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Abstract 
 

The majority of NB-LRR-encoding resistance genes recognise single pathogen 

species; few NB-LRRs have the capacity to recognise multiple pathogens. The Mla 

locus has over 30 described alleles conferring isolate-specific resistance to Blumeria 

graminis f. sp. hordei (Bgh), contains three NB-LRR encoding gene families (RGH1, 

RGH2, and RGH3), and is associated with resistance to multiple pathogens including 

Puccinia striiformis f. sp. hordei (QRps1H) and Pyricularia oryzae (Rmo1). In 

addition, sensitivity to the Bipolaris victoriae toxin victorin (Lov1) is in coupling with 

Mla3. In Arabidopsis thaliana, sensitivity to victorin is mediated by an NB-LRR-

dependent plant immune response. I performed two high-resolution recombination 

screens and confirmed the genetic coupling of Mla3, Rmo1, and Lov1 in the Mla3 

haplotype, and narrowed the interval for QRps1H in the Mla12 haplotype.  

 

Using sequence capture and RNAseq, copy number variation and high expression 

levels for Mla3 (RGH1; three copies), with one expressed copy (Mla3D6) containing 

a 6 base pair deletion in the LRR region; and presence of a gene fusion between RGH2 

and Exo70F1 in the Mla3 haplotype were discovered. Characterisation of diverse 

barley accessions found substantial allelic variation in RGH2 including 

presence/absence of the integrated Exo70F1. Across Poaceae species, shared 

interspecific conservation in the RGH2-Exo70F1 integration was found. I hypothesise 

that balancing selection has maintained allelic variation at Mla as a trans-species 

polymorphism due to the role of multiple pathogen recognition, preserving 

interspecific diversity during speciation over 24 My. 

 

Evaluation of stable transgenic barley found that Mla3 conditions Bgh and P. oryzae 

resistance, whereas Mla3D6, RGH2, and RGH3 do not confer resistance to either 

pathogen. Resistance to P. oryzae is dependent on the copy number of the Mla3 

transgene present. This work suggests that MLA has the potential to recognise 

multiple plant pathogen effectors—hypothesised due to conserved molecular 

structures or shared host targets.  
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1 Introduction  
 
 

Often, plants are described as sessile organisms—the definition of permanently 

attached to a surface. This is presented as a detriment to their survival: an 

inconvenience that must be overcome, as observed with an anthropomorphic view. 

Yet, while single individual plants are rooted in a certain area, as species, plants cover 

great swathes of land through space and time. Populations exist across varied 

environments as a result of the dispersal of seed, beneficial adaptations, and resistance 

against abiotic and biotic stresses.  For the latter, plants achieve these requirements—

as most plants are resistant to the majority of pathogens—so species are maintained 

and are able to evolve. Pathogen populations are limited by the same means: dependent 

on the wind, rain, or mechanical dispersal of spores or other reproductive structures. 

Plant-pathogen interactions are chance encounters, yet these occurrences drive 

evolutionary adaptations. Novel mutations, recombination, and crossing-over events 

generate genetic variation in a population that is acted upon by selection. Extant 

species—and the variation held within them—are, in part, a result of the evolutionary 

relationship between plants and their pathogens.  

 

Plants are equipped with a highly effective immune system, however pathogens are 

equally evolved to suppress, manipulate, and overcome host resistance. The change in 

human populations from hunter-gatherer to permanent settlements through the 

cultivation of crops has altered plant-pathogen dynamics: extensive monocultures 

used in agriculture provide ideal conditions for pathogen epidemics. Pathogens are 

integral components of the agroecosystem. Throughout history, crops have faced pests 

and disease and references to plant pathogens are found from the Bible, Greek 

philosophers, and in the presence of Roman gods (Chaves et al., 2008).  Even in 

modern systems, an alarming percentage of crop yield is lost to pests and pathogens 

(Savary et al., 2019). When a favourable environment, susceptible plant host, and 

virulent pathogen coincide, devastating disease epidemics lead to mass famine, human 

migration, and death (Savary et al., 2019; Yoshida et al., 2013).  
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In the early 20th century, the discovery by Sir Rowland Biffen of the Mendelian 

inheritance of disease resistance provided the foundation for wheat breeding and 

genetic dissection of resistance (Biffen, 1905). To further this, Flor (1942) articulated 

the genetic basis of compatible and incompatible plant-pathogens following 

observations between races of the rust pathogen of flax and varieties of the host plant. 

Outcomes were defined by the presence of genes in both the plant and the pathogen—

gene-for-gene interactions—that have guided the field of plant-microbe interactions 

(Flor, 1956). The first plant R gene was to be cloned almost 40 years later with the 

description of Hm1 of maize (Zea mays) (Johal and Briggs, 1992). In addition, the 

development of the small mustard plant Arabidopsis thaliana as a model system for 

plant-pathogen interactions was pivotal to the development and success of plant 

science research (Meinke et al., 1998; Meyerowitz and Somerville, 1994). Since then 

many plant resistance genes and pathogen elicitors have been characterised which 

have challenged and expanded our understanding of plant immunity at a molecular 

level (Kourelis and Van Der Hoorn, 2018). The advent of genomics and the 

development of new and improved sequencing technologies have allowed scientists to 

expand research onto a whole genome level: mining wild relatives, utilising whole 

populations, and monitoring plant and pathogen evolution on a spatial and temporal 

basis.  Combined with biochemical and molecular tools, these data have allowed for 

the in-depth detailed analysis of plant systems and continue to provide the means to 

unravel the mechanisms of the plant immune system. Plants around us are far more 

complex and wonderful than has been historically acknowledged.  

 

1.1 Plant immunity on a molecular level 
 

Plants contain an innate immune system devoid of the adaptive and mobile immune 

cells of animal systems. The vertebrate immune system contains both an innate and 

adaptive immune system—the latter incorporating an expanded repertoire of immune 

cells specialised in their function (Cooper and Alder, 2006; Marshall et al., 2018). 

Similarities between the innate systems of plants and animals arises through 

convergent evolution of the recognition of the ‘non-self’ (Yue et al., 2012). However, 

within individual plants this is constrained to immune receptors encoded in the 

germline. Despite this, the majority of plants are resistant to the majority of pathogens. 

How they achieve this is the driving force of the field of plant-microbe interactions—
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how plant immune receptors function and what are the pathogen molecules being 

recognised.  

 

Extracellular recognition 
 

The molecular basis of plant immunity has been previously described as a two-fold 

layered system (Jones and Dangl, 2006). Preformed and inducible barriers form the 

first layers of the plant defence system, providing resistance to and preventing 

infection from non-adapted pathogens. Constitutive passive defence mechanisms 

include the cuticle, cell wall, proteins, peptides and antimicrobial secondary 

metabolites intended to limit pathogenicity in the first instance. Inducible responses 

depend on the detection of pathogen-associated molecular patterns (PAMPs), 

microbe-associated molecular patterns (MAMPs), or identification of the breakdown 

or modification of cell integrity through danger-associated molecular patterns 

(DAMPs) (Dodds and Rathjen, 2010). PAMPs and MAMPs are typically species non-

specific, conserved microbial epitopes often contributing to fitness—such as fungal 

chitin or bacterial flagellin. These molecular elicitors are recognised by pattern 

recognition receptor proteins (PRRs) resulting in the activation of a chain of signalling 

events and a defence response historically described as pattern-triggered immunity 

(PTI) (Jones and Dangl, 2006). PRR signalling leads to ion fluxes, calcium influx, 

oxidative bursts of reactive oxygen species, callose deposition, stomatal closure and 

the production of defence hormones such as salicylic acid, jasmonic acid and ethylene 

(Boller and Felix, 2009; Nicaise et al., 2009). Examples of PRRs from A. thaliana and 

their PAMP recognition specificity include the membrane-bound receptor kinase 

FLS2 (FLAGELLIN-SENSING 2) and the flg22 bacterial flagellin epitope (Boller and 

Felix, 2009; Zipfel et al., 2004); EFR (EF-TU RECEPTOR) and the bacterial 

Elongation factor Tu (EF-Tu) (Zipfel et al., 2006); and both CERK1 (Chitin Elicitor 

Receptor Kinase-1) and LYK5 for fungal chitin (Cao et al., 2014; Miya et al., 2007). 

The additional receptor BAK1 (BRI1-associated receptor kinase 1) is required by 

many PRRs for signalling and for control of PAMP responses, providing central 

regulation of innate immunity (Chinchilla et al., 2007; Heese et al., 2007). PRRs can 

provide resistance to a broad range of pathogens providing PTI is functional (Boller 

and Felix, 2009; Tena et al., 2011; Thomma et al., 2011; Zipfel, 2008).  
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Intracellular recognition  
 

Successful infection occurs when a pathogen has adapted to overcome these 

preformed, constitutive defences, efficiently suppressing PTI to facilitate lifecycle 

completion. Such host-adapted pathogens secrete small molecules to manipulate the 

host environment to sequester nutrients, reprogram host metabolism, and suppress 

host defence (Dodds and Rathjen, 2010; Jones and Dangl, 2006). These virulence 

determinants—named effectors—are structurally and evolutionarily diverse, can 

target diverse processes within the host cell, and are often dispensable as many are 

encoded in pathogen genomes (Dodds and Rathjen, 2010).  Host-pathogen interactions 

exert strong selection pressure on the plant to evolve recognition capabilities. Host 

resistance incorporates R genes, encoding intracellular receptors that can recognise 

exogenous molecules of the ‘non-self’ and monitor the plant cell for modifications of 

the ‘self’ (Jones and Dangl, 2006). R gene signalling following recognition of effector 

molecules leads to rapid defence responses broadly termed effector-triggered 

immunity (ETI) (Dodds et al., 2009; Dodds and Rathjen, 2010). Recognised effectors 

are designated Avirulence (Avr) genes as their presence in the pathogen determines the 

lack of virulence of the pathogen. ETI often results in the production of reactive 

oxygen species, pathogenesis-related proteins, activation of mitogen-activated protein 

kinases, creation of cell wall appositions, and localised cell-death known as the 

hypersensitive response. Responses can induce the expression of defence-related 

genes in distal tissue of the plant known as systemic acquired resistance, priming the 

plant against secondary pathogen infection (Jones and Dangl, 2006). 

 

The regulation of transcriptional programs following diverse signal perception is 

controlled through intricate signalling networks, involving multiple transcription 

factors (TFs), hormones and second messengers (Tsuda and Somssich, 2015). WRKY 

TFs are key regulators of plant immunity, involved in multiple networks in both PTI 

and ETI signalling (Eulgem and Somssich, 2007). Resistance can also be 

developmentally regulated, such as the separation of seedling and adult plant 

resistance (APR) (Whalen, 2005). Processes such as cell wall appositions and lignin 

deposition are shared between developmental differentiation and the immune 

response; overlapping but distinct regulatory networks are crucial for effective control.  
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Modelling the plant immune system  
 

The mechanism of the plant immune system is constantly being reviewed and every 

new identified component improves or challenges existing dichotomy. While general 

models have been proposed and divisions drawn between pathogen recognition via 

different receptor classes (Jones and Dangl, 2006), increasingly, distinct categories are 

blurred, and current models propose that disease resistance occurs as a continuum with 

overlapping signalling networks and machinery (Thomma et al., 2011). Katagiri and 

Tsuda (2010), propose that previous distinctions of PTI and ETI reflect differences in 

how the same system is used: occupying ‘sectors’ of an overall network. Sequential 

activation of enhanced and stronger defence responses would only be initiated if the 

current signalling was ineffective, allowing the plant to be conservative in defence and 

select for the lowest successful response to specific pathogens and effectors. This 

mitigates potential trade-off between defence and the maintenance of fitness (Cui et 

al., 2015), however clear quantifiable fitness costs of defence have yet to be 

experimentally validated.  The broadest model incorporates all plant-microbe 

interactions into an ‘Invasion Model’ (Cook et al., 2015). Invasion patterns (IPs) 

encompassing any host-modified or pathogen-derived molecule results in IP-triggered 

response—either terminating the parasitic or maintaining the mutualistic symbiotic 

relationship between the plant and microbe (Cook et al., 2015). The generalisation of 

the IP-triggered response and separation of plant defence responses from immunity 

importantly encompasses necrotrophic pathogens:  classic effector-triggered immune 

responses such as cell death paradoxically facilitate necrotrophic infection (Wang et 

al., 2014).  What this model has in breadth it is limited by in depth; over-simplification 

underplays the wealth of evolution of manipulation tactics in the pathogen and of 

mechanisms of recognition in the plant.  

 

1.2 NB-LRR structure and regulation  
 

R proteins are most commonly intracellular cytoplasmic immune receptors and the 

largest class of R genes encode NB-LRR (or NLR) proteins (Eitas and Dangl, 2010).  

NB-LRR proteins contain a C-terminal LRR domain involved in recognition 

specificity, a central nucleotide binding site (NB) or NB-ARC domain and optional 

variable N-terminal domain (Eitas and Dangl, 2010).  NB-ARC protein family 
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members are involved in immunity, apoptosis and the regulation of transcription. NB-

LRRs can further be divided into TIR (Toll/interleukin 1-like receptor) and CC 

(coiled- coil) classes due to their N-terminal extensions (Takken and Goverse, 2012). 

TIR NB-LRRs are rare in monocots, suggesting these genes have been greatly reduced 

or lost since the evolutionary divergence from early land plants (Sarris et al., 2016; 

Tarr and Alexander, 2009). 

 

NB-LRR activation  
 

NB-LRRs are kept inactive but signal competent in the unchallenged cell, requiring 

additional proteins for correct folding and activation (Takken and Goverse, 2012). The 

conserved NB-ARC domain mediates nucleotide binding and adenosine triphosphate 

(ATP) hydrolysis activity (Bernoux et al., 2016; Takken et al., 2006; Takken and 

Goverse, 2012). The NB-ARC domain is described as a molecular switch to regulate 

activation state: binding adenosine dishosphate (ADP) in an inactive “off” state, and 

ATP when active or switched “on” (Bernoux et al., 2016; Tameling et al., 2002; 

Williams et al., 2014).  The first experimental evidence that an NB-LRR bound ADP 

in its resting state was provided when MLA27 was shown to bind ADP, rather than 

ATP (Maekawa et al., 2011). Following effector recognition, ATP is bound and NB-

LRR conformational changes activate immune signalling via the N-terminal domain 

however the mechanism of activation and regulation remains unknown (Bernoux et 

al., 2016, 2011; Takken and Goverse, 2012). NB-LRRs are tightly regulated to prevent 

unwanted immune response and cell death. Intradomain interactions maintain 

autoinhibition and the highly conserved “MHD” motif of the NB domain is crucial for 

the regulation of auto-activity (Bernoux et al., 2016; Wang et al., 2019b). ATP binding 

of the A. thaliana NB-LRR RPS5 is required for activation, as disruptions of the 

nucleotide-binding site of the NB domain preventing ATP hydrolysis abolish 

activation and resistance (Ade et al., 2007). Domain swaps between related proteins 

have shown inappropriate interactions lead to auto-activity (Bernoux et al., 2016; 

Wang et al., 2015); therefore, the diversity and high sequence polymorphisms 

observed across NB-LRRs (Meyers et al., 2003; Sarris et al., 2016) are under tight 

regulation—engineering NB-LRRs via sequence modification is difficult.   
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Structural analysis of NB-LRRs has been sparse due to the limited amenability of NB-

LRRs to protein purification and crystallisation. Recent work has identified the 

structure for the activated CC-NB-LRR HOPZ-ACTIVATED RESISTANCE 1 

(ZAR1) from A. thaliana in complex with the pseudokinase resistance-related kinase 

1 (RKS1), and the guarded host kinase PBS1-like protein 2 (PBL2). The resulting 

complex forms a ‘resistosome’ structure reminiscent of the NLRC4 inflammasome of 

mammalian immune receptors (Wang et al., 2019a, 2019b). Binding of PBL2, 

uridylated by the recognised effector AvrAC from the bacterial pathogen 

Xanthomonas campestris pv. campestris, induces the release of ADP from ZAR1 in 

the preformed ZAR1-RKS1 complex. AvrAC, alongside HopZ1a and HopF2 from 

Pseudomonas syringae, are indirectly recognised by ZAR1 (Lewis et al., 2013; Wang 

et al., 2015, 2019b, 2019a). The helix bundles of the CC domain form a funnel-shaped 

structure following oligomerisation of ZAR1. One hypothesis of its purpose is in pore 

formation in the membrane to facilitate cell death, however this has yet to be 

experimentally validated.  The CC domain of ZAR1 differs from those of Sr33 (Casey 

et al., 2016), Rx (Hao et al., 2013), and MLA10 (Casey et al., 2016; Maekawa et al., 

2011) and it is likely that not all CC-NB-LRRs adopt this confirmation (Wang et al., 

2019a). Alongside ZAR1, the CC domains of RPM1 and Sr33 are also known to 

contribute to self-association and the hypersensitive response, however the 

mechanism by which this is achieved may differ between all three proteins (Casey et 

al., 2016; El Kasmi et al., 2017; Wang et al., 2019a). Furthermore, the CC domain 

alone is sufficient to trigger cell death in the case of MLA10, Sr33, Sr50 and ZAR1 

(Cesari et al., 2016; Maekawa et al., 2011; Wang et al., 2019a) supporting the role of 

the CC domain in signalling following activation.   

 

The C-terminal LRR domain has been shown to play a regulatory role, prevent 

inappropriate activation, and is also implicated in recognition specificity in the 

perception of effectors (Deslandes et al., 2003; Dodds et al., 2001; Ellis et al., 1999; 

Jia et al., 2000; Qi et al., 2012; Sela et al., 2012; Shen et al., 2003); the LRR is key to 

the autoinhibition of ZAR1 (Wang et al., 2019a). In A. thaliana, activation of the NB-

LRR RPS5 is inhibited via the LRR domain and repression is released on effector 

perception by the protein complex (Ade et al., 2007). The LRR domain shows 

signatures of diversifying selection (Feuillet et al., 2003; Isidore et al., 2005; Loutre 

et al., 2009; Sela et al., 2012, 2011). Evidence of alternate splicing has been shown 
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for the Lr10 leaf rust resistance gene paralogs from wheat (Triticum aestivum) and the 

wild emmer wheat progenitor (T. dicoccoides) (Sela et al., 2012, 2011) but functional 

relevance has yet to be elucidated. Truncated LRR domain variants have also been 

observed in the CC-NB-LRR JA1tr of Phaseolus vulgaris (Ferrier-Cana et al., 2005) 

and in TIR-NB-LRRs such as and the N gene of tobacco (Takabatake et al., 2006; 

Whitham et al., 1994), and presence of splice variants of RPS4 are required for 

immunity (Zhang and Gassmann, 2003). Shorter LRRs can release the suppression of 

the LRR domain on NB domain activity (Gassmann, 2008; Jordan et al., 2002). 

Alternatively, spliced mRNA of Mla alleles from barley have also been identified 

(Halterman, 2003). The presence and regulation of splice variants remains unknown.  

 

NB-LRR regulation  
 

Many transcription factor families have been shown to regulate plant immunity; 

however, the majority of studies have focused on disruptions to innate immunity, 

phytohormone signalling and PRR-mediated resistance responses (Birkenbihl et al., 

2017; Tsuda and Somssich, 2015). Nuclear localisation and accumulation of some 

NB-LRRs is required for function, suggesting their involvement in transcriptional 

regulation (Bhattacharjee et al., 2013). A chaperone complex comprising of the 

positive regulators HSP90 (Heat shock protein 90 kDa) and (RAR1) (Required for 

MLA12 Resistance 1), and the positive/negative regulator SGT1 (Suppressor of the 

G2 allele of SKP1) is required for correct conformation and regulation of NB-LRRs 

(Elmore et al., 2011). In addition, the central regulators EDS1 (ENHANCED DISEASE 

SUSCEPTIBILITY 1), NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE1), 

PAD4 (PHYTOALEXIN DEFICIENT 4), and SAG101 (SENESCENCE ASSOCIATED 

GENE 101) are required for NB-LRR-mediated resistance (McDowell et al., 1998; 

Wiermer et al., 2005). EDS1 and PAD4 have been implicated in transducing redox 

signals (Rustérucci et al., 2001; Wiermer et al., 2005). EDS1 is required for TIR-NB-

LRR resistance responses, whereas NDR1 regulates CC-NB-LRRs (Century, 1995; 

Elmore et al., 2011; Lee and Yeom, 2015). Components of the ubiquitination pathway 

are also involved in NB-LRR-mediated immunity (Cheng and Li, 2012).  

