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Abstract 

The cassava whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is a highly invasive and destructive 

agricultural pest, with a global distribution. B. tabaci insect has evolved resistance to multiple 

insecticides, and therefore, new control methods will have to be developed to control this insect. 

The self-limiting system, which produces a female-specific lethal heritable element and causes 

population suppression, works well for control of mosquitoes. The goal of this thesis is to assess 

the feasibility of creating a self-limiting system in B. tabaci.  

The self-limiting system requires generating transgenic insects, and this is done via injection of 

constructs into eggs at the pre-germ-line cell stage (around blastoderm formation), this enables 

stable germline transformation. However, there has been limited research into B. tabaci early 

embryogenesis stages, and therefore it is unclear when transformation constructs will have to be 

introduced. In this thesis, I conducted confocal microscopy studies to determine the timing of 

early embryogenesis stages in B. tabaci MED. Unexpectedly, I revealed that early embryogenesis 

in B. tabaci starts before the eggs are oviposited, unlike in mosquitoes and fruitflies. Therefore, 

injecting laid B. tabaci eggs is too late for obtaining stable transgenic whitefly lines, though 

somatic transgenics may be obtained.  

Past self-limiting transgenic insects used genes found in the sex determination pathway, for 

female-specific lethality, as these were expressed early and had sex-specific splicing. Genes of the 

sex determination pathways in B. tabaci and other hemipteran are largely unknown. Hence, I 

conducted a genome-wide search of 11 publicly available hemipteran genomes to identify their 

sex determination genes. Also, I conducted single-embryonic RNA-seq experiments in B. tabaci to 

assess if these genes undergo sex-specific splicing at the early embryogenesis stages in males and 

females. These results identified sex determination genes in B. tabaci and other hemipterans and 

revealed potential targets for future genetic control methods.  
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1.1 Hemipteran 

Hemiptera are an order of insects which covers 50,000 to 80,000 different species. Hemiptera all 

have the same common arrangements of the sucking and piercing mouthparts. Most hemipterans 

are herbivorous; however, some Hemiptera are not herbivorous and feed on other insects, small 

invertebrates and in some cases humans. Hemiptera diverged 320 million years ago from 

Holometabola (Hogenhout and Bos, 2011a; Wu and Baldwin, 2010).  

For 350 million years, plants and insects have coexisted (Gatehouse, 2002). During this 350-

million-year timeframe insects have evolved to locate, feed and oviposit on their host plant. 

Generalist herbivorous insects feed on many plant species, whereas specialist insects can only 

feed and oviposit on one of few plants within the same family (Wu and Baldwin, 2010). 

 

 

Figure 1. 1 Schematic overview of insect phylogeny 
Figure produced from Hogenhout and Bos (2011a)  
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1.2. Bemisia tabaci 

Bemisia tabaci (B. tabaci) (Cassava whitefly) is a sap-feeding herbivore of the hemipteran Order, 

Suborder Sternorrhyncha. The Sternorrhyncha suborder contains aphids, scale insects, psylloids 

and whiteflies and is a sister group to Auchenenorrynha (Campbell et al., 1994). Sternorrhyncha 

are characterised by the type of gut filter chamber, a stylet which rests between the bases of 

front legs and if the insect is winged, lack of vannus and vannal fold in the hind wing (Cranston 

and Gullan, 2009).  Whiteflies are similar to aphids, they produce honeydew (Johnson, 1982), 

transmit plant viruses (Jones, 2003; Blackman and Cahill, 1998) and harbour endosymbionts 

(Baumann, 2005).  

B. tabaci is a generalist feeder with an extensive host range, which is unlike most herbivorous 

insects. B. tabaci inflicts damage to crops, through transmitting viruses and causing physiological 

damage. Alongside this, B. tabaci have developed high insecticide resistance (Nauen and 

Denholm, 2005), causing the traditional control methods to be less effective. Therefore, it is 

necessary to identify novel methods of controlling this pest.  

B. tabaci has a wide geographical range (Salvucci, 2000), and has always been considered a 

dangerous invasive species because it is prevalent throughout the majority of the world. The UK, 

Finland, Ireland, Sweden are protected zone (PZ) countries for B. tabaci; these countries have a 

policy to eradicate any plants containing whiteflies.  The majority of B. tabaci introduced to PZ 

countries are through imported plant material. In the UK, 56% of interceptions have mainly been 

found on Euphorbia pulcherima (poinsettia) (Cuthbertson et al., 2011). Q/ MED biotype (discussed 

more later) is the predominant whitefly entering the UK and being intercepted at nurseries 

(Cuthbertson et al., 2012). 

1.2.1 Life cycle and morphology of Bemisia tabaci 

B. tabaci is a haplodiploid species; males hatch from unfertilised eggs and have 10 chromosomes 

compared to the 20 chromosomes of diploid females. Therefore males only inherit the maternal 

genome (Blackman and Cahill, 1998).  

An ovariole mass forms B. tabaci ovaries. Ovary pairs can range from 12-22 and be at different 

developmental stages (Guo et al., 2010). Figure 1.2 shows the ovariole development.  



4 
 

 

Figure 1. 2 The ovary of a B. tabaci Middle East Asia minor biotype (MEAM1) at different developmental 
stages after eclosion 
The ovary of a B. tabaci (MEAM1) at different developmental stages after eclosion. A: The ovary of a 
female after emerging. B: 1-2day after emerging. C: 3-10 days after emerging and D: 11-14 days after 
emerging. White arrows indicate the mature oocytes and the black arrows indicate the bacteriocyte. The 
scale bar is 0.10mm. Figure produced from Guo et al (2010). 
 
 

Each ovariole can contain different maturity stages of oocytes. There are four morphological 

stages of embryos; A, B, C and D (Figure 1.3). A type egg has no yolk protein. The yolk content 

identifies B and C stages, B has less than 50% yolk, and C contained more than 50% yolk. The D 

stage are mature eggs and contain the bacteriocyte, indicated by black arrow in Figure 1.3. The 

bacteriocyte enter the C eggs by the pedicle (Guo et al., 2010; Ghanim et al., 2001).  
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Figure 1. 3 Eggs of the different developmental stages in the ovarioles of B. tabaci MEAM1. 
The white arrows indicate the different morphological stages. The black arrows indicate the bacteriocyte. 
Scale bar= 0.05 µm. Figure produced from Guo et al (2010).  
 

Female whiteflies lay eggs, from 0.8-1mm on the underside of leaves. The eggs are attached to 

the leaf by the female adults creating a slit with their ovipositor and positioning the eggs within 

(Buckner et al., 2002). The egg has a pedicle to ensure plant attachment. The pedicle is a 

hook/peg-like extension structure (Byrne and Bellows, 1991). In other hemipterans, the chorion is 

the outer egg layer that comprises of polyphenol and lipoproteins (Beament, 1946). The chorion 

layer extends from the base of the egg to halfway down the pedicle(Buckner et al., 2002). The 

pedicle transports water from the leaf to the egg. Egg removal from the leaf causes mortality by 

dehydration. Adult females deposit a glue-like substance called the cement, during oviposition. 

The cement creates a seal that helps water/solutes move efficiently into the egg (Buckner et al., 

2002).  
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Figure 1. 4 SEM micrograph of an oviposited Silverleaf whitefly egg removed from a cotton leaf 
Eggs extricated from leaves show portions of leaf epidermis (arrow) cemented to the pedicel. The pedicel 
tips within epidermal cells were curved or hooked. Picture produced from Buchner et al (2002). 
 

Along with the cement, the mother also transfers symbiotic bacteria into the egg. Large cells 

contain the bacteria and form the bacteriocyte. The bacteriocytes are visible as large yellow 

spheres inside the egg and are located on both sites of the intestinal tract in the various nymphal 

stages and in adults (Costa et al., 1996).   

There are two types of endosymbionts in the bacteriocyte in B. tabaci; primary (P-endosymbionts) 

and secondary. P-endosymbionts are defined as being essential for the survival of whiteflies, 

these are vertically transmitted and present in all individuals, whilst the knowledge on secondary 

symbionts function is poorly defined (Baumann, 2005). These P-endosymbionts convert the non-

essential amino acids present in the plant phloem into amino acids essential to whiteflies and that 

cannot be obtained from the phloem diet alone (Costa et al., 1997). The P-endosymbiont in B. 

tabaci is Candidatus Portiera aleyrodidarum (Thao and Baumann, 2004). There are several 

common secondary endosymbionts in B. tabaci, these are from the Arsenophonus, Cardinium, 

Hamiltonella, Wolbachia, Fritschea, and Rickettsia species (Zchori-Fein and Brown, 2002; Gottlieb 

et al., 2006; Chiel et al., 2007; Gueguen et al., 2010; Karut and Tok, 2014; Tajebe et al., 2015). In 

one study, 95% of the B. tabaci samples had secondary endosymbionts and some symbionts are 

associated with specific cryptic species, such as Hamiltonella in MEAM1 and MED (Q1)  (Gueguen 

et al., 2010).   

Wolbachia is an interesting endosymbiont, as they can be involved in reproductive abnormalities 

such as cytoplasmic incompatibility (CI), male killing, feminization, male killing and pathogenesis 

induction (Zeh et al., 2005; Werren et al., 2008; Stouthamer et al., 1999). CI is the most common 

phenotype and has been used as a biological control in many different insects (Bourtzis, 2008; 
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Christodoulou, 2011; Hancock et al., 2011). CI occurs when male and female insects mate, but 

have different Wolbachia strains or infection status, this causes embryonic mortality in diploid 

species, but in haplodiploid organisms the sex ratio of the offspring can lean heavily towards the 

sex that is produced from unfertilised eggs (Feldhaar, 2011; Zhong and Li, 2014). CI can be 

induced in B. tabaci by; treating the insects with antibiotics and allowing them to mate with 

Wolbachia infected B. tabaci and infecting females with a Wolbachia strain from D. melanogaster 

and allowing them to mate with males with a native Wolbachia (Zhong and Li, 2013; Zhou and Li, 

2016). 

An oviposited egg takes approximately seven days for it to hatch under laboratory conditions. The 

nymph emerging from the egg is called the first instar nymph or ‘crawler’ stage. The crawler is 

mobile and will settle down when it finds a suitable place to feed (Walker et al., 2010). The 

subsequent second, third and fourth instars settle permanently in one spot. These latter stages 

have an oval and dorso-ventrally flattened morphology; within each nymphal instar, the height 

increases while the width and length remain constant (Gelman et al., 2002). Different B. tabaci 

biotypes (further discussed below), have minor differences in morphology which helps the 

identification process at the pupal stages (Walker et al., 2010). 

 

Figure 1. 5 Different developmental stages of the instar 
A- first instar (crawler), B- second instar, C- third instar and D- fourth instar. E is the red-eye spot, which 
in the fourth instar is the sophisticated bipartite adult compound eye. ‘b’ is the bacteriome. Figure 
produced from Chaubey et al (2015). (Chaubey et al., 2015) 

 

The latter part of the 4th nymphal instar is the ‘pupal stage’, which is not a separate instar stage, 

but signifies the developmental change to adult. This stage typically lasts approximately eight 

days. The first signal, of this stage, is the enlargement of the red pinpoint eyes. Usually, around 24 

hours after eye spots begin to enlarge, the eye has transformed into a sophisticated bipartite 
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adult compound eye. During the pupal stage, the wings begin to develop (Gelman et al., 2002) 

(Walker et al., 2010). 

The insect abdomen contains the genitals. The genitals are small, and detail can only be studied 

with microscopy. The male anatomy has a ‘clasper’ structure and a single penis (Figure 1.6). The 

claspers are used to hold the female during copulation (Figure 1.7)  (Walker et al., 2010). 

 

Figure 1. 6 SEM of the male B. tabaci genitalia 
A- the Sagittal view of the paramers (PA) and the penis (PE), the scale bar represents= 20 µm. B- the 
dorsal view of the parameres (PA) and the penis (PE). The anus is located beneath the lingual (LI) Scale 
bar= 47.5 µm. Figure produced from Ghanim et al (2001). (Ghanim et al., 2001) 
 

 

Figure 1. 7 SEM of the female B. tabaci genitalia 
a) a laterally positioned retracted ovipositor b) a dorsally positioned retracted ovipositor. Figure 
produced from Walker et al (2009). (Walker et al., 2009) 
 

Courting is very specific in B. tabaci. There is a courtship cascade, which has 4 stages: male 

positioning; antennal drumming; abdominal undulation; and copulation. All these stages need to 

be performed to ensure successful copulation. Males actively search and position themselves 

parallel to the females. During antennal drumming both sexes raise their antennae and keep them 

at 45o angles horizontally from their heads. The male drums the flagellum of female antennae at 

the medial section. If successful, the abdominal undulation phase begins in which the male raises 

his abdomen and positions it in a vertical plane and the antennal drumming is continued. Some 

biotypes show body pushing behaviour in which the males push the females to prepare them for 
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copulation. In the copulation phase, the male layers his wings over those of the female and his 

claspers hold the terminalia of the female (Li et al., 1989). The B. tabaci courtship cascade is 

complex and involves specific behaviours within each species. Therefore, pest control methods that 

use transgenic or sterile males should be species specific and are unlikely to be at risk for off target 

species involvement.  

All stages of B. tabaci feed from the phloem in a leaf- a part of the vascular system in higher-level 

plants which provides a source of sugars, amino acids and other organic metabolites (Will et al., 

2013). The adults feed by stylet bundle penetration- left and right mandibular and maxillary stylets 

(Walker et al., 2009). The bundle is very flexible and weaves around the cells towards the phloem 

(Walker and Perring, 1994). The adults primarily feed on phloem and minor veins that are typically 

accessed from the abaxial surface (Cohen et al., 1996). Nymphs employ a different mechanism than 

adults, as the stylet bundle forms a loop-like structure called the crumena (Walker et al., 2009). 

Saliva plays a major role in the feeding behaviour of the B. tabaci. Normally there are two different 

types of saliva; watery and sheath. Sheath saliva is secreted during the stylets penetration phase 

and possesses gelling qualities. The exact functions of sheath saliva are unclear, but hypotheses 

include: providing a frictionless passage through the leaf; sealing the puncture wound caused by 

the stylets to ensure the phloem pressure stays like the pressure before the penetration; or to 

provide an inert barrier to ensure the wounding responses are low. Watery saliva does not have a 

gelling quality  and normally contain salivary enzymes and metabolites (Walker et al., 2010). 

Saliva in other hemipterans, such as aphids, have been known to contain effectors. These are small 

proteins that help modulate plant defence responses and increases the fecundity of the insects 

(Hogenhout and Bos, 2011c). Transcriptomic studies have been previously conducted on the 

salivary glands of B. tabaci, and comparative analysis of known aphid effectors (C002, Mp10 and 

Mp42) did not have homologues in B. tabaci (Su et al., 2012). However unpublished work by the 

Hogenhout lab indicates that B. tabaci does have an orthologue of Mp10.  
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1.2.2 Cryptic species 

There are over 40 different morphologically identical ‘biotypes’ in B. tabaci. Previously, B. tabaci 

was classed into biotypes depending on different biological characteristics, such as the host range, 

silverleafing in squash, yellow vein in honeysuckle and begomovirus transmission (Bedford et al., 

1994; De Barro et al., 2011b). The term biotype is now outdated and B. tabaci is recognised as a 

morphologically indistinguishable cryptic species complex. Molecular analysis of the 

mitochondrial cytochrome oxidase I (mtCOI) can differentiate between the different cryptic 

complex species (De Barro et al., 2011a). Few crossing experiment and observations have been 

conducted on the cryptic species so far. Some experiments show that the cryptic species are 

isolated by reproduction (Sun et al., 2011). However, laboratory-based hybridisation studies have 

produced no definite answers on whether the different cryptic species are truly different species. 

There have been no hybrids of different cryptic species found in the field  (Saleh et al., 2012). 

Due to the newness of the cryptic species classification, limited research has been conducted on 

the comparison between different species. Therefore, it is difficult to determine true differences 

between some of the cryptic species. The most invasive cryptic species from the complex are 

Middle East-Asia Minor 1 (MEAM1, known previously as B Biotype) and Mediterranean (MED, 

known previously as Q biotype) (Gueguen et al., 2010). Due to the invasive nature of MED and 

MEAM1 more research has been conducted on these then any other cryptic species. Both MED 

and MEAM1 are widely distributed in the tropics and subtropics (Tsai and Wang, 1996). Currently 

there are protected zones across the globe which have fought to maintain status against the 

invasive pests, this includes the UK (Cuthbertson and Vanninen, 2015). Despite this, there are 

countries that have been invaded across the years. For example, in Brazil MEAM1 was reported in 

the early 1990s, since then it is now widespread throughout the country (Marubayashi et al., 

2013). Two decades later, MED was reported in Brazil (Barbosa et al., 2015).  

MED and MEAM1 can co-exist in the same geographical location and on the same hosts. However 

significant switches of dominance between the species are observed (Bertin et al., 2018). Without 

an insecticide factor, MED dominated over MEAM1 on sweet pepper, however MEAM1 

dominates over MED on cabbage cotton and tomato (Sun et al., 2013). When insecticide is a 

factor MED is more resistant than MEAM1, allowing the MED population to rise in these situations 

(Horowitz et al., 2005; Horowitz and Ishaaya, 2014). 
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1.1.3 Why is controlling Bemisia tabaci so important?  

B. tabaci has caused much devastation in the past. However, it has been challenging to determine 

how much economic loss worldwide has occurred, because of the extensive host range and the 

wide range of viruses that B. tabaci transmits. B. tabaci has caused monetary losses of $1 billion 

annually in the USA (Czosnek and Brown, 2009). 

B. tabaci transmits more than 100 different viruses (genus Begomovirus (Geminiviridae), Crinivirus 

(Closteroviridae), Carlavirus or Ipomovirus (Potyviridae)), with Begomoviruses being the most 

numerous causing 20-100% yield loss (Jones, 2003). The tomato yellow leaf curl (TYLCV; 

Begomovirus) is one of the most prominent; this virus was first reported in Israel in 1931 

(Chouchane et al., 2007). Since then, epidemics have been widespread over the globe, in Africa, 

the Americas, Europe, Middle-East, and South-eastern Asia (Moriones and Navas-Castillo, 2000). 

This virus can cause up to 100% loss of tomatoes, and it also affects other crops. Symptoms 

include stunting, prominent upward curling of leaflet margins, size reduction of leaflets, yellowing 

of leaves and flower abortion (Moriones and Navas-Castillo, 2009). The virus can be detected in 

the ovaries and mature eggs of viruliferous insects (Goldman and Czosnek, 2002).  

The physiological damage that B. tabaci causes is also considerable. The whitefly secretes a 

honeydew, (Johnson, 1982) which can be washed off, but acts as a substrate to sooty mould that 

blackens the leaves, thereby reducing the amount of photosynthesis that can take place and 

reducing yield (Stansly and Natwick, 2009). The honeydew is also detrimental to the factory 

workers, which process the cotton crop. The honeydew on the plant has adhesive properties, so 

when the cotton is collected dirt and trash attaches to the leaf surface. The dirt and trash causes 

dust particles when the crop is being processed. This dust can cause respiratory damage to the 

textile factory workers during the processing stage (Oliveira et al., 2001; Ayars et al., 1986) 

1.2.3 Genomics of Bemisia tabaci 

The B. tabaci genome is vast compared to most model organisms. The mean DNA content in 

males is approximately 1.04 pg per cell (five times greater than Drosophila melanogaster) and 

2.08 pg for females (Czosnek and Brown, 2009). A recent K-mer analysis revealed that the male 

haploid genome size is 690Mb (Chen et al., 2015). Even with the large genome size it is thought 

that the gene number would be closer to 15,000, similar to D. melanogaster, with a gene density 

on average of 1 gene per 60,000bp (Czosnek and Brown, 2009).  

Bemisia tabaci MEAM1 draft genome has been published within the last 3 years. This genome 

came from a single female established colony (Chen et al., 2016). B. tabaci MED draft genome is 

also published (Xie et al., 2017a.).   
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1.3 Sex-determination  

Sex is the mixing of genomes by meiosis and fusion of gametes (Partridge, 1983). Sex produces 

genetic variance that is beneficial to individuals and populations (Otto, 2009). The sex 

determination pathway is fundamental biological knowledge. Understanding the sex 

determination pathways can bring an exceptional understanding of the genome evolution, 

function and organisation (Craves, 2008).  

There is a vast amount of knowledge of sex determination mechanisms in model organisms; D. 

melanogaster (Cline and Meyer, 1996), Caenorhabditis elegans (Hansen and Pilgrim, 1999) and 

the mouse Mus musculus (Mclaren, 1991). This vast research has highlighted the diversity, but 

also in some aspect’s conservation of sex determination pathways.  

1.3.1 Overall structure of the sex determination cascade   

 

 

 

Figure 1. 8: A general diagram about how the sex determination genes usually are organised in D. 
melanogaster, B. mori and Apis mellifera. Adapted from Sawanth et al (2016) (Sawanth et al., 2016)  

 

Across divergent insects, the sex determination pathway shares many general features in 

common, although the molecular identities of all components may not be the same. Figure 1.8 

shows a generic sex determination pathway describing these features. Signalling elements are 

usually a genetic determinant that distinguishes males and female, depending on the mating 

system of the insect, for example the Y chromosome. Next is the ‘key’ gene group; this group 
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interacts directly with the double switch gene (Sawanth et al., 2016). Double switch genes are 

found at the bottom of cascade and are the most conserved of the sex determination elements, 

and trigger sex-specific development and behaviour. The term double switch is used, because 

research has shown the gene at the bottom of the cascade has dual functions. In Bombyx mori, 

the protein encoded by the gene helps form sex-specific genitalia (Suzuki et al., 2001), but the 

female isoform also is a positive regulator for genes like vitellogenin (Suzuki et al., 2003).  

1.3.2 Sex determination in other insects 

  

Figure 1. 9 Sex determination pathways in D. melanogaster, A. mellifera and B. mori 
The red section indicates the signalling elements. The green section is the ‘key’ genes, and the blue 
section is the double-switch genes. In D. melanogaster, when the X chromosome equals or exceeds one, 
the Sxl is transcribed. Sxl binds to Tra and Tra undergoes differential splicing depending on the male or 
female Sxl. Tra promotes sex-specific splicing in Dsx. In A. mellifera the signalling element depend on the 
CSD being heterozygote or homozygote. Homozygote CSD produces a female-specific splice variant of 
fem. The FEM protein creates a female specific Dsx gene which leads to female development. In B. mori 
the signalling element is chromosome-based. ZW individuals downregulate Masc, which fails to induce 
ImpM expression, and female-specific Dsx occurs leading to female development. In ZZ individuals there 
is no fem, so there is a high expression of Masc. Masc induces Imp. Imp and PSI form a male-specific Dsx, 
which leads to male development (Sakai et al., 2015; Yamamoto and Koganezawa, 2013; Herpin and 
Schartl, 2015; Hoff, 2009). 

 

1.3.3 Signalling element and ‘key’ genes 

Different signalling elements occur in different species. This signalling element can be sex-

determining sex chromosomes, dose-dependent sex chromosome or haplodiploid species.  A sex-

determining chromosome is a common signalling element, especially in mammals. Sexual 

reproduction has led to female and males having different sex chromosome sizes (Charlesworth, 

1996). In Homo sapiens females have homogametic sex chromosomes XX, whereas males are 

heterogametic with XY. The X chromosome has approximately 1000 genes, whereas the Y 
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chromosome may have a few dozen. In the early evolution of mammals, the X and Y chromosome 

originated from autosomes. Recombination restriction and gene loss has resulted in sex 

chromosome morphological differences  (Bachtrog, 2013). Some dipteran insects have a male-

determining Y chromosome; where females are XX, and the males are XY, this occurs in Musca 

domestics (Dubendorfer et al., 2002) and Ceratitis capitata (Pane et al., 2002). Butterflies differ; 

there is a female-determining W chromosome, males are ZZ and females are ZW (Maeki, 1981).  

Dose-dependent sex chromosomes occurs in species like the chicken (Gallus gallus), tiger 

pufferfish (Takifugu rubripes), smooth tongue sole (Cynoglossus semilaevis) and fruitfly (D. 

melanogaster) (Bachtrog et al., 2014). The ratio of X-chromosome versus autosomes determine 

the Caenorhabditis elegans sex. (Farboud et al., 2013). Sex chromosomes undergo selective forces 

and therefore are the most changeable part of any animal or insect genome (Saunders et al., 

2018).  

Haplodiploidy occurs in many different insects, like thrips, whiteflies and a lot of Hymenoptera 

species. One form of haplodiploidy is called arrhenotokous haploidy. Arrhenotoky is where males 

develop from unfertilised eggs. In species like aphids, virgin females give birth to diploid males, 

and this is also arrhenotoky (Normark, 2003).  

1.3.3.1 Signalling elements and ‘Key’ genes in D. melanogaster 

D. melanogaster has a dose-dependent sex chromosome signalling element. A double dose of X 

chromosome determines sex femaleness, whereas males need only a single dose (Erickson and 

Quintero, 2007). D. melanogaster embryo’s first action is to count the X chromosome (Salz et al., 

1989). D. melanogaster has four different key genes; Sex-lethal (Sxl), transformer (Tra) and 

transformer 2 (Tra2) (see Figure 1.9). 

Sxl is turned off in haplo- X male individuals and turned on in diplo-X female individuals; this 

causes sexual differentiation and dosage compensation (Cline, 1993). X-chromosome numerator 

proteins stimulate the female-specific activation of Sxl (Cline, 1988). Sex-specific regulation of Sxl 

is already determined by the time the embryos reaches the blastoderm stage. In haplo-X 

individuals, Sxl remains inactive during development (Salz et al., 1989). For sex determination 

pathway maintenance in diplo-X individuals, Sxl activity needs to be continuous. A positive 

feedback loop maintains the female-specific Sxl; the SXL protein binds and activates its 

promoter(Cline, 1993).  

Sxl controls the processing of the Tra gene transcript, another ‘key’ gene. SXL directs the splicing 

of Tra, the splice site in the female-specific variant is in exon 3, and the non-specific is at exon 2. 



15 
 

This splicing creates female-specific and non-sex specific splicing variants. The non-sex-specific 

variants form a non-functional protein by having an early termination codon (Handa et al., 1999). 

The functional TRA protein in females interacts with a non-sex specific TRA2 (Tian and Maniatis, 

1993; Verhulst et al., 2010).  

TRA/TRA2 in D. melanogaster regulates the splicing of fruitless (Fru) in a female-specific manner; 

this leads to a non-functional FRU protein. Fru is a support gene and will be discussed later in this 

chapter. Males do not produce a functional TRA; a male-specific splicing occurs and produces a 

functional FRU (Ryner et al., 1996; Gailey et al., 2006; Verhulst et al., 2010).  

1.3.3.2 Signalling elements and ‘key’ genes in B. mori  

The sex-determining W chromosome is the signalling element. Transposable elements and other 

repeat elements are highly prevalent in the W chromosome (Abe et al., 2005; Katsuma et al., 

2015). A piRNA comparative sequencing approach using piRNA derived from ovary and testis 

revealed female enriched piRNAs produced at the sex-determining region of the W chromosome 

(Kawaoka et al., 2011). piRNAs are 24-31nt small RNAs that can act as PIWI protein guides to 

silence transposon activity in animal gonads (Iwasaki et al., 2015).  

The ‘key’ genes in B. mori are feminizer (Fem), masculinizer (Masc), IGF-II mRNA binding protein 

(Imp) and P-element somatic inhibitor (PSI), Figure 1.9. The first ‘key’ gene in B. mori is Feminizer 

(Fem). Fem is a female-specific PIWI-interacting RNA (piRNAs) precursor found in the sex-

determining region of the W chromosome. When Fem is inhibited the male-specific variants of 

BmDsx (double switch gene) are produced (Kiuchi et al., 2014). 

Masculinizer (Masc) is the target gene for fem piRNA (Suzuki et al., 2001), and is located on the Z 

chromosome. Masc encodes a CCCH-type zinc finger protein, which is conserved in Lepidoptera, 

such as Trilochaa varians and Ostrinia furnacalis (Lee et al., 2015; Fukui et al., 2015). Masc mRNA 

is needed for female-specific isoforms of the BmDsx in female embryos (Kiuchi et al., 2014; Lee et 

al., 2015).  

Imp is localised on the Z chromosome (Suzuki et al., 2014). IMPs are part of a highly conserved 

family called VICKZ. VICKZ family have a KH RNA-binding; these recognise the cis-acting elements 

in RNAs. VICKZ family are related to cancer, cell proliferation, cell polarity and migration.  The 

predicted domains present in IMP are 1 RNA-recognition motif (RRM) and 4 KH (hnRNP H-

homology) domains. IMP interacts with the PSI via the KH domains (Suzuki et al., 2010). There are 

eight exons in IMP, and the terminal exon males-specific. Autoregulatory actions control the 
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male-specific splicing of IMP and require the A-rich elements in the terminal intron (Suzuki et al., 

2014).  

 
 

 
 
 
Figure 1. 10 The schematic diagram of the alternative splicing of the Imp pre-mRNA 
Exons are the boxes, and the introns are lines. The exon number are numbers in a box. There is male-
specific splicing between exons 7 and 8. The black box represents the 5’ UTR. Figure from Suzuki et al 
(2014).  (Suzuki et al., 2014)  

 

PSI is essential in the sexual development cascade. Imp and PSI interact with each other to 

regulates the males specific splicing in the double switch gene. Downregulation experiments of 

PSI leads to an increase in female-specific splicing of Dsx. Males exclude exons 3 and 4, in females, 

these exons are present, and they produce a female type BmDsx mRNA (Suzuki et al., 2008).   

 

1.3.3.3 Signalling elements and ‘Key’ genes in A. mellifera 

Apis mellifera is a haplodiploid organism. The unfertilised eggs have 16 chromosomes, whereas 

the fertilised has 32. The fertilised eggs that are homozygous at the sex determination locus (SDL) 

create diploid males, heterozygous eggs at the SDL develop into females. The worker bees kill 

diploid males once they hatch; however, inbreeding increases the probability of diploid males. 

Haploid eggs are fertile males that are hemizygous at SDL (Gempe et al., 2009). 

The ‘key’ genes in A. mellifera are complementary sex determiner (Csd) and Feminizer (Fem). Csd 

is always heterozygous in the females and homo- or hemizygous in males; this state determines 

whether the Csd protein is active or not (Cook, 1993). Csd produces an SR-type protein which is a 

potential splicing factor (Gempe et al., 2009). The Csd has no transcription differences between 

sexes and is expressed after the blastoderm stage and throughout development (Beye et al., 

2003). 

CSD directly interacts with FEM.  FEM is located on the sex determination locus (SDL), a region 

that is always heterozygous in females. Fem is located 12kb upstream of Csd and encodes an SR-

type protein. Fem is an ancestrally conserved gene, in which Csd originates. Fem is an orthologue 

to the D. melanogaster Tra gene; it encodes a protein which has an Arg/Ser-rich domain and a 

proline- rich-domain. However, FEM lacks all conserved motifs found in TRA across different 
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species, apart from one; a 30-amino-acid motif in C. capitata.  Fem has a male-specific splice 

variant, which produces a non-functioning protein as it contains has a premature stop codon. The 

female-specific splice variant encodes for a functional protein. Knockdown of female-specific fem 

splice variant, in A. mellifera, results in male bees  (Hasselmann et al., 2008). 

1.3.4 Double switch genes 

Double switch genes are the last genes in the sex determination pathway that lead to male or 

female sex development (Marin and Baker, 1998; Oliveira et al., 2009). The double switch gene 

doublesex (Dsx) in many insects, male abnormal-3 (Mab-3) in Caenorhabditis elegans and Dmrt1 

in humans. Originally Doublesex /Mab3 DNA-binding motif (DM) domain was found in D. 

melanogaster and C. elegans. The DM domain has been used to identify other sex-determination 

genes (Raymond et al., 1998), because the DM domain is conserved in DSX (Raymond et al., 1998; 

Yi et al., 2000). Other homologues of DSX genes occur encoding DM-domain proteins. Many of 

these also have roles in sexual development. Genes encoding proteins with DM domain are called 

Dmrt genes, and these genes are involved in sexual dimorphism (Kim et al., 2003). 

Two functional oligomerisation domains characterise the DSX protein; the DM and the DSX-dimer. 

The DM and DSX dimer oligomerize through coiled-coil interactions, and they act as a DNA 

binding unit for sex-specific transcriptional activation or repression (An et al., 1996; Zhou and Li, 

2016; Hodgkin, 2002). The zinc finger creates DNA binding sites (Erdman and Burtis, 1993). The 

DNA binding site regulated transcription and helps coordinate sex and tissue signals (Zhu et al., 

2000). 

The double switch genes can produce sex-specific proteins, by exon retention, intron retention or 

different transcription finishing site. In D. melanogaster, Dsx produces female and male-specific 

proteins- DSXF and DSXM. DSXM and DSXF are responsible for the dimorphic sexual 

characteristics of the fly (Erdman and Burtis, 1993). These proteins help regulate the differential 

gene expression, such as regulation for yolk protein (Burtis et al., 1991). The DSXM activates male 

differentiation while represses female differentiation (Jursnich and Burtis, 1993). The conserved 

residues are in the amino-terminal region in DSXF and DSXM (Ohbayashi et al., 2001). Figure 1.11 

represents the different double switch proteins in insects and other phyla, highlighting the sex-

specificity. The double switch genes in Insecta and Arachnida is Dsx, in Mammals and Zebra Fish it 

is Dmrt1, Sea urchin is DmrtA2 and worm is Mab-3.  All Insecta male and female isoform have DM 

and DSX dimer protein domains, and sex-specific exon retention (Xu et al., 2017). 
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Figure 1. 11 Evolution of the C-terminal of DM domain genes in insects and other phyla 
The right of the figure are the schematic representations of the gene structures. The green blocks 
represent the non-sex-specific spliced exons (1-6). Female and male-specific exons are represented in 
yellow and blue, respectively. Figure from Xu et al (2017). (Xu et al., 2017). 
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1.3.5 Sex support genes 

‘Support’ group genes are genes that help regulate some ‘key’ genes (Ellis et al., 1990) and 

produce specific courtship behaviours (Demir and Dickson, 2005; Finley et al., 1998). Genes 

assigned to the ‘support’ group and those that will be investigated further in Chapter 3 include, 

daughterless (Da), deadpan (Dpn), extra-macrochaetae (Emc), Female lethal d (Fl(2)d), grouchu 

(Gro), hermaphrodite (Her), sans fille (Snf), virilizer (Vir), dissatisfaction (Dsf) and fruitless (Fru) of 

D. melanogaster. Some sex ‘support’ genes are required for regulation of Sxl; Da, Emc, Fl(2)d, 

Dpn, Gro, Her, Snf and Vir.  

