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Key Points: 

 The signal of changes in observed temperature and rainfall due to global warming has 

clearly emerged in many regions and at meso-scales 

 Tropical regions have experienced the largest changes in temperature relative to the 

amplitude of internal variability 

 Signals of increasing extreme rainfall are emerging more quickly than signals in mean 

rainfall over many parts of the UK 

 

  



 

 

Abstract 

Changes in climate are usually considered in terms of trends or differences over time. However, 

for many impacts requiring adaptation, it is the amplitude of the change relative to the local 

amplitude of climate variability which is more relevant. Here, we explore the concept of ‘signal-

to-noise’ in observations of local temperature, highlighting that many regions are already 

experiencing a climate which would be ‘unknown’ by late 19th century standards. The emergence 

of temperature changes over both land and ocean is clearest in tropical regions, in contrast to the 

regions of largest change which are in the northern extra-tropics – broadly consistent with 

climate model simulations. Significant increases and decreases in rainfall have also already 

emerged in different regions with the UK experiencing a shift towards more extreme rainfall 

events, a signal which is emerging more clearly in some places than the changes in mean rainfall. 

Plain Language Summary 

Changes in climate are translated into impacts on society not just though the amount of change, 

but how this change compares to the variations in climate that society is used to. Here we 

demonstrate that significant changes, when compared to the size of past variations, are present in 

both temperature and rainfall observations over many parts of the world. 

1 Introduction 

It was first noted that surface air temperatures were increasing at both local and global scales 

more than 80 years ago [Kincer 1933, Callendar 1938]. At the time it was unclear whether the 

observed changes were part of a longer term trend or a natural fluctuation – the ‘signal’ had not 

yet clearly emerged from the ‘noise’ of variability – although Callendar [1938] did suggest that 

the increase in atmospheric carbon dioxide concentrations was partly to blame. 

The concept of the emergence of a climate change signal has since been discussed extensively, 

often linked with the detection & attribution of climatic changes. For example, Madden & 

Ramanathan [1980] and Wigley & Jones [1981] could not robustly detect the carbon dioxide 

warming signal, but Hansen et al. [1988] predicted that the ratio of temperature change and the 

magnitude of interannual variability – the signal-to-noise ratio – would be above 3 in large parts 

of the tropics by the 2010s, with smaller values over high latitude land regions. Mahlstein et al. 

[2011, 2012] subsequently demonstrated that the signal had indeed emerged in the observations, 

especially in the tropics in boreal summer, and with a similar pattern to that expected from 

climate model simulations. Lehner et al. [2017] subsequently highlighted emergence of observed 

temperature changes in both winter and summer in the northern extra-tropics. Significant 

changes in precipitation are often harder to detect because both thermodynamic and dynamic 

factors are crucial [e.g. Zappa & Shepherd, 2017] and because internal variability in precipitation 

is larger. However, precipitation changes are apparent in some regions [e.g. Zhang et al. 2007] 

including in extremes [e.g. Min et al. 2011]. 

Many studies have also considered when further changes in climate will emerge, for both mean 

temperature [Mahlstein et al. 2011, Hawkins & Sutton 2012] and precipitation [Giorgi & Bi 

2009, Fischer et al. 2014]. Other studies have considered when changes in climate extremes 

should have emerged in the past [King et al. 2015] or future [Diffenbaugh & Scherer 2011, 



 

 

Fischer et al. 2014]. However, rather than examine the timing of any climate emergence, we 

focus here on the related quantity – signal-to-noise.  

The clearest emergence of warming – and largest signal-to-noise values – tend to be found in the 

tropics, which are regions with large and vulnerable populations [Frame et al. 2017, Harrington 

et al. 2017]. Signal-to-noise (S/N) is important for climate impacts, especially for ecosystems 

which have a limited ability to adapt and so large changes outside past experience could be 

particularly harmful [Deutsch et al. 2008; Beaumont et al. 2011]. Crop growing areas also face 

unprecedented heat [Battisti & Naylor 2009] and changes in rainfall which may move outside 

past experiences [Rojas et al. 2019]. The impacts of shifts in snowfall [Diffenbaugh et al. 2012] 

and Köppen–Geiger zones [Mahlstein et al. 2013] have also been discussed in terms related to 

the natural variability of the local conditions. Quantifying the changes that have already occurred 

may help determine which regions are suffering the largest adverse consequences of a warming 

world. 