 

NB-LRRs can induce yield penalties to the host, and incompatible NB-LRR 

interactions induce costly autoimmune responses (Chae et al., 2016, 2014).  Altering 
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regulation of NB-LRRs through mutagenesis or mis-expression via transgenic means 

can have detrimental effects on the plant: resulting in constitutive defence, stunting, 

and death (Whalen, 2005). Generally, plants are increasingly resistant to pathogens 

over their life history; the transition between developmental stages is often associated 

with the development of resistance (Develey-Rivière and Galiana, 2007). This is 

distinct from the upregulation of NB-LRRs upon pathogen attack. Correlation between 

developmental stage and resistance status has been demonstrated for maize (Zea 

mays), where the Corngrass1 mutant with extended juvenile-vegetative phase displays 

delayed adult plant resistance to common rust (Puccinia sorghi) (Abedon and Tracy, 

1996).  

 

The majority of well-characterised age-related identified resistance genes are non-NB-

LRRs, such as the receptor-like protein kinase Xa21 from rice (Oryza sativa) (Century 

et al., 1999), however developmental regulation of NB-LRRs has been shown. Tomato 

Mi1.2-mediated resistance against root knot-nematode is present throughout the life-

history of the plant, whereas resistance against whitefly and aphid are only present at 

the adult stage (Fiona L Goggin et al., 2004; Martinez de Ilarduya et al., 2004). This 

implicates regulation other than transcriptional, as resistance is not correlated with 

transcript levels and overexpression of Mi1.2 does not compensate. Developmental 

control of co-factors or downstream signalling requirements could be causal. 

Identifying the regulation of developmental transitions and association with R gene 

regulation remains a major challenge. NB-LRRs also function outside immunity—

enhanced expression of A. thaliana CC-NB-LRR ADR1 confers drought tolerance 

(Grant et al., 2003) and mutations in the NB-LRR UNI disrupt inflorescence stem 

growth (Lee and Yeom, 2015; Uchida et al., 2011).  Tissue specificity also been 

observed for NB-LRRs. A. thaliana RPP1 confers resistance to leaf infection by 

Hyaloperonospora parasitica (Hermanns et al., 2003). However, H. parasitica can 

also infect via the roots and successful root infection occurs even in the presence of 

expressed RPP1 and required downstream signalling components (Hermanns et al., 

2003). The rice Pigm locus contains a cluster of NB-LRRs including PigmR conferring 

broad spectrum resistance to P. oryzae, and PigmS—a suppressor of PigmR resistance. 

PigmS shows pollen-specific expression due to the presence of MITE1 and MITE2 

transposable elements, so PigmR repression is released in leaves. PigmR transgenic 

lines—without PigmS—show a yield penalty of decreased grain weight. Epigenetic 
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regulation of PigmS, through leaf-specific silencing, addresses the trade-offs between 

defence and development (Cesari and Kroj, 2017; Deng et al., 2017). Understanding 

the regulation of NB-LRR expression, localisation, and activation will be key for 

effective resistance gene utilisation and deployment.  

 

1.3 NB-LRR recognition  
 

Following the observation of gene-for-gene plant-pathogen interactions and 

diversifying selection acting on the LRR domains of NB-LRRs, initial hypotheses of 

R gene recognition proposed a direct binding model (Collier and Moffett, 2009; 

McDowell and Simon, 2006; Van Der Biezen and Jones, 1998).  However, increasing 

examples of NB-LRR genes failed to demonstrate direct interactions and it became 

clear that additional proteins were sometimes necessary to confer resistance. Since the 

initial molecular characterisation of R genes in the 1990s, over 300 have been cloned 

and diverse functional mechanisms revealed. Broadly, NB-LRR recognition can be 

divided into direct and indirect recognition of pathogen products (Kourelis and Van 

Der Hoorn, 2018).  

 

Direct recognition 
 

Direct recognition between NB-LRRs and pathogen effectors was described for some 

of the first R genes identified. The flax (Linum usitatissimum) allelic NB-LRR 

resistance genes L5, L6, and L7 recognise the AvrL567 genes from the flax rust 

fungus. Recognition is via direct receptor-effector binding; amino acid 

polymorphisms between AvrL567 variants abolish recognition (Dodds et al., 2006, 

2004; Ellis et al., 2007; Ravensdale et al., 2011). In addition, the allelic rice Pik NB-

LRRs recognise related AVR-Pik P. oryzae effectors with different binding and 

recognition specificity between them (Kanzaki et al., 2012). Direct recognition of viral 

products has also been observed between the Tobacco Mosaic Virus helicase domain 

and the TIR-NB-LRR N from tobacco (Ueda et al., 2006); and between the oomycete 

RxLR effector ATR1 and A. thaliana TIR-NB-LRR RPP1 via the LRR domain (Chou 

et al., 2011; Krasileva et al., 2010).  
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Aside from protein binding, direct recognition also occurs via transcriptional 

activation. Transcription Activator-like effectors (TALEs) produced by Xanthomonas 

species bind to specific DNA sequences containing specific polymorphic repeats and 

alter host transcription (Bogdanove et al., 2010; Moscou and Bogdanove, 2009; 

Schornack et al., 2006). Alongside altering expression of key susceptibility factors to 

enhance virulence (Verdier et al., 2012), TALEs also can promote the transcription of 

executor genes—R genes that are transcriptionally activated by TALEs (Gu et al., 

2005; Römer et al., 2007; Zhang et al., 2015). The addition of TAL effector binding 

elements to executor genes was shown to broaden TALE specificity by Hummel et 

al., (2012) and Römer et al., (2009). Zeng et al., (2015) modified the promoter region 

of rice TAL effector-dependent resistance gene Xa10 to allow for recognition of a 

broader range of TAL effectors from Xanthomonas oryzae pv. oryzae strains. The 

identified executor genes encode proteins with a catalytic function (Römer et al., 

2007) or putative transmembrane domains (Zhang et al., 2015), however TALE-

mediated  NB-LRR induction is also plausible.  

 

NB-LRR allelic series are a common feature of direct recognition mechanisms and are 

observed in interactions between cereals and host-specific forms—formae speciales—

of the powdery mildew species Blumeria graminis (Eriksson, 1894). The wheat Pm3 

alleles recognise B. graminis f. sp. tritici (Bgt) AvrPm3 effectors (Bourras et al., 2019, 

2018) and Mla alleles of barley function against B. graminis f. sp. hordei (Bgh) 

(Jørgensen, 1994; Seeholzer et al., 2010). Recent work has shown direct interaction 

of Mla alleles and Bgh effectors (Saur et al., 2019), and the direct interaction of Pm 

proteins and Bgt effectors is also hypothesised (Bourras et al., 2019). The downy 

mildew (Hyaloperonospora arabidopsidis) gene RPP13 in A. thaliana also shows 

extreme amino acid diversity across alleles (Hall et al., 2009; Rose et al., 2004), 

although direct recognition of effectors is yet to be experimentally validated. 

Outcomes from theoretical models have suggested that direct recognition is likely to 

lead to rapid evolution of new virulence phenotypes (Van Der Hoorn et al., 2002) as 

direct recognition by NB-LRRs can be overcome through effector loss and sequence 

diversification to generate new variants with loss of binding affinity. However, this 

can be mitigated by R genes present as diverse allelic series recognising multiple 

effectors within a pathogen species, and/or if R genes recognise conserved pathogen 

effectors.  
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Indirect recognition  
 

Indirect recognition occurs either through NB-LRRs ‘guarding’ a functional host 

protein under the guard model (Jones and Dangl, 2006), or through surveillance of a 

mimic or ‘decoy’ of the target which is ‘guarded’ by the NB-LRR (Paulus and van der 

Hoorn, 2018; van der Hoorn and Kamoun, 2008). The ‘guard model’ proposes that an 

R gene can monitor another protein in the plant and induce ETI when the ‘guardee’ is 

perturbed or modified by pathogen Avr genes (Chisholm et al., 2006; Jones and Dangl, 

2006). However, the guardee is evolutionarily unstable, being under opposing 

selection forces to both maintain host function and yet diversify to evade pathogen 

recognition. This is exacerbated by variation in R gene prevalence in populations; 

presence selects for increased guardee-effector binding and absence selects against the 

strength of interaction. Evolution of a ‘decoy’ separates selection to act in one 

direction on each protein, allowing the decoy to act as a bait for the effector (Collier 

and Moffett, 2009; van der Hoorn and Kamoun, 2008).  

 

One of the first R genes to be identified, the serine/threonine kinase Pto from tomato 

(Solanum lycopersicum) (Martin et al., 1993), directly recognises Avr-Pto and Avr-

PtoB from Pseudomonas syringae and requires the NB-LRR Prf for signal 

transduction and initiation of the hypersensitive cell death resistance response (De 

Vries et al., 2006; Ellis et al., 2000; Kim et al., 2002; Pedley and Martin, 2003; Wu et 

al., 2004). This example was the foundation for the guard model, providing an initial 

alternate model to direct recognition  (Kourelis and Van Der Hoorn, 2018; Van Der 

Biezen and Jones, 1998). Indirect recognition and the guarding of host proteins can 

provide a mechanism for expanded recognition specificities by NB-LRRs. A. thaliana 

RPM1 recognises non-homologous effectors AvrRpml and AvrB from Pseudomonas 

syringae, via the effector mediated phosphorylation of its guard RIN4 (Grant et al., 

1995; Mackey et al., 2002). In addition, cleavage of RIN4 by pathogen effectors also 

triggers the NB-LRR RPS2 (Axtell and Staskawicz, 2003; Kim et al., 2009; M. G. 

Kim et al., 2005; Mackey et al., 2003, 2002). Over 64 effectors from P. syringae have 

been identified, including suppressors of effector recognition. AvrPphB is able to 

suppress recognition of AvrB by RPM1—via cleavage of RPM1-interacting protein 

kinase (RIPK)—however this does not abolish AvrRpm1 recognition. Different 
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recognition mechanisms and signalling pathways involving the guarding of RIN4 

therefore must be present (Russell et al., 2015). RIN4 homologs are conserved across 

plant species and NB-LRRs recognising pathogen-induced RIN4 modifications are 

also present outside A. thaliana (Toruño et al., 2019): soybean Rpg1b confers 

resistance upon AvrB mediated modifications of RIN4 (Ashfield et al., 2014, 2004; 

Russell et al., 2015). The rice NB-LRR Pii-2 has an integrated domain containing the 

NOI/RIN4 core motif and interacts with Os-Exo70F3—the exocyst component 

targeted by the Pyricularia oryzae (teleomorph Magnaporthe oryzae) effector AVR-

Pii (Fujisaki et al., 2015). RIN4 and its associated motifs represent a conserved 

component of the plant immune system and a shared effector target across species.  

 

The A. thaliana NB-LRR RPS5 is found in a complex with the protein kinase PBS1 

via the RPS5 CC-domain (Ade et al., 2007). Cleavage of PBS1 by the bacterial 

protease AvrPphB produced by P. syringae activates RPS5 (Ade et al., 2007). Kim et 

al., (2016) manipulated the cleavage site within PBS1 to alter specificity—using the 

‘guardee’ as an effector bait for engineering resistance. Altered recognition for 

AvrRpt2, another effector from P. syringae, and the NIa protease of Tobacco Etch 

Virus were successful in activating RPS5-mediated resistance (Kim et al., 2016). 

Cleavage sites are clear targets for experimental manipulation. Conserved recognition 

mechanisms—via conserved guardees or convergent evolution—can be elucidated 

across species, providing a foundation for engineering resistance.  

 

Integrated domains 
 

To further the guard model, some NB-LRRs contain integrations of additional 

domains (NB-LRR-IDs)—decoy targets incorporated within or fused to the NB-LRR 

immune receptor. Such integrated domains are not conserved within the NB-LRR 

family and show exceptional variation and widespread prevalence throughout many 

species (Cesari et al., 2014; Kroj et al., 2016; Sarris et al., 2016). Domain integrations 

have evolved multiple times independently throughout evolutionary history, with 

examples of recurrent integration as in the case of WRKY transcription factors (Sarris 

et al., 2016). Comprehensive phylogenetic analysis of inter- and intra-specific 

variation of NB-LRRs identified uneven distribution of NB-LRR-IDs, with the 

majority residing in few clades—the Major Integration Clades (MICs; MIC1, MIC2, 
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and MIC3) (Bailey et al., 2018). MIC1 contains the majority (30%) and highest 

diversity of NB-LRR-IDs, whereas the low diversity of MIC2 and MIC3 is thought to 

represent repeated expansions of ancestral lineages. MIC1 NB-LRR-IDs display inter-

specific variation in the domain integrated, suggesting evolution is ongoing (Bailey et 

al., 2018). Integrated domains can highlight pathways and processes targeted by 

pathogens: as decoys of endogenous proteins subject to effector modification. The P. 

oryzae AVR-Pii effector interacts with rice exocyst complex factor Exo70, 

specifically OsExo70-F3, to trigger NB-LRR Pii-dependent resistance (Fujisaki et al., 

2015). NB-LRR-Exo70 fusions have been identified in wheat and barley genomes, 

while they exist separately in rice in accessions sequenced so far (Sarris et al., 2016). 

Despite evidence as decoys, it cannot be excluded that integrated domains may retain 

full or partial function as well as ‘guardees’. Using Exo70 as an example, domain 

integration may facilitate NB-LRR localisation to the exocyst complex. Identification 

of fusions therefore provides cross-species candidate genes for shared effector targets 

in known interactions, but also speculative targets for yet unknown pathogen 

interactions (Kroj et al., 2016; Nishimura et al., 2015).  

 

NB-LRR pairs 
 

Identified NB-LRR-IDs require an additional non-integrated NB-LRR partner to 

function. Each is functionally specialised; NB-LRR-IDs are ‘sensors’ recognising 

pathogen effectors and are paired with ‘executors’ or ‘helpers’ for signalling 

requirement (Cesari et al., 2014; Williams et al., 2014). MIC1 contains NB-LRR-IDs 

that require a partner to function, where the non-integrated paired NB-LRRs reside in 

the C7 clade exclusively. This arrangement suggests an ancient origin, duplication, 

and subsequent diversification of pairs (Bailey et al., 2018). Three well-characterised 

paired NB-LRRs—A. thaliana RRS1/RPS4, rice RGA5/RGA4, and rice Pik/Pik-2—

are in head-to-head orientation and share a bi-directional promoter (Kourelis and Van 

Der Hoorn, 2018; Okuyama et al., 2011). Genetic linkage of NB-LRR pairs limits 

allele shuffling and unwanted combinations that can lead to hybrid necrosis or 

autoimmunity. Members of MIC1 are enriched in tandem NB-LRRs irrespective of 

integrated domain presence (Bailey et al., 2018); NB-LRR-IDs with loss of the 

integrated domain may still require a paired NB-LRR to function due to prior co-

evolution and sub-functionalisation of pairs.    
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The paired A. thaliana RPS4 and RRS1 NB-LRRs confer resistance to the fungal 

pathogen Colletotrichum higginsianum, AvrRps4 from P. syringae pv. tomato and 

PopP2 from Ralstonia solanacearum (Narusaka et al., 2013, 2009).  RRS1 contains a 

C-terminal integrated WRKY domain and this has been shown to interact with 

AvrRps4 and PopP2 (Sarris et al., 2015; Williams et al., 2014). PopP2 acetylates the 

C-terminal integrated WRKY transcription factor, disrupts RRS1 DNA association, 

and activates RPS4-dependent immunity (Le Roux et al., 2015). Non-integrated 

endogenous WRKY transcription factors are also acetylated via the same mechanism, 

causing loss-of-function and disrupting defence gene expression and disease 

resistance (Le Roux et al., 2015). The integrated WRKY is a bait for pathogen 

effectors: a decoy of other WRKY transcriptional targets within the host.  

 

In rice, the pairs RGA4/RGA5, and Pik-1/Pik-2 confer resistance to P. oryzae. 

RGA4/RGA5 recognise the effectors AVR1-CO39 and AVR-Pia via direct binding 

with the RATX1 (or HMA) domain of RGA5 located at the C-terminus (Cesari et al., 

2013). RGA4 and RGA5 form complexes via interactions between their CC domains; 

RGA5 represses RGA4 cell death activation, which is released upon effector 

recognition via RGA5 (Césari et al., 2014). Pik-1 also contains an integrated HMA 

domain but is located between the CC and NB domains as opposed to at the C-

terminus. Alleles of Pik-1 have different recognition specificities of P. oryzae 

effectors, driven by the direct recognition and interaction between the HMA domain 

and AVR proteins (Kanzaki et al., 2012; Maqbool et al., 2015). The rice Pi-ta paired 

NB-LRR contains a thioredoxin domain (Nishimura et al., 2015) which recognises P. 

oryzae AVR-Pita via direct binding (Jia et al., 2000). Single amino acid differences in 

Pi-ta alleles can distinguish resistance specificities, highlighting the importance of 

specific binding interactions for resistance (Bryan et al., 2000). Barley Rpg5 encodes 

a NB-LRR with a C-terminal serine threonine protein kinase and provides resistance 

to rye stem rust (Puccinia. graminis f. sp. secalis) (Brueggeman et al., 2008). Rpg5 is 

in head-to-head orientation with the NB-LRR Rga1 at the rpg4-mediated resistance 

locus (Solanki et al., 2019). Recessive resistance to wheat stem rust (Puccinia 

graminis f. sp. tritici; Pgt) in barley conferred by the rpg4-mediated resistance locus 

is the one of the few effective resistances against the virulent Pgt TTKSK (Ug99) race 

and its lineage (Solanki et al., 2019; Wang et al., 2013). Mapping of the region found 
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that the two NB-LRRs Rpg5 and Rga1, and an additional actin depolymerisation factor 

are required for rpg4-mediated resistance (Arora et al., 2013; Wang et al., 2013). 

Alleles of Rpg5 that contain a phosphatase domain in the place of the kinase domain 

are dominant susceptibility factors (Solanki et al., 2019). The mechanism of the actin 

cytoskeleton involvement has yet to be elucidated.  

 

NB-LRR networks 
 

Single NB-LRRs can also be functional: competent in both pathogen recognition and 

signalling. Precise intra-specific interactions maintain complex structural 

confirmation, inhibit auto-immunity, and regulate functionality (Takken and Goverse, 

2012). Homo-dimerization of NB-LRRs, crucially N-terminal homodimerization, is 

vital for signalling and downstream defence responses (Heidrich et al., 2012; Williams 

et al., 2014). However, it is likely that specific requirements of domain proximity and 

timing of dimer formation differs between NB-LRRs (Takken and Goverse, 2012). 

Paired NB-LRR partners share recognition and signalling requirements, forming 

hetero-complexes for function. The functional separation and release of selection for 

both functions—sub-functionalisation—can facilitate the integration of additional 

domains in the ‘sensor’ NB-LRR. From the paired example RPS4/RRS1 and 

RGA4/RGA5, a functional NB domain is only required in the ‘executor’ NB-LRR—

RPS4 and RGA4 respectively. Loss-of-function mutations in the NB domain of the 

‘sensor’ NB-LRR—RRS1 and RGA5—do not abolish resistance function (Césari et 

al., 2014; Sohn et al., 2014; Williams et al., 2014).  

 

The evolution of paired NB-LRRs is hypothesised to be due to the facilitation of 

repertoire expansion. Discussed examples show potential for the recognition of 

multiple effectors, either from the same species or multiple pathogens (Eitas and 

Dangl, 2010; Nishimura et al., 2015). Recent findings have expanded paired NB-

LRRs to identify whole networks in Solanaceae species. Here, multiple ‘sensor’ NB-

LRRs require core ‘helper’ NB-LRRs to function (C. H. Wu et al., 2017; Wu et al., 

2018). Perturbation of this system has identified pathogen effectors that are recognised 

by ‘sensor’ NB-LRRs, but also effectors that target the core ‘helper’ signalling NB-

LRRs to repress immune responses (Wu et al., 2018). It will be interesting to see if 
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networks are present across other species and if networks are more robust and efficient 

than individual or paired NB-LRRs.  

 

1.4 Continuum of resistance 
 
Quantitative resistance 
 

Plant pathogen interactions occur on a spectrum from compatibility of host-adapted 

pathogens to immunity against non-adapted pathogens (Bettgenhaeuser et al., 2014). 

The most well studied R genes confer monogenic dominant resistance and have been 

used extensively in agricultural breeding (St.Clair, 2010). Such resistance is termed 

qualitative resistance, referring to Mendelian genes that are of large effect, often acting 

in a gene-for-gene manner with the pathogen. However, continuous variation in 

resistance phenotypes is also observed; this continuum of resistance extends from 

complete resistance with lack of symptoms, through to a moderate host defence 

response with reduction in disease severity and low expressivity of the phenotype, and 

to complete susceptibility and completion of the pathogen lifecycle. The outcome is 

dependent on the segregation and presence of causal genes (A. J. Castro et al., 2003; 

St.Clair, 2010). The continuum of resistance can be dependent on the stage at which 

the pathogen infection is recognised and terminated, or dependent on the expression, 

localisation, and function of the resistance gene. Quantitative genes can also show 

epistatic relationships, pleiotropy, or additive effects (Cowger and Brown, 2019; 

St.Clair, 2010). 