Da is a positive regulator of Sxl, while Emc, Dpn and Gro are negative regulators (Karandikar et al., 

2005). The proteins encoded by these genes contain the Helix-loop-helix (HLH) protein domain. 

HLH protein domain present in proteins that contain sequence-specific DNA-binding proteins that 

can act as transcription factors. HLH contain a basic region needed for DNA-binding activity, and if 

this is not present then the HLH will function as negative regulators (Emc and Dpn) (Letunic and 

Bork, 2018; Ellis et al., 1990). GRO is a co-repressor which binds to hairy and hairy-related bHLH 

proteins encoded by the Dpn complex (Paroush et al., 1994). The Hairy/E (SPL) family is involved 

in DNA-binding transcription repressors which help regulate embryonic patterning, cell 

differentiation and other biological processes in vertebrate and invertebrates. The domain 

functions are transcription repressors involved in the regulation of differentiation, 

anteroposterior segmentation and sex determination in flies (Letunic and Bork, 2018; Davis and 

Turner, 2001). Regulation of Sxl needs Fl(2)d, Snf and Vir genes, specifically the sex-specific 

splicing of female Sxl RNA. There is a lack of information about the mechanism for these 

autoregulation Sxl genes. Conclusions have been based on D. melanogaster mutation work 

(Penalva et al., 2000; Granadino et al., 1990). 

Three ‘support’ genes are essential for sex determination but are not involved in regulation of Sxl; 

Her, Dsf and Fru. Sexual differentiation in D. melanogaster requires Her. Sxl is at the top of the 

female-specific pathway for production yolk proteins whereas Her is at the top of the non-specific 

pathway (Li and Baker, 1998). Dissatisfaction (Dsf) is a gene that affects the sex-specific courtship 

behaviours and neural differentiation in both sexes. Expression of the female transformer cDNA 

under a Dsf enhancer leads to bisexual behaviour in males (Finley et al., 1998).   
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1.3.6 Current knowledge of the sex determination pathway in Hemiptera 

What is known about the signalling elements is in Table 1.2.  

Species Signalling element Reference 

Silverleaf whitefly  

(Bemisia tabaci) 

Haplodiploid (Blackman and Cahill, 1998) 

Asian citrus psyllid (Diaphornia 

citri) 

XX/XY (Yu and Killiny, 2018) 

The soybean aphid  

(Aphis glycine) 

XX/XO (Morgan, 1909) 

The pea aphid 

(Acyrthosiphon pisum) 

XX/XO (Morgan, 1909) 

Green peach aphid 

(Myzus persicae) 

XX/XO (Morgan, 1909) 

The brown planthopper 

(Nilaparvata lugens) 

XX/XY (Noda, 1990) 

White-backed planthopper 

(Sogatella furcifera) 

XX/XO (Noda, 1990) 

Bed bug 

(Cimex lectularius) 

XX/XY * (Sadilek et al., 2013) 

Kissing bug 

(Rhodnius prolixus) 

XX/XY (Panzera et al., 2012) 

Table 1. 1 Sex determination in the Hemiptera; B. tabaci, D. citri, A glycine, A. pisum, M. persicae, N. 
lugens, S. furcifera, C. lectularius and R. prolixus 
*The Bed bug has a strange sex-determining mechanism. There is often variation in the number of 
chromosomes, with the sex chromosomes showing extensive variation. The standard karyotype is 26 
autosomes and varying number of supernumerary chromosomes which originate after the X chromosome 
fragmentation. Some populations can vary from 2 up to 14X chromosome (Sadilek et al., 2013).  

 

Some ‘key’ genes have been identified in some Hemiptera. Tra2 has been found in D. citri, N. 

lugens and B. tabaci. D. citri Tra2 is expressed throughout all developmental stages, and 

knockdown of the Tra2 leads to lower progeny in D. citri. However, the sex ratio does not change 

(Yu and Killiny, 2018). When N. lugens Tra2 is knocked down, the females become infertile pseudo 

males with undeveloped ovaries (Zhuo et al., 2017). In B. tabaci Tra2 has no sex-specific isoforms 

(Liu et al., 2016); however, silencing causes malformation of male genitalia (Guo et al., 2018a). 

There is a PSI orthologue in B. tabaci, with 92 female-specific isoforms and 14 male-specific 

isoforms (Liu et al., 2016). There is a B. tabaci Dsx, which have 28 non-sex-specific isoforms 

silencing of Dsx caused malformation of male genitalia (Guo et al., 2018a). Full-length female 
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restricted Tra and male and female specific Dsx have been found in R. prolixus. However, the 

function of R. prolixus Tra and Dsx is currently unknown (Wexler et al., 2019).   

Liu et al (2019) conducted a B. tabaci MED genome wide study looking for the sex determination 

genes. The putative sex determination genes (Key genes, Support genes and Double switch) 

where identified by TBLASTN along with a domain and phylogenetic analysis. The gene ID’s and 

the locations are shown in Table 1.3. Sex-specific splicing analysis was conducted on 

transcriptomes from oviposited eggs, larvae stages and adult female and male stages. What was 

lacking in the paper was sex-specific splicing of sex determination genes in pre-oviposited eggs, 

which I hope to rectify later in this thesis.  

Gene Gene ID Gene location  

PSI*  BTA005137.1  Scaffold_15: 624811:653084 − 735 13 77.90 6.27 

snf  BTA003437.1  Scaffold_1312# + 245 27.87 9.87 

Sxl  BTA022642.1  Scaffold_506: 310383:334162 − 281 6 31.29 9.60 

tra  BTA007388.2  Scaffold_1762: 3969:21280 − 455 11 52.82 10.06 

tra2 *  BTA027641.1  Scaffold_800: 271218:282025 − 258 7 29.45 9.99 
 

BTA014916.3  Scaffold_301: 26103:39134 − 266 8 31.20 11.39 

dpn  BTA027689.1  Scaffold_808:136323:145969 − partial 

dsf  BTA004681.1  Scaffold_145# + 405 45.58 9.07 

dsx *  BTA004042.1  Scaffold_1383# − 245 27.43 9.45 

emc  BTA026084.1  Scaffold_684: 96020:103465 − 147 2 16.08 7.76 

fl(2)d  BTA009661.1  Scaffold_209: 198137:205593 − 
 

BTA029394.1  Scaffold_92: 783237:790696 − 355 5 39.98 4.74 

fru  BTA006255.2  Scaffold_1615: 100263:87130 − 420 7 46.67 6.47 

gro  BTA020461.1  Scaffold_43: 104941:127175 − 705 18 76.20 7.16 

Imp  BTA017124.1  Scaffold_349# + 592 63.77 9.09 

vir  BTA014178.1  Scaffold_2874# + 1803 203.84 5.25 

Table 1. 2 The putative sex-determination genes of B. tabaci MED. Data collected and adapted from Liu et 
al (2019). 

*A gene that has been studied in a previous report (Liu et al., 2016; Guo et al., 2018a; Xie et al., 
2014).   
#The gene sequence does not match well with the genome.   
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1.4 Control methods for B. tabaci 

B. tabaci is an agricultural pest that needs to be controlled to minimise damage. Current methods 

involve biological control and insecticides. Current biological control methods for B. tabaci are 

Amblyseius swirskii (Cavalcante et al., 2015); Macrolophus caliginosus (Lucas and Alomar, 2001); 

and Nesdiocoris tenuis (Arnó et al., 2009). A. swirskii is a predatory mite used for whitefly control. 

The mite consumes eggs and larvae of the whitefly (Calvo et al., 2015). M. caliginosus and N. 

tenius are Heteroptera, which feed on the pupae stage; both have multiple prey targets (Bonato 

et al., 2006; Arnó et al., 2009). Negatively, the two Heteroptera can damage the plant by 

weakening the apex and limiting plant growth, creates yield loss, and flower abortion (Sanchez, 

2008; Arnó et al., 2009). Parasitic wasps are also a biological control agent against B. tabaci. 

Parasitic wasps can lay eggs next to (Eretmocerus spp.) or internally (Encarsia spp.) into early life 

stages of B. tabaci (Urbaneja et al., 2007; Arnó et al., 2009). Parasitoids have never been able to 

completely control the B. tabaci (Arnó et al., 2009). Biological control is hampered because of B. 

tabaci migration from surrounding areas. 

Insecticides are the primary control method for whiteflies. However, aggressive applications leads 

to the evolution of insecticide resistance (Dittrich et al., 1985). B. tabaci MED and MEAM1 are 

resistant to many insecticides, MED more so than MEAM1 (Horowitz et al., 2005; Castle et al., 

2009). Insecticide application can cause problematic side effects; such as, such as toxicity to 

livestock and humans and toxic residues in the environment. New control methods that do not 

pose resistance and off-target side effects need to be developed for B. tabaci. One such method is 

genetic control.  

1.4.1 Genetic control 

Genetic insect control is the introduction of genetic traits into a pest population that eliminates or 

reduces harmful insects (Curtis, 1985). The level of success of genetic insect control methods 

depends on the mating behaviour and the ways by which transferrable genetic traits pass to the 

next generation. Genetic control methods are species-specific; because, individuals of different 

species cannot or do not mate (due to i.e. genetic compatibility, spatial co-occurrence, niche, and 

mating behaviours), and this is a big advantage over chemical control. Genetic control is an area-

wide method, so it is not dependent on the individual purchasing the control method, which may 

be a limiting factor in more impoverished areas. Genetic insect control reduces the competent 

vectors in an area (suppression technique) or reduces the vector capacities in a target population 

(replacement technique) (Alphey, 2014a). This method of control could be self-limiting or self-

sustaining. Self-limiting approach introduces a genetic trait into the native population. In the long 
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term, the overall fitness is lower in transgenic insects, and the genetic trait disappears from the 

population. Therefore, to sustain the population control there needs to be frequent releases of 

the transgenic insects. In a self-sustaining approach the genetic trait may have neutral effects for 

the overall fitness of the insect pest and remains in the population requiring less frequent release 

of insect populations with the genetic trait (Alphey, 2014a).   

Genetic control has many advantages compared to pesticide-based control methods. Many insect 

species have evolved resistance to insecticides, for example B. tabaci (Nauen and Denholm, 

2005), Anopheles funestus (Hargreaves et al., 2000) and Myzus persicae (Bass et al., 2014). New 

insecticides need to be discovered. However, the number of companies that develop pesticides 

have declined due to the long production time of new active compounds (3.7-4.2 years) (Sparks, 

2013).  

Genetic control methods for many insect pest species have been developed. One of the oldest 

technique is the sterile insect technique (SIT), which is a self-limiting system (Alphey, 2014a). SIT is 

a species-specific technique that involves mass-reared males, that are irradiated by ionising 

radiation and released into the wild to compete with the wild males for the attention of females 

(Knipling, 1959). A proportion of the irradiated males will produce damaged sperm and are unable 

to fertilise the eggs, resulting in overall decline of the pest population growth (Bourtzis et al., 

2016). SIT has been successful in the control of a number of insect pests, including for example 

Glossina austeni in Unguja, Zanzibar, (Vreysen et al., 2000), and the Mediterranean fruit fly 

(Medfly) C. capitata (Alphey et al., 2010). SIT has been tried to control B. tabaci as well (Calvitti et 

al., 2000), but no follow up studies were published since this paper in 2000, suggesting that SIT 

may not be the best method for controlling the whiteflies.  

There are many problems with traditional SIT. Firstly, it has proven difficult to remove all females 

from an irradiated population. Moreover, separating the males from the females can be time-

consuming, even with automated systems (Marois et al., 2012). Secondly, irradiated males are 

less competitive, in Medfly and Mexican fruit fly. Irradiation causes damage of somatic cells, and 

the gut microbiota (Ben Ami et al., 2010; Lauzon and Potter, 2012). However, irradiation gives 

sufficient sterility to males of Anopheles arabiensis and Aedes albopictus without impacting the 

competitiveness compared to the wild males of these species (Bellini et al., 2013) (Ageep et al., 

2014).  

1.4.2 The self-limiting gene technique 

The self-limiting gene technique, previously known as release of an insect with a dominant lethal 

(RIDL), is a variation of the traditional SIT in the sense that the progeny does not survive. The self-
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limiting gene technique requires the generation of transgenic insects with a sex-specific lethal 

construct (Figure 1.12), which is activated in the absence of tetracycline (Thomas et al., 2000). 

There are several essential components present in the sex-specific lethal construct: (1) the 

(DsRed) fluorescence marker for the detection of transgenic insects; (2) transposable elements for 

integration into the insect genome; (3) the tetracycline-repressible transactivator tTAV, which is 

lethal at high concentrations; and (4) the female-specific expression of tTAV (Figure 1.12).  

 

Figure 1. 12 Diagrammatic representation of the linearised plasmid pLA3097 with the sex-specific lethal 
construct flanked by the piggyBac transposon elements used in the Ceratitis capitata (Medfly). 
 The line represents the DNA sequence. The block arrows represent genes or promoters. Abbreviations: 
piggyBac3’ and piggyBac5’ = the left and rights borders, respectively, of the piggyBac transposable 
element; DsRed2 = red fluorescent marker with downstream SV40 polyA tail to enhance transcript 
stability; IE1 = baculovirus IE-1 promoter driving the expression of DsRed2; Hr5 = the enhancer of the IE-1 
promoter; tetO21 = 21 copies of the operator sequence that binds the (non-tetracycline binding) active 
tTAV transactivator; hsp70 = promoter sequence that drives the expression of tTAV; Cctra intron = intron 
that is spliced out in females, but not in males; tTAV = transactivator composed of a fusion between the 
promoter-activating portion of the herpes simplex virus protein 16 (VP16) and Escherichia coli TetR, 
which is inactive when bound to tetracycline; fs(1)K10 polyA = poly-A tail enhancing the stability of the 
tTAV transcript; ori = origin of replication required for replication of the plasmid; bla = gene encoding the 
enzyme beta-lactamase giving antibiotic resistance to transformed bacteria. Upon introduction of the 
plasmid into the eggs, the plasmid may go to the germline cells, and the DNA between the piggyBac 
transposable elements is inserted into the insect genome. Insect cells that carry the piggyBac-flanked 
DNA will express the DsRed fluorescent gene and can be detected because of their red fluorescence. In 
males, the Cctra intron will remain unspliced, and the tTAV transactivator is not translated. Hence, the 
construct is not lethal for males. In females, the Cctra intron will be spliced out leading to the expression 
of tTAV. The tTAV protein will bind to tetO when there is no tetracycline present and will produce more 
tTAV giving a positive feedback loop producing high concentrations of tTAV. The VP16 portion of tTAV 
binds many promoter sequences in the insect leading to lethality. When females are reared in the 
presence of tetracycline the intron will still splice out, but tTAV is not expressed leading to survival of the 
females. Diagram was obtained from Fu et al. (2007).  
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1.4.2.1 The female-specificity in genetic control methods 

In SIT trials, male-only releases are more effective compared to female mixed releases because 

females ‘distract’ the SIT males (Rendon et al., 2004). The transgenic genetic control systems rely 

on sex specificity driving the expression of a lethal gene in females only. In this system only 

females die, whereas males survive and can spread the self-limiting gene within the population; 

the male offspring of transgenic males (which do not die) are heterozygous for the self-limiting 

gene construct and the male and female progeny of the heterozygous males will have a 50% 

chance to inherit the self-limiting gene construct leading to 50% death of females (Thomas et al., 

2000; Labbe et al., 2012). Thus, a system to control sex-specific expression is required.  

Previous studies have reported the generation of self-limiting gene constructs that are female-

specific and late acting. The female-specific gene tra is present in D. melanogaster and Ae. aegypti 

(Fu et al., 2007)(see Section 1.3 for more information). This gene is part of the sex determination 

cascade, which generates different splice variants for the tra genes in females and males (Figure 

1.12). The intron specific for the female tra splice variant is inserted between the tetO sequence 

and the tTAV gene generating a one-component self-liming construct that is only lethal for 

females (Figure 1.12). Another female-specific splice variant is Ae. aegypti Actin-4 (AeAct-4), 

which is spliced only in the developing wing muscles of female L4 instar (Munoz et al., 2004). 

When the AeAct-4 intron is used in the self-limiting construct, then flightless female adults 

emerge (Fu et al., 2010). The aims of this thesis are to understand the SDG pathway and sex-

specific splicing in order to identify elements in B. tabaci suitable for the self-limiting system.    

1.4.2.2 Insect transformation systems  

A self-limiting system needs germline transformation; therefore, the self-limiting construct needs 

to be introduced into the egg by microinjection before germ cells have developed (pre-

blastoderm stage). Pre-blastoderm stage varies depending on the organism; for Anopheles 

gambiae and Aedes aegypti this is 1-2.5 hours after oviposition. The construct is deposited in the 

periplasmic space or near the yolk to promote DNA transfer into germline cells (Eggleston, 2014). 

One of the aims of this thesis is to better understand B. tabaci embryogenesis to guide this 

approach.  

1.4.2.3 Advantages and disadvantages of the self-limiting system  

There are many advantages to the self-limiting system. Firstly, insecticide-susceptible alleles can 

be introduced into a wild population (Alphey, 2014b; Alphey et al., 2009; Alphey et al., 2007). 

Secondly, there is an excellent level of flexibility using various versions of the same constructs, 

specifically the use of different promoters that drive the expression of the self-limiting genes. The 
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promoters can be active in females only or during specific developmental stages of the insect, for 

example during development of the flight muscles causing flightless females  (Fu et al., 2010). Late 

acting fatalities may be beneficial as the developing eggs, larvae and pupae, and transgenic 

insects compete for resources with the native ones of the same species (Dye, 1984). Thirdly, 

insect populations can be reduced for an entire region and does not involve individual 

circumstances (for example, decisions of who should use the bed net within a larger family).  

The disadvantages of the self-limiting system are the public perception of genetically modified 

organisms. The self-limiting system is invasive because it is not possible to limit the flight and 

spread of the released insects and the genes throughout the insect population (Alphey, 2014a). 

Genetic control can lead to political disagreements about the release of genetically modified 

organisms. The self-limiting system cannot eradicate the pests, because insects from other areas 

may invade the release area. Public perception has generally been positive (Alphey, 2014a), 

however recently Oxitec has been under attack by a paper suggesting that background genetics 

lead to increase hybrid vigor in the mosquito (Evans et al., 2019). Suggesting that the transgenic 

mosquitoes carry on breading and transmitting the transgenic element longer than it previously 

thought. Since this paper, Oxitec has complained to Nature Research as the studies does not 

identify anything that was not unanticipated, and the paper was very speculative and dramatizing 

(Oxitec, 2019). 
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Aims of the project 

Bemisia tabaci is an important agricultural and economical pest. Resistance to pesticides is 

increasing in B. tabaci, therefore new control methods need to be developed. The industrial 

partner connected to this PhD is Oxitec, a company who have created a successful genetic control 

method; the self-limiting system. The aim of this research was to assess the feasibility of using the 

self-limiting system on B. tabaci.  

For a self-limiting system to succeed, researchers must be aware of when they can insert the 

transgenic element and what they can insert. Traditionally, a transgenic element is inserted into 

the egg before the blastoderm has formed. Both the process of embryogenesis and sex 

determination are poorly understood in whitefly. The focus of this thesis is to build knowledge of 

these processes using a combination of approaches.   

Overview of thesis contents 

Chapter 3: Sex determination genes appear conserved across Hemiptera with diverse sexual 

lifecycles 

This chapter asses the question of which genes are likely to be involved in the sex determination 

pathway in whiteflies and broadens this to investigate the pathway in hemipteran insects more 

generally. Comparative genomic analysis can be used on hemipteran genomes to discover the 

orthologues. 11 hemipteran genomes are publicly available. The aphids; Aphis glycines, 

Acyrthosiphon pisum, Myzus persicae Clone 0 and M. persicae G006. The whiteflies; B. tabaci 

MEAM1 and B. tabaci MED. The pysllid; Diaphorina citri. The planthoppers; Nilaparvata lugens 

and Sogatella furcifera. The public health pests; Cimex lectularius (bed bug) and Rhodnius prolixus 

(kissing bug). 

Sex determination Genes (SDGs) were taken from D. melanogaster, B. mori and A. mellifera, and a 

reciprocal best blast hit technique (RBBH) was used to identify hemipteran SDGs orthologues. It 

was discovered that hemipteran insect species have potential orthologues of several sex 

determinations genes of D. melanogaster and B. mori, but not of A. mellifera. 

Further investigation concluded that DSX hemipteran orthologues only contained one of the two 

domains usually found in functional DSX protein, the DM protein domain. Other known proteins 

that contain only the DM domain are also involved in sex determination/ differentiation. 

Hemipteran DM proteins were investigated and discovered they fell into certain clades; a 
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Hemiptera-specific, a dmrt99b clade, a dmrt11e clade and a dmrt93b clade. There is no true 

hemipteran DSX orthologue found in this study.  

Chapter 4: Confocal microscopic investigation reveals embryogenesis stages of B. tabaci pre-

oviposition eggs 

This chapter aims to understand the stage at which the blastulation occurs during B. tabaci egg 

development. Germline transformation requires insertion of a transgenic element before the 

blastoderm stage. Before this thesis there was no published knowledge of embryogenesis stages 

in B. tabaci. D. melanogaster is a model organism for insect embryogenesis. Comparative analysis 

of the cell division numbers by staining nuclei in D. melanogaster, against the nuclei of novel 

embryos can help determine embryogenesis stages. Nuclei staining protocols were developed and 

optimised for B. tabaci in this chapter.  

This chapter shows that unlike Drosophila and other dipterans, embryogenesis has already begun 

in pre-oviposition eggs. Morphological analysis of the pre-oviposition eggs shows migration of 

nuclei to the peripheral edges, indicating these eggs are starting to form the blastoderm. The 

number of nuclei in B. tabaci pre-oviposition eggs concurs with the morphological analysis.  

Chapter 5: Single egg RNA-seq narrows down the developmental stages of B. tabaci eggs  

This chapter uses a transcriptomic approach to further address the timing development of events 

and sex determination gene expression. Female lethality in self-limiting systems require genes to 

be expressed early and female-specific isoforms. SDGs are used in self-limiting system as they are 

conserved, expressed during embryogenesis and can have sex-specific isoforms. B. tabaci is a 

haplo-diploid organism; males are haploid. In this chapter, single pre-oviposition egg RNA-seq 

samples were successfully split into male and female, depending on SNPs percentage.  

An embryonic development marker gene was used to test the RNA-seq bioinformatic pipeline and 

confirm the embryonic stages in more detail. The conserved embryonic gene, Vasa expressed at 

all embryonic and adult stages. Vasa is a gene that is expressed when germline cells are created 

and at or after blastoderm formation. Therefore, Vasa being expressed at all stages indicates the 

earliest eggs are after blastoderm formation. This result concurs with Chapter 4. SDGs were 

identified in Chapter 3. Sex-specific isoform and expression of these genes were investigated 

further.  DM proteins and the ‘key’ genes had isoform data in the embryo stage and adults.    

In this chapter, I discovered sex-specific isoforms in Btdmrt3 (orthologue of dmrt99b) and other 

key genes. Most of the genes had expression in early embryogenesis (apart from PSI) and the 

expression varied with the sex of the samples.   
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Contributions to thesis  

All experiments in this thesis were conducted by me, unless acknowledged. 

Contributions of those who shared data, expertise or knowledge are listed in Table 1.3. 

 

Name Affiliation Chapter Contribution 

Thomas 
Mathers 

John Innes 
Centre 

3 Provided the protein databases for hemipteran genomes  
Provided the early release of A. glycine genome 
Provided the differential expression data for Table 3.36 

Sam 
Mugford 

John Innes 
Centre 

3 1:1 orthologue list of genes from M. persicae G006 and Clone 
0 for Table 3.36 

Adi Kliot John Innes 
Centre 

4 Provided equipment for the dissection of the B. tabaci adults 

Michael 
Giolai 

Earlham 
Institute 

5 Sequenced the egg samples 

Archana 
Singh 

Earlham 
Institute 

5 Provided the count data analysis for the gene expression 
analysis 

Table 1. 3 Contribution of everyone (apart from myself) who shared data, expertise or knowledge in this 
thesis 
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2.1 Sex determination gene discovery 

2.1.1 Pipeline for the bioinformatics 

The bioinformatic pipeline for SDGs discovery is Figure 2.1.  

 

Figure 2. 1 Bioinformatic pipeline for sex determination gene discovery in Hemiptera 
In R. prolixus, C. lectularius, S. furcifera, N. lugens, M. persicae G006 and Clone 0, A. pisum, A. glycines, D. 
citri, B. tabaci MEAM1 and MED.  

 

Sex determination proteins used for this analysis were described in the introduction. The 

Genebank accession numbers for each gene is found in Table 2.2. 11 Hemiptera genomes were 

used in this bioinformatic pipeline (R. prolixus, C. lectularius, S. furcifera, N. lugens, M. persicae 

G006 and Clone 0, A. pisum, A. glycines, D. citri, B. tabaci MEAM1 and MED). Table 2.1 shows the 

metadata of the genomes used in the analysis.   

Thomas Mathers from the Hogenhout laboratory constructed a database of hemipteran protein 

sequences using gene predictions from 11 publicly available genome sequences (Table 2.1). For 

each species, the longest transcript per gene (LTPG) was selected as the representative transcript 

to avoid hits to multiple isoforms of the same gene when searching for RBBH. I used the D. 

melanogaster, A. mellifera and B. mori SDPs (Table 2.2) to create a full-length SDP database. 
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Specifications to the BLASTP results were conducted according to (He et al., 2015). The E-value 

threshold was set to 10-5, this value has been used in previous papers for the cut-off for RBBH 

(Rachamim et al., 2015; Thorpe et al., 2016). E value is the expected value, the lower the E-value 

the more ‘significant’ the match is.  

The sex determination proteins were ‘blast searched’ (using BLASTP function, version 2.2.30) 

against the hemipteran genomes. The genomes were Blasted back against the sex determination 

protein database. The top hits from both results gave the reciprocal best blast hit (RBBH). RBBH 

have a higher probability of being an orthologue to the sex determination genes.  

2.1.2 Genomes from the sex determination pipeline 

The genomes that were used are shown in Table 2.1.  

Species  Date gathered Release date Notes Link Reference 

Drosophila 

melanogaster 

 

24/10/2017 

 

23/08/2017 

 

FB2017_

04 

 

ftp://ftp.flybase.n

et/genomes/Dros

ophila_melanogas

ter/current/ 

 

(Gramates et al., 

2017) 

Bombyx mori  

 

24/10/2017 

 

4/09/2013 Geneset 

A 

http://sgp.dna.aff

rc.go.jp/Compreh

ensiveGeneSet/ 

(Suetsugu et al., 

2013) 

Apis mellifera  24//10/2017 Feb 2011 Amel 4.5 https://metazoa.e

nsembl.org/Apis_

mellifera/Info/Ind

ex 

(Weinstock et al., 

2006) 

Aphis glycines 20/02/2019 

 

25/09/2019 

(publicly), 

however had 

access earlier  

 https://zenodo.or

g/record/345346

8#.XYyXxG5FzQY 

(Mathers, 2019) 

Acyrthosiphon 

pisum 

24/10/2017 23/02/2010 ACYPI 

proteins 

v2.1b 

http://bipaa.geno

uest.org/is/aphid

base/acyrthosiph

on_pisum/downl

oads/ 

(Richards et al., 

2010) 

Myzus persicae 

Clone 0 

24/10/2017 13/02/2017  http://bipaa.geno

uest.org/is/aphid

(Mathers et al., 

2017) 
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base/myzus_persi

cae/downloads/ 

Myzus persicae 

G006 

24/10/2017 13/02/2017  http://bipaa.geno

uest.org/is/aphid

base/myzus_persi

cae/downloads/ 

(Mathers et al., 

2017) 

Diaphorina citri 24/10/2017 04/07/2014 Annotati

on 

Release 

100 

https://i5k.nal.us

da.gov/data/Arth

ropoda/diacit-

%28Diaphorina_ci

tri%29/Current%2

0Genome%20Ass

embly/ 

Genome 

Sequencing Project-

RefSeq: Accession: 

PRJNA29447 ID: 

29447 (http:// 

www.ncbi.nlm.nih.g

ov/bioproject/PRJN

A29447) 

Bemisia tabaci 

MEAM1 

24/10/2017 14/12/2016  ftp://www.whitef

lygenomics.org/p

ub/MEAM1/MEA

M1/ 

(Chen et al., 2016) 

Bemisia tabaci 

MED 

24/10/2017 19/04/2017  http://gigadb.org

/dataset/100286 

(Xie et al., 2017a) 

Nilaparvata 

lugens 

24/10/2017 20/04/2015  http://gigadb.org

/dataset/100139 

(Xue et al., 2014) 

 

Sogatella 

furcifera 

24/10/2017 15/11/2016  http://gigadb.org

/dataset/100255 

(Wang et al., 2017) 

Cimex 

lectularius 

24/10/2017 

 

02/02/2016  https://www.ncbi

.nlm.nih.gov/Trac

es/wgs/?val=JRLE

01#contigs 

(Rosenfeld et al., 

2016) 

Rhodnius prolixus 24/10/2017 

 

August 2015 Rhodnius

-prolixus-

CDC_CO

NTIGS_R

proC3.fa.

gz 

https://www.vect

orbase.org/downl

oadinfo/rhodnius-

prolixus-

cdccontigsrproc3f

agz 

(Giraldo-Calderon 

et al., 2015) 

Table 2. 1: All the genomes gathered for the sex determination analysis.  

 

  

https://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JRLE01#contigs
https://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JRLE01#contigs
https://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JRLE01#contigs
https://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JRLE01#contigs
https://www.vectorbase.org/downloadinfo/rhodnius-prolixus-cdccontigsrproc3fagz
https://www.vectorbase.org/downloadinfo/rhodnius-prolixus-cdccontigsrproc3fagz
https://www.vectorbase.org/downloadinfo/rhodnius-prolixus-cdccontigsrproc3fagz
https://www.vectorbase.org/downloadinfo/rhodnius-prolixus-cdccontigsrproc3fagz
https://www.vectorbase.org/downloadinfo/rhodnius-prolixus-cdccontigsrproc3fagz
https://www.vectorbase.org/downloadinfo/rhodnius-prolixus-cdccontigsrproc3fagz
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2.1.3 Sex determination protein NCBI  

The sex determination proteins described in bioinformatic pipeline in Section 2.2.1  

Gene Species Protein 

Da Drosophila melanogaster NP_001260340.1  

Dpn Drosophila melanogaster NP_476923.1  

Dsf Drosophila melanogaster NP_001260109.1    

Emc Drosophila melanogaster sp|P18491.2  

fl(2)d Drosophila melanogaster NP_001246306.1 

Fru Drosophila melanogaster NP_001262712.1  

Gro Drosophila melanogaster NP_001287539.1  

Her Drosophila melanogaster NP_001260506.1  

Vir Drosophila melanogaster sp|Q9W1R5.1   

Snf Drosophila melanogaster NP_511045.1 

Sxl Drosophila melanogaster NP_001303551.1 

Fem Bombyx mori  - 

Dsx Drosophila melanogaster NP_001262353.1  

Masc Bombyx mori  NP_001296506.1  

Tra Drosophila melanogaster NP_524114.1 

Tra2 Drosophila melanogaster NP_995835.1  

Imp Bombyx mori  XP_004929907.1  

PSI Bombyx mori  NP_001103813.1  

CSD Apis mellifera ABU68670.1  

Fem Apis mellifera NP_001128300.1 
Table 2. 2: The proteins used for the blastp analysis and the genbank ID on ncbi 

 

2.1.4 Multiple sequence alignments  

The protein sequences were analysed using the program CLC Main Workbench 8 (Qiagen 

Bioinformatics, Aarhus, Denmark), from now on the programme will be referred to as CLC. The 

RBBH protein sequences were placed into a list with the original query. The alignments were 

created using the CLC alignment function, with the default alignment algorithm parameters. 

2.1.5 Full-length protein pairwise comparison 

The full proteins were aligned as Section 2.1.4. The pairwise comparison was conducted using the 

program CLC Main Workbench 8 (Qiagen Bioinformatics, Aarhus, Denmark). Typically, only the 

pairwise identity was compared, and only between the query and the orthologue. The percentage 

identity is the percentage of identical residues in alignment positions to overlapping alignment 

positions between the two sequences. 
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2.1.6 Phylogenetic trees 

The phylogenetic trees were created using MEGA 7.0.26 (Kumar et al., 2016). The protein 

sequences were aligned by “MUSCLE” alignment algorithm. The best-fitting model for any of the 

alignments was determined using the model selection (ML) function in MEGA 7.0.26, using the 

maximum likelihood statistical method. The best model was used to conduct a maximum 

likelihood tree with a bootstrap of 1000. Edits of the tree were in the Interactive tree of life (ITOL) 

(Letunic and Bork, 2016). 
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2.2 Whole mount in-situ protocol for B.tabaci MED embryos 

2.2.1 B. tabaci MED maintenance 

A stock colony of B. tabaci MED (Acquired from Alison Clarke, Rothemstead, collected from 

Mexico) which was assigned to a cryptic species by molecular analysis, was reared continuously 

on Cotton (Delta pine) in cages (52 cmx 52cm x50 cm) with a 16 h day and 8 h night photoperiod 

at 22 oC.  

2.2.2 B. tabaci MED virgin collection  

A mature cotton leaf was collected from the stock cage.  Last stage pupae were identified on the 

cotton leaf. The pupae and the surrounding cotton leaf were separated from the main leaf by a 

single edge razor blade (Agar scientific LTD).  Melted 1% water agar (Formedium limited) was 

placed into the wells of a 12-Well CytoOne flat bottom Plate (Starlab (UK) LTD). Leaf discs 

containing individual pupae were placed into the wells, with the pupae facing up. 100 mm x 38 m 

parafilm (Slaughter LTD, R&L) was stretched across the wells, with surgical 12.5 mm x 10 m 

micropore tape (Slaughter LTD, R&L) secured the parafilm to the plate.  

