013) and into 

the North and Black Seas (Costello et al., 2012) and the Scyphozoa, Phylolrhiza 

punctata, successfully invaded the Gulf of Mexico (Graham and Bayha, 2008). 
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Figure 1.3 Life cycles of gelatinous zooplankton for the moon jellyfish, Aurelia aurita, as a typical 

Cnidaria (top; adapted from BIODIDAC, 2019), the comb jelly, Mnemiopsis leidyi, as a typical Ctenophora 

(middle; adapted from Sea Gooseberries, 2019) and the salp, Thalia democratia, as a typical Tunicata 

(bottom; adapted from Pascual, 2016). 
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1.3 Climate Change & Gelatinous Zooplankton - the Jellyfish Paradigm 

 

Rising atmospheric carbon dioxide concentration and climate change are driving 

changes in the marine environment, primarily increasing temperature and decreasing 

pH. This trend is set to continue into the coming decades (Rhein, 2013). Climate 

change will have significant impacts on marine ecosystems, many of which are already 

occurring such as increasing temperature triggering coral bleaching (Hoegh-Guldberg 

et al., 2018). Alterations to ocean temperature and acidity can directly impact species 

ranges, seasonal abundance and cause local extinctions, leading to indirect effects from 

climate change transferring throughout ecosystems via trophic cascades (Doney et al., 

2012). GZ may be both directly and indirectly affected by climate change. Rising 

temperatures are likely to directly impact GZ through increasing growth and 

reproduction rates and through increasing species ranges (Brotz et al., 2012, Lucas and 

Dawson, 2014, Condon et al., 2014). In Australia some species of box jellyfish 

(Cubozoa) are predicted to increase their range north along the coast as sea surface 

temperatures increase (Richardson et al., 2009, Klein et al., 2014). Indirect impacts on 

GZ from climate change are likely to come from ocean warming increasing 

stratification, resulting in reduced mixing of nutrients, eutrophication and hypoxia. 

These changes to the physical marine environment will trigger bottom-up cascades 

changing the structure of the plankton food web, and thus GZ prey. What impact this 

will have on GZ populations is currently unclear (Gibbons and Richardson, 2013, 

Lucas and Dawson, 2014). Many species of GZ are tolerant to hypoxic and eutrophic 

conditions, which may allow them to outcompete other organisms as areas 

experiencing hypoxic and eutrophic conditions increase in size and frequency 

(Richardson and Gibbons, 2008, Richardson et al., 2009).  

 

There is significant debate within the literature around the question of whether GZ 

have already, or will increase in the future due to climate change (Brotz et al., 2012, 

Condon et al., 2012, Condon et al., 2013, Gibbons and Richardson, 2013). The debate 

largely stems from a lack of long-term observational data, unknown baselines, and the 

difficulty in determining trends in GZ due to the large fluctuations in abundance over 

even small space and time scales, from apparent absence to large blooms containing 

millions of individuals over a few weeks. This perceived global increase in GZ lacks a 

backing of rigorous scientific data, and is known as the jellyfish paradigm (Brotz et al., 
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2012, Condon et al., 2013, Gibbons and Richardson, 2013). Poor citation practices 

within the GZ scientific literature have also contributed to the jellyfish paradigm 

(Sanz-Martín et al., 2016). A few papers, each of which found an increase in a GZ 

species in a region correlated with rising ocean temperatures, suggested that this may 

be representative of trends in other regions and may suggest a global increase, were 

repeatedly mis-cited as direct evidence of a global increase across most GZ species 

directly linked to climate change (Sanz-Martín et al., 2016).  

 

Human issues with GZ have increased in recent decades (Purcell et al., 2007, Purcell, 

2012, Richardson et al., 2009, Doyle et al., 2014). Increased use of the marine 

environment for industry and tourism has brought GZ into direct conflict with humans 

more frequently (see section 4.1). Where a coastal bloom may have gone unnoticed in 

the past, infrastructure such as an aquaculture farm or a power plant, results in a 

‘nuisance bloom’ likely to be picked up on by the media as a newsworthy story 

(Purcell, 2012). This is contributing to a public perception of the jellyfish paradigm. 

The public and media perception of more frequent blooms is based on a short frame of 

reference and may indicate a perceived, rather than actual, increase in GZ abundance 

in some areas (Condon et al., 2012, Duarte et al., 2013). Often the high-profile blooms 

are from invasive species (Dong et al., 2010, Boero, 2013, Bagheri et al., 2014), 

further contributing to the negative public perception of increasing GZ abundance 

(Bayha and Graham, 2014). 

 

The influence of temperature on GZ abundance is probably the most studied factor, 

with positive correlation found for the majority of species, especially in temperate 

environments (Lucas and Dawson, 2014). The upper temperature threshold for GZ is 

higher than is found in many other marine species (Purcell, 2012). It is widely 

suggested that this high-threshold will allow GZ to become more prolific and expand 

their ranges as global temperatures increase. The positive correlation between GZ 

abundance and temperature has been picked up by the media, contributing to the 

current paradigm where GZ are perceived to be increasing globally due to climate 

change (Condon et al., 2012). The indirect effects from climate change on GZ are less 

clear and the overall effect of climate change on GZ abundance cannot be determined 

from current observational data (Purcell, 2005, Richardson et al., 2009, Gibbons and 

Richardson, 2013). Climate indices have been positively correlated to GZ abundance 



Introduction 11 

in several regions, but negative correlation in other regions has also been shown (see 

Section 1.8; Condon et al., 2013). Overfishing and global ocean sprawl have also been 

correlated to increases in GZ abundance (see Section 1.6). Attributing an increase in 

GZ abundance directly to climate change is difficult and complicated due to the lack of 

knowledge on GZ baseline and variations with climate indices, and the many 

interactions between climate, ecosystems and all the other stressors imposed on the 

marine environment by mankind (Condon et al., 2012). 

 

1.4 The Importance of Gelatinous Zooplankton 

 

In general, GZ are viewed as negative components of the marine environment as they 

conspicuously disrupt many coastal industries. However they also have many 

beneficial and essential roles, which are often overlooked (Doyle et al., 2014, Purcell 

et al., 2007). Both the positive and negative impacts of GZ are introduced below. 

 

1.4.1 Economic Benefit 

 

GZ can provide an economic benefit through the GZ fishing industry (Richardson et 

al., 2009, Doyle et al., 2014). Certain species of Cnidaria have been historically fished 

in Asia (Dong et al., 2010) and the practice has recently been taken up in the Americas 

and Europe (Doyle et al., 2014). Another key benefit from GZ is their contribution to 

biotechnology and medicine, for example GZ collagen is currently being tested for use 

in treating rheumatoid arthritis and rebuilding muscle, cartilage and bone. In 

biotechnology the green fluorescent protein was first isolated from the GZ, Aequorea 

victoria, and is widely used to tag proteins and track changes of cellular process in 

living cells (Doyle et al., 2014). 

 

1.4.2 Economic Cost  

 

GZ are predominantly known for their negative impacts on coastal industries. The 

tourism industry can suffer economic loss from beach closures due to blooms and 

stingings giving an area a bad reputation. For example, proliferations of box jellyfish 

species in touristic areas such as Australia’s north coast have resulted in hospitalisation 

and human fatalities (Richardson et al., 2009, Gershwin et al., 2014).  Recent years 
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have seen the number of fatalities from stings by numerous species of GZ increase in 

China (Dong et al., 2010). Several industries use large quantities of seawater taken up 

through pipelines, most notably nuclear power stations and desalination plants. GZ 

blooms in the area of such plants can be sucked up and clog the filtration system to 

such an extent that the plant has to stop operations in order for the filter to be cleared, 

resulting in economic losses (Purcell et al., 2007, Richardson et al., 2009, Dong et al., 

2010). There are many reported cases of GZ killing fish within aquaculture pens, e.g. 

by stinging their gills to such an extent that they suffocate (Purcell et al., 2007, 

Richardson et al., 2009). GZ blooms can impact fisheries directly, by bursting nets and 

contaminating catches (Dong et al., 2010, Quinones et al., 2013), and indirectly 

through predation on and competition with commercial species (Roux et al., 2013). 

There are a high number of cases of direct impacts on Japanese and Chinese fisheries 

(Richardson et al., 2009, Dong et al., 2010, Purcell, 2012). GZ have also been cited as 

a potential factor in dangerous algal blooms via cascading ecosystem effects (Pitt et 

al., 2007, West et al., 2009).  

 

1.4.3 Ecosystem Services 

 

Traditionally GZ have been largely ignored in marine ecosystem studies, with 

blooming events seen as unnatural and a signifier of a degraded ecosystem (Boero et 

al., 2008, Hays et al., 2018). The high-water content, and thus low carbon and nutrient 

content of GZ bodies, has strongly influenced the view of them as trophic dead ends, 

i.e. that nothing would bother to eat them. However, the rapid and low-energy 

digestion required for the consumption of GZ may counterbalance their low nutrient 

content. This rapid digestion of GZ and lack of hard body parts (i.e. bones, scales or 

carapace) has likely contributed to the idea that they were not consumed, as there is 

poor evidence of them in the traditional visual stomach analysis of fish or scat analysis 

of sea birds and marine mammals. The recent advances in DNA analysis and cheaper 

high-throughput testing are dismantling this idea (Lamb et al., 2017, McInnes et al., 

2017, Hays et al., 2018). GZ have been viewed as trophic dead-ends, but research has 

now shown that they make up some of the diets of 124 fish species and 34 other 

marine species (Pauly et al., 2009). Some of these are specialist feeders relying on GZ 

for the majority of their diet, including the iconic and endangered leatherback turtle, 

Dermochelys coriacea, and the ocean sunfish, Mola mola (Houghton et al., 2006a, 
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Houghton et al., 2006b). Other species, such as penguins, are not traditionally viewed 

as predators of GZ, but four species have now been shown to actively predate GZ 

(Hosia et al., 2017). The importance of GZ in the diet of the majority of these species 

is unknown, as is the top-down influence of predators on GZ abundance (Hays et al., 

2018). There has been an underestimation of GZ importance in pelagic food webs 

(Boero et al., 2008) as well as in benthic food webs where GZ carcases are rapidly 

scavenged (Sweetman et al., 2014). GZ are efficient feeders of the plankton, able to 

rapidly clear large volumes of water, thus influencing the plankton structure and 

potentially the food web through trophic cascades (Pitt et al., 2007, Pitt et al., 2009, 

West et al., 2009). GZ were described by Pauly et al. 2009) as “arguably the most 

important predators of the sea”. There is also increasing evidence that GZ can play a 

substantial role in marine biogeochemical cycles, due to their bloom-forming 

capabilities (Lebrato et al., 2012, Chelsky et al., 2015). 

 

1.5 Biogeochemical Cycles & The Biological Carbon Pump  

 

Biogeochemical cycles are the continuous reuse and cycling of nutrients and carbon 

through the marine environment, with a small proportion exiting the cycles through 

sedimentation. The plankton community plays a vital role in biogeochemical cycles, 

providing the link between carbon (C), nitrogen (N) and phosphorous (P) in the water 

column and larger marine animals higher up the food web (Steinberg and Landry, 

2017). For the biogeochemical cycle of carbon, sequestration occurs through the 

sinking of plankton faeces and carcasses as marine snow (Pitt et al., 2009, Lebrato et 

al., 2012, Chelsky et al., 2015). The biological carbon pump (BCP) is the name given 

to the section of the biogeochemical cycle which focuses on the carbon pathways that 

are mediated by marine ecosystems, including the return flow through ocean 

circulation (see Fig. 1.4 for detail; Sanders et al., 2014). GZ blooms provide a large 

and sudden input of carbon and nutrients into the environment due to their bloom and 

bust dynamics, playing an important role in the carbon and biogeochemical cycles 

through two routes; waste produced during their lives through repackaging of carbon 

into mucus and faeces; and their death and subsequent decomposition and 

consumption. The mass deposition events from the rapid sinking of GZ carcases 

during and after blooms are termed ‘jelly-falls’ (Lebrato et al., 2012). A relatively 

small amount of research has been done thus far into such roles, but this has increased  
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Figure 1.4 The biological carbon pump. CO2 from the atmosphere dissolves into the surface ocean. 

Phytoplankton convert the dissolved CO2 into particulate organic carbon (POC) via photosynthesis in 

the euphotic layer of the epipelagic zone. Zooplankton graze on phytoplankton, converting the POC 

and other organic matter in phytoplankton into faecal pellets, carcases and other POC aggregates 

(marine snow), which are exported into the mesopelagic and bathypelagic zones by sinking and by 

the vertical migration of some zooplankton and fish. In the mesopelagic zone the marine snow 

(sinking particles) is converted into dissolved organic carbon (DOC) through microbial 

remineralisation which can be moved throughout the water column via physical vertical mixing of 

water. The marine snow is also grazed and repackaged by zooplankton, which are in turn predated 

by fish, squid and other deep ocean consumers, continuing the repackaging of POC and DOC in the 

mesopelagic zone. Below the sequestration depth carbon is deposited and stored for 100 years or 

more. Adapted from Turner (2015). 



Introduction 15 

in recent years and this trend is likely to continue (Billett et al., 2006, Pitt et al., 2009, 

Lebrato et al., 2012, Chelsky et al., 2015, Stone and Steinberg, 2018). Climate change 

will alter the biogeochemical and carbon cycles and the role that zooplankton play in 

the cycles, including the role of GZ (Steinberg and Landry, 2017, McKinley et al., 

2017, Chelsky et al., 2015). 

 

1.5.1 Excretion 

 

Pitt et al. 2009) reviewed C, N and P in relation to Cnidaria and Ctenophora and found 

a handful of laboratory studies on faeces production.  Temperature appears to have a 

significant influence on the rate of excretion (Pitt et al., 2009), suggesting potential 

implications with climate change. The sinking rate of salp (Tunicata) faecal pellets is 

considerably faster than euphausiids and significantly faster than copepods; faster 

pellet sinking rates result in less time for remineralisation, thus a greater proportion of 

C, N and P exiting the cycle through sedimentation (Doyle et al., 2014). A study in the 

Antarctic found a high proportion of the marine snow under a salp bloom to contain 

salp faeces. The focus of the study was on krill bloom effects on marine snow and 

sediment composition, which were found to be significant (Atkinson et al., 2012). It is 

a fair assumption that large salp blooms are likely to also have an impact on the local 

sediment (Doyle et al., 2014). Scyphozoa excretion during a bloom can double 

phytoplankton biomass, largely due to an increase in diatoms through the biological 

pump (West et al., 2009). A study on carbon flux found no difference in the total 

particulate organic carbon in treatments with and without Mnemiopsis leidyi 

(Ctenophora) and Chrysaora chesapeakei (Scyphozoa), but the presence of the GZ 

decreased the copepod faecal pellet carbon flux by 50% due to a reduction in copepod 

abundance through predation by the GZ (Stone and Steinberg, 2018). GZ may play an 

important role in the BCP through their structuring of the plankton community by 

trophic cascades.  

 

1.5.2 Death 

 

The review by Pitt et al. 2009) also looked at Cnidaria and Ctenophora bloom 

decomposition after a jelly-fall.  They find that the decomposition of a bloom will 

release C, which may support microbial production, and N and P, which may support 
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algal production. The oxygen demand from microbes and algae to decompose the GZ 

tissues could result in localized hypoxia (Pitt et al., 2009). Lebrato et al. 2012) 

summarises data on jelly-falls up to 2012 and finds evidence of the importance of the 

falls in transferring carbon and nutrients to shelf- and deep-sea habitats. The authors 

hypothesize that increasing GZ blooms at the surface will increase particulate organic 

matter transport to the bottom and may provide a “natural-compensation” for predicted 

reduction in particulate organic matter. GZ are also a potential vector of carbon export 

(Lebrato et al., 2013b), particularly because of the fast sinking rate of gelatinous-

biomass compared to other plankton exports due to their relatively large structures 

(Lebrato et al., 2013a). There is evidence that the carbon from a single jelly-fall 

provides four times the annual carbon input to the seafloor (Lebrato and Jones, 2009), 

whilst another study found that a jelly-fall exceeded the annual downward flux of 

carbon by more than an order of magnitude, with a standing stock of up to 78g Cm2 

(Billett et al., 2006). GZ are likely to be an important carbon sink in the global carbon 

cycle, but are currently ignored in global studies (Doyle et al., 2014, Qu et al., 2014, 

Lebrato et al., 2012, Lebrato et al., 2013a). 

 

1.6 Drivers of GZ Blooms 

 

There are many drivers of GZ blooms suggested within the literature, including 

climate change, temperature, nutrients, fishing, currents, hard substrate, zooplankton, 

wind mixing, precipitation and climate indices (Purcell et al., 2007, Hamner and 

Dawson, 2009). Many of the drivers are interconnected, with the increasing strength of 

one contributing to another i.e. eutrophication from nutrient run off may be enhanced 

by stratification from higher temperatures. Multiple drivers are often occurring 

simultaneously in the marine environment, particularly in coastal areas where human 

impacts are more direct (Lucas and Dawson, 2014).  

 

1.6.1 Temperature 

 

GZ populations follow seasonal cycles, particularly in temperate environments, with 

the greatest abundance occurring during the summer months. Many studies have found 

positive correlation between GZ abundance and temperature, with the most significant 

correlations in temperate environments. Temperature had been argued as the main 
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cause of blooms by several reviews (Purcell, 2012, Qu et al., 2014, Xu et al., 2013). 

This positive correlation is supported by laboratory studies investigating temperature 

effects on many stages of GZ life cycles. For Cnidaria, the number of ephyrae 

produced per polyp, the rate of polyp development, the frequency of strobilation cycles 

and the growth of ephyrae into medusa have all been positively correlated with 

temperature (Lucas et al., 2012, Purcell et al., 2012, Robinson and Graham, 2014). A 

review by Purcell et al. 2007) found that 18 of 24 temperate GZ species abundances 

increased as waters warmed. Unusually high temperatures have been shown to 

decrease production (see Section 1.7), but the temperature tolerance range of many GZ 

species is greater than that of other marine species (Purcell, 2012, Pitt et al., 2014). 

This may allow GZ to expand their range and bloom-forming season as climate change 

progresses (Gershwin, 2007, Gershwin and Zeidler, 2008, Xu et al., 2013).  

 

1.6.2 Food 

 

Cnidaria and Ctenophora feed on a wide range of zooplankton species and 

ichthyoplankton (fish eggs and larvae). Smaller species and juveniles generally feed on 

micro- and some phytoplankton. Tunicata feed on phytoplankton by drawing water 

through their siphon and filtering out particles. The large body size to carbon content 

ratio of GZ creates a low maintenance, large feeding structure, which combined with 

continuous (day and night) touch-feeding allows for efficient clearance rates of the 

plankton (Lucas and Dawson, 2014, Acuña et al., 2011). This feeding strategy also 

allows GZ to outcompete other predators of zooplankton such as planktivorous fish, 

which actively hunt prey by sight, restricting feeding time to daylight hours (Acuña et 

al., 2011). Prey concentration has been positively correlated with rates of budding 

from polyps and the growth of ephyrae into medusa (Han and Uye, 2010, Lucas and 

Dawson, 2014). The relationship between zooplankton and GZ abundance can also be 

seen in the seasonal cycle where GZ blooms closely follow plankton blooms, i.e. 

spring, summer and autumn blooms (West et al., 2009, Garcia-Comas et al., 2011, Pitt 

et al., 2014). Chiaverano et al. 2013) demonstrated a strong positive relationship of the 

box jellyfish Alatina moseri (Cubozoa) to zooplankton biomass. A stage-structured 

matrix model of the moon jellyfish Aurelia aurita (Scyphozoan) found prey 

availability to be an important ecological driver of blooms, by moving the population 

structure from the polyp stage to the medusae stage (Goldstein and Steiner, 2017). The 
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same study also found that introducing projected climate change scenarios to the 

matrix model only caused small changes in population.  

 

1.6.3 Fishing 

 

The collapse of fisheries in many locations around the world has been correlated to an 

increase in GZ abundance (Purcell, 2012, Robinson et al., 2014). It is argued that 

human interference, namely overfishing and pollution, worked together to cause the 

fisheries collapse, creating a space in the ecosystem which GZ rapidly took advantage 

of, rather than the collapse of a fishery being caused by a rise in GZ abundance 

(Purcell et al., 2007, Robinson et al., 2014). Overfishing is thought to increase GZ 

populations in two main ways; firstly by reducing competition for prey, as many 

species of planktivorous fish are commercially exploited (Robinson et al., 2014) and 

secondly by reducing predation pressure, as GZ are eaten by many commercial species 

of fish (Lamb et al., 2017). Overfishing may change the food web to such an extent 

that an ecosystem shift occurs, where the structure and function of the ecosystem shifts 

from one stable state i.e. planktivorous fish dominated, to another contrasting state i.e. 

GZ dominated (Roux et al., 2013). The ecosystem shift, from fish dominated to GZ 

dominated, that can be brought about by overfishing is thought to be entrenched due to 

a high consumption of ichthyoplankton by GZ, and strong competition for food with 

juvenile and/or adult fish, depending on the species. High consumption of 

ichthyoplankton reduces the recruitment success of the remaining fish population. The 

feeding strategy of GZ as continuous passive touch-feeders is likely to outcompete fish 

which are selective, active hunters restricted to daylight (Acuña et al., 2011). These 

factors may make the recovery of fisheries to pre-collapse levels very difficult (Roux 

et al., 2013, Robinson et al., 2014). 

 

1.6.4 Nutrients & Eutrophication 

 

The number and size of areas of coastal waters experiencing eutrophication is 

increasing globally (Doney et al., 2012, Purcell, 2012, Rhein, 2013). This is mostly 

due to increased nutrient run-off from land and riverine inputs, largely from the 

increased use of fertilisers. Global warming can enhance eutrophication and may lead 

to hypoxia, as warmer waters hold less oxygen and are more stratified, reducing 
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mixing with deeper cooler oxygen rich waters (Doney et al., 2012). Eutrophication and 

hypoxia do not appear to directly cause GZ blooms, rather GZ are more tolerant of low 

oxygen conditions than many other marine species, as they do not have complex 

breathing structures or a high oxygen demand (Purcell et al., 2001). Also, Cnidaria and 

Ctenophora are able to switch their feeding from zooplankton, which are generally not 

tolerant to hypoxia, to flagellates, which proliferate in hypoxic conditions. These two 

features can allow GZ to survive and dominate in hypoxic regions where many other 

species cannot (Purcell et al., 2001, 2007). Some studies have correlated higher 

eutrophication and increased GZ abundance (Xu et al., 2013). 

 

1.6.5 Hydrology 

 

Localized hydrology can have a strong influence on the formation and location of GZ 

blooms (Graham et al., 2001). A strong current in the Mediterranean had a clustering 

effect on smaller blooms, creating large formations of ‘apparent’ blooms (Benedetti-

Cecchi et al., 2015). GZ are likely to take advantage of both stratification and mixing. 

In stratified environments GZ may outcompete fish and other predators due to their 

unselective feeding, higher tolerance of extreme physical conditions (see above). In 

mixed environments there is usually a high abundance of plankton due to increased 

nutrients, which may lead to higher GZ abundance from increased food availability 

(Graham et al., 2001). 

 

1.6.6 Others 

 

Other physical forcings have been suggested to influence the formation of GZ blooms 

including acidification, precipitation and salinity, but with tenuous and limited 

evidence (Graham et al., 2001, Pitt et al., 2018). GZ generally lack calcified parts that 

could be negatively affected by acidification, but it has been suggested that they may 

benefit from reduced competition with marine organisms that are negatively affected 

by acidification (Attrill et al., 2007). The low selectivity of prey by GZ may allow 

them to avoid a reduction in food due to the changing structure of the plankton 

community, although evidence of this is currently minimal (Richardson and Gibbons, 

2008). Climate change is likely to shift the ‘interaction web’ of the plankton 
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community (Francis et al., 2012) which may favour GZ over other planktivores due to 

their unselective feeding (Roux et al., 2013, Acuña et al., 2011).  

 

These factors are all, either directly or indirectly, influenced by human activities. 

Anthropogenic climate change affects temperature, salinity, pH, currents, wind-mixing 

and precipitation. Global ocean sprawl including fishing, hard substrate additions and 

species translocation, as well as nutrient enrichment from fertiliser runoff, are likely to 

act synergistically to benefit GZ (Duarte et al., 2013). As discussed above, much of the 

evidence for the influence of anthropogenic stressors on GZ is correlative or based on 

conceptual models of how stressors may influence blooms rather than direct evidence 

of causation (Pitt et al., 2018). 

 

1.7 Causes of Busts 

 

Most research on GZ has focused on the causes of blooms, with very little done on 

why the blooms collapse. Predicting how long a bloom may persist is important for 

management of industry and understanding impacts on the local ecosystem, as reduced 

GZ abundance will release predation and competition pressure on zooplankton. But, 

GZ also act as shelter to many species of juvenile fish and invertebrates (Condon et al., 

2014, Pitt et al., 2014). The length of a bloom will also impact the biogeochemical 

cycling of nutrients and carbon (Lucas et al., 2011, Pitt et al., 2009). Pitt et al. 2014) 

identify the major drivers of bloom collapse from the literature, although note “rarely 

was the cause of the decline in the population reliably identified; however, authors 

frequently speculated about the cause of mortality”. The major drivers of GZ 

population collapse (bust) are outlined below. 

 

1.7.1 Food 

 

Food limitation is regularly cited as a major cause of bust (Pitt et al., 2014). GZ are 

highly efficient consumers of plankton, as previously mentioned. Once the rate of 

predation by medusa exceeds secondary production of zooplankton, medusa growth 

can be inhibited and may shrink their body size to compensate for food limitation 

(Purcell and Decker, 2005). Goldstein & Steiner (2017) note that in their experiments 

on A. aurita medusa all individuals in the ‘low food treatment’ had died after 4 
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months, whilst all individuals in the ‘high food treatment’ were alive after the same 

time period.  

 

1.7.2 Parasites 

 

Many parasites are known to infest GZ (including hyperiid amphipods, digenean 

trematodes and parasitic anemones), which are also parasites to many other marine 

species (Pitt et al., 2014). Rates of infestation within blooms are likely to be high, as 

abundance of parasites is positively correlated to the density of hosts (Arneberg et al., 

1998). GZ parasites can damage body parts, including feeding and swimming 

apparatus. Population crashes due to parasite infestation in marine species such as fish 

and krill are well documented; it is likely a similar pattern widely occurs in GZ blooms 

(Pitt et al., 2014). 

 

1.7.3 Disease 

 

Disease is regularly suggested as a potential cause of bust, but very few studies have 

investigated this. Mills 1993) found bacterial infection on 80% of a bloom population 

near the end of the season. GZ appear able to recover from bacterial infection if there 

is sufficient food available, likely making them vulnerable to infections when food 

becomes limited after a sustained bloom (Mills, 1993). Pathogens other than bacteria 

(e.g. fungi and viruses) are likely to infect and affect blooms but no studies exist (Pitt 

et al., 2014).  

 

1.7.4 Predation 

 

Traditionally GZ have been seen as tropic dead ends, with the exception of specialised 

predation by a few iconic species (i.e. leatherback turtles and ocean sunfish). Recent 

studies indicate that a wide range of fish and other marine species predate GZ, 

including other GZ, however the levels of consumption and the impact on bloom 

populations are still unknown (Arai, 2005, Pauly et al., 2009), but are beginning to be 

quantified (Lamb et al., 2017, Hays et al., 2018). In the Irish Sea genetic analysis of 

fish gut samples found Scyphozoa DNA in 20.3% of herring sampled, 9.5% of 

dragonet, 7.7% of whiting and 7.4% of lesser-spotted dogfish, as well as in grey 
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gurnards, poor cod, squid, dover sole and spat (Lamb et al., 2017). The authors of this 

study suggest that these common fish species preying on GZ, even at low levels, could 

exert a greater predation pressure on GZ populations in the Irish Sea than the rare 

obligate GZ predators such as the ocean sunfish. A study in the Southern Ocean 

documented almost 200 cases of targeted predation on GZ by four species of penguin. 

Predation occurred at all of the locations in the study (Thiebot et al., 2017). The 

authors note that GZ may be a ubiquitous but underrepresented trophic link in the 

Southern Ocean. The impact on bloom populations of targeted predation on GZ by a 

wide range of marine species is currently unknown and can only be speculated on, 

specifically whether the level of predation on high density blooms will have an impact 

on overall GZ abundance. 

 

1.7.5 Senescence Post-Spawning 

 

Senescence post-spawning has been observed in GZ populations several times (Pitt et 

al., 2014). Although it seems more likely that death after spawning events can be 

attributed to starvation, through loss of feeding tentacles, or the funnelling of nutrients 

to the growth of gonads, and through increased parasitism, than to the spawning event 

itself (Pitt et al., 2014). 

 

1.7.6 Extreme Temperature 

 

Blooms are generally observed to decline into the autumn and winter as sea surface 

temperature (SST) decreases, but this is likely due to temperature interacting with 

other parts of the ecosystem such as reducing zooplankton abundance, making the 

water temperature not the driving factor behind such seasonal declines (Pitt et al., 

2014). Extreme water temperatures have been shown to cause bloom mortality, 

although in limited cases. Only in Chesapeake Bay has cold temperature been robustly 

attributed to GZ death, of the Scyphozoan, Chrysaora quinquecirrha (Sexton et al., 

2010). In an enclosed marine lake sustained high water temperature and abnormal 

stratification was attributed to the disappearance of 1.5 million Mastigias medusa 

(Martin et al., 2006, Dawson et al., 2001). However, this high temperature did not 

affect the Aurelia medusa population in the same lake. A key difference between these 

Scyphozoa species is that Mastigias has a photo-symbiotic relationship with 
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zooxanthellae, whilst Aurelia does not. The authors note that the high temperature may 

have disrupted this symbiosis, contributing to the Mastigias decline (Dawson et al., 

2001). 

 

1.7.7 Intertidal Stranding 

 

Large stranding events are common and highly conspicuous along shorelines. It is 

likely that such events are a result of other factors mentioned above reducing the 

swimming ability of GZ so that they are less able to orientate in relation to tides, winds 

and currents to avoid stranding (Pitt et al., 2014). Doyle et al. 2007) found that 

stranded GZ along the Irish coast were already lacking tentacles and oral arms. 

Stranding events in Hawaii are closely synchronised to the full moon creating strong 

tides (Chiaverano et al., 2013). 

 

It is likely that busts are due to a combination of several factors acting synergistically, 

particularly limited food availability increasing susceptibility to other factors. 

Secondary impacts from parasitic damage to the body include reduced feeding 

capability and reduced swimming ability to orientate away from shore.  

 

1.8 Trends in Gelatinous Zooplankton Populations  

 

As mentioned previously, it can be difficult to separate the large fluctuations in GZ 

abundance intra- and inter-annually from any longer-term trends that may indicate a 

growing population caused by climate change. This problem is compounded by the 

paucity in long-term regional data sets. Henson et al. 2010) suggests that time series of 

at least 40 years are necessary to separate inter-annual variability and climate indices 

from trends in plankton due to climate change. Unfortunately, such long, continuous 

and quantitative records of GZ are rare (Purcell, 2012), making it difficult to attribute 

GZ trends to climate change. The large variability in GZ populations between years 

also increases the difficulty of interpreting the data, and separate studies of the same 

area can give conflicting results. Key studies investigating trends in GZ populations 

are given below. For a clear summary of the evidence, papers are grouped by region.  

 

1.8.1 Northeast Atlantic 
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The following series of papers demonstrate both the complexity of the North Sea and 

the Northeast Atlantic, their relation to the North Atlantic Oscillation (NAO) and the 

difficulties and disagreements in analysing GZ data.  

 

The North Sea is a complex region, influenced by the NAO, with distinct sub-regions. 

Lynam et al. (2004, 2005) use by-catch data from pelagic fishing surveys covering a 

15 year period during 1970s – ‘80s. They report catches of medusa (various Cnidaria 

species) ranging in diameter from 1-47cm, and use abundance, as the number of 

medusa per trawl, for the analysis. The studies find a negative correlation between the 

NAO and medusa abundance, except in a region north of Scotland where the trend is 

reversed (Lynam et al., 2004, Lynam et al., 2005). Attrill et al. 2007) use data from the 

Continuous Plankton Recorder (CPR), covering a 43-year period from 1958. The CPR 

is too small to capture medusa; instead the presence or absence of tissue or 

nematocysts (stinging cells) is used to infer the presence/absence of medusa, which is 

used as percentage frequency of occurrence in the CPR. Attrill et al. 2007) find a 

positive correlation between the NAO and medusa occurrence, and point out the direct 

contradiction with Lynam et al. (2004, 2005). Attrill et al. 2007) argue that the 

contradiction is due to the shorter time series, and removal of a high outlying data 

point for 1983 by Lynam et al., to strengthen the negative correlation. However, Attrill 

et al. 2007) also use the removal of one outlier for 1979 to strengthen their positive 

correlation. Attrill et al. 2007) concludes that as the NAO moves into a stronger 

positive phase with global warming, the frequency of medusa outbreaks will increase. 

Haddock 2008) queries the strength of Attrill et al.’s analysis, on the apparent selective 

removal of one outlier and not another, and from this that the conclusions are 

‘overstated’.  Haddock 2008) recommends greater conservancy in drawing conclusions 

about climate change trends, in particular for press releases, noting Attrill et al.’s press 

statement “… all climate projections expect the North Sea to become warmer, so 

jellyfish will become more and more common in our waters” (Sample, 2007). 

 

Gibbons and Richardson 2009) also used CPR data to investigate Cnidaria medusa 

occurrence, but they argue that the CPR data includes records of Ctenophora tissue, 

where the previous CPR studies assume only Cnidaria are recorded. The Gibbons and 

Richardson study covers a larger area of the North Atlantic, comparing shelf sea and 
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oceanic populations. The data covers 60 years, from 1946 – 2005. They found clear 

multi-decadal cycles for both shelf sea and oceanic populations, with the last decade 

on an upward trend. It is noted however that the current level is lower than previous 

peaks since 1946. The oceanic populations were found to be related to zooplankton 

abundance and temperature, but not to the NAO or chlorophyll, whilst there was no 

correlation found between the shelf sea populations and any environmental variables 

tested (Gibbons and Richardson, 2009). These conclusions again differ from those 

drawn by Atrill et al. 2007) and Lynam et al. (2004, 2005). Another analysis of the 

CPR data (assuming only Cnidaria records) from 1958 – 2007 finds an increase in the 

North Sea in medusa since the early 1980s ‘coincident’ with a change from a cold to 

warm hydroclimatic regime (Licandro et al., 2010). Over the Northeast Atlantic they 

also find increases in frequency since 2002, especially in winter, where medusa appear 

earlier in the year and persist for longer. 

 

A long-term study (50 years) on four Scyphomedusae species in the western Dutch 

Wadden Sea found no relation between patterns of mean abundance and climate 

change (measured as increasing SST) in the area. But all the species occurred earlier in 

the year in recent decades with warming SST (Van Walraven et al., 2015). 

 

1.8.2 Mediterranean 

 

A study looking at a rare long-term record in the Western Mediterranean (180 years, 

from 1785 – 1965, visual presence/absence of Pelagia noctiluca), found ‘outbursts’ 

occurring periodically every 12 years or so. Climatic variables, primarily temperature, 

precipitation and atmospheric pressure were found to predict the presence of P. 

noctiluca (Goy et al., 1989). Kogovšek et al. 2010) collated presence/absence data 

from a variety of published sources for five Scyphozoa species in the Northern 

Adriatic (Northeast Mediterranean) covering a period of 219 years, from 1790-2009. 

They found three periods of greatly increased presence for all species, with two 

occurring since the 1980’s. A wavelet analysis showed periodicity of around 3 and 8 - 

12 years for all species, and also that this periodicity has shortened in recent decades 

whilst recurrence of blooms has increased (Kogovsek et al., 2010). Within the same 

study the wavelet analysis technique was also applied to the data from Goy et al. 1989) 

and reconfirmed the 12-year periodicity.  
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A quantitative record from a zooplankton survey of several Cnidaria species and one 

Ctenophora species in the Northwest Mediterranean (1966 to 1993) found that 

abundance was related to climate indices, with strength of relationship intensifying 

with increasing high positive anomalies in temperature (Molinero et al., 2005). The 

study also found that high abundance of Cnidaria and Ctenophora were linked to 

decline in the abundance of copepods. Garcia-Comas et al. (2011) used data from the 

same zooplankton survey for a different, but overlapping, time period (1974 to 2003). 

They found that Cnidaria and Ctenophora abundance followed large-scale climate 

driven temperature during the 1970s and 80s but decreased slightly from 1990 despite 

increasing temperature. The authors suggest that low winter temperatures and stronger 

mixing in the water column during the 1980s increased nutrient enrichment into 

surface waters. This is supported by lower than average abundance in 1990s, and 

higher than average in the 1980s in the five other (non-gelatinous) zooplankton groups 

studied (Garcia-Comas et al., 2011). 

 

Lebrato et al. 2013b) utilised a large-scale benthic trawling survey, covering the 

continental margin of the Northwest Mediterranean, from 1994 – 2005. Quantitative 

data of jelly-carbon (mgC m2) was used, from the species Pyrosoma atlanticum 

(Thaliacea). Decadal scale changes in jelly-carbon were correlated to hydroclimatic 

modifications (including NAO), with high jelly-carbon deposits strongly temperature 

driven and chlorophyll only playing a minor role in variation. A significant increase in 

deposits was found post 2001 (Lebrato et al., 2013b).  

 

1.8.3 Americas – Pacific 

 

Video data, collected from 1990 to 1998, in Monterey Bay, California showed 

significant differences in Hydrozoa abundance and depths, varying with species, in 

relation to two El Niño Southern Oscillation (ENSO) events. Seldom-seen species 

were observed in high numbers, whilst common species became rare during the ENSO 

events (Raskoff, 2001). Fourteen years of monthly beach counts in Hawaii (1988 – 

2011) of Alatina moseri  (Cubozoa) showed strong positive relationship to the North 

Pacific Gyre Oscillation (NPGO) index, as well as primary production and >2mm 

(non-gelatinous) zooplankton biomass (Chiaverano et al., 2013). A 43-year timeseries 
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off the coast of Peru (1972-2014), using GZ bycatch data from fishery surveys, found 

that Chrysaora plocamia (Scyphozoa) biomass fluctuated with ENSO and El Viejo 

regime warm events (Quiñones et al., 2015).   

 

An 8-year study (2000 – 2007) of Chrysaora fuscescens (Scyphozoa) and Aequorea 

sp. (Hydrozoa) abundance in the Northern California Current found a strong negative 

correlation to the Pacific Decadal Oscillation (PDO), with higher abundance in cooler 

years (negative PDO; Suchman et al., 2012). In this region negative PDO is associated 

with stronger upwelling, bringing cold, nutrient rich waters to surface and resulting in 

high marine productivity, which the populations of C. fuscescens and Aequorea appear 

to follow. The authors note the importance of this negative correlation in an upwelling 

region, as it “run[s] counter to the prevailing trend for temperate species that warm 

temperatures lead to increased numbers” (Suchman et al., 2012).  