 

Host range  
 

Resistance to non-adapted pathogens is shown by all (or an overwhelming majority 

of) individuals  of a plant species. Basic compatibility between host and pathogen was 

previously assumed to derive from physical or chemical barriers, inducible defences, 

and PTI responses (Ayliffe and Sørensen, 2019; da Cunha et al., 2006; Thordal-

Christensen, 2003). However, it remains unclear if resistance to non-adapted 

pathogens results from a passive or active response from the plant. Belhaj et al., (2015) 

showed that infection of A. thaliana by the host oomycete pathogen Albugo laibachii 

allows for the subsequent infection by the nonhost Phytophthora infestans, usually 
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limited in its host range to members of the Solanaceae family. A. laibachii effectors 

could be more effective than P. infestans at supressing PTI, or such PTI suppression 

could prevent the response to P. infestans recognition.  Many pathogen effectors 

disrupt host processes, so effector incompatibility due to host gene loss or 

diversification could result in failed infection.  

 

A sub-set of individuals or cultivars within susceptible host-species can show 

resistance. Heath (2000), hypothesised that cultivar specificity is controlled by 

specific or combinations of R genes and is distinct from resistance to non-adapted 

pathogens. They suggested this resistance is under complex genetic control with the 

involvement of multiple factors. This contrasts with host resistance—controlled by 

single R genes conferring genotype-specific resistance in an otherwise susceptible 

background. In contrast, Tosa (2009), proposed a counter model that resistance to non-

adapted but closely-related pathogens is akin to recognition of adapted pathogens. 

Interactions between plants and pathogens can be divided into plant species specificity 

and cultivar specificity, the former incorporating resistance to non-adapted pathogens 

and the latter including resistance to adapted pathogens. Subsequently, several 

experiments on closely-related pathogen genotypes have confirmed the model of Tosa 

(2009) for host species adaptation among genotypes of Pyricularia oryzae and 

between P. oryzae and its close relative P. grisea (Chuma et al., 2010; Hyon et al., 

2012; Nga et al., 2012).  

 

Within species, pathogens have differentiated to a sub-set of their host range. Eriksson 

(1894) introduced taxonomic term forma specialis (f. sp.), for pathogen classifications 

below the species level based on their host. Such adaptation is thought to be the initial 

step to host specialisation. Genetic analyses of crosses of different but closely-related 

B. graminis ff. spp. and inoculation of appropriate and inappropriate hosts suggests 

that resistance is dependent on combinations of pathogen effector and plant R genes 

(Tosa, 1989a, 1989b; Tosa et al., 1995; Tosa and Sakai, 1990; Tosa and Tada, 1990) . 

B. graminis ff. spp. do not lack the capability of infection on inappropriate hosts, they 

carry effectors that are recognised and lead to avirulence (Eriksson, 1894). In addition, 

the effector gene AVR1-CO39 corresponding to rice R gene Pi-CO39(t) was lost 

during the early evolution of the rice-specific subgroup of P. oryzae, allowing it to 

infect rice (Yukio Tosa et al., 2005). Homologs of AVR1-CO39 present in other P. 
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oryzae ff. spp. were also avirulent on rice (Yukio Tosa et al., 2005). The emergence 

of the wheat infecting lineage of P. oryzae Triticum pathotype was due to the 

sequential loss of specific effectors PWT3 and PWT4. The corresponding wheat R 

genes Rwt3 and Rwt4 were responsible for incompatibility of P. oryzae during 

infection; their separation in wheat cultivars facilitated P. oryzae step-wise adaptation 

to become an adapted pathogen of wheat (Inoue et al., 2017). However, the 

subclassification of ff. spp. is based on adaptation to certain hosts, without strict 

definition as to the defining mechanism of plant resistance to adapted and non-adapted 

forms (Troch et al., 2014). It is unclear what role specific effector-gene interactions 

play in the division between ff. spp.    

 

1.5 The Mla locus of barley 
 

Barley (Hordeum vulgare) is a diploid monocot and is one of the earliest domesticated 

crop species. The haploid genome of barley is approximately 5 gigabases and consists 

of 7 chromosomes (Mayer et al., 2012); approximately 84% of the genome consists 

of repetitive or mobile elements (Mayer et al., 2012). Clusters of disease resistance 

genes have been identified across chromosomes, including hotspots for resistances to 

multiple diseases (Schweizer et al., 2011). Such organisation is facilitated through 

tandem duplications, repetitive elements, and unequal crossing-over during 

recombination. Subsequent diversifying selection enables the evolution of new 

resistance specificities which can occur between and within individual genomes—

resulting in the generation of allelic series (Leister, 2004; Michelmore and Meyers, 

1998).  

 

The Mla locus  
 

The Mla locus of barley is located on the subteleomeric short arm of chromosome 1H 

(Wei et al., 1999). Allelic variants of the Mla CC-NB-LRR gene confer isolate-

specific disease resistance against the host pathogen Bgh and highly diverse Mla 

homologs are found across barley haplotypes (Halterman et al., 2001; Halterman and 

Wise, 2004; Jørgensen, 1994; Seeholzer et al., 2010; Shen et al., 2003; Zhou et al., 

2001). This resistance cluster has been delineated within a 261-kb contig isolated from 

a bacterial artificial chromosome (BAC) of accession Morex (Wei et al., 1999). In this 
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reference sequence, the Mla locus contains eight NB-LRR encoding genes that belong 

to three distinct families—RGH1 (Mla), RGH2, and RGH3—and are organised in 

three gene-rich regions interspersed with transposable elements (Wei et al., 2002). The 

RGH1 family includes RGH1a, RGH1bcd, RGH1e, and RGH1f; RGH2 family 

members RGH2a, RGH2b and the RGH3 family members RGH3a and RGH3b. 

Members within a family show 78-100% amino acid similarity whereas comparisons 

between families showed less than 43% amino acid similarity (Wei et al., 2002). Only 

RGH1 members are expressed in Morex, with RGH1bcd predicted to be the Mla allele 

(Halterman et al., 2001). RGH1bcd is non-functional due to the insertion of a solo 

long terminal repeat from a BARE-1 retrotransposon element in intron 3, in 

combination with a 29-bp deletion that results in early termination of the open reading 

frame (ORF) (Wei et al., 2002). The Mla locus contains all major classes of 

transposable elements with BARE-1 major retrotransposon accounting for ~17% of the 

sequence of the region. The locus has been subject to multiple insertions, duplications 

and inversions of genes. Tandem fragments and transposon complexes are still 

actively evolving and are responsible for drastically increasing the size of the locus 

(Wei et al., 2002). The region experiences suppressed recombination between 

haplotypes; sequence conservation is limited to the proximal and distal ends of the 

locus with little conservation in the centre of the locus (Moscou, personal 

communication).  

 

Over 30 different Mla alleles condition race-specific powdery mildew resistance that 

is conferred by localised cell death at the site of fungal infection. They are 

hypothesised to have diverged from a common ancestor, due to the presence of shared 

insertions and deletions, to generate the breadth of the allelic series present today (Wei 

et al., 2002). Alleles share >91% sequence similarity at the protein level (Seeholzer et 

al., 2010). The variable alleles are in repulsion within barley varieties, presenting as a 

single copy in an allelic series: where Mla duplications are observed, usually only one 

gene copy is expressed (Seeholzer et al., 2010). The LRR region of Mla determines 

recognition specificity and shows signatures of positive selection (Seeholzer et al., 

2010). Shen et al., (2003), determined distinct residues for recognition specificity in 

the LRRs MLA1 and MLA6 (LRRs 3 to 11 and 9 to 11, respectively). MLA8 and 

MLA1 are identical in sequence until the 10th LRR suggesting a recombination event 

created a new allelic variant (Seeholzer et al., 2010). Recent work from Saur et al., 
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(2019), propose a direct recognition mechanism for Mla alleles, based on the 

observation of compatible and incompatible Mla and Bgh effector interactions: 

MLA7, MLA9, MLA10, and MLA22 recognise Bgh AVRa7, AVRa9, AVRa10, and 

AVRa22 respectively. MLA1 functions in transgenic A. thaliana, recognising Bgh 

carrying AVRa1, in a partially immunocompromised background (Maekawa et al., 

2012). This suggests a conservation in signalling requirements and either a direct 

recognition mechanism, or conservation in a ‘guardee’.  

 

Mla homologs 
 

The Mla locus across haplotypes has been associated with resistance to multiple 

pathogens, other than Bgh, including Puccinia striiformis f. sp. tritici (Rps7) (Moscou, 

personal communication), Puccinia striiformis f. sp. hordei (Verhoeven et al., 2011), 

Bipolaris sorokiniana (=Cochliobolus sativus) (Rcs6) (Bilgic et al., 2006, 2005) and 

P. oryzae (Rmo1) (Inukai et al., 2006). In addition, sensitivity to the host-selective 

toxin victorin (Lov1), produced by Bipolaris victoriae, has been mapped to the Mla3 

locus (Lorang et al., 2010); and susceptibility to the spot blotch fungus B. sorokiniana 

(Scs6) to the Mla locus in the accession Bowman (Leng et al., 2018). Interestingly, 

the Pgt resistance gene Sr33, introgressed into wheat from Aegilops tauschii, is an 

ortholog of the barley Mla. Other Pgt resistance genes Sr31 and Sr50 derived from rye 

(Secale cereale), belong to the Mla locus and the RGH1 gene family (Mago et al., 

2015; Periyannan et al., 2013). Sr50 was shown to recognise AvrSr50 from Pgt via 

direct recognition and binding (Chen et al., 2017). Bgh and Pgt are distantly related 

pathogens—belonging to the Basidiomycota and Ascomycota phyla respectively—

implicating MLA homologs with the capability for broad pathogen species 

recognition.  

 

The powdery mildew 3 (Pm3) resistance locus in wheat also displays exceptional 

functional diversification and allelic variation (Bhullar et al., 2010; Lutz et al., 1995). 

However, Pm3 is distinct from the wheat Mla ortholog, TaMla, suggesting parallel 

evolution of extensive allelic series (Jordan et al., 2011; Zhou et al., 2001). To date, 

17 functional alleles—Pm3a-g; Pm3k-Pm3t—have been characterised and confer 

isolate-specific resistance to Bgt (Bhullar et al., 2010; Stirnweis et al., 2014; Yahiaoui 

et al., 2006). Pm3 alleles are >97% similar yet recognise distinct Bgt effectors—
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comparable to barley Mla-Bgh interactions (Bourras et al., 2019, 2018, 2016). In 

addition, Bgt encodes a suppressor of avirulence (SvrPm3a1/f1) which is functional 

against several AvrPm3-Pm3 specificities (Bourras et al., 2019, 2018). Bgt effectors 

recognised by Pm3 are conserved in other mildew species, showing the potential for 

Pm3 alleles in determining host-specificity (Bourras et al., 2019). These could 

represent core effectors of mildew species; Bgt has evolved to infect wheat to become 

an adapted f. spp. similar to the emergence of P. oryzae Triticum pathotype (Bourras 

et al., 2019; Inoue et al., 2017). This is another example confirming the proposal of 

NB-LRRs conditioning resistance to adapted and non-adapted pathogens (Tosa, 

2009).   

 

Mla-mediated resistance  
 

Mla alleles have been characterised as conditioning either fast-acting (Mla1, Mla6, 

Mla13) or slow-acting resistance (Mla7, Mla12), corresponding to the infection stage 

of Bgh arrest (Boyd et al., 1995; Caldo et al., 2006). Fungal growth is terminated prior 

to or during haustorium formation via single cell death (Boyd et al., 1995; Kruger et 

al., 2003), compared to delayed resistance displaying as the death of multiple cells 

after Bgh haustoria and secondary hyphae formation (Freialdenhoven et al., 1996, 

1994; Kruger et al., 2003). Hyper-accumulation of basal defence transcripts occurs 

during fast-acting resistance, which are then sustained during incompatible resistant 

interactions and downregulated in compatible susceptible interactions (Caldo et al., 

2004). In comparison, hyper-induction of transcripts is followed by suppression, and 

then re-induction during slow-acting Mla-mediated resistance (Caldo et al., 2006). 

Suppression of basal defence may facilitate partial pathogen growth before 

termination.  

 

Despite sharing sequence similarity, Mla alleles have differential requirements for the 

signalling component Rar1: Mla6, Mla10, Mla12, and Mla13 require Rar1 and 

member of the ubiquitin ligase complex, SGT1, whereas Mla1 and Mla7 do not 

(Azevedo et al., 2002; Halterman et al., 2001; Halterman and Wise, 2004; Shirasu et 

al., 1999; Zhou et al., 2001). A single amino acid in the LRR domain controls the Rar1 

requirement; single substitutions in Mla6 and Mla13 alleviated requirement for Rar1 

yet maintained resistance capabilities (Halterman and Wise, 2004; Shen et al., 2003). 
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Rapid increase in the accumulation of Mla13, Mla6, and the required Rar1 and Sgt1 

transcripts post-Bgh inoculation is observed only with Bgh isolates carrying the 

corresponding Avr gene and recognised effector protein (Halterman et al., 2003).  

 

Recognition of corresponding AVRa proteins results in the translocation of Mla NB-

LRRs into the nucleus and the initiation of disease resistance signalling (Bai et al., 

2012; Shen et al., 2007). Cytoplasmic cell-death signalling has been shown for 

MLA10 which is hypothesised to be signal amplification from nuclear initiation or 

cell-death specific initiation (Bai et al., 2012). Many candidate targets of Mla-

regulated transcriptional cascades have been identified encompassing diverse 

biological roles, with many induced early during infection and overlapping with genes 

mediating PTI (Moscou et al., 2011).  MLA10 has been shown to interfere with and 

alleviate WRKY-mediated repression of pathogenesis-related gene expression. Barley 

HvWRKY1 and HvWRKY2 interact with the CC domain of Mla, present in all Mla 

variants, and colocalise in the nucleus with MLA10 dependent upon stimulation by 

AVRa10 (Shen et al., 2007). Activated MLA10 is also shown to interact with the 

transcription factor MYB6 through its CC domain, alleviating WRKY1 repression, 

allowing DNA binding activity and transcriptional activation. The CC domain is 

conserved through all Mla variants, suggesting a role for MYB6 in other Mla 

resistance specificities (Chang et al., 2013). 

 

1.6 Pathosystems 
 

Blumeria graminis f. sp. hordei 
 

B. graminis, the causal agent of powdery mildew, has been described as the 4th most 

important fungal pathogen to plant pathology (Dean et al., 2012). It exists as an 

asexual haploid, with a very short diploid sexual stage. Primary and appressorial germ 

tubes form following germination, and an infection peg penetrates the plant epidermal 

cell wall. Haustoria form within the plant for nutrient sequestration and additional 

haustoria form through secondary and tertiary hyphae. Mycelium mats with conidial 

chains are formed on the leaf surface in susceptible hosts (Boyd et al., 1995; 

Jørgensen, 1994). The genome of Bgh has lost genes encoding primary and secondary 
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metabolism, rendering it an obligate biotrophic pathogen (Frantzeskakis et al., 2018; 

Spanu et al., 2010) 

 

Bgh encodes hundreds of effector-like proteins, however few Bgh effectors have been 

characterised. These CSEPs—Candidates for Secreted Effector Proteins—are defined 

by the presence of a signal peptide and appear unique to the powdery mildews 

(Pedersen et al., 2012). Of these, CSEP families that are structurally similar to RNase-

like proteins are further defined as RALPHs—RNase Like Proteins expressed in 

Haustoria—and comprise the largest set of secreted effector candidates within Bgh 

genomes (Pedersen et al., 2012; Pliego et al., 2013; Spanu, 2017). Expression of two 

RALPH-encoding genes is required for full virulence, confirming their effector 

candidacy (Pliego et al., 2013). The majority of RALPHs share a single intron at a 

relative position; it is hypothesised that they share a single origin from an ancestral 

RNase-like protein and have undergone duplication and diversification following 

strong selective pressure to evade recognition (Pedersen et al., 2012; Spanu, 2017). A 

hypothesised role for one candidate CSEP is in the protection of host ribosomal RNA 

from plant ribosome-inactivating proteins through nucleic acid binding; prevention of 

ribosomal RNA degradation inhibits host cell death and maintains the living cell for 

fungal infection (Pennington et al., 2019).  

 

Bgh populations display high complexity and variation of effector repertoires 

(Dreiseitl, 2014; Frantzeskakis et al., 2019, 2018; Saur et al., 2019). CSEPs experience 

copy number variation and are locally clustered, but do not reside in preferential 

regions of the genome (Frantzeskakis et al., 2018). Recognised effectors are 

phylogenetically and sequence unrelated; loss of recognition is due to non-

synonymous SNPs and loss of expression (Lu et al., 2016; Saur et al., 2019). However, 

sequence unrelated effectors could represent structural homologs: similar 

conformational folds could facilitate direct binding to the LRR domain of Mla alleles. 

The trade-off between evading recognition and maintaining virulence function 

constrains effector evolution and limits selective sweeps characteristic of ‘arms race’ 

plant-pathogen interactions. Expansive diversity of effectors across isolates represents 

balancing selection in response to the fluctuating allelic repertoires of R genes in host 

plant populations (Frantzeskakis et al., 2018).  
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Pyricularia oryzae  
 

The filamentous ascomycete fungus Pyricularia oryzae (teleomorph, Magnaporthe 

oryzae) is the causal agent of rice blast and leaf spot, and infects a wide range of 

grasses at all development stages (Couch and Kohn, 2002). It has been ranked as the 

most important fungal pathogen to plant pathology due to causing extensive yield loss 

of up to 70%. However, its amenability to forward and reverse genetic studies makes 

it the ideal model system (Dean et al., 2012; Liu et al., 2014; Wilson and Talbot, 

2009). Infection is initiated through conidiospore germination and appresorium 

formation to penetrate epidermal leaf tissue. During the initial biotrophic infection, 

secondary metabolites, apoplastic and cytoplasmic effectors are secreted to suppress 

host PTI. Intracellular NB-LRR receptors can recognise a sub-set of effectors to 

trigger a stronger immune response to overcome suppression (Talbot, 2003).  

 

P. oryzae contains an approximate 41 Mb nuclear genome, encoding a large diverse 

set of ~739 predicted secreted proteins (Wilson and Talbot, 2009). Previous 

phylogenetic analysis and mating experiments have separated rice and grass infecting 

P. oryzae into a distinct species from its previous classification as a f. sp. of P. 

grisea—which is now solely associated with the grass genus Digitaria. These two 

clades are defined by host associations and show clear sequence divergence, 

ecological and reproductive isolation (Couch and Kohn, 2002). Both Pyricularia 

species show a tight host specificity conditioned by one or a few dominant genes of 

the PWL multigene family encoding small secreted proteins. PWL1 and PWL2 prevent 

P. grisea from infecting the host weeping lovegrass (Eragrostis curvula) (Kang et al., 

1995; Sweigard et al., 1995). Tosa et al., (2005), identified a suite of PWT genes 

responsible for P. oryzae wheat specificity.  

 

Resistance to P. oryzae is either race-specific, complete and controlled by one gene, 

or partial resistance controlled by QTLs (Liu et al., 2014). Diverse QTL regions have 

been implicated for resistance to different stages of leaf and neck blast progression 

(Kongprakhon et al., 2009; Puri et al., 2009). To date, over 100 R genes and multiple 

QTLs in rice have been described to confer resistance to P. oryzae, of which only ~21 

NB-LRR genes have been cloned (Liu et al., 2014; Sharma et al., 2012). Paralogs of 

rice resistance gene families, isolated from maize, sorghum, and Brachypodium confer 



 

 26 

resistance to P. oryzae when transformed in rice (Yang et al., 2013). As mentioned 

previously, the rice Exo70 domain OsExo70-F3, is the guardee required for NB-LRR 

Pii-dependent resistance (Fujisaki et al., 2015) and could represent a shared effector 

target across species.  

 

The first reported blast infection of barley was in 1940, and field infections of barley 

blast were observed in Japan in 1979, and later in 2000 in Thailand (Sato et al., 2001). 

Yaegashi (1988) identified the dominant blast resistance gene PHR-1 although this 

has yet to be replicated or mapped. Basal resistance to P. oryzae is observed in barley 

through the formation of papillae against attempted appressorial penetration, but this 

is often ineffective and weak. Cell death is triggered after successful appressorium 

formation to prevent further fungal invasion (Tanaka et al., 2010). P. oryzae resistance 

is highly polymorphic across barley cultivars (Nga et al., 2012). Sato et al., (2001) 

identified isolate-specific and seedling resistance QTLs, located on 3H, 4H, and 5H. 