The plates were left for 3 days, until adults emerged, in a controlled environment room with a 10 

h day and 14 h night photoperiod at 22 oC. Adult females were identified by the genitalia and then 

dissected as per Section 2.2.4.  

2.2.3 B. tabaci MED non-virgin collection  

A mature cotton leaf was collected from the stock cage. The adults were removed from the leaf. 

The leaf was placed into a 140 mm triple vent Petri dish (Slaughter LTD, R&L) in 1% water agar 

(Formedium limited), abaxial side facing up. The lids were placed on the Petri dish, and surgical 

12.5 mm x 10 m micropore tape (Slaughter LTD, R&L) secured the plate. 

The plates were left for 3 days, until adults emerged, in a controlled environment room with a 10 

h day and 14 h night photoperiod at 22 oC. Adult females were identified by the genitalia and then 

dissected as per Section 2.2.4. 

2.2.4 B. tabaci MED dissection  

0-3-day old females were collected from a Petri dish or a 12 well plate depending on if they were 

virgin or non-virgin. A short Pasteur pipette (Slaughter LTD, R&L) with sponge acting as a filter was 

used to move the adult females. The adult whiteflies were knocked out by CO2 and placed on a 78 

x 26 mm single cavity slides (Sigma-Aldrich CO LTD) with 1X Phosphate buffered saline (PBS) 

(Formedium). The dissection tools are made by melting an entomological pin into a 5ml 
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Eppendorf tube (this equipment was kindly given by A. Kliot). The female abdomens were cut with 

the dissection tool and the eggs dissected out.  

 
Figure 2. 2: A diagram of B. tabaci MED dissection, for collection of pre-oviposited eggs 

 

2.2.5 Original DAPI protocol with oviposited eggs 

The eggs were collected from the plant using the adapted entomological tool (described above) 

and the eggs were placed in a Carnoy fixative (Chloroform: Ethanol: Acetic acid in a 6:3:1 ratio) 

overnight. Post-oviposited eggs underwent a 2-hour bleaching (100 µl of 6% hydrogen peroxide in 

400 µl of 99% ethanol). The eggs were placed in the hybridisation buffer (HB) (1 ml of 1M pH8 

Tris, 9 ml of 5 M NaCl, 200 ml of 5% SDS, 25 ml of dH20 and 15 ml of 30% formamide) with 0.5 

ug/ml of DAPI (Sigma-Aldrich CO LTD). The eggs were left in the HB with DAPI for 10 minutes. The 

eggs were washed with HB and placed onto a slide with Vectashield (Vector Laboratories) was 

applied. A number 11 22 x 50 mm coverslip (Slaughter LTD, R&L) was placed onto the slide. 

Generic nail polish was used to seal the slide. The slides were stored in the dark at 4 oC until 

imaged on the Zeiss 780 Confocal microscope. 

2.2.6 Propidium iodide staining 

Propidium iodide has a different wavelength than DAPI and DAPI has the same wavelength as B. 

tabaci autofluorescence. Therefore, the propidium iodide staining was used to see if the nuclear 

structures are better visualised using this dye. The protocol was adapted from chapter 9 of 

Fluorescent analysis of Drosophila Embryos (Rothwell and Sullivan, 2000). There were 5 stages of 

the protocol; dechorionation, embryo fixation, rehydration of embryos, Propidium iodide (PI) 

staining and mounting.  
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Dechorination 

The eggs were collected as described in Section 2.3.3. The eggs were dechorinated by a 30% 

bleach wash for 5 minutes at room temperature.  

Embryo fixation 

Embryo wash solution contained 70 g of 7% NaCl, 5 ml of 0.5% Triton X-100 and H20 added to 1 

litre. The eggs were washed with the embryo wash solution and 1 ml heptane. PEM buffer (0.1 M 

PIPES, 1 mM MgCl2, 1 mM EGTA and the pH was adjusted with KOH) was added to 3.7% 

formaldehyde in a 50:50 ratio. The bottom formaldehyde layer was removed from the eggs. 1 ml 

of methanol was added to the eggs for 1 minute before the removal of the top heptane layer was 

then removed.  

Embryo rehydration 

250 µl of PBTA solution (50 ml 10X PBS, 5 g 1% BSA, 250 µl 0.05% Triton X-100, 0.1 g of 0.02% 

sodium azide, buffer was adjusted to 500 ml of water) was added to the eggs for 15 minutes at 

room temperature; this rehydrated the eggs.   

Propidium iodide (PI) staining and mounting 

PBTA buffer was removed. The eggs were submerged in 10mg/ml of RNase and incubated at 37 oC 

for 2 hours. RNase was removed. The eggs were washed with PBTA solution and then PBS-azide 

(1X PBS and 0.02% sodium azide). The PBS-azide was removed and 40 µl of PI mounting medium 

was added to the eggs (10 mg/ml 1,4-phenylenediamine in 10x PBS- 10ml of this mixture was 

added to 90 ml of glycerol, 1 µg/ml of PI added). The embryos were sealed under a cover slip and 

imaged immediately on the Zeiss 780 Confocal microscope.  

2.2.7 Final optimised DAPI-staining protocol 

The female bodies were removed from the slide and carnoy fixative (Chloroform: Ethanol: Acetic 

acid at 6:3:1) was placed onto the slide for 10 minutes, covering the eggs. The fixative was 

removed and left in a hybridisation buffer (1 ml of 1 M pH8 Tris, 9 ml of 5 M NaCl, 100 ml of 5% 

SDS, 25 ml of dH2O and 15 ml of 30% formamide) overnight at 4oC. 1.5 µl of 10 µg/ml of DAPI 

slides (Sigma-Aldrich CO LTD) was placed into 100 µl hybridisation buffer creating a DAPI infused 

buffer. The DAPI infused hybridisation buffer was placed onto the eggs for 10 minutes at room 

temperature. The excess DAPI infused buffer was removed and antifade mounting medium 

Vectashield (Vector laboratories) was applied. A number 11 22x50 mm coverslip (Slaughter LTD, 

R&L) was placed onto the slide. Generic nail polish was used to seal the slide. The slides were 

stored in the dark at 4 oC until used on the Zeiss 780 Confocal microscope. 
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2.2.8 Confocal microscopy  

Nuclei counting of embryos was conducted on a Zeiss LSM780 confocal microscope (located in 

John Innes Centre). Eggs were imaged under air medium and a magnification of 20x, in both 

brightfield and under excitation. DAPI was excited at 405 nm with a Diode 405-30 laser. The DAPI 

fluorescent emission was detected between 436-475 nm. The exposure was kept constant within 

experiments. The confocal microscope experiment was conducted per the standard operation 

protocol set out by the Bioimaging facility in JIC  (Calder, 2017). A brightfield image and a Z-stack 

fluorescence image was taken for each egg. 

2.2.9 Embryo analysis in FIJI 

The confocal microscope produced Carl Zeiss format (CZI) files that were analysed using FIJI 

software (National Institutes of health, USA; v1.52c) (Schindelin et al., 2012). A scale of 10 µm was 

placed on each image. The files were converted into 16-bit images for DAPI signal analysis and 

then into graphics interchange format (GIF). Slices of individual Z-stack could be analysed and 

saved as JPEG. A maximum intensity Z projection was used to count the nuclei.    
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2.3 Single embryo RNA-seq 

2.3.1 Sample preparation 

Virgin and potentially non-virgin females were collected, as detailed in Section 2.2.2 and 2.2.3. 

The females were dissected in ice-cold 1X Phosphate buffered saline (PBS) (Formedium). The 

morphological developmental stage of the eggs was catalogued into A, B/C and D (described in 

Section 1.2.1) and placed into a 1.5 ml Eppendorf tube with a buffer; 0.2% (vol/vol) Triton X-100 

and 2 µl RNase inhibitor. RNA was extracted using the protocol described in Picelli et al (2014) and 

performed by Michael Giolai from the Hogenhout laboratory (Picelli et al., 2014). 

2.3.2 Library preparation method and quality control 

M. Giolai sequenced with NextSeq500 and produced 150bp pair-end reads. The reads were 

trimmed using cutadapt. End-trimming was done by a quality threshold of 20, all read pairings 

with at least one read shorter than 100 bases post adapter/ quality trimming was also removed.  

2.3.3 Determining the sex of the samples  

STAR 2-pass method (version star-2.6.0c)  was used to align the reference genome with the 

individual RNA-seq files (Dobin et al., 2013). Picard was used to read groups, sort, mark duplicates 

and create an index (Institute, 2019).  

The GATK tool (version 3.7.0), Split’N’Trim split reads in the exon segments and hard clip any 

sequences overhanging into the intronic regions. GATK’s ReassignOneMappingQuality read filter 

was used to reassign good alignments to the value of 60 (McKenna et al., 2010). 

The GATK tool, HaplotypeCaller, calls the variants producing a .vcf file. The GT values were 

collected, and the homozygosity and heterozygosity percentage calculated.  

2.3.4 Creating a transcriptome assembly 

Reads were aligned to the B. tabaci MED/Q reference genome (Xie et al., 2017b) by HISat2 

(v2.1.0) (Pertea et al., 2016). Sequence alignment map (SAM) files were converted to Binary 

AlignmetMap (BAM) file using Samtools (v1.7) (Li et al., 2009). Transcriptome compilation of all 

fastq files completed by stringtie (v1.3.5) (Pertea et al., 2015) to produce a gene transfer format 

(gtf) file. Individual embryo gtf files were converted back to cDNA by cufflinks (v2.2.1) Gff read 

function (Trapnell et al., 2010).  
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Figure 2. 3 Bioinformatic pipeline for transcriptome creation 

 

2.3.5 Creating files for gene expression analysis 

A transcriptome file was created with Samtools (v1.7) Samtool merge function (Li et al., 2009). 

The merged transcriptome files were converted back to cDNA by cufflinks (version 2.2.1) Gff read 

function (Trapnell et al., 2010). Transcriptome file was indexed by Kallisto (version 0.42.3) usinf 

kallisto index function (Bray et al., 2016).  The single embryo RNA-seq fastq files were aligned to 

the new transcriptome by Kallisto (v0.42.4) using the Kallisto quant function (Bray et al., 2016). 

The count matrix was completed by Archana Singh from the Hogenhout laboratory. 
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Figure 2. 4 Bioinformatic pipeline for gene expression analysis 
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Chapter 3: Sex determination genes 

appear conserved across Hemiptera with 

diverse sexual lifecycles 
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3.1 Introduction  

Insects of the order Hemiptera are known as true bugs; they are a large order of insects. 

Hemiptera split from holometabolous insects 320 million years ago (see Figure 1.1) (Hogenhout 

and Bos, 2011b; Hogenhout et al., 2009).  Hemiptera have common mouthparts, and many are 

herbivores and economic pests.  

Insecticide resistance is on the rise in many hemipteran species (Nauen and Denholm, 2005). New 

control methods need to be developed to tackle agricultural and public health pests. One 

potential control method is genetic control. Oxitec is a company that has created the self-limiting 

system; this system causes a female-specific lethality. Traditionally, sex determination genes 

(SDGs) are the target for female-specific lethality due to expression in early developmental stages. 

Some SDGs have female-specific isoforms (Xu et al., 2017). The development of genetic control 

tools in Hemiptera will require in-depth knowledge of sex-determination genes. Currently, there is 

a lack of knowledge of sex-determination genes in Hemiptera; this chapter will rectify this.    

The term orthologue, in this thesis, refers to the genes in different species that have evolved from 

a common ancestral speciation. Thereby, I will be using the term as I will be trying to find sex 

determination genes in hemipteran species. Orthologues can retain the same function; any 

candidate orthologues found in this chapter will potentially have the same function.  

Sex determination pathways in the holometabolous insects, Bombyx mori (Lepidoptera), 

Drosophila melanogaster (Dipteran) and Apis mellifera (Hymenoptera), have been well described 

(Cline and Meyer, 1996). SDGs were identified and functionally characterised in these three 

species. The sex determination pathways of these three insect species are different, though their 

cascade structures are similar ((Sakai et al., 2015; Yamamoto and Koganezawa, 2013; Herpin and 

Schartl, 2015; Hoff, 2009); see Fig. 1.9 of main introduction). Other insect species have sex 

determination gene orthologues. Complete sex determination pathways are under-researched in 

species other than the three holometabolous insects (mentioned above). 

A detailed description of the sex-determination genes in Bombyx mori (Lepidoptera), Drosophila 

melanogaster (Dipteran) and Apis mellifera (Hymenoptera) are provided in the general 

introduction of this thesis (Sawanth et al., 2016). Briefly, genes of the sex determination pathway 

form three main groups. The first group contains one gene named doublesex (Dsx). This gene is 

conserved in most organisms for which sex determination genes are identified, including 

invertebrates and humans. The second group contains the ‘key genes’, so-called because it 

regulates processes upstream of Dsx directly or indirectly. Genes assigned to the ‘key gene’ group 

include D. melanogaster Sex-lethal (Sxl), transformer (Tra), transformer 2 (Tra2), B. mori 
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masculinizer (Masc), IGF-II mRNA binding protein (Imp), feminizer (Fem) and P-element somatic 

inhibitor (PSI) and A. mellifera CSD and Feminizer (Fem). The latter is the orthologue of D. 

melanogaster Tra, and Fem and Tra directly regulate Dsx in A. mellifera and D. melanogaster, 

respectively (Hasselmann et al., 2008). Finally, the third group is named the ‘support group’ and 

contains genes that help regulate some ‘key genes’ and produce specific courtship behaviours. 

Genes assigned to the ‘support group’ include, for example, daughterless (Da), deadpan (Dpn), 

extra-macrochaetae (Emc), Female lethal d (Fl(2)d), grouchu (Gro), hermaphrodite (Her), sans fille 

(Snf), virilizer (Vir), dissatisfaction (Dsf) and fruitless (Fru) of D. melanogaster. Members of the 

‘support genes’ group are necessary for the function of the ‘key gene’ group, specifically for their 

regulation (Ellis et al., 1990). There are support genes that take a sex differentiation role and 

regulate, for instance, sex-specific courtship behaviours (Demir and Dickson, 2005; Finley et al., 

1998).  

Specific protein domains characterise sex determination proteins (SDPs); orthologues are found in 

organisms using the protein domains. For example, DSX has a doublesex/Mab3 DNA binding motif 

(DM) which is conserved among all DSX proteins identified so far (Marin and Baker, 1998). The 

DM domain is essential for the sex determination function of DSX because it binds to the 

promoter of proteins regulated by DSX (Erdman and Burtis, 1993; Zhu et al., 2000). The D. 

melanogaster DSX has a second domain; DSX dimerization domain. DSX dimerization domain is 

less conserved among orthologues of organisms other than the drosophilids. Whereas the DM 

domain is conserved in DSX, it is not the only protein that has this domain. DMRT proteins contain 

DM domains and are involved in sex determination or differentiation. Therefore, the DM domain 

is useful to find genes involved in sex determination in other organisms (Kato et al., 2008).  

The sex determination pathway in Hemiptera is poorly defined. Some SDGs/ SDPs in Cassava 

whitefly (Bemisia tabaci MED) already been identified (see Section 1.3.6) (Liu et al., 2019), 

including one Dsx orthologue and some SDGs in the ‘key gene’ and ‘support gene’ groups. In this 

chapter, reciprocal best blast hit (RBBH), and protein domain analysis have identified SDGs/SDPs 

in B. tabaci and other hemipteran species. The hemipteran species investigated are those with 

public genomes available; Aphis glycines, Acyrthosiphon pisum, Myzus persicae Clone 0, M. 

persicae G006, B. tabaci MEAM1 and MED, Diaphorina citri, Nilaparvata lugens, Sogatella furcifera, 

Cimex lectularius and Rhodnius prolixus (see Table 2.1, materials and methods, for more 

information).  

There is variation in signalling elements among the 11 hemipteran populations tested. The 

signalling element differences are; different life cycles (sexual versus asexual reproduction of 
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aphids versus only sexual reproduction in other hemipteran species), and variations in genome 

structures between the sexes (diploid versus haploid of whiteflies versus XX/XO or XX/XY systems 

of other insect species). The hypothesis is that the variation in sex determination pathways will be 

due to the signalling elements (more detail in Section 1.2.4). 

In this chapter, the results show that the hemipteran insect species have potential orthologues of 

several sex determinations genes of D. melanogaster and B. mori, but not of A. mellifera. 

Surprisingly, whereas proteins with DM domains are present and conserved among hemipterans, 

a direct homolog of DSX was not identified. Most SDGs/SDPs appear conserved among the 

hemipterans, except for D. melanogaster HER that was not present in aphids. This research 

chapter has elucidated some surprising findings that did not confirm some published data. 

SDGs/SDPs evolution in hemipterans will be investigated and discussed later in the chapter.  
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3.2 Results 

3.2.1 First assessment of the presence of sex determination genes in Hemiptera insects 

This chapter describes the investigation of hemipteran sex determination proteins. Firstly, by 

reciprocal best blast hit (RBBH) analysis, and secondly by protein domain investigation. Section 

3.2.1 will cover the RBBH analysis.  

Basic Local Alignment Search Tool (BLAST) finds regions of similarity between biological 

sequences, i.e. the query sequence against the subject sequence. BLASTP is a programme which 

compares protein sequences to a protein database and calculates the statistical significance. In 

this Chapter, BLASTP analysis was conducted on full- length SDPs (found in D. melanogaster, A. 

mellifera and B. mori, Section 1.3) and hemipteran protein databases (from the 11 public 

genomes, Table 2.1). In this Chapter, all BLASTP analysis is done to specification of Figure 2.1, 

unless otherwise stated. Reciprocal Best Blast Hit (RBBH) contains an extra BLASTP analysis of the 

hemipteran proteins against the full-length SDP database.  

T. Mathers constructed the hemipteran protein databases (Table 2.3) from all 11 public 

hemipteran genomes (Table 2.1). Construction of hemipteran protein databases had two stages. 

Firstly, the identification of the longest transcript per gene (LTPG), and secondly, the translation 

of LTPG into protein sequence. Hemipteran protein database, which only contains the LTPG, 

prevents hits to multiple isoforms in the same gene in the RBBH analysis (Thorpe et al., 2016). I 

used the D. melanogaster, A. mellifera and B. mori SDPs (Table 2.2) to create a full-length SDP 

database.  

One of the statistics that BLASTP conducts is the percentage similarity. The numbers (0-100) in 

Figure 3.1 are percentage similarity. RBBH analysis revealed that hemipteran have putative SDP 

orthologues (Figure 3.1). All 11 Hemiptera had putative orthologues for D. melanogaster DSX 

(Figure 3.1), at 60% protein identity or higher. All 11 Hemiptera had putative ‘key’ SDP 

orthologues; B. mori IMP, MASC and PSI, and D. melanogaster SXL and TRA2. However, there 

were no results for four ‘key’ SDP orthologues; A. mellifera CSD and FEM, B. mori FEM and D. 

melanogaster TRA. RBBH analysis has stricter requirements than BLASTP analysis; BLASTP analysis 

of the four ‘Key’ SDP also revealed no candidate orthologues.   
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Figure 3. 1:  A summary table of the positive-scoring matches of the RBBH results. 
Hemipteran proteins (rows) with the highest similarity scores to sex determination proteins of D. 
melanogaster, B. mori and A. mellifera (columns, see Fig. 1.6 Introduction).  Similarity scores in % are 
shown for each protein-protein comparison with the lowest scores highlighted in red and highest scores 
in the darkest green. Please note there are two columns for FEM, however one is from A. mellifera whilst 
the other is from B. mori. The two FEMs have the same name but are not orthologues of each other.  

 

Whereas these findings in this section are promising, more in-depth analyses whether the 

identified hemipteran proteins are sex-determination proteins are needed, and this includes 

assessments of the presence of conserved domains. The next sections of this chapter contain 

further analysis for each SDP.  

 

  



49 
 

3.2.2 Assessment of the presence of DSX homologs in Hemiptera 

RBBH analyses above (methodology; fig. 2.1) identified DSX putative hemipteran orthologues 

(PHO) in 11 hemipteran genomes. BLASTP analysis produces a report of the alignment statistics; 

e-value of the alignment between query and subject (more information in Section 2.1.1), length of 

BLASTP alignments in amino acids, query coverage, percentage of identity and the percentage of 

similarity. Figure 3.2 contains the BLASTP alignment statistics between the known SDPs and the 

hemipteran protein databases. Percentage similarity (Table 3.1) is of the alignment and not the 

whole protein. Table 3.3 contains the percentage identity of the pairwise comparison between 

the SDP and putative hemipteran SDP full- length protein. 

BLASTP alignments showed high protein identities and similarities of the putative hemipteran DSX 

orthologues to D. melanogaster DSX (Table 3.1). However, CLC alignments of whole proteins 

showed the identity percentages were low (Table 3.2). 

 

  

Table 3. 1 Results of BLASTP analysis of the full-length D. melanogaster DSX protein (Query) against all 
hemipteran PHO (Subject). 

 

Hemipteran species Subject (hemipteran protein) ID E-value 

Lengths of 

blastp 

alignments 

in amino 

acids 

Query 

Coverage Identity (%) 

Similarity 

(%) 

B. tabaci MEAM1 Bta13246 2.00E-21 107 40 49.53 59.81 

B. tabaci MED BTA013024.1 2.00E-21 107 40 49.53 59.81 

D. citri D_citri_rna13694 5.00E-22 73 27 58.9 75.34 

A. glycines A_glycine_01584 4.00E-21 62 11 64.52 74.19 

A. pisum ACYPI004122-RA 1.00E-19 66 25 62.12 74.24 

M. persicae G006 MYZPE13164_G006_v1.0_000112290.1 7.00E-20 66 25 62.12 74.24 

M. persicae Clone O MYZPE13164_0_v1.0_000078560.2 7.00E-20 66 25 62.12 74.24 

N. lugens NLU005873.1 9.00E-20 64 24 62.5 75 

S. furcifera Sfur-8.45 9.00E-14 67 25 49.25 68.66 

C. lectularius CLEC005903 1.00E-20 67 25 61.19 74.63 

R. prolixus RPRC008869-RA 9.00E-26 70 26 70 78.57 
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DSX in D. melanogaster contains a DM domain and DSX dimer domain (Fig. 3.2). DM is present in 

most DSX proteins, but also in some other sex differentiation genes. I analysed all of the DSX-PHO 

for the presence of protein domains using the SMART protein analysis (Letunic and Bork, 2018). 

The DSX-PHO of 11 hemipteran genomes only have the DM protein domain, but no DSX dimer 

domain (Fig. 3.2).  

 

 

Figure 3. 2 A simplified schematic drawing of domains found in D. melanogaster DSX and putative DSX 
proteins of 11 hemipteran genomes. 

 

  

Species Subject ID 

Identity (%) of full-length aligned 

protein against the query 

B. tabaci MEAM1 Bta13246 8.78 

B. tabaci MED BTA013024.1 8.78 

D. citri D_citri_rna13694 10.32 

A. glycines A_glycine_01584 13.43 

A. pisum ACYPI004122-RA 13.43 

M. persicae G006 MYZPE13164_G006_v1.0_000112290.1 13.27 

M. persicae Clone O MYZPE13164_0_v1.0_000078560.2 13.27 

N. lugens NLU005873.1 13.09 

S. furcifera Sfur-8.45 10.27 

C. lectularius CLEC005903 8.70 

R. prolixus RPRC008869-RA 8.97 

Table 3. 2: Percentage identity of full-length D. melanogaster protein against the full-length proteins of 
the putative DSX from hemipterans identified in RBBH.  
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There are no DSX dimer domains present in the RBBH hemipteran DSX proteins. However, BLASTP 

analysis may find the DSX dimer protein domain in Hemiptera. Firstly, I conducted BLASTP analysis 

to Figure 2.1 specifications. There was no blast hit results with Figure 2.1 specifications, indicating 

the DSX domain at this threshold does not show any similarities to hemipteran protein. Secondly, 

I conducted the BLASTP analysis with higher E-value threshold (10-2); there was one blast hit result 

from S. furcifera (Sfur-199.19).  

The DSX dimer in hemipteran could be highly divergent from D. melanogaster; Sfur-199.19 could 

be used to reveal hemipteran specific DSX dimer. BLASTP search between Sfur-199.19 DSX dimer 

domain and the hemipteran proteins revealed one result; N. lugens (NLU018480.1). Table 3.3 

contains the BLASTP results. NLU018480.1 and Sfur-199.19 both have a DM protein domain and a 

DSX dimer domain; so are probably DSX proteins.  

 

Species Subject Seq-id E-value 

Raw 

score 

Alignment 

length 

Query 

Coverage 

Per 

Subject 

Percentage 

of identical 

matches 

S. furcifera Sfur-199.19 0 218 40 100 100 

N.lugens NLU018480.1 1.00E-15 168 36 90 80.56 

Table 3. 3 Potential DSX dimer domain found in Hemiptera.  
The only BLASTP hit results of DSX dimer (S. furcifera) against the rest of the hemipteran genomes. 
 

D. melanogaster has 4 DM domain proteins; DSX, DMRT93B, DMRT99B, and DMRT11E. The DMRT 

proteins are found in other organisms beyond D. melanogaster and have a sex differentiation 

function. The RBBH analyses I have conducted has identified 1 DM protein. There may be more 

than 1 DM protein in the 11 hemipteran protein databases. I used BLASTP to search the 

hemipteran proteins using the DM protein domain as the query, results in Table 3.4.   

 

 

 



52 
 

 

Species Subject Seq-id 

RBB

H 

e-

valu

e 

Raw 

scor

e 

Alignme

nt 

length 

Query 

Covera

ge Per 

Subject 

Percenta

ge of 

identical 

matches 

Percenta

ge of 

positive-

scoring 

matches 

A. pisum 
ACYPI004122-RA Yes 

5.00

E-18 192 52 96 69.23 76.92 

A. pisum 
ACYPI007850-RA  No 

8.00

E-16 173 52 96 61.54 73.08 

A. pisum 
ACYPI43968-RA  No 

2.00

E-08 122 49 91 55.1 65.31 

A. 

glycines A_glycine_015300  No 

2.00

E-09 127 49 91 55.1 65.31 

A. 

glycines A_glycine_01584 Yes 

6.00

E-18 192 52 96 69.23 76.92 

B. tabaci 

MED BTA004042.1  No 

7.00

E-09 122 48 89 52.08 60.42 

B. tabaci 

MED BTA011988.1  No 

9.00

E-14 157 52 96 57.69 69.23 

B. tabaci 

MED BTA013024.1 Yes 

4.00

E-19 192 52 96 69.23 76.92 

B. tabaci 

MED BTA021616.1  No 

1.00

E-18 200 52 96 67.31 75 

B. tabaci 

MEAM1 Bta02428  No 

2.00

E-10 135 51 94 50.98 58.82 

B. tabaci 

MEAM1 Bta11938  No 

8.00

E-18 191 52 96 67.31 75 

B. tabaci 

MEAM1 Bta13246 Yes 

4.00

E-19 192 52 96 69.23 76.92 

B. tabaci 

MEAM1 Bta14520  No 

2.00

E-14 163 52 96 57.69 69.23 
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C. 

lectulariu

s CLEC003032  No 

1.00

E-15 171 52 96 63.46 69.23 

C. 

lectulariu

s CLEC005903 Yes 

7.00

E-19 190 52 96 69.23 76.92 

C. 

lectulariu

s CLEC025047  No 

4.00

E-05 94 50 93 40 56 

D. citri 
D_citri_rna10946  No 

1.00

E-16 182 52 96 65.38 75 

D. citri 
D_citri_rna10947  No 

6.00

E-17 185 52 96 65.38 75 

D. citri 
D_citri_rna13694 Yes 

1.00

E-17 186 54 100 68.52 79.63 

D. citri 
D_citri_rna19818  No 

9.00

E-18 193 54 100 68.52 79.63 

D. citri 
D_citri_rna19899  No 

3.00

E-18 191 52 96 69.23 76.92 

M. 

persicae 

Clone O 

MYZPE13164_0_v1.0_00006455

0.1  No 

1.00

E-09 128 49 91 55.1 65.31 

M. 

persicae 

Clone O 

MYZPE13164_0_v1.0_00007856

0.2 Yes 

5.00

E-18 192 52 96 69.23 76.92 

M. 

persicae 

Clone O 

MYZPE13164_0_v1.0_00011091

0.1  No 

6.00

E-16 174 52 96 61.54 73.08 

M. 

persicae 

Clone 

G006 

MYZPE13164_G006_v1.0_0001

12290.1 Yes 

5.00

E-18 192 52 96 69.23 76.92 

M. 

persicae 

Clone 

MYZPE13164_G006_v1.0_0001

16760.1  No 

2.00

E-09 128 49 91 55.1 65.31 
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G006 

M. 

persicae 

Clone 

G006 

MYZPE13164_G006_v1.0_0001

25820.1  No 

6.00

E-16 174 52 96 61.54 73.08 

N. lugens 
NLU005395.1  No 

5.00

E-11 135 55 96 50.91 61.82 

N. lugens 
NLU005396.1  No 

1.00

E-13 156 52 96 53.85 65.38 

N. lugens 
NLU005873.1 Yes 

1.00

E-17 191 52 96 69.23 76.92 

N. lugens 
NLU018480.1  No 

1.00

E-16 177 50 93 70 72 

R. 

prolixus RPRC008869-RA Yes 

4.00

E-20 198 52 96 73.08 80.77 

S. 

furcifera Sfur-199.19  No 

6.00

E-14 165 52 96 59.62 67.31 

S. 

furcifera Sfur-695.1  No 

4.00

E-11 139 50 93 52 64 

S. 

furcifera Sfur-8.45 Yes 

2.00

E-16 184 52 96 61.54 76.92 

Table 3. 4  The results of blastp analyses of all D. melanogaster proteins with DM against protein 
databases of 11 hemipteran genomes. 

 
DM domain proteins of D. melanogaster and all the hemipterans (Table 3.4) were aligned using 

MUSCLE, and the section of the alignment of the DM domains were used to generate a maximum 

likelihood phylogenetic tree with a bootstrap of 1000 (Figure 3.3).  

The phylogenetic tree (Figure 3.3) shows five distinct clades; a Hemiptera-only clade, DSX, 

DMRT99B, DMRT93B and DMRT11E. The majority of the RBBH DM-containing proteins of the 

hemipteran species (identified in Table 3.4 and marked with a purple dot in Figure 3.3) group in 

the DMRT99B clade; these may be true orthologues of DMRT99B. The high bootstrap number 

(0.818) supports the DMRT99B clade. 

There are two RBBH hemipteran SDPs in the DSX clade; D. citri (D_citri_rna13694), and R. prolixus 

(RPRC008869-RA) however, these lack the DSX dimer so are probably not true orthologues of DSX. 
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The two DM and DSX dimer-containing proteins (Table 3.3) are present in the DSX clade; 

therefore,  N. lugens  (NLU018480.1) and S. furcifera  (Sfur-199.19) are probably true orthologues 

of DSX. In the DMRT93B clade, there is one S. furcifera RBBH DM-containing protein (Sfur8.45), so 

this is probably a true DMRT93B orthologue.  Figure 3.3 contains a Hemiptera-specific clade that 

is labelled ‘unknown’. Interestingly, this included the B. tabaci protein BTA004042.1 that was DSX 

by Guo et al. (2018a). Based on analyses shown herein, there is no evidence that B. tabaci 

BTA004042.1 is a true homolog of DSX. Firstly, the protein was not RBBH (Table 3.4). Secondly, it 

does not fall within the D. melanogaster DSX clade.  Finally, it does not have a DSX dimer domain. 

SDG expression and isoform analysis would determine whether the ‘unknown’ clade may have sex 

determination qualities (more information in Chapter 5).  

 

Figure 3. 3 Molecular Phylogenetic analysis by Maximum Likelihood method of the DM- containing 
proteins in D. melanogaster and Hemiptera 
DMRT93B, DMRT99B and DMRT11E and hemipteran DM-containing proteins identified by RBBH in Table 
3.4. The evolutionary history was inferred by using the Maximum Likelihood method based on the 
Whelan And Goldman model (Whelan and Goldman, 2001). The best model was predicted by MEGA7, 
from the aligned DM protein domains (Kumar et al., 2016; Felsenstein, 1985; Letunic and Bork, 2016).  
Evolutionary analyses were conducted in MEGA7. The purple dots are the RBBH from Table 3.2.1.1. N. 
lugens (NLU005873.1) and C. lectularius (CLEC025047) from the tree, as they had longer branch lengths 
than the other proteins and therefore dramatically affected the tree. N. lugens (NLU005873.1) and C. 
lectularius (CLEC025047) were removed from the tree, due to the branch lengths. 
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3.2.3 B. mori ‘key’ SDPs are found in Hemiptera 

Hemiptera contain putative B. mori SDP orthologues; MASC, IMP and PSI but not FEM (Figure 3.1). 

Section 3.2.3 describes the more in-depth investigation of hemipteran SDPs knowledge gained 

from Section 3.2.1. Firstly, BLASTP analysis, and secondly by protein domain investigation.  

3.2.3.1 Investigating Masc orthologues 

Masc is a ‘key gene’ that is found in the Bombyx mori sex determination cascade. RBBH analysis 

(methodology; fig. 2.1) identified MASC-PHO in all 11 hemipteran genomes. Comparison of the 

BLASTP alignment statistics (Table 3.5) and whole-protein percentage identity (Table 3.6) shows a 

big difference; percentage identity is low.  

 

Table 3. 5 Results of BLASTP analysis of the full-length B. mori MASC protein (Query) against all 
hemipteran MASC-PHO (Subject). 
The subject ID corresponds with the proteome unique numbers.  

 

 

Hemipteran 

Species Subject ID E-value 

Query 

length 

Query 

Coverage  

Identity 

(%) 

Similarity 

(%) 

B. tabaci 

MEAM1 Bta04973 9.00E-11 70 12 38.57 60 

B. tabaci MED BTA009179.1 4.00E-10 70 12 38.57 60 

D. citri D_citri_rna2394 1.00E-08 71 12 35.21 53.52 

A. glycines A_glycine_07362 1.00E-08 67 11 34.33 55.22 

A. pisum ACYPI28312-RA 8.00E-08 80 14 33.75 50 

M. Persicae 

G006 MYZPE13164_G006_v1.0_000000900.12 2.00E-08 81 14 28.4 51.85 

M. persicae 

Clone 0 MYZPE13164_0_v1.0_000036270.2 1.00E-08 81 14 28.4 51.85 

N. lugens NLU010975.2 5.00E-06 86 14 31.4 53.49 

S. furcifera Sfur-473.13 2.00E-07 86 14 30.23 53.49 

C. lectularius CLEC008482 6.00E-09 74 13 35.14 55.41 

R. prolixus RPRC004468-RA 7.00E-09 81 14 35.8 54.32 
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Table 3. 6 The percentage identity of the hemipteran putative Masc against the full-length B. mori Masc. 
The pairwise comparison was conducted via CLC. 