Here, we revisit the question of where and how the signal of climatic changes is emerging from 

the background noise of internal variability. In contrast to most previous studies we focus our 

analysis on observational datasets of temperature and precipitation, with model simulations used 

only to test the methodology. 

2. Observed emergence and signal-to-noise 

2.1 Methodology 

Our aim is to produce estimates of signal-to-noise (S/N) for changes in observed climate 

variables without utilising data from any climate model simulations. The simple approach 

adopted is to linearly regress local variations in climate onto annual global mean surface 

temperature change (GMST), i.e. 

L(t) = G(t) + , 

where L(t) is the local change (in temperature or precipitation) over time, G(t) is a smoothed 

version of GMST change over the same period,  defines the linear scaling between L and G, 

and  is a constant. Sutton et al. [2015] highlighted that a large fraction of variance in local 

climate changes can be represented by GMST changes, and Fischer et al. [2014] demonstrated 

that a similar regression approach provided robust estimates of S/N when examining future 

changes in precipitation in climate model simulations. 

For G(t) we use GMST from the Berkeley Earth temperature dataset for 1850-2018 (Rohde et al. 

[2013], combined with HadSST3 from Kennedy et al. [2011]), relative to the mean of 1850-

1900, and smoothed with a lowess filter of 41-years to highlight the long-term variations (Figure 

1a). The conclusions are insensitive to whether the smoothing parameter is slightly larger or 

smaller. The ‘signal’ of global temperature change is defined as the value of the smoothed 



 

 

GMST in 2018 (G2018 = 1.19K), the ‘signal’ of local climate change explained by GMST is G 

and the ‘noise’ is defined as the standard deviation of the residuals (L – G).  

Although we do not formally attribute the observed change in GMST, and hence local changes, 

to particular radiative forcings or feedbacks, applying the method of Haustein et al. [2017] to 

derive a GMST change that is attributable to human activity gives 1.22K, similar to G2018. 

Although 1850-1900 is often considered as a proxy for ‘pre-industrial’ GMST, the Haustein et 

al. [2017] approach also suggests an additional anthropogenic warming of around 0.05K 

occurred between 1750 and 1850-1900, based on radiative forcing estimates back to 1750. 

Although this plausible pre-1850 attributable warming is not included in our analysis, we refer to 

the 1850-1900 period as the early-industrial era, rather than pre-industrial. 

2.2 Example for annual mean temperatures in Oxford 

To demonstrate our approach we consider a case study of temperature change in Oxford, UK. 

Burt & Burt [2019] produced an extended temperature record for the Oxford Radcliffe 

Observatory with annual means available for 1814-2018. The temporal evolution of GMST and 

temperatures in Oxford are similar, showing that the ‘fingerprint’ of GMST change is clearly 

visible at the spatial scale of a single continuous weather station, although with more noise at the 

local scale (Figure 1b, also see Sutton et al. [2015]). We note that there is likely an urban heat 

island influence on temperatures in Oxford of around 0.1-0.2K [Burt & Burt 2019].  

We regress this local temperature dataset onto smoothed GMST and obtain  = 1.45 ± 0.25 (95% 

confidence interval). The ‘signal’ for Oxford is G2018 = 1.72 ± 0.30K and the ‘noise’, i.e. the 

local variations that are not explained by GMST variations, is 0.54K. Oxford therefore exhibits a 

S/N ratio of 3.2 ± 0.5 (Figure 1b). 

We adopt the language of Frame et al. [2017] to describe how the climate has changed from 

being familiar, to being ‘unusual’ relative to lived experience (S/N > 2), ‘unknown’ (S/N > 3), 

and here we introduce ‘inconceivable’ for S/N values above 5 (Fig. S1). Using this terminology, 

temperatures in Oxford have become unknown relative to the early-industrial era. Two other 

regional examples are illustrated in Fig. S2. 

2.3 Local climate data and methodological tests 

We perform a similar S/N analysis for each land and ocean gridpoint in the Berkeley Earth 

temperature dataset (1850-2018) and in the GPCCv2018 land precipitation dataset (1891-2016, 

Schneider et al. [2017]). We use the 1º x 1º datasets for both Berkeley Earth and GPCC. We also 

use the HadUK-Grid dataset for the UK [Hollis et al. 2019] at 25km spatial resolution for 

monthly (1862-2017) and daily (1891-2017) precipitation data to examine changes in mean 

rainfall and extremes. Note that smoothed GMST (1850-2018) is used as G for both local 

temperature and precipitation analyses. 