One QTL on 4H co-localised to previously mapped resistances to stem rust (Puccinia 

graminis), scald (Rhynchosporium secalis) and net blotch (Phyrenophora teres), 

possibly indicating a region of multiple pathogen resistance. Interestingly, one of the 

broad-spectrum partial resistance QTLs was donated from a Canadian cultivar—a  

region where there have been no reports of blast disease. Presumably this functions in 

resistance to another pathogen for it to be maintained by selection, prior to use in 

agriculture.  

 

Bipolaris victoriae 
 
Species of Bipolaris cause devastating diseases on grasses in the Poaceae family. 

Recently, multiple species (Bipolaris, Cochliobolus, and Curvularia) were converged 

into one genus: Bipolaris (Manamgoda et al., 2012). The genus contains over 40 

species (all necrotrophs with few hemibiotrophs) which are often highly virulent on 

their hosts (Condon et al., 2013). Necrotrophic pathogens thrive on dead plant tissue, 

often producing phytotoxin secondary metabolites, peptides, and reactive oxygen 

species to aid tissue degradation (Wang et al., 2014). Furthermore, some species 

secrete toxins toxic only to their host species: non-host species are insensitive to these 

molecules (Wang et al., 2014; Wolpert et al., 2002). Bipolaris species are able to 
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evolve novel, virulent races through the production of such host-selective toxins 

(HSTs) (Condon et al., 2013).  

 

Spot blotch, caused by hemibiotroph Bipolaris sativus, is one of the most 

agronomically important diseases of barley (Leng et al., 2018). Bipolaris victoriae is 

the causal agent of victoria blight—a disease which arose during the 1940s as a 

consequence of deployment of oat crown rust (Puccinia coronata) resistant oat 

cultivars (Meehan and Murphy, 1946). Introgression of the Pc2 resistance gene 

facilitated the host jump of B. victoriae from timothy-grass (Phleum pratense) 

(Meehan and Murphy, 1946). Victorin sensitivity (Vb) and oat crown rust resistance 

(Pc2) have not been genetically separated and are assumed to share identity, proposing 

the idea that an R gene can condition both resistance and susceptibility.  

 

B. victoriae pathogenesis is dependent on host sensitivity to the HST victorin: B. 

victoriae mutants defective in victorin production are also non-pathogenic (Walton, 

1996; Wolpert et al., 2002).  Victorin triggers a defence response in the host resulting 

in localised cell death through hypersensitive response, a form of programmed cell 

death (Gilbert and Wolpert, 2013). HSTs are described as ‘agents of compatibility’ 

that facilitate fungal infection (Walton, 1996); only plants carrying the dominant Vb 

gene are sensitive to victorin and therefore susceptible to B. victoriae (Wolpert et al., 

2002). Victorin has been characterised as a group of cyclised pentapeptides (Wolpert 

et al., 1994, 1985; Wolpert and Macko, 1989) The structures of victorin—victorin B, 

C, D, E, and victoricine—have been established (Wolpert et al., 1994; Wolpert and 

Macko, 1989) and are routinely used in sensitivity assays (Wolpert and Lorang, 2016).   

 

Puccinia striiformis f. sp. hordei 
 
Puccinia striiformis, the causal agent of stripe (yellow) rust is a common and 

devastating pathogen of grasses and cereals. It is an obligate biotroph, leading a 

heteroecious life cycle with a telial host in Poaceae and an aecial host in 

Berberidaceae. Recent adaption to warmer climates has allowed P. striiformis to 

spread to areas without a previous history of the fungus (Hovmøller et al., 2011). 

Regular regional wheat crop losses around 0.1 to 5%, sometimes 25% are observed 
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due to fungal infection (Singh et al., 2016). However, wheat yield losses of 70% or 

more are possible during an epidemic under favorable conditions (Wellings, 2011).  

 

The most susceptible genera are Aegilops, Agropyron, Bromus, Elymus, Hordeum, 

Secale and Triticum (Stubbs, 1985) and both ff. spp. and cultivar specialisation has 

been observed within the P. striiformis species. Interestingly, Eriksson's (1894), 

original concept of formae speciales arose due to the observation that the ability of P. 

striiformis to infect a given host was dependent on the host species from which it was 

isolated, and divided P. striiformis into five ff. spp.., with respect to the susceptible 

genera, i.e. f. sp. agropyri, elymi, hordei, secalis, and tritici (Eriksson, 1894; Liu and 

Hambleton, 2010). As well as ff. spp.., P. striiformis also shows cultivar specificity 

within the host genus which is conditioned by classic R-Avr gene interactions. Biffen 

(1905) first showed Mendelian inheritance of resistance using stripe rust. Due to the 

observation of asexual populations in the field, it is hypothesised that recombination 

during the sexual stage on the alternate host facilitates virulence evolution—but the 

extent of this is unknown (Hovmøller et al., 2011).   

 

The barley specialist Puccinia striiformis f. sp. hordei, (Psh) has spread extensively 

across the world over the last 40 years since being introduced into South America in 

1975 from Europe. Psh is found in all major barley-producing areas worldwide 

(Brown, 2015). Few genes in barley have been found for resistance to Psh, compared 

to over 50 Yr (yellow rust) resistance genes identified from wheat (Chen and Line, 

1999; Hovmøller et al., 2011). Quantitative resistance QTLs have been identified 

across chromosomes 1H, 4H and 5H, and a QTL on 7H shows qualitative resistance 

of large effect (A. J. Castro et al., 2003; Toojinda et al., 2000). Of these, the QTL on 

1H—QRps1H—encompasses the Mla12 locus, but the relationship of QRps1H and 

Mla12 is unknown (Verhoeven et al., 2011).  

 

1.7 Summary  
 

B. graminis, P. oryzae, and P. striiformis are placed within the top 4 fungal plant 

pathogens, causing devastating yield loss worldwide (Dean et al., 2012).  While B. 

victoriae does not currently pose as great an economic threat, it is an example of the 

unexpected consequence of resistance gene deployment and highlights the potential 
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trade-offs between biotrophic resistance and necrotrophic pathogen susceptibility. The 

Mla locus in barley is a known region conferring recognition to multiple pathogens: 

Rmo1 and Lov1 map to the Mla3 locus in barley and QRps1H encompasses the Mla12 

locus, among other examples. This raises the question: what is the involvement of Mla 

alleles in multiple pathogen recognition? Fine-mapping and characterising candidate 

genes will give a greater insight into the genetic architecture of the Mla locus and the 

potential for multiple pathogen recognition.  
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1.9 Dissertation organisation 
 
The first research chapter presented in this thesis details the identification of a trans-

species polymorphism at Mla and is associated with the publication Brabham et al., 

(2018). The second section describes the fine-mapping of Mla3, Rmo1, and Lov1. The 

third, follows on from the first in characterising Rmo1 and the barley-P. oryzae 

interaction in the Mla3 haplotype. The fourth chapter contains the QTL analysis of 

QRps1H for adult plant resistance to P. striiformis f. sp. hordei.  

 

Chapters: 

2. This chapter discusses the results and findings presented in the paper, “An 

ancient integration in a plant NB-LRR is maintained as a trans-species 

polymorphism” (Brabham, 2018). In the characterisation of candidate genes at 

the Mla locus, I identify an integrated Exo70 within the RGH2 allele in the 

Mla3 haplotype. Phylogenetic analysis is then used to identify orthologs of 

RGH1, RGH2, and RGH3 Mla NB-LRR gene families in other grass species. 

Interspecific conservation is observed in the RGH2-Exo70F1 integration, as 

well as differential integrated domains prior to Brachypodium speciation. 

RGH2 exists as a trans-species polymorphism maintained over 24My, 

hypothesised to be maintained through balancing selection due to the role of 

RGH2-Exo70F1 in multiple pathogen recognition.  

 

3. The research presented in this chapter identifies the fine-mapping of Mla3, 

Rmo1, and Lov1, and the confirmation of their complete genetic coupling.  

 

4. This chapter confirms the multiple pathogen recognition capability by Mla3. 

Using transformation, Golden Promise + Mla3 transgenic lines are found to be 

resistant to both Bgh and P. oryzae in a copy-number dependent manner.   

 
5. This research chapter contains the delineation of QRps1H, a P. striiformis f. 

sp. hordei adult plant resistance (APR) QTL in the Mla12 haplotype. This gene 

is mapped to a 7.6cM region spanning the Mla12 locus.  
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1.10 Contributions to Research 
 

Helen Brabham (HJB), Phon Green (PG), Inmaculada Hernández-Pinzón (IHP), Sam 

Holden (SH), Matthew Moscou (MM), Jennifer Lorang (JL), Tom Wolpert (TW), 

Patrick Hayes (PH), Laura Helgerson (LH), Scott Fisk (SF), Hiromasa Saitoh (HS), 

Motoki Shimizu (MS), Koki Fujisaki (KF), Ryohei Terauchi (RT), Ravi Singh (RS).  

 

A trans-species polymorphism at Mla 

Conception and the design of experiments: HJB, MM. 

Experimentation: HJB, IHP, JL. 

Data analyses: HJB, SH, MM. 

 

Mla3, Rmo1 and Lov1 are in genetic coupling 

Conception and the design of experiments: HJB, MM, TW, JL 

Experimentation: HJB, PG, IHP, JL 

Data analyses: HJB, MM. 

 

Mla3 confers resistance to multiple pathogens 

Conception and the design of experiments: HJB, MM, RT, MS. 

Experimentation: HJB, PG, IHP, JL, HS, MS. 

Data analyses: HJB, MM. 

 

Fine-mapping of QRps1H 

Conception and the design of experiments: HJB, PH, RS, MM. 

Experimentation: HJB, LH, SF, RS, PG, IHP.  

Data analyses: HJB, MM. 
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2 A trans-species polymorphism at Mla 
 
 
 
2.1 Abstract  

 

Plant immune receptors are under constant selective pressure to maintain resistance to 

plant pathogens. Nucleotide-binding leucine-rich repeat (NB-LRR) proteins are one 

class of cytoplasmic immune receptors whose genes commonly show signatures of 

adaptive evolution (Ellis et al., 1999; Mondragón-Palomino et al., 2002; Rose et al., 

2004; Seeholzer et al., 2010; Wei et al., 2002). While it is known that balancing 

selection contributes to maintaining high intraspecific allelic diversity, the 

evolutionary mechanism that influences the transmission of alleles during speciation 

remains unclear. The barley Mla locus has over 30 described alleles conferring isolate-

specific resistance to barley powdery mildew and contains three NB-LRR families 

(RGH1, RGH2, and RGH3) (Wei et al., 2002, 1999). This chapter outlines the 

discovery (using sequence capture and RNAseq) of the presence of a novel integrated 

Exo70 domain in RGH2 in the Mla3 haplotype. Allelic variation across barley 

accessions includes presence/absence of the integrated domain in RGH2. In addition, 

interspecific conservation in the RGH2-Exo70 integration is shared across Poaceae 

species. We hypothesise that balancing selection has maintained allelic variation at 

Mla as a trans-species polymorphism over 24 My, thus contributing to and preserving 

interspecific allelic diversity during speciation. 

 

2.2 Introduction  
 

The plant immune system has been shaped by the interactions with pathogens 

throughout evolutionary history. Recognition of plant pathogens is mediated by 

membrane and cytoplasmic immune receptors that recognise pathogen-derived 

molecules, including effectors (Jones and Dangl, 2006). Cytoplasmic immune 

receptors recognise secreted pathogen effectors directly, or indirectly through 

monitoring the molecular status of host proteins targeted by pathogen effectors (Jones 

et al., 2016). At the population level, plant immunity to pathogens is conferred, in part, 

through the maintenance of diverse allelic variants at immune receptor loci. Pathogen 



 

 34 

pressure influences the relative frequency of resistance alleles in plant populations, 

with selection fluctuating due to pathogen evolution. Mutations that generate novel 

approaches to manipulate a host by immune suppression or nutrient acquisition, for 

example, are selected for in the pathogen. Similarly, novel forms of pathogen 

recognition are selected for in the plant. Despite this, little is known about the origin 

or maintenance of R gene variants in populations.  

 

The current diversity of immune receptors maintained in populations reflects extant 

pathogen pressure as the majority of R genes classified to date occur in a gene-for-

gene relationship with their recognised pathogens; individual immune receptors 

recognise specific pathogen ligands (Dodds and Rathjen, 2010). However, the 

increasing wealth of genomic resources has revealed complex population dynamics 

and hidden variation of plant immune receptors driven by diverse evolutionary 

processes. The majority of plant resistance (R) genes are intracellular receptors 

encoding nucleotide binding, leucine-rich repeat domain-containing proteins (NB-

LRRs) and form one of the most diverse and expanded gene families in plants (Sukarta 

et al., 2016).  

 

NB-LRRs contain a central nucleotide domain (NB), C-terminal leucine-rich repeat 

domain (LRR), and an N-terminal of either coiled-coil (CC) or Toll/interleukin-1 

receptor (TIR) domain—defining NB-LRRs further into two major classes (Jones et 

al., 2016). Structural analyses of CC domains indicate the potential for NB-LRR 

dimerization and NB-LRR-cofactor heterodimerisation, yet it is unclear if this is due 

to differences in conformational or CC domain function (Casey et al., 2016; Hao et 

al., 2013). LRR domains contain signatures of strong diversifying selection pressure 

reflective of their role in pathogen recognition (Bai et al., 2002; Mondragón-Palomino 

et al., 2002). The majority of cereal NB-LRRs are non-TIR, with variation 

presence/absence of an N-terminal CC domain. Structural analysis identified 

conserved N-terminal nT and P-loop domains, with EDVID motif in CC domains, and 

presence/absence of variable C-terminal LRR domains of rice (Oryza sativa) NB-

LRRs (Bai et al., 2002; Sukarta et al., 2016).  

 

A recent area of intensive research in plant immunity includes the identification of 

integrated non-canonical domains in NB-LRRs: additional domains which are thought 
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to serve as baits for pathogen effectors, and thus, facilitate efficient immune responses 

(Cesari, 2018; Cesari et al., 2014; Kroj et al., 2016; Sarris et al., 2016). Additional 

domains or protein coding regions are hypothesized to be fusions of interacting 

partners and contribute to signalling, activation, and pathogen recognition (Kroj et al., 

2016; Sarris et al., 2016; Sukarta et al., 2016). In grasses, approximately 10% of NB-

LRRs contain additional integrated domains (NB-LRR-IDs). Often residing in Major 

Integration Clades (MIC), these NB-LRRs have gained the capacity to accommodate 

additional domain integrations within the protein structure. The MIC1 clade contains 

diverse integrated domains, whereas MIC2 and MIC3 are hypothesised expansions of 

single integration events (Bailey et al., 2018).  NB-LRR-IDs often require a second 

NB-LRR partner to function, as is the case for RGA4/RGA5 of rice (Césari et al., 

2014), these NB-LRR partners reside in clade C7 exclusively (Bailey et al., 2018). As 

integrations are presumed duplications of host proteins, it is hypothesised that 

integrated domains are released from purifying selection for host function; therefore, 

they are free to adapt specifically for pathogen recognition (Cesari et al., 2014).  

 

Thorough characterisation of the diversity of NB-LRRs within a species has been 

limited by the extremely polymorphic nature of the gene family. Previous research 

focus has been on the curation of a representative reference genome of a species, 

created from a single accession or cultivar. It has become clear that this is a mere 

fraction of the true intra-specific diversity: extensive presence/absence, sequence, and 

copy number variation is present as more individuals are sequenced within a species 

(Bai et al., 2002; Bakker et al., 2008; Guo et al., 2011; Meyers et al., 2003; Monteiro 

and Nishimura, 2018; Van de Weyer et al., 2019; Yang et al., 2006). Work across 

seven legume species (Zheng et al., 2016), five Brassicaceae genomes (Zhang et al., 

2016), two Rosid woody perennial species (Yang et al., 2008), and two rice genomes 

(Yang et al., 2006) identified signatures of responses to pathogen pressures including 

patterns of expansion and contraction, species-specific gene loss and duplication 

events, and differences in the evolutionary rates of the NB-LRR subclasses. Recent 

publication of a pan-NB-LRRome of Arabidopsis thaliana derived from 64 diverse 

accessions captures a species-wide repertoire of the NB-LRR gene family (Van de 

Weyer et al., 2019). The greatest polymorphisms across accessions were observed in 

NB-LRRs that provide resistance to adapted biotrophic pathogens of A. thaliana. In 

addition, a single accession contained a fraction of the total diversity of NB-LRR-IDs; 
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such an expansive collection suggests frequent integration events. NB-LRR-IDs and 

their partners also showed signatures of co-evolution—where mutations in one NB-

LRR would lead to compensatory mutations in the pair. It is clear that the intra-specific 

variation of NB-LRRs has been previously underestimated. Characterising this intra-

specific diversity of plant immune receptors is the first step in understanding the 

selection pressures acting on NB-LRR repertoires and the driving forces and 

limitations of NB-LRR evolution.  

 

Population genetic models suggest recurrent selective sweeps with allele fixation 

(arms race), continuous allele frequency oscillations, and allele maintenance through 

balancing selection (balanced polymorphisms) can all occur from host-pathogen 

interactions (Bergelson et al., 2001; Rose et al., 2007; Tellier et al., 2014). Such 

opposing outcomes are characteristic of frequency-dependent selection and the fast-

evolving nature of plant pathogens and their effectors. However, the preservation of 

allelic pools through speciation events remains unclear. Current understanding of the 

evolution and maintenance of plant immune receptors has been limited due to lack of 

population genetic data. However, a few polymorphisms have been observed. 

Balanced polymorphisms in stress response genes have been reported for A. thaliana 

and Capsella rubella (Q. Wu et al., 2017), and also at immunity-related loci across C. 

rubella and C. grandiflora (Koenig et al., 2019). The A. thaliana Pseudomonas 

syringae resistance gene RPM1 also exists as a presence/absence polymorphism 

maintained over 9 million years. The entire coding region of RPM1 is deleted in 

susceptible individuals; presence of RPM1 is found to incur a large fitness cost 

resulting in reduced seed production (Stahl et al., 1999; Tian et al., 2003). Additional 

known genes in A. thaliana—RPP1 (RESISTANCE TO PERONOSPORA 

PARASITICA1) (Botella et al., 1998; Goritschnig et al., 2016; Rehmany et al., 2005), 

RPS2 (RESITANCE TO P. SYNRINGAE2) (Caicedo et al., 1999), RPP4/5 

(RESISTANCE TO PERONOSPORA PARASITICA4/5) (Noël et al., 1999; Van Der 

Biezen et al., 2002), and RPS5 (RESISTANCE TO PSEUDOMONAS SYRINGAE5) 

(Karasov et al., 2014)—are present at complex NB-LRR loci and also show extensive 

sequence or presence/absence polymorphisms between haplotypes. Furthermore, 

alleles in the RPP7 (RESISTANCE TO PERONOSPORA PARASITICA7) NB-LRR 

cluster, in combination with non-NB-LRR RPW8 (RESISTANCE TO POWDERY 

MILDEW8) / (HR) (HOMOLOG OF RPW8) alleles, result in hybrid necrosis for 
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incompatible interactions (Barragan et al., 2019; Chae et al., 2014). Such deleterious 

genetic interactions could contribute to balanced polymorphisms within a population. 

Identifying the wealth of intra-specific diversity of plant immune receptors is crucial 

for characterisation of selection pressure and evolutionary history of the plant immune 

system; data will provide direct evidence to validate evolutionary models.  

 

NB-LRR-encoding loci present a great challenge to genome assembly due to their high 

complexity, copy number variation, and association with repetitive elements (Cook et 

al., 2012; Muñoz-Amatriaín et al., 2013). Genome wide analysis of NB-LRR genes in 

both Arabidopsis and rice identified great diversity of NB-LRRs in the genome—a 

result of duplication events, rearrangement, and gene conversion (Bai et al., 2002; 

Meyers et al., 2003; Monosi et al., 2004; Shang et al., 2009; Yang et al., 2006; Zhou 

et al., 2004). The barley genome has undergone substantial advancement in the last 

ten years, cumulating in a chromosome conformation capture ordered genome 

produced by Mascher et al., (2017) yet NB-LRR characterisation remains a challenge.  

 

In this chapter, a RenSeq capture and annotation pipeline for the NB-LRRs of the 

barley is developed. Substantial intraspecific variation in NB-LRR-ID domain 

structure is discovered, including presence/absence and structural variation between 

alleles. Tracing the evolutionary history of an Exo70F1 integration within RGH2 at 

the Mla locus, this integration is dated subsequent to Brachypodium speciation and 

prior to radiation of the Poaeae-Triticeae, forming a trans-species polymorphism. This 

is evidence of balancing selection maintaining an NB-LRR allelic pool through 

speciation over 24 million years.  