 

B. mori MASC contains two zinc fingers (Figure 3.4). Zinc fingers are small stable protein motifs. 

The motifs can make tandem contact with the target molecule by the multiple finger-like 

protrusions that are present. Despite the name, the motifs can bind with other metals and non-

metals. The non-metals can be used to form salt bridges to stabilise the finger-like folds. The Zinc 

finger that is present in the B. mori MASC has a CCCH domain. The CCCH-domain Zinc finger 

proteins are typically involved with cell cycle or growth phase regulation, regulatory proteins 

involved in regulating responses to growth factors (Letunic and Bork, 2018).  

I analysed all of the putative hemipteran MASC orthologues (identified in Table 3.5) protein 

domains using the SMART protein analysis (Letunic and Bork, 2018). Figure 3.4 is a schematic of 

the protein’s domains in B. mori MASC and putative hemipteran MASC orthologues (not to scale).  

8/11 of the MASC-PHO have three zinc fingers, Whereas, 3/11 MASC-PHO hits have two zinc 

fingers (same as B. mori MASC).  

Species Subject ID 

Percentage identity of full protein 

against the query 

B. tabaci 

MEAM1 Bta04973 10.67 

B. tabaci 

MED BTA009179.1 8.57 

D. citri D_citri_rna2394 8.38 

A. glycines A_glycine_07362 10.50 

A. pisum ACYPI28312-RA 10.02 

M. Persicae 

G006 MYZPE13164_G006_v1.0_000000900.12 10.50 

M. persicae 

Clone 0 MYZPE13164_0_v1.0_000036270.2 10.50 

N. lugens NLU010975.2 10.51 

S. furcifera Sfur-473.13 11.59 

C. lectularius CLEC008482 9.70 

R. prolixus RPRC004468-RA 9.02 
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Figure 3. 4: A simplified schematic drawing of B.mori Masc protein structure.  
All the RBBH proteins were analysed by SMART protein domain (Letunic and Bork, 2018). The 3/11 hits 
are A. pisum, N. lugens and S. furcifera. 

 

The Zinc fingers may be conserved regions. Full-length MASC-PHO was aligned to B. mori MASC, 

using CLC (Section 2.14 and 2.1.6), and the Zinc finger domains identified (Figure 3.5b). The zinc 

finger motifs are highly conserved. All the aphids are very similar to each other within the first 

two zinc finger domains.  The middle regions of Znf1 and Znf2 domains are more conserved than 

the outer regions. A maximum-likelihood phylogeny tree analysis was conducted to see the 

evolutionary relationship (Figure 3.5a). The branches range from being highly supported 

(bootstrap value of 0.97, between S. furcifera and N. lugens) to being very low supported 

(bootstrap value of 0.25 between the aphid clade and the whitefly). 
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Figure 3. 5 Molecular Phylogenetic analysis of the Masc RBBH orthologues in Hemiptera by Maximum 
Likelihood method.  
A.The phylogenetic tree was based on the Dayhoff matrix based model- which was decided by the 
MEGA7 best model analysis. The tree is drawn to scale, with branch lengths measured in the number of 
substitutions per site. Evolutionary analyses were conducted in MEGA7 with a bootstrap of 1000. It was 
edited in the Interactive tree of life. This tree is from the RBBH of the Masc protein- specifically at the 
Zinc finger domains (alignment) for the B. mori and the rest of the hemipteran species. The tree is rooted 
at B. mori MASC. B. Is the alignment of the Zinc fingers (Le and Gascuel, 2008; Kumar et al., 2016; 
Felsenstein, 1985; Letunic and Bork, 2016).   

 

Masculinization of B. mori MASC does not require the zinc fingers, but requires the presence of 

Cys-301 and Cys-304 (Kiuchi et al., 2019). A protein alignment, with Ramsul colouring, was 

conducted to investigate whether Cys-301 and Cys-304 was present in Hemiptera (Figure 3.6). The 

B. mori Cys-301 and Cys-304 in Figure 3.6 is present and highlighted; however, no hemipteran 

MASC-PHO contains these residues.  

The MASC-PHOs may not have the same functions as B. mori MASC; MASC-PHOs lack vital 

masculinizing residues, have a low similarity between the BLASTP alignment, and low identity 

between the full- length B. mori MASC and the full-length MASC-PHOs. All the reasons described 

indicate a low probability that the MASC-PHO proteins have the same function as B. mori MASC.  
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Figure 3. 6 Protein alignment of the B. mori Masc against the putative hemipteran MASC.  

Highlighted on the top is the position of the Cys-301 and Cys-304. The amino acid properties are coloured by Ramsol colouring from CLC. 
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3.2.3.2 Investigating Imp orthologues 

B. mori IMP is part of the ‘key’ group. RBBH analysis (methodology; fig. 2.1) identified IMP-PHO in 

all 11 hemipteran genomes. E-value are very low in BLASTP alignment statistics (Table 3.7), and 

the protein similarity is high which indicates conserved matches. Protein identity scores from the 

pairwise comparison analysis is high (Table 3.8). 

Hemipteran 

species Subject ID 

E-

value  

Query 

length 

Query 

Coverage  

Identity 

(%) 

Similarity 

(%) 

B. tabaci 

MEAM1 Bta13278 0 500 95 67.2 77.4 

B. tabaci MED BTA017124.1 0 525 95 64 73.33 

D. citri D_citri_rna20833 

3.00E-

151 308 69 70.78 81.49 

A. glycines  A_glycine_05034 0 516 94 61.82 74.22 

A. pisum  ACYPI004277-RA 0 499 95 62.12 74.15 

M. persicae 

G006 MYZPE13164_G006_v1.0_000030270.2 0 492 95 63.21 75.41 

M. persicae 

Clone O MYZPE13164_0_v1.0_000039230.2 0 492 95 63.21 75.41 

N. lugens NLU026974.1 0 365 74 78.08 85.48 

S. furcifera Sfur-409.13 0 395 76 76.96 84.3 

C. lectularius CLEC011792 0 496 95 65.32 76.41 

R. prolixus RPRC000571-RA 0 513 98 68.42 76.61 

Table 3. 7 Results of BLASTP analysis of the full-length B. mori IMP protein (Query) against all hemipteran 
IMP-PHO (Subject). 
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Hemipteran 

Species Subject ID 

Percentage identity of full protein against 

the query 

B. tabaci 

MEAM1 Bta13278 48.54 

B. tabaci MED BTA017124.1 51.06 

D. citri D_citri_rna20833 40.22 

A. glycines  A_glycine_05034 49.92 

A. pisum  ACYPI004277-RA 53.34 

M. persicae 

G006 MYZPE13164_G006_v1.0_000030270.2 45.94 

M. persicae 

Clone O MYZPE13164_0_v1.0_000039230.2 45.94 

N. lugens NLU026974.1 48.52 

S. furcifera Sfur-409.13 20.35 

C. lectularius CLEC011792 55.13 

R. prolixus RPRC000571-RA 58.48 

 

Table 3. 8 Percentage identity of the full-length IMP protein against the full-length putative hemipteran 
IMP orthologues. 

 

B. mori IMP contains four protein domains (Figure 3.7); one RNA-recognition motif domain (RRM) 

and four KH-1 domains. RRM domains bind to single-stranded RNA, and proteins with RRM 

usually have alternative splicing. KH domains bind to RNA and has RNA recognition function. 

Proteins with KH-domains are typically nucleic acid-binding proteins (Letunic and Bork, 2018).   

All the IMP-PHO (identified in Table 3.7) underwent SMART protein analysis for protein domain 

identification (Letunic and Bork, 2018). Figure 3.7 is a schematic of the protein’s domains in B. 

mori IMP and IMP-PHO (not to scale).  Four PHO do not have an RRM domain (D. citri, C. 

lectularius, N. lugens and S. furcifera). The other seven PHO have both the RRM domain and all 

four KH domains. 
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Figure 3. 7 A simplified schematic drawing of B. mori IMP protein structure and IMP-PHO structures.  

The orange circles are the KH domains whilst the green diamonds represent the RRM domains.  

There is a high percentage similarity from the BLASTP data analyses and most of the proteins 

found had at high similarity in protein domains as B. mori IMP. There is a high probability that 

Hemiptera have a functional IMP protein.  
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3.2.3.3 Investigating PSI orthologues 

B. mori PSI is part of the ‘key’ group. RBBH analysis (methodology; fig. 2.1) identified PSI-PHO in 

all 11 hemipteran genomes. E-value are very low in BLASTP alignment statistics (Table 3.9), and 

the protein similarity is over 49%, which indicates possible conserved matches. Protein identity 

scores from the pairwise comparison analysis is lower than BLASTP protein similarity scores (Table 

3.10). 

 

 

Hemipteran 

species Subject ID E-value 

Query 

length 

Query 

Coverage 

Identity 

(%) 

Similarity 

(%) 

B. tabaci 

MEAM1 Bta01264 8.00E-132 569 76 46.92 59.23 

B. tabaci MED BTA005137.1 1.00E-145 685 91 44.82 57.66 

D. citri D_citri_rna6836 1.00E-66 445 71 38.2 49.89 

A. glycines  A_glycine_04622 6.00E-121 702 92 40.88 53.56 

A. pisum  ACYPI006827-RA 3.00E-123 697 92 41.32 53.95 

M. persicae 

G006 MYZPE13164_G006_v1.0_000020840.1 4.00E-124 699 92 41.2 53.93 

M. persicae 

Clone O MYZPE13164_0_v1.0_000093180.4 4.00E-124 699 92 41.2 53.93 

N. lugens NLU014116.1 4.00E-116 726 87 39.39 50.41 

S. furcifera Sfur-15.267 1.00E-125 752 91 41.49 51.46 

C. lectularius CLEC002109 1.00E-84 406 68 44.33 58.62 

R. prolixus RPRC006910-RA 2.00E-81 396 74 45.2 58.33 

 

Table 3. 9 Results of BLASTP analysis of the full-length B. mori PSI protein (Query) against all hemipteran 
PSI-PHO (Subject).  
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Species Subject ID 

Percentage identity of full protein against 

the query 

B. tabaci MEAM1 Bta01264 35.02 

B. tabaci MED BTA005137.1 39.65 

D. citri D_citri_rna6836 30.04 

A. glycines  A_glycine_04622 34.19 

A. pisum  ACYPI006827-RA 34.23 

M. persicae G006 MYZPE13164_G006_v1.0_000020840.1 34.60 

M. persicae 

Clone O MYZPE13164_0_v1.0_000093180.4 34.23 

N. lugens NLU014116.1 28.78 

S. furcifera Sfur-15.267 36.49 

C. lectularius CLEC002109 32.82 

R. prolixus RPRC006910-RA 26.70 

Table 3. 10: The percentage identity of the pairwise comparison of the PSI-PHO against the full-length B. 
mori PSI protein.  

 

B. mori PSI contains four KH protein domains (Figure 3.8). A description of the KH function is in 

Section 3.2.3.2. All the PSI-PHO (identified in Table 3.9) underwent SMART protein analysis for 

protein domain identification (Letunic and Bork, 2018). Figure 3.8 is a schematic of the protein 

domains in B. mori PSI and PSI-PHO (not to scale). All PHO have at least three KH domains. A. 

pisum, B. tabaci MED and MEAM1, M. persicae Clone 0 and G006, A. glycines, R. prolixus, D. citri 

and N. lugens all have domains that are the same as B. mori PSI.  

 

 

 

Figure 3. 8: A simplified schematic drawing of B. mori PSI and PSI-PHO protein structure.  
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There are orthologues of the MASC, IMP and PSI in Hemiptera. They are very similar in the protein 

domains so may indicate the functionality of these proteins. MASC determining masculizing factor 

is the Cys regions, when aligned the hemipteran RBBH do not contain this. So, unless the genes 

have a masculizing factor elsewhere, this is not like masc. We would need to do a functionality 

test to determine this. Overall, MASC PHO has a low probability of having the same function as B. 

mori MASC. Whereas IMP and PSI proteins have a high probability of the same function. 
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3.2.4 A. mellifera unique SDP are not conserved in Hemiptera 

In Section 3.2.1, there are no unique A. mellifera SDP present in hemipterans, when using this 

pipeline. A. mellifera has a haplodiploid life cycle, like B. tabaci. Using the hypothesis suggested in 

the introduction, B. tabaci should have matching sex determination pathway as A. mellifera. The 

opposite is true; B. tabaci shares no similar ‘key’ SDPs and therefore the hypothesis, in this case, is 

false.  
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3.2.5 How conserved are the SDGs ‘key’ genes from the D. melanogaster sex 

determination cascade? 

There are three ‘key’ SDP in D. melanogaster (SXL, TRA and TRA2). There are SXL and TRA2 in 

Hemiptera (Section 3.2.1). Despite using RBBH and BLASTP analysis, TRA is not detected in any 

Hemiptera studied.  

3.2.5.1 Investigating Sxl orthologues 

D. melanogaster SXL is part of the ‘key’ group. RBBH analysis (methodology; fig. 2.1) identified 

SXL-PHO in all 11 hemipteran genomes. E-values are very low in BLASTP alignment statistics (Table 

3.11), and the protein similarity is over 55%, which indicates possible conserved matches. Protein 

identity scores from the pairwise comparison analysis is lower than BLASTP protein similarity 

scores (Table 3.12). 

 

Hemipteran 

species Subject ID E-value  Length  

Query 

Coverage  

Identity 

(%) 

Similarity 

(%)  

B. tabaci 

MEAM1 Bta03294 2.00E-84 176 50 64.2 85.23 

B. tabaci MED BTA022642.1 1.00E-51 211 60 45.5 61.61 

D. citri D_citri_rna1282 9.00E-74 165 47 61.82 83.64 

A. glycines  A_glycine_01063 
 

2.00E-79 179 
 

54 63.69 79.89 

A. pisum  ACYPI000005-RA 7.00E-80 184 52 61.96 78.26 

M. persicae 

G006 MYZPE13164_G006_v1.0_000089020.3 1.00E-79 184 52 62.5 78.26 

M. persicae 

Clone O MYZPE13164_0_v1.0_000097000.3 1.00E-79 184 52 62.5 78.26 

N. lugens NLU018908.1 4.00E-68 184 52 55.43 73.37 

S. furcifera Sfur-24.76 1.00E-47 185 49 42.7 63.78 

C. lectularius CLEC004462 1.00E-44 224 61 37.95 57.59 

R. prolixus RPRC001543-RA 6.00E-48 185 49 42.16 63.24 

Table 3. 11: Results of BLASTP analysis of the full-length D. melanogaster SXL protein (Query) against all 
hemipteran SXL- PHO (Subject). 
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Hemipteran Species Subject ID 

Percentage identity of full protein against 

the query 

B. tabaci MEAM1 Bta03294 33.62 

B. tabaci MED BTA022642.1 16.64 

D. citri D_citri_rna1282 27.96 

A. glycines  A_glycine_01063 
 

29.37 

A. pisum  ACYPI000005-RA 34.31 

M. persicae G006 MYZPE13164_G006_v1.0_000089020.3 29.20 

M. persicae Clone 

O MYZPE13164_0_v1.0_000097000.3 29.20 

N. lugens NLU018908.1 30.96 

S. furcifera Sfur-24.76 19.07 

C. lectularius CLEC004462 19.67 

R. prolixus RPRC001543-RA 21.74 

Table 3. 12: The percentage identity of the pairwise comparison of the Hemipteran proteins against the 
full-length D. melanogaster SXL protein.  

D. melanogaster SXL contains two RRM protein domains (Figure 3.9). A description of the RRM 

function is in Section 3.2.3.2. All the SXL-PHO (identified in Table 3.11) underwent SMART protein 

analysis for protein domain identification (Letunic and Bork, 2018). Figure 3.9 is a schematic of the 

protein’s domains in D. melanogaster SXL and SXL-PHO (not to scale). Most hemipterans had two 

RRM protein domains. The exceptions were; B. tabaci MED with one RRM domain and C. 

lectularius and S. furcifera with three RRM domains.  

 

 

Figure 3. 9  A simplified schematic drawing of D. melanogaster SXL and SXL-PHO 
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RRM protein domains may be conserved regions. Full-length SXL-PHO was aligned to D. 

melanogaster SXL using CLC, and the two RRM domains identified (Figure 3.10b and Figure 3.10c). 

Both RRM domains are highly conserved. However, the first RRM domain (Figure 3.10b) is more 

conserved than the second RRM domain (Figure 3.10c).  All the aphids are very similar to each 

other within the first RRM domains. The second RRM domain is more variable than the first, as 

there is a gap in the sequence at C. lectularius, S. furcifera and R. prolixus.  A maximum-likelihood 

phylogeny tree analysis was conducted to evaluate the evolutionary relationship (Figure 3.10a). 

The branches range from being highly supported (bootstrap value of 1, between S. furcifera and R. 

prolixus) to being very low supported (bootstrap value of 0.08 in the aphid clade). 

 

Figure 3. 10:  Molecular Phylogenetic analysis of the SXL RBBH orthologue proteins at the RRM1 and 
RRM2 domain in Hemiptera by Maximum Likelihood method.  
A.The phylogenetic tree was based on the Le_Gascuel_2008 model (Le and Gascuel, 2008)- which was 
decided by the MEGA7 best model analysis. The tree is drawn to scale, with branch lengths measured in 
the number of substitutions per site. Evolutionary analyses were conducted in MEGA7 with a bootstrap 
of 1000. It was edited in the Interactive tree of life. This tree is from the RBBH of the SXL protein- 
specifically at the RRM1 and RMM2 (alignment) for the D. melanogaster and the rest of the hemipteran 
species. The tree is rooted at D. melanogaster SXL. B. The top alignment is RRM1 and the C. bottom is 
RRM (Kumar et al., 2016; Letunic and Bork, 2016; Felsenstein, 1985).   
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SXL RRM protein domains may be more conserved than full-length proteins. A pairwise 

comparison was conducted on Figure 3.10b and 3.10c alignments. The RRM domains are more 

conserved than the rest of the protein (Table 3.13).   

Hemipteran 

Species Subject ID 

Percentage 

identity of full 

protein against 

the query 

Percentage 

identity of RRM1 

domain against 

the D. 

melanogaster 

RRM1 domain  

Percentage 

identity of RRM2 

domain against 

the D. 

melanogaster 

RRM2 domain 

B. tabaci 

MEAM1 Bta03294 33.62 62.16 63.16 

B. tabaci 

MED BTA022642.1 16.64 62.16 28.95 

D. citri D_citri_rna1282 27.96 44.59 67.11 

A. glycines  A_glycine_01063 
 

29.37 60.81 63.16 

A. pisum  ACYPI000005-RA 34.31 59.46 63.16 

M. persicae 

G006 MYZPE13164_G006_v1.0_000089020.3 29.20 60.81 63.16 

M. persicae 

Clone O MYZPE13164_0_v1.0_000097000.3 29.20 60.81 63.16 

N. lugens NLU018908.1 30.96 56.76 53.95 

S. furcifera Sfur-24.76 19.07 50 33.71 

C. lectularius CLEC004462 19.67 50 36.05 

R. prolixus RPRC001543-RA 21.74 50 32.58 

Table 3. 13 percentage identity scores of the D. melanogaster SXL full-length protein against the SXL-PHO, 
and the RRM domains.  
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3.2.5.2 Investigating Tra2 orthologues 

D. melanogaster TRA2 is part of the ‘key’ group. RBBH analysis (methodology; fig. 2.1) identified 

TRA2-PHO in all 11 hemipteran genomes. The BLASP analysis between D. melanogaster and TRA2-

PHO in Table 3.14. E-value are very low in BLASTP alignment statistics (Table 3.14), and the 

protein similarity is over 50%, which indicates possible conserved matches. Protein identity scores 

from the pairwise comparison analysis is lower than BLASTP protein similarity scores (Table 3.15). 

 

Hemipteran 

species Subject ID E-value  Length  

Query 

Coverage  

Identity 

(%) 

Similarity 

(%) 

B. tabaci 

MEAM1 Bta02209 1.00E-50 118 42 66.1 83.9 

B. tabaci 

MED BTA014916.3 1.00E-52 101 36 74.26 93.07 

D. citri D_citri_rna3604 8.00E-55 126 44 73.81 82.54 

A. glycine  A_glycine_04284 1.00E-42 142 54 53.52 73.24 

A. pisum  ACYPI007316-RA 8.00E-47 102 36 66.67 86.27 

M. persicae 

G006 MYZPE13164_G006_v1.0_000099530.2 7.00E-11 95 33 34.74 55.79 

M. persicae 

Clone O MYZPE13164_0_v1.0_000075270.1 6.00E-11 95 33 34.74 55.79 

N. lugens NLU021361.1 2.00E-15 172 56 34.88 46.51 

S. furcifera Sfur-518.6 2.00E-57 152 49 65.13 75.66 

C. lectularius CLEC007595 7.00E-59 156 55 61.54 73.08 

R. prolixus RPRC007424-RA 7.00E-11 108 35 30.56 53.7 

 

Table 3. 14 Results of BLASTP analysis of the full-length D. melanogaster TRA2 protein (Query) against all 
hemipteran TRA2-PHO (Subject). 
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Hemipteran 

species Subject ID 

Percentage identity of full protein against 

the query 

B. tabaci MEAM1 Bta02209 36.39 

B. tabaci MED BTA014916.3 31.79 

D. citri D_citri_rna3604 26.11 

A. glycine  A_glycine_04284 10.79 

A. pisum  ACYPI007316-RA 33.55 

M. persicae G006 MYZPE13164_G006_v1.0_000099530.2 5.91 

M. persicae Clone 

O MYZPE13164_0_v1.0_000075270.1 5.91 

N. lugens NLU021361.1 12.53 

S. furcifera Sfur-518.6 10.60 

C. lectularius CLEC007595 29.05 

R. prolixus RPRC007424-RA 29.75 

Table 3. 15 Percentage identity of the pairwise comparison of the full-length proteins of D. melanogaster 
TRA2 and TRA2-PHO.  

 

D. melanogaster TRA2 contains one RRM protein domain (Figure 3.11). A description of the RRM 

domain function is in Section 3.2.3.2. All the TRA2-PHO (identified in Table 3.14) underwent 

SMART protein analysis for protein domain identification (Letunic and Bork, 2018). Figure 3.11 is a 

schematic of the protein’s domains in D. melanogaster TRA2 and SXL-TRA2 (not to scale). All 11 

hemipterans have one RRM protein domain.  

 

 

Figure 3. 11: A simplified schematic drawing of D. melanogaster TRA2 and TRA2-PHO protein structure.  

 

RRM protein domain may be conserved regions. Full-length TRA2-PHOs were aligned to D. 

melanogaster TRA2 using CLC, and the RRM domain identified (Figure 3.12b). The RRM domain is 
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highly conserved. A maximum-likelihood phylogeny tree analysis was conducted to investigate the 

evolutionary relationship (Figure 3.12a). The branches range from being highly supported 

(bootstrap value of 1, between M. persicae G006 and Clone 0) to being very low supported 

(bootstrap value of 0.08 between B. tabaci MED and S. furcifera). 

 

 

 

Figure 3. 12 Molecular Phylogenetic analysis RRM domain in D. melanogaster TRA2 and TRA2-PHOs, 
aligned by the RRM domain by Maximum Likelihood method 
A. Evolutionary analyses were conducted in MEGA7 with a bootstrap of 1000. The tree was based on the 
Maximum Likelihood method based on the Le_Gascuel_2008 model (which was determined as the best 
model by MEGA7). The analysis involved 12 amino acid sequences. Edited in ITOL. Rooted at D. 
melanogaster TRA2. B. The alignment is of the RRM domain for all the hemipteran  (Le and Gascuel, 2008; 
Felsenstein, 1985; Letunic and Bork, 2016; Kumar et al., 2016). 
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3.2.6 Sex determination support genes are found in Hemiptera  

Support genes are from the D. melanogaster sex determination pathway. The support genes 

include; Da, Dpn, Dsf, Emc, Fl(2)d, Fru, Gro, Her, Snf and Vir (more information located in Section 

1.3.6). Da, Dsf, Emc, Fl2d, Fru, Gro, Her, Snf are all part of the regulation of SXL. Dpn and Vir are 

involved in courtship behaviours. SXL is in all Hemipteran (Dection 3.2.5).  

3.2.6.1 Investigating Da orthologues 

Daughterless (Da) is a ‘support’ gene; found in D. melanogaster sex determination cascade, (more 

information in Section 1.3.6). Da is a positive regulator of Sxl. RBBH analysis (methodology; fig. 

2.1) identified DA-PHO in 10 hemipteran species; missing is R. prolixus DA. E-value are very low in 

BLASTP alignment statistics (Table 3.13), and the protein similarity is over 50% which indicates 

possible conserved matches. Protein identity scores from the pairwise comparison analysis is 

lower than BLASTP protein similarity scores (Table 3.14). 

Hemipteran 

species Subject Seq-id 

e-

value Length 

Query 

Coverage  Identity (%) 

Similarity 

(%) 

B. tabaci 

MEAM1 Bta11931 4E-63 309 40 48.87 58.25 

B. tabaci 

MED BTA018608.1 4E-63 309 40 48.87 58.25 

D. citri D_citri_rna13465 1E-64 296 41 50.68 61.82 

A. glycines A_glycine_011973 4E-64 375 63 47.47 55.2 

A. pisum  ACYPI003796-RA 3E-62 401 63 45.64 53.12 

M. persicae 

G006 MYZPE13164_G006_v1.0_000018360.1 2E-65 375 63 48.53 56.8 

M. persicae 

Clone O MYZPE13164_0_v1.0_000036540.1 2E-64 299 53 50.5 57.53 

N. lugens NLU002710.1 1E-62 273 38 50.92 63 

S. furcifera Sfur-24.227 6E-61 271 38 51.29 61.62 

C. 

lectularius CLEC011986 2E-45 329 45 46.81 54.71 

 

Figure 3. 13: Results of BLASTP analysis of the full-length D. melanogaster DA protein (Query) against all 
hemipteran DA-PHO (Subject). 
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Hemipteran 

Species Subject Seq-id 

Percentage identity of full protein against the 

query 

B. tabaci 

MEAM1 Bta11931 28.72 

B. tabaci 

MED BTA018608.1 28.68 

D. citri D_citri_rna13465 25.38 

A. glycines A_glycine_011973 32.57 

A. pisum  ACYPI003796-RA 31.50 

M. persicae 

G006 MYZPE13164_G006_v1.0_000018360.1 32.57 

M. persicae 

Clone O MYZPE13164_0_v1.0_000036540.1 31.63 

N. lugens NLU002710.1 20.0 

S. furcifera Sfur-24.227 27.18 

C. lectularius CLEC011986 24.60 

Figure 3. 14: Percentage identity of the pairwise comparison of the DA-PHO and D. melanogaster DA. 

 

D. melanogaster DA does not have any specific protein domains but a low complexity region. The 

other hemipteran DA orthologues show similar lack of protein domains.  
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3.2.6.2 Investigating Dpn orthologues 

Deadpan (Dpn) is a ‘support gene; found in D. melanogaster sex determination cascade (more 

information in Section 1.3.6). DPN is a negative regulator of SXL. RBBH analysis (methodology; fig. 

2.1) identified DPN-PHO in all 11 hemipteran genomes. E-value are low in the BLASTP analysis 

(Table 3.16), and the protein similarity score is high; ranging from 58.39% (S. furcifera) to 81.48% 

(B. tabaci MEAM1). Protein identity scores from the pairwise comparison analysis is lower than 

BLASTP protein similarity scores (Table 3.17). 

 

Hemipteran 

Species Subject Seq-id E-value Length 

Query 

Coverage  

Identity 

(%) 

Similarity 

(%) 

B. tabaci 

MED BTA027689.1 5E-52 135 31 64.44 81.48 

B. tabaci 

MEAM1 Bta06040 2E-72 225 51 55.11 71.11 

D. citri D_citri_rna243 4E-61 183 42 60.11 75.96 

A. glycines  A_glycine_05420 2E-48 207 46 44.44 61.84 

A. pisum  ACYPI004499-RA 3E-45 195 43 45.64 61.54 

M. persicae 

G006 MYZPE13164_G006_v1.0_000127320.1 1E-45 176 36 51.14 65.91 

M. persicae 

Clone O MYZPE13164_0_v1.0_000192730.1 1E-45 176 36 51.14 65.91 

N. lugens NLU017783.1 5E-40 205 42 43.9 59.51 

S. furcifera Sfur-159.30 2E-24 149 30 38.93 58.39 

C. 

lectularius CLEC009505 4E-71 200 46 57.5 73.5 

R. prolixus RPRC000496-RA 1E-43 118 27 61.86 79.66 

 

Table 3. 16: Results of BLASTP analysis of the full-length D. melanogaster DPN protein (Query) against all 
hemipteran DPN-PHO (Subject). 
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Hemipteran 

Species Subject Seq-id 

Percentage identity of full protein against the 

query 

B. tabaci 

MED BTA027689.1 32.37 

B. tabaci 

MEAM1 Bta06040 22.17 

D. citri D_citri_rna243 21.74 

A. glycines  A_glycine_05420 20.67 

A. pisum  ACYPI004499-RA 20.83 

M. persicae 

G006 MYZPE13164_G006_v1.0_000127320.1 24.49 

M. persicae 

Clone O MYZPE13164_0_v1.0_000192730.1 24.49 

N. lugens NLU017783.1 11.74 

S. furcifera Sfur-159.30 13.55 

C. lectularius CLEC009505 29.61 

R. prolixus RPRC000496-RA 19.87 

Table 3. 17: Percentage identity of the pairwise comparison of the D. melanogaster DPN orthologue 
against the full-length DPN-PHO.  

D. melanogaster DPN contains one HLH and one Orange protein domain (Figure 3.15). More 

information about HLH domain is available in Section 1.3.6. All DPN-PHO (identified in Table 3.16) 

underwent SMART protein analysis for protein domain identification (Letunic and Bork, 2018). 

Figure 3.15 is a schematic of the protein’s domains in D. melanogaster DPN and DPN-PHO (not to 

scale). All 11 hemipterans have one HLH protein domain. However, only 8/11 PHO contain orange 

domain; A. pisum, B. tabaci MED and R. prolixus do not have the orange domain. 

 

 

 

Figure 3. 15: A simplified schematic drawing of D. melanogaster DPN structure.  
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HLH protein domain may be conserved region. Full-length DPN-PHOs were aligned to D. 

melanogaster DPN using CLC, and the HLH domain identified (Figure 3.16b). The HLH domain is 

highly conserved. A maximum-likelihood phylogeny tree analysis was conducted to see the 

evolutionary relationship (Figure 3.16a). The branches range from being highly supported 

(bootstrap value of 1 between A. glycine and A. pisum). 

 

 

Figure 3. 16 Molecular Phylogenetic analysis of hemipteran orthologues of DPN aligned at the HLH 
domain.  
A. Evolutionary analyses were conducted in MEGA7 with a bootstrap of 1000. The tree was based on the 
Maximum Likelihood method based on the Le_Gascuel_2008 model (which was determined as the best 
model by MEGA7). The analysis involved 12 amino acid sequences. Edited in ITOL. It is rooted at D. 
melanogaster DPN. B. The alignment is of the HLH for all the Hemiptera. Red indicates a conserved region  
(Le and Gascuel, 2008; Kumar et al., 2016; Letunic and Bork, 2016; Felsenstein, 1985).  
 

Orange protein domain may be a conserved region. Full-length DPN-PHOs were aligned to D. 

melanogaster DPN using CLC, and the Orange domain identified (Figure 3.17b). The Orange 

domain is slightly conserved. A maximum-likelihood phylogeny tree analysis was conducted to see 

the evolutionary relationship (Figure 3.17a). The branches range from being highly supported 

(bootstrap value of 0.996, between A. glycine and A. pisum) to lowly supported (any branch 

lengths without a value is under 0.5).  
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Figure 3. 17 Molecular Phylogenetic analysis of hemipteran orthologues of dpn aligned at the orange 
domain.  
A. Evolutionary analyses were conducted in MEGA7 with a bootstrap of 1000. The tree was based on the 
Maximum Likelihood method based on the General Reverse Transcriptase model (which was determined 
as the best model by MEGA7). The analysis involved 10 amino acid sequences. Edited in ITOL. It is rooted 
at D. melanogaster DPN. B. The alignment is of the orange domain, from Figure 3.15, for all the 
Hemiptera. Red indicates conserved region (Le and Gascuel, 2008; Kumar et al., 2016; Letunic and Bork, 
2016; Felsenstein, 1985; Dimmic et al., 2002). 

 

DPN orange and HLH protein domains may be more conserved than full-length proteins. A 

pairwise comparison with Figure 3.16b and 3.17b alignments is shown in Table 3.18. The protein 

domains are more conserved than the rest of the protein (Table 3.18). However, HLH domain is 

more conserved than the orange domain.   
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Hemipteran 

species Subject Seq-id 

Percentage identity of 

full protein against the 

query 

Percentage 

identity of HLH 

domain against 

the D. 

melanogaster 

HLH domain  

Percentage 

identity of Orange 

domain against 

the D. 

melanogaster 

Orange domain 

B. tabaci 

MED BTA027689.1 32.37 87.93 54.35 

B. tabaci 

MEAM1 Bta06040 22.17 87.93 40.91 

D. citri D_citri_rna243 21.74 91.38 52.17 

A. glycines  A_glycine_05420 20.67 79.31 45.65 

A. pisum  ACYPI004499-RA 20.83 79.31 45.65 

M. persicae 

G006 MYZPE13164_G006_v1.0_000127320.1 24.49 79.31 43.48 

M. persicae 

Clone O MYZPE13164_0_v1.0_000192730.1 24.49 79.31 43.48 

N. lugens NLU017783.1 11.74 75.86 25.00 

S. furcifera Sfur-159.30 13.55 56.90 18.89 

C. 

lectularius CLEC009505 29.61 87.93 47.83 

R. prolixus RPRC000496-RA 19.87 82.76 23.61 

Table 3. 18: percentage identity scores of the D. melanogaster DPN full-length protein against the DPN-
PHO between the HLH and Orange protein domain.  