As the local data is not necessarily available for all years back to 1850 we perform the regression 

only over the period where local temperatures or precipitation are defined. The signal relative to 

the early-industrial era can still be calculated assuming that the estimated regression parameter 

(), is representative for the whole period, i.e. the signal is always G2018, irrespective of the 



 

 

time period used to calculate . However, we require that there must be at least 100 years of 

local climate data available. 

We test our methodology using a large ensemble of climate simulations for the historical period 

[Maher et al. 2019], specifically to examine the uncertainty due to internal variability in derived 

S/N values for temperature and precipitation. Figs. S3 and S4 demonstrate that the methodology 

produces S/N values with small uncertainties (typically <0.4 over land regions) and robust 

patterns. 

3. Emergence of unknown temperatures 

The map of the current observed signal of annual temperature change, relative to the early-

industrial era, is shown in Figure 2a. It shows the familiar pattern of more warming over land 

than over the oceans, more warming at high northern latitudes, and less warming in the tropical 

regions and the southern hemisphere. Virtually all locations have experienced more than 1K 

change since the early-industrial era, and many regions have exceeded 2K. The estimated noise 

shows a similar pattern with larger variability at higher northern latitudes, but the differences 

between the tropics and extra-tropics are more pronounced than for the signal (Figure 2b). 

The ratio of these two patterns results in a signal-to-noise (S/N) map with the largest values in 

the tropical regions (Figure 2c). Although these areas generally have smaller signals than higher 

latitude regions, they have experienced a larger amplitude change relative to the (smaller) 

background variations in temperature than other regions. This is important as societies, 

infrastructure and ecosystems are often adapted for the range of local climate experienced. S/N 

measures how far the climate is being shifted from that past range; the climate in large parts of 

the tropics has shifted such that the mean climate would have been inconceivable in the early-

industrial era. More than half of the land area has experienced S/N above 3, and so has moved 

into a climate that is unknown by early-industrial standards (Fig. S5). 

Over the oceans the largest S/N values are found in the tropical Atlantic and tropical Indian 

Oceans. Fish species such as tuna have already been seen to be moving away from the tropics to 

the sub-tropics, likely to avoid these warmer waters [Monllor-Hurtado et al. 2017]. Large parts 

of the North Atlantic have seen little warming overall, likely due to changes in ocean circulation 

providing a local cooling influence to offset global warming [e.g. Dima & Lohmann 2010].  

Although there are variations in magnitude, the estimated S/N pattern is relatively robust to the 

choice of temperature dataset [Morice et al. 2012, Cowtan & Way 2014, Lenssen et al. 2019, 

Zhang et al. 2019]. However, there are notable local differences between datasets over south-east 

USA and parts of South America (Fig. S6). The overall observed emergence pattern is broadly 

similar to that found in models under future climate change scenarios [Frame et al., 2017] 

though there are regional-scale differences; especially in the oceans but over some land areas 

too. 

When considering how changes in climate may be experienced, it may in many cases be more 

relevant to examine seasonal or monthly timescales, depending on the impact being considered. 

For example, Figure 3 shows that S/N values can still be significant for monthly average 

temperatures. Again, the largest S/N values are found in the tropics and tend to be larger for the 



 

 

climatologically warmest month than the climatologically coldest month for each location. This 

is because weather variability tends to be larger in the colder months. Around 40% of land areas 

have moved into an unusual climate in their warmest months, and 20% in the coldest months 

(Fig. S5). This suggests a comparatively large increase in likelihood of heat-related extreme 

events in already warm months of already hot countries. One example is south-east Asia where 

the S/N values are large and the combined effects of El Nino events and climate change on 

extreme heat in the warmest months of the year has previously been noted [Thirumalai et al. 

2017]. 

4. Emergence of unusual precipitation amounts 

The S/N analysis is repeated for annual mean precipitation using the GPCC dataset. In this case, 

some regions are getting significantly wetter and others are getting significantly drier (Figure 4) 

but, unsurprisingly, the signals are less clear than for temperature. Notable emergence of 

‘unfamiliar’ (S/N > 1) or unusual precipitation changes are observed in west Africa, Brazil, Chile 

and south-west Australia (drier), and the northern high latitudes and Argentina (wetter). The 

seasonal values of S/N are shown in Fig. S7. The changes in several of these regions have been 

discussed as being consistent with the expected response to increased greenhouse gas forcing, 

e.g. for south-west Australia [Delworth & Zeng 2014], for Chile [Boisier et al. 2016] and the 

northern extra-tropics [Zhang et al. 2007]. 