 

2.3 Results  
 
Extensive variation in RGH gene families at Mla 
 

We set out to understand the intraspecific diversity of the plant immune receptors at 

the Mla locus in barley (Hordeum vulgare). The locus contains three NB-LRR 

encoding gene families—RGH1, RGH2, and RGH3—of which members of the RGH1 

gene family confer resistance to Blumeria graminis f. sp. hordei (barley powdery 

mildew), a pandemic disease of barley Wei 2002; Jorgensen 1994; Zhou et al. 2001 
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Plant Cell; Haltermann et al. 2001 Plant Journa; Shen, Zhou et al. 2003 Plant Cell; 

Haltermann et al. 2004 Plant Journal; Seeholzer et al. 2010 MPMI). In a comparison 

between a limited number of haplotypes, substantial variation has been identified 

based on sequencing RGH1 genomic fragments, with alleles sharing >90% protein 

identity (Seeholzer et al., 2010). Based on the assessment of several sequenced 

genomes and leaf transcriptomes of barley, we found that de novo leaf transcriptomes 

can be used to assess the presence or absence of the three RGH gene families. We 

performed RNAseq on leaf tissue derived from 40 diverse barley accessions that 

include domesticated and wild barley. Sequence variation and presence/absence 

variation in expression of RGH1, RGH2 and RGH3 were identified across accessions 

(Figure 2-1A). All three genes families showed considerable sequence variation 

between allelic variants. RGH1 was the most prevalent of all RGH gene families with 

variation including intact open reading frames (ORF), pseudogenised genes, and in 

two cases, absence at the expression level. In contrast, RGH2 and RGH3 were found 

in the minority of haplotypes. For all haplotypes sequenced, RGH2 was always present 

with RGH3. Presence of RGH3 without RGH2 was seen in four accessions, and only 

in those also containing a pseudogenised Mla allele. Evaluation of the coding sequence 

of RGH2 alleles, five haplotypes (accessions Baronesse, Duplex, Finniss, HOR 1428, 

and Maritime) were found to have a gene fusion with Exo70, encoding a component 

of the exocyst complex. Allelic variants of RGH2 in other accessions contain a coiled 

coil integrated domain derived from RGH1 or an in-frame full length RGH1 family 

member. To test whether the RGH2-Exo70 fusion was not an artefact of de novo 

transcriptome assembly, we used sequence capture designed on the entire Mla locus 

and PacBio circular consensus sequencing to assemble the physical sequence 

encompassing RGH2 (Witek et al., 2016). Using the barley cultivar Baronesse, we 

found a single genomic contig that contained integrated RGH2-Exo70 (Figure 2-1B, 

C). RGH2-Exo70 and RGH3 in Baronesse were found in close proximity and were 

arranged in head-to-head orientation (Figure2-1B). In summary, Mla alleles of barley 

have presence/absence variation in RGH1, RGH2, and RGH3, as well as different gene 

fusions, including Exo70. 
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Figure 2-1.  Intra- and inter-specific variation in RGH1, RGH2, and RGH3. 

RGH1, RGH2, and RGH3 family members are shown in coloured arrows (light purple, yellow, 
and dark purple, respectively). (a) Haplotype variation in leaf expression of RGH1, RGH2, 
and RGH3 within barley (Hordeum vulgare; Hv), Aegilops tauschii (Aet), Aegilops 
sharonensis (Ash), and oat (Avena sativa; Avs). Presence of a complete coding sequence of 
each gene family is shown with coloured arrows in each column (RGH1, RGH2, and RGH3), 
and absence with faded arrows. Each combination of expressed gene families is represented 
in rows, classified as Non-integrated, Absent, and Integrated as defined by the status of the 
RGH2 family member. Pseudogenised RGH1 is indicated with the symbol y. Integrated 
RGH2-Exo70 forms are represented through green arrows alongside the yellow arrows, with 
out-of-frame integrated Exo70 shown with hatched shaded turquoise arrows. Haplotypes is 
defined as the number of haplotypes containing different RGH gene combinations in each 
row. Aet includes RGH2 from TaD genome of wheat. (b) Genomic structure of the region 
encompassing RGH2 and RGH3 across Poaceae species showing conserved head-to-head 
orientation of RGH2 and RGH3. Variation is observed in RGH2 integrated domains with 
barley accessions Morex (mla) (Wei et al., 2002) and Baronesse (Mla3/Rmo1) (Inukai et al., 
2006; Seeholzer et al., 2010) containing RGH2-Exo70 (yellow-turquoise arrow), oat accession 
Victoria containing RGH2-Exo70 (yellow-turquoise arrow), Brachypodium distachyon (Bd) 
containing RGH2-Receptor-like-kinase (yellow-teal arrow), and rice (Oryza sativa; Os) 
containing RGH2-Thioredoxin (yellow-light blue arrow). A. sativa accession Victoria and B. 
distachyon integrated Exo70 are out-of-frame with RGH2, indicated with the hatched shaded 
arrows. (c) Protein model of non-integrated RGH2 and integrated RGH2-Exo70. Individual 
domains include coiled coil (CC; red), nucleotide-binding (NB; orange), leucine-rich repeats 
(LRR; cream), and Exo70 (turquoise). 
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The Origin of Integrated Exo70 within RGH2 is Exo70F1 
 
To identify the source of the integrated Exo70, we identified and curated the Exo70 

protein families from several sequenced grass species including Brachypodium 

distachyon, barley, Oryza sativa (rice), Oropetium thomaeum, Sorghum bicolor, 

Setaria italica, and Zea mays (maize). Based on protein alignment and maximum 

likelihood phylogenetic analysis, we found that the Exo70F and Exo70FX clades were  

found to be greatly expanded within these grasses compared to Arabidopsis thaliana 

(Figure 2-2A) (Cvrčková et al., 2012). The integrated Exo70 was found to originate 

from Exo70F1. Alignment and phylogenetic analysis of the Exo70F family showed 

that Exo70F1 is a single copy family for the majority of Poaceae (Figure 2-2B). The 

5’ region of Exo70F1 was truncated after integration in RGH2, with approximately 

87% of the coding sequence of Exo70F1 present. Non-integrated Exo70F1 and RGH2 

integrated Exo70F1 are highly divergent at the nucleotide and protein level, with 67% 

and 62% identity, respectively. This degree of divergence suggests that an ancient 

duplication and fusion event led to the formation of RGH2-Exo70F1. 

 

Interspecific Conservation in the RGH2-Exo70F1 Gene Fusion  
 

Based on the observation of highly divergent non-integrated Exo70F1 and RGH2 

integrated Exo70F1, we hypothesized that other species may contain this gene fusion. 

Using BLAST on NCBI, we found an identical integration of Exo70F1 in RGH2 in 

Aegilops tauschii (Periyannan et al., 2013) and Triticum urartu (Ling et al., 2013). In 

barley, we observed that RGH2-Exo70F1 is only present in a minority of Mla 

haplotypes (Figure 2-1A). To determine if RGH2-Exo70F1 exists as a 

presence/absence polymorphism in Aegilops tauschii, we analysed the genome of 

accession AL8/78 (Luo et al., 2017) and 15 leaf transcriptomes of diverse accessions 

(Nishijima et al., 2016). We observed presence of RGH2-Exo70F1 and RGH3 in 7 

accessions but were not detected in 11 other accessions, suggesting they may be absent 

from these genomes (Figure 2-1A). In contrast to barley, we did not identify in Ae. 

tauschii an allele of RGH2 without the Exo70F1 integration. Barley and Ae. tauschii 

RGH2-Exo70F1 have 88% identity at the nucleotide level. Together, these results 

indicate that RGH2-Exo70F1 is a trans-species polymorphism between barley and Ae. 

tauschii (Klein et al., 1998).  
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Figure 2-2. Exo70F1 is the donor of the Exo70 integration in RGH2. 

(a) Maximum likelihood phylogenetic tree of Exo70 proteins from seven grass 
species, including barley RGH2 integrated Exo70 denoted HvRGH2. Saccharomyces 
cerevisiae Exo70 gene (YJL085W) was used as an outgroup. Black dots represent 
bootstrap support greater than 80% based on 1,000 bootstraps. (b) Maximum 
likelihood phylogenetic tree of Exo70F proteins from seven grass species (see 
below). The origin of the integrated Exo70 in RGH2 is Exo70F1 family (highlighted 
in pink). Arabidopsis thaliana Exo70 gene (AT5G50380; AtExo70F1) was used as 
an outgroup. Orange dots represent bootstrap support greater than 80% based on 
1,000 bootstraps. Species included in the analysis were: B. distachyon (Bd), barley 
(Hv), rice (Os), Oropetium thomaeum (Ot), Sorghum bicolor (Sb), Setaria italica 
(Si), maize (Zea mays; Zm).  
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We expanded our search to include all Pooideae species with sequenced genomes or 

publicly available leaf RNAseq data. In total, we evaluated 14 sequenced genomes 

and 126 transcriptomes from 63 species. Sequence analysis found allelic variation and 

interspecific conservation in the RGH2-Exo70F1 integration across diverse Poaceae 

species (Figure 2-1A). Non-integrated alleles of RGH2 are present in both Triticeae 

(barley) and Poeae (Poa supina and Avena sativa (oat)) species, indicating that 

multiple alleles of RGH2 have been maintained in these lineages. Based on the 

conservation of RGH2-Exo70F1 and RGH3, we hypothesized that the head-to-head 

orientation of RGH2 and RGH3 is preserved between Triticeae and Poeae species. We 

used sequence capture designed on oat NB-LRR encoding genes, including RGH2 and 

RGH3, and performed PacBio circular consensus sequencing to assemble the physical 

sequence encompassing RGH2-Exo70F1 and RGH3 from the oat cultivar Victoria. An 

identical structural arrangement was observed, with RGH2-Exo70F1 and RGH3 in 

head-to-head orientation (Figure 2-1B). Within oat, several accessions had interrupted 

RGH2-Exo70F1 open reading frames either through an early stop codon (Hanzou2, 

Hanyou5, and Mongolia) or InDel (Victoria) (Figure 2-1A). The oat accession Kanota 

was the only accession identified with an intact RGH2-Exo70F1 open reading frame 

(Figure 2-1A). A similar observation was made for the allele RGH2-Exo70F1 found 

in the Ae. tauschii-derived D genome of wheat. This suggests that while RGH2-

Exo70F1 is maintained, it may experience pseudogenisation in multiple species. 

 

RGH2-Exo70F1 Gene Fusion Occurred Prior to Poeae-Triticeae Radiation 
 

To date the origin of the gene fusion event, we performed maximum likelihood 

phylogenetic analysis using non-integrated and integrated Exo70F1. We found that 

integrated Exo70F1 derived from Triticeae and Poeae species form a distinct clade 

from non-integrated Exo70F1 (Figure 2-3). B. distachyon and B. stacei form the 

outgroup of this integrated clade, suggesting that integration of Exo70F1 in RGH2 

occurred after speciation of Brachypodieae but prior to radiation of the Poeae and 

Triticeae. The RGH2 ortholog in B. distachyon encodes an NB-LRR with a C-terminal 

integrated receptor-like kinase with intact transmembrane and extracellular lectin 

domains. The observation of both integrated and non-integrated forms of RGH2 in 

species of Triticeae and Poeae is characteristic of a trans-species polymorphism 

(Figure 2-4). This Exo70F1 integration occurred after Brachypodieae speciation, but  
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Figure 2-3. Exo70F1 integration in RGH2 occurred prior to the Poeae-Triticeae 

radiation. 

Maximum likelihood phylogenetic tree was performed on codon aligned Exo70F1 genes from 
19 grass species. Integrated Exo70F1 highlighted in blue. Branch support was generated using 
1,000 bootstraps, with orange dots designating support greater than 80%. Rice Exo70F1 
(OsExo70F1; Os01g69230.1) and O. meridionalis Exo70F1 were used as outgroups. Scale bar 
shows nucleotide substitutions per site. Species included in the analysis were: Achnatherum 
splendens (Acs), Ae. tauschii (Aet), Agropyron cristatum (Agc), Agrostis stolonifera (Ags), 
Aegilops sharonensis (Ash), A. sativa (Avs), B. distachyon (Bd), Bromus inermis (Bin), 
Dactylis glomerata (Dgl), Festuca pratensis (Fpr), Holcus lanatus (Hla), H. pubiflorum (Hp), 
barley (Hvu), Melica nutans (Mnu), Nardus stricta (Nst), rice (Os), O. meridionalis (Omer), 
Poa inermis (Pin), Poa pratensis (Ppr), Poa supina (Psu), Secale cereale (Sec), Stipa lagascae 
(Sla), Triticum aestivum (TaA, TaB, TaD subgenomes), maize (Z. mays; Zm). Clusters were 
formed due to 100% identical sequence and are listed in Appendix Table 7-2. Collapsed nodes 
represent non-integrated Exo70F1 derived from designated species and are shown in full in 
Figure 2-5. 
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Figure 2-4. Integrated and non-integrated alleles of RGH2 are maintained in 

Triticeae and Poeae species. 

The species maximum likelihood phylogenetic tree was generated using 1,263 universal single 
copy orthologs identified during BUSCO assessment of genome and transcriptome assembly, 
using rice as an outgroup species. The shaded green box indicates members of the Triticeae 
tribe. On the right-hand side, identified allelic variants of RGH2 in integrated domain status 
are shown as arrows with thioredoxin (TRX; purple), protein kinase (Pkinase; green), and 
receptor-like kinase (RLK; teal) integrations in non-Triticeae/Poeae species, and Exo70F1 
(turquoise) and CC/ NB-LRR (red) integrations in Triticeae/Poeae species. Non-integrated 
RGH2 is shown as a solid yellow arrow, whereas fragmented RGH2 (unable to classify 
integration status) is shown as a rectangle. Out of frame Exo70F1 are shown as hashed arrows 
that are disjoint from RGH2. 
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prior to Poeae-Triticeae radiation dates this event at 24 Mya (CI: 18.4 to 29.8 Mya) 

(Leaché, 2009). 

 

We hypothesized that after integration of Exo70F1 into RGH2, integrated Exo70F1 

would subfunctionalize, in concert with RGH2, for pathogen recognition. Under this 

model, integrated Exo70F1 would experience relaxed purifying selection compared to 

its non-integrated Exo70F1 counterpart. To understand the degree of selection acting 

on all Exo70 gene families, we estimated the ratio of nonsynonymous to synonymous 

mutations (dN/dS) for Exo70 gene families from sequenced grass species. All grass 

Exo70 gene families are under strong purifying selection (Appendix Table 7-3). dN/dS 

values (w) ranged from 0.07 for Exo70A1 and Exo70D2 gene families to 0.55 for the 

Exo70A4 gene family. To understand the impact on the molecular evolution of non-

integrated and integrated Exo70F1, we performed branch-specific tests allowing for 

variable levels of selective pressure. Evidence of relaxed purifying selection was 

observed for the integrated Exo70F1 clade (ωa = 0.413; p<0.001), compared to 

stronger purifying selection for non-integrated domains of Exo70F1 (ω0 = 0.092) 

(Appendix Table 7-4, Figure 2-5). Evidence of relaxation in selective constraints 

supports the hypothesis that integration of Exo70F1 releases this gene from strong 

purifying selection, whereas selection is preserved on endogenous Exo70F1 (Cesari et 

al., 2014). 

 

Integrated Exo70F1 Evolves Independently of RGH2 
 

We hypothesized that RGH2 alleles have an altered evolutionary history following 

Exo70F1 integration compared to non-integrated RGH2 alleles. To investigate the 

potential co-evolution of RGH2 and the integrated Exo70F1, we compared the 

topologies of RGH1, RGH2, and RGH3 gene families and Exo70F1 phylogenetic 

trees. All RGH gene families predominantly exhibit species specific grouping (Figure 

2-6, Figure 2-7, Figure 2-8). Variation is seen in the domain structure of RGH2 

homologs: the majority contain an Exo70F1 integration, however other domains such 

as coiled coil, receptor-like kinase (with lectin domains), thioredoxin and protein 

kinase are observed in orthologs outside of the Triticeae and Poeae tribes (Figure 2-4, 

Figure 2-7). The only exception was barley, where allelic variants include a CC and 

full-length NB-LRR from the RGH1 gene family in place of Exo70F1 (Figure 2-4;   
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Figure 2-5. Exo70F1 maximum likelihood phylogenetic tree used for molecular 

evolutionary analyses. 
Branch and clade-based estimation of ω (dN/dS) are highlighted: ω1 in pink, ωa in blue, and ωb 

in green (Appendix Table 7-4). Unit of distance is nucleotide substitutions per evaluated sites. 
Species abbreviations listed in Figure 2-3. HvuRGH2Maritime clusters with 
HvuRGH2Baronesse due to 100% similarity. Rice (Os; LOC_Os01g69230.1) and O. 
meridionalis Exo70F1 were used as outgroup species. 
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Figure 2-6. Maximum likelihood phylogenetic tree of RGH1 homologs across the 

Poaceae. 

Alignments and phylogenetic trees of full length (a) and NB domain analyses (b) were 
performed. Clusters of identical sequence are indicated by superscript numbers and indicated 
in the legend. Branch support was generated using 1,000 bootstraps for both phylogenetic 
trees, with orange dots designating support from 80-100%. Species abbreviations listed in 
Figure 2-3 and Appendix Table 7-1. Rice (Os; LOC_Os11g43700.1) used as an outgroup. 
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Figure 2-7. Maximum likelihood phylogenetic tree and domain structure of 

RGH2 homologs across the Poaceae. 
Alignments and phylogenetic trees of full length (a) and NB domain analyses (b) were 
performed. RGH2 domain structure represented on the right. RGH2 from Ae. tauschii and H. 
vulgare indicated with yellow and green, respectively. AvsVictoria, AvsHuazao2, and 
AvsHanyou5 integrated Exo70F1 are absent from domain structure due to early stop codons 
and frame-shift relative to RGH2. In addition to canonical domains (CC; red, NB; orange, 
LRR; cream), additional C-terminal integrated domains are observed in RGH2 alleles and 
include thioredoxin (TRX; purple), protein kinase (Pkinase; light green), lectin (teal) and 
Exo70 (cyan). Dashed lines represent fragmented ORFs (only observed for Hla RGH2). 
Branch support was generated using 1,000 bootstraps, with orange dots designating support 
from 80-100%. Species abbreviations listed in Figure 2-3 and Appendix Table 7-1. Rice (Os; 
AK071926 (=LOC_Os12g18360.2)) used as an outgroup.  
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Figure 2-8. Maximum likelihood phylogenetic tree of RGH3 homologs across the 

Poaceae. 

Alignments and phylogenetic trees of full length (a) and NB domain analyses (b) were 
performed. RGH3 from Ae. tauschii and H. vulgare indicated with yellow and green 
highlighting respectively. Branch support was generated using 3,000 and 10,000 bootstraps 
for RGH3 full length and NB domain, respectively, with orange dots designating support from 
80-100%. Species abbreviations listed in Figure 2-3 and Appendix Table 7-1. Rice (Os; 
LOC_Os12g18374.1) used as an outgroup. 
  



 

 50 

Figure 2-7). RGH2 belongs to the NB-LRR clade MIC1 whose members are known 

to contain diverse integrated domains (Bailey et al., 2018). Our results suggest that 

MIC1 clade members identified without integrated domains in sequenced species may 

have intraspecific variants with integrated domains, such as RGH2. 

 

Integrated Exo70F1 have a distinct evolutionary history compared to their non-

integrated counterparts. The integrated Exo70F1 clade follows the species phylogeny, 

with two major subclades containing the Aegilops and barley alleles, and the other 

comprising wheat, Phalaris arundinacea, Holcus lanatus, and oat (Figure 2-3). 

Exceptions include alleles derived from accessions AetATL, HvuHOR1428, and TaD, 

the latter derived from the D subgenome of wheat (Figure 2-3). This observation 

suggests that either multiple alleles of RGH2-Exo70F1 are preserved during speciation 

events or convergent processes constrain the evolvability of integrated Exo70F1. In 

contrast, integrated and non-integrated forms of RGH2 do not show the same clade 

distinction; therefore, integrated status has not substantially altered the evolutionary 

trajectory of RGH2, nor has significant co-evolution occurred (Figure 2-7). 

 

2.4 Discussion  
 

The majority of genetic diversity is neutral or slightly deleterious; yet within 

populations, certain polymorphisms are maintained where selection favours 

advantageous genetic variation. During speciation events, these loci can be preserved 

when balancing selection conserves diverse allelic variants. Such balanced 

polymorphisms are only maintained if selection can prevent allele fixation and 

overcome genetic drift or selective sweeps. Extant species can contain allelic variation 

which transcends the lifetime of the species and is shared with sister taxa and 

evolutionary ancestors: creating trans-species polymorphisms. Classic well-studied 

examples include the major histocompatibility locus (MHC) in vertebrates (Klein et 

al., 2007), histo-blood groups in primates (Ségurel et al., 2013), mating compatibility 

of filamentous fungi (Brown and Casselton, 2001; Glass and Kaneko, 2003; Wu et al., 

1998), and plant self-incompatibility (SI) systems (Nasrallah, 2017, 2002). These 

known loci are involved in self and non-self recognition mechanisms, which are 

pivotal to life processes such as sexual reproduction and immunity. While self-

recognition systems such as SI loci are limited by single receptor-ligand binding 
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models, genes involved in non-self recognition systems with multiple-receptor ligands 

and multiple-ligand receptors experience diversifying selection and intraspecific 

polymorphisms. Plant resistance genes are known to experience high levels of allelic 

diversity, yet our understanding of deep evolutionary history has been limited. 