The HLH containing DPN depends on the ‘WRPW’ (Trp-Arg-Pro-Trp) motif at the C-terminal for 

activity (Wainwright and Ishhorowicz, 1992). Figure 3.18 is of the DPN-PHO alignment at the 

WRPW region. All DPN-PHO have the WRPW motif, except B.tabaci MED. Presence of WRPW 

indicates a high probability of the DPN-PHO having the same function as D. melanogaster DPN. 

 

Figure 3. 18: D. melanogaster DPN protein aligned at the Hemipteran hits at the WRPW motif at the C-
terminus.  
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3.2.6.3 Investigating Emc orthologues 

Extra-macrochaetae (Emc) is a ‘support gene; found in D. melanogaster sex determination 

cascade (more information in Section 1.3.6). EMC is a negative regulator of SXL. RBBH analysis 

(methodology; fig. 2.1) identified EMC-PHO in all 11 hemipteran genomes. E-value are low in the 

BLASTP analysis (Table 3.19), and similarity scores range from 70.1% (B. tabaci MEAM1) to 82.14% 

(S. furcifera). Protein identity scores from the pairwise comparison analysis is lower than BLASTP 

protein similarity scores (Table 3.20). 

Hemipteran 

species Subject Seq-id 

e-

value Length  

Query 

Coverage  

Identitiy 

(%) 

Similarity 

(%) 

B. tabaci 

MED BTA026084.1 4E-23 97 47 53.61 70.1 

B. tabaci 

MEAM1 Bta13293 5E-24 101 49 52.48 70.3 

D. citri D_citri_rna16519 2E-22 76 37 57.89 75 

A. glycines  A_glycine_05577 9E-18 61 31 55.74 78.69 

A. pisum  ACYPI002529-RA 1E-18 63 32 57.14 79.37 

M. persicae 

G006 MYZPE13164_G006_v1.0_000153470.1 9E-19 67 34 56.72 79.1 

M. persicae 

Clone O MYZPE13164_0_v1.0_000158600.1 9E-19 67 34 56.72 79.1 

N. lugens NLU011228.1 1E-27 84 41 63.1 80.95 

S. furcifera Sfur-74.201 1E-25 84 41 63.1 82.14 

C. 

lectularius CLEC007449 6E-20 62 31 64.52 80.65 

R. prolixus RPRC005973-RA 8E-22 62 31 66.13 80.65 

Table 3. 19: Results of BLASTP analysis of the full-length D. melanogaster EMC protein (Query) against all 
hemipteran EMC-PHO (Subject). 
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Species Subject Seq-id 

Percentage identity of full protein against the 

query 

B. tabaci MED BTA026084.1 27.49 

B. tabaci MEAM1 Bta13293 25.62 

D. citri D_citri_rna16519 26.17 

A. glycines  A_glycine_05577 21.30 

A. pisum  ACYPI002529-RA 22.13 

M. persicae G006 MYZPE13164_G006_v1.0_000153470.1 22.03 

M. persicae Clone 

O MYZPE13164_0_v1.0_000158600.1 22.03 

N. lugens NLU011228.1 28.00 

S. furcifera Sfur-74.201 10.65 

C. lectularius CLEC007449 21.91 

R. prolixus RPRC005973-RA 24.09 

Table 3. 20: Percentage identity of the pairwise comparison of the D. melanogaster EMC orthologue 
against the full-length EMC-PHO.  

 

D. melanogaster EMC contains one HLH protein domain (Figure 3.19). More information about 

HLH domain is available in Section 1.3.6. All EMC-PHO (identified in Table 3.19) underwent SMART 

protein analysis for protein domain identification (Letunic and Bork, 2018). Figure 3.19 is a 

schematic of the protein’s domains in D. melanogaster EMC and EMC-PHO (not to scale). All 11 

hemipteran orthologues have one HLH protein domain.  

 

Figure 3. 19: A simplified schematic drawing of D. melanogaster EMC protein structure.  

 

EMC HLH protein domains may be more conserved than full-length proteins. Full-length EMC-

PHOs were aligned to D. melanogaster EMC using CLC, and the HLH domain identified (Figure 

3.19b). The HLH domain is conserved. A maximum-likelihood phylogeny tree analysis was 

conducted to explore the evolutionary relationship (Figure 3.19a). The branches range from being 

highly supported (bootstrap value of 0.996, between B. tabaci MED and MEAM1). 
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Figure 3. 20: Molecular Phylogenetic analysis of hemipteran orthologues of EMC aligned at the HLH 
domain. 
A. Evolutionary analyses were conducted in MEGA7 with a bootstrap of 1000. The tree was based on the 
Maximum Likelihood method based on the Le_Gascuel_2008 model (which was determined as the best 
model by MEGA7). The analysis involved 12 amino acid sequences. Edited in ITOL. It is rooted at D. 
melanogaster EMC. B. The alignment is of the HLH for all the Hemiptera on the EMC protein. Red 
indicates conserved region  (Le and Gascuel, 2008; Kumar et al., 2016; Letunic and Bork, 2016; 
Felsenstein, 1985). 

 

Both EMC and DPN have HLH domains.  HLH protein domains lack a basic domain repress 

transcription, repressing the DNA binding. D. melanogaster EMC lacks the basic domain. CLC 

aligned the EMC and DPN PHO (Figure 3.21). There is a difference between the DPN and EMC HLH 

protein domain. Specifically, the ‘RRAR’ and ‘PARSH’ motif is missing in EMC, which may indicate a 

difference in functionality. 



85 
 

 

Figure 3. 21 Alignment of the EMC and DPN HLH domain from the full protein hemipteran orthologues.  
This alignment is from the RBBH of the DPN (coloured red) and EMC (coloured blue) HLH protein domain.  
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3.2.6.4 Investigating fl(2)d orthologues 

Female lethal d (Fl(2)d) is a ‘support’ gene; found in D. melanogaster sex determination cascade, 

(more information in Section 1.3.6). SXL requires FL(2)D for autoregulation. RBBH analysis 

(methodology; fig. 2.1) identified FL(2)D-PHO in 9 hemipteran species. E-value are low in the 

BLASTP analysis (Table 3.21), and similarity scores range from 73.25% (B. tabaci MEAM1 and 

MED) to 83.93% (A. glycines). Protein identity scores from the pairwise comparison analysis is 

lower than BLASTP protein similarity scores (Table 3.22). 

Hemipteran 

species Subject Seq-id E-value Length  

Query 

Coverage  

Identity 

(%) 

Similarity 

(%) 

B. tabaci MED BTA029394.1 2.00E-80 228 43 60.53 73.25 

B. tabaci 

MEAM1 Bta14734 7.00E-80 228 43 60.53 73.25 

A. glycines  A_glycine_06187 5.00E-68 168 31 67.86 83.93 

A. pisum  ACYPI005891-RA 4.00E-67 169 31 65.09 83.43 

M. persicae 

G006 MYZPE13164_G006_v1.0_000135450.2 9.00E-67 167 31 65.87 83.23 

M. persicae 

Clone O MYZPE13164_0_v1.0_000103830.4 9.00E-67 167 31 65.87 83.23 

N. lugens NLU025797.1 3.00E-85 197 37 67.51 82.74 

S. furcifera Sfur-504.7 4.00E-75 203 38 67 81.28 

C. lectularius CLEC004180 1.00E-69 226 42 57.52 73.89 

Table 3. 21: Results of BLASTP analysis of the full-length D. melanogaster FL2)D protein (Query) against all 
hemipteran FL(2)D-PHO (Subject). 

 

Species Subject Seq-id 

Percentage identity of full protein against 

the query 

B. tabaci MEAD BTA029394.1 29.37 

B. tabaci MEAM1 Bta14734 28.62 

A. glycines  A_glycine_06187 24.82 

A. pisum  ACYPI005891-RA 24.82 

M. persicae G006 MYZPE13164_G006_v1.0_000135450.2 25.55 

M. persicae Clone 

O MYZPE13164_0_v1.0_000103830.4 25.37 

N. lugens NLU025797.1 27.37 

S. furcifera Sfur-504.7 16.78 

C. lectularius CLEC004180 27.21 

Table 3. 22: Percentage identity of the pairwise comparison of the FL(2)D PHO against the full-length D. 
melanogaster FL(2)D protein 
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D. melanogaster FL(2)D and FL(2)D-PHO contains no protein domains, so no protein domain 

consensus diagram. Despite a lack of protein domains, there are two features of interest in the D. 

melanogaster FL(2)D; a histidine-rich area and a glutamine-rich area. The histidine rich area is 

present at residues 56-69, and the glutamine rich area is present at residues 72-95 (Penalva et al., 

2000). When glutamine-rich domains are near histamine stretches, these are typically associated 

with transcription factors. The domains help promote protein-protein interactions and an 

alignment of the FL(2)D-PHO and D. melanogaster FL(2)D at the Histidine-rich and Glutamine-rich 

domain. No FL(2)D-PHO have histidine-rich and glutamine-rich domains (Figure 3.22). The FL(2)D -

PHO may not have the same function as D. melanogaster FL(2)D, due to the lack of domains.  

 

 

Figure 3. 22: The D. melanogaster FL(2)D aligned with FL(2)D-PHO at the Histidine and Glutamine rich 
areas.  
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3.2.6.5 Investigating gro orthologues 

Groucho (Gro) is a ‘support’ gene; found in D. melanogaster sex determination cascade, (more 

information in Section 1.3.6). SXL requires GRO for negative regulation. RBBH analysis 

(methodology; fig. 2.1) identified GRO-PHO in all 11 hemipteran genomes. E-values are low in the 

BLASTP analysis (Table 3.23), and similarity scores range from 71.75% (A. glycines) to 94.57% (S. 

furcifera). Protein identity scores from the pairwise comparison analysis is lower than BLASTP 

protein similarity scores (Table 3.22). Protein identity scores from the pairwise comparison 

analysis is lower than BLASTP protein similarity scores (Table 3.24). 

Hemipteran 

species Subject Seq-id 

e-

value Length  

Query 

Coverage  

Identity 

(%)  

Similarity 

(% of 

positive-

scoring 

matches 

B. tabaci MED BTA020461.1 0 724 98 61.05 72.51 

B. tabaci MEAM1 Bta02857 0 738 97 66.94 75.2 

D. citri D_citri_rna1875 

1.00E-

141 299 48 72.58 79.6 

A. glycines  A_glycine_017732 0 676 87 65.24 71.75 

A. pisum  ACYPI005368-RA 0 765 99 65.88 73.46 

M. persicae G006 MYZPE13164_G006_v1.0_000102370.1 0 750 97 66.27 73.6 

M. persicae Clone 

O MYZPE13164_0_v1.0_000105990.1 0 750 97 66.27 73.2 

N. lugens NLU003109.1 0 421 57 79.33 83.85 

S. furcifera Sfur-89.110 0 350 49 90 94.57 

C. lectularius CLEC000827 0 666 89 66.37 72.97 

R. prolixus RPRC006150-RA 0 737 97 67.3 74.49 

 

Table 3. 23: Results of BLASTP analysis of the full-length D. melanogaster GRO protein (Query) against all 
hemipteran GRO (Subject). 
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Species Subject Seq-id 

Percentage identity of full protein 

against the query 

B. tabaci MED BTA020461.1 63.53 

B. tabaci MEAM1 Bta02857 49.59 

D. citri D_citri_rna1875 38.59 

A. glycines  A_glycine_017732 56.96 

A. pisum  ACYPI005368-RA 55.36 

M. persicae G006 MYZPE13164_G006_v1.0_000102370.1 64.34 

M. persicae Clone O MYZPE13164_0_v1.0_000105990.1 64.34 

N. lugens NLU003109.1 44.22 

S. furcifera Sfur-89.110 63.22 

C. lectularius CLEC000827 56.90 

R. prolixus RPRC006150-RA 63.19 

Table 3. 24 Percentage identity of the pairwise comparison of the GRO PHO against the full-length D. 
melanogaster GRO protein 

 
D. melanogaster GRO contains seven WD40 domains (Figure 3.23). WD40 are short amino acid 

motifs, which often terminate at a Trp-Asp (W-D) dipeptide. They have a variety of functions from 

cell cycle control and apoptosis to signal transduction and transcription regulation. The repeated 

motifs act as protein-protein interaction sites, and these proteins serve as the platform for the 

assembly of protein complexes. All GRO-PHO (identified in Table 3.23) underwent SMART protein 

analysis for protein domain identification (Letunic and Bork, 2018). Figure 3.23 is a schematic of 

the proteins domains in D. melanogaster GRO and GRO-PHO (not to scale). 10 hemipterans have 

seven WD40 protein domains; the exception is D. citri with five WD40 domains. 

 

Figure 3. 23: A simplified schematic drawing of D. melanogaster GRO protein structure.  
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GRO WD40 protein domains may be more conserved than full-length proteins. Full-length GRO-

PHOs were aligned to D. melanogaster GRO using CLC, and the WD40 domains identified (Figure 

3.24). Overall, the WD40 domains seem conserved. D. citri has gaps in WD40 number 4, 5 and 6 

which may the reason for the missing two domains. N. lugens is missing the WD40 at the WD40 

number 7 position, but because the diagram does not consider the length another WD40 may be 

located in another position further in the protein.  
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Figure 3. 24: The protein alignment of the GRO PHO  and D. melanogaster protein at the WD40 sites.  
The different WD40 protein domains are highlighted by a black lined box.  
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3.2.6.6 Investigating Her orthologues 

Hermaphrodite (Her) is a ‘support’ gene; found in D. melanogaster sex determination cascade, 

(more information in Section 1.3.6). Sexual differentiation requires HER. RBBH analysis 

(methodology; fig. 2.1) identified HER-PHO in 6 hemipteran species (B. tabaci MEAM1, D. citri, N. 

lugens, C. lectularius, R. prolixus). E-value is not as low as some proteins studied in this chapter 

(Table 3.25), and similarity scores range from 42.75% (N. lugens) to 49.51% (D. citri). Protein 

identity scores from the pairwise comparison analysis is lower than BLASTP protein similarity 

scores (Table 3.26).  

Hemipteran 

species Subject Seq-id e-value Length  

Query 

Coverage  

Identity 

(%) 

Similarity 

(%) 

B. tabaci 

MEAM1 Bta05677 

9.00E-

06 173 32 28.32 43.93 

D. citri D_citri_rna4721 

2.00E-

09 103 21 34.95 49.51 

N. lugens NLU029082.3 

4.00E-

10 131 27 32.82 42.75 

S. furcifera Sfur-280.24 

2.00E-

11 159 28 30.19 45.28 

C. 

lectularius CLEC013447 

2.00E-

11 150 28 32 47.33 

R. prolixus RPRC009966-RA 

3.00E-

10 128 28 35.94 46.88 

Table 3. 25: Results of BLASTP analysis of the full-length D. melanogaster HER protein (Query) against all 
hemipteran HER-PHO (Subject). 

 

Species Subject Seq-id 

Percentage identity of full protein 

against the query 

B. tabaci MEAM1 Bta05677 5.17 

D. citri D_citri_rna4721 6.73 

N. lugens NLU029082.3 6.66 

S. furcifera Sfur-280.24 9.62 

C. lectularius CLEC013447 6.24 

R. prolixus RPRC009966-RA 8.41 

Table 3. 26:  Percentage identity of the pairwise comparison of the HER PHO against the full-length D. 
melanogaster HER protein 
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D. melanogaster HER contains four zinc finger protein domains (Figure 3.2.3.1). More information 

about zinc fingers are in Section 3.2.3.1. All HER-PHO (identified in Table 3.25) underwent SMART 

protein analysis for protein domain identification (Letunic and Bork, 2018). Figure 3.25 is a 

schematic of the protein’s domains in D. melanogaster HER and HER-PHO (not to scale). None of 

the hemipteran HER orthologues contains the same number of D. melanogaster zinc fingers.  The 

hemipteran HER orthologues vary from three (D. citri) to ten (C. lectularius).  

 

 

Figure 3. 25: A simplified schematic drawing of D. melanogaster Her protein structure.  

  



94 
 

3.2.6.7 Investigating Snf orthologues 

Sans fille (Snf) is a ‘support’ gene; found in D. melanogaster sex determination cascade (more 

information in Section 1.3.6). SXL autoregulation requires SNF. RBBH analysis (methodology; fig. 

2.1) identified SNF-PHO in all 11 hemipteran genomes. The E-value is low (Table 3.27), and 

similarity scores are high ranging from 72.44% (S. furcifera) to 93.27% (N. lugens). Protein identity 

scores from the pairwise comparison analysis is lower than BLASTP protein similarity scores (Table 

3.28).  

 Hemipteran 

species Subject Seq-id e-value Length  

Query 

Coverage  Identity (%) 

Similarity 

(%) 

B. tabaci 

MEAM1 Bta15033 4.00E-102 245 99 64.49 74.69 

B. tabaci 

MED BTA003437.1 1.00E-43 100 46 75 82 

D. citri D_citri_rna10032 8.00E-108 246 100 67.07 77.24 

A. glycines  A_glycine_09061 9.00E-103 223 100 70.4 81.61 

A. pisum  ACYPI003668-RA 2.00E-102 223 100 70.4 81.61 

M. persicae 

G006 MYZPE13164_G006_v1.0_000007620.1 2.00E-102 223 100 70.4 81.61 

M. persicae 

Clone O MYZPE13164_0_v1.0_000060450.1 2.00E-102 223 100 70.4 81.61 

N. lugens NLU004616.1 5.00E-49 104 48 84.62 93.27 

S. furcifera Sfur-572.4 9.00E-100 254 100 66.14 72.44 

C. lectularius CLEC000567 1.00E-81 223 100 65.92 74.89 

R. prolixus RPRC007750-RA 3.00E-104 234 100 70.94 80.34 

Table 3. 27: Results of BLASTP analysis of the full-length D. melanogaster SNF protein (Query) against all 
hemipteran SNF-PHO (Subject). 
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Species Subject Seq-id 

Percentage identity of full protein against the 

query 

B. tabaci 

MEAM1 Bta15033 63.10 

B. tabaci MED BTA003437.1 40.18 

D. citri D_citri_rna10032 66.40 

A. glycines  A_glycine_09061 67.38 

A. pisum  ACYPI003668-RA 67.38 

M. persicae G006 MYZPE13164_G006_v1.0_000007620.1 67.38 

M. persicae 

Clone O MYZPE13164_0_v1.0_000060450.1 67.38 

N. lugens NLU004616.1 65.62 

S. furcifera Sfur-572.4 65.88 

C. lectularius CLEC000567 59.59 

R. prolixus RPRC007750-RA 69.29 

Table 3. 28: Percentage identity of the pairwise comparison of the SNF PHO against the full-length D. 
melanogaster SNF protein 

D. melanogaster SNF contains two RRM protein domains. More information about RRM are in 

Section 3.2.3.2. All SNF-PHO (identified in Table 3.27) underwent SMART protein analysis for 

protein domain identification (Letunic and Bork, 2018). Figure 3.26 is a schematic of the protein’s 

domains in D. melanogaster SNF and SNF-PHO (not to scale). Nine PHO contained two RRM 

domains. However, two RBBH differ this is; B. tabaci MED (with 1 RRM) and C. lectularius (with no 

RRM).  

 

 

Figure 3. 26: A simplified schematic drawing of D. melanogaster SNF protein structure.  
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3.2.6.8 Investigating Vir orthologues 

Virilizer (Vir) is a ‘support’ gene; found in D. melanogaster sex determination cascade (more 

information in Section 1.3.6). VIR is needed for maintenance of late SXL (Schutt et al., 1998). RBBH 

analysis (methodology; fig. 2.1) identified VIR-PHO in all 11 hemipteran genomes. The E-value is 

low (Table 3.29), and similarity scores range from 44% (N. lugens) to 54.35% (D. citri). Protein 

identity scores from the pairwise comparison analysis is lower than BLASTP protein similarity 

scores (Table 3.30).  D. melanogaster VIR and VIR- PHO do not have any protein domains.  

Hemipteran 

species Subject Seq-id e-value Length 

Query 

Coverage  

Identity 

(%) 

Similarity 

(%) 

B. tabaci MEAM1 Bta14879 4.00E-115 1558 85 27.47 46.34 

B. tabaci MED BTA014178.1 8.00E-57 819 42 26.62 48.35 

D. citri D_citri_rna13774 7.00E-27 276 14 31.16 54.35 

A. glycines  A_glycine_09166 6.00E-29 615 51 23.9 45.69 

A. pisum  ACYPI002647-RA 1.00E-27 609 56 23.48 46.31 

M. persicae G006 MYZPE13164_G006_v1.0_000129550.1 2.00E-29 619 33 22.13 45.72 

M. persicae Clone 

O MYZPE13164_0_v1.0_000187070.1 3.00E-30 619 35 22.13 46.04 

N. lugens NLU010196.1 1.00E-108 1441 76 26.3 44 

S. furcifera Sfur-131.52 2.00E-79 858 77 27.27 47.2 

C. lectularius CLEC013248 1.00E-92 957 90 28.84 49.22 

R. prolixus RPRC014736-RA 2.00E-135 1474 85 28.7 47.69 

 

Table 3. 29 Results of BLASTP analysis of the full-length D. melanogaster VIR protein (Query) against all 
hemipteran VIR-PHO (Subject). 
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Species Subject Seq-id 

Percentage identity of full protein against the 

query 

B. tabaci 

MEAM1 Bta14879 23.31 

B. tabaci MED BTA014178.1 10.96 

D. citri D_citri_rna13774 5.84 

A. glycines  A_glycine_09166 13.17 

A. pisum  ACYPI002647-RA 12.55 

M. persicae 

G006 MYZPE13164_G006_v1.0_000129550.1 12.125 

M. persicae 

Clone O MYZPE13164_0_v1.0_000187070.1 12.69 

N. lugens NLU010196.1 17.93 

S. furcifera Sfur-131.52 18.87 

C. lectularius CLEC013248 21.79 

R. prolixus RPRC014736-RA 22.90 

Table 3. 30: Percentage identity of the pairwise comparison of the VIR PHO against the full-length D. 
melanogaster VIR protein 
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3.2.6.9 Investigating Dsf orthologues 

Dissatisfaction (Dsf) is a ‘support’ gene; found in D. melanogaster sex determination cascade, 

(more information in Section 1.3.6). DSF affects the courtship behaviours in D. melanogaster. TRA 

has three targets one is Dsf, the others are Fru and Dsx. Each of these genes are the top of 

different pathways contributing to the central nervous system in D. melanogaster. RBBH analysis 

(methodology; fig. 2.1) identified DSF-PHO in all 11 hemipteran genomes. The E-value is low 

(Table 3.31), and similarity scores range from 67.97% (B.tabaci MEAM1) to 82.2% (R. prolixus). 

Protein identity scores from the pairwise comparison analysis is lower than BLASTP protein 

similarity scores (Table 3.32).   

Hemipteran 

species Subject Seq-id 

E-

value Length 

Query 

Coverage  

Identity 

(%) 

Similarity 

(%) 

B. tabaci 

MED BTA012985.2 7E-84 256 37 57.03 67.97 

B. tabaci 

MEAM1 Bta07918 5E-98 273 52 59.34 71.43 

D. citri D_citri_rna8036 5E-89 196 45 71.43 81.12 

A. glycines  A_glycine_010412 5E-93 236 47 65.68 75.85 

A. pisum  ACYPI56792-RA 3E-93 236 47 65.68 76.27 

M. persicae 

G006 MYZPE13164_G006_v1.0_000188390.1 5E-93 236 47 65.68 75.85 

M. persicae 

Clone O MYZPE13164_0_v1.0_000032910.1 5E-93 236 47 65.68 75.85 

N. lugens NLU012929.1 5E-94 238 47 63.87 76.47 

S. furcifera Sfur-22.71 9E-91 267 46 59.18 69.29 

C. 

lectularius CLEC025112 3E-88 265 47 57.36 68.3 

R. prolixus RPRC010625-RA 3E-92 191 27 69.11 82.2 

Table 3. 31 Results of BLASTP analysis of the full-length D. melanogaster DSF protein (Query) against all 
DSF-PHO (Subject). 
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Species Subject Seq-id 

Percentage identity of full protein against the 

query 

B. tabaci 

MED BTA012985.2 

36.16 

 

B. tabaci 

MEAM1 Bta07918 13.67 

D. citri D_citri_rna8036 34.15 

A. glycines  A_glycine_010412 36.65 

A. pisum  ACYPI56792-RA 39.83 

M. persicae 

G006 MYZPE13164_G006_v1.0_000188390.1 39.69 

M. persicae 

Clone O MYZPE13164_0_v1.0_000032910.1 39.69 

N. lugens NLU012929.1 33.42 

S. furcifera Sfur-22.71 18.45 

C. lectularius CLEC025112 33.47 

R. prolixus RPRC010625-RA 18.99 

Table 3. 32 Percentage identity of the pairwise comparison of the DSF PHO against the full-length D. 
melanogaster DSF protein 

 
D. melanogaster DSF contains one Zinc finger and one HOLI domain. More information about the 

zinc finger domain is in Section 3.2.3.1. HOLI protein domain is a nuclear receptor and is one of 

the most abundant regulators in animals. The domain can bind to hydrophobic molecules.  All 

DSF-PHO (identified in Table 3.31) underwent SMART protein analysis for protein domain 

identification (Letunic and Bork, 2018). Figure 3.27 is a schematic of the protein domains in D. 

melanogaster DSF and DSF-PHO (not to scale). Nine PHO contained both zinc finger and HOLI 

protein domains. However, two RBBH differ; B. tabaci MED and R. prolixus with only HOLI domain. 

 

 

Figure 3. 27: A simplified schematic drawing of D. melanogaster DSF protein structure.  
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DSF HOLI protein domains may be more conserved than full-length proteins. Full-length DSF-PHOs 

were aligned to D. melanogaster DSF using CLC, and the HOLI domain identified (Figure 3.28b). 

The HOLI domain is conserved. A maximum-likelihood phylogeny tree analysis was conducted to 

explore the evolutionary relationship (Figure 3.2a). The branches range from being highly 

supported (bootstrap value of 0.943, between C. lectularius and R. prolixus). 

 

 

 

Figure 3. 28: Molecular Phylogenetic analysis of the DSF HOLI domain from the Hemiptera DSF 
orthologues by Maximum Likelihood method.  
A. The evolutionary history was inferred by using the Maximum Likelihood method based on the 
Le_Gascuel_2008 model. The best model was calculated by Mega7. The analysis involved 12 amino acid 
sequences. It was edited in the Interactive tree of life. This tree is from the hemipteran orthologues of D. 
melanogaster DSF protein at the HOLI domain. The tree is rooted at D. melanogaster Dsf B. The 
alignment sequence of HOLI protein domain used for the tree in A (Le and Gascuel, 2008; Kumar et al., 
2016; Letunic and Bork, 2016; Felsenstein, 1985). 
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3.2.6.10 Investigating Fru orthologues 

Fruitless (Fru) is a ‘support’ gene; found in D. melanogaster sex determination cascade (more 

information in Section 1.3.6). FRU is required for proper development of several anatomical 

structures needed for courtship (Demir and Dickson, 2005). FRU is a direct target of TRA 

(Yamamoto et al., 1998). RBBH analysis (methodology; fig. 2.1) identified FRU-PHO in all 11 

hemipteran genomes. The E-value is low (Table 3.33), and similarity scores range from 72.8% (D. 

citri) to 77.39% (R. prolixus). Protein identity scores from the pairwise comparison analysis is 

lower than BLASTP protein similarity scores (Table 3.34).   

Hemipteran 

species Subject Seq-id e-value Length  

Query 

Coverage  Identity (%) 

Similarity 

(%) 

B. tabaci 

MED BTA006255.2 2.00E-40 124 13 56.45 72.58 

B. tabaci 

MEAM1 Bta13492 2.00E-39 124 26 56.45 72.58 

D. citri D_citri_rna1194 9.00E-42 125 14 57.6 72.8 

A. glycine  A_glycine_012334 1.00E-38 113 13 54.87 73.45 

A. pisum  ACYPI006076-RA 2.00E-39 115 13 57.39 74.78 

M. persicae 

G006 MYZPE13164_G006_v1.0_000040020.1 2.00E-39 115 13 59.13 75.65 

M. persicae 

Clone O MYZPE13164_0_v1.0_000092010.1 2.00E-39 115 13 59.13 75.65 

N. lugens NLU012995.5 1.00E-45 129 14 62.79 75.97 

S. furcifera Sfur-188.24 3.00E-44 129 14 62.79 75.97 

C. lectularius CLEC008059 9.00E-42 121 13 61.98 75.21 

R. prolixus RPRC014183-RA 7.00E-42 115 13 59.13 77.39 

Table 3. 33 Results of BLASTP analysis of the full-length D. melanogaster FRU protein (Query) against all 
hemipteran FRU-PHO (Subject). 
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Species Subject Seq-id 

Percentage identity of full protein against 

the query 

B. tabaci 

MED BTA006255.2 11.28 

B. tabaci 

MEAM1 Bta13492 14.71 

D. citri D_citri_rna1194 17.30 

A. glycine  A_glycine_012334 17.07 

A. pisum  ACYPI006076-RA 28.33 

M. persicae 

G006 MYZPE13164_G006_v1.0_000040020.1 12.16 

M. persicae 

Clone O MYZPE13164_0_v1.0_000092010.1 12.16 

N. lugens NLU012995.5 14.34 

S. furcifera Sfur-188.24 10.33 

C. 

lectularius CLEC008059 18.27 

R. prolixus RPRC014183-RA 46.31 

Table 3. 34 Percentage identity of the pairwise comparison of the FRU PHO against the full-length D. 
melanogaster FRU protein 

 

D. melanogaster FRU contains one BTB (Broad- complex, Tramtrack and Bric a Brac) and two Zinc 

finger domains. Section 3.2.31 contains more information on zinc finger protein domains. BTB is 

also known as the Poxvirus and Zinc finger (POZ) domain. This domain occurs at the N terminus of 

proteins that contain zinc fingers. The domain function is to help facilitate homodimerization. The 

proteins that have these domains are normally transcriptional regulators, and they are thought to 

act through the control of the chromatin structure (Letunic and Bork, 2018). All FRU-PHO 

(identified in Table 3.33) underwent SMART protein analysis for protein domain identification 

(Letunic and Bork, 2018). Figure 3.29 is a schematic of the protein domains in D. melanogaster 

FRU and FRU-PHO (not to scale). All 11 PHO contain the BTB protein domain. The varying part of 

the protein depends on the number of zinc fingers that are present, which ranges from 0 to 4.   
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Figure 3. 29: A simplified schematic drawing of D. melanogaster FRU protein structure.  

 

FRU BTB protein domain may be more conserved than full-length proteins. Full-length FRU-PHOs 

were aligned to D. melanogaster FRU using CLC, and the BRB domain identified (Figure 3.30b). 

The BTB domain is conserved; blue indicates same amino acid in that position and red means dis-

similar positions. A maximum-likelihood phylogeny tree analysis was conducted to see the 

evolutionary relationship (Figure 3.30a). The branches range from being highly supported 

(bootstrap value 1, between B. tabaci MED and MEAM1) to being very poorly supported 

(bootstrap value of 0.028). 
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Figure 3. 30: Molecular Phylogenetic analysis of the fru at BTB protein domain for the hemipteran orthologues of FRU and D. melanogaster FRU protein  
A. The evolutionary history was inferred by using the Maximum Likelihood method based on the Le_Gascuel_2008 model, which was calculated as the best model 
prediction by MEGA7. The bootstrap consensus tree inferred from 1000 replicates. The tree is drawn to scale, with branch lengths measured in the number of 
substitutions per site. The analysis involved 12 amino acid sequences. Evolutionary analyses were conducted in MEGA7. It was edited in the Interactive tree of life. This 
tree is from the RBBH of the FRU protein. The tree is rooted at D. melanogaster FRU. B. The alignment of the FRU PHO and D. melanogaster FRU at the BTB protein 
domain. Blue indicates conserved regions on the sequence, red is the unconserved regions of the sequence (Le and Gascuel, 2008; Kumar et al., 2016; Letunic and Bork, 
2016; Felsenstein, 1985). 
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3.2.7 Are the M. persicae SDGs found on the X chromosome? 

The sex-determining chromosome typically contains the sex determination genes. T. Mathers in 

the Hogenhout laboratory has assembled the X chromosome of M. persicae Clone 0 (Mathers et 

al., 2018). I analysed the sex chromosome database (TBLASTN; protein sequences against 

nucleotide database) using the SDGs previously identified in this chapter to see if any SDG-PHO 

was found on the sex chromosome in M. persicae Clone 0, along with the location of the genes on 

this chromosome. Any SDG-PHO found on the sex chromosome will provide more evidence that 

these are true SDGs. The X-chromosome analysis for the M. persicae Clone 0 PHO, revealed that 

not all the PHO was present on the X chromosome. Initially, the M. persicae Clone 0 PHOs were 

from genome assembly version 1. Version 2 of the genome assembly had the X chromosome 

characterised. PHO location analysis used version 2 (Table 3.35).  

 

 
Query Seq-id  

Subject 

Seq-id e-value 

Start of 

alignment in 

subject 

 End of 

alignment in 

subject 

Da MYZPE13164_0_v1.0_000036540.1 scaffold_1 5.00E-50 73950151 73950005 

Dsf MYZPE13164_0_v1.0_000032910.1 scaffold_1 1.00E-14 72328183 72327872 

Fru MYZPE13164_0_v1.0_000092010.1 scaffold_1 4.00E-23 52138318 52138151 

Hemiptera-

specific 

Dsx MYZPE13164_0_v1.0_000064550.1 scaffold_1 7.00E-96 73373822 73373223 

Sxl MYZPE13164_0_v1.0_000097000.3 scaffold_1 2.00E-20 70632122 70632298 

Tra2 MYZPE13164_0_v1.0_000075270.1 scaffold_1 2.00E-81 84847066 84847386 

Table 3. 35  A table of all the sex determination genes in M. persicae Clone 0.  