 

Anderson and Piatt 1999) found increasing Scyphozoa populations in the Gulf of 

Alaska, over the period 1953 to 1997, collected as part of a wider trawl survey, which 

found a wider marine community reorganisation triggered by a shift in the ocean 

climate regime. A series of studies investigated Bering Sea fisheries trawl samples of 

GZ from 1975, and 1979 – 2005 (Brodeur et al., 1999, 2002, 2008). Density-dependent 

interactions between GZ biomass (>90% composed of the Scyphozoa, Chrysaora 

melanaster) and ice cover, SST (in spring and summer), wind mixing, juvenile fish 

stock and zooplankton biomass were found. The authors suggest that with further 

warming in the area the C. melanaster populations may remain at similar levels but 

with a shift northward into the Arctic Ocean (Brodeur et al., 1999, 2002, 2008). 

Decker et al. 2013) reviews and summarises GZ (>85% composed of C. melanaster)  

trends in the Bering Sea and finds that they do not support the hypothesis of long-term 

sustained population growth, rather that the populations show variable oscillation over 

decadal timescales, similar to other populations worldwide Decker et al. (2013), 

(Condon et al., 2013). 

 

1.8.4 Americas - Atlantic  

 

Graham 2001) used data on Chrysaora quinquecirrha and Aurelia aurita 

(Scyphozoans) from a Northern Gulf of Mexico fisheries trawl survey from 1985 – 
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1997, collected twice yearly in the summer and autumn. In 2/10 regions C. 

quinquecirrha showed statistically significant long-term increase, while in 6/10 

regions A. aurita experience significant long-term increase. Long-term is defined as 

the total length of the study. The author suggests a number of causes for the increase, 

including natural (climate indices and climate change) and human-induced (coastal 

fertilisation, overfishing and ocean sprawl), but none of the suggested causes are tested 

against the data (Graham, 2001). A later study using the same fisheries trawl survey, 

over an extended period (1985 – 2007) found C. quinquecirrha and A. aurita 

populations were positively related to ENSO, Atlantic Multi-Decadal Oscillation 

(AMDO), and PDO, but negatively correlated to the Great Plains Lower Jet. The two 

species also showed higher production during wet and warm years (Robinson and 

Graham, 2013).  

 

Greene et al. 2015) integrated fisheries trawl data for the Puget Sound, Washington, 

from 1971 – 2011 (40 years). They found no significant climate effects in GZ catch, 

despite an increase in GZ over time, but a positive relationship to human population 

density and commercial fishing (Greene et al., 2015). Stomach content analysis of the 

spiny dogfish, from 1981 – 2000, across the continental shelf of Northeast USA, found 

a significant increase in the percentage occurrence of Ctenophora over the time period 

(Link and Ford, 2006). The authors hypothesise that the increase is due to warming 

SST and overfishing. 

 

1.8.5 China 

 

A 13-year study in the Yellow Sea and East China Sea (1998 – 2010) found that 

increasing SST and eutrophication levels favoured the long-term increase in 

Nemopilema nomurai (Scyphozoa) abundance. The authors suggest that continued 

rising SST would favour a rise in N. nomurai in this region (Xu et al., 2013). 

 

 

1.8.6 Southern Ocean 

 

Atkinson et al. 2004) investigated krill (Euphasia superba) and salp (Salpa thompsoni, 

Thaliacea) density across the Southern Ocean, from 1926 – 2003. Salp density 
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increased south of the Southern Boundary Current (SBC), with a mixture of increase, 

decrease and no-change north of the SBC. There was no relationship between salp and 

sea ice indices found. The authors suggest that warming temperatures in the Southern 

Ocean benefit salp over krill, as does the lower food requirement of salp (Atkinson et 

al., 2004). Lee et al. (2010) investigated the same krill and salp species from 1975-

2002. They found no significant relationship between abiotic factors (temperature, 

salinity, sea-ice and nutrients) and salp or krill abundance, but did note that salp 

abundance was generally higher in years with higher sea water temperature, lower sea-

ice extent and lower nutrient levels, with krill abundance having the opposite pattern 

for all three factors (Lee et al., 2010). 

 

1.8.7 Global 

 

A small number of reviews on global long-term trends in GZ populations have been 

carried out. Purcell 2005) reviews studies of Cnidaria and Ctenophora abundance that 

are related to climate variations (SST, salinity, NAO, NPO and ENSO) up to 2005. 

Eleven species reviewed had positive relationships between warm temperature and 

increased abundance, whilst four species did not. The author concludes that warming 

SST, as a result of climate change, is likely to change the ranges, expand the 

seasonality and increase the abundance of temperate GZ species (Purcell, 2005). A 

later review by Purcell 2012) finds numerous correlations between elevated Cnidaria 

and Ctenophora abundance and increased SST and low forage fish. Purcell states, 

“Global warming will provide a rising baseline against which climate cycles will cause 

fluctuations in jelly populations” (Purcell, 2012). In this second review it is restated 

that the ranges and seasonality of Cnidaria and Ctenophora will change, and greater 

emphasis is given to the combined impact from other anthropogenic perturbations to 

the marine environment (Purcell, 2012, Brodeur et al., 2008). Another global review in 

the same year by Brotz et al. (2012) found 28/45 (or 62%) of Large Marine 

Ecosystems showed increasing trends in GZ abundance, 3 showed decreasing and 14 

were stable, from 1950 to present. 33% of the conclusions were of high certainty, and 

that two thirds of these (10/15) were in the Large Marine Ecosystems showing 

increasing trends in GZ abundance (Brotz et al., 2012). 
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GZ abundance appears to be increasing in many coastal regions around the globe, in 

recent decades, with the exception of some species and some areas, on the evidence 

currently available. This increase in GZ abundance has not been robustly linked to 

climate change. In many regions, abundance has been positively correlated to climate 

oscillations, but this again has exceptions and inconsistencies. Significant areas of the 

global ocean, especially away from shelf seas, do not have long-term studies on GZ 

abundance leaving large uncertainty in the hypothesis that GZ are increasing globally 

(Condon et al., 2013), such that GZ abundance cannot be said to be increasing 

globally. Boero et al. 2008) suggests that with the combined anthropogenic (i.e. 

pollution and the removal of fish and marine mammals) and climate change effects, 

global oceans may ‘de-evolve’ to conditions similar to those 500 million years ago, 

resulting in a ‘Medusozoan dominant’ ecosystem. 

 

1.9 Baselines 

 

Part of the difficulty in determining trends in GZ populations is the lack of information 

on baseline populations, from which changes may be determined. In recent years two 

global studies have begun to address this problem, through the Jellyfish Database 

Initiative (JeDI) (Lilley et al., 2011, Lucas et al., 2014). JeDI is a publicly available 

online database of GZ. Lilley et al. 2011) carried out a meta-analysis using JeDI, from 

which 58 locations across the globe, from 1967 – 2009, were included. GZ biomass 

decreased significantly with increasing total water column depth, with coastal sites 

(<50m) typically experiencing 742 times the biomass of deep ocean sites (>2000m) 

(Lilley et al., 2011). Lucas et al. 2014) extracted data on GZ carbon biomass from 

JeDI, covering the period 1934 – 2011, and mapped it to a 5° grid. The global 

geometric mean (and standard deviation) of total biomass was 0.53 (±16.16) mg C m-3, 

with the greatest biomass in the subtropical and boreal Northern Hemisphere (Lucas et 

al., 2014). 

 

1.10 Seasonality  

 

Most of the studies discussed here only measure GZ (quantitatively or qualitatively) 

for a small section of the year, often during the summer. Whilst many studies 

investigating seasonality in GZ only sample for 1 or 2 years (Nogueira Junior et al., 
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2010, Bravo et al., 2011), and the large inter-annual variability displayed by GZ make 

these inadequate to realistically demonstrate seasonality. There is a general knowledge 

that GZ populations peak in abundance (bloom) at some point during the summer, but 

the variation in timing and amplitude in blooms over different regions is poorly known 

(Sullivan and Kremer, 2011, Aubert et al., 2018). Shifts in the timing of GZ blooms 

are likely to have a significant impact on the local ecosystem through trophic cascade 

effects (Robinson and Graham, 2014). 

 

1.10.1 Seasonality Studies  

 

Gibbons and Richardson 2009) compared shelf sea and oceanic populations of 

Cnidaria and Ctenophora in the North Atlantic Ocean, from 1946 - 2005. Oceanic 

populations peaked slightly earlier (June – July) and declined faster than shelf sea 

populations (July – October). A significant relationship was also found between the 

duration of GZ blooms, for both population groups, and latitude, so that peaks 

flattened towards southern latitudes with shorter productive seasons (Gibbons and 

Richardson, 2009). A study in Hawaii found no seasonal trend in 14-years of monthly 

collected samples of Cubozoa, but still large inter- and intra-annual variability 

(Chiaverano et al., 2013). Zavolokin and Glebov 2009) found that the abundance of A. 

forskalea and C. capillata in the Bering Sea increased from summer to autumn, whilst 

the abundance of C. melanaster declined from summer to autumn (study period 2002 – 

2007, with data collected from summer to autumn). Panasiuk-Chodnicka and 

Zmijewska 2010) found abrupt peaks in Cnidaria abundance in the middle (January) 

and end (April) of summer around the Antarctic Peninsula, with two Siphonophorae 

species peaking throughout the summer, and one Siphonophorae peaking in the winter. 

Data were collected from December 1985 – February 1986, February – April 1988 and 

June - August and 1989 (Panasiuk-Chodnicka and Zmijewska, 2010). Suchman et al. 

(2012) found C. fuscescens to peak in abundance in July - August and Aequorea sp. 

peaked in June in the Northern Californian Current. Data were collected from 2000 – 

2007 from April to September (Suchman et a., 2012).  

 

1.10.2 Trends in Seasonality 
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Sullivan et al. 2001) found a seasonal expansion in blooms of Mnemiopsis leidyi 

between the periods 1950 – 1979 and 1980 – 1999, along the Northeast coast of the 

USA. This shifted the seasonal peak to earlier in the year and was linked with 

increasing water temperature over the period. Higher water temperatures in the region 

are associated with positive NAO phases (Sullivan et al., 2001). A 50-year data set, in 

the Dutch Wadden Sea, found earlier occurrence of all four Scyphozoa species 

sampled over time. For two species the duration significantly increased over time, and 

remained constant for the one other species (Van Walraven et al., 2015).  

 

Several reviews hypothesise that the length of the blooming season of GZ will increase 

with climate change as spring warming triggers earlier blooms (Purcell, 2005, Purcell, 

2012, Purcell et al., 2007, Robinson and Graham, 2013), but so far there is limited 

observational data to robustly back up this hypothesis as a global trend. 

 

1.11 The Difficulty with Sampling Gelatinous Zooplankton 

 

As mentioned previously, there is a shortage of robust long-term GZ abundance data. 

There are several reasons for this including difficulties in sampling and exclusion from 

ecosystem surveys (Boero et al., 2008). GZ are inherently difficult to sample, due to 

their patchy, short-lived and fragile gelatinous nature. Traditional net sampling, as 

used in fishery surveys, can often destroy the fragile bodies of large Cnidaria and 

Ctenophora and not retain smaller species or juveniles (Condon et al., 2012), whilst 

zooplankton sampling methods exclude medusa and can often exclude juveniles, 

whether intentionally or unintentionally (Brotz et al., 2012).  The limited availability 

of resources, particularly ship time, to GZ researchers is another factor in the data 

shortage (Bastian et al., 2010). The availability of resources is improving, but 

historically GZ were not a focus for ecosystem surveys, and easily overlooked in a 

sample (Boero et al., 2008, Lynam et al., 2011). The nature of the GZ life cycle, with 

high temporal and spatial variability in adult abundance (the most conspicuous stage), 

even over small distances, adds to the difficulties in studying long-term trends in 

abundance (Boero et al., 2008).  

 

The various ways GZ are sampled for population studies are outlined below, along 

with the pros and cons of each. GZ are recorded in one of two ways, either qualitative  
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 (as presence or absence), or quantitative (as wet weight, dry weight, number of 

individuals, carbon biomass etc.). 

 

1.11.1 Zooplankton Tows 

 

Nets traditionally used for sampling zooplankton have small rigid openings, which will 

exclude large GZ and often destroy smaller delicate organisms (Suchman et al., 2012). 

The largest long-term plankton survey is the CPR; GZ data from this is from counts of 

 

 

 

 

 
 

Figure 1.5 Authors personal photos from multiple trawls during a CEFAS scientific fishery survey of the 

North Sea, illustrating some of the difficulties in sampling and identifying GZ species from fishery 

surveys. Specimens are displayed on a board marked with centimetres. Unidentifiable gelatinous 

zooplankton (left) due to damage by net/other organisms in the net i.e. sea urchins, shells, fish spines. A 

damaged lions mane jellyfish, Cyanea capillata, (top right) with no tentacles remaining and only a small 

section of oral arms remaining. A colourless specimen (usually red/burgundy in colour). A damaged 

moon jellyfish, Aurelia aurita, (bottom right) with sections missing from the mesoglea, no tentacles and 

some oral arms. 
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nematocysts (stinging cells) and tissue, because the net mesh does not retain intact 

individuals. The species of GZ sampled is impossible to determine without costly and 

time-consuming genetic analysis (Baxter et al., 2010). There is disagreement within 

the literature over which species or groups of GZ are being sampled or excluded in the 

CPR (Gibbons and Richardson, 2009). It is useful that CPR data has been collected 

using the same method since 1946, providing a rare long-term continuous dataset, 

however the method is not ideal for sampling GZ and only provides presence/absence 

data and no species data (Gibbons and Richardson, 2009, Baxter et al., 2010, Lynam et 

al., 2010). 

 

1.11.2 Fishery Surveys 

 

Many countries carry out fishery surveys annually as a means of assessing commercial 

fish stocks and more general marine ecosystem health. Historically GZ caught in these 

trawls were ignored. Recently however, more surveys are regularly identifying and 

counting medusa caught, providing a relatively cheap and logistically easy way to 

study inter-annual trends in GZ abundance (Bastian et al., 2010, Aubert et al., 2018, 

Brodeur et al., 2016). However, there are negatives associated with using fishery by-

catch data; large mesh size may allow smaller organisms (i.e. Tunicata) to slip through, 

a high density bloom can rapidly clog the net preventing the filtering of the required 

volume of water, trawls are often only carried out at one depth, and individuals may be 

too damaged for reliable identification and weighing (Fig 1.5; Bastian et al., 2010, 

Suchman et al., 2012). 

 

1.11.3 By-Proxy 

 

GZ have occasionally been measured as a proxy to study more enigmatic species, often 

with larger resources available to researchers. Arial surveys were used to map GZ 

blooms around Ireland, in order to locate and survey the ocean sunfish and the  

leatherback turtle (Houghton et al., 2006a, Houghton et al., 2006b) and in the north-

east Atlantic and Mediterranean Sea also to survey the ocean sunfish (Grémillet et al., 

2017). These studies provide qualitative data on bloom size and location, and good 

spatial coverage over a large area, but they are rare. 
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1.11.4 Visual and Video Counts 

 

A survey of GZ in the Irish and Celtic Seas used surface counts from ships of 

opportunity and shoreline surveys of strandings (Doyle et al., 2008, Doyle et al., 

2007). These provide good spatial coverage for a low cost, reasonable identification to 

species level and semi-qualitative data. Visual confirmations of GZ blooms are also 

being used in citizen-science projects in the UK, Mediterranean and several other 

countries (JellyWatch, 2016). Video cameras towed behind boats or moored can 

provide fine-scale qualitative GZ data, but only cover small areas (Raskoff, 2001, 

Bamstedt et al., 2003). Video photography can be useful to quantify large GZ, such as 

adult Cnidaria and Ctenophora, under sea ice where other methods cannot sample 

(Purcell et al., 2018). Video photography on drones has recently been used to survey 

larger species of GZ in Australia (Raoult and Gaston, 2018), But these methods can 

only offer semi-quantitative data i.e. abundance but not carbon biomass. 

 

1.11.5 Other Methods 

 

Acoustic methods have been under development for a number of years for GZ 

sampling, but currently still require other sampling methods (such as nets) to verify 

counts and identify species, and are yet to be widely used (Bamstedt et al., 2003, 

Brierley et al., 2001, Graham et al., 2010). Environmental DNA (eDNA) surveys can 

detect trace amounts of organismal DNA from seawater samples, indicating the 

presence of a species in that environment. The eDNA methods for detecting GZ are in 

development, and may in the future allow for large areas of the ocean to be sampled at 

low cost (Minamoto et al., 2017). Dietary DNA is a rapidly growing field, due to 

reducing costs, where the gut contents of fish and scat samples of sea birds are 

analysed for DNA traces of GZ (Lamb et al., 2017, McInnes et al., 2017). Dietary 

DNA can provide qualitative information and can identify to varying taxonomic levels 

depending on the methods used.  

 

GZ are becoming increasingly recognised as an important component of marine 

ecosystems and global biogeochemical cycles, subsequently data collection is 

increasing. Unfortunately, historic data collection has been patchy and sporadic with 

few long-term (>10 years) studies, different sampling techniques, and most areas only 
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sampled once, or not at all. Peaks in data collection often follow high-profile bloom 

events (i.e. the M. leidyi invasion in the Mediterranean during the 1980’s), after which 

collection dries up. Different sampling techniques show selectivity towards different 

GZ groups and result in widely varying estimates of abundance. For example, a study 

examining the difference between sampling techniques found that at the same location 

and time a macrozooplankton trawl gave a GZ abundance of 1.4 ind/1000m3, whilst a 

multinet trawl gave a GZ abundance of 468 ind/1000m3 (Hosia et al., 2017). The 

inclusion of GZ in increasing numbers of ecosystem and annual fisheries surveys will 

provide essential data for future long-term studies on population trends (Brodeur et al., 

2016, Aubert et al., 2018). Currently, however, the data available are not sufficient to 

attribute an increasing trend in GZ abundance to climate change (Purcell et al., 2007, 

Condon et al., 2012). 

 

1.12 Modelling Gelatinous Zooplankton 

 

GZ have been included in a range of models to test various hypotheses. The majority 

of GZ modelling has been in fisheries-based ecosystem models (Pauly et al., 2009), but 

has also been used to investigate potential GZ locations from ecological niches 

(Bentlage et al., 2009, 2013). Some key GZ modelling studies and findings are 

outlined below. 

 

1.12.1 Fisheries Models - Ecopath 

 

Ecopath, including Ecopath with Ecosim, is one of the most commonly used 

ecosystem modelling approaches, and this follows through into GZ, where it seems to 

be the most common model type containing a representation of GZ (Pauly et al., 

2009). An Ecopath model of the East China Sea was developed containing Cyanea sp. 

and Stomolophus sp. (Cnidaria) to investigate fisheries interactions Hong et al. (2008). 

The study found a possible positive pelagic feedback system, where due to mutual 

competition and predation between the Cnidaria sp. and Stromatidae fish, exploitation 

of Stromatidae fish allowed for Cnidaria blooms to form (Hong et al., 2008). An 

Ecopath model of the Northern Humboldt Current system was developed to investigate 

the interaction of Chrysaora plocamia (Scyphozoa) with planktivorous fisheries 

(Chiaverano et al., 2018). Results suggest that C. plocamia blooms and fishing have 
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important effects on the ecosystem structure, with forced increases of planktivorous 

fish decreasing C. plocamia productivity and vice versa (Chiaverano et al., 2018). A 

series of papers used an Ecopath model of the northern and southern Benguela 

Upwelling System (Roux and Shannon, 2004, Roux et al., 2013, Shannon et al., 2009) 

to investigate the interaction between Cnidaria populations and planktivorous fisheries. 

Results suggest that Cnidaria biomass generally increases when fish biomass 

decreases, and declines when fish biomass is increased (Roux et al., 2013).  

 

Ecopath models are useful for positioning GZ with higher trophic levels, i.e. fish and 

marine mammal interactions. However, Pauly et al. (2009) notes that the 

representation of GZ in Ecopath models is generally poor, with simple inclusion and 

parameterisation, that is highly variable between different Ecopath models. Ecopath 

models often use wet weight as model currency; the high water content of GZ make 

wet weight a poor and biased estimate of  GZ biomass (Pauly et al., 2009), especially 

when comparing GZ biomass to other marine organisms, such as fish. Ecopath models 

also do not include hydrodynamics or spatial variability (Shannon et al., 2009), which 

have been shown to influence the formation of GZ blooms. 

 

1.12.2 Stage-structured Models 

 

Stage-structured matrix models partition the GZ life cycle stages with different 

parameters. A stage-structured model of A. aurita (Scyphozoa) was developed 

including larvae, polyps, ephyrae and medusa under two food regimes, of high and low 

food availability, and projected winter warming from climate change (Goldstein and 

Steiner, 2017). The study found enhanced bloom and bust dynamics under higher food 

conditions, compared to low food, whilst winter warming had a low impact on bloom 

development at both high and low food conditions (Goldstein and Steiner, 2017). A 

stage-structured model of M. leidyi (Ctenophora) was developed including egg, 

juvenile, transitional and adult, under three food regimes and five temperature regimes, 

ranging from 10 – 30ºC (Salihoglu et al., 2011). The study found that changes to 

temperature have a similar influence on all life-stages, as does a decrease in food, 

whilst an increase in food favoured the transitional and adult stages over the egg and 

juvenile stages (Salihoglu et al., 2011).  
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Stage-structured models are useful for investigating the life stage-dynamics of GZ, and 

how each stage responds to different environmental perturbations (Goldstein and 

Steiner, 2017). However, stage-structured models have no representation of predators 

or wider ecosystem dynamics, they could be included in end-to-end models to assess 

the influence of GZ on the wider ecosystem (Salihoglu et al., 2011) and the influence 

of the wider ecosystem on GZ life-stages.  

 

1.12.3 Small-scale Ecosystem Models - NPZD 

 

Nutrient Phytoplankton Zooplankton Detritus (NPZD) models are small-scale 

ecosystem, simple community models and are usually developed for a specific region 

to address a specific question. They usually include one or two elements, normally 

carbon and/or nitrogen, which operate as model currency. An NPZD model of an 

enclosed or semi-enclosed temperate coastal ecosystem was developed with nitrogen, 

detritus, one phytoplankton, one zooplankton and two GZ, representing holoplanktonic 

and meroplanktonic life cycles respectively (Schnedler-Meyer et al., 2018). The study 

found high GZ biomass would reduce zooplankton biomass, releasing grazing pressure 

on phytoplankton, resulting in a summer phytoplankton bloom, which were not present 

when GZ biomass was low (Schnedler-Meyer et al., 2018). A classical NPZD model of 

a coastal temperate environment was developed with a stage-resolved copepod 

(Pseudocalanus sp.) and Scyphozoa (A. aurita) model (Ramirez-Romero et al., 2018). 

The study found high abundance of A. aurita occurred related to high winter 

temperatures and generated an ecosystem shift from copepod dominance, to A. aurita 

dominance (Ramirez-Romero et al., 2018). 

 

NPZD models allow for the inclusion of life-cycle dynamics with food web 

interactions. However, they are regionally specific and contain a highly simplified 

plankton food web, with one phytoplankton and one zooplankton in addition to the GZ 

component, and therefore include no competition with, or predation of GZ. 

 

1.12.4 Physical Models 

 

A model was developed of Chesapeake Bay using C. quinquecirrha (Scyphozoa) 

abundance and temperature and salinity observations to predict the probability of C. 
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quinquecirrha occurrence and concentration Decker et al. (2007). The model outputs 

were found to explain seasonal and spatial variation reasonably well compared to 

observations (Decker et al., 2007). The physical model works reasonably well in a 

semi-enclosed, well sampled region, but has not been shown to work on a larger scale. 

The model also does not include any biological interactions such as prey availability.  

 

1.13 Plankton Functional Type Modelling 

 

The interactions between climate and marine ecosystems, as well as possible feedback 

mechanisms, are highly complex. The types of models discussed above cannot address 

these interactions. Dynamic Green Ocean Models (DGOMs) combine physical 

forcings and representations of biology as plankton functional types (PFTs) to aid 

understanding of the global biochemical cycle through the interactions between 

ecosystems and the environment (Le Quéré et al., 2005, Le Quéré et al., 2016). These 

complex models have provided insight into net primary production (Buitenhuis et al., 

2013), the role of oceans in the carbon pump (Hauck et al., 2015, Heinze et al., 2015) 

and the role of PFTs in ecosystem processes (Hashioka et al., 2013, Le Quéré et al., 

2016) and biogeochemical fluxes (Buitenhuis et al., 2006, Buitenhuis et al., 2010), 

although there are still many challenges and improvements ahead (Heinze et al., 2015).  

 

DGOM development was inspired by terrestrial Dynamic Global Vegetation Models, 

which successfully applied the concept of functional types (Smith et al., 2001, Steffen, 

1996) to reduce global biological complexity to a level manageable within the 

modelling context (Le Quéré et al., 2005). The criteria for defining functional types as 

PFTs in DGOMs are given in Le Quéré et al. (2005) and are paraphrased here; each 

PFT should (a) have an explicit biogeochemical role, (b) be defined by a distinct group 

of physiological, environmental, or nutrient requirements controlling its biomass and 

productivity, (c) have distinct effects on other PFTs e.g. through grazing, and (d) be of 

quantitative importance in at least some region of the ocean. DGOM models do not yet 

include a representation of GZ, which are likely to have a significant impact on the 

structure of the plankton web and biogeochemical and carbon cycles. The need for GZ 

inclusion in global biogeochemical models has been noted in the literature (Lebrato et 

al., 2013a, Fuentes et al., 2018, Burd et al., 2016). There has been some criticism 

within the literature of the lumping together of the GZ group in modelling studies and 
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poor parametrisation, which is likely a result of limited biological data on GZ as a 

whole and even more so on each GZ group (Gibbons and Richardson, 2013, Pauly et 

al., 2009). The availability of data on each GZ group will be used in Chapters 2 and 3 

to assess the appropriate grouping to use for adding a gelatinous type to a DGOM. The 

physiological requirements of zooplankton PFTs which control their biomass and 

productivity are growth rates (which then informs grazing rates) respiration rates and 

mortality rates (Le Quéré et al., 2005).  

 

This thesis uses the PlankTOM PFT ocean biogeochemical model which first began 

development in 2003 (Aumont et al., 2003), with two phytoplankton and two 

zooplankton groups, and now includes ten PFTs, called PlankTOM10 (Le Quéré et al., 

2005, Buitenhuis et al., 2006, Buitenhuis et al., 2010, Buitenhuis et al., 2013, Le Quéré 

et al., 2016). PlankTOM includes 39 tracers, including the full biogeochemical cycles 

of carbon, phosphate, silicate and oxygen and a simplified iron cycle. Of the ten PFTs 

in PlankTOM three represent zooplankton types; protozooplankton (5-200 µm, such as 

heterotrophic flagellates and ciliates), mesozooplankton (200-2000 µm, primarily 

copepods) and macrozooplankton (>2000 µm, crustaceans; Le Quéré et al., 2016). This 

thesis adds an eleventh PFT representing GZ to the PlankTOM10 model, making 

PlankTOM11. The PlankTOM PFT ocean biogeochemical model is described in 

greater detail in Chapter 3. Increasing the number of PFTs will improve understanding 

of the BCP, as increasingly explicit pathways and feedback mechanisms for carbon are 

included (Burd et al., 2016). The use of the PlankTOM PFT model allows for the 

integration of many of the aspects covered in the separate, simpler model types 

outlined in the previous section. 

 

1.14 Thesis Outline 

 

1.14.1 Thesis Objective 

 

There is still a deficit of information on the role of GZ in the marine ecosystem and 

global carbon cycle. Part of this deficit comes from a historical lack of data on GZ, 

outside of a few small locations. Before we can confidently predict the role of future 

climate change in jellyfish populations, we must understand their role in and influence 

on the global marine ecosystem. The central goal of this PhD thesis is to investigate 
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the role of GZ in the marine ecosystem, in particular the influence on other 

zooplankton, and how this may influence the carbon cycle. An important step of this 

work was to parameterise GZ for their inclusion in the biogeochemical model 

PlankTOM11 as a PFT, and subsequent model tuning. Numerous factors are attributed 

to GZ blooms; two key ones are climate change and overfishing. The secondary goal 

of this thesis was to assess the relative and cumulative effect of climate change and 

overfishing to GZ populations. A key step of this work was including the influence of 

historical fishing pressure on planktivorous fish stocks, and thus on PFTs in the model. 

From these general goals five questions are addressed: 

1) Can GZ be represented in a global biogeochemical model? 

2) What is the global biomass of GZ and how does it compare to other 

zooplankton types? 

3) How do jellyfish affect the marine ecosystem structure? 

4) What is the role of jellyfish in global carbon export? 

5) What is the relative effect on jellyfish biomass of overfishing and climate 

variability? 

 

1.14.2 Thesis Structure 

 

This thesis begins by investigating GZ data extracted from a global plankton dataset 

for global patterns of abundance and biomass (Chapter 2). Seasonal baselines for GZ 

are generated for nine regions where there is enough data to inform the full seasonal 

cycle. Ranges are generated of the global carbon biomass for GZ, and each GZ group 

where data are sufficient. These seasonal baselines and global biomass are used to 

quantify GZ and to validate GZ biomass and spatial distribution in PlankTOM11. 

Chapter 3 describes the development of PlankTOM11, where a PFT representing 

Cnidaria (jellyfish) was added to PlankTOM10. PlankTOM11 is assessed for the 

replication of Cnidaria with regards to observations and the ecosystem effects of this 

additional zooplankton, in particular the effect on other PFTs is investigated. Chapter 4 

uses PlankTOM11 to assess the effect of the Cnidaria PFT on the global BCP, 

specifically the carbon sink. Each characteristic of Cnidaria, which informs its 

physiological representation with the model, is individually tested for its influence on 

the carbon sink. Chapter 5 adds a representation of overfishing to PlankTOM11 for a 

region that has experienced historical overfishing and now reports large blooms of 
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Cnidaria as a result. The question of whether climate or overfishing has a larger impact 

on Cnidaria biomass is addressed, as well as if the additive effect of both occurring 

simultaneously has an even greater impact. Chapters 2 – 5 are written to be self-

contained and the basis of publications. Chapter 6 brings the earlier chapters together 

to address the five questions given above and suggests future avenues of research 

arising from this thesis.  
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Abstract 

	
Understanding and predicting changes to GZ populations in a changing climate is 

impeded by poor knowledge of the starting point, or ‘baselines’, both for global and 

regional biomass and for seasonal dynamics. The aim of this chapter is to provide a 

best estimate of the global biomass and characterise the seasonal dynamics of GZ over 

large ocean regions. This analysis is based on the MAREDAT global plankton 

database, which includes 107,156 abundance data of GZ, and 3,406 carbon biomass 

data, from 1930 – 2008. The GZ data was binned on to a global 1ºx1º degree grid at 

monthly resolution. The data were also divided by phyla (Cnidaria, Ctenophora and 

Tunicata) and into Longhurst Provinces. Regional analysis is carried out on six 

Longhurst Provinces in the Northern Hemisphere and three in the Tropics, where 

sufficient data are available. This is the first study to establish seasonal baselines from 

long-term, multi-source data. Each Province exhibits its own seasonality, background 

abundance, and bloom characteristics. The tropical Indian Ocean had the lowest GZ 

baseline, the two equatorial Pacific regions had the highest baseline, and the north-

west Atlantic had the highest bloom abundance. Of the phyla, Tunicata were the most 

abundant with a median of 0.43 individuals/m3, whilst Cnidaria had the highest 

biomass with a median of 0.28 µg C L-1. The best estimate for the global biomass of 

GZ is for a range of 0.14 to 1.33 PgC, based on the spread between the median and the 

arithmetic mean, following previous studies. The GZ biomass is similar to that of other 

zooplankton groups, confirming their importance. The exact biomass cannot be 

assessed with more precision from the data available because of the poor data coverage 

and the bloom and bust nature of GZ populations. These findings provide a historical 

baseline to help assess future GZ abundance and biomass in a changing climate. The 

quantitative and qualitative information presented here supports the development and 

validation of global ocean models that represent GZ explicitly. 
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2.1 Introduction 

 

There is significant debate within the scientific literature around the question of 

whether gelatinous zooplankton (GZ) have already, or will increase in the future due to 

climate change (Purcell, 2005, Attrill and Edwards, 2008, Haddock, 2008, Condon et 

al., 2012, Condon et al., 2013, Gibbons and Richardson, 2013, Purcell, 2012, Sanz-

Martín et al., 2016). The debate largely stems from a lack of long-term observational 

data, unknown mean conditions (called ‘baselines’ here), and important heterogeneity 

in time and space. Indeed, GZ abundance fluctuates over small spatial scales, and can 

evolve from apparent absence to large blooms of millions of individuals over a few 

weeks only. The perceived global increase in GZ due to climate change lacks 

demonstration with rigorous scientific data (Brotz et al., 2012, Sanz-Martín et al., 

2016). GZ include gelatinous taxa within the Cnidaria, Ctenophora and Tunicata 

groups and are widely reported to have an increasingly negative impact on coastal 

ecology and economic activities, including fish stocks, aquaculture and tourism (Pauly 

et al., 2009). GZ are also increasingly recognised as an important food source for many 

species (Doyle et al., 2014, Lamb et al., 2017) and as a route for carbon export through 

the biological carbon pump (Lebrato et al., 2012). 

 

Temperature increases due to climate change are probably the most studied driver of 

change for GZ abundance, with positive correlation between water temperatures and 

abundance found for the majority of GZ species studied. Experiments have shown that 

higher temperatures also increase GZ growth and reproduction (Lucas et al., 2012, 

Purcell et al., 2012, Robinson and Graham, 2014). The upper temperature threshold for 

GZ, above which the rate of growth or development begins to decrease, is higher than 

for many other marine species. Their high temperature threshold could allow GZ to 

become more prolific and expand their ranges as global temperatures increase (Purcell, 

2012, Klein et al., 2014, Lynam et al., 2011, Gibbons and Richardson, 2009). Ocean 

acidification due to climate change has not been well linked to GZ abundance, 

although there are a limited number of studies on the topic. GZ are generally 

considered as a non-calcifying group and direct impacts from acidification have not 

been shown (Richardson and Gibbons, 2008). Ocean acidification will cause 

widespread changes to the plankton community (Mostofa et al., 2016), which is likely 

to indirectly impact GZ through changes to their prey and competition for resources.  
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The direct impacts of rising temperature and increased acidity from rising carbon 

dioxide concentrations and climate change on marine organisms can lead to indirect 

effects throughout marine ecosystems via trophic cascades (Doney et al., 2012, 

Mostofa et al., 2016). Phytoplankton and zooplankton community assemblages and 

biomass have been shown to vary substantially with climate variability (Francis et al., 

2012, Boyce et al., 2010). These variations in the plankton community can cascade up 

trophic pathways through zooplankton, fish and into marine mammals, propagating the 

climate signal throughout the ecosystem (Brotz et al., 2012, Lucas and Dawson, 2014, 

Doney et al., 2012). The indirect effects of climate change on GZ through trophic 

cascades are difficult to study in situ (Purcell, 2009) and therefore the overall effect of 

climate change on GZ abundance cannot be determined from current observational 

data (Purcell, 2005, Richardson et al., 2009, Gibbons and Richardson, 2013).  

 

Attributing changes in GZ abundance to climate change is difficult and complicated 

due to the lack of knowledge on GZ baselines and variability, and the many 

interactions between climate, ecosystems and all the other stressors imposed on the 

marine environment by mankind (Condon et al., 2012).  

 

2.1.1 Evidence of Trends and Variability in Gelatinous Zooplankton Populations 

 

It can be difficult to separate the large fluctuations in GZ abundance intra- and inter-

annually from any longer-term trend that may indicate a growing population caused by 

climate change. This problem is compounded by the paucity in long-term regional data 

sets (Condon et al., 2012, Condon et al., 2013). Long, continuous and quantitative 

records of GZ are rare, making it difficult to attribute GZ trends to climate change 

rather than other factors such as climate indices (Purcell, 2012, Condon et al., 2013). 

The large variability in GZ abundance between years also increases the difficulty of 

interpreting the data, and separate studies of the same area can give conflicting results, 

even when similar methodologies are used (Suchman et al., 2012, Molinero et al., 

2008, Condon et al., 2013, Purcell, 2012). Such conflicting results are exemplified in 

studies of the North Atlantic Oscillation (NAO), where negative, positive and minimal 

correlation between the NAO and GZ abundance have been found (Attrill et al., 2007, 

Gibbons and Richardson, 2009, Lynam et al., 2004, Lynam et al., 2005, Lynam et al., 
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2010). There is a general consensus among these studies that local conditions likely 

interact with the NAO causing differences in trophic cascades through the plankton 

ecosystem, which in turn influence local GZ abundance and may explain the different 

findings among studies.  

 

The evidence for global long-term trends in GZ populations has been reviewed a few 

times (see Chapter 1). Purcell (2012) points out that direct evidence for human 

perturbations causing a rise in GZ abundance is lacking for the majority of cases, but 

that numerous correlations between elevated GZ abundance and increased SST exist 

and are often also correlated with low forage fish abundance due to over fishing. 

Another global review found 28/45 of Large Marine Ecosystems showed increasing 

trends in GZ abundance, 14 were stable and 3 showed decreasing trends. Of these, 15 

Large Marine Ecosystems trends were of high certainty and 10 of the high certainty 

were for increasing trends in GZ abundance (Brotz et al., 2012). Information on trends 

in GZ abundance is missing for most of the ocean, especially in the open ocean, 

leaving large uncertainty in the hypothesis that GZ are increasing globally (Condon et 

al., 2013).  

 

2.1.2 Baselines in Gelatinous Zooplankton Populations 

 

Part of the difficulty in determining trends in GZ populations comes from the lack of 

information on baseline populations, from which changes may be determined. In 

recent years two global studies have focused on characterising global GZ baselines, 

through the Jellyfish Database Initiative (JeDI; Lilley et al., 2011, Lucas et al., 2014). 

JeDI is an online database of GZ including quantitative, categorical, presence-absence 

and presence only records from 1790 – 2011 (Condon et al., 2014). Lilley et al. (2011) 

used JeDI to analyse GZ biomass from 1967 – 2009 at 58 locations. GZ biomass was 

found to decrease significantly with increasing total water column depth, with coastal 

sites (<50m) on average experiencing 742 times the biomass of deep ocean sites 

(>2000m) (Lilley et al., 2011). Lucas et al. (2014) also used JeDI to analyse GZ 

biomass over the period 1934 – 2011. The global mean carbon biomass of GZ was 

found to be 0.53 (±16.16) µg C L-1, with the greatest biomass in the subtropical and 

boreal Northern Hemisphere oceans (Lucas et al., 2014). 
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The MAREDAT database includes carbon biomass and abundance data for 

zooplankton, including GZ (Buitenhuis et al., 2013). The GZ (including Cnidaria, 

Ctenophora and Tunicata) sub-set within MAREDAT has yet to be analysed 

independently from the global zooplankton data (Moriarty et al., 2013), which also 

included Gastropoda, Heteropoda, Pteropoda, Chaetognatha, Polychaeta, Amphipoda, 

Stomatopoda, Mysida, Decapoda and Euphausiacea. JeDI and MAREDAT have 

overlapping data but they differ through their focus. MAREDAT is designed for use in 

the validation of PFTs in global biogeochemical models, with much of the data coming 

from zooplankton surveys, while JeDI is designed to collate both quantitative and 

qualitative data on GZ. Ideally JeDI and MAREDAT would be harmonised and 

extended to include data from recent years, to provide the most comprehensive 

database of GZ abundance and biomass. However, following an exploration of both 

databases, such harmonisation and extension was found to be outside the realm and 

timescale of this thesis, where the primary aim is to include GZ in a global 

biogeochemical model.  