 

Recognition of plant pathogens is mediated by membrane and cytoplasmic immune 

receptors that recognise pathogen-derived molecules, including effectors (Jones and 

Dangl, 2006). Cytoplasmic immune receptors recognise secreted pathogen effectors 

directly, or indirectly through monitoring the molecular status of host proteins targeted 

by pathogen effectors (Jones et al., 2016). At the population level, plant immunity to 

pathogens is conferred, in part, through the maintenance of diverse allelic variants at 

immune receptor loci. Pathogen pressure influences the relative frequency of 

resistance alleles in plant populations, with selection fluctuating due to pathogen 

evolution. Mutations that generate novel approaches to manipulate a host by immune 

suppression or nutrient acquisition, for example, are selected for in the pathogen. 

Similarly, novel forms of pathogen recognition are selected for in the plant. A recent 

area of intensive research in plant immunity includes the identification of integrated 

non-canonical domains in NB-LRRs, which are thought to serve as baits for pathogen 

effectors, and thus, facilitate efficient immune responses (Cesari, 2018; Kroj et al., 

2016; Sarris et al., 2016). It is hypothesised that integrated domains are released from 

purifying selection for host function and are free to adapt specifically for pathogen 

recognition (Cesari, 2018). 

 

Here, we observe the integration of Exo70F1 within the NB-LRR encoding gene 

RGH2 at the Mla locus in barley has been maintained as a trans-species polymorphism 

in the Triticeae and Poeae tribes for over 24 million years. Exo70 is one of the eight 

subunits comprising the exocyst complex, a crucial component of the exocytosis 

pathway which mediates the active transport of molecules out of the cell. The exocyst 

complex is involved in the tethering of post-Golgi secretory vesicles to the plasma 

membrane prior to SNARE complex-mediated membrane fusion (He et al., 2007; 

Heider and Munson, 2012; Synek et al., 2006). In plant genomes, the core exocyst 

subunits of Sec3, Sec5, Sec6, Sec8 and Sec10 are retained in few or single copies, 

whereas Exo70 has experienced dramatic proliferation into multiple gene families 

(Cvrčková et al., 2012). Diversification is characteristic of sub-functionalization or 
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neo-functionalization (Lynch and Conery, 2000) and Exo70 genes are involved in 

diverse roles in morphogenesis (Heider and Munson, 2012), development (Sekereš et 

al., 2017), and immunity (Gu et al., 2017). Cvrčková et al. (2012) comprehensively 

described members of the exocyst complex throughout land plants using 

representative species from both monocots and dicots and observed considerable 

expansion of the grass Exo70F and FX clades (Cvrčková et al., 2012), similar to 

findings reported here. Members of Exo70F and Exo70FX gene families are known to 

have a role in immunity: barley EXO70F-like (ExoFX11b.a) is essential for full 

penetration resistance to B. graminis f. sp. hordei (Ostertag et al., 2013), and rice 

Exo70F3 binds the Pyricularia oryzae effector AVR-Pii; this interaction is essential 

for Pii (NB-LRR) mediated resistance (Fujisaki et al., 2015). The integration of 

Exo70F1 in RGH2 suggests a potential role in immunity either through localisation of 

the NB-LRR or as a decoy for effector recognition. 

 

Until now, it was unclear how selective forces in the plant-pathogen interaction 

influence the preservation of diverse alleles through plant speciation events because 

previous evolutionary analyses were limited by high rates of intraspecific and 

interspecific variation of NB-LRRs. In plants, previous work established time scales 

of long-term maintenance of polymorphic sites in stress response genes between A. 

thaliana and Capsella rubella (Q. Wu et al., 2017) over 5 Mya, in immunity genes in 

Capsella species (Koenig et al., 2019), and presence/absence polymorphisms in RPS5 

in A. thaliana due to long-term balancing selection (Karasov et al., 2014) over 2 Mya. 

Here, we have used the integrated Exo70F1 domain within RGH2 as an evolutionary 

footprint to track the history of the Mla locus through speciation of the grasses. We 

observed both integrated and non-integrated forms of RGH2, as well as absence of 

RGH2, in species of Triticeae and Poeae. This establishes a trans-species 

polymorphism originating 24 Mya (Leaché, 2009) and maintained to present day 

(Figure 2-4). Long-lasting trans-species polymorphisms are maintained through 

balancing selection, as in its absence, mutations within a population are either lost, 

achieve fixation, or exist in a frequency-dependent manner (Klein et al., 1998). Based 

on the allelic diversity we observe today in extant species, we can infer the 

evolutionary history of RGH2-Exo70F1 (Figure 2-9). We hypothesise that an ancient  
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Figure 2-9. Evolutionary model of RGH2. 
Reconstitution of the evolutionary history of the RGH2 alleles through time. Allelic pools of 
RGH2 within a population indicated by the horizontal row of dots. Alleles of RGH2 include 
the non-integrated RGH2 or rgh2 (blue) and integrated forms: RGH2-Exo70F1 (yellow) and 
RGH2-RLK (green). Speciation events (red S) give rise to distinct populations and RGH2 
allelic pools. Evolutionary time indicated by the grey arrow on the left-hand side with modern 
extant species indicated at the bottom of the model (A. sativa, A. tauschii, H. vulgare, B. 
distachyon).  
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gene fusion event of an RGH2 allele with the non-integrated Exo70F1 was 

subsequently retained in an ancestral grass population (Figure 2-9). The diverse RGH2 

allelic pool was maintained during the evolution of the grasses and through speciation 

events, as balancing selection favoured immune receptor variation beneficial against 

both extinct and extant pathogen species. In oat, we observed integrated RGH2-

Exo70F1 and several alleles with interrupted open reading frames of RGH2 and 

Exo70F1. This indicates that selection is required to maintain the RGH2-Exo70F1 

gene fusion. The diversity of RGH2 alleles identified in barley was likely due to 

substantial sampling (40 accessions). Sequencing of more accessions in other species 

would likely reveal a similar observation. Using genomes and transcriptomes from 

species across the Poaceae, we have unravelled the evolutionary history of a shared 

integrated NB-LRR within the grasses and shown that allelic diversity is present as a 

trans-species polymorphism at Mla. The association of the Mla locus with multiple 

pathogen recognition (Inukai et al., 2006) emphasises the impact of diverse pathogen 

populations on the evolutionary forces shaping immune receptor diversity in the 

Poaceae. 
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2.5 Materials and methods  
 

Plant material 

A full inventory of plant species and acronyms used in this study are available in 

(Appendix Table 7-1). 

 

RNAseq and de novo assembly 

First and second leaf tissue was harvested at 10 days after sowing of barley and oat 

accessions grown in the greenhouse. Tissue was flash frozen in liquid nitrogen and 

stored at -80 °C. Tissue were homogenized into a fine powder in liquid nitrogen-

chilled pestle and mortars. RNA was extracted, purified, and quality assessed as 

described by Dawson et al. (2016) (Dawson et al., 2016). RNA libraries were 

constructed using Illumina TruSeq RNA library preparation (Illumina; RS-122-2001). 

Barcoded libraries were sequenced using either 100 or 150 bp paired-end reads. 

Library preparation and sequencing was performed at either the Earlham Institute 

(Norwich, United Kingdom) or BGI (Shenzhen, China). Quality of all RNAseq data 

was assessed using FastQC (Andrews, 2010) (0.11.5). Trinity (Grabherr et al., 2011) 

(2.4.0) was used to assemble de novo transcriptomes using default parameters and 

Trimmomatic (Bolger et al., 2014) for read trimming. Exo70F1, RGH1, RGH2, and 

RGH3 were identified in de novo assemblies using BLAST+ (v2.2.9) (Camacho et al., 

2009). 

 

Development of the barley and oat sequence capture 

The barley capture library TSLMMHV1 is composed of 99,421 100 mer baits with 2x 

coverage over the target space. Targeted sequences include repeat masked Mla locus 

from Morex (Wei et al., 2002), all cloned alleles of Mla (Halterman et al., 2001; 

Halterman and Wise, 2004; Seeholzer et al., 2010; Shen et al., 2003; Zhou et al., 

2001), the Mlo locus (Büschges et al., 1997), the Rpg1 locus (Brueggeman et al., 

2002), and the rpg4/Rpg5 locus (Brueggeman et al., 2008). In addition, the capture 

library targets the barley NB-LRR gene space identified in genomic sequence from 

barley accessions Barke, Bowman, and Morex, full length cDNA derived from barley 

accession Haruna Nijo, and transcriptomes of barley accessions Abed Binder 12, 

Baronesse, CI 16153, CIho 4196, Manchuria, Pallas, Russell, and SusPtrit. The 

capture library TSLMMAS1 is composed of 29,672 100 mer baits with 2x coverage 
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over the target space. Targeted sequences include NB-LRR containing contigs from 

de novo assembled transcriptomes of oat accessions Kanota and Victoria. 

 

For both libraries, NB-LRR gene space was identified using the following approach. 

For transcriptomes, TransDecoder (Haas et al., 2013) (v4.1.0) was used to identify 

and translate ORFs. Using a similar strategy as Jupe et al. (2012) (Jupe et al., 2013), 

we developed a motif set using MEME (Bailey et al., 2009) trained on a random 

randomized proportional sample of NB-LRR (J. Li et al., 2010; Tan and Wu, 2012) 

from rice (N=35) and B. distachyon (N=17). The MEME motifs spanned the CC 

domain (motifs 4, 11, 13, and 15), NB domain (motifs 1, 2, 3, 5, 6, 7, 8, 10, 12, and 

14), and the LRR domain (motifs 19, 9, 20, 16, 17, and 18) . All the identified motifs 

in the NB are similar to those previously defined by Meyers et al. (2003) (Meyers et 

al., 2003) in A. thaliana. A MAST significance threshold of 1e-20 was selected based 

on its ability to identify all annotated NB-LRRs within B. distachyon and rice. For 

barley whole genome shotgun assemblies, all six ORFs were translated for each contig 

and concatenated into a single peptide sequence for the forward and reverse strand. 

Translated genomic contigs were scanned using FIMO, which assesses all twenty 

MEME-generated motifs independently. Contigs were included in the capture if one 

of two conditions were met: (1) at least one CC and two NB motifs were present or 

(2) at least two NB and one LRR motifs are present in the translated sequence strand. 

 

Next, redundancy within the sequence capture template was removed. We fragmented 

the input data set into 100 bp fragments with a scanning window of 25 bp and 

performed BLASTn onto the entire data set. Any sequence found to have identity of 

95% or higher was considered redundant other than the original site. The first 

occurrence of the sequence would be retained and the others were masked. While this 

approach removes redundancy in the data set, the inclusion of extensive genomic 

sequence will introduce repetitive sequence that can produce competition in the 

sequence capture due to the high copy number of repetitive sequence in the barley 

genome. Therefore, two approaches were used to remove repetitive sequence in the 

sequence capture design. All loci were repeat masked based using RepeatMasker 

(Smit et al., 2013-2015) (v4.0.5) using default and Triticeae-specific repeat databases. 

As repeat databases are not complete, we applied genomic masking of the capture 

design. To do so, we fragmented the input data set into 100 bp fragments with a 
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scanning window of 50 bp and performed BLAST onto the barley Morex WGS 

assembly. A threshold of eight or fewer copies was found selected to balance between 

copy number variation within NB-LRRs and avoiding the inclusion of repetitive 

sequence. 

 

DNA extraction and sequencing library preparation 

Total genomic DNA was extracted from leaf tissue according to a CTAB method 

(Stewart and Via, 1993). In brief, 3 g of leaf tissue were ground on liquid N2 and 

homogenized with 20 mL of CTAB extraction buffer (2% CTAB, 100 mM Tris-HCl 

pH8.0, 20 mM EDTA pH8.0, 1.4 M NaCl, 1% β-Mercaptoethanol). Samples were 

incubated for 30 min at 65°C followed by two chloroform extractions and ethanol 

precipitation. DNA was then resuspended in 1x TE, 50 µg/mL RNase A solution and 

incubated for 1 h at 37°C. DNA was subsequently precipitated with 2.5 volumes of 

ice-cold 95% ethanol and resuspended in 1x TE. Quantification of DNA samples was 

performed using a Nanodrop spectrophotometer (Thermo Scientific) and the Qubit 

dsDNA HS Assay Kit (Molecular Probes, Life Technologies). DNA samples were 

normalized to 3 µg and sheared to an average length of 3-4 kb using a Covaris S2 

sonicator with the following settings: Duty Cycle 20%, Intensity 1, Cycle Burst 1000, 

Time 600 s, Sample volume 200 µL. After sonication, a small aliquot was assayed by 

gel electrophoresis and additional size selection was carried out using 0.4x Agencourt 

AMPure XP beads (Beckman Coulter Genomics). Samples were then end repaired 

followed by 3’dA addition using the NEBNext Ultra DNA Library Prep Kit for 

Illumina (New England Biolabs). Illumina sequencing adapters were ligated onto the 

ends and following purification with AMPure XP beads, the DNA was PCR amplified 

(8 cycles) using indexed PCR primers (NEBNext Multiplex Oligos for Illumina, New 

England Biolabs) and the Illumina PE1.0 PCR primer. After purification using 

AMPure XP beads, quality assays were performed with a Bioanalyzer DNA 1000 chip 

(Agilent) and the Qubit dsDNA assay to determine the average fragment sizes and 

concentrations. 

 

Target enrichment and sequencing 

Enrichment and sequencing was carried out as described by Witek et al. (2016) (Witek 

et al., 2016). Briefly, DNA sequencing libraries was enriched according to the 
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MYbaits protocol (MYbaits User Manual version 2.3.1) and using MYbaits reagents 

(MYcroarray). Briefly, 500 ng of the prepped library was hybridized in hybridization 

buffer (10x SSPE, 10X Denhardt’s solution, 10 mM EDTA, 0.2% SDS) to the 

biotinylated RNA baits for 20 h at 65°C on a thermocycler. After hybridization bound 

DNA was recovered using magnetic streptavidin-coated beads as follows: the 

hybridization mix was added to 30 µL Dynabeads MyOne Streptavidin C1 

(Invitrogen, Life Technologies) that had been washed 3 times and resuspended in 

binding buffer (1 M NaCl; 10 mM Tris-HCl, pH 7.5; 1 mM EDTA). After 30 m at 

65°C, beads were pulled down and washed three times at 65°C for 10 m with 0.02% 

SSC/0.1% SDS followed by resuspension in 30 µL of nuclease-free water. Library 

was then PCR amplified (26 cycles) using Kapa HiFi HotStart Ready Mix (Kapa 

Biosystems) and Illumina P5 and P7 primers. The amplified library was size 

fractionated with the Sage Scientific Electrophoretic Lateral Fractionator (SageELF, 

Sage Science) using a 0.75% SageELF agarose gel cassette. Fractions with size 

distribution between 3 and 4 kb were pooled and purified with AMPure PB beads 

(Pacific Biosciences). Then, library was assembled for PacBio sequencing using the 

SMRTbell Template Prep Kit 1.0 (Pacific Biosciences) according the 2-kb Template 

Preparation and Sequencing protocol 

(www.pacificbiosciences.com/support/pubmap/documentation.html). PacBio RSII 

sequencing using C4-P6 chemistry was performed at the Earlham Institute (Norwich, 

UK), using four SMRT cells for each barley accession Baronesse and oat accession 

Victoria. 

 

PacBio assembly 

PacBio circular consensus reads with at least three passes were used for genome 

assembly. Reads were trimmed to remove the adapter sequence (first and last 70 bp) 

and size selected to reads less than 4kb. We used Geneious (Kearse et al., 2012) 

(v10.2.3) De Novo Assembly with the following Custom Sensitivity parameters for 

assembly: don't merge variants with coverage over approximately 6, merge 

homopolymer variants, allow gaps up to a maximum of 15% gaps per read, word 

length of 14, minimum overlap of 250 bp, ignore words repeated more than 200 times, 

5% maximum mismatches per read, maximum gap size of 2, minimum overlap 

identity of 90%, index word length 12, reanalyze threshold of 8, and maximum 

ambiguity of 4. 
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Phylogenetic analyses 

Exo70 coding and protein sequences were accessed from Department of Energy-Joint 

Genome Institute Phytozome database (https://phytozome.jgi.doe.gov), A. thaliana 

gene sequence was accessed from TAIR (www.arabidopsis.org), and barley Exo70 

gene families from the recently updated 2017 genome (Mascher et al., 2017). 

Substantial curation of the barley Exo70 gene family was required and incorporated 

gene models from the 2012 genome (IBGSC et al., 2012). Outgroups for complete 

Exo70, Exo70F, and Exo70F1 phylogenetic trees were Saccharomyces cerevisiae 

Exo70 protein (YJL085W), A. thaliana Exo70F1 protein (AT5G50380), and O. sativa 

Exo70F1 (Os01g69230.1), respectively. MUSCLE (Edgar, 2004) (v3.8.31) and 

PRANK (Löytynoja, 2014) (v.140603) were used for protein and codon-based 

sequence alignment using default parameters, respectively. Curation of the multiple 

sequence alignment for complete Exo70 and Exo70F gene family was used to remove 

sequences with less than 40% of the breadth of the alignment and to remove positions 

with more than 60% missing data. Gene families were identified based on bootstrap 

support in the phylogenetic tree (Figure 2-2A), incorporating a previous annotation 

performed on the Exo70 gene family (Cvrčková et al., 2012) (Appendix Table 7-5). 

We required that 90% sequence coverage for inclusion in the Exo70F1 phylogenetic 

tree. RAxML (Stamatakis et al., 2005) (v8.2.9) was used for phylogenetic tree 

construction using the PROTGAMMAJTT and GTRCAT models for protein and 

coding sequence alignment, respectively. Bootstrap support was determined for all 

phylogenetic trees, using a convergence test to confirm sufficient sampling. 

 

Exo70F1 homologs were identified from diverse Poales species (McKain et al., 2016) 

using BLAST+ (Appendix Table 7-1 Table 7-5, Brabham et al., 2018). The only 

species found without a non-integrated Exo70F1 was H. lanatus. Alignment of H. 

lanatus RNAseq reads to Dactylis glomerata Exo70F1 and de novo assembly using 

Geneious was used to reconstruct H. lanatus Exo70F1. Multiple sequence alignment 

and phylogenetic analysis of Exo70F gene families was used to establish Exo70F1 

orthology (Appendix Figure 7-1). The site of sequence conservation between 

integrated and non-integrated Exo70F1 was determined based on codon-based 

sequence alignment.  
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The species phylogenetic tree was generated using universal single copy orthologs 

identified during BUSCO assessment of genome and transcriptome assembly (Simão 

et al., 2015; Waterhouse et al., 2018). A total of 1,263 genes were identified, aligned 

using PRANK (v.140603) with codon-based sequence alignment using default 

parameters. Genes were concatenated and subjected to maximum likelihood 

phylogenetic tree construction. The bioinformatic pipeline can be found on the GitHub 

repository https://github.com/matthewmoscou/QKbusco (v1.0). 

 

Molecular evolutionary analyses 

Molecular evolutionary analyses were performed with PAML (Yang, 2007) (v4.8) 

codeml. The F3x4 codon frequency model was used for all analyses. Codon-based 

sequence alignment using PRANK, phylogenetic analysis using RAxML, and codeml 

were used to estimate ω (dN/dS) for all Exo70 gene families (Appendix Table 7-3). For 

molecular evolutionary analyses of the non-integrated and integrated Exo70F1 gene 

family, four hypotheses were tested: H0: a single rate of ω0 across the entire tree, H1: 

a different rate of ω1 for the initial branch of the integrated Exo70F1, H2: a different 

rate of ωa for integrated Exo70F1 compared to non-integrated Exo70F1 (ω0), and H3: 

three different rates of ω: ω0, non-integrated Exo70F1 outside of the Poeae and 

Triticeae, ωa, integrated Exo70F1, and ωb, non-integrated Exo70F1 from the Poeae 

and Triticeae (Figure 2-5, Appendix Table 7-4).  