Figure 3.31 shows the location of the M. persicae clone 0 PHO identified in Table 3.35, on the X 

chromosome. There is clustering of Sxl, Dsf, Dsx and Da on the X chromosome. 
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Figure 3. 31: The position of the orthologue M. persicae clone 0 SDGs found on the X chromosome 
(Scaffold1 in Myzus_persicae_O_v2.0.scaffolds.fa). The Dsx in this figure represents the Hemiptera-
specific Dsx 

In the Hogenhout laboratory, an RNA-seq experiment took place with different developmental 

and sexual stages of the M. persicae Clone 0 (Mathers et al., 2018). T. Mathers mapped the reads 

onto the g006 models and produced the FPKM for this. The genes that were found in Table 3.35 

were investigated using this data set to see if they were differentially expressed. Sam Mugford 

(Hogenhout laboratory) provided the 1:1 orthologue from the G006 and Clone 0 gene set.
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      Mean expression (FPKM) Significance (PADJ) 

SDG Clone 0 id 1:1 Orthologue in g006 
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Fru MYZPE13164_0_v1.0_000092010.1 MYZPE13164_G006_v1.0_000040020 73.68167 65.26 65.74 36.56333 1 1 

5.73E-

09 1 1 1 

Sxl MYZPE13164_0_v1.0_000097000.3 MYZPE13164_G006_v1.0_000089020 124.4383 137.7667 140.4633 110.4733 1 1 1 1 1 1 

Dsf MYZPE13164_0_v1.0_000032910.1 MYZPE13164_G006_v1.0_000188390 0.4 0.583333 0.745 0.508333 1 1 1 1 1 1 

Hemiptera-

specific 

Dsx MYZPE13164_0_v1.0_000064550.1 MYZPE13164_G006_v1.0_000116760 11.67667 2.541667 8.063333 1.425 

3.83E-

18 1 

1.24E-

31 

8.08E-

06 1 

1.50E-

15 

Da MYZPE13164_0_v1.0_000036540.1 MYZPE13164_G006_v1.0_000018360 32.855 46.51833 45.41333 27.21 1 1 1 1 1 1 

Tra2 MYZPE13164_0_v1.0_000075270.1 MYZPE13164_G006_v1.0_000099530 10.03333 16.30667 13.94667 11.06833 1 1 1 1 1 1 

Table 3. 36: The differential expression data of the M. persicae SDGs that are found on the X chromosome at different life stages. (Mathers et al., 2018)



 

108 
 

The FPKM and PADJ was calculated by T. Mathers. The DSX seems to be differentially expressed in 

the Hemiptera-specific ‘Dsx’. There is upregulation in male and winged females in the Dsx. There 

also seems to be a downregulation in nymphs Fru. This portion of the chapter gives more 

evidence that the SDGs found in M. persicae Clone 0 (Da, Dsf, Fru, Dsx, Sxl and Tra2) are true 

SDGs orthologues, as these were found on the X chromosome.  
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3.3 Discussion  

Sex determination among insects typically follows the same structure, see Figure 1.8 in 

introduction. The primary signalling elements in Hemiptera can vary widely; such as haplodiploid 

organisms to XX/XO systems (see 1.3 for more information). At the beginning of this chapter, the 

hypothesis was that the signalling element would determine the unique sex determination 

proteins found in the pathways.  

RBBH analysis (Section 3.2.1), BLASTP alignment statistics, full-length protein comparisons and 

protein domain (Section 3.2.2-3.2.6) analysed the PHO (putative hemipteran orthologue). This 

investigation highlighted the PHOs with the higher probability of being true orthologues. The list 

will be taken forward in the future chapters.  

3.3.1 Are sex determination genes found in Hemiptera, if so how conserved are they? 

Figure 3.32 presents a summary of the chapter. If the SDP had an RBBH PHO then it represented 

by a tick, if it did not have an RBBH PHO then it is represented by a cross. The ticks have two 

colours, yellow and green. Throughout this chapter, information on the PHO-SDGs were obtained, 

such as what protein domains were present or certain features that define the protein function, 

which allowed a generalisation on the protein as to whether I think the PHO is a true orthologue 

or not. The results are present in Figure 3.32, yellow means that there is a low probability of the 

PHO being true orthologues and green indicates a higher probability.   
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Figure 3. 32: A summary table of all the putative hemipteran SDG’s.  
Red is absence of any RBBH or blastp hit. Any presence of hemipteran putative SDG’s was analysed 
further. Any green ticks suggest that there is high evidence of the putative SDG’s being real orthologues, 
any yellow suggests that there is lower evidence of the putative SDG’s being real orthologues.  The genes 
are ordered by ‘key genes’, ‘support genes’ and the double switch gene. The organisms are ordered by 
Sternorryncha, Auchenorryncha and Heteroptera. On the bottom of the table shows which organism the 
SDG’s originally came from. Please note there are two columns for FEM, however one is from A. mellifera 
whilst the other is from B. mori. The two FEMs have the same name but are not orthologues of each 
other.  

 

Proteins from the ‘key’ group show the most variability in absence and presence.  CSD, both FEMs 

and TRA are not present in any hemipteran (except CSD in R. prolixus). These proteins may have 

evolved in the holometabolous insects after their evolutionary divergence.  During the RBBH 

analysis MASC-PHO was identified. However, there is a lack of masculizing residues; therefore, 

there is a low probability of this PHO having the same function as B. mori. Liu et al (2019) (Section 

1.3.6, Table 1.3) also looked at the different B. tabaci MED SDGs to find PHO, there was no entry 

for Masc, so I conclude that they did not find a suitable MASC-PHO either.  

The support genes vary a bit more in presence or absence. Her is an autoregulation gene of Sxl, it 

is not present in aphids and B. tabaci MED and the other SDGs do not give high support that these 

are true orthologues. Liu et al (2019) concurred with my results and did not find Her in B. tabaci 

MED. Fl(2)d also has variability of presence, however, unlike Her there is less of a pattern, with an 

absence in D. citri, N. lugens and  R. prolixus. The putative FL(2)D protein that was found in the 

other Hemiptera had little evidence that they are orthologues. There was a VIR RBBH found in all 

the Hemiptera, however from further investigations there was little evidence that this was not a 

true orthologue. Da is not present in R. prolixus. These absences may be due to the annotation 
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quality of the genome. However, this one gene is missing from several distinct genomes speaks 

against this. The probability that poor assembly/ annotation would miss the same gene in several 

genomes is small.  

Dsx is the double switch gene. The RBBH is present in all Hemiptera. There is high evidence that 

there are DM-like proteins present in all the Hemiptera. However, there is limited evidence that 

the putative DSX hemipteran proteins are DSX, and this is considering the protein domains and 

specifically the clades that all of the hemipteran proteins (when searched for DM protein domain) 

fall into.    

All the RBBH and hits in Hemiptera only have DM protein domain and not the DSX dimer domain, 

see figure 3.1. The PHO RBBH cluster in the DMRT99B region; the RBBH PHO may be orthologues 

of DMRT99B. D. melanogaster larvae have DMRT99B expression; specifically, in the midline cells 

of the central nervous system (Fontana and Crews, 2012) and DMRT99B deficiency causes 

behavioural abnormalities in B. mori (Kasahara et al., 2018).  

DSX in Bemisia tabaci has been tentatively characterised previously (Guo et al., 2018b). In this 

paper, the B. tabaci ‘Dsx’ contained 6 exons (details in Chapter 5), and the protein had a DM and a 

DSX domain. The genome was used for this analysis, which at the time was unpublished. My 

results disagree with this information, as previously mentioned about the DSX domain. The 

proteins that have been entered NCBI by this paper only have the DM domain and not the DSX 

domain- this is difficult to ascertain whether the information provided by the paper is true or not. 

The follow-up paper (Liu et al., 2019) suggested that Dsx was gene BTA004042.1 which was not 

my RBBH, but it was found in my general blast search. BTA004042.1 when analysed on the IGV is a 

mono-exonic protein, and when investigated further shows only a DM domain and no DSX. 

Regretfully, I have not been able to replicate the results from these two papers for finding a DSX 

protein with DM and DSX protein domains. However, I think my pipeline was rigorous to conclude 

that what I have found is correct, as it had more stringent cut-offs (i.e. E-value) and therefore 

limits the false-positives.  It may be that the ‘DSX’ protein that was named as such by the previous 

paper. In my opinion this gene encodes a DM domain protein that is not DSX but does have sex 

differentiation properties. When this ‘DSX’ protein was knocked down by silencing the two tail 

pins of the male genitalia disappeared and the genitalia was malformed (Guo et al., 2018a).  This 

knockdown result indicates that the ‘DSX’ is needed for genitalia development, which is more of a 

sex differentiation aspect of DM containing genes. In my opinion, if it was part of the sex 

determination cascade, the outcome would indicate a difference in sex ratios.  
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Liu et al (2019) (Section 1.3.6, Table 1.3) found other sex determination genes that I also 

identified. I found the same SDG-PHO for Da, Dpn, Emc, Fru, Gro, Imp, Psi, Snf, Sxl, Tra2 and Vir, as 

the gene IDs were the same. My PHO differ in Dsf, dsx and Fl(2)d compared to Liu et al (2019) list, 

however due to the RBBH pipeline, I believe that my results are true.  

3.3.2 Are the M. persicae clone 0 SDGs found on the X chromosome? 

T. Mathers assembled the X chromosome of M. persicae Clone 0. I took the SDG’s from M. 

persicae clone 0 and looked to see whether any was present on the X chromosome. Some SDGs 

have been found on the sex-determining chromosomes in the past, so the genes found on the sex 

chromosome will give better support to these genes being truly part of the sex determination 

pathway. The SDGs genes found on the X chromosome are Da, Dsf, Fru, Dsx, Sxl and Tra2. These 

genes also seem to cluster close on this X chromosome scaffold (figure 3.31).  

I looked at the differential expression of these genes at different stages produced by T. Mathers 

The whole genome was analysed and provided by T. Mathers (Mathers et al., 2018), Table 3.36 

was the extracted genes from the whole genome that was relevant to this thesis. Dsx seems to be 

upregulated in males and winged females. Both males and winged females have wings. The ‘Dsx’ 

may be involved with sex determination, or possibly wing formation. The DSX has been 

repurposed in the Lepidoptera, Papilio polytes, as a colour pattern gene in the wings. Something 

similar may be happening in the winged aphids (Kunte et al., 2014).  
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3.4 Conclusion 

Hemiptera do not have different cascades depending on the signalling element (as suggested in 

the introduction 3.1). However, the Hemiptera do seem to have a conserved sex determination 

pathway; as when one SDG is missing, it is typically missing in all. There is not one 

holometabolous sex-determination pathway that is an exact match for Hemiptera. D. 

melanogaster and B. mori seem similar but there are inconsistencies in the orthologue proteins, 

such as MASC-PHO not having the masculinizing effect.  

I have found potential orthologues of sex determination genes. However, we do not know about 

the functionality of these genes. Sex determination genes should be expressed during the 

embryogenesis stage. To determine whether this is true, I will conduct single-embryo RNA-seq 

analysis in a later chapter. B. tabaci is an excellent model to get male samples, as all virgin 

females will produce the haploid male eggs so that sex-specific isoforms analysis can be explored. 

The single-egg RNA-seq experiment may not determine the functionality of the genes but will help 

find genes that are present in early embryogenesis. Therefore, genes that could be used in a self-

limiting system.  
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Chapter 4: Investigations of 

embryogenesis in four developmental 

stages of B. tabaci eggs 
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4.1 Introduction 

Embryogenesis (embryonic development) of insects usually happens in eggs after they are laid. 

Embryogenesis comprise a series of complex events that occur before an organism is born or 

hatches from an egg, and there is a commonality in the stages and sequences to events among 

animals, such as the formation of blastula and gastrula (Campos-Ortega and Hartenstein, 1997).  

Drosophila melanogaster is a model organism for insect embryogenesis, which occurs in eggs 

after they are laid by a female. The embryogenic stages in D. melanogaster are well-defined. From 

the first zygotic nuclear divisions to the cellularization stage there are thirteen divisions of nuclei 

in the early embryo. Before the cellularization, in the pre-blastoderm stage, the nuclei are not 

separated by plasma membranes and lie within the same cytoplasm. The pre-blastoderm stage 

has 1-8 nuclear divisions, and the divisions occur synchronously (Zalokar and Erk, 1976; O'Farrell 

et al., 2004). During blastoderm formation, between nuclear divisions 8-9, the nuclei migrate 

outwards to form the shell and become part of a layer of cells that forms the wall of the blastula 

(Foe and Alberts, 1983). Germ-line cell formation occurs during cell cycles 9-10 (Farrell and 

O'Farrell, 2014) during which cytoplasmic bridges that connect cells of the blastoderm to the cells 

in the yolk sac are formed, and these bridges are pinched off during gastrulation. Gastrulation is 

the formation of germ layers (Campos-Ortega and Hartenstein, 1997). 

In some agricultural pests, such as B. tabaci, there is a lack of fundamental knowledge on 

embryonic development (see Section 1.2.1 for more information). This knowledge is vital for 

developing new control methods. The best way to uncover the different embryonic stages of B. 

tabaci is to compare it to a well-known embryonic development system, like D. melanogaster. 

Using the comparative approach with D. melanogaster, new embryonic developmental stages 

have been described in the scuttle fly (Megaselia abdita) (Wotton et al., 2014) and the moth 

midge (Clogmia albipunctata) (Jimenez-Guri et al., 2014). 

Current knowledge of B. tabaci embryogenesis is limited. However, what is known is that B. tabaci 

has telotrophic ovaries in which the nutritive chords are connected to the oocytes and the nurse 

cells (Ghanim et al., 2001). The B. tabaci ovaries contain oocytes with different developmental 

stages. At least four developmental stages of oocytes/eggs in the ovaries have been described, 

these are named the A, B, C and D stages with the A stage eggs being the most immature phase 

and D stage egg the fully mature stage (Guo et al., 2016). 
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This chapter aims to develop more knowledge of B. tabaci MED embryogenesis. The investigation 

includes optimisation of nuclei staining methods and nuclei counting. Confocal microscopy was 

used to count the nuclei of different B. tabaci MED developmental stages. Comparative analysis 

between nuclei from B. tabaci and D. melanogaster established the B. tabaci embryonic 

developmental stages. The hypothesis is that B. tabaci has similar embryogenesis and 

developmental stages as D. melanogaster. 

This study provides evidence that embryogenesis and cellularization starts inside the adult female 

abdomen, not outside the abdomen like D. melanogaster. Germ-line cells, before the end of the 

blastoderm stage (between nuclear cycles 8-10,) will have to be transformed for obtaining stable 

transgenic insect lines. My data shows that transformation constructs will have to be introduced 

in egg stages that occur within whitefly females rather than into eggs that are already laid. This 

data, therefore, contributes crucial fundamental knowledge to achieve the goal to develop 

genetic methods to control whitefly populations.  

  



 

117 
 

4.2 Results 

4.2.1 DAPI staining of D. melanogaster eggs images the nuclei 

4′,6-Diamidine-2′-phenylindole dihydrochloride (DAPI) is a fluorophore that detects nuclei in 

confocal microscopy. The DAPI protocol used is based on one designed for D. melanogaster 

(Rothwell and Sullivan, 2000). The goal of this section is to ensure that the DAPI protocol 

(described in Section 2.2.5) works before optimising it for B. tabaci, by testing the DAPI method 

on D. melanogaster eggs (provided by Prof. Tracey Chapman, School of Biological Sciences, UEA, 

Norwich, UK).  Briefly, the DAPI protocol includes a Carnoy fixative that was used overnight to fix 

the eggs, and the addition of bleach to remove chorion from the eggs. Then, hybridisation buffer 

was added to the eggs to facilitate the spread of fluorophores. DAPI was added to the eggs before 

being washed with 1x PBS, and Vectashield (Vector Laboratories) was applied to the sample 

before confocal microscopy.  

Figure 4.1 shows DAPI stained D. melanogaster eggs. The fluorescence image clearly shows 

discrete circular objects indicating the presence of cell nuclei, as expected. Therefore, the DAPI 

protocol worked for the detection of nuclei in D. melanogaster eggs, and it was decided to use 

this protocol to detect nuclei in B. tabaci eggs.  

 

 

Figure 4. 1 0-5-hour old D. melanogaster eggs stained with DAPI viewed on a confocal microscope.   
A.The brightfield image of the D. melanogaster egg at 20x magnification. B. The confocal image at 405 nm 
emission. C. Magnified image of the white rectangle in image B. The scale bars represemt 100 µm. 
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4.2.2 Assessment of autofluorescence of whitefly adults and eggs  

Autofluorescence is fluorescence produced from endogenous materials or compounds present in 

a biological sample. The insect cuticle may produce autofluorescence. Cuticle properties in insects 

such as Cimex lectularius (bedbug) often produce autofluorescence (Reinhardt et al., 2017). To be 

able to count nuclei this study, the DAPI-stained nuclei in whitefly females need to be brighter 

than any autofluorescence. There is no information in the literature on the autofluorescence 

levels of B. tabaci MED adults or eggs. Therefore, before testing different staining methods, B. 

tabaci autofluorescence was investigated by confocal microscopy.  

B. tabaci non-virgin adults were examined for autofluorescence levels. The adults were collected 

(Section 2.2.3), fixated (Section 2.2.5; without any DAPI and bleach), imaged (Section 2.2.8) and 

analysed (Section 2.2.9), and the excitation and emission wavelengths of standard fluorophore 

data points measured. Data are shown in Figure 4.2.  

Whitefly adult bodies showed autofluorescence signals. The autofluorescence signals of adults 

was high at the wavelengths of DAPI fluorescence (excitation 358 nm; emission 461 nm) and were 

also seen at the wavelengths of GFP (excitation 488 nm; emission 510 nm), though no obvious 

autofluorescence was seen for wavelengths of CFP, YFP and RFP. Therefore, using DAPI and GFP 

fluorophores may mask the detection of signals from DAPI or GFP-stained nuclei in future 

experiments.   

 

Figure 4. 2: Autofluorescence in the adult male abdomen throughout the different (Em) emission and (Ex) 
excitation wavelengths. 
The emission and excitation wavelengths correspond with standard fluorophores; DAPI, cyan fluorescent 
protein (CFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP) and red fluorescent 
protein (RFP).  
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In this chapter, eggs will be examined so eggs underwent autofluorescence testing. The adults 

were collected (Section 2.2.3) for dissection of D type eggs (Section 2.2.4), which were fixated 

(Section 2.2.5; without any DAPI and bleach), imaged (Section 2.2.8) and analysed (Section 2.2.9). 

The excitation and emission wavelengths used correlated with the standard fluorophore data 

points. The results are shown in Figure 4.3.  

Eggs emitted autofluorescence signal (Figure 4.3). The autofluorescence signal was high at the 

DAPI wavelengths (excitation 358 nm; emission 461 nm), and at RFP wavelengths (excitation 555 

nm; emission 584 nm). Using DAPI and RFP fluorophores may mask the detection of nuclei signal 

in D type eggs in experiments.   

There is autofluorescence occurring in the DAPI wavelength. However, DAPI is a well-established 

nuclei fluorophore in insect embryogenesis. The eggs (Figure 4.3) or adult (Figure 4.2) samples 

were not bleached; therefore, it is unclear whether de-chorionating the samples will affect the 

autofluorescence.   

 

 Figure 4. 3: autofluorescence in D type eggs throughout different (Em) emission and (Ex) excitation 
wavelengths. 
The emission and excitation wavelengths correspond with the popular fluorophores; DAPI, cyan 
fluorescent protein (CFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP) and red 
fluorescent protein (RFP). Scale bar represents 10 µm. 
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4.2.3 Autofluorescence is present at specific wavelengths in pre-oviposited eggs  

There are three distinct morphological egg developmental stages in pre-oviposited eggs; A, B/C 

and D (see Section 1.2.1). I tested pre-oviposited eggs for autofluorescence signals at the DAPI 

wavelength, without DAPI staining (protocol from Section 2.2.7). Eggs were collected from non-

virgin B. tabaci MED as described in Section 2.2.4.   

Data is shown in Figure 4.3. Images with the suffix 1 in the upper right corners of images shown in 

Figure 4.3 denote brightfield images, and those with the suffix 2 denote confocal images 

(excitation 358nm; emission 461nm). Suffixes with ‘A’ denote A-stage eggs, ‘B’ B/C-stage eggs and 

‘C’ D-type eggs. Fluorescence ‘brioche’ patterns, so-called because of the pattern showing aerated 

holes like a brioche pastry, were seen in the confocal images of D-type eggs and lightly in the B/C 

eggs. The ‘brioche’ pattern is probably derived from autofluorescence. The ‘brioche’ pattern was 

typical for the D eggs, and autofluorescence is likely to be extracellular material, such as chitin or 

something associated with chitin. Chitin is known to autofluorescence in insects. As it looks 

extracellular, cellularisation may have occurred stage at stages B/C and D. There is no 

autofluorescence in the A egg; therefore, DAPI used at this stage will not be masked by 

autofluorescence.   

 

 

Figure 4. 3:  Confocal images of A, B/C and D type eggs from potentially non-virgin Bemisia tabaci MED 
females.  
Images with the 1 suffix are brightfield images. Images with 2 as the suffix are confocal images taken at 
wavelength 405 nm. This is the DAPI protocol without any DAPI. All images have a scale bar in the right 
bottom corner of 10 µm. A images are A type eggs, B are B/C type eggs and C is a D type egg. Scale bar 
represents 10 µm. Please refer to the electronic copy of thesis for pictures, if printed the contrast and 
quality will be poor.     
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4.2.4 Optimisation of the confocal microscopy protocol with DAPI and PI 

DAPI is a fluorophore that binds to nuclei (see Figure 4.1). The DAPI protocol used on D. 

melanogaster in Section 4.2.1 must be optimised for B. tabaci MED. The following sections 

contain the optimisation process for B. tabaci. 

4.2.4.1 DAPI protocol with D type eggs 

There are three distinct morphological egg developmental stages; A, B/C and D (see Section 

1.2.1). D eggs are numerous and easy to distinguish compared to the other stages. Therefore, D-

type eggs will be used to optimise DAPI staining methods. The eggs were subjected to the 

protocol described in Section 2.2.7; without bleach. Figure 4.4 shows the DAPI stained D stage 

eggs; A pictures are brightfield images, and the B pictures are the confocal image (excitation 

358nm; emission 461nm). A1 and B1 are stained with DAPI, while A2 and B2 underwent the same 

protocol without DAPI. Unlike Figure 4.1, there are no discrete circular objects representing cell 

nuclei; instead, there is the fluorescence ‘brioche’ pattern. The autofluorescence is likely to be 

extracellular material, such as chitin or compounds associated with chitin. Chitin is known to 

autofluorescence in insects. As it looks extracellular; cellularisation may have occurred at this 

stage. 
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Figure 4. 4: The original DAPI protocol on D type eggs collected from the female abdomens of B. tabaci 
MED 
The A pictures are brightfield images, and the B pictures are the confocal image (excitation 358 nm; 
emission 461 nm) falsely coloured with blue. A1 and B1 are stained with DAPI, while A2 and B2 
underwent the same protocol without DAPI. The scale bar is 10 µm. Please refer to the electronic copy of 
thesis for pictures, if printed the contrast and quality will be poor.    
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4.2.4.2 Propidium Iodide protocol with D type eggs 

In Figure 4.4, the autofluorescence seems to be occurring in the DAPI wavelength, whereas the 

eggs showed lower autofluorescence at the red fluorescent protein (RFP) wavelength, i.e. 

excitation at 555 nm and emission at 585 nm (Figure 4.3). With excitation at 535 nm and emission 

at 617 nm, propidium iodide (PI) falls close to the wavelength of RFP. Therefore, the PI stain was 

used to look for nuclei in eggs using the protocol described in Section 2.2.6.  

Figure 4.5 shows PI-stained eggs. Images labelled with A1 and A2 are the controls, i.e. no PI was 

added to the mounting medium. These controls show that there still some auto-fluorescence 

occurring, and this may be explained by the requirement for a higher exposure to the emitting 

light of the confocal to see the fluorescence of PI compared to RFP.  

The images in C2 of Figure 4.5 revealed a bright circular object that is likely to be the bacteriocyte, 

which is filled with symbiotic bacteria, of whitefly embryos, indicating that the PI was able to 

penetrate deeply into the egg. However, it was difficult to dissect other structures within the eggs 

with the PI-staining protocol, which was also long and labour-intensive leading to loss of many 

samples. The DAPI-staining protocol is easier to complete, can be done at higher throughput with 

more eggs, and enables easier nuclei counts. Consequently, the DAPI protocol was used for the 

research described in the rest of this chapter (Section 2.2.7). 

 

Figure 4. 5  B. tabaci MED D eggs, collected from the abdomen of a female adult.  
Whitefly type D eggs stained with PI. All the pictures labelled with suffix 1 are brightfield images, and 
those labelled with suffix 2 are confocal images taken at wavelength 561 nm. Eggs shown in A1 and A2 
are controls that did not receive PI staining, and eggs shown in B1, B2, C1, C2 and D1, and D2 received PI 
staining. The scale bar is 10 µm. Please refer to the electronic copy of thesis for pictures, if printed the 
contrast and quality will be poor.    
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4.2.5 Male and female nuclear divisions of pre-oviposited eggs are similar 

The DAPI staining protocol was best for counting nuclei in whitefly eggs and was henceforth used 

to also analyse nuclei in pre-oviposited eggs (A, B/C and D eggs). Mated females produce a 

mixture of males and females, whereas non-mated (virgin) females produce only males. Mated 

and non-mated females were collected (Section 2.2.3 and Section 2.2.1), dissected (Section 2.2.4), 

and the eggs categorised into type A, B/C and D developmental stages based on their 

morphology. The type A eggs showed positive staining of nuclei and were studied further; these 

eggs were fixated (Section 2.2.7), imaged (Section 2.2.8) and analysed (Section 2.2.9). Results are 

shown in Figure 4.6, and DAPI controls for type A eggs were shown previously in this chapter 

(Figure 4.3). 

Figure 4.6 presents the results of the DAPI stained type A eggs obtained from mated (non-virgin) 

female adults and the eggs may contain female or male embryos. The confocal images show clear 

circular structures stained with DAPI and that look like cell nuclei, which were counted to assess 

the developmental stage of the embryo in the eggs.  

 

Figure 4. 6: Confocal images of A type eggs from potentially non-virgin B. tabaci MED females.  
Images with the 1 suffix are brightfield images. Images with 2 as the suffix are confocal images taken at 
excitation 358 nm and emission 461. The eggs have been stained with DAPI, and the nuclei are visible as 
discrete circular objects. 2. All images have a scale bar in the right bottom corner of 10 µm. Please refer 
to the electronic copy of thesis for pictures, if printed the contrast and quality will be poor.    
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Figure 4.7 shows DAPI-stained type A eggs from non-mated (virgin) females’ adults, and therefore 

the eggs will only contain male embryos. Like images shown in Figure 4.6, images of Figure 4.7 

show clear DAPI-stained circular objects that are the cell nuclei, which were counted to assess the 

developmental stage of the embryo in the eggs. 

 

Figure 4. 7:  Confocal images of A stage eggs from virgin B. tabaci MED females.  
Images with the 1 suffix are brightfield images. Images with 2 as the suffix are confocal images taken at 
excitation 358 nm and emission 461 nm. The eggs have been stained with DAPI, and the nuclei are visible 
as discrete circular objects. 2. All images have a scale bar in the right bottom corner of 10 µm. Please 
refer to the electronic copy of thesis for pictures, if printed the contrast and quality will be poor.    

 

Nuclei counting of the confocal images of Figures 4.6 and 4.7 was done with the maximum 

projection function of FIJI. In this function, the Z stacks are flattened to generate a 2D image. The 

produced 2D image shows all the nuclei in a sample. Figure 4.8 is an example of a 2D image 

obtained from the maximum projection function with the image labelled A2 in Figure 4.7. 
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Figure 4. 8: Confocal images of A egg from potentially non-virgin B. tabaci MED females.  
A 2D image generated from a Z-stack image of A2 in Figure 4.7 using the FIJI maximum projection analysis 
(National Institutes of Health, USA; v1.52c). The blue-stained circular objects within the image are DAPI-
stained nuclei. Please refer to the electronic copy of thesis for pictures, if printed the contrast and quality 
will be poor.    
 

All eggs shown in Figure 4.6 and 4.7 underwent FIJI maximum projection analyses, and the nuclei 

seen in each 2D image were counted. The results of the nuclei counts are shown in Table 4.1. The 

mean number of nuclei of type A eggs of non-virgin females was 118.3 (n=6), and the nuclear 

division cycle was therefore between 7-8. The mean number of nuclei of type A eggs of virgin 

females was 95.8 (n=5), and a nuclear division cycle of 7-8. Therefore, both in virgin and non-

virgin females the embryo development of type A eggs had already arrived at stage 7-8, which is 

the pre-blastoderm stage just prior to the start of the blastoderm developmental programme 

(cleavage cycle 8-9).  The type A eggs are in the abdomen of females, whitefly eggs apparently 

already started embryogenesis before oviposition, unlike D. melanogaster eggs where 

embryogenesis starts after oviposition. The embryo development does not show major 

differences in eggs from virgin and non-virgin females (Welch t-test score p>0.05), indicating that 

whitefly male and female embryos develop similarly. 
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 Sample type Number of nuclei Cleavage cycle 

N
o

n
-v

ir
gi

n
 f

e
m

al
es

 Female or male eggs 113 7 

Female or male eggs 87 7 

Female or male eggs 148 8 

Female or male eggs 124 8 

Female or male eggs 122 7 

Female or male eggs 116 7 

Mean of female or male eggs 118.3 7-8 

V
ir

gi
n

 f
e

m
al

es
 Male eggs 86 7 

Male eggs 66 7 

Male eggs 145 8 

Male eggs 100 7 

Male eggs 82 7 

Mean of male eggs 95.8 7-8 

Table 4. 1: Nuclei number for each sample from Figure 4.6 and 4.7 calculated after maximum projection.  
Each type of sample underwent the welch t-test to compare whether there is a difference in 
development time of male eggs compared to potentially female eggs. Each count of nuclei represents a 
new sample.  
 

Each sample, in Figure 4.6 and 4.7, underwent Z stack confocal microscopy. In Figure 4.8, 

maximum projection was used to flatten a 3D image into 2D; however, this loses important 

morphological detail. The Z stack allows analysis on slices throughout the eggs. The egg sample 

analysed in Figure 4.6 (A2) had 49 stacks/ slices. Figure 4.7 contains different slices of the egg, 

from 1 to 49 so the interior can be shown in more detail.  

In D. melanogaster, before blastoderm formation, the nuclei start to migrate from the centre of 

the egg to the periphery. The blastoderm is a single layer around the periphery of the egg. The A2 

sample in Figure 4.7 has a hollow interior, and this suggests that the migration stage has occurred 

in the A stage egg. The nuclei are at 7-8 nuclear division stage (the division before blastoderm 

formation); however, the morphological analysis of Figure 4.7 reveals that the blastoderm has 

already formed.  
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Figure 4. 7: The Z stacks of A2 in Figure 4.6 at different Z stack points.  
Taken at excitation 358 nm and emission 461 nm. Please refer to the electronic copy of thesis for 
pictures, if printed the contrast and quality will be poor.    
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4.2.6 Nuclei cannot be counted in eggs after the A stage 

Section 4.2.6 uses the protocol in Section 2.2.7 to count nuclei in B/C eggs. Figure 4.3 shows less 

autofluorescence in the B/C eggs than the D eggs. Therefore, nuclei may be bright enough to be 

counted in B/C eggs. Non-virgin adults were collected (Section 2.2.3 and Section 2.2.1), dissected 

(Section 2.2.4), and the eggs categorised into the different morphological stages. For this section, 

B/C eggs were fixated (Section 2.27), imaged (Section 2.2.8) and analysed (Section 2.29). The 

image in Figure 4.8 had the same exposure as Figure 4.6; therefore, Figure 4.3 is the control for 

4.6. All B/C eggs show signs of the ‘brioche’ effect and no nuclei are seen outside the 

autofluorescence, as the autofluorescence may be masking the signal (n=20+). 

  

 

Figure 4. 8: Confocal images of B/C type eggs from potentially non-virgin B. tabaci MED females.  
Images with the 1 suffix are brightfield images. Images with 2 as the suffix are confocal images taken at 
excitation wavelength 358 nm and emission 461 nm. The eggs have been stained with DAPI, and the 
nuclei have been successfully stained as seen in images with suffix 2. All images have a scale bar in the 
right bottom corner of 10 µm. Please refer to the electronic copy of thesis for pictures, if printed the 
contrast and quality will be poor.    
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4.3 Discussion  

Embryogenesis in D. melanogaster is well understood (Campos-Ortega and Hartenstein, 1997); 

however, knowledge of embryogenesis in B. tabaci is lacking. Early embryo development 

knowledge is vital for germline transformation in genetic control methods. For germline 

transformation to be successful, eggs need to be transformed before the blastoderm formation. 

This chapter aims to identify when blastoderm transformation takes place in B. tabaci, and 

therefore determine whether traditional approaches for insect germline transformation are 

feasible for B. tabaci. 

4.3.1 Embryogenesis occurs before pre-oviposition 

D. melanogaster embryogenesis occurs after the eggs are laid, and this happens in other insects 

as well (Campos-Ortega J.A. and V., 1997). One would think that this would be the same for B. 

tabaci; however, this chapter has shown embryogenesis occurring in eggs dissected from the 

abdomen (pre-oviposited eggs), Figure 4.6 and 4.7.  

4.3.2 Blastoderm formation occurs in A stage egg 

Figure 4.6 and 4.7 (A stage eggs in non-virgin and virgin female abdomen) already have nuclei to 

count. Table 4.1 contain many samples at the A stage egg. The nuclei count analysis reveal that 

the A-stage eggs are at cell cycle 7-8. The blastoderm formation in D. melanogaster occurs 

between cell cycle 8-9. Before blastoderm formation in D. melanogaster, the nuclei start to 

migrate to the outer edges of the egg. If B. tabaci follow the same embryogenesis pattern as D. 

melanogaster, then the average cell cycle stage (7-8) would indicate the migration of the nuclei.  