 

Many studies addressing multi-year trends only measure GZ (quantitatively or 

qualitatively) for a month or two of the year, often during the summer, spring/summer 

or summer/autumn, which is insufficient to determine the seasonality. Likewise, many 

studies directly investigating seasonality in GZ only sampled for 1 or 2 years 

(Nogueira Junior et al., 2010, Bravo et al., 2011), which is not sufficient to determine 

robust seasonal baselines. Shifts in the timing of GZ blooms are likely to have a 

significant impact on the local ecosystem through trophic cascade effects (Graham et 

al., 2014).  

 

The aim of this chapter is to determine a global baseline of GZ abundance and biomass 

and seasonal baselines for ocean regions. To achieve this aim, I will examine 

abundance and carbon biomass of GZ in the MAREDAT database, investigating the 

spatial and temporal spread of the data. The GZ biomass calculated from the 

MAREDAT database will be compared to the biomass of other zooplankton in the 

same database, and to the biomass of GZ calculated from the JeDI database. The GZ 

abundance data will also be used to find seasonal baselines for ocean regions with 

sufficient data coverage. The seasonal baselines will provide information on the mean 

and variations in timing, strength and bloom duration. 
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2.2 Methods 

 

2.2.1 Data handling 

 

MAREDAT is a database compiled of global ocean plankton abundance and biomass, 

harmonised to common units. It contains carbon biomass, calculated where possible, 

and is open source available online (Moriarty et al., 2013, Buitenhuis et al., 2013). 

MAREDAT contains global quantitative observations of GZ abundance and biomass 

as part of the generic macrozooplankton group (Moriarty et al., 2013). The GZ sub-set 

of data has not been analysed independently yet.  

 

For this study, all MAREDAT records under the group GZ were extracted and 

examined. This included Cnidaria, Ctenophora and Tunicata, as well as ‘unspecified 

jellyfish’. The taxonomic level within the database varies from phylum down to 

species and is provided in Appendix 1.  The data covers the period from August 1930 

to August 2008. The data contains abundance in the form of number of individuals 

(107,156 data points) and carbon biomass (3,406 data points). The data were collected 

at depths ranging from 0 to 2442m. The majority of the data (97.9%) was collected in 

the top 200m with an average depth of 65.2m (± 42.3m), compared to total average 

depth of 71.5m (± 68.6m).  The majority of the data are from two net types that 

integrate over a specific depth, dividing the data by this depth gives abundance in 

individuals/m3. Carbon biomass is calculated from wet weight/dry weight conversion 

factors for species where data records are sufficient (Moriarty et al., 2013). 

 

The raw (ungridded) abundance data were binned into 1ºx1º degree boxes at monthly 

resolution, as in Moriarty et al. (2013), reducing the number of (gridded) abundance 

data points to 7,832. The same method was applied to the carbon biomass data, 

reducing the number of (gridded) biomass data points to 849 (Fig. 2.1). The ungridded 

abundance and biomass data were split into phylum where possible, with all other 

samples marked as ‘jellyfish unspecified’ and then gridded as above. The phyla groups 

are Cnidaria, Ctenophora and Tunicata.  
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The ungridded data set was split into the Northern Hemisphere (90°N – 30°N), Tropics 

(30°N – 30°S) and the Southern Hemisphere (30°S – 90°S) to investigate sampling 

distribution spatially, temporally and across seasons. It was then grouped into decades 

and months (Fig. 2.2). For the Southern Hemisphere, sampling occurs in every month 

and from the 1960’s to the 1980’s. For the Tropics, sampling occurs in every month 

and from the 1950’s to the 2000’s, with a strong peak in sampling in the 1960’s. For 

the Northern Hemisphere, sampling occurs in every month and from the 1930’s to the 

2000’s, with low sampling in the first two decades (Fig. 2.2). Sampling is much more 

	
	
Figure 2.1 Number of data in MAREDAT for gelatinous zooplankton (top) abundance and (bottom) 
biomass, after binning the original raw data by month for 1938 – 2008 on a 1°x1° grid. 
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consistent in all regions across the seasons, with every month sampled, than across the 

decades. The data set is appropriate for calculating a GZ global mean and assessing 

GZ seasonality. A long-term time series analysis was deemed inappropriate for this 

data due to the inconsistencies in sampling across decades.  

 

2.2.2 Seasonality in Longhurst Provinces 

 

Despite the higher spatial coverage for abundance in the Northern Hemisphere and in 

the Tropics, many sites have only been sampled once (Fig. 2.1). Biomass data is 

generally sparse (Fig. 2.1). The gridded abundance was grouped into areas of coherent 

water mass following the definition of Longhurst Provinces (Longhurst, 2007). 

Provinces were excluded from the analysis if they had more than three months with 

less than four data points in each month, as they were assessed to be unsuitable for the 

analysis of full seasonality. Six provinces in the Northern hemisphere and three 

 

 
 
Figure 2.2 Number of raw abundance data for gelatinous zooplankton across (top) decades, and (bottom) 
months (summed across years), split into the Northern Hemisphere (green), Tropics (purple) and Southern 
Hemisphere (blue). 
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provinces in the Tropics met the criteria. The provinces are (following Longhurst 

naming) Alaska Coastal Downwelling Province (ALSK), California Current Province 

(CALC), Northwest Atlantic Shelves Province (NWCS), Northeast Atlantic Shelves 

Province (NECS), Kuroshio Current Province (KURO), North Pacific Subtropical 

West Province (NPSW), North Pacific Equatorial Countercurrent Province (PNEC), 

Pacific Equatorial Divergence Province (PEQD) and the Indian Monsoon Gyres 

Province (MONS; Longhurst, 2007). Five percentiles were calculated for each month 

in each Province that had more than four data points. The percentiles used are the 5th, 

25th, 50th (or median), 75th and 95th (see section 2.3.2).   

 

2.2.3 Global Baselines 

 

Multiple methods were used here to calculate average values because of the patchiness 

of the data, to improve the robustness of results. Firstly, the arithmetic mean (AM) 

which is equal to the sum of the values of each observation divided by the total number 

of observations; secondly, the geometric mean (GM) which is the nth root of the 

product of n observations and thirdly, the median which is the central value of 

observations. The gridded data were split into the Northern Hemisphere, Tropics, and 

Southern Hemisphere (as in the explorative tests above) to examine the differences 

between regions. 

 

To compare to the other PFTs within the MAREDAT database, global GZ biomass was 

calculated according to the methods in Buitenhuis et al. (2013). Buitenhuis et al. (2013) 

calculate a biomass range, using the median as the minimum and the AM as the 

maximum. The MAREDAT database is designed to be used for the validation of global 

biogeochemical models. The GZ biomass range calculated here will be used to validate 

the new GZ component in the PlankTOM model (Chapter 3). To compare to the GZ 

estimate of Lucas et al. (2014) based on the JeDI database, global GZ biomass from 

MAREDAT was calculated according to the methods in Lucas et al. (2014), using GM.  
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2.3 Results 

 

2.3.1 Bloom and Bust 

 

The abundance distribution varies by several orders of magnitude. For the Northern 

Hemisphere, 18% of the GZ abundance data is reported as zero. A large portion of the 

GZ abundance data ranges between >0 and 1 ind/m3 (38%; Fig. 2.3 top panels) and 

about 60% of the abundance data ranges between >0 and 10 ind/m3 (Fig. 2.3 bottom 

panels). The frequency rapidly declines as abundance increases (Fig. 2.3). For the 

Tropics there is a similar pattern to the Northern Hemisphere, but a greater portion of 

the abundance data is zero (34%), with 38% ranging between >0 and 1 ind/m3 (Fig. 

2.3). For the Southern Hemisphere, the majority of abundance data is reported as zero 

(73%), with 18% ranging from >0 to 1 ind/m3, and only 22% ranging from >0 to 10 

ind/m3 (Fig. 2.3). GZ is most abundant and most likely to reach high abundance in the 

Northern Hemisphere, and second most abundant and likely to reach high abundance 

in the Tropics. In the Southern Hemisphere GZ are most likely to not be present, and 

occasionally reach high abundance. 

 

Substantially less data are available for GZ biomass than for abundance, with no 

biomass data in the Southern Hemisphere and only 62 data points in the Tropics (Fig. 

2.4). The Northern Hemisphere has 3,344 biomass data points, with 0.03% of the GZ 

biomass data reported as zero. Most of the GZ biomass data ranges between >0 and 

0.01 µg C L-1 (49%), and around 86% of the data ranges between >0 and 1 µg C L-1 

(Fig. 2.4). The Tropics has a greater portion of zero biomass data (32%) than the 

Northern Hemisphere, and the highest portion of data in the Tropics ranges from >0 to 

1 µg C L-1 (52%), with only 8% from >0 to 0.01 µg C L-1. Only the Northern 

Hemisphere has biomass data above 8 µg C L-1, the lack of higher biomass in the 

Tropics is likely due to the very limited number of data points (Fig. 2.4). The biomass 

data from the Tropics must be regarded with caution as it all is from one area, in one 

month. 

 

2.3.2 Seasonality in Longhurst Provinces 

Seasonal patterns in GZ abundance were analysed for Longhurst Provinces that had 

sufficient data. The nine Provinces selected are shown in Figure 2.5. To best explain  
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Figure 2.3 Percentage frequency of gelatinous zooplankton abundance (number of individuals/m3) for the 
Northern Hemisphere (NH), Tropics (TR) and Southern Hemisphere (SH) from ungridded data. For top 
panels abundance is binned into 0, >0-1, 1-2, 2-3, etc. up to 9-10 ind/m3. For bottom panels abundance is 
binned into 0, >0-10, 10-20, 20-30, etc. up to 90-100, and then 100-1000, and >1000 ind/m3. Left panels 
show a difference percentage scale to right panels. The total number of samples for each of the three 
regions is given in the key. 
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 re the 5th, 25th, 50th (median), 75th and 95th, to demonstrate the spread of abundance 

 

 
 

 
Figure 2.4 Percentage frequency of gelatinous zooplankton biomass (µg carbon L-1) for the Northern 
Hemisphere (NH) and Tropics (TR; there were no biomass samples for the Southern Hemisphere) from 
ungridded data. For top panels abundance is binned into 0, >0-0.01, 0.01-0.02, 0.02-0.03, etc. up to 0.09-
0.10 ind/m3. For bottom panels abundance is binned into 0, >0-1, 1-2, 2-3, etc. up to 9-10, and then >10 
ind/m3. Left panels show a difference percentage scale to right panels. The total number of samples for 
the two regions is given in the key. 
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data, and the chance of a certain  

the widely fluctuating GZ abundance due to their bloom and bust dynamics, a range of 

percentiles are used (Fig. 2.6). The percentiles calculated are the 5th, 25th, 50th 

(median), 75th and 95th, to demonstrate the spread of abundance data, and the chance of 

a certain abundance occurring in each month. The median (50th percentile) shows the 

background abundance observed 50% of the time, whilst the 75th and 95th percentiles 

represent occasional and rare blooms (Fig. 2.6). 

 

The Northern Hemisphere Provinces (ALSK, CALC, NWCS, NECS, KURO and 

NPSW; Fig. 2.5) show a mostly low background abundance of GZ (median of <2 

ind/m3) punctuated with strong peaks in abundance (i.e. 75th percentile >20 ind/m3). 

The Northern Hemisphere Provinces differ mostly in the timing and amplitude of the 

peaks (Fig. 2.6). 

 

	
 

Figure 2.5 Global map showing the Longhurst Provinces used in this analysis, each colour represents 
the area of a different Longhurst Province, labelled with the name. The Provinces are Alaska Coastal 
Downwelling Province (ALSK; dark blue), California Current Province (CALC; dark green), Northwest 
Atlantic Shelves Province (NWCS; red), Northeast Atlantic Shelves Province (NECS; light blue), Kuroshio 
Current Province (KURO; orange), North Pacific Subtropical West (NPSW; dark purple), North Pacific 
Equatorial Countercurrent Province (PNEC; light purple), Pacific Equatorial Divergence Province 
(PEQD; yellow) and the Indian Monsoon Gyres Province (MONS; light green). 
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The seasonal cycle for ALSK shows peaks in abundance in June, August and 

November, with the strongest bloom in August exceeding 25 ind/m3 (75th percentile), 

with a median of 11 ind/m3 (Fig. 2.6). For the rest of the year (where data are 

available) the median abundance is around 1 ind/m3. A strong bloom (>25 ind/m3) 

occasionally occurs (in the 95th percentile) in July and November (Fig. 2.6). 

 

The seasonal cycle for CALC shows peaks in abundance in May (median of 5 ind/m3, 

75th percentile 20 ind/m3) and November (median of 8 ind/m3, 75th percentile 9 

ind/m3). There are some occurrences of blooms in February with the 95th percentile of 

16 ind/m3 and a median of 3 ind/m3 (Fig. 2.5). For the rest of the year (except 

December, where no data are available) the 75th percentile is around 3 ind/m3 or less 

(Fig. 2.6). A strong bloom (>25 ind/m3) occasionally occurs (in the 95th percentile) in 

May and November (Fig. 2.6). 

 

The seasonal cycle for NWCS shows peaks in abundance for a large portion of the 

year, with the high abundance (75th percentile over 10 ind/m3) found in January, 

February, July to September, November and December (Fig. 2.6). The median is zero 

ind/m3 for most of the year, except for February, July and November. A strong bloom 

(>25 ind/m3) occasionally occurs (in the 95th percentile) in every month except for 

May, October and November (Fig. 2.6). 

 

The seasonal cycle for NECS shows peaks in abundance in March (median of 50 

ind/m3, 75th percentile of 200 ind/m3) and August (median of 4 ind/m3, 75th percentile 

of 48 ind/m3). For the rest of the year the median abundance is zero ind/m3 (Fig. 2.6). 

A strong bloom (>25 ind/m3) occasionally occurs (in the 95th percentile) from March 

to September (Fig. 2.6). 

 

The seasonal cycle for KURO shows peaks in abundance from March to April, July to 

August and November with the 75th percentile mostly over 10 ind/m3 (Fig. 2.6). 

Throughout the year KURO has a persistent background abundance with the median 

between 1 – 5 ind/m3, and few data showing zero abundance. A strong bloom (>25 

ind/m3) occasionally occurs (in the 95th percentile) from March to April, and July to 

August (Fig. 2.6).  
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Figure 2.6 Seasonal abundance of gelatinous zooplankton for nine ocean provinces shown in Fig. 2.5 
(number of ind/m3). For each month the light blue line shows the 5th and 95th percentile, the dark blue 
lines shows the 25th and 75th percentile, and the black line is the 50th percentile/median. All the data points 
are shown in grey. For months with less than 4 data points, no percentiles are calculated. Across the top 
of each panel the number of data per month for that province is given. The graphs have been stretched 
at the lower values (0 – 25) as this is where the majority of the data occurs. All panels are on the same 
axis. See Figure 2.5 for locations and full name of each province. 
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The seasonal cycle for NPSW has a peak in abundance in April, with a 75th percentile 

of 12 ind/m3. Throughout the year the median is around 2 – 4 ind/m3, and in every 

month except for April, the 75th percentile is from 3 – 5 ind/m3 (Fig. 2.6). The highest 

95th percentile is in April when the abundance is 20 ind/m3 (Fig. 2.6). 

 

The two Provinces covering the Pacific equatorial upwelling (PNEC and PEQD) have 

similar seasonal cycle patterns. PNEC has peaks in abundance in January, March, June 

and December, and PEQD has peaks in abundance from January to March, August and 

December (75th percentiles over 10 ind/m3; Fig. 2.6).  PNEC and PEQD have the 

highest background year-round abundance of all the Provinces, with the median only 

dropping below 5 ind/m3 in the autumn. A strong bloom (>25 ind/m3) occasionally 

occurs (in the 95th percentile) in PNEC from March to April, and in PEQD from 

January to April (Fig. 2.6). 

 

The seasonal cycle for MONS has a peak in abundance in April, with a 75th percentile 

of 7 ind/m3. MONS has the lowest year-round abundance of all the Provinces, with the 

median always <1 ind/m3, and the 95th percentile only getting above 3 ind/m3 in 

November (Fig. 2.6). 

 

2.3.3 Phylum Baselines 

 

Most of the data in the MAREDAT database is for Tunicata, followed by Cnidaria, 

Ctenophora and Unclassified samples (Table 2.1, Fig. 2.7). This difference in the 

amount of data is most likely due to sampling techniques, where Ctenophora are often 

overlooked in samples due to specimens disintegrating, are simply not targeted during 

surveys, or are actively excluded, as is often the case for all GZ groups (Purcell, 2009). 

Ctenophora also have the highest number of 0 abundance recorded (Fig. 2.7). 

 

For abundance (ind/m3), Tunicata are the dominant phyla with the highest arithmetic 

mean (AM; 12.69), geometric mean (GM; 1.62) and median (0.43), followed by 

Cnidaria (AM 3.57, GM 0.77 and median 0.02), and then Ctenophora (AM 0.13, GM 

0.03 and median 0.00). Cnidaria have a significantly higher carbon biomass (AM 3.61, 

GM 0.95 and median 0.29 μg C L-1) than Tunicata (AM 0.09, GM 0.05 and median 

0.002 μg C L-1; Table 2.1). These patterns are consistent across the three averaging 
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methods giving a high confidence in the qualitative results. Overall Tunicata were 

found to be the most abundant phyla group, but Cnidaria exhibit the largest biomass. 

This is consistent with group characteristics; Tunicata are generally the smallest sized 

phyla group and some types live in colonies comprising hundreds of individuals, while  

the Cnidaria phyla contains the largest sized individuals and make up the most 

conspicuous bloom formations (Chapter 1, Lucas and Dawson 2014). For example, in 

two blooms with equal biomass, one comprising of Tunicata and one of Cnidaria, the 

Tunicata bloom would be likely to have a higher number of individuals than the 

Cnidaria bloom to make up the same biomass.  

 

Lucas et al. (2015) found the GM for Tunicata biomass to be 0.09 μg C L-1, similar to 

the GM biomass of 0.05 μg C L-1 from MAREDAT (Table 2.1). There is a greater 

difference between the datasets for Cnidaria GM biomass, 4.43 μg C L-1 (Lucas et al., 

2015) compared to 0.95 μg C L-1 (Table 2.1). This difference may be due to a number 

of reasons including the distribution of the data, the number of data and the methods 

with which data were collected (i.e. plankton tow vs fishing nets; see Chapter 1). 

 

 

Table 2.1 Statistics of gelatinous zooplankton split into phylum from the gridded MAREDAT data. AM 
is the arithmetic mean, and GM is the geometric mean. No data for Ctenophora biomass was available 
in the dataset. 

Phylum n AM Median GM Min Max SD 

Abundance (individuals/m3) 

Tunicata 7487 12.69 0.43 1.62 0.00 5040.49 96.13 

Cnidaria 6192 3.57 0.02 0.77 0.00 1645.93 31.22 

Ctenophora 4081 0.13 0.00 0.03 0.00 284.56 4.51 

Unclassified 2476 1.02 0.00 0.35 0.00 161.09 5.35 

 Biomass (μg carbon L-1) 

Tunicata 669 0.09 0.002 0.05 0.00 13.50 0.79 

Cnidaria 653 3.61 0.29 0.95 0.00 156.00 12.62 
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Figure 2.7 Average Gelatinous Zooplankton abundance (individuals/m
3) on a 1x1 degree grid for Cnidaria, Tunicata, Ctenophora and U

nclassified. W
here abundance 

equals 0 the data is plotted in black. 
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Table 2.2 compares GZ to the other plankton types in the MAREDAT database using 

median (min) and AM (max). Cnidaria biomass is almost as high as the 

microzooplankton and higher than meso- and macrozooplankton (Table 2.2). 

Cnidarian biomass data is only present in the Northern Hemisphere where GZ are 

more abundant which may skew the data (Fig. 2.4). Another caveat to the data is that a 

substantially smaller frequency of zeros is reported for biomass than for abundance 

(Fig. 2.3 and Fig. 2.4). Under reporting of zero values will increase the average, 

regardless of the averaging method used. 

 

 
 
Figure 2.8 Average gelatinous zooplankton (top) abundance (individuals/m3) and (bottom) biomass 
(ug carbon/L) averaged for 1930 – 2008, on a 1x1 grid. 
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2.3.4 Global Gelatinous Zooplankton Baselines 

 

The GZ abundance data shows relatively good spatial coverage across the Northern 

Hemisphere coastal regions, as well as the Tropical Atlantic, Indian and east Pacific 

Oceans (Fig. 2.8). However, there are large areas with no data, particularly throughout  

the Southern Hemisphere as well as in the northern open ocean in the Atlantic and central 

Pacific (Fig. 2.8). The GZ biomass data is generally poor, with data mostly in coastal 

regions in the Northern Hemisphere (Fig. 2.8). The maximum abundance recorded was 

Table 2.2 PFT global biomass, adapted from Buitenhuis et al. (2013). Gelatinous data calculated 
according to methods described in Buitenhuis. All data from MAREDAT. In Buitenhuis et al. (2013) 
median depth profiles are the min, and AM (arithmetic mean) depth profiles are the max. 

 
PFT global biomass (PgC) 

SD Median AM 

Autotrophs 

Picophytoplankton 22.1 0.28 0.64 

Diazotrophs 27.4 0.008 0.12 

Coccolithophores 2.4 0.001 0.03 

Phaeocystis 96.0 0.11 0.71 

Diatoms 104.7 0.10 0.94 

Heterotrophs  

Picoheterotrophs 6.0 1.00 1.10 

Microzooplankton 17.1 0.48 0.73 

Formaninifers 0.05 0.0009 0.003 

Mesozooplankton 10.6 0.33 0.59 

Pteropods 25.4 0.026 0.67 

Macrozooplankton 67.7 0.22 1.52 

Gelatinous zooplankton  0.14 1.33 

 Cnidaria  0.459 3.11 
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3208 individuals/m3 in the Tropics, whilst the highest biomass is 45.73 µg C L-1 (Table 

2.3). 

 

There are large differences in mean values from the averaging methods because of the 

large spread in the data (Table 2.3). From the AM, the Northern Hemisphere has the 

highest abundance of GZ, around three times the Tropics or Southern Hemisphere 

(16.60 compared to 6.03 and 5.18 ind/m3 respectively). From the median, the Tropics  

has the highest abundance (0.99 ind/m3), over double that of the Northern Hemisphere 

(0.45 ind/m3) and almost a hundred times that of the Southern Hemisphere (0.01 

ind/m3). From the GM, the Northern Hemisphere also has the highest abundance, 

followed by the Tropics, but the difference between the means is markedly smaller 

(2.00 compared to 1.74 ind/m3) than for the arithmetic mean (Table 2.3).  

 

The global abundance (ind/m3) of GZ ranges from a median of 0.70, to a GM of 1.78, 

up to an AM of 10.87. The global carbon biomass (µg C L-1) of GZ ranges from a 

median of 0.001, to a GM of 0.18, up to an AM of 0.60 (Table 2.3).  

 

Table 2.3 Statistics of gelatinous zooplankton from the gridded MAREDAT data. AM is the arithmetic 
mean and GM is the geometric mean. The Northern Hemisphere is defined as 90ºN-30ºN, the Tropics 
is defined as 30ºN-30ºS and the Southern Hemisphere is defined as 30ºS-90ºS. For biomass, only the 
global value is given, all data points are in the Northern Hemisphere, except for one data point in the 
Tropics. 

Area n AM Median GM Min Max SD 

Abundance (individuals/m3) 

Global 7832 10.87 0.70 1.78 0.00 3208.00 72.73 

Northern 
Hemisphere 

3612 16.60 0.45 2.00 0.00 2678.19 89.17 

Tropics 3924 6.03 0.99 1.74 0.00 3208.00 55.07 

Southern 
Hemisphere 

296 5.18 0.01 0.40 0.00 697.32 44.78 

 Biomass (μg carbon/L) 

Global 849 0.60 0.001 0.18 0.00 45.73 3.11 

        



Trends in gelatinous zooplankton abundance 83 

Buitenhuis et al. (2013) calculated a range of global plankton biomasses from 

MAREDAT, using the median as minimum and the AM as the maximum, and 

multiplying by the ocean volume of the top 200m to provide an estimate in PgC. Using 

this same approach, the range of GZ biomass is therefore 0.14 (median) to 1.33 PgC 

(AM; Table 2.2). The GZ biomass is similar to and possibly lower than 

macrozooplankton biomass of 0.22 – 1.52 PgC (Table 2.2), where macrozooplankton 

is defined as crustaceans such as krill (Buitenhuis et al., 2013). In Moriarty et al. 

(2013) macrozooplankton is defined as all zooplankton in MAREDAT with an adult 

size greater than 2mm, this includes the GZ data analysed here, the macrozooplankton 

in Table 2.2 as well as Gastropoda, Heteropoda, Pteropoda, Chaetognatha, Polychaeta, 

Amphipoda, Stomatopoda, Mysida, Decapoda and Euphausiids. The >2mm 

zooplankton biomass of 0.02 – 1.06 PgC (Moriarty et al., 2013) is similar to and lower 

than the GZ biomass and the macrozooplankton biomass (Table 2.2). Many of the data 

points for the groups within the MAREDAT >2mm zooplankton subset are not co-

located (Moriarty et al., 2013). 

 

These varying biomass values highlight the importance of categorising zooplankton by 

more than just size, including characteristics such as body type and trophic level. Even 

within the GZ taxa, Cnidaria biomass was 140 times larger than Tunicata for the 

median, and 19 times larger for the GM (Table 2.1). 

 

Lucas et al. (2014) report a GM of global GZ biomass of 0.038 PgC, from the JeDI 

database. Using the same method with the MAREDAT database produces a GM global 

GZ biomass of 0.014 PgC (Table 2.2), less than half of the biomass found by Lucas et 

al. (2014). The difference likely arises from several disparities between the two 

databases. Firstly, a greater proportion of biomass of zero are recorded in the 

MAREDAT database than the JeDI database. Secondly, MAREDAT has a greater 

depth range than Lucas (0-200m), although the majority of data in MAREDAT 

(97.9%) was from the top 200m. Thirdly, in the MAREDAT database all but 1 data 

point for carbon biomass occur in the Northern Hemisphere (north of 30ºN), whereas 

JeDI has coverage in the Tropics and Southern Hemisphere (Lucas et al., 2014). The 

difference in global GZ biomass is larger between the averaging methods than it is 

between the two databases, despite these disparities between the databases. 

 



Trends in gelatinous zooplankton abundance 84 

2.4 Discussion 

 

Global marine biogeochemical models are gradually increasing the complexity of the 

modelled plankton food web to better understand biogeochemical cycles and assess the 

implications of climate change (Le Quéré et al., 2016). The lack of global assessments 

of PFT biomasses has been a key hindrance to model development. This study adds to 

the growing base of data products that can be used to validate global ocean models 

(Buitenhuis et al., 2006, Buitenhuis et al., 2010, Buitenhuis et al., 2013, Moriarty et al., 

2013). 

 

The description of GZ seasonal baselines for nine Longhurst Provinces is a key result 

from this study (Fig. 2.6). This is the first study to establish seasonal baselines from 

long-term, multi-source data. Previously only studies based on single locations had 

determined seasonal baselines from longer-term data, generally for inshore coastal 

areas (Molinero et al., 2008, Sullivan et al., 2001, Van Walraven et al., 2015). The 

seasonal baselines provide statistical information on the likely timing of bloom 

conditions, and their strength and frequency. It is this information on bloom timing and 

frequency that is of most use to coastal industries. Coastal industries, including 

aquaculture farms, nuclear power plants and beach tourism are negatively impacted by 

GZ blooms (Purcell et al., 2007, Quinones et al., 2013, Gibbons and Richardson, 

2013). Better understanding the likely timing, frequency and intensity of blooms can 

help planning and mitigation efforts (Richardson et al., 2009, Gershwin et al., 2010, 

Gershwin et al., 2014, Graham et al., 2014). The seasonal baselines also provide global 

and regional validation data to inform model development, and can serve to evaluate 

future changes such as shifts in seasonality due to climate change (Molinero et al., 

2008, Sullivan et al., 2001, Van Walraven et al., 2015, Graham et al., 2014). The 

MAREDAT data was insufficient to establish seasonal baselines for provinces in the 

Southern Hemisphere. 

 

The bloom and bust nature of GZ is dominant in the data (Fig. 2.3 and Fig. 2.4) and 

creates challenges for averaging abundance and biomass values, as for many other 

patchy plankton data, that also exhibit strong seasonal cycles of bloom and bust 

(Buitenhuis et al., 2013). There is a greater variance between the results from the 

different averaging methods than between the MAREDAT and JeDI databases. Use of 
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all three averaging methods, AM, GM and median together provides a more 

representative view of global and regional baselines, and the spread of the data.  

 

Data reporting of GZ is generally skewed towards coastal regions with large human 

populations, and/or coastal regions with large commercial fisheries. Studies and 

funding of GZ are often targeted to areas where they are known to bloom and cause 

issues for industries (Sullivan and Kremer, 2011). This bias in data reporting occurs 

for many marine organisms outside of the GZ group (McRae et al., 2017, Purcell, 

2012, Sullivan and Kremer, 2011). Growing evidence points towards an increase in 

GZ populations from human influences on the coastal marine environment (Purcell et 

al., 2007, Purcell, 2012, Greene et al., 2015), which may skew the calculation of a 

global baseline towards higher values. Human influences on the coastal marine 

environment include increasing artificial hard substrates from the development of 

ports, coastal defence, renewable energy structures and more. These artificial hard 

substrates have been linked to increasing GZ populations, particularly Cnidaria, where 

a benthic stage to the life cycle of many species benefits from the additional hard 

substrate available for settling (Lucas et al., 2012, Purcell, 2012, Duarte et al., 2013). 

Over-fishing, particularly of planktivorous species such as sardines, is thought to 

increase GZ populations, through the removal of competitors for prey (Pauly et al., 

2009, Flynn et al., 2012, Jensen et al., 2012, Purcell, 2012, Roux et al., 2013). Open 

ocean regions and the Southern Hemisphere are the most under reported (Fig. 2.2), and 

they are likely to have lower concentrations compared with coastal areas.  

 

The sampling of GZ has increased in intensity over recent decades (Condon et al., 

2012, Pitt et al., 2018). If GZ populations have increased over this same time period 

then the baselines calculated from the data will be skewed towards a higher value, 

giving a ‘sliding frame of reference’ (Condon et al., 2012) more representative of 

recent decades than a longer time period. However, the GZ subset of the MAREDAT 

database does not follow this general trend of increasing sampling over time and is 

more likely biased towards intensive sampling in the 1960’s in the Tropics and the 

1970’s in the Northern Hemisphere (Fig. 2.2). The peaks and troughs in sampling are 

due to inconstancies in funding and attention for GZ research, as they have not 

traditionally been included in regular marine ecosystem or fisheries surveys, although 

this is beginning to change (Aubert et al., 2018). Unfortunately, both the MAREDAT 
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and JeDI databases have not been updated for several years (ending in 2008 and 2011 

respectively), during which time the trend of increasing sampling has continued. For 

both databases this is due to the cessation of funding. The notion of extending GZ 

samples in MAREDAT past 2008 was discussed during the execution of this work, but 

it was decided that it was outside the scope and timescale of this PhD, where the 

primary aim is to include GZ in a global biogeochemical model. 

 

Under reporting of zero biomass also has the potential to lead to over-estimated GZ 

baselines. This issue occurs for both abundance and biomass data but is emphasised in 

this analysis through the large difference in zero frequency between the abundance and 

biomass data (Fig. 2.3 and Fig. 2. 4). Analysis of abundance and biomass of GZ is 

therefore likely to overestimate values, this overestimation applies to the analysis 

carried out in this Chapter as well as other analysis of GZ abundance and biomass 

(Lucas et al., 2014). Including reports of zero biomass for taxa within ecosystem 

surveys is as important as records greater than zero, recording zero biomass in an area 

or time is very different to having no records.  

 

The large difference in the number of data available between abundance and biomass 

is due to low-quality reporting of GZ (Fig. 2.2; Gibbons and Richardson, 2013). 

Biomass can only be calculated where either dry weight or wet weight is reported 

along with species level. For the majority of GZ data in MAREDAT only the number 

of individuals is recorded, with taxonomic identification only to phylum (Buitenhuis et 

al., 2013). The caveats of the GZ subset of MAREDAT are similar as those for the 

broader zooplankton subset of MAREDAT (Moriarty et al., 2013) and for the whole 

database (Buitenhuis et al., 2013). The key caveat in the GZ subset is that the data is 

not uniformly distributed spatially or temporally and not proportionally distributed 

between various biomes of the ocean, with abundance skewed to coastal regions and 

biomass only in the coastal Northern Hemisphere.  

 

2.5 Conclusion 

 

It is hard to untangle which factors, and to what extent each factor is playing in 

influencing the GZ biomass, even with an idea of baselines and trends of biomass 

(Pauly et al., 2009). Such factors could include direct metabolic changes driven by 
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rising temperatures, earlier springs and longer summers, or indirect climatic-driven 

changes to the prey and competitors of GZ. Biogeochemical modelling can help to 

untangle these factors. The availability of global baseline GZ biomass and seasonality 

will help improve and validate global ocean models (Gibbons and Richardson, 2013). 

 

The bloom and bust dynamics of GZ populations is confirmed by this analysis to be 

widespread in the Northern Hemisphere and to some extent in the equatorial Pacific. 

This study has established GZ seasonal baselines, on the likely timing of bloom 

conditions and their strength and frequency, for nine Longhurst Provinces in the 

Northern Hemisphere and Tropics. Future work could apply the methods used here to 

other GZ databases such as JeDI to increase global coverage. Within the uncertainties 

discussed above, carbon biomass for GZ appears equivalent with carbon biomass for 

macrozooplankton (crustacean), mesozooplankton and microzooplankton calculated 

from MAREDAT, confirming the importance of GZ in global marine ecosystems. 

Carbon biomass for GZ varies more between statistical methods than between 

databases. It is recommended that all studies into GZ biomass use a range of averaging 

methods to best represent the baseline and range of data. An assessment of a trend over 

time is not possible at this stage because of the combination of an incomplete database 

(especially carbon biomass) and the bloom and bust dynamics of GZ. It is also 

recommended that there is an integration of the GZ subset of the MAREDAT database 

with the JeDI database, and that the databases are updated to include the numerous 

sampling efforts of recent years, to give a fuller picture of GZ abundance and biomass.  
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Abstract 

 

Jellyfish (here referring to Cnidaria) are increasingly recognised as important 

components of the marine ecosystem. However, the specific role of jellyfish in the 

ecosystem is less well understood than that of other zooplankton groups. Global 

biogeochemical models that include plankton food webs can be used to help 

understand processes. Here I developed the PlankTOM11 model by introducing 

jellyfish as the 11th plankton functional type (PFT) in the PlankTOM model series. 

Jellyfish is the fourth zooplankton in the model. PlankTOM11 is used to estimate the 

global biomass of jellyfish and assess the influence of jellyfish on the structure of the 

plankton community. PlankTOM11 is the first global biogeochemical model that 

represents jellyfish explicitly. Jellyfish are parameterised using observations of 

growth, grazing, respiration and mortality rates as a function of temperature. The 

trophic level of jellyfish is determined from observations on feeding preferences for 

other PFTs. Compared to the last published version of the PlankTOM model, the 

growth rate as a function of temperature was updated for all PFTs from a Q10 function 

(two parameters) to an optimum function (three parameters). PlankTOM11 was then 

tuned to reproduce available carbon biomass observations from the MAREDAT global 

database as well as satellite chlorophyll data. Jellyfish mortality rate was used as the 

key tuning parameter because it has the highest uncertainty. A control simulation was 

carried out, identical to PlankTOM11, but excluding the jellyfish PFT, called 

PlankTOM10. This control simulation is used to determine the influence of jellyfish on 

the biomass of the other PFTs. The global mean biomass of jellyfish in PlankTOM11 

is 0.13 PgC, which is towards the lower end of the observation range (Chapter 2). 

Global mean phytoplankton and zooplankton biomasses are also within the observation 

range, at 1.01 PgC and 0.82 PgC respectively. The presence of jellyfish mainly 

influences macrozooplankton, with secondary effects on mesozooplankton. These 

changes to macro- and mesozooplankton influence the rest of the plankton community 

structure through trophic cascades. PlankTOM11 successfully replicates chlorophyll 

patterns spatially and seasonally, although with concentrations somewhat below 

observations. The model also achieves a high north/south chlorophyll ratio, closer to 

observations than the ratio achieved in PlankTOM10. The zooplankton community in 

PlankTOM11 was highly sensitive to the jellyfish mortality rate, with low jellyfish 

mortality allowing jellyfish to dominate the zooplankton. This sensitivity of the 
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zooplankton community to the mortality of jellyfish could help explain why jellyfish 

may be increasing globally, as pressures on their mortality in early-life stages decrease, 

allowing them to outcompete other zooplankton. However, the mortality rate is the 

most poorly constrained parameter for jellyfish, which may influence this sensitivity of 

the zooplankton community.   
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3.1 Introduction 

 

Gelatinous zooplankton (GZ) are increasingly recognised as influential organisms in 

the marine environment, not just for the disruptions they can cause to coastal 

economies (fisheries, aquaculture and cooling intakes for power plants etc.), but also 

as components in marine biogeochemical cycles and key consumers of plankton. The 

term GZ can encompass a wide range of organisms across three phyla: Tunicata 

(salps), Ctenophora (comb-jellies), and Cnidaria (true jellyfish). This study focuses on 

Cnidaria (including Hydrozoa, Cubozoa and Scyphozoa), as they contribute 92% of 

the total global biomass of gelatinous zooplankton (Lucas et al., 2014). Cnidaria 

exhibit a radially symmetrical body plan with one opening for both feeding and 

excretion (gastrovascular cavity; see Fig. 1.2). They feed mostly on zooplankton using 

tentacles filled with stinging cells called nematocysts. Cnidaria generally have two 

stages in the life cycle (polyp and medusa) within which there is large reproductive 

and life cycle variety (Chapter 1). The other GZ groups, Tunicata and Ctenophora, are 

excluded from this study. There are far less data available on biomass and vital rates 

for Tunicata and Ctenophora than for Cnidaria. Tunicata have a different trophic level 

to Cnidaria, as filter feeders of phytoplankton. Ctenophora have a similar diet and 

trophic level to Cnidaria which results in them being considered together in some 

studies (Gibbons and Richardson 2013, Lucas and Dawson 2014). They are separated 

here as the dominance of Cnidaria in the data may misrepresent Ctenophora vital rates. 

Cnidaria are both independent enough from other gelatinous zooplankton, and 

cohesive enough to be represented as a single plankton functional type (PFT) for 

global modelling (Chapter 1 and 2). In this study the term jellyfish refers to Cnidaria 

medusa. 