 

Data 

All high-throughput sequencing data, de novo transcriptome assemblies, and de novo 

assembly of the NB-LRR gene space of barley and oat are deposited in the NCBI 

BioProject PRJNA378334, PRJNA378723, PRJNA422803, and PRJNA422986. De 

novo transcriptome assemblies for publically available RNAseq data, multiple 

sequence alignments, and phylogenetic trees in Newick format are available from 

figshare (https://figshare.com). Scripts, analysis pipeline, and details associated with 

Exo70 gene family curation can be found on the GitHub repository 

https://github.com/matthewmoscou/Exo70 (v1.0). 
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3 Mla3, Rmo1, and Lov1 are in complete genetic 

coupling 

 

 

3.1 Abstract  

The ability to resolve the potential for multiple-pathogen recognition specificities is 

severely limited when disease resistance QTLs overlap in the genome. This requires 

fine-mapping at the desired locus associated with disease phenotype. The Mla locus 

has over 30 described alleles conferring isolate-specific resistance to Blumeria 

graminis f. sp. hordei (powdery mildew), contains three NB-LRR encoding gene 

families (RGH1, RGH2, and RGH3), and is associated with resistance to multiple 

pathogens including Puccinia striiformis f. sp. tritici (wheat stripe rust; Rps7) and 

Pyricularia oryzae (rice blast; Rmo1). In addition, sensitivity to the B. victoriae toxin 

victorin (Lov1) has been mapped near the Mla locus. We performed a high-resolution 

recombination screen and found Mla3 and Rmo1 to be in complete coupling. 

Furthermore, Lov1 was also found to be in complete genetic coupling with Mla3 and 

Rmo1. Using sequence capture and RNAseq, we discovered that all three NB-LRR 

gene families—RGH1 (Mla), RGH2-Exo70F1, RGH3—are expressed and are all 

potential candidate genes. Taking advantage of existing genetic resources of an Mla 

introgression panel and association genetics, we identify Mla3 as the primary 

candidate for Rmo1 and Lov1. 

 
3.2 Introduction 

 

The majority of plant R genes operate in a gene-for-gene manner recognising a single 

effector gene in the pathogen—or even more specifically a single effector gene in a 

single isolate of a pathogen. Few R genes have been shown to recognise multiple plant 

pathogens. The largest class of R genes encode nucleotide-binding, leucine-rich repeat 

(NB-LRR) proteins which initiate a defence response upon recognition of pathogen 

infection (Jones et al., 2016; Jones and Dangl, 2006). Direct recognition of pathogen 

effectors is hypothesised to limit the potential for multiple-pathogen recognition, due 
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to the reliance on conserved effectors or shared structural features. As plant genomes 

encode a finite number of immune receptors, maintaining resistance to the majority of 

pathogens is challenging. Indirect recognition by R genes, or the guarding of plant 

proteins, has the potential to expand recognition capacity and distances the 

requirement to sustain recognition of fast-evolving pathogen effectors. 

 

The clustering of plant resistance genes is well known (Michelmore and Meyers, 1998; 

van Wersch and Li, 2019) and has been observed in rice (Wisser et al., 2005), barley 

(Bailey et al., 2018; Muñoz-Amatriaín et al., 2013; Schweizer et al., 2011), and 

Arabidopsis thaliana (Meyers et al., 2003). The observation of overlapping QTL in 

the genome highlight potential ‘hotspots’ of R gene loci. However, use of different 

mapping populations and haplotype-specific markers limit the resolution of these 

regions and their potential contribution to multiple pathogen recognition specificities. 

The short arm of chromosome 1H of barley has been associated with resistance to 

multiple pathogens, with multiple co-localising genes and QTLs against Blumeria 

graminis f. sp. hordei (Bgh), Puccinia striiformis f. sp. hordei, B. sativus, Puccinia 

striiformis f. sp. tritici (Leng et al., 2018; Roy et al., 2010; Schweizer et al., 2011). 

This region includes the Mla locus of barley which is known to contain three coiled-

coil NB-LRR (CC-NB-LRR) gene families (Wei et al., 2002, 1999). Allelic variants 

of the Mla CC-NB-LRR gene (RGH1) confer isolate-specific immunity against the 

host pathogen barley powdery mildew Bgh (Halterman et al., 2001; Halterman and 

Wise, 2004; Seeholzer et al., 2010; Shen et al., 2003; Zhou et al., 2001). While other 

loci have been mapped that confer resistance to powdery mildew, only the Mla locus 

displays extreme functional diversification present as an allelic series across diverse 

barley haplotypes (Jørgensen, 1994; Seeholzer et al., 2010). 

 

Resistance to Pyricularia oryzae (teleomorph Magnaporthe oryzae) in barley (Rmo1; 

Resistance to Magnaporthe oryzae1) has been mapped to the Mla locus (Inukai et al., 

2006). Rmo1 was resolved to 3.0 cM within the 95% confidence interval (Inukai et al., 

2006). P. oryzae is the causal agent of the rice blast and, despite the disease being 

named after the most common host, P. oryzae is known to infect over 50 cultivated 

and wild monocot plant species (Gladieux et al., 2018). Blast epidemics in barley have 

been previously reported in Japan and northern Thailand (Kawai et al., 1979; 

Matsumoto and Mogi, 1979; Sato et al., 2001), and isolates collected on barley and 
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rice form a monophyletic clade (Gladieux et al., 2018). Resistance to P. oryzae is 

highly polymorphic across barley accessions (Nga et al., 2012). Previous isolate-

specific and partial seedling resistance QTLs have been mapped across chromosomes 

3H, 4H, and 5H, with the 4H QTL co-localising with previously mapped loci 

conferring resistance to stem rust (Puccinia graminis), scald (Rhynchosporium 

secalis), and net blotch (Phyrenophora teres) (Sato et al., 2001). Resistance QTLs 

were donated from barley cv. TR306: a Canadian accession from a region devoid of 

blast disease (Sato et al., 2001). With recent epidemics of wheat blast in Bangladesh 

(Islam et al., 2016), and historical and recent evidence of host jumps through loss of 

effector genes (Inoue et al., 2017), understanding resistance that limits host range 

across grasses is crucial.  

 

Despite extensive use in breeding for resistance to biotrophic pathogens, NB-LRRs 

are also targets of necrotrophic effectors and can act as susceptibility factors. 

Necrotrophic pathogens thrive on host dead tissue, actively secreting phytotoxic 

secondary metabolites, peptides, and reactive oxygen species (ROS) to induce host 

tissue degradation. Necrotrophic pathogens can have a broad host range, such as the 

moulds Botrytis cinerea, Monilinia fructicola, and Sclerotinia sclerotiorum and leaf 

spot Alternaria brassicicola (Glazebrook, 2005; Horbach et al., 2011; van Kan, 2006; 

Wang et al., 2014); whereas others have narrow host range, requiring the production 

and secretion of a host-selective toxin (HST) for virulence. Necrotrophic effectors and 

HSTs can be proteinaceous or small metabolites and are defined as HSTs if host 

sensitivity to toxin production defines the host range of these pathogens (Friesen et 

al., 2008; Wang et al., 2014; Wolpert et al., 2002).  

 

During the 1940s, breeding of “Victoria-type” oats (Avena sativa) for oat crown rust 

(Puccinia coronata) resistance unwittingly facilitated a host jump of the necrotrophic 

pathogen B. victoriae and the corresponding Victoria blight disease from timothy-

grass (Phleum pratense) (Meehan and Murphy, 1946). B. victoriae is a nectrotroph 

and its pathogenesis is dependent on host sensitivity to the HST victorin (Wolpert et 

al., 2002; Walton 1996). The newly introgressed Pc2 oat crown rust resistance also 

introgressed sensitivity to victorin (Vb).  Insensitive mutants of Vb also exhibit 

susceptibility to P. coronata (Mayama et al., 1995). Sweat et al., (2008), identified 

natural variation for sensitivity to victorin in Arabidopsis thaliana, and several plant 
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species exhibit degrees of victorin sensitivity including oat, rice, Brachypodium, 

common bean (Phaseolus vulgaris), and barley (Lorang et al., 2018). Pc2 and Vb have 

never been genetically separated in oat, raising the hypothesis that they might be the 

same gene. Work in A. thaliana identified LOV1 (LOCUS ORCHESTRATING 

VICTORIN EFFECTS1), a CC-NB-LRR conditioning victorin sensitivity (Lorang et 

al., 2007). LOV1 is conserved in A. thaliana, which suggests it is maintained due to 

selection for functional resistance to an as yet unidentified pathogen (Sweat et al., 

2008). Mutagenesis of LOV1-containing lines identified LIV1 (LOCUS OF 

INSENSITIVITY TO VICTORIN1), a second gene required for victorin sensitivity 

(Sweat and Wolpert, 2007). LIV1 encodes a thioredoxin h5, a member of the 

thioredoxin family involved in redox homeostasis (Sweat and Wolpert, 2007). 

Victorin binding to thioredoxin h5 activates LOV1 initiating a defence response and 

subsequent cell death: characteristic of the guard model of NB-LRR mediated defence. 

Lorang et al., (2010) mapped sensitivity to the host-selective toxin victorin produced 

by B. victoriae in barley (Lov1) to a QTL on the short arm of 1H, encompassing the 

Mla3 locus. An NB-LRR in this region is a prime candidate for Lov1 if the mechanism 

of victorin sensitivity is conserved.  

 

The barley accession Baronesse—Mla3 haplotype—displays race-specific resistance 

to P. oryzae isolate KEN54-20 (Inukai et al., 2006), Bgh isolates carrying AVRa3 

(Jørgensen, 1992), and is sensitive to the host selective toxin victorin produced by B. 

victoriae (Lorang et al., 2010). The barley accession BCD47 displays opposing 

phenotypes to each pathogen. The BCD47 Mla resistance specificity is 

uncharacterised and is most closely related to Mla16 and Mla18 (Figure 3-8) (A. J. 

Castro et al., 2003). Mapping of Rmo1 and Lov1 was performed in a doubled-haploid 

(DH) population derived from the cross of barley accessions Baronesse and BCD47 

(Inukai et al., 2006; Lorang et al., 2010). The coupling of Mla, Rmo1, and Lov1 is 

limited to the resolution available in the DH population, therefore the generation of 

additional recombinant individuals is crucial to resolve the genetic relationship of 

these three genes. Here, the fine-mapping and candidate gene identification of Rmo1 

and Lov1 on the Mla3 locus is outlined.  
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3.3 Results 

 

Confirming the mapping of Mla3/Rmo1/Lov1 using the DH population  

 

Previous work used low resolution simple sequence repeat (SSR) markers to develop 

a genetic map for the Baronesse x BCD47 DH population. The population was 

genotyped with a selection of KASP (Kompetitive Allele Specific PCR) markers 

derived from polymorphic OPA markers (Close et al., 2009). Markers were chosen in 

equidistant positions based on the consensus genetic map at intervals of 20 cM 

(Muñoz-Amatriaín et al., 2011). Seventeen additional markers were chosen, 

improving the genetic map considerably (Figure 3-1A). The resolution of the 1H 

chromosome was improved to an 11 cM region covered by 12 non-redundant markers 

which encompasses the Mla3 locus. Suppressed recombination is still observed across 

the locus. Re-evaluation of the original victorin sensitivity data found victorin 

sensitivity to be in genetic coupling with the Mla3 locus (Figure 3-1B). 

 

High resolution recombination screen at Mla 

 

To elucidate the genetic basis of Mla3, Rmo1, and Lov1, a high resolution 

recombination screen using Baronesse x BCD47 F2 individuals (N=2,304 gametes) 

was performed and 173 recombinants in a 22.9 cM region were identified (Figure 3-2). 

Of these, 82 individuals contained a recombination event between the two flanking 

markers of the Mla locus as defined by K_963924_115 and K_206D11_281. A genetic 

map of the 1H chromosome of the Baronesse x BCD47 population was developed 

using 12 KASP markers (Figure 3-2). A wide genetic interval from markers K_3_0933 

to K_4261 was selected to ensure the capture of the entire Mla locus. Homozygous 

recombinants were identified for 56 unique F2:3 families, with 95 recombinants in the 

target interval. Twenty-four additional KASP markers were generated by identifying 

single nucleotide polymorphisms (SNPs) between Baronesse and BCD47 from PCR 

amplification of the Mla locus. Suppressed recombination was observed at the Mla3 

locus, with 18 markers in complete genetic coupling with K_Mla_RGH1_2920 
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Figure 3-1. Improved Baronesse x BDC47 genetic map and confirmation of Lov1 

at the Mla locus. 

A) Recombination fractions of the previous genetic map and the updated genetic map. The 
updated genetic map is improved with lower recombination fractions between distant markers, 
and the loss of association between markers on 4H and 7H as observed in the first plot.  
B) Phenotype by Genotype plot of the ORO (Baronesse x BCD47) DH population phenotyped 
for victorin sensitivity on a scale where 0 = completely insensitive and 3 = completely 
sensitive. Victorin sensitivity is in complete genetic coupling at the Mla locus.  
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Figure 3-2. Rmo1 and Lov1 are in genetic coupling with Mla3. 
A) The distal end of the short arm of chromosome 1H based on non-redundant KASP markers 
in the Baronesse x BCD47 population. Numbers of the left-hand side correspond to the cM 
distance with marker names on the right-hand side. B) High-resolution genetic map based on 
a recombination screen including N=2,304 gametes. Numbers on the left-hand side correspond 
to the number of recombination events between markers, with KASP markers on the right-
hand side. Twenty additional markers (not shown) are in complete genetic coupling with 
K_Mla_RGH1_2920 at the Mla locus. Mla3, Rmo1, and Lov1 are in complete genetic coupling 
with K_Mla_RGH1_2920 at the Mla locus.  
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 despite spanning a ~240 kb physical region in the reference sequence cv. Morex. The 

physical size, sequence, and gene content of the Mla3 locus remains unknown. 

 

Mla alleles have been extensively characterised therefore the mapping of Bgh 

resistance can be used to confirm the mapping position of the Mla locus. Marker 

K_Mla_RGH1_2920 corresponds to the physical sequence of the RGH1 Mla3 coding 

sequence and is a physical reference for the Mla locus. In total, 165 F2:3 families were 

phenotyped with Bgh isolate CC148 (AVRa3) to confirm the co-segregation for disease 

resistance. Resistance to Bgh isolate CC148 is in complete genetic coupling with 

marker K_Mla_RGH1_2920 (Figure 3-2). 

 

Critical recombinants were screened with victorin to confirm previous mapping to the 

Mla3 locus. Lov1 was found to be in complete genetic coupling with Mla3, underlying 

K_Mla_RGH1_2920 (Figure 3-2). Flanking markers to K_RGH1, distal K_2_1174 

and proximal K_206D11 denoted the gain of function interval for Lov1 and flank the 

Mla locus.   

 

Rmo1 and Lov1 are in genetic coupling with Mla3 

 

Baronesse and BCD47 show clear differential phenotypes upon inoculation with the 

P. oryzae isolate KEN54-20 carrying AVR-Rmo1 (Figure 3-3). To map Rmo1, 86 

homozygous F4 recombinants, from 48 unique F2:4 families, were inoculated with P. 

oryzae isolate KEN54-20 using whole plant spray inoculation and further repeated 

with leaf-spot inoculation for confirmation. At least 3 biological replicates were 

included of each F4  recombinant and critical recombinants were screened with 2 

phenotyping replicates. Phenotypes were scored on a semi-quantitative scale ranging 

from complete resistance to complete susceptibility, with scores of 2 and above 

classified as susceptible (Figure 3-4). This classification was based on the presence of 

lesions and completion of the P. oryzae life cycle. Rmo1 is in complete genetic 

coupling with Mla3, where presence of the Mla3 locus is indicative of Rmo1 resistance 

(Figure 3-5).  
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Figure 3-3. Macroscopic and microscopic phenotypes of P. oryzae inoculation. 
A) Macroscopic phenotypes of spot inoculated leaves with P. oryzae isolate KEN54-20 
showing resistant phenotype on Baronesse, characteristic susceptible eyespot lesion on 
BCD47, and hyper-susceptibility on Nigrate. White scale bars in the left-hand images indicate 
2mm and black scale bars in the right-hand images indicate 500 µm. B) Microscopic 
phenotypes of spot inoculated leaves with P. oryzae isolate KEN54-20 stained with WGA-
FITC chitin stain. P. oryzae falsely coloured with green. Scale bars in the top left-hand corner 
on the left-hand images indicate 2mm and scale bars in the bottom right-hand corner the right-
hand images indicate 500 µm.   



 

 72 

 
 
 
 
 
 

 
 

Figure 3-4. Phenotypic scales for scoring P. oryzae spot and spray inoculations. 

Healthy resistant leaf = 0; resistant small brown lesions = 1; larger eyespot lesions = 2; larger 
spreading lesions = 3; hyper-susceptibility and leaf collapse = 4. Parental lines Baronesse and 
BCD47 included for comparison.  
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Figure 3-5. Rmo1 and Lov1 are in complete genetic coupling with the marker at 

Mla3. 
Phenotyping of F3:4 homozygous critical recombinants with P. oryzae and HST victorin 
showing complete genetic coupling with the marker K_Mla_RGH1_2920 and the Mla3 locus. 
A) Phenotype by genotype plot showing P. oryzae susceptibly from the spray-based 
inoculation, where scores 0 and 1 = resistant and 2 to 4 = susceptible (Figure 3-4). B) 
Phenotype by genotype plot of victorin sensitivity, where 0 indicates victorin insensitivity and 
1 indicates victorin sensitivity.  
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Three expressed NB-LRR families are at the Mla locus; RGH1, RGH2, and RGH3  

 

Despite Rmo1 and Lov1 shown to be in genetic coupling at the Mla3 locus, the physical 

size, structure and the gene content the Mla3 locus is unknown. The Mla locus of the 

reference genome (accession Morex) was derived from BAC-sequencing data (Wei et 

al., 1999). The locus fails to assemble using data from long read sequencing 

technology due to high repetitive content and presence of large duplications. In Morex, 

the Mla locus encompasses multiple members of three NB-LRR gene families— 

RGH1, RGH2, and RGH3—of which all three are present within a 40kb tandem 

duplication. Using RenSeq-PacBio (Witek et al., 2016) and RNAseq, RGH1, RGH2, 

and RGH3 gene family members were found to be present in the genome and 

transcriptome of barley accession Baronesse. The expressed RGH1 gene family 

member was identical to Mla3. We hypothesized that additional gene family members 

may be expressed but collapsed on the assembled cDNA contig. To identify additional 

genes, we performed self-alignment of RNAseq data onto all three cDNA contigs. No 

variation was observed in RGH2 and RGH3, whereas we identified multiple copies of 

Mla3, including evidence that at least one copy has a 6 base-pair deletion in the LRR 

region—designated Mla3D6. The presence of this additional copy was confirmed with 

PCR using cDNA, molecular cloning of fragments, and sequencing. As described in 

Chapter 2, the RGH2 family member contains an integrated Exo70F1, and is in head-

to-head orientation with RGH3. RGH2 and RGH3 belong to the Major Integration 

Clade 1 (MIC1) and C7 clades of NB-LRRs respectively (Bailey et al., 2018). Other 

members of the MIC1 clade include Rpg5 from barley (Wang et al., 2013) and RGA5 

from rice (Césari et al., 2014), which require additional NB-LRRs to function as a 

pair. Their respective partners, RGA1 (Wang et al., 2013) and RGA4 (Césari et al., 

2014) also reside in the C7 clade. Following this observation, we hypothesise RGH2-

Exo70F1 and RGH3 also function as paired NB-LRRs. Therefore, candidate genes for 

conferring Rmo1 resistance and Lov1 sensitivity are Mla3, Mla3D6, and RGH2-

Exo70F1/RGH3.  
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RGH1 family member Mla3 is the candidate for Rmo1 and Lov1 

 

An Exo70 in rice, OsExo70F3, is the target of the P. oryzae effector AVR-Pii, and this 

interaction is guarded by the resistance gene pair Pii and Pii-2 (Fujisaki et al., 2015). 

Therefore, we hypothesised that Exo70s could be a conserved effector target between 

rice and barley and RGH2-Exo70F1 (and the RGH3 partner) became a prime candidate 

for Rmo1. Barley haplotypes contain extensive variation at the Mla locus and we can 

utilise this natural variation to identify lines expressing identical copies of RGH2-

Exo70F1 and RGH3. Using RNAseq data from a panel of over 40 diverse barley 

accessions, we identified multiple accessions containing diverse allelic variants of 

RGH2-Exo70F1 and RGH3 (as described in Chapter 2). Of these, the accession 

Maritime contains identical copies of RGH2-Exo70F1 and RGH3 as the accession 

Baronesse. The diversity panel was screened with P. oryzae isolate KEN54-20 

carrying AVR-Rmo1 using both a spray- and spot-based inoculation (Figure 3-6). All 

accessions, aside from Baronesse, were susceptible. Therefore, RGH2-Exo70F1 and 

RGH3 can be excluded as candidate genes for conferring Rmo1-mediated resistance.  