Blastoderm formation is when the nuclei start to form a single layer of nuclei around the outer 

edge of the egg. The morphology of the A egg in Figure 4.9 (z stacks of the A-sample eggs), shows 

a hollow interior of the eggs, with a layer of nuclei already forming the around the edge of the 

eggs. If looking at just the morphology, blastoderm formation has already occurred in A eggs.  

For germline transformation, the aim is to microinject before the blastoderm formation. If this 

chapter only looked at the nuclei count data in Table 4.1, then the A-sample eggs would be pre-

blastoderm. However, the morphological analysis reveals that blastoderm formation has already 

occurred in the A-sample egg. Based on the nuclei counting alone, microinjection would have to 

occur in A stage egg. However, injection of pre-oviposited eggs is likely to be unfeasible, and an 

alternative system would need to be developed/ explored.  
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4.3.3 Male and female eggs may have similar developmental rates 

One of the questions answered in this chapter was whether male and female eggs develop at 

different rates. A difference in development rates may occur as the female eggs are diploid and 

male eggs are haploid (Blackman and Cahill, 1998). Table 4.1 shows the nuclei number in non-

virgin females (sex of eggs unknown) and virgin females (male eggs), there is no statistical 

difference between these two samples. Therefore, based on this data, the male and female eggs 

develop at the same rate in early embryogenesis. 

However, the problem with this experiment is that it is challenging to guarantee female-only eggs. 

Potentially non-virgin female has not been confirmed to have successful copulation. The courtship 

ritual of B. tabaci is incredibly elaborate, and the success rate is low (Li et al., 1989). Due to time 

constraints it was not possible to constantly monitor the insects over the 3 days to ensure 

successful copulation. After three days it is presumed that successful mating had occurred; 

however, this was not guaranteed. Table 4.1 may be comparing male eggs against male (rather 

than females).  

4.4 Conclusion  

Pre-oviposited eggs have different morphological developmental stages; A, B/C and D.  A-stage 

egg in B. tabaci are at either pre-blastoderm or early blastoderm formation stages. However, in 

B/C and D type egg it is difficult to determine what stage these are due to the auto-fluorescence. 

However, extracellular material is present (evidenced by the autofluorescence), therefore 

cellularization has occurred in B/C and D sample eggs. 

Chapter 5 further investigates the embryogenesis stages in B. tabaci by single-embryo RNA-seq 

data. Conserved embryogenesis genes can further pinpoint the developmental stages in B. tabaci. 

Development of genetic control methods would be very difficult in B. tabaci, due to 

embryogenesis stages already occurring at the A sample egg. If post-blastoderm eggs are 

transformed, only somatic transformation will occur. Through personal communication, 

(International Whitefly Symposium, 2018- details of laboratory will be anonymised as the 

research has not been published) laboratories have tried microinjection of post-oviposition eggs 

have only achieved somatic transformation. Also, 1000 eggs have been injected and only 3 had 

successful somatic transformation.  
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Chapter 5: The discovery of transcripts of 

early embryogenesis and sex 

determination genes in four stages of 

whitefly eggs 
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5.1 Introduction 

Transcriptomic analysis is an approach to identify differentially regulated transcripts of an 

organism over developmental time and in response to the environment. RNA-seq is one of the 

many available methods to analyse the transcriptome of an organism. Others are quantitative 

reverse transcriptase PCR, northern blotting plus hybridisation and microarrays. Many of these 

methods assess the quantity of a transcript at a single time point and can assess transcript 

changes over a period. However, samples will have to be analysed with the same method over a 

time period or at the same time upon exposure to different treatments (Wang et al., 2009). 

In this Chapter, samples have been analysed over time to assess transcript abundance of genes 

involved in determining the sex of the organisms, and these genes are expressed in early stages of 

embryogenesis. Hence, for this chapter different development stages of B. tabaci eggs were 

collected and RNA-seq was performed. 

Throughout this thesis, the aim was to obtain more knowledge about embryogenesis and sex 

determination genes of B. tabaci MED. Chapter 3 was focused on the identification of sex 

determination genes/ proteins (SDGs/ SDPs) in 11 hemipteran genomes which are publicly 

available, including that of B. tabaci MED. Chapter 4 focused on the characterisation of the 

embryogenesis stages in B. tabaci MED A, B/C and D type eggs. Nuclei counting in Chapter 4 

concluded that the A-sample eggs are at the migration/ blastoderm stage. Given that SDGs are 

expressed, and alternatively spliced between the sexes during early embryogenesis, this chapter 

will be focused on the identification SDG transcripts in B. tabaci MED A, B/C and D type eggs.  

This chapter consists of two parts. The first part describes how the single embryo RNA-seq data 

were analysed, with a focus on the bioinformatic pipeline used, the quality control steps taken 

and assessing the likelihood of finding SDG transcripts. The second part of the chapter focussed 

on identification of transcripts, and (sex-specific) splice variants, derived from genes which 

encode for DM containing proteins and other ‘key’ group SDGs in the B. tabaci MED A, B/C and D 

type eggs.   

A gene located at a specific locus can produce different mRNAs (called isoforms), which may have 

different functions. Some SDGs have sex-specific isoforms; for example, B. mori, A. mellifera and 

D. melanogaster Dsx isoforms have sex-specific exon retentions (Xu et al., 2017). Therefore, the 

hypothesis is that some SDGs of B. tabaci MED may also produce sex-specific splice 

variants/isoforms.  



 

134 
 

To detect sex-specific splicing of SDGs in B. tabaci MED eggs, the sex of the embryos in the eggs 

will have to be assessed. Female and male embryos of whiteflies do not have apparent 

morphological differences. Fortunately, B. tabaci is a haplodiploid organism; i.e. males are haploid 

and develop from unfertilised eggs and females are diploid; developing from fertilised eggs. Given 

that male embryos are haploid, their transcripts are derived from a single copy of a given gene 

and will have no heterozygous loci in a single sample SNP analysis, unlike female embryos. 

Therefore, we can use SNP analyses to assess the levels of heterozygosity of embryos and assign 

the biological samples as male or female. 

The expression time of conserved embryonic genes, such as those that are specifically expressed 

in the germ cells, can serve as markers for the developmental stage of the embryo. Identification 

of such transcripts will also enable confirmation of the developmental stage of the embryo, as 

determined in the previous chapter of this thesis. A gene that is expressed in D. melanogaster 

embryos is Vasa. This gene encodes for a DEAD-Box RNA helicase family protein and is essential 

for embryonic patterning, germ cell function and pole plasm assembly (Papathanos et al., 2009; 

Van Doren et al., 1998). Vasa expression starts at the time of pole cell formation, around nuclear 

divisions 8-10 (Lasko and Ashburner, 1988). Pole cells form germ-line cells, and their development 

start at about the time of the blastoderm stage (Wotton et al., 2014). Therefore, if transcripts 

derived from the Vasa gene can be identified in whitefly egg transcriptomes, these embryos are 

likely to be at the blastoderm stage, which is also the time where some of the SDGs are 

expressed. Moreover, to obtain a germ-line transformation of whitefly, eggs will have to be 

transformed (via microinjection) at the blastoderm stage. Hence, the research described in this 

chapter serves two goals; one is to identify temporal expression patterns of SDGs and the other is 

to assess when whitefly eggs are at the blastoderm stage (confirming research in the previous 

chapter).  

Results described in the first part of this chapter, show that I was successful in developing a 

bioinformatics pipeline for the RNA-seq data to identify male and female embryos. I then 

identified the Vasa gene transcripts in the egg transcriptomes. The Vasa gene was highly 

expressed in the whitefly A-stage eggs, indicating that these eggs are at the blastoderm 

developmental stage. This result agrees with results in the previous chapter. Whitefly A-type eggs 

will have to be transformed to obtain stable transgenic whiteflies. There were no sex-specific 

splice variants identified for the whitefly Vasa gene.  

In the second part of the results, I investigated if sex-specific isoforms can be identified for genes 

encoding candidate B. tabaci MED DM proteins and ‘key’ group SDGs (identified in Chapter 3) in 
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early embryos. The files produced from the bioinformatic pipeline, described in the first part of 

this results chapter, were aligned to the gene model by a tool called Integrative Genomics Viewer 

(IGV) (Thorvaldsdottir et al., 2013; Robinson et al., 2011). I found potential candidates for the self-

limiting system.  
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5.2 Results part 1 

5.2.1 Collection of samples 

Whitefly females were reared with and without the presence of males. The non-mated females 

are guaranteed to produce only haploid male eggs, whereas mated females may carry haploid 

male and diploid female eggs depending whether the eggs were fertilised. I dissected A, B/C and D 

type eggs from female abdomens as described in the protocol of the Materials and Methods 

chapter Section 2.3.1. Michael Giolai from the Hogenhout laboratory conducted the RNA 

extractions and RNA-seq libraries using the methods described in (Picelli et al., 2014), and I 

submitted the samples for sequencing. Table 5.1 provides a list of each egg dissected/collected, 

and whether the eggs were derived from virgin or non-virgin females (V or N) and the egg type (A, 

B/C or D). For each egg type, multiple replicate samples were obtained. 
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Sample ID Collected from Virgin or Non-virgin adults  Type of egg Sex of egg 

VA3 Virgin  A Male 

VA5 Virgin  A Male 

VA6 Virgin  A Male 

VA7 Virgin  A Male 

VBC1 Virgin  B/C Male 

VBC3 Virgin  B/C Male 

VBC4 Virgin  B/C Male 

VBC6 Virgin  B/C Male 

VD2 Virgin  D Male 

VD3 Virgin  D Male 

VD4 Virgin  D Male 

VD5 Virgin  D Male 

NA1 Non A Unknown 

NA2 Non A Unknown 

NA3 Non A Unknown 

NA4 Non A Unknown 

NA5 Non A Unknown 

NA8 Non A Unknown 

NBC1 Non B/C Unknown 

NBC2 Non B/C Unknown 

NBC3 Non B/C Unknown 

NBC5 Non B/C Unknown 

NBC6 Non B/C Unknown 

NBC7 Non B/C Unknown 

NBC9 Non B/C Unknown 

NBC11 Non B/C Unknown 

ND1 Non D Unknown 

ND2 Non D Unknown 

ND3 Non D Unknown 

ND6 Non D Unknown 

ND8 Non D Unknown 

ND11 Non D Unknown 

Table 5. 1: Several stages of eggs collected from virgin or non-virgin (non) females of B. tabaci MED  
The samples were processed for RNA extraction and paired-end RNA-sequencing on NextSeq500. 
Abbreviations used for ‘Sample’ column: V, Virgin female; N, Non-virgin/mated female; A, BC, D - A, B/C 
and D type eggs, respectively; numbers 1 through 11, biological replicates. See text above for further 
explanation. 
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5.2.2 Identification of sex in individual embryo RNA-seq samples  

RNA-seq data of the samples listed in Table 5.1 were analysed to determine the sex of the 

embryos, as collected using the methods in Sections 2.2.2 and 2.2.3. Briefly, RNA-seq data of the 

individual eggs were aligned to the B. tabaci MED reference genome. The GATK haplotype 

(McKenna et al., 2010) caller was used to produce a variant call format (vcf) file, and the genotype 

(GT) values collected. The GT number indicates whether the allele is heterozygous or homozygous 

of a given sample, and the data are expressed as percentages (Table 5.2).  

The male samples derived from the virgin/non-mated females had 22.66-25.11 % heterozygosity 

levels. This level of heterozygosity in the male eggs may be derived from; maternal egg tissues 

beyond the embryo, copy number variation (reads derived from members of a family with genes 

that have high identity in sequence may collapse into a single transcript), mismatch alignments, 

artefacts from adaptor contamination, and suboptimal parameters of the GATK programme 

(which was designed for analyses of human samples). The heterozygosity values from the eggs 

from non-virgin females fell into two distinct groups. Twelve had the same value as most male 

eggs (22.66%), and 9 had higher values ranging from 27% to 84%. Given that 9 eggs had higher 

than the 22.66-25.11 % heterozygosity levels of male embryos, these eggs were considered to 

harbour female embryos. A Z-test was conducted on all unknown samples against the known 

male samples and underwent Bonferroni correction, any samples that were statistically different 

(p=<0.001) has a star next to them in Table 5.2 and are classed as female. Male and female 

embryos were found for the A and B/C type eggs, but unfortunately, only male and no female 

type D eggs were found. 
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 Parent 
Sample 
ID Sex 

Heterozygosity 
% Count of SNPs 

VIRGIN  VA3 Male 22.66 86963 

VIRGIN  VA5 Male 22.66 86963 

VIRGIN  VA6 Male 22.66 86963 

VIRGIN  VA7 Male 22.66 86963 

VIRGIN  VBC6 Male 25.12 20040 

VIRGIN  VBC1 Male 25.12 20040 

VIRGIN  VBC3 Male 22.66 86963 

VIRGIN  VBC4 Male 22.66 86963 

VIRGIN  VD2 Male 22.66 86963 

VIRGIN  VD3 Male 22.66 86963 

VIRGIN  VD4 Male 22.66 86963 

VIRGIN  VD5 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NA1 Female * 35.71 173926 

POTENTIALLY NON-VIRGIN NA3 Female * 48.56 245677 

POTENTIALLY NON-VIRGIN NA2 Female * 45.68 260889 

POTENTIALLY NON-VIRGIN NA4 Female * 29.43 434815 

POTENTIALLY NON-VIRGIN NA5 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NA8 Female * 36.45 521778 

POTENTIALLY NON-VIRGIN NBC1 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NBC9 Female * 29.86 209373 

POTENTIALLY NON-VIRGIN NBC2 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NBC3 Female * 84.12 64335 

POTENTIALLY NON-VIRGIN NBC4 Female * 27.93 87964 

POTENTIALLY NON-VIRGIN NBC5 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NBC6 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NBC7 Female * 39.00 100763 

POTENTIALLY NON-VIRGIN NBC11 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NVD1 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NVD11 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NVD2 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NVD3 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NVD6 Male 22.66 86963 

POTENTIALLY NON-VIRGIN NVD8 Male 22.66  86963 
Table 5. 2:  Single nucleotide polymorphism (SNP) counts and heterozygosity levels of A, B/C and D type B. 
tabaci eggs leads to identification of male and female eggs.  
Lanes with data from eggs with female embryos are highlighted in green.  Abbreviations of sample IDs 
are the same as described in Table 5.1. * Z-score significantly different of <0.001 
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5.2.3 Genome-guided assembly of the B. tabaci MED RNA-seq data 

5.2.3.1 Creation of files for isoform analysis 

RNA-seq data consists of many short reads that must be assembled into transcript sequences. The 

B. tabaci MED published genome sequence was used to obtain a genome-guided transcriptome 

assembly for the B. tabaci MED eggs (using the pipeline described in the Material and Methods 

Section 2.3.4, Figure 2.3). Archana Singh (Swarbreck lab, EI, Norwich and member of the 

Hogenhout lab) helped to analyse the RNA-seq data and she also produced the expression level 

data (i.e. also referred to as count data) from Kallisto.  

Reads from each egg sample were individually aligned to the gene models and assembled. The 

compositions and lengths of the assembled transcripts were then compared among the egg 

samples leading to the identification of potential isoform differences between male and female 

embryos. The expression levels of each transcript in each egg sample was determined by 

assessing the depths of unique reads to a given transcript.   

Table 5.3 lists the results of the RNA-seq alignment to the B. tabaci MED genome. Low read 

alignment levels may be due to the presence of bacterial symbionts. The majority of the low 

alignment rates come from the later developmental stages (C and D stage eggs). The primary 

bacterial endosymbionts of whiteflies are transferred from mother to egg in the later 

developmental stages, and therefore the low alignments rates may come from the 

endosymbionts. Alternatively, RNA-seq data may be derived from contaminants that were picked 

up during the dissection, RNA isolation and RNA-seq library steps. Given that the eggs are tiny and 

produce small amounts of RNAs, contamination levels can be high for some samples. 

Nonetheless, the alignments for at least three samples of type A, B/C and D egg male and female 

embryos were considered good enough quality for further analyses.  
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 ID Aligned reads 
overall alignment rate 
(%) 

M
al

e
 

VA3 8,282,687 62.12 

VA5 12,404,496 71.32 

VA6 13,883,877 64.76 

VA7 13,274,733 67.93 

NA5 5,610,128 31.26 

VBC6 13,346,724 61.44 

VBC1 7,897,292 54.27 

VBC3 17,161,673 75.24 

VBC4 12,461,608 67.17 

NBC1 11,086,901 9.55 

NBC2 7,407,112 11.38 

NBC5 7,222,204 41.55 

NBC6 16,502,038 65.79 

NBC11 9,579,771 65.61 

VD2 11,169,231 56.16 

VD3 8,508,291 62 

VD4 10,175,965 68.15 

VD5 13,743,964 76.52 

NVD1 4,796,022 23.72 

NVD11 6,766,150 38.49 

NVD2 8,667,576 33.27 

NVD3 7,930,419 39.75 

NVD6 11,763,266 41.13 

NVD8 3,731,829 28.7 

Fe
m

al
e

 

NA1 9,666,883 36.45 

NA3 10,616,647 69.62 

NA2 14,664,343 62.12 

NA4 11,098,275 65.51 

NA8 5,475,957 51.22 

NBC9 13,057,560 35.16 

NBC3 10,650,369 37.34 

NBC4 7,417,688 43 

NBC7 8,065,851 44.48 
Table 5. 3: Statistics of B. tabaci MED egg RNA-seq trimmed read alignments to B. tabaci MED reference 
genome  
The table is produced using Figure 2.3 in the Materials and methods.  Abbreviations of sample IDs are the 
same as described in Table 5.1. 
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5.2.4 Quantification of gene expression levels  

Quantification of gene expression is essential for identifying SDGs because SDGs are expressed in 

early embryogenesis. The gene expression quantity requires counting the number of reads 

mapped to each locus in transcriptome assembly. The pipeline used for gene expression 

quantification is illustrated in Figure 2.4. Upon assembly of the transcripts, the expression level of 

each transcript was determined by realigning the total RNA-seq reads to each of the transcripts. 

Data are shown in Table 5.4. The percentages of RNA-seq reads aligned to the genome (Table 5.3), 

and transcriptome (Table 5.4) are comparable, generating confidence in the data analyses 

strategies. In general, the read alignment percentages are higher for the genome alignment than 

for the transcriptome. 
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 ID Aligned reads 
overall alignment 
rate (%) 

M
al

e 

VA3 8,282,687 58.88 

VA5 12,404,496 67.30 

VA6 13,883,877 60.69 

VA7 13,274,733 63.35 

NA5 5,610,128 23.15 

VBC6 13,346,724 57.86 

VBC1 7,897,292 46.42 

VBC3 17,161,673 71.08 

VBC4 12,461,608 52.48 

NBC1 11,086,901 6.77 

NBC2 7,407,112 9.95 

NBC5 7,222,204 33.20 

NBC6 16,502,038 59.44 

NBC11 9,579,771 53.69 

VD2 11,169,231 47.13 

VD3 8,508,291 56.36 

VD4 10,175,965 62.28 

VD5 13,743,964 71.14 

NVD1 4,796,022 17.89 

NVD11 6,766,150 21.88 

NVD2 8,667,576 18.34 

NVD3 7,930,419 26.14 

NVD6 11,763,266 29.36 

NVD8 3,731,829 23.61 

Fe
m

al
e 

NA1 9,666,883 27.27 

NA3 10,616,647 57.01 

NA2 14,664,343 50.38 

NA4 11,098,275 55.28 

NA8 5,475,957 37.43 

NBC9 13,057,560 25.13 

NBC3 10,650,369 28.66 

NBC4 7,417,688 35.75 

NBC7 8,065,851 29.23 

Table 5. 4: Statistics of B. tabaci egg RNA-seq trimmed alignments to the B. tabaci MED transcriptome 
using kallisto 
Abbreviations of sample IDs are the same as described in Table 5.1. 
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5.2.5 RNA-seq data for B. tabaci MED adult males and females 

RNA-seq data generated for the eggs were compared to B. tabaci MED adults. Raw reads of the 

RNA-seq data published by Liu et al (2019) were downloaded and analysed via the bioinformatics 

pipeline (Material and Methods, Section 2.3 and 2.4). Between 78 to 81 % of the reads derived 

from the male and female adults aligned to the B. tabaci MED genome (Table 5.3). The RNA-seq 

reads from adult whiteflies align better to the whitefly genome than the eggs do. The adults may 

have a higher alignment because the abundance of endosymbiotic bacteria in the adults is lower 

than in the eggs. Therefore, it is easier to obtain sufficient high-quality RNA from adults than from 

eggs.  

ID 
Number of processed 
reads Read alignment rates (%) 

QF4 19096472 78.96 

QF5 21943081 80.29 

QF6 20320501 81.56 

QM5 22564193 78.37 

QM6 16673914 80.07 

QM7 16545475 78.96 
Table 5. 5:  Statistics of alignment of raw RNA-seq reads from male and female B. tabaci MED adult 
samples to the B. tabaci genome. 
Abbreviations in ID column: Q, MED (Q) biotype of B. tabaci; M, male; F, female; 4-7, independent 
biological replicates.  
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5.2.6 Embryonic conserved gene (Vasa) are present in all samples 

The embryonic and adult RNA-seq data are needed to provide files for isoform and gene 

expression analysis. To test the data, a conserved embryonic gene (Vasa) went through isoform 

and gene expression analysis. The analysis will also provide secondary information of when 

germline cells form, as D. melanogaster germline cells express Vasa.  The results of RBBH analysis 

between the D. melanogaster Vasa (from NCBI: CAA31405.1) and B. tabaci MED protein 

sequences (chapter 3, Section 3.2.2) ate shown in table 5.6. A B. tabaci VASA orthologue was 

found. 

 

QUERY SUBJECT E-VALUE 
QUERY 

COVERAGE  IDENTITIY (%) SIMILARITY (%) 

DM_VASA BTA009465.2 1.00E-180 69 54.68 72.55 
 

 

Table 5. 6: The blastp results of full-length D. melanogaster DSX (query) against the B. tabaci MED 
genome (subject)  
 

The VASA protein sequence of D. melanogaster contains a Dead-like helicases superfamily 

(DEXDc) domain and a helicase superfamily c-terminal domain (HELICc)(Figure 5.2A) (Letunic and 

Bork, 2018). I found a protein sequence of B. tabaci that has both the DESXDc and HELICc domains 

in the same order and approximate distance (Figure 5.2B), indicating that B. tabaci MED has a 

VASA orthologue.  

 

Figure 5. 1 Domains found in the VASA proteins of A. D. melanogaster B. B. tabaci MED.  
Protein domains were discovered by the SMART protein analysis (Letunic and Bork, 2018). The 
purple/pink rectangles are regions of low complexity. The orange diamond indicates the location of the 
Dead-like helicases superfamily (DEXDc) region and the Red square the helicase superfamily c-terminal 
domain (HELICc) region within the VASA protein sequences. Numbers at the bottom represent protein 
lengths in amino acids.  
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A B. tabaci MED VASA orthologue was identified, so the next step was to assess the transcript 

expression levels of the corresponding gene in different whitefly developmental stages. The 

Integrative Genomics Viewer (IGV) software was used to visualise the embryo and adult VASA 

transcript composition (Thorvaldsdottir et al., 2013; Robinson et al., 2011).The transcript analysis 

of the female embryos (Figure 5.3), male embryos (Figure 5.4) and adults (Figure 5.5) are shown 

below. There is at least one transcript per sample for the Vasa gene. Vasa was on scaffold 2059 of 

the reference genome. The original gene model in A of Figure 5.2, has 10 exons. The mRNA spans 

across 16081 nt. There is a UTR at the 3’ end spanning 1556nt, and a UTR at the 5’ end spanning 

2108nt.  

A comparison of the B. tabaci MED gene model of Vasa (A in Figure 5.2, 5.3 and 5.4), and 

individual embryo and adult samples (B-D in Figure 5.2, 5.3, and 5.4) revealed some isoform 

differences. The variation of the transcripts in female and male single-egg RNA-seq replicates 

occur mainly at the UTR regions.  

 

Figure 5. 2: Transcript of the Vasa hit the female single-embryo RNA-seq replicates.  
The left column has the identifier for the sample type. All are from the RNA-seq samples except for Q-
type_B.tabaci.codinggenes.gff. VASA is located on Scaffold_2059:122,176-144,492. A is the annotated 
VASA gene from the reference genome. B are the female A sample eggs. C are the female B/C samples 
eggs. The blue boxes and lines are the transcripts present at that locus in the samples. Under the 
transcripts there is the STRG number, which is a unique number for that sample. Viewed on IGV version 
2.5.0.  
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Figure 5. 3: Transcript of the Vasa hit against all the male single-embryo RNA-seq replicates.  
The left column has the identifier for the sample type. All are from the RNA-seq samples except for Q-
type_B.tabaci.codinggenes.gff. VASA is located on Scaffold_2059:122,176-144,492. A is the annotated 
VASA gene from the reference genome. B are the male A sample eggs. C are the male B/C samples eggs. D 
are the male D eggs. The blue boxes and lines are the transcripts present at that locus in the samples. 
Under the transcripts there is the STRG number, which is a unique number for that sample. Viewed on 
IGV version 2.5.0.  
 
 
 
 

 

 Figure 5. 4: Transcript of the Vasa hit against all the female and male adults RNA-seq replicates.  
The left column has the identifier for the sample type. All are from the RNA-seq samples except for Q-
type_B.tabaci.codinggenes.gff. VASA is located on Scaffold_2059:122,176-144,492. A is the annotated 
VASA gene from the reference genome. B are the adult female biological replicates. C are the male adult 
biological replicates. D are the male D eggs. The blue boxes and lines are the transcripts present at that 
locus in the samples. Under the transcripts there is the STRG number, which is a unique number for that 
sample. Viewed on IGV version 2.5.0.  
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Gene expression from male and female embryos and adults requires a dataCountTable (Materials 

and Methods, Figure 2.3). A. Singh created the dataCountTable for the expression values of the 

RNA-seq data set, in both embryonic and adult B. tabaci MED samples. The expression data units 

were in transcripts per million (TPM). The expression data for Vasa is shown in Figure 5.5. 

Both male and female eggs are both expressing Vasa at the same rate. Unfortunately, due to the 

lack of data for the D type egg, it is not known if this pattern is similar in the D type egg in 

females. The male and female have similar expression. In female adults, the mean expression of 

Vasa is a lot higher than any of the other samples, including the corresponding male samples. 

Vasa expression in many species starts around the blastoderm formation (Braat et al., 2000) 

(Dearden et al., 2003). Based on this data, and in Chapter 3, A-stage eggs are at blastoderm 

formation.  

A T-test 2 sample with unequal variance (Figure S2) showed only male BC eggs and male adults 

were statistically different (<0.001), female A eggs are statistically different from female adult 

samples (0.009), female B/C eggs are statistically different from female adults (0.009). Female 

adults had a statistically different TPM mean against male adults (0.017).  

The observed high levels of expression of Vasa in adult females might be due to the contribution 

of pre-A stage eggs in the ovaries of the females. A way to test whether the high Vasa expression 

in adults were due to egg contamination would be to gather female body and dissect the ovaries, 

containing the eggs out of the sample.  

 

  



 

149 
 

 

 

Figure 5. 5: The expression data for the Vasa gene in B. tabaci MED embryos and adults. 
Male A, B/C, D eggs and adults are represented in blue, females A, B/C eggs and adults are in orange. The 
error bars represent the standard error.  
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5.3 Results part 2 

In the results part 2 of chapter 5, I have investigated the isoform and gene expression of the DM 

genes that were identified in chapter 3. I also looked at the gene expression analysis of some ‘key’ 

genes of interest identified in chapter 3. 

5.3.1 Where are the DM genes in the genome? 

There is no DSX orthologue in B. tabaci MED; however, there are DM-domain containing proteins 

(DMRT). The locations of whitefly DM-domain containing proteins were identified within the 

scaffolds of the whitefly genome (Table 5.7). The locations of the proteins are needed because it 

is a requirement of the programme used in this chapter; Integrative Genomics Viewer (IGV). IGV is 

a tool which allows exploration of large-scale genomic data sets on a desktop computer. IGV 

allows the user to zoom and pan across the genome to base-pair level  (Thorvaldsdottir et al., 

2013; Robinson et al., 2011).  

The DM protein research is described in chapter 3, Section 3.2.1. Figure 3.3 shows a phylogenetic 

tree of the different hemipteran DM proteins. The B. tabaci MED DM proteins fell into four 

different clades; an unknown/Hemiptera specific clade, DMRT99B, DMRT11E and DMRT93B. For 

ease of nomenclature in the future, I will call the B. tabaci MED dmrt gene (BTA004042.1) found 

in the Hemiptera-specific clade of the tree Btdmrt1. BTA013024 found in the dmrt99b clade; 

Btdmrt2, BTA011988 found in the dmrt11E clade; Btdmrt3, and BTA021616 found in the dmrt93b 

clade; Btdmrt4. Only Btdmrt1-3 was analysed in this chapter, as Btdmrt4 transcripts from the 

RNA-seq data were fragmented in the isoform analysis and had zero expression in the gene 

expression. The genome locations of the B. tabaci MED DM proteins are shown in table 5.7.  
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Protein Query 

Seq-id (aa) 
Subject Seq-id 

Gene ID from 

Genome 

Start of 

alignment 

in subject 

(nt) 

End of 

alignment 

in subject 

(nt) 

Btdmrt1 Scaffold_1383 BTA004042.1  50409 50284 

Btdmrt2 Scaffold_265 BTA013024.1  111750 111625 

Btdmrt3 Scaffold_2466 BTA011988.1 87164 87039 

Btdmrt4 Scaffold_471 BTA021616.1 370209 443894 

Table 5. 7: The scaffold locations of the sex determination gene orthologues found in B. tabaci MED. 
Protein sequences of B. tabaci MED genes identified in Chapter 3 (column: Query seq-ID) were searched 
via TBLASTN against the B. tabaci MED genome assembly (Table 2.1) and the scaffold with the best hit 
selected (column: Subject Seq-id). Then, the gene ID was identified (column: Gene id from Genome). aa 
means amino acid sequence, nt means nucleotide sequence. 
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5.3.2 Btdmrt1 are present in B. tabaci MED male and female eggs and adults but are not 

differentially spliced 

The first DM gene I investigated was the Btdmrt1 in male and female B. tabaci MED eggs and 

adults. An example of the IGV analysis is present below, of male eggs (Figure 5.6). Fourteen RNA-

seq samples had a transcript present at the Btdmrt1 locus for male eggs; four replicates for A eggs 

(NA5, VA5, VA6 and VA7), five replicates for B/C eggs (NBC11, NBC6, NVBC2, VBC1 and VBC3), and 

five replicates for D type eggs (VD5, NVD2, NVD3, NVD6 and VD4). Btdmrt1 is mono-exonic and 

spans 650nt; the transcripts present in the male egg samples also span 650nt.  

In the female eggs there were four RNA-replicates have a transcript present at the Btdmrt1 locus 

for female eggs; two biological replicates for A eggs (NA2 and NA8), and two biological replicates 

for B/C eggs (NBC4 and NBC7). The transcripts present in the female eggs’ samples all span 650nt. 

In the female and male adults there were RNA-replicates for all the samples and the transcripts 

present in the eggs samples also span 650nt.  

Some samples did not have transcripts present at the Btdmrt1 locus; in the male egg these are 

VA3, VBC4, VBC5, VBC5, VD2, VD3, NVD1 and NVD8, and in the female samples these are NA8, 

NBC9 and NVBC3.  
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Figure 5. 6: Transcript of the Btdmrt1 hit against all the male egg RNA-seq replicates. 
The left column has the identifier for the sample type. All are from the RNA-seq samples except for Q-
type_B.tabaci.codinggenes.gff. Btdmrt1 is located on scaffold Scaffold_1383. A is the Btdmrt1 gene from 
the reference genome. B are the male A sample eggs. C are the male B/C samples eggs at the Btdmrt1 
locus. D are the male D sample eggs. The blue boxes and lines are the transcripts present at that locus in 
the samples. Under the transcripts there is the STRG number, which is a unique number for that sample. 
Viewed on IGV version 2.5.0.  

 

The transcripts in Figure 5.6 all look identical, as they have the same length transcripts and the 

same mono-exonic characteristics. From this IGV view, it is difficult to determine whether the 

transcripts are identical at the nucleotide level. To analyse this, I extracted the sequences that are 

in the Btdmrt1 locus from all the RNA-seq samples. Next, I conducted a pairwise comparison in 

CLC of all the transcripts and the Btdmrt1 from the reference genome. The analysis for this is in 

Figure 5.7. All 24 transcripts were identical, as they had 100% percentage identity and were 

coloured red. Therefore, male and female adults and eggs only have one transcript of Btdmrt1, 

and Btdmrt1 does not undergo differential splicing. One of the problems with this data set is the 

lack of female D -sample eggs. Therefore, conclusions cannot be made about this stage of egg in 

the female samples. 
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Figure 5. 7: Btdmrt1 transcripts found in the male and female egg and adult samples are 100% identical.  
A pairwise comparison using the full transcript alignment of the transcripts found at the BTA004042 position. The alignment and the pairwise comparison were 
conducted by CLC. Both the bottom and lower comparisons show the percentage identity scoring. The left is the male and female egg and adult identifiers for the 
transcripts.  
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I present a summary of the transcripts of Btdmrt1 found in male and female eggs and adults. This 

summary is in Figure 5.8. This summary took the information of the transcripts found in the IGV 

along with the information from the pairwise comparison. All the transcripts are represented with 

a rectangle. In Figure 5.8, all the transcripts were identical to the Btdmrt1, and therefore all the 

transcripts were the same orange colour.   

 

Figure 5. 8: The transcript consensus of Bdmrt1 in all male and female eggs and adults.  

 
RNA-seq is one of the methods that can assess transcript changes over time. Kallisto provides the 

quantity of the transcripts in a form called dataCountTable (Materials and Methods, Figure 2.3). 

A. Singh created the dataCountTable for the expression values of the RNA-seq data set, in both 

embryonic and adult B. tabaci MED samples. The expression data units were in transcripts per 

million (TPM). The expression data for Vasa is shown in Figure 5.9.  