 

Jellyfish are significant consumers of plankton, especially zooplankton. The large body 

size to carbon content ratio of jellyfish creates a low maintenance, large feeding 

structure, which combined with continuous (day and night) touch-feeding allows for 

efficient clearance rates of the plankton (Lucas and Dawson, 2014, Acuña et al., 2011). 

Jellyfish are connected to lower trophic levels, with the ability to influence the 

plankton ecosystem structure and thus the larger marine ecosystem through trophic 

cascades (Pitt et al., 2007, Pitt et al., 2009, West et al., 2009). Jellyfish have the ability 

to rapidly form large high-density aggregations known as blooms (see Chapter 1) 
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which can temporarily dominate local ecosystems.  Jellyfish contribute to the 

biogeochemical cycle through two main routes; from life through feeding processes, 

(including the excretion of faecal pellets, mucus and messy-eating) and from death, 

through the sinking of carcasses (Lebrato et al., 2012, Lebrato et al., 2013a, Chelsky et 

al., 2015, Pitt et al., 2009). The high biomass achieved during jellyfish blooms, and the 

rapid sinking of excretions from feeding and carcasses from such blooms, make them a 

potentially significant vector for carbon export (Lebrato et al., 2013a, Lebrato et al., 

2013b). 

 

Anthropogenic impacts from climate change (such as increasing temperature and 

acidity) and fishing (the removal of predators) impact the plankton, including jellyfish 

(Rhein, 2013, Doney et al., 2012).  Multiple co-occurring impacts make it difficult to 

understand the role of jellyfish in the marine ecosystem, and how this role may be 

changed by these impacts. The paucity of historical jellyfish biomass data, especially 

outside of the Northern Hemisphere, has made it difficult to establish jellyfish global 

spatial distribution and biomass from observations (Chapter 2). PlankTOM11 will help 

to quantify global jellyfish biomass and the exact role of jellyfish for the global 

ecosystem in this chapter and in Chapter 4. The PlankTOM11 model will then be used 

to assess the relative influence of climate change and fisheries in a selected ocean area 

(Chapter 5). 

 

This chapter describes the addition of jellyfish to the PlankTOM10 global 

biogeochemical model, which we call PlankTOM11. PlankTOM10 included three 

zooplankton: protozooplankton (mainly heterotrophic flagellates and ciliates), 

mesozooplankton (mainly copepods) and macrozooplankton (as crustaceans; Le Quéré 

et al., 2016). Jellyfish is the fourth zooplankton group, therefore introducing an 

additional trophic level. The jellyfish PFT was parameterised as described in this 

chapter using observed physiological process rates and then tuned to observed biomass 

data. PlankTOM11 is used to test the influence of jellyfish on ecosystem properties, by 

comparing PlankTOM11 simulation to an identical simulation with no jellyfish. 
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3.2 Methods 

 

3.2.1 Model Description 

 

PlankTOM11 was developed from the last published version of the PlankTOM model 

series (Le Quéré et al., 2016), by introducing jellyfish as an additional trophic level at 

the top of the plankton food web (Fig. 3.1). A full description of PlankTOM10 is 

published in Le Quéré et al. (2016), including all equations and parameters. Here we 

provide an overview of the model, focussing on the parameterisation of the growth and 

loss rates of jellyfish and how these compare to macrozooplankton. We also describe 

the update of the growth rate as a function of temperature and subsequent tuning. 

Growth rate is the only parameterisation that changed since the previous version of the 

model (Le Quéré et al., 2016).  

 

PlankTOM11 is a global ocean biogeochemistry model that simulates plankton 

ecosystem processes and their interactions with the environment through the 

representation of 11 PFTs. The 11 PFTs consist of six autotrophs (picophytoplankton, 

nitrogen-fixing cyanobacteria, coccolithophores, mixed phytoplankton, diatoms and 

Phaeocystis) and five heterotrophs (bacteria, protozooplankton, mesozooplankton, 

macrozooplankton and jellyfish zooplankton). See Table 3.1 for further details on the 

PFTs and Figure 3.1 for the food web interactions. Physiological parameters are fixed 

within each PFT, and therefore, within-PFT diversity is not included. Spatial 

variability within PFTs is represented through parameter-dependence on 

environmental conditions including temperature, nutrients, light and food availability.  

 

The model contains 39 biogeochemical tracers, with full marine cycles of key elements 

carbon, oxygen, phosphorous and silicon, and simplified cycles of nitrogen and iron 

(Le Quéré et al., 2016). There are three detrital pools; dissolved organic carbon (OC), 

small particulate OC, and large particulate OC. The elements enter through riverine 

fluxes and are cycled and generated through the PFTs via feeding, fecal matter, messy-

eating and carcasses (Buitenhuis et al., 2006, Buitenhuis et al., 2013a, Buitenhuis et 

al., 2010, Le Quéré et al., 2016). Model parameters are based on observations where 

available. The model is tuned using a global database (MAREDAT, Chapter 2) of PFT 

carbon biomass that was designed for model studies (Buitenhuis et al., 2013b). 
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The PlankTOM11 marine biogeochemistry component is coupled online to the global 

ocean general circulation model Nucleus for European Modeling of the Ocean version 

3.5 (NEMO 3.5). We used the global configuration with a horizontal resolution of 2° 

longitude by a mean resolution of 1.1° latitude using a tripolar orthogonal grid. The 

vertical resolution is 10m for the top 100m, decreasing to a resolution of 500m at 5km 

depth, and a total of 30 vertical z-levels (Madec, 2008). The ocean is described as a 

fluid using the Navier-Stokes equations and a nonlinear equation of state (Madec, 

2008). NEMO 3.5 explicitly calculates vertical mixing at all depths using a turbulent 

kinetic energy model and sub-grid eddy induced mixing. The model is interactively 

coupled to a thermodynamic sea-ice model (LIM version 2; Timmermann et al., 2005).  

Table 3.1 Size range and descriptions of PFT groups used in PlankTOM11. Adapted from Le Quéré et 
al.  (2016). 

Name Abbreviation Size Range μm Description/Includes 

Autotrophs 

Pico-phytoplankton PIC 0.5 – 2 
Pico-eukaryotes and non N2-fixing 

cyanobacteria such as 
Synechococcus and Prochlorococcus 

N2-fixers FIX 0.7 – 2 Trichodesmium and N2-fixing 
unicellular cyanobacteria 

Coccolithophores COC 5 – 10  

Mixed-phytoplankton MIX 2 – 200 e.g. autotrophic dinoflagellates and 
chrysophytes 

Diatoms DIA 20 – 200  

Phaeocystis PHA 120 – 360 Colonial Phaeocystis 

Heterotrophs 

Bacteria BAC 0.3 – 1 Here used to subsume both 
heterotrophic Bacteria and Archaea 

Proto-zooplankton PRO 5 – 200 e.g. heterotrophic flagellates and 
ciliates 

Meso-zooplankton MES 200 – 2000 Predominantly copepods 

Macro-zooplankton MAC >2000 Euphausiids, amphipods, and others, 
called ‘macrozooplankton’ 

Jellyfish zooplankton JEL 200 – >20,000 Cnidaria medusa, ‘true jellyfish’ 
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3.2.2 Jellyfish PFT Development 

 

Jellyfish was parameterised through the formulation of growth and loss rates, 

following the methods used for the other zooplankton (Buitenhuis et al., 2010, Le 

Quéré et al., 2016). The temporal (!) evolution of zooplankton concentration ("#), is 

described as follows: 

$%&
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	= 	∑ +,-

%&
. 	× 	0. 	× 	123	 ×	"# 	− ∑ +%&

%-5
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For growth through grazing, +,-
%&  is the grazing of zooplankton "# on food source 0. 

and 123 is the model growth efficiency. For loss through grazing, +%&
%- is the 

unassimilated fraction (messy-eating and faecal pellets) ". of zooplankton. For basal 

respiration, 9:°
%& is the respiration rate at 0°C, S is temperature, <%& is the temperature 

dependence of respiration (<8: = T8:). For mortality through predation, L:°

%& is the 

mortality rate at 0°C and M%& is the temperature dependence of the mortality (M8: =

T8:) and U%& is the half saturation constant for mortality. ∑PQ is the sum of all PFTs, 

 

 
 
Figure 3.1 Schematic representation of the PlankTOM11 marine ecosystem model. The arrows represent the 
grazing fluxes by protozooplankton (orange), mesozooplankton (red), macrozooplankton (blue) and jellyfish 
zooplankton (purple). Only fluxes with relative preferences above 0.1 are shown (see Table 3.3). 
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excluding bacteria, and is used as a proxy for the biomass of predators not explicitly 

included in the model. More details on each term are provided below. 

 

3.2.2.1 Growth 

 

Growth rate is the trait that most distinguishes PFTs in models (Buitenhuis et al., 2006, 

Buitenhuis et al., 2013a). Jellyfish growth rates were compiled as a function of 

temperature from the literature. In previous iterations of PlankTOM, growth as a 

function of temperature (V=) was fitted with two parameters: 

V= 	= 	V: 	× 	T8:
= 8:⁄       (3.2) 

where V: is the growth at 0°C, T8: is the derived temperature dependence of growth 

and S is the observed temperature (Le Quéré et al., 2016). The jellyfish growth data 

had a poor fit to the exponential calculation, which resulted in a misrepresentation of 

the rates. The growth calculation has now been updated to a three-parameter growth 

rate, which produces a bell-shaped curve (Fig. 3.2 and Table 3.2). The three parameter 

fit is suitable for the global modelling of plankton because it can represent an 

exponential increase if the data support this (Schoemann et al., 2005). The growth rate 

as a function of temperature (V=) is now defined by; the optimal temperature (SXY'), 

maximum growth rate (VZ[\) at SXY', and the temperature interval (<S): 

V= 	= 	VZ[\ 	× 	J]K ^
_`=_	=abcd

e

f=e
g    (3.3) 

The three-parameter fit to the observations gives a lower Root Mean Square Error 

(RSME), than the two-parameter fit, for ten of the eleven PFTs. For the other PFT, the 

RSME is equal for both parameter fits (Fig. 3.2). The available observations measure 

growth rate, but the model requires specification of the grazing rate (Eq. 2). Growth of 

zooplankton and grazing (+=) are related through the gross growth efficiency (GGE): 

+= 	= 	
hi

jjk
                              (3.4) 

GGE is the portion of grazing that is converted to biomass, which was obtained from 

the literature (Moriarty, 2009). 

 

3.2.2.2 Grazing 

 

The food web, and thus the trophic level of PFTs is determined through grazing 

preferences. The relative preference of jellyfish zooplankton for the other PFTs was 
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determined through a literature search and personal communications (Flynn and 

Gibbons, 2007, Purcell, 1992, Purcell, 1997, Stoecker, 1987, Purcell, 2003, Colin et 

al., 2005, Malej et al., 2007, Uye and Shimauchi, 2005, Gibbons, 2018). The dominant 

food source was mesozooplankton (specifically copepods), followed by proto-

zooplankton and then macrozooplankton (Table 3.3). There is little evidence in the 

literature for jellyfish actively consuming autotrophs. One of the few pieces of 

evidence is a gut content analysis where ‘unidentified protists… some chlorophyll 

bearing’ were found (Colin et al., 2005). The ephyrae stage of jellyfish are likely to 

have a higher preference for autotrophs, due to their smaller size, but this will have a 

minimal effect on the overall preferences and the biomass consumed (Gibbons, 2018). 

Table 3.3 shows the relative preference of jellyfish zooplankton for its prey assigned in 

the model, along with the preferences of the other zooplankton PFTs. The preference 

ratios are weighted using the global carbon biomass for each type, calculated from the 

MAREDAT database, following the methodology used for the other PFTs (Buitenhuis 

et al., 2013b, Le Quéré et al., 2016). 

 

Table 3.2 Parameters used to calculate PFT specific growth rate with two-parameter fit (Eq. 3.2) and 
three-parameter fit (Eq. 3.3) in PlankTOM11. 

PFT 
Two-parameter fit Three-parameter fit 

μ0 (d-1) Q10 μ max (d-1) Topt (°C) dT (°C) 

FIX 0.03 1.57 0.20 27.60 8.20 

PIC 0.16 1.78 0.80 24.80 11.20 

COC 0.31 1.35 1.00 20.40 7.40 

MIX 0.20 1.57 1.10 34.00 20.00 

PHA 0.70 1.11 1.40 15.60 13.00 

DIA 0.36 1.66 1.30 23.20 17.20 

BAC 0.12 1.20 0.40 18.80 20.00 

PRO 0.40 1.00 0.40 22.00 20.00 

MES 0.02 2.22 0.40 31.60 20.00 

MAC 0.01 2.75 0.20 33.20 20.00 

JEL 0.05 2.03 0.20 23.60 18.80 
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Figure 3.2 Maximum growth rates for the 11 PFTs as a function of temperature from observations (grey 
circles). The fit to the data for two-parameters is the blue line, with the updated three-parameter fit in 
green. The Root Mean Square Error is given in each PFT panel coloured to the corresponding fit (blue for 
three-parameter and green for two-parameter). The two fits use the parameter values from Table 3.2. For 
full PFT names see Table 3.1. 
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3.2.2.3 Respiration 

 

Previous analysis of respiration rates of jellyfish found that temperature manipulation 

experiments with Q10 values of >3 were flawed because temperature was changed too 

rapidly (Purcell, 2009, Purcell et al., 2010). In a natural environment, jellyfish 

gradually acclimatise to temperature changes which has a smaller effect on their 

respiration rates. Purcell et al. instead collated values from experiments that measured 

respiration at ambient temperatures, providing a range of temperature data across 

different studies. They found that Q10 for respiration was 1.67 for Aurelia species 

(Purcell, 2009, Purcell et al., 2010). Moriarty (2009) collated a respiration dataset for 

zooplankton, including GZ, using a similar selectivity as Purcell (2009) for 

Table 3.3 Relative preference, expressed as a ratio, of zooplankton for food (grazing) used in 
PlankTOM. For each zooplankton the preference ratio for diatoms is set to 1. Adapted from Le Quéré 
et al. (2016). 

PFT PRO MES MAC JEL 

Autotrophs     

FIX 2 0.1 0.1 0.1 

PIC 3 0.75 0.5 0.1 

COC 2 0.75 1 0.1 

MIX 2 0.75 1 1 

DIA 1 1 1 1 

PHA 2 1 1 1 

Heterotrophs     

BAC 4 0.1 0.1 0.1 

PRO 0 2 1 7.5 

MES 0 0 2 10 

MAC 0 0 0 5 

JEL 0 0 0.5 0 

Particulate matter     

Small organic particles 0.1 0.1 0.1 0.1 

Large organic particles 0.1 0.1 0.1 0.1 
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experimental temperature, feeding, time in captivity and activity levels. Cnidaria 

medusae were extracted from the Moriarty (2009) dataset, which also included 

experiments on non-adult and non-Aurelia species medusa, unlike the Purcell et al. 

(2010) dataset.  The relationship between temperature and respiration is heavily 

skewed by body mass (Purcell et al., 2010). The data was thus normalised by fitting it 

to a general linear model (GLM) using a least squares cost function, to reduce the 

effect of body mass on respiration rates (Ikeda, 1985, Le Quéré et al., 2016). 

2l1 = G?+8:99 = C + I	G?+8:n1 + M	S   (3.5) 

 

M?H!	oBFM!E?F = 	∑ p
qi_	qars

i

qars
i t

u

    (3.6) 

Where RR is the respiration rate, BM is the body mass, and T and µT are the observed 

temperature and associated respiration rate. The parameter values were then calculated 

using V: 	= 	 J[, and T8: = 	 (Jw)8:, where e is the exponential function. The resulting 

fit to data is shown in Figure 3.3. The parameter values for respiration used in the 

model are given in Table 3.4. Macrozooplankton respiration values are also given in 

Figure 3.3 and Table 3.4, to provide a comparison to another zooplankton PFT. The 

respiration rates of jellyfish and macrozooplankton are comparable to each other, with 

rates mostly between 0 – 0.2 d-1. Macrozooplankton respiration is lower than jellyfish 

respiration at low temperatures and higher than jellyfish respiration at high 

temperatures (Fig. 3.3). 

 

3.2.2.4 Mortality  

 

There is limited data on mortality rates for jellyfish and to use mortality data from the 

literature on any zooplankton group some assumptions must be made (Acevedo et al., 

2013, Almeda et al., 2013, Malej and Malej, 1992, Moriarty, 2009, Rosa et al., 2013). 

These assumptions are: that the population is in a steady state where mortality equals 

recruitment, reproduction is constant and that mortality is independent of age 

(Moriarty, 2009). All models with zooplankton mortality rates follow these 

assumptions. In reality the mortality of a zooplankton population is highly variable. 

Steady states are balanced over a long period (if a population remains viable), 

reproduction is restricted to certain times of year and the early stages of life cycles are 

many times more vulnerable to mortality. Despite these assumptions, with the limited 

data on mortality rates, the larger uncertainty lies with the data rather than the 
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assumptions (Moriarty, 2009). In the small amount of data available and suitable for 

use in the model (16 data points from two studies) mortality ranged from 0.006 – 0.026 

 

  
 

  

 
 

Figure 3.3 Maximum (top) growth rates, (middle) respiration rates and (bottom) mortality rates for 
(left; purple) jellyfish and (right; blue) macrozooplankton PFTs as a function of temperature. The fit to 
the data is shown in black, using the parameter values from Table 3.2 and Table 3.4. The Root Mean 
Square Error for the fit to growth and respiration are shown in the corresponding panels. Growth rates 
are the same as shown in Figure 2, on a different scale. For mortality the thin dashed line is the 
untuned fit, and the solid line is the tuned fit (Table 3.4). 
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per day (Acevedo et al., 2013, Malej and Malej, 1992). Applying the exponential fit to 

this data gave a mortality rate at 0°C (L:°

%& in Eq. 3.1) of 0.018 per day (Fig. 3.3). 

Sensitivity tests were carried out from this mortality rate due to low confidence in the 

value. Results from a subset of the sensitivity tests are shown in Figure 3.4. The model 

was found to best represent a range of observations (of plankton from MAREDAT and 

chlorophyll from SeaWiFS; Fig. 3.4) when jellyfish mortality was increased to 0.12 

per day. Although the tuned fit is far higher than the observations (Fig. 3.3), it was  

 
 

   

 
 
Figure 3.4 Results from sensitivity tests on jellyfish mortality rates are shown by empty circles, the 
standard (tuned) PlankTOM11 simulation is shown by the black filled circle and the untuned simulation 
is shown by the grey filled circle; (top - middle) global mean PFT biomass (µmol C L-1) for 0-200m 
depth, (bottom) regional mean surface chlorophyll concentration (µg chl L-1). For the regional mean 
chlorophyll and north/south ratio the grey lines show observations calculated from SeaWiFS. All data 
are averaged for 1985-2015, and between 30º and 55º latitude in both hemispheres: 140-240ºE in the 
north and 140-290ºE in the south. Observations for global PFT biomass are omitted as the results all 
fall within the min-max observational range. Phyto is the sum of all the phytoplankton PFTs. 
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Table 3.4 Temperature dependent rates of respiration and mortality for macro- and jellyfish 
zooplankton. Where µ0 is the rate at 0°C and Q10 is the temperature coefficient. See text for detail. 

Parameters 
JEL MAC 

µ0 (d-1) Q10 µ0 (d-1) Q10 

Respiration 0.03 1.88 0.01 2.46 

Mortality 0.12 1.20 0.02 3.00 

 
 

Figure 3.5 Annual mean surface chlorophyll (μg chl L-1) and carbon biomasses (µmol C L-1) of JEL, MAC, MES 
and PRO for tuning of JEL mortality in PlankTOM11 (left) chosen simulation with 0.12 mortality/d-1 and (right) 
untuned simulation with 0.02 mortality/d-1. Model results are shown for the surface box (0-10 meters) and 
averaged for 1985-2015.  
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selected for use in the model for two central reasons, firstly, that the observational 

mortality data is limited (as discussed above) and secondly, that the tuning provides a 

model much closer to a range of observations. Mortality rate values closer to 0.018 per 

day allowed jellyfish to dominate macro- and mesozooplankton, greatly reducing their 

biomass (Fig. 3.4 and Fig. 3.5). Low jellyfish mortality also resulted in higher 

chlorophyll concentrations than observed, especially in the high latitudes (Fig. 3.4 and 

Fig. 3.5, Bar-On et al., 2018, Buitenhuis et al., 2013b). The higher mortality rate may 

be accounting for the greater vulnerability to mortality experienced during the early 

stages of the life cycle. The half saturation constant for mortality (U%& in Eq. 3.1) is set 

to 20 µmol C L-1. 

 

3.2.3 Additional Tuning  

 

As shown in Equation 1, there is a component in the mortality of zooplankton to 

represent predation by organism types not included in the model. The jellyfish PFT is a 

significant grazer of macrozooplankton and mesozooplankton (Table 3.3). To account 

for this additional grazing the mortality term for macrozooplankton and the respiration 

term for mesozooplankton were reduced (Table 3.5, PlankTOM11). Respiration is 

used in place of mortality for mesozooplankton as the mortality term has already been 

reduced to zero to account for predation (Le Quéré et al., 2016).  

 

From the change to the growth rate calculation all PFT rates are lower, but the change 

is most drastic for Phaeocystis, diatoms, bacteria and protozooplankton (Fig. 3.2). 

Further tuning is carried out to address this, as the model has been tuned previously to 

the higher growth rates. The model was tuned by increasing the grazing ratio 

preference of mesozooplankton for Phaeocystis, within observations, and decreasing 

 

Table 3.5 Changes to non-jellyfish PFT parameters. PlankTOM10 (2016) is the latest published version 
of PlankTOM with 10 PFTs (Le Quéré et al., 2016). 

Parameters PlankTOM10 (2016) PlankTOM11 PlankTOM10 (this study) 

MAC mortality 0.020 0.005 0.012 

MES respiration 0.014 0.001 0.014 
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the half saturation constant of Phaeocystis for iron. The tuning resulted in a reduction 

of Phaeocystis biomass and an increase in diatom biomass, without disrupting the rest 

of the ecosystem. Diatom respiration was increased to reduce their biomass towards 

observations. Bacterial biomass was increased closer to observations by reducing the 

half saturation constant of bacteria for dissolved organic carbon. 

 

3.2.4 Model Simulations 

 

The PlankTOM11 simulations are run from 1920 to 2015, forced by meteorological 

data including daily wind stress, cloud cover, precipitation and freshwater riverine 

input (NCEP/ NCAR reanalysed fields from Kalnay et al., 1996). The simulations start 

with a 28-year spin up forced with year 1980 as an ‘average year’, with no strong El 

Nino/La Nina, followed by interannually varying forcing from 1948-2015. All analysis 

 

 
 

Figure 3.6 Global PFT biomass (µmol C L-1) averaged over 0-100m for PlankTOM11. Top is the total 
phytoplankton PFTs, middle is the total zooplankton PFTs and bottom is the jellyfish PFT. The grey line is 
the spin up period and the black line is the interannually varying forcing (see text for detail). The dashed 
line indicates the year 1985 after which the model data is used for analysis.  
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is carried out on the last 31-year period of 1985-2015 when drift in the model is 

reduced (Fig. 3.6). PlankTOM11 is initialised with observations of dissolved inorganic 

carbon and alkalinity (Key et al., 2004), NO3, PO4, SiO3, O2, temperature and salinity 

from the World Ocean Atlas (Antonov et al., 2010).  

 

A comparison simulation was carried out in order to test the addition of a zooplankton 

representing jellyfish to PlankTOM. The comparison simulation is PlankTOM10, 

where jellyfish growth is set to 0, so that there are 10 PFTs active, as a replication of 

PlankTOM10 in Le Quéré et al. (2016) with the updated growth and tuning presented 

above. All other setup is identical to PlankTOM11 except for the top predator 

mortality term for meso- and macrozooplankton, which were returned to pre-jellyfish 

values, to account for the lack of predation by jellyfish. Macrozooplankton mortality 

was then tuned from this value to account for the change to the growth calculation 

(Table 3.5). 
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3.3 Results 

 

3.3.1 Ecosystem Properties of PlankTOM11 

 

PlankTOM11 reproduces the main characteristics of surface chlorophyll observations, 

with high chlorophyll concentration in the high latitudes, low concentration in the 

subtropics and elevated concentrations around the equator (Fig. 3.7). PlankTOM11 

also reproduces higher chlorophyll concentrations in the Northern Hemisphere than the 

Southern, and higher concentrations in the southern Atlantic than the southern Pacific 

Ocean (Fig. 3.7). Overall the model underestimates chlorophyll concentrations, as is 

standard with models of this type (Le Quéré et al., 2016) particularly in the central and 

north Atlantic (Fig. 3.7). PlankTOM11 also captures the seasonality of chlorophyll, 

with concentrations increasing in summer compared to the winter for each hemisphere 

(Fig. 3.7).  

 

PlankTOM11 underestimates global primary production by 10 PgC y-1, export 

production and N2
 fixation are within the observational range, and CaCO3 export is 

slightly overestimated by 0.2 PgC y-1 (Table 3.6).  

 
 

Figure 3.7 Surface chlorophyll (µg chl L-1) averaged for (left) June to August and (right) November to 
January. Data are from (top) SeaWiFS satellite and results (bottom) from PlankTOM11. SeaWiFS is 
averaged for 1997-2006, and PlankTOM11 for 1985-2015. Model results are shown for the surface box 
(0-10 meters). The black boxes show the North, Tropic and South regions used in other figures. 
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Table 3.6 Global mean values for rates and biomass from observations and the PlankTOM11 and PlankTOM10 models averaged 
over 1985–2015. In parenthesis is the percentage share of the plankton type of the total Phytoplankton or Zooplankton biomass. 
Adapted from Le Quéré et al. (2016). 

 PlankTOM11 PlankTOM10 Data Reference for the data 

Rates     

Primary production        
(PgC y-1) 

41.6 43.4 51-65 Buitenhuis et al. (2013b)  

Export production at 
100m (PgC y-1) 

7.1 7.0 5-13 
Henson et al. (2011), Palevsky et al. 

(2018) 

CaCO3 export at 100m  
(PgC y-1) 

1.3 1.2 0.6-1.1 Lee (2001); Sarmiento et al. (2002) 

N2 fixation                       
(TgN y-1) 

97.2 95.9 60-200 Gruber (2008) 

Phytoplankton biomass 0-200 m (PgC) 

N2-fixers 
0.065 
(6.1%) 

0.075 
(7.2%) 

0.008-0.12 
(2-8%) 

Luo et al. (2012) 

Picophytoplankton 
0.141 
(13%) 

0.153 
(15%) 

0.28-0.52 
(35-68%) 

Buitenhuis et al. (2012b) 

Coccolithophores 
0.248 
(23%) 

0.212 
(20%) 

0.001-0.032 
(0.2-2%) 

O’Brien et al. (2013) 

Mixed-phytoplankton 
0.263 
(24%) 

0.268 
(26%) - - 

Phaeocystis 
0.177 
(16%) 

0.170 
(16%) 

0.11-0.69 
(27-46%) 

Vogt et al. (2012) 

Diatoms 
0.183 
(17%) 

0.167 
(16%) 

0.013-0.75 
(3-50%) 

Le Blanc et al. (2012) 

Total Phytoplankton 
biomass 

1.077 1.046 0.412 – 2.112  

Heterotrophs biomass 0-200 m (PgC) 

Bacteria 0.041 0.046 0.25-0.26 Buitenhuis et al. (2012a) 

Protozooplankton 
0.295 
(36%) 

0.330 
(32.7%) 

0.10-0.37 
(27-31%) 

Buitenhuis et al. (2010) 

Mesozooplankton 
0.193 
(23%) 

0.218 
(21.6%) 

0.21-0.34 
(25-66%) 

Moriarty and O’Brien (2013) 

Macrozooplankton 
0.205 
(25%) 

0.460 
(45.6%) 

0.01-0.64 
(3-47%) 

Moriarty et al. (2013) 

Jellyfish zooplankton 
(Cnidaria) 

0.129 
(16%) - 0.1-3.11 

Bar-On et al. (2018), Lucas et al. 
(2014), Chapter 2 

Total Zooplankton 
biomass 

0.823 1.008 0.42 – 4.46  
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Figure 3.8 Annual mean surface carbon biomass (µmol C L-1) for each plankton functional type from 
PlankTOM11. Results are shown for the surface box (0-10 meters) and averaged for 1985-2015. All 
panels are scaled to the same key. 
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In PlankTOM11 each PFT shows unique spatial distribution in carbon biomass (Fig. 

3.8). The total biomass of phytoplankton is within the range of observations, but the 

partitioning of this biomass between phytoplankton types differs from observations 

(Table 3.6). PlankTOM11 is dominated by mixed-phytoplankton and 

coccolithophores, together making up 47% of the total phytoplankton biomass. 

Diatoms and Phaeocystis are the next most abundant and fall within the observed 

range, followed by Picophytoplankton with around half the observed biomass (Table 

3.6). The observations are dominated by picophytoplankton, followed by Phaeocystis 

and Diatoms (Table 3.6). The modelled mixed-phytoplankton is likely taking up the 

ecosystem niche of picophytoplankton. Coccolithophores are overestimated by a factor 

of 10 and may also be filling the ecosystem niche of picophytoplankton in the model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9 Annual surface carbon biomass (µmol C L-1) for the jellyfish PFT in PlankTOM11. Results are the 
mapped (top left) minimum over time, (middle left) average over time, and (bottom left) maximum over 
time, and (right) averaged over longitude for the minimum and maximum in thin black lines and average 
in the thick black line. All data is for 1985-2015.  
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PlankTOM11 underestimates bacterial biomass by a factor of ten (Table 3.6). This is  

in the same range, but slightly higher than, previous published versions of PlankTOM; 

0.031 in PlankTOM10 and 0.030 in PlankTOM6 (Le Quéré et al., 2016). Le Quéré et 

al. (2016) suggests that the underestimation of bacterial biomass is due to the 

PlankTOM model only representing highly active bacteria, while a significant portion 

of observed bacterial biomass is from low activity bacteria and ghost cells.  

 

3.3.2 Jellyfish Biomass in PlankTOM11 

 

The global jellyfish biomass estimated by various studies gives a range of results: 0.1 

PgC (Bar-On et al., 2018), 0.32 ± 0.49 PgC (Lucas et al., 2014), 0.26 PgC from 

MAREDAT following Lucas et al., (2014) methods, and 0.46 PgC from MAREDAT 

following Buitenhuis et al., (2013b) methods (see Chapter 2 for details). Jellyfish 

biomass in PlankTOM11 is within the range but towards the lower end of observations 

at 0.13 PgC (Table 3.6). When biomass was tuned to match the higher biomass 

observations by adjusting the mortality rate (Fig 3.4, Fig. 3.5) jellyfish dominate the 

entire ecosystem, significantly reducing levels of other PFTs to far below observations. 

 

PlankTOM11 generally replicates the patterns of jellyfish biomass with observations. 

High biomass occurs at around 50-60°N across the oceans, with the highest average 

biomass in the North Pacific (Fig. 3.9, Chapter 2; Lucas et al., 2014). PlankTOM11 

also replicates low biomass in the Indian Ocean, and the eastern half of the tropical 

Pacific shows higher biomass than other open ocean areas in agreement with patterns 

Table 3.7 Jellyfish (Cnidaria) biomass globally from observations (MAREDAT, see Chapter 2) and 
PlankTOM11. Three types of mean are given for the observations; Med is the median, AM is the 
arithmetic mean and GM is the geometric mean. The ratios are all scaled to mean = 1. All units are µg C 
L-1. 

 Mean Max Ratio 

Observations AM 3.61 156.00 1 : 43 

 GM 0.95 156.00 1 : 165 

 Med 0.29 156.00 1 : 538 

PlankTOM11 AM 1.18 98.90 1 : 84 
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in observations (Fig. 3.9, Chapter 2; Lucas et al., 2014). The lack of biomass 

observations around 40°S makes it hard to say if the peak in jellyfish biomass in 

PlankTOM11 at this latitude is representative of reality. The modelled maximum 

biomass in the southern hemisphere is mostly around coastal areas i.e. South America  

and southern Australia. This is expected from the reports and papers on jellyfish in 

these areas (Condon et al., 2013, Purcell et al., 2007 and references therein). However, 

the high modelled biomass in the southern Atlantic open ocean around 40°S may be 

unrealistic as there is no data from this region (Fig. 3.9). A prevalence of jellyfish in 

coastal areas is apparent, in line with observations, even without any specific coastal 

advantages for jellyfish in the model (see macrozooplankton in Le Quéré et al., 2016; 

Fig. 3.9). 

 

Jellyfish are characterised by their bloom and bust dynamics, resulting in patchy and 

ephemeral biomass (Chapter 1 & 2). The mean:max biomass ratio of observations 

(MAREDAT; Chapter 2) was compared to the same ratio for PlankTOM11 to assess 

the replication of this characteristic. The observations give a range of ratios depending 

on the type of mean used (Table 3.7). The PlankTOM11 ratio falls within this range, 

but towards the lower end. PlankTOM11 replicates some of the patchy and ephemeral 

biomass of jellyfish.  

 

Observations of jellyfish biomass in MAREDAT have poor global spatial coverage 

(Chapter 2). The region around the coast of Alaska has the highest density of 

observations (Fig. 3.10) and is used here to evaluate the mean and seasonality of the 

carbon biomass of jellyfish as represented in PlankTOM11. PlankTOM11 reproduces 

the observed mean jellyfish biomass (0.16 compared to 0.13), but it underestimates the 

maximum and spread of the observations (Table 3.8). The spatial patchiness is 

somewhat replicated in PlankTOM11, although with a smaller variation (Fig. 3.10). 

PlankTOM11 replicates the mean seasonal shape and biomass of jellyfish with a small 

peak over the summer followed by a large peak in September in the observations and 

in October in PlankTOM11. PlankTOM11 underestimates the maximum biomass and 

temporal patchiness of the observations (Fig. 3.10). 

  

3.3.3 Influence of Jellyfish on the PlankTOM Ecosystem 
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Table 3.8 Jellyfish (Cnidaria) biomass statistics for the coast of Alaska from observations (MAREDAT, 
see Chapter 2) and PlankTOM11. Mean is the arithmetic mean and SD is the standard deviation. 
PlankTOM11 is sampled at grid boxes where observations are available (see Fig. 3.9). All units are µmol 
C L-1. 

 Mean Min Max SD 

Observations 0.134 0.000 7.410 0.483 

PlankTOM11 0.161 0.048 1.078 0.164 

 

 

 
 
Figure 3.10 Carbon biomass of jellyfish from (left) observations and (right) PlankTOM11 in µmol C L-1, 
for the coast of Alaska (the region with the highest density of observations). The top panels show the 
annual mean jellyfish biomass and the bottoms panels show the seasonal jellyfish biomass, with the 
mean in black and the minimum and maximum in blue. Observations and PlankTOM11 results are for 
0-150m, as the depth range where >90% of the observations occur. 
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To assess the effect of adding jellyfish to PlankTOM, an additional simulation was 

conducted where jellyfish growth is set to zero (PlankTOM10). The simulation is 

otherwise identical to PlankTOM11, except for predation on meso- and 

macrozooplankton (see Table 3.5). 

 

 
 

Figure 3.11 Surface chlorophyll concentration (μg chl L-1) for SeaWiFS satellite (green), PlankTOM11 
(TOM11, black) and PlankTOM10 (TOM10, grey). North/south chlorophyll concentration ratio (left) 
and regional chlorophyll concentration (right) for the north (N), tropic (T) and south (S) regions shown 
in Figure 3.6. 
 

 
Figure 3.12 Taylor diagram comparing the global distributions of in annual mean surface chlorophyll 
concentration (μg chl L-1) of PlankTOM11 (black circle) and PlankTOM10 (grey circle) to SeaWiFS 
satellite observations (green). 
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PlankTOM11 closely replicates the observed chlorophyll concentration as well as the 

ratio between the north and south of 2.1, compared to the observed ratio of 2.2 (Fig. 

3.11).  PlankTOM10 underestimates the observed chlorophyll concentration as well as 

the North/South ratio (1.56, Fig. 3.11). In the tropics (T) PlankTOM10 and 

PlankTOM11 chlorophyll concentration is similar and is below observations (Fig. 

3.11). In the north (N) PlankTOM10 chlorophyll concentration is slightly below 

PlankTOM11 (0.35 and 0.38 μg chl L-1) although both are below observations of 0.45 

μg chl L-1 (Fig. 3.11).  In the south (S) PlankTOM11 chlorophyll concentration is the 

same as observations at 0.18 μg chl L-1, where in PlankTOM10 chlorophyll is higher 

(Fig. 3.11). Overall, the two simulations show similar spatial patterns of surface 

chlorophyll, but different concentration levels. Globally comparing to observations, 

PlankTOM11 and PlankTOM10 perform the same for standard deviation and 

PlankTOM11 performs better for correlation (Fig. 3.12). 

 

Introducing jellyfish to PlankTOM, PlankTOM10 (this study) to PlankTOM11, 

decreases primary production and increases export (Table 3.6). The mechanisms 

behind this are explored in depth in Chapter 4. The total surface PFT biomass 

increases slightly from PlankTOM10 to PlankTOM11, due to the increase in total 

phytoplankton biomass (Fig. 3.13). The biomass of macrozooplankton decreases from 

0.46 to 0.26 PgC, which likely accounts for the increase in phytoplankton biomass 

because of reduced grazing from macrozooplankton (Fig. 3.13). The biomass of 

macrozooplankton is reduced due to predation by jellyfish and competition with 

jellyfish for resources (both graze on meso- and protozooplankton). The biomass of 

meso- and protozooplankton is very similar in PlankTOM10 and PlankTOM11, even 

though the biomass of their predators (macrozooplankton in PlankTOM10 and 

macrozooplankton plus jellyfish in PlankTOM11) is lower in PlankTOM11 (Fig. 

3.13). The lower biomass of the predators in PlankTOM11 is offset by the high grazing 

preference of jellyfish for zooplankton. 

 

In PlankTOM11 there is a clear distinction between the biomass in the north and 

south, with higher biomass for each PFT in the north compared to the south (Fig. 

3.13). Plankton types have higher concentrations in the respective hemisphere’s 

summer, and a double peak in phytoplankton in the north (Fig. 3.13). In both regions 

protozooplankton have the highest zooplankton biomass, the other zooplankton have 
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similar biomass to each other, which vary in dominance over the seasons (Fig. 3.13). 

PlankTOM10 also has higher biomass of each PFT in the north compared to the south, 

but the difference is smaller than that in PlankTOM11 (Fig. 3.13). The key difference 

between the two models is the biomass of macrozooplankton. In PlankTOM10 

macrozooplankton are the dominant zooplankton, especially in late summer and 

autumn where their biomass matches and even exceeds the biomass of phytoplankton 

in the region (Fig. 3.13). In PlankTOM11 neither macrozooplankton, nor any other 

zooplankton, come close to matching the biomass of phytoplankton. The largest 

influence of jellyfish in these regions is its control on macrozooplankton biomass.  