To demonstrate that this framework can be applied to a range of gridded datasets and spatial 

scales, we consider one small region in more detail. The UK has a gridded rainfall dataset 

available, covering 1891-2017 (daily) and 1862-2017 (monthly), which is suitable for examining 

changes in mean and extreme rainfall [Hollis et al. 2019].  

Figure 5 shows the signal and S/N for annual mean rainfall, highlighting a tendency for 

increasing rainfall in large parts of the northern UK and the western coasts of up to 20% per K of 

GMST change. The corresponding S/N values exceed 1 in several areas, and these tend to be 

mountainous regions. Fig. S8 shows the seasonal mean S/N values. 

When considering the wettest day of the year (RX1day) as L(t), there is a clear signal of 

increasing extreme rainfall, but the pattern is strikingly different to the mean. This signal is 

visible across large parts of the UK, even in regions where there are only small changes in mean 

rainfall. The signal has only clearly emerged in a few locations (Fig. 5) but the spatial average of 

RX1day across the UK suggests an increase in extreme rainfall amounts of around 4mm (or 

11%) per K of GMST change (Fig. S9), which is around 8% per K of UK temperature change, 

approximately consistent with Clausius-Clapeyron expectations [Pall et al. 2007].  

These findings are consistent with Min et al. [2011] who showed that the signal of changes in 

extreme rainfall were detectable and attributable to human activity over large parts of the 

northern hemisphere land areas, and with Fischer et al. [2014] used climate model simulations to 

suggest that emergence of changes in extreme rainfall can occur earlier than changes in mean 

rainfall. Continued recovery of millions of undigitized weather observations, including for daily 



 

 

rainfall, will improve and lengthen these gridded datasets [e.g. Ashcroft et al. 2018; Hawkins et 

al. 2019]. 

5. Summary and discussion 

We have estimated the signal-to-noise ratio (S/N) of observed temperature and precipitation 

changes since the early-industrial era (1850-1900). Although we do not formally attribute these 

local changes to specific radiative forcings or feedbacks, the emergence of significantly different 

climates is related to increases in GMST, which itself is largely due to anthropogenic factors 

[e.g. IPCC 2018]. 

Consistent with previous studies and expectations from climate model simulations, the largest 

S/N values for historical temperature changes are seen in the tropical regions, over both land and 

ocean. Large regions have already experienced a shift to a climate state that is unknown, and 

even inconceivable, compared to that in the late 19th century. These signals of change are also 

clear in monthly average temperatures, with warmer months showing more significant changes. 

Precipitation signals are emerging in several regions when considering observed rainfall changes, 

particularly West Africa, parts of South America and northern Eurasia. Some regions in South 

America and central Africa exhibit simultaneously high S/N for temperature (S/N>4) and 

significantly drier precipitation (S/N<-1) which may compound impacts. 

As a demonstration of the methods in a data-rich region, and over a range of spatial scales, our 

analysis shows there are clear shifts towards more annual rainfall over the UK, focussed over 

northern and western areas. Significant increases in extreme heavy rainfall are emerging over 

large parts of the UK and are emerging more quickly than changes in mean rainfall in some 

places. The magnitude of the increase in extreme rainfall (~8% per K of local temperature 

change) is approximately consistent with expectations from the Clausius-Clapeyron relationship. 

Many of the largest global shifts in climate, relative to the background variability, are found in 

countries with large, vulnerable populations, and this will be exacerbated if policy targets such as 

those in the Paris Agreement are not met [Frame et al. 2017, King & Harrington 2018]. There 

are also implications for ecosystems in these regions, which may not be able to adapt to such an 

unknown climate, especially given the rates of change. The rates of change of signal-to-noise to 

which societies and ecosystems can adapt is an important topic for future analyses. 
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Figure 1: Emergence of global and local temperature change from 1850-2018. (top) GMST 

(grey), smoothed with a 41-year lowess filter (black). (bottom) Oxford annual temperature (grey) 

and scaled smoothed GMST (black). The correlation between Oxford temperatures and 

smoothed GMST is 0.67, and if the Oxford data is also smoothed with a 41-year lowess filter the 

correlation increases to 0.98. The shaded bands indicate 1 and 2 standard deviations of the noise. 