Each RNA-seq sample had a Btdmrt1 (except those already mentioned above), from this the mean 

expression for the different sample type (Male A eggs, Female A eggs etc.) was calculated. Figure 

5.9 is the Btdmrt1 mean expression for the different samples. Figure 5.9 reveals the Btdmrt1 

expression patterns across the different life stages and sexes. Both male and female eggs show 

the same downward trend from A to B/C type eggs. The expression of Btdmrt1 increases from B/C 

to D male eggs (it is unknown whether this trend continues in female D eggs due to the lack of 

data). A T-test 2 sample with unequal variance was conducted on the mean expression data 

between all samples (Figure S2). The only samples that were statistically different was between 

Male BC eggs and Male adults (0.012), and therefore the only samples we can comment of being 

different between life stages.  
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Figure 5. 9: Btdmrt1 expression data in B. tabaci MED embryos and adults 
Males are represented in blue, and the females are in orange. The error bars represent the standard 
error. The numbers on the top of the bars represent the mean expression (TPM) for each type of sample.  
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5.3.3 Btdmrt2 transcripts are present in B. tabaci MED late-stage eggs and adults but are 

not differentially spliced 

Btdmrt2 is the second B. tabaci MED DM gene I investigated in males and female at different 

developmental times. Isoform analysis protocol was the same as 5.3.2, and therefore only the 

summary figure will be shown in this section (Figure 5.10). There are only two male D samples 

that have transcripts located in Btdmrt2, and both are identical to each other. In the adult 

samples all the samples had transcripts. The Btdmrt2 spans 413 nt, and this is the same in the 

transcripts found. All the transcripts are represented with a rectangle. In Figure 5.10, all the 

transcripts were identical to the Btdmrt1, and therefore all the transcripts were the same orange 

colour.   

Btdmrt2 did not undergo expression analysis, as there was a lack of data for comparative analysis 

through the developmental stages. The lack of data suggests that Btdmrt2 transcript is rare in the 

egg stage.  

 

Figure 5. 10: The transcript consensus of Bdmrt2 in all male and female eggs and adults. A, B/C, D and 
adult male and female. 
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5.3.4 Btdmrt3 is present mainly in B. tabaci MED male eggs and male and female adults 

and are differentially spliced 

Btdmrt3 is the third B. tabaci MED DM gene I investigated in male and females at different 

developmental stages. Isoform analysis protocol was the same as 5.3.2. In the isoform analysis 

protocol, there was different isoforms present, and therefore I will show the pairwise comparison 

(Figure 5.11). The pairwise comparison shows that not all transcripts were identical, anything less 

than 100% means that there are differences. Figure 5.11 shows the differences in the percentage 

identity, and the identity varies from 5% to 100%; therefore, Btdmrt3 has more than one isoform. 

The original gene ranges over 7200 nt. Some transcripts were the same length. The summary 

figure will be shown in this section (Figure 5.12). Btdmrt3 differs from Btdmrt1 and Btdmrt2, as 

there are different transcripts present among the different samples.  

 

Figure 5. 11: Btdmrt3 has more than one isoform 
A pairwise comparison of the Btdmrt3 transcripts from B. tabaci embryos and adults. The numbers 
indicate the percentage identity, the colours are the blue to red scale, where blue is the low percentage 
and red is higher percentage. The full-length proteins were aligned in CLC.  
 

Figure 5.12 is a summary of the Btdmrt3 isoforms found in adults and embryos. Btdmrt3 has 3 

exons and 2 UTR sites. In the transcript of the Btdmrt3 from the reference genome, the UTR’s are 

represented by the blue rectangles on the second line in Figure 5.12.  

The isoforms differ mainly at the UTR sites, whether the UTR 5’ or 3’ are present or absent. For 

example, the orange transcript has all the sequence, including the UTR ends. The same colour 

blocks represent isoforms with 100% identity to each other. All developmental stages have a 

transcript present; however, in egg stages transcripts are not present in the female A egg. In 

Btdmrt3 all males have an identical isoform, coloured orange. The orange isoform is not in female 

A or B/C eggs, and it is unknown whether it is present in female D eggs. There is an orange 

isoform in adult females. However, this may be a false positive, as there could be eggs in the 
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female samples, and this is what is sequenced. There is a female-specific isoform (red) in female 

B/C eggs. The female-specific isoform is a truncated at the 3’ end and may only be present in early 

embryogenesis.  

 

 
Figure 5. 12: The Btdmrt3 isoform consensus from B. tabaci MED adults and eggs.  
The transcript consensus of Btdmrt3 transcripts that align with BTA011988.1 in B. tabaci in all A, B/C, D 
and adult male and female.   

 

The quantity of Btdmrt3 was evaluated for all developmental stages and sexes, this is present in 

Figure 5.13, conducted as Section 5.3.2. The calculation of the mean expression for each sample 

type was from the expression data from each RNA-seq sample that has a Btdmrt3. Figure 5.13 

reveals the Btdmrt3 expression patterns across the different life stages and sexes. The Btdmrt3 

expression in male eggs are always higher than the female eggs. Male A eggs have a high 

expression of Btdmrt3, whereas there is zero expression of Btdmrt3 in female A eggs. Btdmrt3 

expression in female B/C eggs is at 0.33 TPM, higher than 0 TPM in female A eggs. Btdmrt3 

expression in adults is higher than in eggs. Btdmrt3 expression in female adults is higher than 

male adults.  

Statistical testing of the different mean (TPM) was conducted using T-test 2 sample with unequal 

variance (see Figure S2). The statistically significant means were between male A eggs vs. male 

adults (0.037), male BC eggs vs male adults (0.037), male D eggs vs. male adults (0.038), female 

B/C eggs between female adults (<0.001) and female adults vs. male adults (0.047). 
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Figure 5. 13: the expression data for the Btdmrt3 gene in B. tabaci MED embryos, for male A, B/C and D 
type eggs, in females A and B/C type eggs.   
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5.3.5 Some ‘Key’ SDG are expressed at early embryogenesis 

The summary of the ‘Key’ genes found in Hemiptera is in Chapter 3, Figure 3.32. Overall, PSI, IMP, 

SXL and TRA2 are the ‘key’ genes with the highest probability of being true orthologues. Gene 

expression analysis will be conducted on these ‘key’ genes, to see if there is high expression in 

early embryogenesis. If there is high expression in early embryogenesis, this may provide a list of 

genes of interest for further isoform analysis in the future.   

5.3.5.1 PSI isoforms are found in early embryogenesis 

The quantity of B. tabaci Psi orthologue was evaluated for all developmental stages and sexes, 

and this is present in Figure 5.14, conducted as Section 5.3.2. The calculation of the mean 

expression for each sample type was from the expression data from each RNA-seq sample that 

has Psi. There is zero gene expression of BtPSI in eggs, however there is expression in adults of 

1.12 TPM in males and 1.22 TPM in females.    

 

Figure 5. 14: the expression data for the PSI gene in B. tabaci MED embryos, for male A, B/C and D type 
eggs, in females A and B/C type eggs.   
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5.3.5.2 Sxl is present in early embryogenesis  

The quantity of B. tabaci Sxl orthologue was evaluated for all developmental stages and sexes, 

this is present in Figure 5.15, conducted as Section 5.3.2. Sxl expression was conducted for each 

RNA-seq sample, and the mean expression was produced for the different sample type. Figure 

5.15 shows the mean expression values for Sxl. Sxl expression is highest in the eggs. Sxl expression 

is at the lowest in female B/C eggs, and it is unknown whether this trend continues to D eggs. T-

test 2 sample with unequal variance (Figure S2) shows that the samples that are statistically 

different are male A eggs vs. male adults (0.041) and female adults vs. male adults (0.001). 

 

Figure 5. 15: the expression data for the Sxl gene in B. tabaci MED embryos, for male A, B/C and D type 
eggs, in females A and B/C type eggs.   
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5.3.5.3 Imp is present in early embryogenesis 

The quantity of B. tabaci Imp orthologue was evaluated for all developmental stages and sexes, 

and this is present in Figure 5.16, conducted as Section 5.3.2. Imp expression was conducted for 

each RNA-seq sample and the mean expression was produced for the different sample type. 

Figure 5.16 shows the mean expression values for Imp. Imp expression is highest at A eggs. Imp 

expression is at the lowest in female B/C eggs, and it is unknown whether this trend continues to 

D eggs. Imp expression is higher in the male eggs than female.  

 

Figure 5. 16: the expression data for the Imp gene in B. tabaci MED embryos, for male A, B/C and D type 
eggs, in females A and B/C type eggs.   
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5.3.5.4 Tra2 is present in early embryogenesis 

The quantity of B. tabaci Tra2 orthologue was evaluated for all developmental stages and sexes, 

and this is present in Figure 5.17, conducted as Section 5.3.2. Tra2 expression was conducted for 

each RNA-seq sample, and the mean expression was produced for the different sample type. 

Figure 5.17 shows the mean expression values for Tra2. Tra2 expression peaks in male and female 

A eggs. Tra2 expression is higher in the female eggs than male.  

 

Figure 5. 17: the expression data for the tra2 gene in B. tabaci MED embryos, for male A, B/C and D type 
eggs, in females A and B/C type eggs 
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5.3.5.5 Summary of ‘key’ genes 

Figure 5.18 is a heatmap of the gene expression of PSI, Sxl, Tra2 and Imp, and this summary 

includes the data shown from Sections 5.3.5.1 to 5.3.5.4. This figure helps to visualise the patterns 

of the gene expression in various developmental stages. Red indicates low expression (TPM) and 

green represents high expression.  

SDGs are known to be expressed during embryogenesis. Psi is not expressed in egg stages. This 

data suggests that this gene is not involved in sex determination at these stages, because it is not 

being expressed. Sxl is highly expressed in egg developmental stages, and this suggests that there 

is a high probability that this gene is part of the sex determination cascade. Both Tra2 and Imp 

have a similar expression in embryos as in adults, which suggests that these may be a possibility 

that these genes are part of the sex determination pathway.   

 

 A B/C D Adult  

PSI 
0.00 0.00 0.00 1.13 Male 

0.00 0.00 N/A 1.22 Female 

SXL 
17.36 12.95 21.10 1.86 Male 

15.13 3.27 N/A 9.38 Female 

TRA2 
1.32 1.99 0.25 1.63 Male 

1.63 3.53 N/A 2.88 Female 

IMP 
3.06 2.26 0.83 1.13 Male 

1.22 0.00 N/A 1.22 Female 
Figure 5. 18: A heatmap summary of the gene expression of PSI, SXL, Tra2 and Imp in male and female 
eggs and adults 
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5.4 Discussion  

This results chapter was in two parts. The first part involves the description and performance of 

the method used to determine the sex of single embryos from RNA-seq data, and this could apply 

to any haplodiploid organism. Along with this, the bioinformatic pipeline used for isoform and 

gene expression analysis was validated and tested with a conserved germ-line gene, Vasa. The 

Vasa test was successful and provided more evidence for embryonic stages. The second part of 

this results chapter is the isoform and gene analysis of the Dmrt genes, and the gene expression 

of interesting ‘key’ SDGs.  

5.4.1 Eggs can be separated into sex by GATK analysis 

The embryonic samples underwent the GATK haplotype pipeline (Chapter 2, Section 2.2.3). The 

results for this are in Table 5.2. Virgin females produce only male progeny, so eggs sampled from 

virgin females are male. Eggs collected from potentially non-virgin females have unknown sex. 

Most male eggs had a heterozygosity of 22.66%. The male eggs were identified from the unknown 

sex eggs by using the 22.66% percentage. The female samples have 5 A type eggs, 4 B/C type eggs 

and 0 D type eggs.  

5.4.2 The bioinformatic pipeline can produce files for isoform and gene expression analysis 

The bioinformatic pipeline for isoform and gene expression analysis is in Figure 2.3 and 2.4. The 

alignment of the individual files against the B. tabaci genome is in Figure 5.1. Which may mean 

that some of the conserved genes may not be detected. The low alignment percentage was low in 

the later egg stages. The bacteriocyte is transferred from mother to egg in the later egg stages. 

Therefore, the low alignment rates maybe because of the bacteriocyte.   

5.4.3 A conserved germ-line gene is expressed in all B. tabaci egg stages tested  

A conserved embryonic gene, Vasa, went through the gene expression and isoform analysis to 

test whether the bioinformatic pipeline (Figure 2.3 and 2.4) is reliable. The Vasa gene expression 

would also provide more information about the embryogenesis stages of the eggs.  

Vasa is a conserved embryonic gene that has been found in B. tabaci MED (Figure 5.3, 5.4 and 

5.5). Vasa is a gene that has been used to distinguish when the germline cells occur, and therefore 

should be expressed in early embryogenesis stages. When analysing the transcripts present in B. 

tabaci MED adults and differing embryo stages, most samples express the transcript. The 

expression of vasa in these samples is consistent with blastulation occurring before the A-stage, 

consistent with observations in Chapter 4. 
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Figure 5.6 shows the data expression values (TPM) of the embryos and adults, split into male and 

female samples. The mean expression of Vasa in female adults is a lot higher than any of the 

other samples, including the corresponding male samples. It is possible that as Vasa expression is 

expected to peak during blastulation, that the high levels of expression in adult females might be 

due to the present of pre-A-stage embryos inside. A way to test this would be to gather female 

body and dissect the ovaries, containing the eggs out of the sample. The conserved embryo gene 

used (Vasa) was expressed as early as A egg in both male and female samples. A type egg must be 

when blastoderm has already formed, as this is when Vasa expression peaks in D. melanogaster. 

Overall, the findings show that blastulation is likely to occur in Bemisia embryos before they are 

released from the ovaries. Therefore, traditional microinjection methods for insect 

transformation to create germline transformation would likely be impossible, and alternative 

methods of transformation are more likely to yield results (discussed in Section 6).   

5.4.4 DM proteins are expressed in early embryo stages of B. tabaci 

Three Dmrt genes have been identified in B. tabaci (Figure 3.3). These genes have been given the 

names; Btdmrt1 (Hemiptera-specific clade), Btdmrt2 (dmrt99B), Btdmrt3 (dmrt93b) respectively.  

The isoform analysis of Btdmrt1 shows that most of the samples have a transcript hit (Figure 5.7). 

The isoform consensus figure (Figure 5.9), shows all the samples have the same isoform. There 

are no sex-specific isoforms in this gene. In gene expression analysis for Btdmrt1 shows that the 

Btdmrt1 peaks at A egg in the embryogenesis stage. In the embryo stages, the male samples have 

a higher expression than the females (although this is unknown in D egg). The Male A samples 

have a higher expression than the male adults; however, female adults have a higher expression 

over all the samples. The female adults would have embryos inside the abdomen so that the RNA-

seq data expression could be falsely increased. To stop this inflation of data expression values, it 

would be beneficial to gain RNA-seq with females without the abdomens. In the Liu et al (2019) 

paper, the identified Dsx gene was my Btdmrt1. A gene expression analysis was conducted in this 

paper on Dsx in post-oviposited eggs, larvae and adults. The gene expression heatmap in Liu et al 

(2019) shows the high expression in all stages except lower expression in male adults and first and 

second instar nymphs. Figure 5.9 shows the gene expression of Btdmrt1 in pre-oviposited eggs 

and the adult samples. The only statistically different expression difference is between male B/C 

eggs and male adults, with the male B/C eggs have a lower expression.  

Overall, Btdmrt1 may be a sex differentiation gene as it has high expression in the A eggs; but it is 

not statistically different so more samples may need to be taken to ensure a statistically 

significant result. Therefore, Btdmrt1 has a high probability of being a sex differentiation gene. 
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Btdmrt1 would be a good candidate for genetic control technologies; however, it would not be a 

good candidate for self-limiting technologies as there is no sex-specific isoform. 

Btdmrt2 in B. tabaci is a mono-exonic transcript. There are not many hits for the eggs, so a 

reproducible data expression analysis could not be conducted for this gene. This may indicate that 

the gene is not expressed at all in the early embryos, but it is expressed in the adults. The adults 

and eggs have the same isoform.  

Btdmrt3 is not a mono-exonic gene, which differs from Btdmrt1 and Btdmrt2. Btdmrt3 has 7 

unique isoforms (Figure 5.13). There is a male-specific isoform present at the embryo stages, and 

this is coloured orange on Figure 5.13. The male isoform seems to be identical to the standard 

gene model. In both adult samples both sexes have the orange transcript. To ensure that the 

orange isoform is male-only, RNA-seq samples need to be collected of females without the 

abdomen, as we do not know if the transcript that is being picked up is from the male eggs in the 

abdomen. In female embryo samples there is one isoform that can be analysed, this is coloured 

red. The red isoform is truncated at 2nd exon, and it is unknown whether this isoform is also in the 

female D samples. The gene expression analysis shows small expression in the embryos. The peak 

for Btdmrt3 in embryos is in the male A egg, and it decreases over time. The female embryo 

samples do not have any expression in the A egg (which correlates with Figure 5.13), and a slight 

expression in B/C eggs, although still lower than males. The adult samples both have high 

expression levels, with the females having the highest expression level overall (which may be due 

to contamination of eggs in the sample). Overall, Btdmrt3 has a high probability of being a sex-

differentiation gene and could be a potential candidate for genetic control. It is expressed in early 

embryogenesis (although smaller quantities than adults) and has a potentially male-specific and 

female-specific isoform in the embryo stages.  

5.4.5 Key genes are present in the early embryo stages in B. tabaci MED 

The summary of the gene expression of PSI, Imp, Tra2 and Sxl is in Figure 5.18. SDGs are known to 

be expressed during embryogenesis. All SDGs tested are expressed during early embryogenesis, 

except for PSI. Sxl is of special interest as it has high expression in the early embryo stages 

compared to the expression in the adults. Imp, Tra2 and Sxl are potential candidates for self-

limiting system. However, isoform analysis needs to be performed along with functionality tests. 

Liu et al (2019) (discussed in Section 1.3.6) explored the gene expression profile of putative SDGs 

in B. tabaci MED at different developmental stages (post-oviposited eggs, larvae, male and female 

adults). My work slightly compliments this, as it investigates the gene expression of the pre-

oviposited eggs, which gives a broader picture of what is occurring in B. tabaci SDG through the 
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life cycle. My work concurs with the same patterns in the heatmap in Liu et al (2019) for Sxl, Tra2 

and Imp. The main difference between my work and Liu et al (2019) is in PSI; in pre-oviposited 

eggs there was no expression found in my transcripts but there was in adults. In the post-

oviposited eggs Psi is high and decreases in the adults. If I combine both stories it describes a lack 

of PSI in pre-oviposited eggs, there is expression which peaks in the post-oviposited eggs and 

gradually decreases in the adults. This suggests that PSI starts to be expressed once the eggs are 

oviposited.  
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Chapter 6: Discussion 
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6.1 A summary of the aims of this thesis 

B. tabaci is an agricultural pest, with a wide geographical range and resistant to many insecticides.  

New novel approaches need to be developed to tackle this increasing threat to food security. This 

thesis aimed to assess the feasibility of the self-limiting system in B. tabaci MED. Discussion of the 

self-limiting system is in Section 1.4.2, and briefly; it is the generation of transgenic insects with a 

sex-specific lethal transgene. Creation of a self-limiting system in a novel species requires 

particular knowledge of the organism’s biology.  

Traditionally, to create transgenic insects, eggs are microinjected with a transgenic element with 

the hope it will transfer into the germ-cells, and therefore pass the transgenic element into the 

progeny. These eggs need to be transformed before the blastoderm (and therefore the germ-

cells) have been formed. In B. tabaci, there is limited knowledge on embryogenesis stages, 

including the time point in which the blastoderm has formed. One of the main questions that this 

thesis aimed to answer was; when does the blastoderm form in B. tabaci. The answer to this is in 

the pre-oviposited A eggs. 

A construct is needed for the creation of a transgenic insect. An example of this construct is 

described in Section 1.4. Briefly, for the self-limiting system, this construct requires a sex-specific 

lethality element. Typically, this element is often a conserved gene, that undergoes sex-specific 

splicing early in the insect development. Previously this element has been a sex-determination 

gene. Knowledge of the sex-determination pathway in B. tabaci (along with other Hemiptera) is 

lacking. In this thesis, I aimed to explore the sex-determination genes in B. tabaci, and therefore 

discover potential candidate genes for the self-limiting system.   

6.2 Traditional microinjection techniques would not be successful with B. tabaci 

Traditional microinjection techniques require an injection of a construct into an egg before the 

germ-cells have formed, which is usually before the blastoderm formation. The construct needs to 

be injected into the eggs before germline transformation because it will promote DNA transfer 

into the germline cells. In Anopheles gambiae and Aedes aegypti, the microinjection period is 1-

2.5 hours after oviposition of the eggs (Eggleston, 2014). In D. melanogaster this microinjection 

point is at 1 hour after oviposited eggs (Ringrose, 2009). This critical time point is unknown in B. 

tabaci.  
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Before this thesis, there was limited knowledge of embryo development in B. tabaci. There was 

knowledge of the B. tabaci ovary structure (formed by an ovariole mass) (Figure 1.2), and the 

morphology of the eggs within the ovaries. There are different morphological development stages 

of eggs within the ovaries. The different stages of eggs are designated A, B, C and D; with A being 

the earliest developmental stage and D being the latest (Figure 1.3) (Guo et al., 2010). I saw these 

stages in Chapter 4 analysis and therefore decided to investigate the developmental stages of 

these eggs. A comparative developmental stage approach compared the known D. melanogaster 

egg developmental stages to unknown B. tabaci egg stages.  

D. melanogaster embryogenesis has been well researched as a model organism for insect 

embryogenesis. D. melanogaster embryogenesis starts after oviposition of the egg. There are 

eight pre-blastoderm nuclear division stages.  From nuclear division 0-8, the nuclei are dividing 

synchronously and are occupying the same cytoplasm (Zalokar and Erk, 1976). In nuclear divisions 

8-9, the nuclei start to migrate from the middle of the egg to the outer layer. The outer layer is 

called the blastoderm. The scuttle fly (Megaselia abdita) (Wotton et al., 2014) and the moth 

midge (Clogmia albipunctata) (Jimenez-Guri et al., 2014) had previous unknown developmental 

stages until a comparative approach with D. melanogaster. This success was the reason why I took 

this approach with B. tabaci.  

The B. tabaci MED nuclei were stained with nuclei binding fluorophore and imaged with confocal 

microscopy, allowing the nuclei to be imaged and counted. I compared the nuclei numbers in B. 

tabaci against the nuclei numbers in specific nuclear division stages of D. melanogaster. The first 

difference between D. melanogaster and B. tabaci is that embryogenesis in B. tabaci occurs in 

pre-oviposited eggs. There was autofluorescence in B/C, D and post-oviposited eggs, so therefore 

only A sample eggs could be imaged. The A sample B. tabaci eggs had nuclei that varied from 7 to 

9 nuclear divisions in D. melanogaster (Table 4.1); this stage is between pre-blastoderm and fully 

formed blastoderm. There was no difference in the embryogenesis developmental time between 

the haploid male and diploid female eggs.  

I conducted a Z-stack project on the confocal microscope for every egg sample. The Z-stacks 

created a 3D image; this revealed the morphological features of the eggs. The A sample eggs 

(Figure 4.7) had a hollow interior, with a single layer of nuclei around the inner outer edge of the 

egg. This morphology indicates that the nuclei are migrating/ have migrated to form the 

blastoderm, which concurs with the nuclei counting experiment.  
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I conducted single egg RNA-seq data for each morphological group of pre-oviposited eggs. This 

data allowed quantification of expression of genes of interest at the different developmental time 

points. One gene of interest was the conserved germline marker, called Vasa. In D. melanogaster 

Vasa is essential for pole cell formation, germ cell formation and pole plasm formation. Therefore, 

expression of Vasa indicates that the germ cells have already formed. In Chapter 5 the orthologue 

of Vasa was found in B. tabaci MED (Figure 5.6). The BLASTP statistics revealed a low e-value 

between the D. melanogaster Vasa and B. tabaci Vasa. Protein domain analysis revealed that the 

B. tabaci hit had the same protein domains as D. melanogaster VASA, providing high probability 

that this was a true orthologue. The gene expression was quantified for B. tabaci Vasa in A, B/C 

and D sampled eggs. Vasa was expressed in all the early embryogenesis stages, which indicates 

that the blastoderm has already formed and therefore so have the germ-cells. However, for 

further confirmation of Vasa expression the eggs should be stained with antibodies against the 

Vasa. This has been successful in revealing exactly when the pole cells occur in previous papers 

(Wotton et al., 2014; Jimenez-Guri et al., 2014). 

Germ-cell transformation requires the construct to be inside the egg before germ cells have 

formed. The nuclei counting revealed that A stage eggs are between pre-blastoderm and 

formation of blastoderm. However, both morphological analyses along with quantification of 

Vasa indicate the A eggs are likely to be at blastoderm formation. Therefore, most eggs that I 

have sampled would be too late for effective germ-line transformation.  

Through personal communication, I know that there have been past attempts at creating germ-

line transformation through the traditional microinjection technology. This research was trying to 

achieve transformation with the CRISPR/CAS9 system, on laid eggs. Only somatic transformation 

has been achieved, which concurs with my theory that any oviposited egg would be too late for 

germ-line transformation.   

As discussed previously, traditional microinjection techniques would be inappropriate for B. 

tabaci eggs. There is a new CRISPR/CAS9 method that may be more appropriate for B. tabaci; this 

strategy is called the Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and has 

been successful in mosquitoes. This method differs from the traditional microinjection, as the 

adults themselves are microinjected with a CAS9 ribonucleoprotein complex fused to the 

arthropod yolk protein. The technique successfully mediated the complex from the female 

haemolymph to the developing mosquito oocytes and resulted in a heritable gene editing of the 
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offspring (Chaverra-Rodriguez et al., 2018). I suggest that in future work this technology should be 

explored in B. tabaci. 

6.3 Hemiptera do not have DSX but instead have DM containing proteins  

Male or female development require double switch genes, these genes are the last in the sex 

determination pathway (Marin and Baker, 1998; Oliveira et al., 2009). The double-switch gene 

varies in name depending on the species, in many insects it is the doublesex (Dsx), in the C. 

elegans it is the male-abnormal-3 (Mab-3), and in humans it is Dmrt1. In insects, the DSX 

produces alternatively spliced mRNAs that encode sex-specific polypeptides. The proteins act as 

transcription factors on downstream sex determination genes, such as yolk protein gene 

transcription and neuroblast differentiation (Letunic and Bork, 2018).  

The DSX in D. melanogaster contains two protein domains, the DM domain and DSX dimer. The 

DM domains are needed for functionality (Erdman and Burtis, 1993), and bind to the DNA’s minor 

groove, which helps coordinate sex and tissue-specific signals  (Zhu et al., 2000). The putative 

hemipteran orthologues of DSX, discovered by RBBH, only have a DM protein domain and not the 

DSX dimer. The D. melanogaster genome contains other genes (apart from Dsx) that encode DM 

(DMRT) protein domains; these genes are dmrt99b, dmrt93b and dmrt11e. Most DMRTs are 

related to sex determination and sexual differentiation, and it is suspected that the function of 

DMRTs are related to neural control of behaviour.  

I conducted a BLASTP search in all the hemipteran protein database to find the DM containing 

proteins (Table 3.5).  I took this list of proteins and conducted a phylogenetic tree at the DM 

domain, of all the hemipteran DM proteins and D. melanogaster proteins (Figure 3.3). The 

hemipteran DM proteins cluster in groups; Hemiptera-specific/ unknown clade, DMRT99B, 

DMRT11E and DMRT93B. The majority of the RBBH hit fell into the dmrt99B clade. Dmrt99B is 

expressed in the midline cells of the central nervous system in D. melanogaster larvae (Fontana 

and Crews, 2012) and also affects the mushroom body size in the adult brain (Zwarts et al., 2015). 

A deficiency in the B. mori orthologues of dmrt99b, which is expressed mainly in ovary and brain 

of the larvae, causes behavioural abnormalities (Kasahara et al., 2018).  

The result in Chapter 3, differ from data already published. DSX in Bemisia tabaci has been 

tentatively characterised previously (Guo et al., 2018b). This paper shows that the Btdsx has six 

exons and the encoded protein has a DM and DSX domain. However, the same gene in this paper 
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describes and entered NCBI (which in this thesis is called Btdmrt1) only had one exon and only 

one protein domain; the DM domain. The Btdmrt1 clustered in the Hemiptera-specific clade, not 

in the DSX clade. When this ‘DSX’ protein was knocked down by silencing the two tail pins of the 

male genitalia disappeared, and the genitalia was malformed (Guo et al., 2018a). The knockdown 

morphology indicates that the ‘DSX’ is needed for genitalia development, which is more of a sex 

differentiation aspect of DM containing genes. In my opinion, if it were part of the sex 

determination cascade, the outcome would indicate a difference in sex ratios.  

In Chapter 5, the DM containing proteins were further explored. The SDGs are known to be 

expressed in early embryogenesis stage, and sometimes have sex-specific splicing (Xu et al., 

2017). The Dmrt genes were investigated to see if they were expressed in the early 

embryogenesis stage and whether they have sex-specific splicing. Firstly, Btdmrt1 was explored, 

this was the gene found in the Hemiptera- specific clade in Figure 3.3. Btdmrt1 is mono-exonic 

and there were no splicing events between male and female during different developmental 

times. Btdmrt1 was expressed in early embryogenesis. Overall, due to the DM protein domain and 

the expression in early embryogenesis, this gene has a high probability of being a sex-

determination gene.  

Btdmrt2 is the RBBH protein from Table 3.2. The Btdmrt2 was present in the later stages of egg 

development and adults. It was mono-exonic, and no splicing events seemed to occur in the 

isoform analysis. The RBBH hit for DSX identified in Chapter 3 was named Btdmrt3, this fell into 

the DMRT11E clade. Btdmrt3 was not mono-exonic, and there was splicing events occurring in 

this gene. Firstly, there was a male-specific splicing event occurring in the embryo stages, 

although this needs to be confirmed by future work. The male-specific event may be an exciting 

target for genetic control approaches, as Btdmrt3 is also expressed in the early embryo stages. 

The Btdmrt4 was part of the Btdmrt93b clade, unfortunately there was zero expression in the 

gene expression analysis and the RNA-seq data seemed fragmented at this locus, so further 

analysis was not continued.  

6.4 Hemiptera have other sex determination gene orthologues  

In the previous section, I explored the lack of DSX in the hemipteran sex determination pathway. 

In this section, I will explore the other ‘key’ and ‘support’ SDGs analysed and highlighted in 

Chapter 3. This analysis included BLASTP statistical analysis, pairwise comparison of the whole 
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protein against the original protein query, protein domain investigation and other investigations 

specialised to that SDG. The summary of all this analysis is presented in Figure 3.33.  

Using my criteria in Section 2.1, no unique A. mellifera key gene orthologues were found in 

Hemiptera. This result was surprising as it was thought that the fellow haplodiploid organisms (B. 

tabaci MED and MEAM1) would have these SDGs. The D. melanogaster TRA was also not present 

in any hemipterans. TRA has not been reported in any hemipteran in past studies (Zhuo et al., 

2019). The paper by Liu et al. did find TRA orthologue in B. tabaci MED. However, the e-value 

threshold was significantly raised, and therefore it was questionable as to whether this was a true 

orthologue or not. (Zhuo et al., 2019) 

MASC was found in all hemipteran genomes, and it had low e-value and the same protein 

domains as B. mori MASC. In the summary table, it indicates that the hemipteran MASC have a 

low probability of it being an orthologue and having the same function as B. mori MASC. The 

hemipteran MASCs do not have the same two regions that are required for the masculizing effect, 

Cys-301 and Cys-304, in B. mori (Figure 3.6).  

PSI, TRA2, IMP and SXL were the sex determination proteins most likely to be true orthologues, in 

Figure 3.33. Imp was investigated with expression analysis in early embryogenesis. There is higher 

expression in the embryos than there is in the adults. PSI is essential to B. mori sex determination 

pathway. IMP and PSI interact with each other. PSI has been investigated previously in B. tabaci 

adults, and different splicing event was found in this developmental stage, with 92 female-specific 

isoforms and 14 male-specific (Liu et al., 2016). Despite this previous research, PSI has no gene 

expression in the early embryogenesis stage, but there is gene expression in the adult stage. 

Isoform analysis should be performed on the PSI adults to see if the same sex-specific isoforms 

are present in other stages.  Tra2 is present in early embryogenesis, and there is some expression 

of the gene. However, it is the same in adults. Previous papers found that silencing of the Tra2 in 

B. tabaci caused malformation in male genitalia (Guo et al., 2018a). 

The most exciting ‘key’ gene studied so far is Sxl. Sxl is present in the D. melanogaster pathway 

and is turned off in haplo- X male individuals and turned on in diplo-X female individuals; this 

causes sexual differentiation and dosage compensation (Cline, 1993). Sxl is established and 

expressed in D. melanogaster blastoderm stage (Salz et al., 1989). In the early embryogenesis 

gene analysis, Sxl has the highest expression in embryos. The high expression gives a good 
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indicator that the gene has something to do with early embryogenesis formation and therefore, a 

high possibility of being an SDG.  

In the ‘key’ genes, there are some potential targets for genetic control. Therefore, the 

functionality of these genes need to be explored further. If the B. tabaci SDGs are silenced, the 

loss of function phenotype can indicate a possible function.   

6.5 Implications of research findings 

The work outlined in this thesis contributes significantly to our understanding of the 

embryogenesis stages in B. tabaci along with potential candidates for the sex determination 

pathway.  The mechanisms that underlie both the sex determination pathway and embryogenesis 

in B. tabaci were not well characterised before this thesis. This lack of knowledge is surprising 

given that the insect causes large amount of damage to crop species around the world. 

The embryogenesis work suggests that the traditional microinjection work would not work for 

germ-line transformation. Traditional microinjection techniques are labour, time and 

economically expensive. Therefore, other techniques should be explored in B. tabaci. The work in 

this thesis also highlighted some potential candidates for genetic control. However, more work 

needs to be conducted to determine the actual function of these orthologues.  
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Supplementary Figures  

 

Figure S. 1: The gene numbers present in each of the published hemipteran genomes used throughout the 
thesis  
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Figure S. 2: T- test 2 sample with unequal variance results for the gene expression of SDGs in chapter 5. 
Test were conducted in Genstat 20th edition, version 20.1.0.23823. Table A; the comparison results of 
different male samples. Table B; the comparison results of different female samples. Table C; the 
comparison results of same developmental stage in different sexes (VSN_International, 2019)  

*statistically different 

- the statistical tests could not be conducted as the TPM for all samples was 0.  

 

 

 