 
Figure 3.13 Mean surface carbon biomass of all phytoplankton PFTs (green), protozooplankton (orange), 
mesozooplankton (red), macrozooplankton (blue) and jellyfish (purple). Line plots shown regional PFT 
biomass in μmol C L-1 for (left) PlankTOM11 and (right) PlankTOM10, for (middle) the north from 
January to December and (bottom) the south from July to June. All data are averaged for 1985-2015, 
and for the regions between 30º and 55º latitude in both hemispheres: 140-240ºE in the north and 140-
290ºE in the south, as shown in Figure 3.6. 
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3.4 Discussion 

 

PlankTOM11 uses a mortality rate for jellyfish that is much higher than the 

observations (Fig. 3.4 and Fig. 3.5). Lower jellyfish mortality is likely to be more 

representative of adult life stages, as jellyfish experience high mortality during juvenile 

life stages, especially as planulae larvae and during settling (Lucas et al., 2012). The 

limited observations of jellyfish mortality were from mostly adult organisms, which 

may explain the dominance of jellyfish in the model when parameterised with 

observed mortality. The higher mortality used for this study may be more 

representative of an average across all life stages.  

 

PlankTOM11 results suggest high competition between macrozooplankton 

(crustaceans) and jellyfish, the top two zooplankton in the model. The growth rate of 

jellyfish is higher than that of macrozooplankton for the majority of the ocean (where 

the temperature is less than 25°C) but the mortality of jellyfish is also significantly 

higher than macrozooplankton, again for the majority of the ocean. In situations where 

jellyfish mortality is reduced (but still higher than macrozooplankton mortality), 

jellyfish outcompete macrozooplankton for grazing. Because jellyfish also prey 

directly on macrozooplankton, the biomass of macrozooplankton rapidly decreases (a 

positive feedback). This sensitivity of the composition of the zooplankton community 

to the mortality of jellyfish could help explain why jellyfish may be increasing 

globally. A reduction in jellyfish mortality during early life-stages i.e. through reduced 

predation on planulae larvae and juveniles by fish, or increased survivability of larvae 

due to the increased availability of hard substrates for settling (Duarte et al., 2013, 

Lucas et al., 2012), could quickly allow jellyfish to outcompete other zooplankton, 

especially macro- and mesozooplankton. However, jellyfish mortality is the least 

constrained parameter for the jellyfish PFT which may affect this sensitivity of the 

zooplankton community to jellyfish mortality.  

 

The high patchiness of jellyfish in the observations is partly but not fully captured in 

PlankTOM11 (Fig. 3.10 and Table 3.7). The mean:max ratio of PlankTOM11 is within 

the range of observations, but towards the lower end (Table 3.7). This demonstrates 

that even without replication of high patchiness, PlankTOM11 still achieved some 

ephemeral blooms where jellyfish achieved a high biomass. The reasons for limited 
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patchiness include the coarse model resolution of 1x1° which doesn’t allow for the 

representation of small-scale physical mixing such as eddies and frontal regions, which 

have been shown to influence bloom formation (Graham et al., 2001, Benedetti-Cecchi 

et al., 2015). Physical processes are likely to be more responsible for jellyfish 

patchiness than behaviours, due to their simplistic locomotion (Chapter 1). For 

example, many jellyfish blooms occur around fronts, upwelling regions, tidal and 

estuarine regions, and shelf-breaks where currents can aggregate and retain organisms 

(Graham et al., 2001). A few large individuals of certain species have been found to 

have the capacity to actively swim counter current and orientate themselves with 

currents to aid bloom formation and retention (Fossette et al., 2015). However, this 

active swimming behaviour does not appear to be representative across the group and 

would only move the jellyfish within an area less than the resolution of the model. 

There is insufficient data and incomplete understanding of such swimming behaviours 

to include it in a global model.  

 

A key limitation of jellyfish representation in the model is the lack of a life cycle. 

Many jellyfish alternate between asexual (budding during the polyp stage) and sexual 

(broadcast spawning) reproduction (Chapter 1). Temperature cues have been found to 

trigger budding of ephyrae, increasing the medusa population (Lucas and Dawson, 

2014, Han and Uye, 2010). However, data on the polyp stage of jellyfish is 

significantly less than on medusa and modelling of jellyfish life cycles is still relatively 

new, with the focus of previous modelling studies on a small area and individual 

species only (Henschke et al., 2018, Schnedler-Meyer et al., 2018). The inclusion of 

jellyfish life cycles into PlankTOM would be a large undertaking, outside the scope of 

this study. The aim of this study was not to reproduce small-scale blooms, but rather to 

assess at the large and global scale the influence of jellyfish on the plankton ecosystem 

and biogeochemistry. There is currently no coastal advantage for jellyfish included in 

the model, as there is for macrozooplankton, which have a coastal and under-ice 

advantage for increased recruitment in these areas (Le Quéré et al., 2016). Introducing 

a similar advantage for jellyfish could introduce an element of life cycle benefits i.e. 

the increased recruitment and settlement of planulae larvae onto hard substrate in 

coastal regions (Lucas et al., 2012), without the large computational costs and 

uncertainty of including a full life cycle. 
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Another limitation of jellyfish representation in the model is the lack of body size 

representation. Most biological activity is from small individuals, while most of the 

biomass is from large individuals. The size distribution of body mass in jellyfish is 

particularly wide compared to other PFTs (Table 3.1), so representing jellyfish activity 

by an average sized individual could well skew the results.  

 

Trophic interactions explain the improvement of spatial chlorophyll pattern with the 

introduction of jellyfish to the model (PlankTOM10 to PlankTOM11), especially the 

North/South ratio. The two simulations have identical physical environments, with the 

influence of jellyfish as the only alteration, so any differences between the two can be 

attributed to the ecosystem structure. Jellyfish are the highest trophic level represented 

in PlankTOM11, with grazing preference for meso-, followed by proto-, and then 

macrozooplankton. However, the largest influence of jellyfish is on the 

macrozooplankton, rather than on mesozooplankton, for which it has the highest 

preference. This is because as jellyfish graze, the grazing pressure on 

mesozooplankton from macrozooplankton is reduced, and the grazing on 

protozooplankton by macro- and mesozooplankton is reduced.  The top down trophic 

cascade from jellyfish on the other zooplankton also releases some of the grazing 

pressure on the phytoplankton. 

 

Jellyfish biomass does not show a clear trend over time in PlankTOM11, after 1985 

when model drift is reduced (Fig. 3.6). This should be taken as a preliminary finding, 

as longer climatological runs would be required to fully investigate the trend in 

jellyfish biomass over time, preferably along with the improvements to the jellyfish 

PFT suggested in this discussion. The global trends in observations show a possible 

increase in jellyfish biomass since around 2000 (see Chapter 2). However, 

observations are largely restricted to coastal regions, so a future analysis of 

PlankTOM11 looking at global, regional, and coastal vs open ocean trends would 

provide the most constructive and informative analysis.  

 

3.5 Conclusion 

 

Jellyfish have been included as a PFT in a global biogeochemical ocean model for the 

first time as far as we can tell. The model provides reasonable overall replication of 
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global ecosystem properties and reasonable surface chlorophyll, particularly the 

north/south ratio. The replication of global mean jellyfish biomass, 0.13 PgC, is within 

the observational range (Chapter 2, Lucas et al., 2014, Bar-On et al., 2018), and in the 

region with the highest density of observations PlankTOM11 closely replicates the 

mean jellyfish biomass, but underestimates the maximum biomass. Jellyfish exert 

control over the other zooplankton, with the greatest influence on macrozooplankton. 

Through tropic cascades jellyfish also influence the phytoplankton and chlorophyll. 

PlankTOM11 is a successful first step in the inclusion of jellyfish in global 

biogeochemical modelling. The model raises interesting questions about the sensitivity 

of the zooplankton community to changes in jellyfish mortality. Future work could 

include an exploration of the full life cycle, coastal advantages, higher resolution ocean 

physical processes to enhance patchiness, and the long-term effect of climate change 

on jellyfish biomass. However, this model version is deemed suitable to explore 

pathways to carbon export mediated by jellyfish (Chapter 4) and the relative 

importance of fisheries and changing climate for jellyfish biomass (Chapter 5). 
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Abstract 

 

The biological carbon pump (BCP) plays an important role in transporting carbon out 

of the ocean surface, and the resulting balance of CO2 between the atmosphere and the 

ocean. The structure of the marine plankton ecosystem is a key factor controlling the 

BCP. Jellyfish have unique characteristics of highly efficient grazers of zooplankton 

and bloom forming organisms. These two characteristics are thought to have a role in 

the BCP. Firstly, by acting as a control on the biomass of other zooplankton and 

therefore affecting the structure of the plankton ecosystem and secondly, by directly 

contributing to carbon export through bloom die-off and subsequent carcass sinking 

events known as jelly-falls. However, these roles are poorly quantified through 

observations and have not yet been examined with the use of global ocean 

biogeochemistry models. Here we use the PlankTOM11 global ocean biogeochemistry 

model (Chapter 3) to assess the influence of jellyfish on carbon export. The importance 

of each parameter that characterises the jellyfish plankton functional type (PFT) is also 

individually assessed with the use of five sensitivity simulations. Including jellyfish in 

PlankTOM11 produced a global annual carbon export of 7.11 PgC/y and a primary 

production of 41.5 PgC/y, with large spatial and seasonal variability in primary 

production, export and export efficiency. Changes to jellyfish affected the seasonal 

variation in primary production and export, through changes to the zooplankton 

community structure. The contribution of jellyfish mortality to carbon export is likely 

under-represented in the model because the large particulate organic carbon 

component from jellyfish mortality in the model is smaller and slower sinking than 

jelly-falls in reality. Results using PlankTOM11 suggest that the influence of jellyfish 

on export is most important through trophic cascades. There is also evidence that 

jellyfish mortality plays an important role in export, but this is not replicated in the 

model because of limited representation of mortality processes. A more detailed 

representation of particulate organic carbon is needed to improve the representation of 

jellyfish mortality in PlankTOM11, and its influence on the export. 
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4.1 Introduction 

 

The oceans play a key role in the global carbon cycle (Le Quéré et al., 2018). The 

transfer of carbon from the atmosphere to the oceans is driven by the chemical 

dissolution of carbon dioxide (CO2) in the surface oceans, followed by the physical 

transport of carbon to depth. In addition to the physical transport is the biological 

carbon pump (BCP) which is estimated to export 5 - 12 PgC/y from the surface to the 

deep ocean through biological processes (McKinley et al., 2017), with physical 

transport returning this flux of carbon back to the surface when the BCP is in 

equilibrium. At equilibrium, the BCP does not influence the ocean CO2 sink, but 

changes to the BCP can influence the sink. The downward section of the BCP is the 

collection of biological processes which influence the vertical gradient of dissolved 

inorganic carbon through production, export and remineralisation (Burd et al., 2016). 

In the BCP, phytoplankton fix carbon in the surface ocean via photosynthesis, 

transforming it from dissolved inorganic carbon to organic carbon. Phytoplankton are 

consumed by zooplankton, and the carbon is transferred and utilised in metabolic 

processes. Carbon leaves the surface waters through a number of biologically mediated 

routes including aggregation of particles, marine snow, messy-eating, defecation, 

shedding (i.e. crustacean exoskeletons and jellyfish mucus), carcasses sinking down 

the water column and diel vertical migration. Once carbon has sunk below the surface 

mixed-layer, it can become isolated from the atmosphere for decades and longer 

(McKinley et al., 2017). The carbon that sinks out of the mixed-layer depth is known 

as the carbon export and is usually defined in global studies as the sinking of organic 

carbon at 100m depth (Palevsky and Doney, 2018). Changes to the BCP contribute to 

changes in the air-sea CO2 flux by changing the concentration of CO2 in the surface 

ocean. Thus improving our understanding of the processes involved in the BCP, and 

how those processes are affected by climate, fisheries and other environmental 

changes, will improve our understanding of the evolution of the global carbon sink 

(Burd et al., 2016, McKinley et al., 2017). 

 

The export efficiency ratio (ef ratio) is quantified as the ratio of the flux of organic 

matter exported across the base of the euphotic zone (here defined as 100m) to the 

integrated primary production within that layer (Laws et al., 2000, Laws et al., 2011, 

Cael et al., 2017). Temperature and primary production have been found to be the key 
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components in shaping the ef ratio, but simplistic relationships such as a linear, 

negative correlation between ef ratio and temperature (Laws et al., 2000) do not 

explain much of the global variance found in the ef ratio (Cael and Follows, 2016). 

The ef ratio varies proportionally to primary production, but both positive and negative 

correlation between ef ratio and primary production have been found in different ocean 

regions, indicating that significant control over the export of carbon is external to 

primary production (Maiti et al., 2013, Henson et al., 2015, Le Moigne et al., 2016, 

Cavan et al., 2017). 

 

The carbon export is affected by several factors, including the primary production by 

phytoplankton, the types of phytoplankton present (in particular if they form shells or 

not), the presence of bloom conditions and the grazing by zooplankton (Cavan et al., 

2015, Cael and Follows, 2016). Thus, the composition and activity of the marine 

ecosystem has a critical influence on the amount of carbon that is exported from 

surface waters. For a given primary production, the marine plankton ecosystem 

structure particularly influences the efficiency by which carbon is exported through 

depth (Henson et al., 2012, Henson et al., 2015, Cavan et al., 2017).  

 

The composition of zooplankton is increasingly recognised as a factor in determining 

carbon export and the ef ratio (Boyd, 2015). However, the role of zooplankton 

diversity has been little explored (Boyd, 2015, Henson et al., 2015, Cavan et al., 2017). 

In particular, jellyfish are increasingly recognised as important in marine ecosystems 

and vertical fluxes but are not included in global biogeochemical models (Burd et al., 

2016). Mass deposition events of jellyfish carcasses occur during and after jellyfish 

blooms and are known as jelly-falls. Jelly-falls have been shown to have a significant 

contribution to the fate of exported materials, including carbon (Yamamoto et al., 

2008, Lebrato et al., 2012, Lebrato et al., 2013a, Li et al., 2015, Lamb et al., 2017, 

Stone and Steinberg, 2018). The standing stock of jellyfish carcasses along a 

continental margin (around 3000m depth) was found to vary from one-third of the 

annual organic carbon flux, up to an order of magnitude greater than the annual 

organic carbon flux (Billett et al., 2006). During their life, jellyfish also contribute to 

the flux of carbon through mucus production and faecal pellets (Pitt et al., 2009). 

Jellyfish are known to initiate top-down trophic cascades, as highly efficient grazers of 

zooplankton (Purcell, 1997, Purcell, 2003, West et al., 2009, Acuña et al., 2011). The 
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grazing by jellyfish will also influence the carbon flux through the control of other 

zooplankton types (Stone and Steinberg, 2018). 

 

Here we use the PlankTOM11 global ocean biogeochemistry model (Chapter 3) to 

assess the influence of jellyfish on the BCP and carbon export to depth. Each 

parameter that represents the characteristics of the jellyfish plankton functional type 

(PFT) is also individually assessed through five additional simulations. These 

simulations are (1) parameterising the jellyfish PFT as the macrozooplankton PFT, 

then switching on in turn jellyfish (2) grazing preferences, (3) growth, (4) respiration 

and (5) mortality. The simulations are used to investigate the specific role of jellyfish 

characteristics (grazing, growth, respiration and mortality) beyond just the additional 

complexity from adding another zooplankton PFT (1). 
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4.2 Methods 

 

PlankTOM11 was developed by introducing jellyfish as an additional trophic level at 

the top of the plankton food web. PlankTOM11 represents PFTs of six phytoplankton 

(Phyto), bacteria (BAC), protozooplankton (PRO), mesozooplankton (MES), 

macrozooplankton (MAC; representing crustacean zooplankton) and jellyfish (JEL). A 

full description of the model development is given in Chapter 3 including all equations 

and parameters. Some parameters are repeated here, where they directly relate to the 

differences between PlankTOM11 and the additional simulations used to assess the 

influence of jellyfish on carbon export.  

 

4.2.1 Export in PlankTOM11 

 

Carbon export within PlankTOM11 is controlled by the sinking of small particulate 

organic carbon (POC) and large particulate organic carbon (GOC). POC is generated 

by aggregation from dissolved organic carbon (DOC) and by protozooplankton 

 

 
 
Figure 4.1 The sources and sinks within PlankTOM11 for dissolved organic carbon (DOC) and small (POC) 
and large (GOC) particulate carbon. The sources (+) are additions to one or more of the organic carbon 
types and the sinks (-) are subtractions from one or more of the organic carbon types.  
 

mortality (+)

primary production (+)

aggregation (+/-)

sinking (-)egestion & excretion (+)

deposition (river, dust & air) (+)

Phyto

PRO MES MAC JEL

BAC

DOC POC GOC

grazing (-)
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egestion and excretion and is consumed through grazing by all zooplankton. GOC is 

generated from aggregation from POC and DOC, egestion and excretion by all 

zooplankton, and mortality of mesozooplankton, macrozooplankton and jellyfish, and 

is consumed through grazing by all zooplankton (Fig. 4.1). The sinking speed of POC 

(!"#$) is 3 m/d-1, the sinking speed of GOC (!%#$) is dependent on particle density 

and sinking speed: 

 

!%#$ 	= 	(%#$ 	× 	max	(.%#$ −	.01232415	, .789);<=>  (4.1) 

 

where (%#$  is 0.0303 m2(kg/d-1) a sinking rate parameter for GOC, .%#$ 	− .01232415 

is the density of GOC at a given density of seawater, .789 is the density at which GOC 

sinking speed is  !"#$ , and ?%#$  is 0.6923, a unitless sinking rate parameter for GOC.  

 

In order to help understand the effect of jellyfish on carbon export, the equations are 

provided here for the jellyfish processes that affect the sources and sinks of the three 

compartments of organic carbon (DOC, POC and GOC). The macrozooplankton PFT 

is parameterised using the same equations as for jellyfish but with different parameter 

rates (Fig. 4.1, Table 4.1). The influence of jellyfish on the evolution over time (t) of 

DOC is a source from egestion: 

 

@A#$
@4

= 	∑C(1 − E)(1 − F −GHI)∑ JKL
MNO 	× 	PIQ	 ×	RSS T	   (4.2) 

 

where 1 − E is the fraction of grazing by jellyfish that is converted to DOC (inorganic 

fraction of excretion), F is the fraction of unassimilated grazing (particulate egestion) 

by jellyfish, GHI is the modelled growth efficiency of jellyfish, and JKL
MNO is the 

grazing of jellyfish on food source RS. The influence of jellyfish on the evolution of 

POC is a sink from grazing: 

 

@"#$
@4

= 	−∑ 	CJ"#$
MNO 	× 	PIQ	 × 	UVWT      (4.3) 

 

where J"#$
MNO  is the grazing of jellyfish on POC. The influence of jellyfish on the 

evolution of GOC is sources from egestion, excretion and mortality, and a sink from 

grazing: 
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@%#$
@4

= 	∑ F ∑ CJKL
MNO 	× 	PIQ	 ×	RSTS 			+ 			∑CYZ°

MNO 	× 	\	 × 	PIQT				  

																										−	∑CJ%#$
MNO 	× 	PIQ	 × HVWT	      (4.4) 

 

 

where YZ°
MNO is the mortality of jellyfish, \ is temperature and J%#$

MNO  is the grazing of 

jellyfish on GOC. 

 

Table 4.1 Temperature-dependent rates of macro- and jellyfish zooplankton. Respiration and mortality follow a 
simple exponential curve, where µ0 is the rate at 0°C and Q10 is the temperature coefficient. Growth has a bell-
shaped curve with a temperature optimum, where µmax is the maximum growth rate at Topt (the optimal 
temperature) and dT is the temperature interval (see Chapter 3, section 3.2.2.1). 

Parameters 
Macrozooplankton Jellyfish zooplankton 

µ0 (d-1) Q10 µ0 (d-1) Q10 

Respiration 0.01 2.46 0.03 1.88 

Mortality 0.02 3.00 0.12 1.20 

 μmax (d-1) Topt (°C) dT (°C) μmax (d-1) Topt (°C) dT (°C) 

Growth 0.2 33.2 20.0 0.2 23.6 18.8 

 

 
 Macrozooplankton                Jellyfish 
 
 
Figure 4.2 Relative preference of (left) macrozooplankton and (right) jellyfish grazing for food used in 
PlankTOM11. Small phytoplankton is N2-fixers, pico-phytoplankton and coccolithophores, large 
phytoplankton is mixed phytoplankton, diatoms and Phaeocystis, and particulate organic carbon is POC 
and GOC. For values see Chapter 3, Table 3.3.  
 
 

Small phytoplankton

Large phytoplankton

Bacteria

Proto ZP

Meso ZP

Macro ZP

Jellyfish

Particulate organic
carbon
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4.2.2 Model Simulations 

 

In order to test the addition of a jellyfish PFT to PlankTOM, several sensitivity 

simulations were run. The central simulation is PlankTOM11, where jellyfish are 

parameterised as presented in Chapter 3. For a direct comparison, we also ran 

PlankTOM10.5, where jellyfish are parameterised as macrozooplankton, to test if the 

changes are due to the addition of jellyfish, or to the addition of an 11th PFT. The 

parameters for macrozooplankton and jellyfish are given in Table 4.1 and Figure 4.2. 

The four parameters that characterise jellyfish in PlankTOM11 (grazing preference, 

growth, respiration and mortality) were individually tested to identify which feature is 

the most influential (Table 4.2). Grazing preference determines the trophic level of the 

PFT. Jellyfish represents the highest trophic level in PlankTOM11, with the majority 

of grazing on other zooplankton PFTs (Fig. 4.2). 

 

4.2.3 Export Efficiency  

The export efficiency, or ef ratio, is calculated; 

 

]^ = 	 N_
"_

        (4.5) 

 

Table 4.2 Sensitivity simulations to test the addition of a jellyfish PFT to PlankTOM. The 
parameterisation of the 11th PFT in PlankTOM as either jellyfish parameters (J) or macrozooplankton 
parameters (M) is indicated for each simulation. For grazing preferences, refer to Figure 4.2.  For 
values used in growth, respiration and mortality parameters refer to Table 3.2 and Table 3.4.  

Simulation 

Name 

Parameters of the 11th PFT  

Grazing 
preference 

Growth Respiration Mortality 

PlankTOM11 J J J J 

PlankTOM10.5 M M M M 

PlankTOM10.5a J M M M 

PlankTOM10.5b M J M M 

PlankTOM10.5c M M J M 

PlankTOM10.5d M M M J 
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Where I` is the export production at 100m, and Ù  is the integrated primary 

production from 0 – 100m. An export efficiency of over one means that there is more 

carbon being exported at 100m than is being produced by the primary production in 

the water column above. This can occur where physical processes transport carbon 

from an area of high Ù  to an area of low Ù  where it is then exported (Laws et al., 

2000, Laws et al., 2011). An ef ratio over one can also occur if there is a substantial 

time lag between Ù  in the surface water and I` due to biological processes slowing 

carbon transport. This may occur when Ù  is declining just after a phytoplankton 

bloom, I` may still be increasing due to the time taken for carbon to be transformed 

into GOC through the plankton food web and transported to depth (Henson et al., 

2015).  In reality the depth of the euphotic zone varies across the oceans and the 

seasons, and the choice of depth at which carbon export is calculated can impact 

results (Palevsky and Doney, 2018). A fixed depth of 100m is the standard depth 

horizon choice for global modelling studies. This fixed depth is used here as it has 

been shown to give ef ratio and carbon flux values around the centre of the spread of 

values when multiple depth horizons are used to calculate ef ratio and export across 

latitudes (Palevsky and Doney, 2018). For the results in this chapter, all plankton 

biomass is calculated for the top 100m, as this is where export and ef ratio are 

calculated. 
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4.3 Results 

 

A description of PlankTOM11 ecosystem properties and spatial replication of 

chlorophyll and plankton types is given in Chapter 3. 

 

4.3.1 Carbon Export in PlankTOM11 

 

In PlankTOM11 primary production has large spatial and seasonal variability (Fig. 

4.3). From June to August the highest primary production is 30 - 60°N, and from 

November to January, the highest primary production is 30 - 45°S. Primary production 

is high around the equator, with a slight variation between June to August and 

November to January. Primary production is consistently high in the Pacific equatorial 

upwelling region and is also elevated in the Atlantic equatorial upwelling (Fig. 4.3). 

Primary production is consistently low (<0.5 mol C/m2/y) south of 50°S and in open 

ocean gyres (Fig. 4.3). Carbon export production has large spatial variability with the 

highest export (>5 mol C/m2/y) in equatorial upwelling regions and around coastlines 

globally (Fig. 4.3). Export is elevated (1 – 3 mol C/m2) in the open ocean for most of 

the Pacific and Indian Oceans, and in bands across the tropical and southern Atlantic 

Ocean, and in the northern Atlantic from June - August (Fig. 4.3). The strongest 

seasonal variability in export is in the southern Indian Ocean and around 30 – 40°S. 

Export is consistently low in the Southern Ocean south of 40°S (Fig. 4.3). The ef ratio 

has large spatial variation, the highest ef ratio for June to August is 0 - 30°S in the 

Indian, Pacific and Atlantic Ocean, at around 20°N in the western Atlantic and Pacific 

Ocean, and globally south of 60°S (Fig. 4.3). The highest ef ratio for November to 

January is 0 - 30°N in the western and central Pacific and Atlantic Ocean, extending to 

20°S in the western Atlantic, and globally north of 60°N (Fig. 4.3). The ef ratio is 

lowest consistently at 30 - 60°S and 30 - 60°N with the exception of close to coasts 

(Fig. 4.3). The high ef ratio at latitudes higher than 60° in the respective hemispheres 

winter is driven by only slight changes in the low primary production and export in 

these regions.  

 

The seasonal correlation between primary production and export production was 

divided into three regions; the North (30 - 90ºN), Tropic (30ºN - 30ºS) and South (30 - 

90ºS; Fig 4.4). In the North and South regions, the correlation between primary  
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production and export production is positive and follows a seasonal pattern, with 

 
Figure 4.3 PlankTOM11 results averaged for (left) June to August and (right) November to January. Data are for 
(top) primary production (mol C/m2/year) integrated over the top 100m, (middle) carbon export production at 
100m (mol C/m2/year) and (bottom) ef ratio (export efficiency). All model results are averaged from 1985-2015. 

  
 
     

 
 

Figure 4.4 PlankTOM11 seasonal variation of primary production and export production (mol/m2/year) at 
regions; (left) North 30-90ºN, (middle) Tropic 30ºN-30ºS and (right) South 30-90ºS. Points are coloured by 
months of the year, averaged from 1985-2015. Straight black lines indicate ef ratios of 0.1, 0.2 and 0.4.   
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production and export production is positive and follows a seasonal pattern, with 

higher production in the summer-autumn, lower production in winter-spring, and a 

higher ef ratio in the winter, for the respective hemisphere (Fig. 4.4). Both export and 

primary production are higher in the North region than in the South. In the North, from 

January to March the ef ratio drops from 0.4 to 0.2, is at its lowest from April to June 

(0.12), then increases from August to November back up to 0.4. In the South, from 

October to January the ef ratio is 0.1, it then increases to 0.2 from February to May, 

and stays at this value until September (Fig. 4.4). There is no correlation between 

primary production and export production in the Tropics, primary production stays 

around 10 mol/m2/y while export varies from 2 – 3 mol/m2/y (Fig. 4.4). The only 

seasonal variation in the Tropics occurs from July – September when export is 

elevated slightly above the rest of the year. The ef ratio in the Tropics is around 0.3 

from July – September, and 0.25 for the rest of the year (Fig. 4.4). 

 

The correlations over time between the ef ratio and primary production, sea surface 

temperature (SST), chlorophyll and zooplankton biomass were mapped globally (Fig. 

4.5). Primary production and ef ratio show a negative correlation for the majority of 

the ocean. The negative correlation is largely due to the time lag between primary 

production and the conversion of DOC and POC into GOC by zooplankton, which is 

then exported. The strongest negative correlation (< -0.8) occurs in the Southern 

Ocean below 50ºS. Little to no correlation occurs in the Indian Ocean, for 40 - 50ºS 

and away from coastal regions for 40 - 60ºN (Fig. 4.5). The SST and ef ratio show a 

mix of positive and negative correlation. Generally, at lower latitudes the correlation is 

negative and at higher latitudes the correlation is positive. At very high latitude in the 

Southern Ocean (>50ºS) the correlation of SST and ef ratio is negative (Fig. 4.5). 

Chlorophyll and ef ratio show similar patterns of spatial correlation to primary 

production and ef ratio, with chlorophyll showing a weaker negative correlation (Fig. 

4.5). Total zooplankton (tZP) biomass and ef ratio show a mix of negative and, mostly 

weak, positive correlation. In the Southern Ocean, below 30ºS, tZP has a weak positive 

correlation to ef ratio, in the Pacific there are patches of negative or no correlation, and 

in the Atlantic there is positive correlation at the equator and in the east, with negative 

or no correlation elsewhere (Fig. 4.5). Jellyfish and ef ratio show similar patterns of 

correlation to total tZP and ef ratio, with stronger positive and weaker negative 

correlation to jellyfish than to total tZP (Fig. 4.5). Macrozooplankton and ef ratio show 
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similar patterns of correlation to total tZP and ef ratio, with stronger positive 

correlation to macrozooplankton in the Southern Ocean, and weaker positive 

correlation elsewhere (Fig. 4.5). There is not a single variable that accounts for the 

seasonal fluctuations in ef ratio (Fig. 4.5). The patterns in SST and zooplankton are 

similar, and that may mean that SST could be a proxy for zooplankton. Within the 

zooplankton components, jellyfish have the largest correlations (in absolute values). 

 

4.3.2 Role of Jellyfish Characteristics in Carbon Export 

 

To assess the effect on carbon export of adding jellyfish to PlankTOM11, five 

sensitivity simulations were conducted; PlankTOM10.5 with the jellyfish PFT 

 

 
 

Figure 4.5 PlankTOM11 correlations over time of the ef ratio with primary production (top left), sea 
surface temperature (top right), chlorophyll concentration (middle left), total zooplankton biomass 
(middle right), jellyfish biomass (bottom left) and macrozooplankton biomass (bottom right). 
Correlations are averaged over 0-100m except for sea surface temperature. Warm colours indicate a 
positive correlation, while cold colours indicate a negative correlation. Cross-hatched grid cells are 
where the correlation is not statistically significant (p values less than 0.05). 
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parameterised as macrozooplankton (therefore leading to two identical 

macrozooplankton PFTs), and four intermediates between PlankTOM11 and 10.5, 

testing the individual characteristics of jellyfish by switching them on one at a time 

with all other parameters kept as in PlankTOM10.5 (Table 4.2). These characteristics 

are jellyfish grazing preferences (PlankTOM10.5a), jellyfish growth rate 

(PlankTOM10.5b), jellyfish respiration rate (PlankTOM10.5c) and jellyfish mortality 

rate (PlankTOM10.5d). 

  

The global annual ef ratio, primary production and export production for all six 

simulations are given in Table 4.3, along with the tZP biomass. Out of the six runs 

investigating jellyfish characteristics, PlankTOM11 has the highest export of 7.11 

PgC/y, but only the fourth-highest primary production (41.5 PgC/y) and the lowest tZP 

biomass (0.96 mol C/m3; Table 4.3). PlankTOM10.5a (grazing) has the highest 

primary production of 44.49 PgC/y, with the second highest export (6.91 PgC/y) and 

second lowest tZP biomass (1.14 mol C/m3; Table 4.3). PlankTOM10.5c (respiration) 

and PlankTOM10.5d (mortality) have the highest tZP biomass of 1.38 mol C/m3, with 

the second and third highest primary production (42.34 and 42.02 PgC/y respectively) 

and the third and fourth highest export (6.75 and 6.74 PgC/y respectively; Table 4.3). 

Fully parametrised jellyfish (PlankTOM11) gives the highest export and just using 

 

Table 4.3 Global annual ef ratio, primary production and export production rates (Pg carbon/year) 
and total zooplankton biomass (mol carbon/m3) averaged over 0-100m in PlankTOM11 and 
PlankTOM10.5 simulations. 

Run ef Ratio 
Production (PgC/y) Zooplankton 

Biomass  
(mol C/m3) Primary Export 

PlankTOM11 
jellyfish 0.171 41.50 7.11 0.96 

PlankTOM10.5 
macro 0.173 38.18 6.62 1.26 

PlankTOM10.5a 
grazing 0.155 44.49 6.91 1.14 

PlankTOM10.5b 
growth 0.159 37.23 5.91 1.32 

PlankTOM10.5c 
respiration 0.159 42.34 6.75 1.38 

PlankTOM10.5d 
mortality 0.160 42.02 6.74 1.38 
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jellyfish growth (PlankTOM10.5b) gives the lowest export.  Total zooplankton 

biomass affects export, but not in a simple linear relationship. The highest total 

zooplankton biomass (PlankTOM10.5c/d) does not give the highest or lowest export, 

while the lowest total zooplankton biomass (PlankTOM11) does give the highest 

export. Export is not directly increased by more zooplankton biomass because 

zooplankton both consume and produce POC and GOC (Eq. 4.2 and 4.3). The 

composition of the zooplankton play a key role in controlling export; this is explored 

below.  

 

The depth profiles of primary production, export production and tZP biomass in the six 

simulations are examined in Figure 6. The results are divided into three regions as for 

Figure 4.4; the North (30 - 90ºN), Tropic (30ºN - 30ºS) and South (30 - 90ºS). For the 

North (Fig. 4.6 top row) there is a substantial depth gradient from 0-200m, with the 

highest production and biomass at the surface, gradually decreasing as depth increases. 

The primary production is highest for PlankTOM10.5a (grazing preference) down to 

50m; all other simulations have similar primary production throughout depth. The 

export production is highest and has the greatest depth gradient for PlankTOM11. The 

export is lowest and has the smallest depth gradient for PlankTOM10.5b (growth). The 

export for PlankTOM10.5a (grazing preferences) is the closest jellyfish characteristic 

simulation to PlankTOM11. The total zooplankton biomass is highest for 

PlankTOM10.5b (growth) down to 90m, below 90m PlankTOM10.5 (jellyfish = 

macrozooplankton) has the highest zooplankton biomass. The zooplankton biomass is 

lowest for PlankTOM11. Below 150m the zooplankton biomass is the same for all 

simulations (Fig. 4.6). 

 

For the Tropics (Fig. 4.6 middle row) the highest production and biomass is from 0-

75m, and then gradually decreases from 75-200m.  The primary production peaks at 

the surface and then again at 75m for all simulations. There is no clear pattern of 

which simulation has the highest or lowest primary production through the depth 

profile. The export production is similar for all simulations, between 3 – 3.5 

mol/m2/year at the surface dropping to 2.5 mol/m2/year at 100m, with no clear pattern 

of which simulation has the highest or lowest export through the depth profile. The 

total zooplankton biomass varies between simulations above 80m. The biomasses are 

similar below this depth horizon. At the surface the lowest zooplankton biomass is for  
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Figure 4.6 Depth profiles of primary production, export production and total zooplankton biomass for 
PlankTOM11 (thick black line), PlankTOM10.5 (thin black line), PlankTOM10.5a (dark blue line; grazing 
preference), PlankTOM10.5b (green line; growth), PlankTOM10.5c (light blue line; respiration) and 
PlankTOM10.5d (red line; mortality). The top row of panels is results averaged for the Northern 
Hemisphere (30-90ºN), the middle row is the Tropics (30ºS-30ºN) and the bottom row is the Southern 
Hemisphere (30-90ºS). The left column of panels is for primary production (mol/m2/year), the middle 
column is export production (mol/m2/year) and the right column is total zooplankton biomass (µm C L-

1). All results are averaged for 1985 – 2015. 

TOM11   TOM10.5a  TOM10.5c 
TOM10.5  TOM10.5b  TOM10.5d 
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PlankTOM10.5a (grazing preferences) at 0.5 µm C L-1. PlankTOM11 and 

PlankTOM10.5 have slightly higher zooplankton biomass of 0.7 µm C L-1, and the 

other three simulations have the highest biomass at the surface of 0.9 µm C L-1 (Fig. 

4.6).  

 

For the South (Fig. 4.6 bottom row) production and biomass show a similar pattern 

over depth to the North, gradually decreasing as depth increases, but with a smaller 

gradient. The primary production is highest for PlankTOM10.5a (grazing preference) 

and lowest for PlankTOM10.5b (growth). The primary production for PlankTOM11 is 

about halfway between simulations a and b. The export production is low (<1 

mol/m2/year) for all the simulations. The export is lowest for PlankTOM10.5b 

(growth) with no depth gradient. The export is highest at the surface for PlankTOM11 

and PlankTOM10.5a (grazing preferences), followed by PlankTOM10.5. At 100m 

export is the same for all simulations except for PlankTOM10.5b (growth) which is 

lower. The total zooplankton biomass has greater variation between simulations than 

export or primary production. The highest total zooplankton biomass is for 

PlankTOM10.5c (respiration) and PlankTOM10.5d (mortality) at 1 µm C L-1 at the 

surface. The lowest zooplankton biomass is for PlankTOM11 at 0.6 µm C L-1 at the 

surface (Fig. 4.6).  

 

The differences in export and primary production, with jellyfish characteristic tests, 

exhibit variation between regions (Fig. 4.6). This spatial variation is further explored 

using global maps of PlankTOM11, and the difference between PlankTOM11 and each 

of the other simulations (Fig. 4.7). When the jellyfish PFT is parameterised as 

macrozooplankton (PlankTOM10.5) from PlankTOM11 overall export and primary 

production have the same pattern and direction of change. There is a decrease in both 

primary production and export in the equatorial Pacific and around 40ºN and 40ºS. 

There is a small increase in both primary production and export in the Indo-Pacific and 

Southern Ocean. Export and primary production differ in the eastern coastal equatorial 

Pacific where export increases while primary production decreases, and in the Bering 

Strait where export decreases while primary production increases (Fig. 4.7).  

 

When jellyfish grazing preferences are switched on (PlankTOM10.5a), overall export 

and primary production have opposing directions of change where there is a substantial 
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When jellyfish grazing preferences are switched on (PlankTOM10.5a), overall export 

 
 

Figure 4.7 Annual mean (left) primary production from 0-100m and (right) carbon export at 100m 
(mol/m2/year). Results shown for (top) PlankTOM11, then below the difference between 
PlankTOM11 and the other simulations, in descending order PlankTOM10.5, PlankTOM10.5a 
(grazing), PlankTOM10.5b (growth), PlankTOM10.5c (respiration) and PlankTOM10.5d (mortality). All 
model results are averaged for 1985-2015. For the difference between PlankTOM11 and other 
simulations, warm colours indicate that the values of the other simulation are higher than 
PlankTOM11, while cold colours indicate that the values of the other simulation are lower than 
PlankTOM11. 
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difference from PlankTOM11 (Fig. 4.7). North of 40ºN globally and at 40ºS in the 

Atlantic primary production increases while export decreases. In these areas’ jellyfish 

grazing increases primary production, whilst increasing the retention of carbon within 

surface waters thus reducing export. Production follows the same direction of change 

in the eastern coastal equatorial Pacific where export and primary production increase, 

and in the central Pacific where they both decrease (Fig. 4.7).  

 

When jellyfish growth is switched on (PlankTOM10.5b), overall export and primary 

production have the same pattern and direction of change (Fig. 4.7). Both export and 

primary production decrease compared to PlankTOM11 around 40ºN and 40ºS 

globally and in the eastern Pacific. Both export and primary production increase 

compared to PlankTOM11 in the Indo-Pacific and extending into the Pacific at 30ºN. 