  



 

 

 

 

 

 

Figure 2: Signal, noise (both in K) and S/N for observed annual mean temperature change in the 

Berkeley Earth dataset. Many tropical regions show the smallest signal, but also the smallest 

noise and largest S/N. Grey regions denote lack of sufficient data. The S/N values in stippled 

areas are not significantly different from zero. 

  



 

 

 

Figure 3: Signal-to-noise ratio for monthly average temperatures, for the climatologically 

warmest (left) and coldest (right) months at each grid point. Grey regions denote lack of 

sufficient data. The S/N values in stippled areas are not significantly different from zero.  

 

Figure 4: Signal-to-noise ratio for annual mean precipitation over land using the GPCC dataset. 

Blue colours denote regions becoming wetter, and red colours denote regions that are becoming 

drier. Grey regions are either unobserved (oceans) or deserts (<250mm/year). Stippling indicates 

where the regression parameter is not statistically significant from zero. 

  



 

 

 

Figure 5: Signal (left) and signal-to-noise ratio (right) for annual mean precipitation over the UK (top row, 1862-

2017) and extreme daily rainfall (RX1day, bottom row, 1891-2017) using the HadUK-Grid dataset. The signal is 

presented in units of % per K of GMST change. Blue colours denote regions becoming wetter, and red colours 

denote regions that are becoming drier. Stippling in the S/N panels indicates where the regression parameter is not 

statistically significant from zero. 
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S.1 Shifting distributions 

 

The emergence of a signal can be visualised using shifting normal distributions (Fig. S1). Frame et al. (2017) 

described S/N>1 as a shift to an ‘unfamiliar’ climate, S/N>2 as an ‘unusual’ climate and S/N>3 as an ‘unknown’ 

climate, in terms of an individual’s lifetime. We add the term ‘inconceivable’ for S/N>5, as the new mean climate 

would be experienced once every 3 million years in the old climate.  

 

Two regional average examples are shown in Fig. S2, for tropical America and northern America, highlighting the 

differences in signal and noise characteristics. Even though northern America has a larger signal, the change is more 

apparent in tropical America. 

 

 
Figure S1: Shifting a normal distribution by 0 (black) to 6 (dark red) standard deviations.   

 

 

 
 

Figure S2: Two regional examples of how observed temperature changes have become apparent, using the Berkeley 

Earth temperature dataset. The red shaded bands represent 1 and 2 standard deviations of the noise. 

 

  



 

 

S.2 Using model simulations to test the emergence methodology 

 

We can test the robustness of the methodology to estimate the S/N using a large ensemble of model simulations. 

Maher et al. (2019) describe the 100-member ensemble of the MPI GCM, from which we use the simulated SAT for 

the historical period (1850-2005), extended to 2018 with the RCP4.5 scenario. First, we apply the same 

methodology used for the observations to each ensemble member individually. The ensemble mean S/N, which is 

expected to be smoother than the observed S/N due to averaging, is shown in Fig. S3a, and the spread in S/N across 

the ensemble is shown in Fig. S3c. The uncertainty in S/N is generally between 0.2-0.4 over land, which is typically 

far smaller than the mean S/N. The maritime continent, North Atlantic and Southern Ocean are regions with largest 

uncertainty in this GCM. The percentage uncertainty in S/N is less than 30% over most land areas (Fig. S3d). A 

simpler approach, which is not possible using observations, is to calculate the S/N by averaging the simulated 

temperature anomaly patterns in 2018, relative to the mean of 1850-1900, from all ensemble members, and dividing 

by the standard deviation of the 2018 anomalies (Fig. S3b). This pattern is virtually identical to Fig. S3a, 

highlighting that the regression approach produces S/N estimates that are robust. These results also demonstrate that 

the uncertainty in S/N due to simulated internal variability is relatively small. 

 

Note that the patterns of simulated S/N in this ensemble are noticeably different from the observed patterns. One 

important example is in parts of west Africa where the MPI ensemble S/N is close to zero but is larger than 5 in the 

observations. India also has a low S/N in the ensemble, but significant values in the observations. This finding 

highlights the benefit of using the observations alone, as in the current study. 