Export and primary production differ in the eastern coastal equatorial Atlantic and the 

Bering Strait where export decreases while primary production increases (Fig. 4.7).  

 

When jellyfish mortality (PlankTOM10.5d) and respiration (PlankTOM10.5c) are 

switched on, they have the least impact of the characteristic runs and are very similar 

spatially in comparison to PlankTOM11 (Fig. 4.7). Export and primary production are 

slightly increased in most areas, except for at around 40ºN globally and 40ºS, 

excluding the Pacific, where they both decrease (Fig. 4.7).  

 

Switching on jellyfish grazing (PlankTOM10.5a) has the biggest influence on the 

model processes that occur between primary production in the surface ocean and 

export production at 100m. Export and primary production mostly change in the same 

direction, such that as one increases so does the other, for all the other jellyfish 

characteristic simulations, compared to PlankTOM11 (Fig. 4.7). For the jellyfish 

grazing simulation, compared to PlankTOM11, there are large areas where export 

decreases as primary production increases (Fig. 4.7).  

 

Figure 4.8 shows the seasonality of the ef ratio, primary production and export for each 

simulation for the North (30 - 90ºN), while Figure 4.9 shows the seasonality of PFT 

biomass for the same region. From the exploration of PlankTOM11, the North is the 

region with the strongest seasonal variation (Fig. 4.4) and therefore the most useful to 

explore the mechanisms driving export. In Figure 4.8 export production is shown 
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multiplied by a factor of 10 for visual clarity in comparison to primary production. In 

 

 
     Jan      Mar      May        Jul        Sep       Nov         Jan      Mar      May        Jul        Sep       Nov 
 

 
Figure 4.8 Mean seasonal primary production, export production and the ef ratio for PlankTOM11 
and the five PlankTOM10.5 simulations for the North (30-90ºN). The ef ratio (dashed black line) is 
on the left vertical axis. Primary production (mol/m2; green line) and export production (mol/m2; 
black line) are on the right vertical axis. Export production is multiplied by a factor of 10 for visual 
clarity in comparison to primary production. Results are shown for (top left) PlankTOM11, (top 
right) PlankTOM10.5, (middle left) PlankTOM10.5a, (middle right) PlankTOM10.5b, (bottom left) 
PlankTOM10.5c, (bottom right) PlankTOM10.5d. All data are averaged for 1985-2015. 
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multiplied by a factor of 10 for visual clarity in comparison to primary production. In 

 
 

 
     Jan      Mar      May        Jul        Sep       Nov      Jan      Mar      May        Jul        Sep       Nov 
 

 
Figure 4.9 Mean seasonal PFT biomass for PlankTOM11 and the five PlankTOM10.5 simulations for the 
North (30-90ºN). The PFTs are total phytoplankton (green), protozooplankton (orange), mesozooplankton 
(red), macrozooplankton (purple) and jellyfish (blue). PFT biomass is averaged from 0 – 100m. Results are 
shown for (top left) PlankTOM11, (top right) PlankTOM10.5, (middle left) PlankTOM10.5a, (middle right) 
PlankTOM10.5b, (bottom left) PlankTOM10.5c, (bottom right) PlankTOM10.5d. All data are averaged for 
1985-2015. 
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multiplied by a factor of 10 for visual clarity in comparison to primary production. In 

the text the values for export are not multiplied by a factor of 10.  

 

In PlankTOM11 in the North, primary production increases through spring and 

summer to peak in July at 8.8 mol/m2, it then declines to the lowest production in 

December at 2.5 mol/m2 (Fig. 4.8). Export production increases though spring and 

summer to peak in August at 0.97 mol/m2, a month after the peak in primary 

production. Export then declines to the lowest production in January to March at 0.56 

mol/m2 (Fig. 4.8). The ef ratio is highest in the winter, peaking in December at 0.26, 

and lowest in April to July at around 0.1 (Fig. 4.8). After the summer peak, primary 

production declines more rapidly and further than export, which results in the ef ratio 

peak in December. The seasonal variation of primary production is larger than the 

seasonal variation of export production. The mis-match in the amplitude of seasonal 

variation results in a larger seasonal variation in the ef ratio, than in the other 

simulations. 

 

In PlankTOM10.5 in the North, primary production increases through spring and 

summer to peak in July at 8.2 mol/m2, it then declines to the lowest production in 

December at 2.2 mol/m2 (Fig. 4.8). Primary production follows the same seasonal 

pattern as PlankTOM11, at slightly lower values. Export production increases through 

spring and summer to peak in August at 0.97 mol/m2, a month after the peak in 

primary production. Export then declines to the lowest production in February at 0.38 

mol/m2 (Fig. 4.8). Export follows a similar seasonal pattern as PlankTOM11, with the 

same peak value but a greater seasonal amplitude. The ef ratio is highest in the winter, 

peaking in November and December at 0.22, and lowest in April at around 0.08 (Fig. 

4.8). The ef ratio is lower than in PlankTOM11, especially during the winter, due to 

the closer match in the amplitude of seasonal variation between primary production 

and export. 

 

In PlankTOM10.5a in the North, primary production increases through spring and 

summer to peak in July at 10.5 mol/m2, it then declines to the lowest production in 

December at 3.1 mol/m2 (Fig. 4.8). Primary production follows the same seasonal 

pattern as PlankTOM11 and 10.5, at higher values. Export production increases 

through spring and summer to peak in July at 0.81 mol/m2, the same month as the peak 
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in primary production. Export then declines to the lowest production in January and 

February at 0.46 mol/m2 (Fig. 4.8). Export is lower and has a slightly smaller 

amplitude than in PlankTOM11. The increased primary production in PlankTOM10.5a 

does not translate into export because primary production is only increased in the top 

50m (Fig. 4.6). Switching on the grazing of jellyfish may have increased biological 

activity of the PFTs, cycling the carbon from primary production within surface 

waters, reducing the amount that is exported at 100m. The ef ratio is highest in the 

winter, peaking in December at 0.17, and lowest in June to August at around 0.08 (Fig. 

4.8). The ef ratio is lower than in PlankTOM11, as the increased primary production 

does not translate to increased export. 

 

In PlankTOM10.5b in the North, primary production increases through spring and 

summer to peak in May at 8.7 mol/m2, it then declines to the lowest production in 

December at 2.2 mol/m2 (Fig. 4.8). Primary production peaks two months earlier in the 

year than in PlankTOM11 and 10.5, at a similar value to PlankTOM11. Switching on 

the growth of jellyfish in PlankTOM10.5b gives a high biomass of jellyfish which 

dominate the zooplankton (Fig. 4.9). The increased growth of the jellyfish PFT also 

results in an increased grazing rate, 55% of which is on phytoplankton (the jellyfish 

PFT grazing preference is that of macrozooplankton, Fig. 4.2). The primary production 

peaks earlier in the year; initially jellyfish keep the other zooplankton biomass low 

through grazing, and the jellyfish can only grow so fast in the lower winter 

temperatures, so in early spring phytoplankton can rapidly bloom as they have lower 

overall grazing pressure than in PlankTOM11 and 10.5. The increasing ocean 

temperature also allows jellyfish to bloom in spring, by increasing their growth and 

grazing rates, rapidly consuming the phytoplankton and reducing primary production 

(Fig. 4.9). Export production increases though spring and early summer to peak in June 

at 0.75 mol/m2, a month after the peak in primary production. Export then declines to 

the lowest production in January at 0.23 mol/m2 (Fig. 4.8). Export is lower than 

PlankTOM11 and 10.5 but follows the same pattern of a month lag behind primary 

production. The ef ratio is highest in the winter, peaking in November at 0.14, and 

lowest in March and April at around 0.07 (Fig. 4.8). The ef ratio is lower than in 

PlankTOM11 and 10.5 and has a smaller seasonal variation.  
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In PlankTOM10.5c and 10.5d in the North, primary production, export and the ef ratio 

behave very similarly to each other (Fig. 4.8). Primary production increases through 

spring and summer to peak in July at 8.6 mol/m2, it then declines to the lowest 

production in December at 2.4 mol/m2 (Fig. 4.8). Switching on the respiration and 

mortality of jellyfish in PlankTOM10.5c and 10.5d, respectively, reduces the biomass 

of jellyfish, allowing macrozooplankton biomass to increase. Macrozooplankton does 

not dominate the zooplankton in the same way as jellyfish in PlankTOM10.5b (Fig. 

4.9). Macrozooplankton biomass peaks later in the year due to its lower growth and 

grazing rate, in comparison to jellyfish. The phytoplankton biomass, and thus primary 

production, is not over grazed in the spring due to this lower growth and grazing of the 

dominant zooplankton (Fig. 4.9). The biomass of jellyfish in PlankTOM10.5c and 

10.5d is too low to have much impact on the ecosystem. Export production increases 

through spring and summer to peak in August at 0.89 mol/m2, a month after the peak 

in primary production. Export then declines to the lowest production in January at 0.37 

mol/m2 (Fig. 4.8). The ef ratio is highest in the winter, peaking in December at 0.17, 

and lowest in April at around 0.08 (Fig. 4.8). The ef ratio is lower than in 

PlankTOM11, especially during the winter, due to the closer match in the amplitude of 

seasonal variation between primary production and export. 

 

  



Carbon export 164 

4.4 Discussion 

 

We have introduced jellyfish to the global ocean biogeochemical model PlankTOM11 

and conducted simulations to investigate the influence of jellyfish characteristics on 

carbon export. PlankTOM11 gives a global carbon export production of 7.11 PgC/y, 

primary production of 41.5 PgC/y and an export efficiency (ef ratio) of 0.171 (Table 

4.3), with large spatial and seasonal variability. Export and primary production are 

higher in the respective hemispheres summer, and generally lower in the Southern 

Ocean (Fig. 4.3). PlankTOM11 shows stronger seasonality in the ef ratio at higher 

latitudes, and weaker seasonality at lower latitudes. This latitudinal pattern matches 

observations from multiple studies (Fig. 4.3 and Fig. 4.4; Benitez-Nelson et al., 2001, 

Brix et al., 2006, Kawakami and Honda, 2007, Lutz et al., 2007, Baumann et al., 

2013). The greater seasonality in the ef ratio at high latitudes is driven by greater 

seasonality in primary production and a greater lag to secondary production by 

zooplankton in the model, replicating the mechanisms shown in Henson et al. (2015). 

Importantly, these simulations highlight the influence of the top zooplankton, jellyfish, 

on export and export efficiency through the structuring of the plankton community, an 

area previously ignored in global biogeochemical models and global export studies. 

 

Laws et al. (2000, 2011) derived simple equations from observations of primary 

production and SST to predict ef ratios. These equations assume ef ratios are positively 

correlated with primary production and negatively correlated with SST. Further studies 

have questioned these simple relationships. A negative correlation between ef ratios 

and primary production has been found in observations from the Southern Ocean 

(Maiti et al., 2013, Cavan et al., 2015, Le Moigne et al., 2016). Maiti et al. (2013) also 

showed that ef ratios are less sensitive to temperature in the Southern Ocean than 

global estimates suggest. A model including a simple plankton food web found that 

when zooplankton grazing was included there was a negative correlation between ef 

ratios and primary production, while when zooplankton grazing was not included the 

opposite (positive) correlation occurred (Cavan et al., 2017). Cavan et al. (2017) also 

found a negative correlation between ef ratios and primary production in observations 

from three geographical locations; the Southern Ocean, North Atlantic and equatorial 

North Pacific. Cavan et al. suggests three potential reasons for the negative correlation: 

(1) temporal decoupling between primary production and export, (2) seasonal 
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dynamics of the zooplankton community and (3) grazing by zooplankton. All three 

reasons are interlinked, in that temporal decoupling (1) is driven, at least in part, by 

zooplankton grazing (3), which is affected by the dynamics of the zooplankton 

community (2). The negative correlation of primary production and ef ratio in 

PlankTOM11 (Fig. 4.5) can be explained by seasonal variation in ecosystem dynamics 

(Fig. 4.8). The lag (temporal decoupling) between primary production and export 

production (as carbon is transformed through zooplankton grazing etc.) generates an ef 

ratio that peaks in winter, when primary production is lowest, and dips in summer, 

when primary production is highest (Fig. 4.8). Changing the parameters of jellyfish 

affected the zooplankton community dynamics and the zooplankton grazing, which 

affected primary production and export and thus the ef ratio (Fig. 4.8 and Fig. 4.9). The 

seasonal amplitude of the ef ratio was reduced and carbon export was decreased by the 

changes to jellyfish parameters, compared to PlankTOM11 (Fig. 4.8, Table 4.3).  

Changes to the zooplankton community structure have been shown to affect carbon 

export flux. Boyd (2015) altered mesozooplankton and microzooplankton trophic 

transfer efficiency in a 1-D coupled surface-subsurface carbon export flux model. They 

found that a shift in the zooplankton community structure (by increasing and 

decreasing the zooplankton transfer efficiencies) decreased carbon export, compared to 

the control simulation (Boyd, 2015). Changes to the zooplankton community structure 

in this study also decrease carbon export, compared to the control simulation, despite 

the different methods used to change the zooplankton community and the different 

types of model used by each study.  

 

The ef ratio is strongly affected by the seasonal cycle of primary production and export 

production. These results have implications for the calculations of yearly ef ratio from 

observations, which are likely to be strongly dependent on the timing of data collection 

of export and primary production (Giering et al., 2017). For example, during the 

spring/summer primary production will be high but export low, as the BCP processes 

to repackage and move carbon down the water column are just beginning, so the ef 

ratio will be underestimated. For data collected during the autumn/winter, primary 

production will be lower and export higher as the carbon from the spring/summer 

production is now being exported, so the ef ratio will be overestimated. The effect of 

the seasonal cycle on the ef ratio increases as latitude increases. Clear and highlighted 

information on the timing of data collection for calculating ef ratios is vital to prevent 
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misrepresentation of data (Henson et al., 2015, Giering et al., 2017). 

 

PlankTOM11 reproduces the complexity of processes influencing export production 

and export efficiency. The strength and direction of correlation with the ef ratio varied 

spatially for temperature, jellyfish and macrozooplankton. Primary production and 

chlorophyll showed largely negative correlation to the ef ratio, also with spatial 

variation in the strength of the correlation (Fig. 4.5). There is no clear one to one 

relationship between export efficiency and the total zooplankton biomass, or the 

biomass of any one of the zooplankton PFTs. Substantial spatial variation in the 

direction and strength of correlation between export efficiency and zooplankton (Fig. 

4.5) increases the complexity of the analysis and highlights the spatial/regional 

variability in the key drivers of export. In PlankTOM11, the ef ratio is dependent on 

the seasonality of primary production and the processes mediating carbon into export 

production, both of which are influenced by the structure of the zooplankton 

community, which is in turn influenced by jellyfish. This may explain some of the 

variability outside of that predicted by primary production and SST. Jellyfish can play 

a key role in structuring the zooplankton community and thus, jellyfish influence 

export and export efficiency through trophic cascades.  

 

Including jellyfish in PlankTOM11 increases the primary production, the export of 

carbon from surface waters and the export efficiency. This is not just an artefact of the 

additional zooplankton compartment in the model, but it is a reflection of the 

characteristics of jellyfish, primarily its trophic level. It is also reliant on the specific 

combination of growth and loss rates. The balance of high jellyfish growth and high 

jellyfish respiration and mortality, along with the high grazing preference for other 

zooplankton, combine to influence the ecosystem and increase export in PlankTOM11. 

The grazing preference, which determines the trophic level, is individually the most 

influential characteristic. Jellyfish in PlankTOM11 mostly affect export from top-down 

trophic cascades, rather than through their direct input to organic carbon (POC and 

GOC) from mortality, faecal matter production, messy eating, and other similar 

processes. 

 

Phytoplankton are the key contributor to carbon export, by fixing inorganic carbon in 

the ocean surface into organic carbon, which eventually aggregates and sinks (Laws et 
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al., 2011). Jellyfish influence the biomass of other zooplankton through grazing and 

competition for food and therefore also influence carbon export. Zooplankton faecal 

pellets, especially those of macrozooplankton, are known to contribute to the carbon 

export, as they repackage organic carbon into larger particles. Larger particles 

generally sink more rapidly through the water column, allowing for less 

remineralisation and decomposition via grazing, thus leading to more sinking carbon 

out of the euphotic zone (Turner, 2002, Wilson et al., 2008, Wilson and Steinberg, 

2010). Improving understanding of how jellyfish influence zooplankton biomass, and 

subsequently the volume and type of faecal pellets production and of packaging 

processes, will improve understanding of the processes governing the carbon sink. An 

observational study by Stone & Steinberg (2018) found no difference in total POC flux 

with or without jellyfish present, but did find a significant difference in copepod 

abundance which significantly decreased copepod faecal pellet production and thus 

carbon flux from copepods by 50%. The study only lasted for two days, and so jelly-

falls and the influence of jellyfish mortality on flux was necessarily not included. This 

supports the findings of this study that during the life of jellyfish their greatest 

influence on carbon export is through trophic cascades. 

 

The high mortality of jellyfish in the model does not contribute significantly to carbon 

export (Fig. 4.7). This is likely due to a number of reasons. High mortality without 

high growth (PlankTOM10.5d) results in low biomass of jellyfish and thus low 

production of organic carbon through mortality, faecal pellets and messy-eating and 

low carbon export. In reality, jellyfish carcases are often many times larger than those 

of other zooplankton, with a much greater sinking speed (Lebrato et al., 2013a). 

However, jellyfish carcases are not currently represented in the model. Additional 

partitioning of carbon, beyond the two current types of sinking organic matter (POC 

and GOC), would need to be introduced to the model to properly account for jellyfish 

mortality. Mass deposition events of jellyfish carcases (jelly-falls), at depths where the 

carbon is unlikely to be recycled back into surface waters at short to medium time 

scales, are known to contain significant amounts of carbon and can contain in excess 

of a magnitude more carbon than the annual carbon flux (Billett et al., 2006, 

Yamamoto et al., 2008). PlankTOM11 likely gives a reasonable replication of the 

influence of jellyfish on export during their life, but substantially underestimates their 

contribution in death. Through rapidly sinking jelly-falls, jellyfish cause a large pulse 
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in export (Lebrato et al., 2012, Lebrato et al., 2013a), not yet accounted for in 

PlankTOM11. The global export in PlankTOM11 (7.11 PgC/y) is within global 

estimates of 5 - 12 PgC/y. The main reason for export being towards the lower end of 

observations is that the global primary production in PlankTOM11 is half the observed 

rate. Another potential explanation which may enhance the low export is that within 

the model jellyfish are high grazers and growers, thus taking in a high proportion of 

carbon, but they are not then acting as a direct rapid source of sinking carbon through 

their mortality. The similarity of the results from the respiration and mortality 

sensitivity simulations further highlights the under-representation of jellyfish mortality 

in the organic carbon flux. The similarity of the respiration and mortality simulations 

also suggests that once zooplankton are below a certain biomass, they have little to no 

effect on the ecosystem functioning (Fig. 4.8 and Fig. 4.9).  

 

To include jelly-falls in global biogeochemical models you would need to increase the 

size partitioning of particulate organic carbon, so that they better represented jellyfish 

carcasses. This is could be achieved in a relatively simple way by introducing an 

additional size class to the current POC and GOC, specifically parameterised to 

represent jellyfish carcasses. A more complex change to increase the size partitioning 

of particulate organic carbon could be achieved through introducing a size-resolving 

spectral model with a spectrum of particle size and size-dependent sinking velocity 

(Kriest and Oschlies, 2008). This second method has the advantage of improving the 

representation of particulate organic carbon production from all PFTs but is 

substantially more computer expensive and would be a substantial undertaking. 

The potential influence of introducing either of these methods on carbon export could 

be significant, with peaks in jellyfish biomass being followed by a pulse in carbon 

export because of the rapid sinking of large carcasses (Lebrato et al., 2012, Lebrato et 

al., 2013a). 

 

4.5 Conclusion 

 

Ecosystem structures are known to be important for the export of carbon from surface 

waters. Increasing the complexity of food webs in biogeochemical models should thus 

improve understanding of the processes driving the BCP. This is especially true for 

modelling zooplankton, which lags behind compared to the advancements in 
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modelling greater complexity in the phytoplankton. More complex models should also 

better represent the global observed variation in export (Boyd and Trull, 2007, Cavan 

et al., 2017, Lutz et al., 2007). PlankTOM11 takes a step towards increasing the 

complexity of zooplankton food-webs in a biogeochemical model, by incorporating 

jellyfish, which are shown to influence export through trophic cascades. However, in 

order to fully account for the contribution of jellyfish to export, jellyfish mortality 

must be partitioned separately to other zooplankton in organic detritus, reflecting the 

large disparity in body size and composition (Lebrato et al., 2013a, Lebrato et al., 

2013b, Lucas et al., 2011). The work presented here highlighted the importance of 

jellyfish in the export of carbon from the surface to the deep ocean. It also highlighted 

the need to further develop the dynamics of organic carbon export to better reflect the 

ecosystem dynamics active above the export horizon.   
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Abstract 

 

The Benguela Current System (BCS) is often cited as an example of historic 

overfishing causing an increase in jellyfish biomass. Within the BCS the Northern 

Benguela was heavily overfished during the 1960’s leading to a collapse in fish stocks. 

It has been hypothesised that the collapse in fish stocks allowed zooplankton biomass 

to increase due to reduced predation by the fish, which in turn led to increased jellyfish 

biomass due to increased food availability. In contrast, the Southern Benguela was not 

subject to historic overfishing and is not reported to have experienced an increase in 

jellyfish biomass. Previous studies of jellyfish biomass in the BCS have used fisheries 

models with simplistic representations of climatic variability and jellyfish. Here I use 

PlankTOM11 to investigate the influence of historic fishing and climate variability on 

jellyfish biomass in the BCS. I introduce a representation of historic overfishing 

(1950-2012) through fish predation pressure on macrozooplankton. Fish predation 

pressure in the model does not affect jellyfish due to the existing evidence in the BCS. 

The influence of climatic variability and fishing are simulated individually and 

together. Without the inclusion of fishing, jellyfish show no long-term trend in 

biomass in the Northern or Southern Benguela. When fisheries are included, jellyfish 

biomass decreases in the Northern Benguela from 1980 to 2000 and is not substantially 

affected in the Southern Benguela. In the Northern Benguela macrozooplankton 

biomass is substantially increased (four-fold) by the inclusion of fisheries, but jellyfish 

respond to this by decreasing as they are outcompeted by the macrozooplankton. This 

is contrary to the patchy observations of jellyfish biomass and contrary to hypotheses 

on the key mechanism linking overfishing to increased jellyfish biomass. We suggest 

that the inclusion of fish predation on jellyfish as well as on macrozooplankton will 

affect these results, and that this predation of jellyfish by fish (not observed in the BCS 

but shown in other regions) is a key mechanism linking overfishing to increased 

jellyfish biomass. This mechanism should be tested in future experiments. In 

PlankTOM11 macrozooplankton have a coastal advantage to simulate enhanced 

growth and recruitment in this environment, while jellyfish do not. The results are 

dependent on the parameterisation of macrozooplankton and jellyfish grazing and 

growth rates. Further parameterisation of jellyfish within PlankTOM11, particularly 

the inclusion of a coastal advantage, need to be explored to solidify these findings. I 
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find that the full impact of overfishing on marine ecosystems cannot be understood 

without its interactions with climate variability. 
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5.1 Introduction 

 

A global perceived increase in jellyfish biomass has been attributed to multiple causes, 

most prominently climate change, along with a range of other causes including fishing 

and coastal development (Chapter 1). Due to the nature of marine ecosystems, and the 

concurrent multiple stressors placed on them by human activities, it can be very 

difficult to attribute biomass changes to a single cause. The Northern Benguela (NB), 

part of the Benguela Current System (BCS), is often one of the cited examples of an 

increase in jellyfish having negative ecosystem and economic impacts, largely blamed 

on historic overfishing (Bakun and Weeks, 2006, Lynam et al., 2006, Richardson et al., 

2009, Utne-Palm et al., 2010, Jensen et al., 2012, FAO, 2017). It has been widely 

reported that jellyfish biomass in the NB has increased significantly since the 1950’s, 

but survey data is poor prior to the 1980’s, with most reports being anecdotal, and 

since then data collection is “piece-meal… from once-off or incomplete data sets” (see 

Flynn et al., 2012). In the Southern Benguela (SB), where there has been an ecosystem 

approach to fisheries, jellyfish populations do not appear to have experienced any 

significant long-term trend (Cury and Shannon, 2004, Roux et al., 2013). 

 

The implications of increasing jellyfish populations in the NB are wide ranging, 

including suppressing recovery of fish stocks, changes to the marine carbon cycle, 

marine ecosystem disruptions, and even affecting the diamond mining industry that in 

the NB mines sediment from the sea floor via suction pipes which can become clogged 

by jelly-falls (Venter, 1988, Heymans and Baird, 2000, Brierley et al., 2001, Lynam et 

al., 2006, Roux et al., 2013). The NB is often mentioned as a warning of the 

consequences of poor fisheries management, with relation to the SB and other 

ecosystems where planktivorous fish are a significant component of the system (Bakun 

and Weeks, 2006, Lynam et al., 2006, Richardson et al., 2009, Jensen et al., 2012). The 

NB can also be viewed as a warning for the combined effects of overfishing and 

climate change on jellyfish populations and marine ecosystems. 

 

The BCS is one of the major eastern boundary upwelling ecosystems, characterised by 

high productivity from elevated primary production and planktivorous fish stocks. The 

upwelling is caused by a thermal pressure difference between the land and ocean, 

which causes wind stress northward along the coast. This results in Ekman transport of 
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the surface waters offshore, driving upwelling of cold nutrient rich deep water along 

the coast, to replace the surface water (Hutchings et al., 2009, Bakun et al., 2010). This 

deep cool nutrient rich water is upwelled into the photic zone providing nutrients for 

phytoplankton, which in turn support zooplankton, and then planktivorous fish species, 

mostly sardines and anchovies. These provide a direct link to the top predators of the 

ecosystem, often including charismatic mega fauna; seabirds such as the African 

Penguin and Cape Gannet, and marine mammals such as the Cape Fur Seal, Southern 

Right Whales and Humpback Whales (Bakun et al., 2010, Roux et al., 2013). This 

relatively short food-chain, where a few species provide the crucial link between the 

plankton and top predators, is typical of eastern boundary upwelling ecosystems (Arntz 

et al., 2006). 

 

	

 
 
Figure 5.1 The Benguela Current System with the key oceanographic features which form the Northern 
Benguela and Southern Benguela ecosystems. Upwelling cells (dark grey circles), the Angola-Benguela 
Front (light grey rectangle) and ocean currents (black arrows) are denoted in their approximate 
positions. See text for detail. 
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The strength of the upwelling in the BCS varies intra- and inter-annually, with its peak 

in the spring and autumn (Hutchings et al., 2006). A longer-term variability in 

upwelling was discovered in the 1980’s, and nick-named the ‘Benguela Niño’, after 

the El Niño/La Niña phenomenon in the Equatorial Pacific (Shannon et al., 1986). A 

Benguela Niño event is marked by a reduction in upwelling and the southward 

incursion of warm equatorial waters further into the BCS than usual. It leads to a 

decrease in plankton productivity, with consequences reverberating up the food-chain 

(Shannon et al., 1986). To date six Benguela Niño’s have been confirmed; 1925-27, 

1940-41, 1957-59, 1972-73, 1982-84 and 1997-98 (Arntz et al., 2006). The evidence 

on whether upwelling systems globally will strengthen or weaken with climate change 

is conflicting. There is a study reporting a long-term increase in upwelling-favourable 

winds for the BCS, however various data and collection method errors may drive this 

increasing trend (Shannon et al., 1992, Bakun et al., 2010). 

 

The BCS is bordered at its northern edge by the southern reaches of the Angola 

Current, known as the Angola-Benguela Front region (12ºS-18ºS) and by the Cunene 

upwelling cell (18ºS). The BCS is bordered at its southern and eastern edge by the 

Agulhas Current (around 36ºS, 22ºE; Fig. 5.1). These boundaries are variable 

depending on oceanographic and atmospheric conditions. The BCS can be considered 

as two regions; the Northern Benguela (NB) off the coast of Namibia and just into the 

coast of Southern Angola, and the Southern Benguela (SB) off the western coast of 

South Africa (Fig. 5.1). A strong permanent upwelling called the Lüderitz cell (26ºS-

27ºS) acts as a biogeographical boundary between these two regions, with the official 

boundary at 29ºS at the Namibian/South African border (Fig. 1; Brown et al., 1991, 

Hutchings et al., 2006, Hutchings et al., 2009). The positioning of this oceanographic 

feature near the country borders also means that marine management approaches of the 

two countries are separated here, making it a useful region for scientific study of a 

comparison between the NB and SB (Roux et al., 2013, Roux and Shannon, 2004). 

The NB is a typical coastal upwelling system, characterised by cool water, high 

productivity and low species diversity. The SB experiences a pulsed, seasonal 

upwelling and low-oxygen water close inshore, with lower productivity and higher 

species diversity than the NB (Hutchings et al., 2009). 

 

5.1.1 Jellyfish in the Benguela Current System 
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The dominant jellyfish species in the BCS are the Scyphozoa Chrysaora (hysoscella) 

fulgida and the Hydrozoa Aequorea (aequorea) forskalea, both pelagic Cnidaria 

species (Lynam et al., 2006). Since the 1970’s fishermen in Namibia (NB) have 

complained of jellyfish clogging and damaging nets (Venter, 1988). Reports of 

Tunicates and Ctenophores in this region are limited, and have not been reported 

interacting with the fishing industry, either directly (clogging gear, contaminating 

catch) or indirectly (competing with planktivorous fish for resources) (Roux et al., 

2013). Historically, scientific surveys of the BCS did not report jellyfish, likely 

because they were actively excluded, as was the case globally (Chapter 1). From the 

1970’s jellyfish abundance was measured using bongo-net surveys in the NB. The 

surveys found a combined mean biomass of 40.5 (±5.3) million tons for the period 

1982-89, composed of Aequorea and Chrysaroa (Fearon et al., 1992). While during a 

similar period (1981-1987) the fisheries by-catch of jellyfish totalled only 11.6 

thousand tons (Venter, 1988). Fearon et al. (1992) also provide an estimate of the 

annual carbon biomass value for the jellyfish of 80-112 thousand tons. The survey 

period covered the 1984 Benguela Niño event (Shannon et al., 1986) and showed both 

a southward movement and significant reduction in biomass of jellyfish during the 

Niño months (warmer waters), compared to the rest of the survey period. This suggests 

a negative response of jellyfish to the Benguela Niño, following the reduced 

production of the NB ecosystem during this period (Shannon et al., 1986, Fearon et al., 

1992). An 8-year study in the Northern California Current (2000 – 2007) found a 

strong negative correlation of jellyfish abundance to the Pacific Decadal Oscillation 

(PDO), with higher abundance in cooler years (negative PDO) (Suchman et al., 2012). 

In the Northern Californian Current region, negative PDO is associated with stronger 

upwelling, bringing cold, nutrient rich waters to surface and resulting in high marine 

productivity, and high jellyfish biomass. Suchman et al. (2012) note the importance of 

this negative correlation in an upwelling region, as it “run[s] counter to the prevailing 

trend for temperate species that warm temperatures lead to increased numbers” 

(Suchman et al., 2012). The studies by Fearon et al. 1992) and Shannon et al. (1986) 

suggest that this negative correlation between jellyfish and climate oscillations is also 

occurring in the BCS upwelling. 

 

The inherent bias of bongo-net surveys of jellyfish (as used in Fearon et al., 1992), due 
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to the exclusion of larger specimens, have led to the development of acoustic survey 

techniques in the NB (Brierley et al., 2001). An acoustic survey in August 2003, 

including trawl nets for supplementary species information, along the entire Namibian 

shelf estimated a biomass of jellyfish (Aequorea and Chrysaroa) of 12.2 million tons 

(Lynam et al., 2006). This is substantially lower than the biomass found by Fearon et 

al. (1992) of 40.5 million tons, which can be expected as it is a one off snapshot rather 

than a sustained survey. Of more relevance to the relationship between jellyfish and 

fishing Lynam et al., (2006) found that the jellyfish biomass was 3.4 times the total 

biomass of fish, and 15 times the biomass of sardines and anchovies (Lynam et al., 

2006). Flynn et al. 2012) took a different approach to understanding the historic 

changes in jellyfish abundance by using frequency of capture (rather than biomass) 

from fisheries vessels and fisheries-dependent vessels (i.e. scientific surveys) from 

1992 - 2006. This allowed for the inclusion of more data sets and provides a view of 

spatial patterns but is less useful for determining biomass, as is required for the 

validation of models. Jellyfish can be found in the NB throughout the year, with 

evidence of a winter-spring peak (Flynn et al., 2012, Venter, 1988). Jellyfish clearly 

represent a significant component of the NB ecosystem and are likely major 

zooplankton consumers. Data on jellyfish biomass in the SB is scarcer than in the NB. 

A winter-time survey of the St Helena Bay area in the SB from 1988-97, found 50 

hydromedusae, one scyphozoan and two ctenophore species (including Aequorea and 

Chrysaroa) reported as number of individuals per m3, but they are not observed at high 

abundances comparable to the NB (Buecher and Gibbons, 2000). 

 

5.1.2 A Brief History of Fishing in the Benguela Current System 

 

As the BCS ecosystem spans multiple countries the different regions have experienced 

vastly different fisheries management practices. The Northern Benguela, mostly 

bordering Namibia has a turbulent fishing history (Roux and Shannon, 2004). During 

the 1950’s and early 1960’s catch of sardines rapidly increased, due to industrialisation 

of many vessels, as well as easing of quotas (Boyer and Hampton, 2001). The fishery 

peaked in 1968 followed by a rapid fall in catch (Fig. 5.2). Some of the fishery 

switched to anchovy, but this species catch never achieved the same volume as 

sardines, and in recent decades has collapsed to the point that no anchovies are caught 

(Fig. 5.2). The Namibian government only gained full authority of its marine 
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environment in 1990 after achieving Independence, at which point fisheries 

management measures were rapidly implemented. However, catches continued to 

decline and are still at unsustainable levels (Roux and Shannon, 2004, Roux et al., 

2013). 

 

In contrast to Namibia (NB), South Africa’s (SB) sardine and anchovy fishing industry 

has been relatively stable. Like Namibia, sardine were the targeted species in the 

1950’s and following a decline in the catch of sardines in the early 1960’s, South 

Africa began targeting anchovy, the catch of which still regularly exceed the catch of 

sardine. By the 2000’s sardine catches were recovering (Coetzee et al., 2008). The 

 
 

Figure 5.2 Stacked (top) fisheries catch and (bottom) fish biomass in million tons in the (left) Northern 
Benguela and (right) Southern Benguela for sardines and anchovies. Fisheries catch data from (FAO, 
2017) and fish biomass data collated from (FAO, 2017) and Crawford (2007) . Note that the catch and 
biomass panels have different scale bars. 
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catch levels have never reached the peak catch achieved in the NB (Fig. 5.2), as due to 

environmental forcing the SB ecosystem is naturally less productive (Shannon et al., 

1986, Shannon et al., 2006). Catch of sardine and anchovies naturally fluctuates inter-

annually due to their relatively short life cycle (Fig. 5.2). Presented here is a brief 

overview, based on several in depth papers reviewing the fishing history of the BCS 

(Boyer and Hampton, 2001, Coetzee et al., 2008, Roux et al., 2013). 

 

5.1.3 Influence of Overfishing on Jellyfish Biomass 

 

Over fishing has been hypothesised as a cause of jellyfish biomass increase in 

numerous locations around the world, including in the Northern Benguela, supported 

by varying levels and quality of evidence. The causation between depleted 

planktivorous fish stocks and rising jellyfish biomass is linked to competition over 

prey, and mutual predation of juvenile stages. There is a strong dietary overlap 

between jellyfish and planktivorous fish, as both are voracious predators of 

zooplankton (Purcell and Arai, 2001, Purcell and Sturdevant, 2001, Sullivan and 

Kremer, 2011). Overfishing reduces the biomass of fish, which is hypothesised to 

release the pressure on their key prey, zooplankton, leading to an increase in the 

biomass of zooplankton. This provides a greater food source for jellyfish, which are 

rapid responders to environmental change, and so their biomass rapidly increases 

(Roux et al., 2013, Mills, 2001). It has been suggested that heavily fished ecosystems 

may reach a tipping point where jellyfish biomass is too large to allow for the recovery 

of fish stocks, even with strong fisheries management, such as reduced or removed 

fishing pressure (Roux et al., 2013, Roux and Shannon, 2004). The predation by 

jellyfish on ichthyoplankton (fish eggs and larvae) is thought to exacerbate this effect, 

as the elevated jellyfish numbers consume most of the reduced amounts of 

ichthyoplankton, making it very difficult for the fish to regain their previous 

population numbers (Purcell and Arai, 2001, Pauly et al., 2009, Sullivan and Kremer, 

2011). 

 
The predation of jellyfish by many fish species is now well known, including by 

clupeids, the fish order containing anchovies and sardines (Pauly et al., 2009). I have 

been unable to find direct evidence of sardine and anchovy predation on jellyfish in the 

BCS. The gelatinous soft-bodied nature of jellyfish means they have been overlooked 
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in traditional fish-stomach analysis, but new DNA techniques are rapidly adding fish 

species to the list of jellyfish predators (Arai, 2005, Sullivan and Kremer, 2011, Lamb 

et al., 2017). Ecosystem studies on the interactions between fish and jellyfish in the 

BCS do not include predation of fish on jellyfish (Roux and Shannon, 2004, Roux et 

al., 2013, Shannon et al., 2009). For other ecosystems such as the Black Sea, the 

relaxation of predation on jellyfish by over-fished species was given as an additional 

factor in the growth of the jellyfish population. However, for the Black Sea, there is 

direct stomach analysis evidence of the dominant fished species, mackerel, consuming 

the jellyfish species which became prevalent in the region (Daskalov et al., 2007, 

Purcell and Arai, 2001). For this study a system without predation by sardine and 

anchovy on jellyfish will be modelled due to the lack of evidence on this interaction.  

 

The interactions between fish and jellyfish are varied and complex, as outlined above. 

A simplified interaction between the two groups will be modelled here. The limited 

quantitative data on the majority of these interactions and the complexity (Purcell and 

Arai, 2001) make them unrealistic to add to an already vastly complex and ‘computer 

expensive’ model. Fish will be represented in the model by changes to PFT predation 

mortality. This will be varied with the changes in sardine and anchovy fish stock over 

time. 

 
Goby fish have been increasing along with jellyfish in the NB, and body-tissue isotope 

signatures reveal that they consume jellyfish (Utne-Palm et al., 2010). The same study 

shows evidence that gobies consume already dead or dying jellyfish near the seafloor. 

This predation would have no effect on the jellyfish population or mortality, but could 

increase the speed of transfer of resources back into the ecosystem (Utne-Palm et al., 

2010). Cape Hake, although a key fished species in the BCS, both in terms of tonnage 

and stock collapse, is not considered in the model because its diet consists largely of 

fish (92% by mass) rather than the plankton groups within PlankTOM11 (Pillar and 

Wilkinson, 1995). 

 

5.1.4 Influence of Climate Variability on Jellyfish Biomass 

 

Another potential driver of jellyfish biomass changes in the BCS is climate variability 

such as changes in sea surface temperature and the strength of upwelling. Reduced 
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upwelling and the pole-ward intrusion of warm equatorial waters mark the Benguela 

Niño, leading to a decrease in biological productivity, with a much greater effect on 

the NB, than the SB. The Benguela Niño is known to have a strong negative influence 

on local fisheries and is likely to also influence jellyfish biomass through bottom-up 

control from changes to the plankton community (Arntz et al., 2006). Some studies 

have hypothesised that climate variability played a greater role in structuring the 

Benguela ecosystem than fishing (Roux et al., 2013, Shannon et al., 2009). The 

extremely patchy nature of jellyfish biomass data in the BCS, both spatially and 

temporally, makes it difficult to assess the role of the above drivers (fisheries and 

climate) in controlling local jellyfish biomass, if only observational data are used. 

 

5.1.5 Models of Jellyfish in the Benguela Current System 

 

The NB ecosystem has undergone a regime shift since the 1950’s. Regime shifts are 

generally defined as an abrupt change in the ecosystem status associated with sudden 

changes in climate variability (bottom-up drivers). Cury and Shannon (2004) argue 

that changes in fishing pressure (top-down driver) in addition to changes in climate 

variability are likely to have caused changes to the NB ecosystem state resulting in the 

regime shift. This hypothesis, of environment (bottom-up) plus fishing (top-down) 

triggering a regime shift, has been tested a few times in the BCS with ecosystem 

models where there is some representation of jellyfish. Roux and Shannon (2004) 

simulated potential fisheries management strategies in the NB, one of which was the 

removal of 50% of jellyfish, which resulted in an increase in the biomass of most fish 

groups modelled. A later study of the SB modelled the trophic impacts of fishing and 

climate change in the SB and in several other ecosystems (Shannon et al., 2009). The 

results agree with the circumstantial evidence that jellyfish may increase when 

planktivorous fish stocks decrease. Shannon et al. 2009) also found that climate 

variability explained up to 22% of the observed variability in the SB, more than is 

explained by fisheries in the model. The authors conclude that a conservative approach 

to fisheries management could avoid such an ecosystem shift elsewhere. Roux et al. 

(2013) used a fisheries model to explore the influence of fisheries on both the NB and 

SB ecosystems. They found that the existence of large populations of planktivorous 

fishes is fundamental in linking the plankton to the rest of the ecosystem and that their 

removal may promote an increase in jellyfish biomass, damaging this link from the 
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plankton. The Roux et al. (2013) model includes detail on top predators and multiple 

fish species, but much less detail on plankton groups at the base of the ecosystem, 

which are important in transferring bottom-up drivers through the ecosystem. All these 

models of the BCS including jellyfish so far are from the same lineage (ECOPATH 

with ECOSIM), focusing on top-down processes, rather than bottom-up, with limited 

representation of plankton types (Roux and Shannon, 2004, Roux et al., 2013, Shannon 

et al., 2009). 

 

PlankTOM11 provides the opportunity for a study into the role of climate variability 

and fishing on the BCS and jellyfish biomass, with improved parameterisation of 

jellyfish biological functions and much more detailed representation of climate 

variability. The central question I will address in this chapter is; from 1950 did fishing 

have more of an impact on jellyfish biomass than climate variability? To address this 

central question, I will explore: how does the jellyfish biomass behave historically 

without fishing? What impact does the addition of fishing pressure have on jellyfish 

biomass? What are the impacts on the other PFTs? And does the climate variability or 

fishing have a greater impact? 

 

The BCS is notoriously difficult to simulate with ocean models, generally over-

estimating the temperature and under-estimating the salinity along the coast due to 

upwelling. Attempts to improve the accuracy of models by increasing the ocean grid 

resolution have only achieved limited improvements in surface conditions in the BCS 

(Small et al., 2015, Gent et al., 2010). PlankTOM is a relatively coarse resolution 

compared with regional models. However, investigation of the physical outputs (see 

section 2.3.2) shows reasonable upwelling properties, with biases that are no worse 

than other published models of the region. This analysis will focus on the differences 

between simulations to understand the processes driving changes in jellyfish biomass, 

rather than on exactly replicating the BCS. The model scenarios will include (1) 

climate variability and no fishing, (2) no climate variability and no fishing, (3) climate 

variability and fishing and (4) no climate variability and fishing. This chapter will use 

the differences between the model scenarios to address the questions outlined above. 
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5.2 Methods	

 

5.2.1 Introducing Fishing Pressure to PlankTOM11  

 

PlankTOM11, developed and described in Chapter 3, is used to explore the influence 

of fishing and climate variability on jellyfish in the BCS. Only model equations that 

were altered to introduce fishing pressure are given here. For the full model description 

see Chapter 3. 

 

5.2.1.1 Fish Predation Preference 

 

Van der Lingen (1994) summarises the food web relationships between anchovies and 

sardines and the plankton in the BCS. Predicted fish clearance rates of zooplankton 

prey, expressed in particle size, show that clearance rates increase rapidly from near 0 

across the size range of mesozooplankton (200 - 2000µm), with rates increasing as the 

particle size increases. Clearance rates continue to rise and peak into the size range of 

macrozooplankton (>2000µm). The preferred prey of sardines and anchovies is 

macrozooplankton, followed by mesozooplankton (Van der Lingen, 1994). There is no 

evidence of sardines or anchovies consuming jellyfish in the BCS. ‘Fish’ or ‘fishing 

pressure’ refers to the two planktivorous species, sardines and anchovies, unless 

otherwise specified. 

 

5.2.1.2 Mortality Through Predation 

 

The temporal evolution of zooplankton biomass in PlankTOM11 is determined from 

growth and loss through grazing, respiration and mortality, as described in Chapter 3 

section 3.2.2, Eq. 3.1. To include the effect of changes in fish biomass on grazing 

pressure in the model, without adding fish as another PFT, fish are considered as 

changes to the mortality of zooplankton. Fish are significant consumers of zooplankton 

in upwelling systems (Van der Lingen, 1994). The mortality of zooplankton in 

PlankTOM11 is calculated as: 

 

!""#$%&'("&	*"+(%$,(- = */°
12 	× 	412

5 	× 	
12

6728	12
	× 	∑ :;;   (5.1) 
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where, <= is the zooplankton PFT, */°
12 is the mortality rate at 0°, 412

5  is the temperature 

dependence of the mortality, >12 is the half saturation constant for mortality. ∑ :;;  is 

the sum of all the PFTs, excluding bacteria, which is used as a proxy for the biomass 

of predators not explicitly included in the model. This proxy predator biomass is 

altered here to correspond to the fish biomass over the same period (see Section 

5.2.2.3). Only the mortality of macrozooplankton is altered to the fish biomass. This is 

because the mortality of proto- and mesozooplankton in the model is entirely 

accounted for through pressure by zooplankton represented in the model (Buitenhuis et 

al., 2013, Le Quéré et al., 2016). Also, macrozooplankton is the dominant food source 

of the fish (Van der Lingen, 1994). As there is no evidence of sardines or anchovies 

consuming jellyfish in the BCS, the mortality of jellyfish is not altered through the 

changes in fish biomass. 

 

5.2.1.3 Fish Biomass and Proxy Predator Biomass  

 

The biomass of fish prior to 1990 in the NB, and 1984 in the SB is estimated using 

virtual population analysis from the catch data. The biomass of fish after 1990 in the 

NB, and 1984 in the SB is estimated using acoustic surveys (Crawford, 2007, FAO, 

2017, Butterworth, 1983). Although combining results from these two methods is not 

ideal, they are the best historic biomass estimates available (Crawford, 2007, Pauly 

and Zeller, 2017). The total sardine and anchovy fish stock biomass (?@) is converted 

to carbon units (0.06gC = 1gWW) to match the proxy predator biomass (:;) in 

PlankTOM11 (Walsh, 1981). For 1989 in the Northern Benguela where no stock 

estimate is available, an interpolation of 1988 and 1990 is used. Fish biomass is 

surveyed in November and December for both the NB and SB. The biomass is 

interpolated between these months for each year. There is no seasonal cycle in the 

biomass data due to the way they are sampled. Although sardine and anchovy are 

significant consumers of zooplankton, they are not the only predators of zooplankton 

not included in the model. To prevent a shock to the biomass of top predators 

represented in the model the fish biomass is normalised (:@) as follows: 

 

:@AB = 	
BC
DE

BC
EFG

    (5.2) 
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:@HB = 	
BC
GE

BC
EFG

    (5.3) 

 

Where ?@ is the fish biomass of either the NB or the SB, and ?@BIH is the average fish 

biomass of the BCS (both the NB and the SB) over the whole period. The normalised 

fish biomass for the NB and SB is masked to the respective region, with equal weight 

	

	
 

Figure 5.3 The top panel shows the normalised fish biomass for the Northern Benguela (dark blue) and 
Southern Benguela (cyan) as used in PlankTOM11 to simulate fish PP. The normalised fish biomass is 
masked to the Northern and Southern Benguela, the area of these masks is shown in the bottom panel 
using the same colour key. The fish biomass data ends in 2012 so after this time the normalised fish 
biomass returns to 1. 
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for each grid box (see Figure 5.3). The proxy predator biomass is scaled to the 

normalised fish biomass to represent fish predation pressure (fish PP): 

 

J,Kℎ	:: = :@
AB,HB 	× 	∑ :;;    (5.4) 

 

 

5.2.2 Model Validation 

 

5.2.2.1 Plankton Observations 

 

Hutchings et al. (1991) assessed and compiled surveys on meso- and 

macrozooplankton in the BCS. These observations of meso- and macrozooplankton are 

used to validate the model, along with the observations of jellyfish (Fearon et al., 1992, 

Lynam et al., 2006) because the meso- and macrozooplankton observations have a 

higher validity, cover a longer period and cover both regions of the Benguela (see 

Section 5.1.1; Flynn et al., 2012). The global tuning of PlankTOM11 carried out in 

Chapter 3 gives meso- and macrozooplankton biomass within the observed range for 

the Northern and Southern Benguela (Table 5.1). The mesozooplankton average in the 

NB is a third of observations, and in the SB is half the observations, but still well 

within the range observed range (Table 5.1). The jellyfish average in the NB is double  

Table 5.1 The annual average (min – max) zooplankton biomass (µmol C L-1) in the Benguela for the 
top 200m. Observations are converted into µmol C L-1 from Hutchings et al. (1991) for 
mesozooplankton and macrozooplankton, and from Fearon et al. (1992) for jellyfish, with the Lynam 
et al. (2006) snapshot observations in parenthesis. Jellyfish observations are converted into carbon 
weight using the conversions in Lucas et al. (2011). PlankTOM11 results are for 1950-2015, 0-200m, 
using the regional masks shown in Figure 5.3. 

 Mesozooplankton Macrozooplankton Jellyfish 

Northern Benguela 

Observations  0.42 (0.04 - 0.42) 0.25 (0.04 - 0.42) 0.14 (0.0001) 

PlankTOM11 0.13 (0.06 - 0.36) 0.23 (0.05 - 2.53) 0.26 (0.05 - 1.04)  

Southern Benguela 

Observations 0.33 (0.08 - 0.83) 0.21 (0.04 - 0.42) - 

PlankTOM11 0.18 (0.06 - 1.76) 0.19 (0.05 - 1.17) 0.20 (0.05 - 0.68) 
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Figure 5.4 Zooplankton biomass and upwelling for the BCS region. PlankTOM11 jellyfish (top left), 
macrozooplankton (top right) and mesozooplankton (middle left) biomass are in µmolC L-1 
averaged over 0-200m. Upwelling is the vertical velocity in m day-1, positive values indicate 
upwelling. PlankTOM11 upwelling (middle right) is averaged over 40-50m and upwelling modelled 
by Small et al. (2015) is at 45m (bottom; panels are adapted from Figure 5 in Small et al., 2015). All 
PlankTOM11 results are averaged over 1950 – 2015. 
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the observations, with no observations in the SB. PlankTOM11 shows slightly higher 

jellyfish biomass in the NB than the SB (Table 5.1 and Fig. 5.4). The model may 

underestimate mesozooplankton biomass in the BCS because the global biomass is 

also slightly underestimated (see Chapter 3) and because jellyfish are overestimated (in 

the NB) which may reduce mesozooplankton through predation. No further tuning of 

PlankTOM11 was deemed necessary for this study. In PlankTOM11 jellyfish are 

ubiquitous across the NB and into the northern SB, with higher concentration along the 

coast and near the Lüderitz Cell (Fig. 5.4). Macrozooplankton biomass is concentrated 

in the north around the Angola-Benguela Front and the Cunene Cell (Fig. 5.4).  

 

5.2.2.2 Physical Observations 

 

 PlankTOM11 replicates the pattern of upwelling along the coast in the Benguela 

Current, with stronger upwelling at the Lüderitz Cell (26-28°S) and Cunene Cell 

(18°S; Fig. 5.4) although the strength of upwelling is underestimated (Small et al. 

2015). The strength of upwelling in PlankTOM11 is similar to the model results in 

Small et al. (2015), with most of the upwelling in the NB between 0.25 – 1 m day-1 

(Fig. 5.4). Models of the Benguela Current systematically underestimate upwelling, 

the similarity of PlankTOM11 upwelling strength to Small et al. (2015) means that we 

accept this as a reasonable replication of the Benguela Current. The upwelling in 

PlankTOM11 extends further from the coast than would be ideal, but this is expected 

with the grid resolution in the model (Fig. 5.4).  

 

5.2.3 Model Simulations 

 

Four simulations are used to assess the individual as well as combined influence of 

climate variability and fisheries (as fish PP) on the BCS ecosystem (Table 5.2). The 

simulations are TOM11-CN with climatic variability and without fish PP 

(PlankTOM11 as in Chapter 3), TOM11-NN without climatic variability and without 

fish PP, TOM11-CF with climatic variability and with fish PP and TOM11-NF without 

climate variability and with fish PP (Table 5.2).  
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All the simulations are run from 1920-2015. We apply a 28-year spin up during 1920 – 

1947 by repeating meteorological forcing corresponding to year 1980 (see Chapter 3 

for detail). For the simulation with climate variability, we apply meteorological forcing 

of the corresponding year during 1948 – 2015. For the simulation without climate 

variability, we maintain the meteorological forcing corresponding to year 1980 

throughout the simulation. 

 

 Results from the simulations are presented for 1950-2012, as fish biomass data ends in 

2012. Results are averaged using the Northern and Southern Benguela masks shown in 

Figure 5.3. Differences between the simulations are used to assess the influence of 

climatic variability and fishing. The simulation TOM11-NN is used as a baseline. Each 

of the other simulations is subtracted from TOM11-NN to calculate differences due to 

climate variability and fisheries individually (TOM11-CN and TOM11-NF 

respectively) and combined (TOM11-CF). 

 

 

 

  

Table 5.2 PlankTOM11 simulations to assess the influence of climate variability and fisheries (as fish 
predation pressure) on the BCS ecosystem. 

PlankTOM11 simulations Climatic Variability Fish Predation Pressure 

TOM11-CN Yes No 

TOM11-NN No No 

TOM11-CF Yes Yes 

TOM11-NF No Yes 
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5.3 Results 

 

5.3.1 The Northern Benguela  

 

Figure 5.5 shows each of the four simulations subtracted from TOM11-NN. The 

normalised fish biomass, representing fish PP, in the Northern Benguela is also shown. 

Figure 5.6 shows jellyfish and macrozooplankton biomass for each of the four 

simulations. In the Northern Benguela fish PP is between 2 – 3 during the 1950’s. Fish 

PP then increases to peak at 5 in 1964 after which it rapidly decreases to 1 by 1970 

(Fig. 5.5). For the next few years fish PP stays close to 1; at 1 fish PP has minimal 

influence on macrozooplankton mortality. From the late 1970’s onwards fish PP is low 

(less than 0.3; Fig. 5.5). 

 

In the Northern Benguela with climate variability and without fish PP (TOM11-CN; 

black line) jellyfish biomass shows year-to-year oscillations. This oscillation due to 

climate variability is reduced from 1983 to 1994, followed by a period of increased 

jellyfish biomass until ~2000 (Fig. 5.5). Without climate variability and with fish PP 

(TOM11-NF; green line) jellyfish biomass is only affected after 1990 when it rapidly 

declines and remains lower until the end of the simulation (Fig. 5.5). With climate 

variability and fish PP (TOM11-CF; red line) the oscillations in jellyfish biomass are 

slightly larger than without fish PP (TOM11-CN) until 1972, where it matches 

TOM11-CN oscillations for a few years until 1978, after which jellyfish biomass 

rapidly declines. Jellyfish biomass stays at a reduced level with some small oscillations 

for 20 years. From 2001 jellyfish biomass rapidly increases again to match TOM11-

CN oscillations for the remainder of the simulations (Fig. 5.5). The period from 1972 

to 1978 where jellyfish biomass is the same in TOM11-CN and TOM11-CF is the 

period where fish PP is closest to 1 (where it has little effect on macrozooplankton 

predation mortality). The high fish PP before this period has a slight impact on 

increasing jellyfish biomass, after this period the reduced fish PP has a substantial 

impact on decreasing jellyfish biomass. However, after 2001 jellyfish biomass 

substantially increases while fish PP remains low (Fig. 5.5). 

 

In the Northern Benguela with climate variability and without fish PP (TOM11-CN; 

black line) macrozooplankton experience an increase in biomass due to climate from 
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1995 to 1975 and from 1989 to 1994. Outside of these two periods, climate variability 

has a small influence on macrozooplankton biomass (Fig. 5.5). Without climate 

variability and with fish PP (TOM11-NF; green line) macrozooplankton biomass is 

only affected after 1990 when it rapidly increases and remains elevated until the end of 

the simulation (Fig. 5.5). With climate variability and fish PP (TOM11-CF; red line) 

macrozooplankton biomass is lower than without fish PP (TOM11-CN) from 1955 to 

	
	

Figure 5.5 The effect of climate and fishing on zooplankton biomass and chlorophyll concentration in the 
Northern Benguela. Each of the simulations TOM11-CF (red line), TOM11-CN (black line), TOM11-NF 
(green line) and TOM11-NN (dashed black line), is subtracted from TOM11-NN, so that the y-axis is the 
difference due to fish PP, climate or fish PP and climate. Results are shown for (top left) jellyfish, (top 
right) macrozooplankton, (middle left) mesozooplankton, (middle right) protozooplankton and (bottom 
left) surface chlorophyll. Note that the panels have different y-axis. Fish PP (bottom right) for the 
Northern Benguela as in Figure 5.3 with the dashed line at 1 where fish predation does not have an 
influence on proxy predator biomass (Eq. 5.2). All simulation results are seasonally smoothed to show 
year to year variability, zooplankton are averaged over 0-200 meters in µmol C L-1 and chlorophyll is 
averaged over 0-10 meters in µmol chl L-1. 
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1970, but almost the same as the simulation with no climate variability or fish PP 

(TOM11-NN; dashed black line). As with jellyfish, from 1972 to 1978 

macrozooplankton biomass in TOM11-CF matches TOM11-CN oscillations. After 

1978 macrozooplankton biomass rapidly increases and stays elevated for 20 years. 

From 2001 biomass rapidly declines to be just above TOM11-CN for the remainder of 

the simulation (Fig. 5.5). The period from 1972 to 1978 where macrozooplankton 

biomass is the same in TOM11-CN and TOM11-CF is the period where fish PP is 

closest to 1 (where it has little effect on macrozooplankton predation mortality). The 

high fish PP before this period decreases macrozooplankton biomass, after this period 

the reduced fish PP has a substantial impact on increasing macrozooplankton biomass. 

However, after 2001 macrozooplankton biomass substantially decreases while fish PP 

remains low (Fig. 5.5). 

 

In the Northern Benguela with climate variability and without fish PP (TOM11-CN; 

black line) mesozooplankton biomass is slightly reduced from 1955 to 1970 and then 

has small oscillations in biomass for the rest of the simulation period (Fig. 5.5). 

Without climate variability and with fish PP (TOM11-NF; green line) 

mesozooplankton biomass increases slightly around 1965 and decreases from 1990 to 

the end of the simulation (Fig. 5.5). With climate variability and fish PP (TOM11-CF; 

red line) mesozooplankton biomass increases substantially more than TOM11-NF 

around 1965 and decreases earlier (1978) than TOM11-NF (1990). Mesozooplankton 

biomass in TOM11-CF increases after 2002 to slightly below TOM11-CN. In the 

Northern Benguela protozooplankton behaves in a similar pattern and to a similar 

degree of change to jellyfish for all the simulations (Fig. 5.5). 

 

In the Northern Benguela with climate variability and without fish PP (TOM11-CN; 

black line) chlorophyll concentration shows multi-decadal cycles with year-to-year 

oscillations, with higher chlorophyll from 1955 to 1968 and from 1990 to 1998 and 

lower chlorophyll outside of these periods. Chlorophyll is higher in the 1960’s than in 

the 1990’s (Fig. 5.5). Without climate variability and with fish PP (TOM11-NF; green 

line) chlorophyll is only affected after 1990 when it rapidly increases for a year and 

then gradually declines to the end of the simulation (Fig. 5.5). With climate variability 

and fish PP (TOM11-CF; red line) chlorophyll has similar multi-decadal cycles to 

TOM11-CN but in the 1960’s elevated concentration chlorophyll begins lower and 
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then increases to more than in TOM11-CN and for the later elevated concentration 

period chlorophyll concentration increases earlier (1980 compared to 1990) and 

increases more than in TOM11-CN. From 2003 chlorophyll in TOM11-CF is the same 

as in TOM11-CN (Fig. 5.5). 

 

The addition of fish PP on macrozooplankton, simulating overfishing in the Northern 

Benguela, has not caused an increase in jellyfish biomass over time (Fig. 5.5). This 

Table 5.3 The effect of climate and fishing on zooplankton and chlorophyll in the Northern Benguela. 
Each of the simulations TOM11-CF, TOM11-CN and TOM11-NF is subtracted from TOM11-NN (no 
climate or fishing). CN + NF is the addition of the results from TOM11-CN and TOM11-NF. Results are 
given as a total of 1950 - 2012 for all zooplankton (µmol C L-1) and chlorophyll (µmol chl L-1) and broken 
down into the total of each decade for macrozooplankton, jellyfish and chlorophyll. 

 TOM11-CF TOM11-CN TOM11-NF CN + NF 

PFT 1950 – 2012 total 

ProtoZP 110.6 33.8 45.2 79.0 

MesoZP 56.6 11.4 29.0 40.4 

MacroZP 744.8 161.9 358.8 520.6 

Jellyfish 87.8 32.5 35.2 67.8 

Chlorophyll 42.2 20.5 12.6 33.1 

 1950 - 1959 

MacroZP 4.1 24.5 3.9 28.4 

Jellyfish 5.3 3.7 0.3 4.0 

 1960 - 1969 

MacroZP 4.1 65.0 6.5 71.5 

Jellyfish 4.3 6.4 0.9 7.3 

 1970 - 1979 

MacroZP 44.7 23.2 2.2 25.4 

Jellyfish 8.3 6.3 0.1 6.3 

 1980 - 1989 

MacroZP 256.0 7.8 10.0 17.8 

Jellyfish 29.7 3.7 0.4 4.1 

 1990 - 1999 

MacroZP 326.9 37.8 147.9 185.6 

Jellyfish 28.8 8.7 15.3 24.0 

 2000 - 2009 

MacroZP 106.4 3.2 151.2 154.4 

Jellyfish 10.5 2.9 14.6 17.5 
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lack of increase in jellyfish biomass is contrary to observations and hypothesis for the 

region (see Section 5.1). The macrozooplankton instead become dominant in the 

environment, due to reduced predation pressure after the 1970’s (Fig. 5.5). This 

advantage allows them to outcompete jellyfish, which in PlankTOM11 do not have 

this advantage of reduced fish PP.  

 

In the NB macrozooplankton shows behaviour typical of tipping points, when their 

biomass rapidly increases following continuous forcing, affecting jellyfish and other 

zooplankton biomass. These tipping points are most prevalent in the TOM11-CF 

simulation, where combined climate variability and fish PP reduction allow 

macrozooplankton biomass to increase four-fold above the biomass in TOM11-CN, 

and double that of the biomass in TOM11-NF (Fig. 5.5). The changes to 

macrozooplankton biomass are substantially greater than the changes to the biomass of 

the other zooplankton. 

 

The differences between the simulations are provided by decade and for the whole 

period in Table 5.3. In the Northern Benguela over the whole period (1950-2012) 

when acting individually, climate variability and fish PP had a similar level of 

influence on jellyfish biomass (32.5 µmol C L-1 for TOM11-CN versus 35.2 for 

TOM11-NF). The combination of climate variability and fish PP (TOM11-CF) had a 

greater influence on jellyfish biomass than the sum of the two factors alone (87.8 µmol 

C L-1 versus 67.8; Table 5.3). For macrozooplankton over the whole period, fish PP 

had a greater influence on biomass than climate variability (358.8 µmol C L-1 for 

TOM11-NF versus 161.9 for TOM11-CN; Table 5.3). Here also, the combination of 

climate variability and fish PP (TOM11-CF) had a greater influence on 

macrozooplankton biomass than the addition of the two factors alone (744.8 µmol C L-

1 versus 520.6; Table 5.3). For chlorophyll over the whole period, climate variability 

(TOM11-CN; 20.5 µmol C L-1) had a greater influence on chlorophyll concentration 

than fish PP (TOM11-NF; 12.6). The combination of climate variability and fish PP 

(TOM11-CF) had a greater influence on chlorophyll concentration than the sum of the 

two factors alone (42.2 µmol C L-1 versus 33.1; Table 5.3). For all zooplankton the 

combination of climate variability and fish PP (TOM11-CF) had a greater influence on 

biomass than the sum of the two factors alone (CN + NF; Table 5.3). 
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Before 1990 jellyfish biomass is more influenced by climate variability (TOM11-CN, 

3.7 – 6.4 µmol C L-1) than fish PP (TOM11-NF, 0.1 – 0.9 µmol C L-1; Table 5.3). 

After 1990 jellyfish biomass is more influenced by fish PP (14.6 – 15.3 µmol C L-1) 

than climate variability (2.9 – 8.7 µmol C L-1; Table 5.3).  Before 1970 when fish PP is 

over 1 (Fig. 5.5) macrozooplankton are more influenced by climate variability (24.5 + 

65) than fish PP (3.9 + 6.5 µmol C L-1; Table 5.3). During the 1970’s when fish PP is 

close to 1 (Fig. 5.5) macrozooplankton are more influenced by climate variability (23.2 

µmol C L-1) than fish PP (2.2 µmol C L-1; Table 5.3) as expected because fish PP is 

having a small influence over macrozooplankton predation mortality. From 1980 fish 

PP is low (<0.4) but it takes until the 1990’s for fish PP to have significantly more 

influence on macrozooplankton biomass than climate variability (146.9 versus 37.8 

µmol C L-1; Table 5.3). Before 1970 the combined simulation of climate variability 

and fish PP (TOM11-CF) has less of an influence on macrozooplankton biomass than 

either factor does alone. After 1970 TOM11-CF has more of an influence on 

macrozooplankton biomass than either factor does alone, or summed (CN + NF; Table 

5.3). The low influence of fish PP prior to 1970, is due to the low macrozooplankton 

biomass without climate during this period (Fig. 5.5). PlankTOM11 contains 

protection mechanisms to prevent plankton biomass decreasing below a critical level 

and becoming extinct. It is likely that the addition of high fish PP to an already low 

macrozooplankton biomass triggers this protection mechanism, preventing 

macrozooplankton biomass from reducing further and thus supressing the influence of 

fish PP. 

 

5.3.2 The Southern Benguela  

 

Figure 5.6 is similar to Figure 5.5 but for the Southern Benguela. In the Southern 

Benguela fish PP is less than 1 from 1950 to the mid-1980’s. From the mid-1980’s to 

late 1990’s fish PP oscillates between 0.5 and 1.2. Fish PP then rapidly increases to 

peak in 2001 at 4. Fish PP then rapidly declines into the mid-2000’s after which it 

oscillates between 1 and 2. 

 

In the Southern Benguela with climate variability and without fish PP (TOM11-CN; 

black line) jellyfish biomass shows multi-decadal cycles with year-to-year oscillations. 

Jellyfish biomass is higher from 1950 to 1970, lower from 1970 to 1992, then higher 
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for a shorter period from 1993 to 2001 and lower from 2001 to 2012 (Fig. 5.6). 

Without climate variability and with fish PP (TOM11-NF; green line) jellyfish 

biomass has slight variations from no climate variability and no fish predation 

(TOM11-NN) with a slightly lower biomass from 1965 to 1985 and slightly higher 

biomass from 2000 to 2011 (Fig. 5.6). With climate variability and fish PP (TOM11-

CF; red line) jellyfish biomass is very similar to TOM11-CN, with some years of  

	
	

Figure 5.6 The effect of climate and fishing on zooplankton and chlorophyll in the Southern Benguela. 
Each of the simulations TOM11-CF (red line), TOM11-CN (black line), TOM11-NF (green line) and 
TOM11-NN (dashed black line), is subtracted from TOM11-NN, so that the y-axis is the difference due to 
fishing, climate or fishing and climate. Results are shown for (top left) jellyfish, (top right) 
macrozooplankton, (middle left) mesozooplankton, (middle right) protozooplankton and (bottom left) 
surface chlorophyll.  Fish PP (bottom right) for the Northern Benguela as in Figure 5.3 with the dashed 
line at 1 where fish predation does not have an influence on proxy predator biomass (Eq. 5.3). All 
simulation results are seasonally smoothed to show year to year variability, zooplankton are averaged 
over 0-200 meters in µmol C L-1 and chlorophyll is averaged over 0-10 meters µmol chl L-1. 
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slightly lower biomass from 1970 to 2000 and slightly higher biomass from 2000 (Fig. 

5.6). The changes in jellyfish biomass are small for all the effects. 

 

In the Southern Benguela with climate variability and without fish PP (TOM11-CN; 

black line) macrozooplankton biomass shows year to year oscillations with no long-

term trend (Fig. 5.6). Without climate variability and with fish PP (TOM11-NF; green 

line) macrozooplankton biomass is increased from 1950 to 1985, then in 2000 declines 

before slowing increasing until the end of the simulation (Fig. 5.6). With climate 

Table 5.4 The effect of climate and fishing on zooplankton and chlorophyll in the Southern Benguela. 
Each of the simulations TOM11-CF, TOM11-CN and TOM11-NF is subtracted from TOM11-NN (no 
climate or fishing). CN + NF is the addition of the results from CN and NF. Results are given as a total of 
1950 – 2012 for all zooplankton (µmol C L-1) and chlorophyll (µmol chl L-1) and broken down into the 
total of each decade for macrozooplankton, jellyfish and chlorophyll. 

 CF CN NF CN + NF 

PFT 1950 – 2012 total 

ProtoZP 30.8 28.6 8.2 36.7 

MesoZP 24.4 16.9 22.3 39.2 

MacroZP 66.7 17.0 41.5 58.5 

Jellyfish 21.1 20.2 3.9 24.1 

Chlorophyll 12.3 10.9 9.0 19.9 

 1950 - 1959 

MacroZP 3.3 1.3 3.7 5.1 

Jellyfish 4.3 4.2 0.1 4.3 

 1960 - 1969 

MacroZP 4.6 2.2 6.3 8.5 

Jellyfish 4.0 4.0 0.4 4.4 

 1970 - 1979 

MacroZP 15.6 3.8 11.3 15.1 

Jellyfish 3.0 2.2 0.9 3.0 

 1980 - 1989 

MacroZP 19.4 4.0 6.8 10.8 

Jellyfish 4.9 4.1 0.5 4.6 

 1990 - 1999 

MacroZP 17.8 3.3 4.3 7.5 

Jellyfish 2.5 3.5 0.4 3.9 

 2000 - 2009 

MacroZP 5.3 2.2 8.4 10.6 

Jellyfish 1.6 1.5 1.5 3.0 
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variability and fish PP (TOM11-CF; red line) macrozooplankton biomass shows the 

same pattern of year-to-year oscillations as TOM11-CN at higher biomass with 

stronger peaks from 1950 to 2000 and lower biomass from 2000 to the end of the 

simulation (Fig. 5.6). Before 1985 fish PP is less than 1 and so reduces 

macrozooplankton predation mortality, from 1985 to 2000 fish PP oscillates around 1, 

and after 2000 fish PP rapidly increases and peaks at 4 before declining to between 1 

and 2 increasing macrozooplankton predation mortality (Fig. 5.6).  

 

In the Southern Benguela with climate variability and without fish PP (TOM11-CN; 

black line) mesozooplankton biomass shows year to year oscillations with no long- 

 term trend (Fig. 5.6). Without climate variability and with fish PP (TOM11-NF; green 

line) mesozooplankton is decreased from 1950 to 1985, where it oscillates before 

rapidly increasing from 2000 to 2002 and then decreases to 2012 (Fig. 5.6). With 

climate variability and fish PP (TOM11-CF; red line) mesozooplankton biomass 

shows the same pattern of year-to-year oscillations as TOM11-CN at lower biomass 

from 1950 to 1992 and higher biomass from 2000 to 2011 (Fig. 5.6). In the Southern 

Benguela protozooplankton biomass behaves in a similar pattern to jellyfish for all the 

simulations, except for the fish predation runs (TOM11-CF and TOM11-NF) from 

2000 to 2005 where protozooplankton biomass declines unlike jellyfish biomass which 

increases over this period (Fig. 5.6). 

 

In the Southern Benguela with climate variability and without fish PP (TOM11-CN; 

black line) chlorophyll concentration shows year-to-year oscillations with no long-

term trend (Fig. 5.6). Without climate variability and with fish PP (TOM11-NF; green 

line) chlorophyll is slightly decreased from 1950 to 1985 and increased from 2000 

(Fig. 5.6). With climate variability and fish PP (TOM11-CF; red line) chlorophyll 

concentration is similar to TOM11-CN except from 2000 to 2005 where it increases 

(Fig. 5.6). 

 

In the Southern Benguela, jellyfish (both with and without fish PP) seem to show a 

decadal to multi-decadal cycle in biomass, similar to the cycle shown by 

protozooplankton. Biomass of jellyfish is higher from 1950-1970, lower from 1970-

1992, higher again from 1992 – 2003, and lower from 2003 – 2012 (Fig. 5.6). In the 

Southern Benguela over the whole period (1950-2012) when acting individually 
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climate variability has a greater level of influence on jellyfish biomass than fish PP 

(20.2 for TOM11-CN versus 3.9 µmol C L-1 for TOM11-NF). The combination of 

climate variability and fish PP (TOM11-CF) had a slightly lower influence on jellyfish 

biomass than the addition of the two factors alone (21.1 versus 24.1 µmol C L-1; Table 

5.4). For macrozooplankton over the whole period, fish PP has a greater level of 

influence on biomass than climate variability (41.5 versus 17.0 µmol C L-1). The 

combination of climate variability and fish PP (TOM11-CF) had a greater influence on 

macrozooplankton biomass than the addition of the two factors alone (66.78 versus 

58.7 µmol C L-1; Table 5.4). For chlorophyll over the whole period, climate variability 

and fish PP individually have a similar influence on concentration (10.9 versus 9.0 

µmol C L-1). The combination of climate variability and fish PP (TOM11-CF) had a 

greater influence on macrozooplankton biomass than the sum of the two factors alone 

(66.7 versus 58.5 µmol C L-1; Table 5.4). For protozooplankton over the whole period, 

climate variability had a greater influence on biomass than fish PP (28.6 versus 8.2 

µmol C L-1) and for mesozooplankton fish PP had a greater influence on biomass than 

climate variability (22.3 versus 16.9 µmol C L-1; Table 5.4). 

 

Before 2000 jellyfish biomass is more influenced by climate variability (TOM11-CN, 

3.7 – 6.4 µmol C L-1) than fish PP (TOM11-NF, 0.1 – 0.9 µmol C L-1; Table 5.4), 

during this period fish PP is mostly below 1 (Fig.  5.7). After 2000 jellyfish biomass is 

equally influenced by climate variability and fish PP individually (1.5 µmol C L-1) as 

well as by the combination of the two factors (TOM11-CF, 1.6 µmol C L-1), during 

this period fish PP is above 1 (Fig. 5.7). For every decade macrozooplankton biomass 

is more influenced by fish PP (3.7 - 11.3 µmol C L-1) than by climate variability (1.3 – 

4.0 µmol C L-1; Table 5.4). The influence of fish PP on macrozooplankton is greatest 

during the 1970’s, when fish PP is at its lowest (Fig. 5.6).  

 

In the Southern Benguela, the effect of fish PP on macrozooplankton has the largest 

knock-on effect on mesozooplankton, where macrozooplankton biomass is higher, 

mesozooplankton biomass is lower. This is likely due to increase predation by 

macrozooplankton on meso (Fig. 5.6). The effect of fish PP on macrozooplankton 

biomass is far lower in the Southern Benguela than in the Northern Benguela (Fig. 5.5 

and 5.8). 
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Figure 5.7 The correlation over time of jellyfish with (top) upwelling and (bottom) SST for the 
simulations (left) TOM11-CN (Climate & No fish predation) and (right) TOM11-CF (Climate & Fish 
predation). Correlations are calculated for 1950-2012 for the Northern and Southern Benguela masks 
where fish predation is applied, as shown in Figure 5.3. Warms colours indicate positive correlation 
and cold colours indicate negative correlation. Cross-hatched grid cells are where the correlation is 
not statistically significant (p values less than 0.05). 

 

5.3.3 Correlation to Physical Conditions 

 

Climatic variability in the BCS is largely driven by upwelling and SST. Figure 5.7 and 

5.8 show the correlation of jellyfish and macrozooplankton with upwelling and SST 
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over time averaged for 1950 to 2012. Grid cells are cross-hatched where the 

correlation between zooplankton and physical conditions is not statistically significant 

(p = 0.05). Along the coast jellyfish are positively correlated to upwelling, the 

correlation decreases and becomes negative just away from the coast (Fig. 5.7). The 

positive correlation between jellyfish and upwelling is stronger in the northern 

	
	

Figure 5.8 The spatial correlation of macrozooplankton with (top) upwelling and (bottom) SST for the 
simulations (left) TOM11-CN (climate and no fish PP) and (right) TOM11-CF (climate and fish PP). 
Correlations are calculated for 1950-2012 for the Northern and Southern Benguela masks where fish 
predation is applied, as shown in Figure 3. Warms colours indicate positive correlation and cold 
colours indicate negative correlation. Cross-hatched grid cells are where the correlation is not 
statistically significant (p values less than 0.05). 
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Benguela in TOM11-CN, without fish predation, than in TOM11-CF with fish 

predation. In the Northern Benguela and the northern half of the Southern Benguela 

jellyfish are negatively correlated to SST (Fig. 5.7). In the southern half of the 

Southern Benguela jellyfish are positively correlated to SST. The negative correlation 

in the Northern Benguela is slightly stronger in TOM11-CN than in TOM11-CF. In the 

Southern Benguela the strength of correlation is the same with and without fish PP, 

except in two grid cells where there is no significant correlation with fish PP (Fig. 5.7). 