 

Fig. S4 shows the same maps for simulated precipitation change in the MPI ensemble. Again, the two methods 

produce similar patterns (Fig. S4a, b), with the ensemble method showing slightly larger values. The simulated 

uncertainty in S/N due to internal variability is typically 0.3-0.4 over land regions. The patterns are again different 

from that derived from the observations, especially in west Africa which is significantly wetter in the simulations 

but drier in the observations.  



 

 

 

 
Figure S3: Testing the S/N methodology using the MPI Large Ensemble (Maher et al. 2019). (top left) S/N 

calculated as for the observations in each individual ensemble member, averaged across the 100-members. (top 

right) Mean simulated temperature in 2018 minus the average of 1850-1900 across all ensemble members, divided 

by the standard deviation of simulated temperature in 2018. (bottom left) Standard deviation in the S/N estimated 

using the observational method across the 100-members. (bottom right) The percentage uncertainty in S/N, i.e. 

bottom left panel divided by top left. 

 



 

 

 
Figure S4: as Fig. S3 for precipitation. 

 

  



 

 

 

S.3 Additional metrics 

 

Figure S5 shows the fraction of land area which has a S/N for temperature exceeding the value indicated, using the 

Berkeley Earth dataset. For the annual mean, around 15% of the land area has a S/N larger than 5, and 40% shows a 

S/N larger than 2 for the warmest climatological month of the year. The warmest months tend to show larger S/N 

values than the coldest months. 

 

Figure S6 repeats the S/N temperature analysis using other datasets: HadCRUT4 (Morice et al. 2012), Cowtan & 

Way (2014, hereafter CW14) infilled version of HadCRUT4, GISTEMP (Lenssen et al. 2019) and NOAA 

GlobTemp (Zhang et al. 2019). For this sensitivity test we have used the same smoothed GMST from Berkeley 

Earth in all cases. These datasets generally produce similar patterns to that from Berkeley Earth (Fig. 2c), but with 

varying amplitudes. NOAA GlobTemp has larger S/N values in the tropics than the other datasets and Berkeley 

Earth has larger S/N for the south-east USA. There are other notable differences for west Africa and parts of south 

America, mainly due to different estimates for the signal, rather than the noise (not shown). There is consistent 

agreement that the tropical Atlantic and Indian Oceans exhibit the highest S/N for the ocean areas, and that there has 

been very little warming overall in the central North Atlantic. 

 

Figure S7 shows the S/N patterns for precipitation in different seasons, highlighting that the west Africa signals are 

present in all seasons except DJF, and the south-west Australia drying signal is mainly present in JJA. The wetter 

northern latitude signal is mainly present in DJF and MAM. 

 

Figure S8 shows the S/N patterns for UK mean precipitation in different seasons. There are tendencies towards 

wetter seasons, except for JJA where the S/N is rarely significant. Note that the observed signal in southern UK is 

for drier summers but it has not yet emerged. 

 

Figure S9 shows the UK mean RX1day time-series with maps for two example years. 

  



 

 

 
 

Figure S5: The fraction of land area with an observed temperature S/N larger than the ratio shown, for different 

seasons, the annual average, and warmest and coldest months (using the Berkeley Earth dataset). 

 

  



 

 

 

 

 

 
 

Figure S6: Observed S/N for temperature using the CW14 dataset (top left), HadCRUT4 (top right), GISTEMP 

(bottom left) and NOAA GlobTemp (bottom right). Stippled cells indicate that the regression coefficient is not 

statistically significant. Grey regions are where there is less than 100 years of data in that location for that dataset. 

 

 

 

 

 



 

 

 
Figure S7: Signal-to-noise for precipitation in different seasons. Grey regions are either unobserved (oceans), have 

a seasonal precipitation of less than 62.5mm or annual precipitation less than 250mm. Stippled regions denote areas 

where the regression parameter is not statistically significant. 

 



 

 

 
 

Figure S8: Signal-to-noise for UK mean precipitation in different seasons. Stippled regions denote areas where the 

regression parameter is not statistically significant. 

 



 

 

 
 

Figure S9: UK extreme rainfall (RX1day, mm): average across the UK (1891-2017, black line) and regression on 

GMST (red dashed line), and maps for two example years (1968 and 2003). 1968 shows the effect of three 

significant storm events, in contrast to 2003 which mainly shows larger rainfall over higher orographic features. 

 