In the Northern Benguela TOM11-CN has stronger correlation between jellyfish and 

physical conditions than TOM11-CF (Fig. 5.7). The simulation of fish PP adds another 

influence on jellyfish biomass and reduces the influence of physical conditions. 

 

Negative correlation between jellyfish and SST is contrary to the general expectation 

of higher temperatures increasing growth and thus increasing biomass. Lower SST 

occurs where upwelling is stronger (above 34ºS, see Fig. 5.4) as the upwelling brings 

colder deep water to the surface. The cold deep water brings nutrients to the surface 

enhancing biomass despite the colder temperature. The model simulates this enhanced 

biomass in colder upwelled coastal waters, despite the relatively coarse model 

resolution. In the southern half of the Southern Benguela where upwelling is reduced 

(below 34ºS, see Fig. 5.4) jellyfish are positively correlated with temperature (Fig. 

5.7). In the north of the Northern Benguela (above 21ºS) jellyfish have a weaker, or 

no, correlation to upwelling (Fig. 5.7). The high biomass of macrozooplankton in this 

region (see Fig. 5.4) outcompetes jellyfish, so that macrozooplankton have a greater 

influence on jellyfish biomass than physical conditions.  

 

Macrozooplankton biomass and upwelling do not have a clear spatial pattern of 

correlation, unlike jellyfish biomass with upwelling (Fig. 5.7 and 5.8).  In the Northern 

Benguela without fish PP (TOM11-CN), macrozooplankton biomass has a mostly 

negative correlation to upwelling, when fish PP is introduced (TOM11-CF) the 

negative correlation decreases in strength and in some areas becomes a weak positive 

correlation (Fig. 5.8). In the Southern Benguela without fish PP (TOM11-CN), 

correlation along the coast between macrozooplankton biomass and upwelling changes 

from strongly negative in the north, through neutral correlation, to strongly positive 

correlation in the south. When fish PP is introduced (TOM11-CF), the strength of 

coastal correlation weakens but largely remains in the same direction (Fig. 5.8). 
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Macrozooplankton biomass and SST have a negative correlation north of 33ºS and a 

positive correlation below 33ºS. The strongest negative correlation between 

macrozooplankton biomass and SST is between 28 -31ºS (Fig. 5.8). When fish PP is 

introduced (TOM11-CF) correlation in the Northern Benguela largely disappears. In 

the Southern Benguela the spatial correlations remain mostly the same. Fish PP has a 

stronger influence on macrozooplankton in the Northern Benguela than in the Southern 

Benguela (Fig. 5.8).  

 

5.3.4 External Influence 

Figure 5.9 shows jellyfish and macrozooplankton biomass in the BCS mapped 

annually from 1975 – 1984 for TOM11-CF. This covers a period of rapid increase in 

macrozooplankton biomass in the Northern Benguela and a concurrent decrease in 

jellyfish biomass (Fig. 5.5).  Figures and Tables in this chapter are calculated for the 

masked BCS region shown in Figure 5.3, for the Northern and Southern Benguela, as 

this is the region where the fish PP is applied. PFT biomass Northern and Southern 

Benguela is influenced by PFT biomass and physical conditions outside of this region 

as well as by conditions within the region. This influence can be seen in Figure 5.9 for 

jellyfish, which have a persistent background offshore biomass that may supplement 

the coastal population. Macrozooplankton biomass is concentrated closer to the coast 

than jellyfish biomass, particularly in the north of the Northern Benguela (Fig. 5.9). 

Over the period shown, macrozooplankton biomass moves southwards beginning from 

north of the Northern Benguela region. Within the Northern Benguela the 

macrozooplankton biomass increases substantially (due to fish PP), and this elevated 

biomass moves southwards across the Northern Benguela (Fig. 5.9). When assessing 

the results from introducing fishing pressure to the Benguela, it is important to keep in 

mind the potential influence from conditions external to the masked Benguela region, 

as shown in Figure 5.9. 
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Figure 5.9 Annual average maps of (left) jellyfish and (right) macrozooplankton biomass (µmol C L-1) 
for TOM11-CF from 1975 – 1984, covering a period of rapid increase in macrozooplankton biomass in 
the Northern Benguela. Note that the zooplankton are mapped to different scales. 
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5.4 Discussion 

 

The addition of fish PP to simulate historical overfishing in the Northern Benguela 

does not cause an increase in jellyfish biomass in PlankTOM11, but instead it causes a 

decline in jellyfish from 1980 to 2000. Without simulating historical overfishing 

(TOM11-CN) in the Northern Benguela, the biomass of jellyfish shows a slight 

increase during the 1990’s, but no long-term trend. 

 

In PlankTOM11 in the Northern Benguela macrozooplankton outcompete jellyfish 

when fish PP is reduced, causing the decline in jellyfish biomass. The central 

hypothesis behind the apparent observed increase in jellyfish biomass in the Northern 

Benguela is that reduced fish biomass releases predation pressure on 

macrozooplankton allowing them to bloom, which in turn causes jellyfish to bloom 

due to an increased availability of food (Roux et al., 2013). There are several possible 

reasons for the opposing results presented here to the ECOPATH with ECOSIM 

modelling results (discussed in Section 5.1.5) which support the hypothesis (Roux and 

Shannon, 2004, Roux et al., 2013, Shannon et al., 2009). Firstly, in PlankTOM11, 

macrozooplankton have a built-in coastal advantage which enhances recruitment in 

coastal areas. Jellyfish in PlankTOM11 do not have this coastal advantage. The 

consequences of this may be that when macrozooplankton gain an advantage over 

jellyfish in a coastal environment (here reduced predation in the BCS) they can rapidly 

proliferate and overtake the ecosystem. Future work could introduce a coastal 

advantage to jellyfish in PlankTOM11, to simulate enhanced recruitment of jellyfish in 

coastal areas due to their meroplanktonic life cycle (see Chapter 1). Secondly, jellyfish 

experience no explicit predation pressure from fish in PlankTOM11. There is currently 

no evidence of sardines and/or anchovies preying on jellyfish in the BCS. However, 

research into this area is expanding, and recent studies have shown fish predation on 

jellyfish where it was previously assumed to not occur (Lamb et al., 2017). Fish 

predation on the adult stage of the jellyfish life cycle is highly unlikely due to the 

substantial size difference between the fish and jellyfish and the feeding strategies of 

sardines and anchovies. However, predation could occur on the planula larvae and 

ephyrae stages of the jellyfish life cycle. If this were the case in the BCS then it would 

have implications on the jellyfish biomass (see Chapter 3). Overfishing resulting in a 

release of predation pressure on jellyfish has been shown to be a contributing factor in 
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increasing jellyfish biomass in other regions (i.e. the Black Sea; Daskalov et al., 2007, 

Purcell and Arai, 2001); this may be a missing part of the story in the BCS. Future 

work could test the inclusion of varying levels of fish PP on jellyfish within 

PlankTOM11. Thirdly, mesozooplankton and protozooplankton experience no explicit 

predation pressure from fish in PlankTOM11. This lack of simulated predation by fish 

is because within PlankTOM11 all of the biomass of meso and protozooplankton is 

consumed by explicitly simulated PFTs. A release on the mortality of 

protozooplankton and mesozooplankton would also be ideal, but this requires 

additional work on the model, as there is currently no calculation of mortality due to 

proxy predator biomass for these two PFTs. 

 

In PlankTOM11 in the Southern Benguela fish PP has a substantially smaller effect on 

macrozooplankton and jellyfish biomass than in the Northern Benguela, with no long-

term trend in biomass. Fish PP has a greater influence on macrozooplankton than 

climate variability, but this influence does not propagate far into the ecosystem; 

mesozooplankton are also more influenced by fish PP but jellyfish, protozooplankton 

and chlorophyll are more influenced by climate variability. Climate variability has a 

greater influence on jellyfish than fish PP, except in the 2000’s where fish PP peaks. 

The low fish PP in the Southern Benguela during the 1970’s is a similar level to the 

low fish PP in the Northern Benguela after 1980 (Fig. 5.3). In both regions this 

increases macrozooplankton biomass and decreases jellyfish biomass. However, the 

influence of similar fish PP is substantially greater in the Northern Benguela than in 

the Southern Benguela. This result is consistent with observations of the Southern 

Benguela where changes to jellyfish biomass has not been reported (Roux et al., 2013). 

 

In PlankTOM11 in the Northern Benguela jellyfish are negatively correlated to SST, 

and positively correlated to upwelling. This supports the findings in Fearon et al. 

(1992) and Shannon et al. (1986) which suggest that negative correlation between 

jellyfish and climate oscillations is occurring in the BCS upwelling. Negative 

correlation between jellyfish and climate oscillations has been demonstrated for the 

PDO in the Northern Californian Current (Suchman et al., 2012). Negative correlation 

between temperate marine species and SST is counter to general growth and 

population trends, which are usually positively correlated to SST. The negative 

correlation likely occurs in upwelling regions like the Northern Benguela as the cold 
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upwelled waters bring nutrients to the surface stimulating enhanced phytoplankton 

growth which cascades up through the ecosystem (Suchman et al., 2012).  

 

A key result is the impact of simulating climate variability and fish PP together, rather 

than individually. In the Northern Benguela, the influence on the ecosystem of 

TOM11-CF was greater than the influence of TOM11-CN and TOM11-NF together 

(Table 5.3). In the Southern Benguela the influence on the ecosystem of TOM11-CF 

was less (expect for macrozooplankton) than the influence of TOM11-CN and 

TOM11-NF together (Table 5.4). PlankTOM11 shows regional differences despite the 

relatively low resolution. The full impact of overfishing on marine ecosystems cannot 

be understood without its interactions with climate variability. In the Northern 

Benguela climate and fisheries act synergistically to influence the ecosystem. This 

influence is greater than would be expected from the sum of the individual simulations 

of climate and fisheries. In the Southern Benguela climate and fisheries act in 

opposition to influence the ecosystem, reducing the overall effect. The Northern 

Benguela experiences stronger upwelling and is more affected by the Benguela Niño 

than the Southern Benguela (Shannon et al., 1986, Arntz et al., 2006). This difference 

affects the way each region interacts with the climate, and also likely with fisheries 

perturbations. Marine ecosystems face pressure from multiple factors at the same time 

including climate change, fisheries, pollution and oxygen depletion (Richardson et al., 

2009, Purcell, 2012). Improving understanding of how these various factors interact 

and potentially increase or decrease the influence of one another is vital in 

understanding how the marine environment will behave in the future with the pressure 

from many of these factors increasing.  

 

5.5 Conclusion 

 

Increased food availability is often named as the key mechanism driving an increase in 

jellyfish biomass following overfishing of planktivorous fish species (Bakun and 

Weeks, 2006, Lynam et al., 2006, Pauly et al., 2009, Robinson et al., 2014). Only 

including this mechanism in PlankTOM11 has resulted in a decrease in jellyfish 

biomass following overfishing of planktivorous fish species. These results have 

implications for the hypothesised mechanisms linking over fishing to increases in 

jellyfish biomass. Without some release in predation pressure on jellyfish, other large 
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zooplankton (which do experience a release in predation pressure) have an advantage 

and may outcompete jellyfish. Indeed, the behaviour of macrozooplankton in the 

Northern Benguela looks similar to that expected for jellyfish. Further work on the 

jellyfish PFT is required to investigate these results, particularly introducing a coastal 

advantage and testing the inclusion of fish predation on jellyfish.  
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6.1 Introduction  
 

Gelatinous zooplankton (GZ) play a key role in marine ecosystems and may be 

increasing due to climate change and other anthropogenic pressures. The need for GZ 

inclusion in global biogeochemical models has been noted several times in the 

literature (Burd et al., 2016, Fuentes et al., 2018, Lebrato et al., 2013). The focus of 

this PhD thesis was to investigate the role of GZ in the marine ecosystem through its 

inclusion in a global biogeochemical model, in particular the influence of GZ on other 

zooplankton and how this may influence the carbon cycle. Another goal was to assess 

the relative and cumulative influence of overfishing and climate change on GZ 

populations. It was necessary, due to data limitations, to focus the development of a 

GZ PFT to one of the three phylum types: Cnidaria medusa, also termed jellyfish. The 

largest portion of work for this thesis was undoubtably the development of 

PlankTOM11 (Chapter 3) which included the incorporation of the jellyfish PFT by 

characterising their physiological and ecological process rates and determining their 

trophic level. The model development also included changing the growth rate 

calculation for all the PFTs, subsequent tuning and learning to navigate such a 

complex ocean model. Within this thesis, five key questions have been addressed; 

1) Can GZ be represented in a global biogeochemical model? 

2) What is the global biomass of GZ and how does it compare to other 

zooplankton types? 

3) How do jellyfish affect the plankton ecosystem structure? 

4) What is the role of jellyfish in global carbon export? 

5) What is the relative effect on jellyfish biomass of overfishing and climate 

variability? 

 

6.2 Key Questions and Findings 
 

The five key questions addressed throughout this thesis are summarised below. 

1) Can GZ be represented in a global biogeochemical model? 

Yes, Cnidaria (jellyfish) have sufficient physiological data and are cohesive enough 

within the group to be defined as a PFT and are successfully incorporated into 

PlankTOM11 in Chapter 3. This is the first inclusion of jellyfish (or any GZ) in a 

global ocean biogeochemical model. Mortality is found to be a key tuning factor for 
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the jellyfish PFT and is also the characteristic with the least data available and 

therefore the largest uncertainty (Chapter 3). Representing GZ as one type in a global 

biogeochemical model is not ideal. Tunicata fill a different ecological niche and 

trophic level to Ctenophora and Cnidaria, so do not fulfil the requirements for a PFT as 

outlined in Le Quéré et al. (2005). Ctenophora and Cnidaria fill a similar ecological 

niche, but the dominance of physiological data on Cnidaria would mean that if the two 

were combined, the PFT would greatly represent Cnidaria over Ctenophora. Cnidaria 

also represent >90% of the global GZ biomass and so are arguably the most important 

of the three groups to understand (Lucas et al., 2014). This is addressed in Chapter’s 1, 

2 and 3.  

 

2) What is the global biomass of GZ and how does it compare to other 

zooplankton types? 

The global biomass of GZ from observations (MAREDAT) is range of 0.14 to 1.33 

PgC, and for jellyfish (Cnidaria) is 0.46 to 3.11 PgC (Chapter 2; following the methods 

from Buitenhuis et al., 2013). GZ biomass is similar to and possibly lower than the 

biomass range for macrozooplankton and jellyfish biomass is almost as high as the 

microzooplankton and higher than meso- and macrozooplankton. Key caveats to these 

values include that (almost) all of the biomass data for GZ is from the Northern 

Hemisphere, there is a potential under reporting of zero biomass values and for 

jellyfish there is a greater variance between the results from the different averaging 

methods, than between the MAREDAT and JeDI databases. The global biomass of 

jellyfish in PlankTOM11 is 0.13 PgC (Chapter 3) towards the lower end of 

observational analysis. PlankTOM11 overall underestimates the biomass and rates of 

most components, likely contributing to a possible underestimation of jellyfish 

biomass. However, within the context of lower biomass and rates, PlankTOM11 

results are consistent overall with observations. The zooplankton community in 

PlankTOM11 was highly sensitive to the jellyfish mortality rate, with low jellyfish 

mortality allowing jellyfish biomass to increase and dominate the zooplankton. This 

sensitivity of the zooplankton community to the mortality of jellyfish could help 

explain why jellyfish may be increasing globally, as pressures on their mortality in 

early-life stages decrease (reduced predation due to overfishing and increased habitat 

for planula settling), allowing them to outcompete other zooplankton.  
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3) How do jellyfish affect the plankton ecosystem structure? 

Jellyfish exert substantial control on the plankton community structure (Chapter 3). 

This control is both direct, though grazing on (mostly) other zooplankton, and indirect, 

through trophic cascades. Jellyfish biomass and macrozooplankton (crustaceans) 

biomass have a negative correlation, i.e. when one is high, the other is low. If one 

gains an advantage (environmental or prey driven) then it rapidly outcompetes the 

other, despite occupying different trophic levels. This negative correlation can be seen 

firstly in the jellyfish mortality experiments in Chapter 3, where macrozooplankton 

respond the most strongly of the PFTs to changes to jellyfish mortality, secondly 

throughout the jellyfish characteristic tests in Chapter 4, and thirdly in the fishing 

experiments in Chapter 5 where macrozooplankton have the advantage of reduced 

predation pressure and they rapidly dominate the region reducing jellyfish biomass. 

Jellyfish influence global chlorophyll concentration and spatial patterns, through 

trophic cascades, improving the north/south chlorophyll ratio in PlankTOM11.  

 

4) What is the role of jellyfish in global carbon export? 

Chapter 4 specifically addresses the role of jellyfish in carbon export. In PlankTOM11 

jellyfish influence carbon export mostly during their life through trophic cascades (see 

Question 3). Carbon export is higher with jellyfish included in the model than with 

‘just another’ top zooplankton, suggesting that the characteristics of jellyfish act to 

increase carbon export. The influence of jellyfish mortality on carbon export is most-

likely underrepresented in PlankTOM11, as the mortality simulation gives almost 

identical results to the respiration simulation. Observations of jelly-falls suggest that 

jellyfish mortality has a substantial influence on carbon export in areas of jellyfish 

blooms, as the high biomass of blooms coupled with the large body size and rapid 

sinking transport a substantial amount of carbon to the seafloor (Lebrato et al., 2012, 

Lebrato et al., 2013). The size and sinking speed of large OC in PlankTOM11 is far 

less than the size and sinking speed of jellyfish carcases in reality, thus the model is 

likely not reflecting the influence of jellyfish mortality on carbon export. 

 

5) What is the relative effect on jellyfish biomass of overfishing and climate 

variability? 

Chapter 5 specifically addresses how overfishing and climate variability affect jellyfish 

biomass using a case study of the Benguela Current System. Overfishing impacts 



 Conclusion 
	

226 

jellyfish biomass in the Northern Benguela but in the opposite way to that expected 

from hypotheses and circumstantial observations. In PlankTOM11 overfishing reduces 

jellyfish biomass due to macrozooplankton biomass increasing and outcompeting the 

jellyfish. In PlankTOM11 jellyfish are not predated by fish. This gives 

macrozooplankton an advantage over jellyfish and allows them to dominate the 

regional ecosystem. Introducing jellyfish predation by fish, cited as a hypothesis 

alongside competition for prey in other regions, will change these results and give 

insight into the relative importance of each in the relationship between jellyfish 

biomass and overfishing. In PlankTOM11 climate variability and overfishing act 

synergistically in the Northern Benguela, to such an extent that the effect of the two 

simulated together is greater than the effect of them individually simulated and added 

together. This is not the case in the Southern Benguela, which appears less sensitive to 

both changes in fishing and climate. Climate and fisheries ecosystem impacts, both 

individually and cumulatively, are regionally dependent. 

 

6.3 Future Work 

 

This is the first representation of jellyfish in a global ocean biogeochemical model, as 

a result there are further refinements to the jellyfish PFT which could be made in the 

future. A key refinement could be adding a coastal advantage to the jellyfish PFT to 

represent enhanced recruitment in coastal regions. This will likely have interesting 

implications for the current relationship between macrozooplankton and jellyfish in 

PlankTOM11. A coastal advantage will also introduce an element of jellyfish life cycle 

strategy (enhanced recruitment and settlement of planulae larvae onto hard substrate) 

into the model, without the need to wait for more observational data on life cycles. 

PlankTOM11 currently demonstrates some increase of jellyfish biomass in coastal 

regions (Chapter 3) but is likely under estimating their biomass in these regions. 

 

The representation of large OC in PlankTOM11 could be expanded to include multiple 

sizes so that carbon export associated with jellyfish processes (as well as other 

plankton) are better represented, especially in death. There is growing evidence that 

jelly-falls can contribute significant volumes of carbon to the sea floor (Lebrato et al., 

2012, Lebrato et al., 2013). Jelly-falls are currently underrepresented in PlankTOM11 

and may have substantial implications for the role of jellyfish in carbon export. Further 
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observations of the fate of carbon underneath active jellyfish blooms, during bloom 

formation and subsequent jelly-falls, would be very useful in furthering our 

understanding of the mechanisms linking jellyfish to carbon export. Observations of 

carbon export (through analysis of marine snow) during bloom formation could 

provide further information on potential changes to the sources of the carbon being 

exported, i.e. changing from mesozooplankton faecal matter to jellyfish mucus. Such 

observations would help to both validate and further development PlankTOM11. 

 

A key refinement for understanding the influence of overfishing on jellyfish biomass 

would be to test the predation pressure of historical fishing directly on jellyfish. The 

relative importance of the two mechanisms (jellyfish and fish competition for prey, 

and fish predation on jellyfish) in driving jellyfish biomass could then be investigated, 

and the hypothesis from Chapter 5 could be readdressed. The inclusion of fish 

predation on the other zooplankton, especially mesozooplankton, would also be ideal 

in order to further investigate the importance on ecosystem responses of food webs. 

 

The introduction of a higher grid resolution in PlankTOM11 will allow the 

representation of small-scale physical mixing such as eddies and frontal regions, which 

have been shown to influence bloom formation. For example many jellyfish blooms 

occur around fronts, upwelling regions, tidal and estuarine regions and shelf-breaks 

where currents can aggregate and retain organisms (Graham et al., 2001). Higher grid 

resolution will likely improve the representation of spatial and temporal patchiness of 

jellyfish biomass, along with improved representation of patchiness for the other PFTs. 

 

Data on the physiological rates of jellyfish required for PFT biogeochemical modelling 

are currently sparse. More data are needed to improve the parameterisation of jellyfish 

physiological rates. This is especially apparent for jellyfish mortality rates across all 

life stages. Further experiments on growth rates at a wider range of temperatures and 

for a wider range of jellyfish species would also help to better constrain the model 

growth parameter. Observational data on the biomass and abundance of jellyfish are 

sparse for the majority of the ocean. Increased observations would be beneficial to the 

further improvement of jellyfish in PlankTOM11, especially of open ocean regions and 

the Southern Hemisphere where data coverage is particularly poor. The inclusion of 

jellyfish in general ecosystem surveys and fisheries surveys is increasing and will 



 Conclusion 
	

228 

hopefully continue to increase. In the future this will provide valuable quantitative data 

that can be used for model validation, among many other uses.  

 

With some of these further refinements to the jellyfish PFT, long-term simulations of 

PlankTOM11 can be undertaken to investigate the role of climate change and climate 

indices on jellyfish both historically and into the future under various climate change 

projections. PlankTOM11 can now be used to investigate many questions beyond 

those we had time to address in this thesis project. 

 

6.4 Closing Statement 
 

The development and use of the PlankTOM11 model is a successful first step in 

understanding the role of jellyfish in global ocean biogeochemical cycles. Models can 

always be improved and can never perfectly and fully replicate the huge complexities 

of the ocean. The quote by the statistician George E. P. Box that “all models are 

wrong, but some are useful” is valuable in reminding us of the worth of models such as 

PlankTOM11 in understanding jellyfish.  

 

Jellyfish blooms are responsible for economic losses to a wide variety of coastal 

industries and have a substantial role within ecosystems, but we lack the observations 

to understand the role of climate change and overfishing on jellyfish populations. Now 

is a good time to look closely at the effects of climate change and overfishing on 

jellyfish, as global biogeochemical models have developed to a point where the 

inclusion of jellyfish is possible, as demonstrated in this thesis. 

 

No living organism is without a role in the natural world. Jellyfish (and GZ in general) 

are a prime example of a group of organisms largely overlooked by the scientific 

community and wider society because they were deemed ‘dead-end’ and ‘nuisance’ 

organisms, without an obvious monetary gain. Growing evidence is dismantling the 

idea of jellyfish (and all GZ) as trophic dead-ends (Lamb et al., 2017). Jellyfish make 

up a substantial proportion of the global marine ecosystem, likely play an important 

role in the biological carbon pump, are fascinating ancient organisms and much about 

them remains to be discovered. 
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Climate change, along with other human pressures, represent a huge challenge to 

marine ecosystems. To understand the impacts of humankind and perhaps limit or even 

reverse these impacts, we must understand the ecosystems we are trying to protect. 

Scientific evidence is needed to support good and proportionate action. Only through 

improving scientific evidence and understanding can we help to resolve the climate 

crisis. There is still much work to be done, particularly with improving public and 

political understanding of the oceans and how they will be impacted by climate change 

and how this in turn will affect all of us.  

 

 

 

 

 

 

 

“For most of history, man has had to fight nature to survive; in this century he is 

beginning to realise that, in order to survive, he must protect it.” 

Jaques Cousteau 
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Chordata Tunicata Appendicularia  Copelata  Fritillaridae Fritillaria Fritillaria borealis 

Chordata Tunicata Appendicularia  Copelata  Fritillaridae Fritillaria Fritillaria formica 

Chordata Tunicata Appendicularia  Copelata  Fritillaridae Fritillaria Fritillaria haplostoma 

Chordata Tunicata Appendicularia  Copelata  Fritillaridae Fritillaria Fritillaria megachile 

Chordata Tunicata Appendicularia  Copelata  Fritillaridae Fritillaria Fritillaria pellucida 

Chordata Tunicata Appendicularia  Copelata  Fritillaridae Fritillaria  

Chordata Tunicata Appendicularia  Copelata  Fritillaridae   

Chordata Tunicata Appendicularia  Copelata  Okiopleuridae Okiopleura Okiopleura dioica 

Chordata Tunicata Appendicularia  Copelata  Okiopleuridae Okiopleura Okiopleura labradoriensis 

Chordata Tunicata Appendicularia  Copelata  Okiopleuridae Okiopleura Okiopleura longicauda 

Chordata Tunicata Appendicularia  Copelata  Okiopleuridae Okiopleura Okiopleura parva 

Chordata Tunicata Appendicularia  Copelata  Okiopleuridae Okiopleura Okiopleura vanhoeffeni 

Chordata Tunicata Appendicularia  Copelata  Okiopleuridae Okiopleura  

Chordata Tunicata Appendicularia  Copelata     

Chordata Tunicata Appendicularia       

Chordata Tunicata Ascidiacea       

Chordata Tunicata Thaliacea  Doliolida Doliolidina Doliolidae Doliolides Dolioloides rarum 

Chordata Tunicata Thaliacea  Doliolida Doliolidina Doliolidae Doliolum  
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Chordata Tunicata Thaliacea  Doliolida Doliolidina Doliolidae   

Chordata Tunicata Thaliacea  Doliolida 
(Cyclomyaria)     

Chordata Tunicata Thaliacea  Pyrosomatida  
Pyrosomatidae 
(Pyrosomidae, 
Pyrosomida) 

Pyrosoma  

Chordata Tunicata Thaliacea  Pyrosomatida  
Pyrosomatidae 
(Pyrosomidae, 
Pyrosomida) 

  

Chordata Tunicata Thaliacea  Salpida  Salpidae Ihlea Ihlea punctata 

Chordata Tunicata Thaliacea  Salpida  Salpidae Ihlea  

Chordata Tunicata Thaliacea  Salpida  Salpidae Salpa Salpa fusiformis 

Chordata Tunicata Thaliacea  Salpida  Salpidae Salpa Salpa maxima 

Chordata Tunicata Thaliacea  Salpida  Salpidae Salpa  

Chordata Tunicata Thaliacea  Salpida  Salpidae Thalia Thalia democratica 

Chordata Tunicata Thaliacea  Salpida  Salpidae Thalia  

Chordata Tunicata Thaliacea  Salpida  Salpidae   

Chordata Tunicata Thaliacea  Salpida     

Chordata Tunicata Thaliacea   Hemimyaria    

Chordata Tunicata Thaliacea       

Chordata Tunicata        
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Cnidaria  Anothzoa       

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Capitata Capitata incertae 

sedis Plotocnide Plotocnide borealis 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Capitata Capitata incertae 

sedis Plotocnide  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Capitata Corynidae Polyorchis Polyorchis penicillatus 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Capitata Corynidae Polyorchis  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Capitata Corynidae Sarsia Sarsia princeps 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Capitata Corynidae Sarsia Sarsia tubulosa 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Capitata Corynidae Sarsia  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Capitata Porpitidae Porpita  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Capitata Porpitidae Velella  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Bougainvilliidae Bougainvillia 

(Perigonimus) 
Bougainvillia 
multitentaculata 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Bougainvilliidae Bougainvillia 

(Perigonimus) Bougainvillia superciliaris 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Bougainvilliidae Bougainvillia 

(Perigonimus) Perigonimus multicirratus 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Bougainvilliidae Bougainvillia 

(Perigonimus)  
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Bougainvilliidae   

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Pandeidae Halitholus Halitholus yoldiaearcticae 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Pandeidae Leuckartiara Leuckartiara annexa 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Pandeidae Leuckartiara Leuckartiara nobilis 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Pandeidae Leuckartiara Leuckartiara octona 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Pandeidae Leuckartiara  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Pandeidae Neoturris Neoturris breviconis 

(Perigonimus breviconis) 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Pandeidae Pandea  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Pandeidae Stomotoca Stomotoca atra 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Pandeidae Stomotoca  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Proboscidactylidae Proboscidactyla Proboscidactyla 

flavicirrata 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Proboscidactylidae Proboscidactyla Proboscidactyla ornata 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Rathkeidae Rathkea Rathkea jaschnowi 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Rathkeidae Rathkea Rathkea octopunctata 
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) 

Anthoathecata 
(Anthomedusae) Filifera Rathkeidae Rathkea  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Campanulariidae Clytia (Phialidium) Clytia gregaria (Phialidium 

gregaria) 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Campanulariidae Clytia (Phialidium) 

Clytia hemisphericum 
(Phialidium 
hemisphericum) 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Campanulariidae Clytia (Phialidium)  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Campanulariidae Obelia Obelia geniculata 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Campanulariidae Obelia Obelia longissima (Obelia 

flabellate) 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Campanulariidae Obelia  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Eirenidae Eutonina Eutonina indicans 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Laodiceidae Ptychogena Ptychogena lactea 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Laodiceidae Staurophora Staurophora mertensii 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Laodiceidae Staurophora  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Merlicertidae Melicertum Melicertum octocostatum 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Mitrocomidae   
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Tiaropsidae Tiaropsidium  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Tiaropsidae Tiaropsis Tiaropsis multicirrata 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata  Tiaropsidae Tiaropsis  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Leptothecata     

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Abylidae Abylopsis Abylopsis tetragona 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Abylidae Abylopsis  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Lensia Lensia beryi 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Lensia Lensia campanella 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Lensia Lensia conoidea 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Lensia Lensia fowleri 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Lensia Lensia subtilis 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Lensia Lensia subtiloides 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Lensia  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Muggiaea Muggiaea atlantica 
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Muggiaea Muggiaea kochi 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Muggiaea  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Sulculeolaria Sulculeolaria quadrivalvis 

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Calyconectae 

(Calycophorae) Diphyidae Sulculeolaria  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Cystonectae Physaliidae Physalia  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina) Siphonophorae Physonectae Agalmatidae Nanomia  

Cnidaria  Hydrozoa Hydroida (Hydroidae, 
Hydroidolina)      

Cnidaria  Hydrozoa Hydromedusae      

Cnidaria  Hydrozoa Trachylinae Narcomedusae  Aeginidae Aegina Aegina rosea 

Cnidaria  Hydrozoa Trachylinae Narcomedusae  Aeginidae Aegina  

Cnidaria  Hydrozoa Trachylinae Narcomedusae  Aeginidae Aeginopsis Aeginopsis laurentii 

Cnidaria  Hydrozoa Trachylinae Narcomedusae  Aeginidae Aeginopsis  

Cnidaria  Hydrozoa Trachylinae Narcomedusae  Aeginidae Solmundella Solmundella bitentaculata 

Cnidaria  Hydrozoa Trachylinae Narcomedusae  Aeginidae   

Cnidaria  Hydrozoa Trachylinae Narcomedusae  Tetraplatidae Tetraplatia  

Cnidaria  Hydrozoa Trachylinae Trachymedusae  Geryoniidae Liriope Liriope tetraphylla 
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Cnidaria  Hydrozoa Trachylinae Trachymedusae  Halicreatidae Homoeonema Homoeonema platygonon 

Cnidaria  Hydrozoa Trachylinae Trachymedusae  Ptychogastriidae   

Cnidaria  Hydrozoa Trachylinae Trachymedusae  Rhopalonematidae Aglantha Aglantha digitale 

Cnidaria  Hydrozoa Trachylinae Trachymedusae  Rhopalonematidae Aglantha  

Cnidaria  Hydrozoa Trachylinae Trachymedusae  Rhopalonematidae Aglaura Aglaura hemistoma 

Cnidaria  Hydrozoa Trachylinae Trachymedusae  Rhopalonematidae Aglaura  

Cnidaria  Hydrozoa Trachylinae Trachymedusae  Rhopalonematidae Sminthea Sminthea arctica 

Cnidaria  Hydrozoa Trachylinae Trachymedusae  Rhopalonematidae   

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Aplanulata Corymorphidae Euphysa 

(Corymorpha) 
Euphysa flammea 
(Corymorpha flammea) 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Aplanulata Corymorphidae Euphysa 

(Corymorpha) Euphysa tentaculata 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Aplanulata Corymorphidae Euphysa 

(Corymorpha) 
 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Aplanulata Tubulariidae Hybocodon Hybocodon prolifer 

(Tubularia prolifer) 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Aplanulata Tubulariidae Hybocodon  

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Capitata Corynidae Coryne Coryne principes 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Capitata Corynidae Coryne Coryne pusilla 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Capitata Corynidae Coryne Coryne tubulosa 
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Capitata Corynidae Coryne  

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Capitata Corynidae Dipurena Dipurena halterata 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Capitata Corynidae   

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Capitata Halimedusidae Halimedusa Halimedusa typus 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Filifera Bythotiaridae Calycopsis Calycopsis birulai 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Filifera Bythotiaridae Calycopsis Calycopsis nematophora 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Filifera Cyaeididae Cytaeis  

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Filifera Pandeidae Catablema Catablema vesicarium 

(Perigonimus vesicarius) 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae) Filifera Pandeidae Halitholus Halitholus cirratus 

Cnidaria  Hydrozoa  Anthoathecata 
(Anthomedusae)     

Cnidaria  Hydrozoa  Leptothecata  Aequoreidae Aequorea Aequorea aequorea 

Cnidaria  Hydrozoa  Leptothecata  Aequoreidae Aequorea Aequorea forskalea 

Cnidaria  Hydrozoa  Leptothecata  Aequoreidae Aequorea  

Cnidaria  Hydrozoa  Leptothecata  Campanulinidae Cuspidella Cuspidella mertensi 

Cnidaria  Hydrozoa  Leptothecata  Campanulinidae Cuspidella  
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Cnidaria  Hydrozoa  Leptothecata  Campanulinidae   

Cnidaria  Hydrozoa  Leptothecata  Mitrocomidae Halistaura  

Cnidaria  Hydrozoa  Limnomedusae  Olindiidae Gonionemus Gonionemus vertens 

Cnidaria  Hydrozoa  Limnomedusae  Olindiidae Gonionemus  

Cnidaria  Hydrozoa  Siphonophorae Calyconectae 
(Calycophorae) Diphyidae Chelophyes Chelophyes appendiculata 

Cnidaria  Hydrozoa  Siphonophorae Calyconectae 
(Calycophorae) Diphyidae Chelophyes  

Cnidaria  Hydrozoa  Siphonophorae Calyconectae 
(Calycophorae) Diphyidae Dimophyes Dimophyes (Diphyes 

arctica) 

Cnidaria  Hydrozoa  Siphonophorae Calyconectae 
(Calycophorae) Diphyidae Diphyes Diphyes dispar 

Cnidaria  Hydrozoa  Siphonophorae Calyconectae 
(Calycophorae) Diphyidae Diphyes  

Cnidaria  Hydrozoa  Siphonophorae Calyconectae 
(Calycophorae) Diphyidae Eudoxoides Eudoxoides spiralis 

Cnidaria  Hydrozoa  Siphonophorae Calyconectae 
(Calycophorae) Diphyidae Eudoxoides  

Cnidaria  Hydrozoa  Siphonophorae Calyconectae 
(Calycophorae) Diphyidae   

Cnidaria  Hydrozoa  Siphonophorae Calyconectae 
(Calycophorae)    

Cnidaria  Hydrozoa  Siphonophorae Physonectae Agalmatidae Agalma Agalma elegans 

Cnidaria  Hydrozoa  Siphonophorae Physonectae Agalmatidae Agalma  
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Cnidaria  Hydrozoa  Siphonophorae Physonectae Agalmatidae Cordagalma Cordagalma cordiforme 

Cnidaria  Hydrozoa  Siphonophorae Physonectae Agalmatidae Halistemma Halistemma rubrum 

Cnidaria  Hydrozoa  Siphonophorae Physonectae Agalmatidae   

Cnidaria  Hydrozoa  Siphonophorae  Abylidae Bassia Bassia bassensis 

Cnidaria  Hydrozoa  Siphonophorae  Abylidae Bassia  

Cnidaria  Hydrozoa  Siphonophorae  Aglamidae   

Cnidaria  Hydrozoa  Trachymedusae  Halicreatidae Botrynema Botrynema brucei 

Cnidaria  Hydrozoa       

Cnidaria  Scyphozoa Coronamedusae Coronatae  Periphyllidae Periphylla Periphylla periphylla 

Cnidaria  Scyphozoa  Semaeostomeae  Cyaneidae Cyanea Cyanea capillata 

Cnidaria  Scyphozoa  Semaeostomeae  Pelagiidae Chrysaora Chrysaora helova 

Cnidaria  Scyphozoa  Semaeostomeae  Pelagiidae Chrysaora Chrysaora melanaster 

Cnidaria  Scyphozoa  Semaeostomeae  Pelagiidae Chrysaora  

Cnidaria  Scyphozoa  Semaeostomeae  Ulmaridae Aurelia Aurelia aurita 

Cnidaria  Scyphozoa  Semaeostomeae  Ulmaridae Aurelia Aurelia limbata 

Cnidaria  Scyphozoa       

Cnidaria  Siphonophorae       

Cnidaria         
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Table A1. Taxonomic information for gelatinous zooplankton from MAREDAT. The last filled column for each row is the taxonomic level given in MAREDAT. Provided in parenthesis are alternative 
or historic names for the same organism. 

Phylum Subphylum Class Subclass Order Suborder Family Genus Species 

Ctenophore  Nuda  Beroida  Beroidae Beroe  

Ctenophore  Tentaculata  Cydippida  Mertensiidae Mertensia Mertensia ovum 

Ctenophore  Tentaculata  Cydippida  Mertensiidae Mertensia  

Ctenophore  Tentaculata  Cydippida  Pleurobrachiidae Hormiphora Hormiphora cucumis 

Ctenophore  Tentaculata  Cydippida  Pleurobrachiidae Pleurobranchia Pleurobrachia pileus 

Ctenophore  Tentaculata  Cydippida  Pleurobrachiidae Pleurobranchia  

Ctenophore  Tentaculata  Lobata  Bolinopsidae Bolinopsis Bolinopsis infundibulum 

Ctenophore  Tentaculata  Lobata  Bolinopsidae Bolinopsis  

Ctenophore         

Jellyfish         