 

To assess RGH1 candidacy for Rmo1 resistance, we took advantage of an introgression 

panel containing diverse mildew resistance loci. Multiple donor accessions were 

crossed with the recurrent parent Siri (Mla8) and each line underwent multiple rounds 

of backcrossing and selection using Bgh isolates to generate a panel of near-isogenic 

lines (Kølster and Stølen, 1987). This panel contains the 13 mildew loci, including 11 

Mla specificities, in isogenic background of Siri including Mla1, Mla3, Mla6, Mla7 

(Nordal), Mla7 (Moseman), Mla9, Mla10, Mla12, Mla13, Ml22, Mla23, Ml-(Ru2), 

and Mlk (Appendix Table 7-7). The panel was inoculated with the P. oryzae isolate 

KEN54-20 using a spray- and a spot-based inoculation each with 4 biological 

replicates within 3 replicates of inoculation. As expected, the line S02 containing the 

Mla3 resistance specificity was resistant to KEN54-20. However, in addition, the line 

S13 containing the Mla23 specificity was also resistant (Figure 3-7). Mla23 is the most 

closely related Mla allele to Mla3 (Figure 3-8) and they share 98% sequence similarity 

at the DNA and protein level, with variation limited to the  
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Figure 3-6. RGH2-Exo70F1 and RGH3 do not confer Rmo1-mediated resistance 

to KEN54-20. 
RGH2-Exo70F1 diversity panel inoculated with KEN54-20 using both the spot and spray 
inoculation protocol. The left-hand side shows RGH2 and RGH3 haplotype of each accession. 
Three replicates were performed with 4 biological replicates in each. Phenotypes from third 
replicate of inoculations. 
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Figure 3-7. Mla3 and Mla23 haplotypes confer Rmo1 mediated resistance to 

KEN54-20. 

Siri introgression panel inoculated with KEN54-20 using both the spot and spray method. 
Control includes resistant cv. Baronesse, susceptible parent BCD47, and hyper-susceptible 
Nigrate same as included in Figure 3-6. Siri introgression line and corresponding introgressed 
Mildew loci indicated on the left-hand side. Three replicates were performed with 4 biological 
replicates in each. Phenotypes from third replicate of experiment. 
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Figure 3-8. Mla3 and Mla23 are closely related RGH1 (Mla) alleles. 
Maximum likelihood phylogenetic tree of RGH1 (Mla) alleles. Bootstrap support indicated by 
the number representing support greater than 80% based on 1,000 bootstraps.   
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C-terminal region of the LRR (Figure 3-9, Figure 3-10). RGH2 and RGH3 are not 

present in this haplotype based on assessment of RNAseq data. Furthermore, the close 

phylogenetic relationship between Mla3 and Mla23 provide strong evidence that Mla3 

is a clear candidate for Rmo1. Interestingly, S13 showed an intermediate resistance 

phenotype to the Bgh isolate CC148 carrying AVRa3 with presence of few small 

colonies, whereas S02 was completely resistant. Sequence comparison and generation 

of chimaeric constructs between Mla3 and Mla23 could be used to differentiate the 

requirement for AVR-Rmo1 and AVRa3 recognition, however further phenotypic 

quantification is required.  

 

To investigate the role of RGH1, RGH2, and RGH3 in conditioning Lov1 sensitivity, 

the key control accessions containing the candidate genes—Maritime (RGH2-

Exo70F1/RGH3), S02 (Mla3), and S13 (Mla23)—were screened with victorin at the 

laboratory of Thomas Wolpert. Maritime was insensitive to victorin, therefore 

excluding RGH2-Exo70F1 and RGH3 as candidates. Both S02 (Mla3) and S13 

(Mla23) were sensitive to victorin confirming Mla3 as the candidate for Lov1 (Figure 

3-11). 

 

3.4 Discussion 

 

This chapter outlines the fine mapping of Mla3, Rmo1 and Lov1. Fine-mapping in the 

Baronesse (Mla3, Rmo1, Lov1) x BCD47 (MlaBCD47, rmo1, lov1) population 

provided a high-resolution genetic map of the Mla3 locus. Screening of segregating 

F2:3 families and homozygous F3:4 recombinant families with P. oryzae, Bgh, and the 

HST victorin show their complete genetic coupling at the Mla3 locus. The Mla3 

haplotype contains the RGH1 family members Mla3 and Mla3D6, and RGH2-

Exo70F1/RGH3 that are hypothesised to function as a pair. A diversity panel of barley 

accessions containing these candidate genes was screened and phenotyping data 

confirms the RGH1 family member Mla3 as the prime candidate for conferring Rmo1 

resistance and Lov1 sensitivity.  
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Figure 3-9. DNA sequence comparison of Mla3, Mla3D6, and Mla23. 

Indels between Mla3, Mla3D6, and Mla23 sequences indicated with white space for deletions, 
size of indels (basepairs; bp) indicated with integers beneath the white space. SNPs indicated 
with coloured lines where red = A, green = T, yellow = G, and blue = C. Scale bar indicates 
100 bp. Encoded protein domains are annotated by coloured lines under the sequence 
comparison, coiled-coil  (CC; pink), nucleotide-binding (NB; purple), and leucine-rich-repeat 
(LRR; orange).  
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Figure 3-10. Sequence comparison of Mla3, Mla3D6, and Mla23. 

A) Sequence comparison of Mla3 and Mla3D6 at the DNA and amino acid level. DNA 
sequence of Mla3 and Mla3D6 with translation. The 6 bp indel causes a loss of two amino 
acids and an amino acid change in Mla3D6. Sequence comparison exported from Geneious. 
B) Amino acid sequence comparison of Mla3, Mla3D6, and Mla23 of the C-terminus of the 
leucine-rich repeat. Sequence comparison exported from Geneious. 
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Figure 3-11. Recognition of Bgh CC148, P. oryzae KEN54-20, and victorin 

sensitivity is coupled with the presence of Mla3/Mla23. 

Accessions carrying candidate genes RGH1, RGH2-Exo70F1 and RGH3 inoculated with Bgh 
isolate CC148, P. oryzae isolate KEN54-20, and HST victorin from B. victoriae. 
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Mascher et al., (2017) found distal telomeric regions of barley chromosomes to be 

enriched with genes involved in defence and the presence of transposable elements. 

The Mla locus on the short arm of chromosome 1H is a resistance gene complex 

showing extreme intraspecific diversity between barley haplotypes (Jørgensen, 1994; 

Seeholzer et al., 2010). Previous characterisation of the Mla locus in the reference 

genome Morex identified a region of high complexity containing three gene-rich 

regions flanked by repetitive and mobile elements. Genetic linkage of gene families 

facilitates recombination events between them; unequal crossing over and gene 

conversion generate new combinations and sequence variants. Duplication events 

provide additional copies of genes—which either leads to pseudogenisation or the 

production of allelic variants through the action of diversifying selection (Hulbert et 

al., 2001; Leister, 2004; Michelmore and Meyers, 1998). This is evident in the 

reference sequence Morex which contains 8 NB-LRRs from the three RGH gene 

families: 3 of which result from a 40kb tandem duplication encompassing each RGH 

family member (Wei et al., 2002, 1999). The Mla locus has been associated with 

recognition of multiple pathogens. While the structure of region promotes the 

production of diverse NB-LRRs, the genetic and molecular basis of this linked 

resistance is unknown. Here, we confirm the genetic coupling of Mla3, Rmo1, and 

Lov1.  

 

The mapping of multiple resistance specificities to adjacent regions of the genome is 

not uncommon; overlapping resistance QTLs are present on all chromosomes of 

barley (Schweizer et al., 2011). However, the majority of the underlying causal genes 

have yet to be identified. The main question remains: does this represent resistance 

gene clusters, or are single genes conferring multiple pathogen recognition? The 

identification of Mla3, Rmo1, and Lov1 in genetic coupling does little to further the 

answer, as the resolution here is of the entire Mla3 locus (Figure 3-2, Figure 3-5). 

Candidate NB-LRR genes from known RGH family members within the locus were 

identified from RNAseq and RenSeq-PacBio sequencing: RGH1 (Mla3 and Mla3D6), 

RGH2-Exo70F1 and RGH3—with RGH2 and RGH3 hypothesised to function as a 

pair as they belong to the MIC1 and C7 clades, respectively (Bailey et al., 2018). 

Using a diversity panel containing different RGH alleles and Mla introgression lines 

we were able to confirm Mla3 as a candidate for Rmo1 (Figure 3-6, Figure 3-7). In 
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addition, Mla23 also displays resistance to KEN54-20 and these alleles are 98% 

similar at the DNA and protein level (Figure 3-9, Figure 3-10). We hypothesise that 

Mla23 is also recognising AVR-Rmo1, however the presence of an additional 

recognised effector cannot be excluded. RGH2-Exo70F1 and RGH3 were excluded as 

candidates for Rmo1 and Lov1 as the accession Maritime was susceptible to KEN54-

20 and insensitive to victorin; Maritime contains the same alleles of these genes as 

Baronesse (Figure 3-11). The generation of transgenic barley and systematic isolation 

of RGH1 alleles is required to investigate the potential for multiple pathogen 

recognition by Mla3. 

 

The capability of multiple pathogen recognition has been shown for a limited number 

of NB-LRRs. The A. thaliana paired NB-LRRs RPS4 and RRS1 are the most well 

characterised of these and directly recognise the effectors AvrRps4 from P. syringae 

pv. tomato, PopP2 from Ralstonia solanacearum, and an unidentified effector from 

the fungal pathogen Colletotrichum higginsianum (Narusaka et al., 2013, 2009). 

RRS1 contains a C-terminal fusion of a WRKY domain—an integrated decoy—that 

interacts with AvrRps4 and PopP2. Acetylation of the WRKY domain by PopP2 and 

hypothesised direct binding with AvrRps4 triggers RPS4-mediated resistance (Le 

Roux et al., 2015; Saucet et al., 2015; Williams et al., 2014). The NB-LRR Mi-1.2 

from tomato confers resistance to root-knot nematodes of the genus Meloidogyne, the 

potato aphid (Macrosiphum euphorbiae), and sweet potato whiteflies in the genus 

Bemisia (Nombela et al., 2003; Vos et al., 1998). Extended recognition of NB-LRRs 

can be achieved via the guarding of host proteins; multiple pathogen effectors from 

across species can modify or bind the same plant protein. RIN4 is a known example, 

its perturbation is guarded by two NB-LRRs in A. thaliana (Axtell and Staskawicz, 

2003; H.-S. Kim et al., 2005; Kim et al., 2009; Mackey et al., 2003, 2002; Russell et 

al., 2015), and by alleles of RPG1 in soybean (Glycine max) (Ashfield et al., 2014; 

Whitham et al., 2016). RIN4 is a conserved component of the plant immune system; 

thus, other as yet uncharacterised guard-guardee interactions are also hypothesised 

across species (Toruño et al., 2019).  

 

The presence of Mla alleles in an expanded allelic series is suggestive of a direct 

recognition mechanism between MLA receptors and Bgh effectors (Bourras et al., 

2019; Saur et al., 2019). The Mla family member Sr50 from rye (Secale cereale) 
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confers resistance to (Puccinia graminis f. sp. tritici; Pgt), and also when introgressed 

into wheat, and was recently shown to directly bind the Pgt effector AvrSr50 (Chen et 

al., 2017). This work not only provides evidence for direct recognition by Mla family 

members but shows that recognition by this family is not limited to Bgh; diverse 

orthologs have the potential to recognise different pathogen species. Evaluation of 

candidate NB-LRRs in the region—Mla3 and Mla3D6—for Rmo1-mediated 

resistance and Lov1-mediated susceptibly will confirm the potential for multiple 

pathogen recognition specificity by an Mla allele.  

  

Crop breeding has historically focused on the introgression of large-effect R genes into 

susceptible commercial cultivars to provide resistance to biotrophic pathogens. One 

of the most famous examples of unexpected consequences of resistance breeding is 

“Victoria-type” oats (Avena sativa) bred for oat crown rust (Puccinia coronata) Pc2 

resistance. Introgression of the Pc2 resistance gene facilitated the epidemic of victoria 

blight during the 1940s, allowing for a host jump of the necrotrophic pathogen B. 

victoriae (Meehan & Murphy, 1946). B. victoriae produces the HST victorin to aid 

infection. Due to the considerable size and complexity of the oat genome, Pc2 and 

victorin sensitivity (Vb) have never been genetically separated or identified and are 

presumed to share identity—a single oat R gene conferring resistance to oat crown rust 

yet providing susceptibility to B. victoriae.  

 

Following the observation of the similarity between the victorin sensitivity response 

and the plant defence response (Wolpert et al., 2002), the notion that R genes could 

also enable disease susceptibility was confirmed with the identification of the NB-

LRR LOV1 in A. thaliana. LOV1 encodes a NB-LRR and confers sensitivity to the 

HST victorin, and subsequent susceptibility to B. victoriae (Lorang et al., 2007, 2004; 

Sweat and Wolpert, 2007; Wolpert and Lorang, 2016). LOV1 guards thioredoxin h5, 

in a mechanism familiar to biotrophic pathogen resistance. In A. thaliana, six groups 

of thioredoxins are expressed and localised in different subcellular compartments 

(Reichheld et al., 2002). Thioredoxin h5 is induced by abiotic and biotic stress 

conditions, appearing unique in the thioredoxin h group, and provides specificity to 

plant signalling through selectively reversing S-nitrosothiols formed during SA-

dependent immune signalling (Kneeshaw et al., 2014; Sweat and Wolpert, 2007). As 
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key modifier of the defence signalling pathway, thioredoxin h5 is vulnerable to 

pathogen effector disruption, leading to the evolution of its guardee, LOV1. Biotrophic 

pathogen effectors and necrotrophic HSTs and effectors are under opposing 

evolutionary forces, despite often converging at the same outcome (Wang et al., 2014). 

Upon triggering a defence reaction leading to pathogen avirulence, biotrophic 

effectors would be under selection to lose recognition—either through effector gene 

loss or sequence diversification. However, for necrotrophic pathogens, effectors or 

HSTs that trigger a defence reaction that facilitates infection can be under positive 

selection. This difference is reflected in the plant immune response: necrotrophic 

pathogen defence is suggested to be predominantly mediated by jasmonic acid and 

ethylene signalling, compared to salicylic acid as for biotrophic pathogens 

(Glazebrook, 2005). Such regulation could have evolved due to selection to separate 

resistance and susceptibility factors (Glazebrook, 2005; Walters et al., 2014). The 

evolution of LOV1 to guard modification of thioredoxin h5 is hypothesised to have 

arisen in response to biotrophic pathogens: due to pathogen suppression or 

interference of thioredoxin h5 (Lorang et al., 2012; Wolpert and Lorang, 2016). The 

co-option of this system by necrotrophic pathogens to confer susceptibly would lead 

to selection against LOV1 function; LOV1 retention must be due to stronger selection 

for biotrophic pathogen resistance than against necrotrophic pathogen susceptibility 

(Wolpert and Lorang, 2016). The majority of A. thaliana ecotypes assessed are 

sensitive to victorin; LOV1 shows little variation between A. thaliana accessions and 

evaluation of alleles found no evidence that LOV1 was under balancing selection 

(Sweat et al., 2008).  

 

In this work, a member of the RGH1 family at the Mla locus is hypothesised to be 

conditioning victorin sensitivity in a mechanism similar to as shown in A. thaliana 

(Lorang et al., 2012). Lorang et al., (2010) identified a single significant QTL for 

victorin sensitivity in barley. However, Lov1 could be guarding the interactor of 

victorin, similar to thioredoxin h5 in A. thaliana (Sweat and Wolpert, 2007). Further 

work to identify a guardee, such as the initiation of a mutagenesis screen, is required: 

a conserved guardee with no variation in the parental accessions would be missed in 

the original mapping population. If Mla3 is Lov1, a guard-guardee mechanism 

challenges the hypothesis of direct recognition of MLA alleles presented by Saur et 

al., (2019). Furthermore, if Lov1 requires the barley thioredoxin h5 guardee, then 
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thioredoxins are revealed as a conserved component of the defence signalling 

machinery and shared pathogen target. Integrated thioredoxin domains within NB-

LRRs have also been reported (Bailey et al., 2018; Bryan et al., 2000; Costanzo and 

Jia, 2009) providing evidence for their role as a target by pathogen effectors. However, 

victorin sensitivity in barley could be conditioned in a manner independent to A. 

thaliana, through the direct binding of victorin to MLA3.  

 

Victorin sensitivity is highly conserved, being present in oat (Meehan and Murphy, 

1946), Arabidopsis (Lorang et al., 2004), common bean (Phaseolus vulgaris) (Lorang 

et al., 2018), Brachypodium, rice (Wolpert, personal communication) and barley 

(Lorang et al., 2010). However, despite displaying sensitivity to isolated victorin, 

natural infection of B. victoriae has not been observed outside of oat. Pathogens cause 

devastating losses to barley production worldwide (Newton et al., 2011) and examples 

with necrotrophic growth phases include Pyrenophora teres f. teres causing net blotch 

(Liu et al., 2015), Fusarium species causing fusarium head blight (Brown et al., 2017; 

Salas et al., 1999; Steffenson, 2003; Wegulo et al., 2015), Rhynchosporium secalis 

causing leaf scald (Able, 2003; Zhan et al., 2008), and Ramularia collo-cygni causing 

Ramularia leaf spot (Havis et al., 2015; Walters et al., 2008). In these examples, 

limited resistance has been observed with the majority of accessions only displaying 

partial resistance. The destructive nature of necrotrophic pathogen invasion drives 

selection in plants to evade HSTs and constrain initial necrosis (Laluk and Mengiste, 

2010; Stukenbrock and McDonald, 2009). Victorin sensitivity in barley was also 

found to be age dependent (Lorang et al., 2010); developmental regulation of NB-

LRRs could be selection against necrotrophic pathogens—B. victoriae or otherwise. 

The maintenance of hypothesised NB-LRR mediated victorin susceptibility across 

diverse species suggests a strong selection for retention of biotrophic resistance. Such 

opposing selective pressures may contribute to the evolutionary outcome of NB-LRR 

gene frequency and specificity in plant populations. Caution must be taken with the 

wide-scale deployment of NB-LRR genes, especially of alleles with low frequency in 

populations, to prevent unexpected susceptibility to other pathogens. With a changing 

climate and increased pathogen mobility through globalisation, fine-tuned NB-LRR 

gene repertoires could be broken down, with more pathogen host-jumps and 

necrotrophic pathogen epidemics to be seen in the future.  
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3.5 Materials and methods  

 

Plant materials and growth conditions  

 

Barley accessions were obtained from United States Department of Agriculture 

Germplasm Resource Information Network (Aberdeen, ID, USA), Oregon State 

University (Corvallis, OR, USA), John Innes Centre (JIC; Norwich, UK), and CSIRO 

(Canberra, Australia). All plants underwent single seed descent before performing 

pathogen assays with the exception of the Mla3 diversity panel. Plant materials are 

detailed in Appendix Table 7-6.  

 

For the Baronesse x BCD47 population, seedlings were germinated in John Innes Peat 

& Sand Mix (85% Fine Peat, 15% Grit, 2.7kg/m³ Osmocote 3-4 months, Wetting 

Agent, 4kg/m³ Maglime, 1kg PG Mix). Leaves were sampled at second leaf 

emergence, DNA extracted, and individuals genotyped for recombination events. 

Recombinants were transferred to FP9 pots in John Innes Cereal Mix (40% Medium 

Grade Peat, 40% Sterilised Soil, 20% Horticultural Grit, 1.3kg/m³ PG Mix 14-16-18 

+ Te Base Fertiliser, 1kg/m³ Osmocote Mini 16-8-11 2mg + Te 0.02% B, Wetting 

Agent, 3kg/m³ Maglime, 300g/m³ Exemptor) and grown in a greenhouse under natural 

conditions.  

 

For P. oryzae inoculation, seedlings were germinated in John Innes Cereal Mix (40% 

Medium Grade Peat, 40% Sterilised Soil, 20% Horticultural Grit, 1.3kg/m³ PG Mix 

14-16-18 + Te Base Fertiliser, 1kg/m³ Osmocote Mini 16-8-11 2mg + Te 0.02% B, 

Wetting Agent, 3kg/m³ Maglime, 300g/m³ Exemptor). Seedlings were germinated and 

grown in a controlled environment at 25°C under a 16-h light and dark cycle.  For B. 

graminis inoculation, seedlings were germinated in John Innes Cereal Mix at 18°C 

under a 16-h light and dark cycle. Seedlings were transferred to a containment 

greenhouse under natural conditions prior to inoculation.  

 

Baronesse x BCD47 population and genetic map development  
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The H. vulgare accessions Baronesse and BCD47 were crossed and allowed to self-

pollinate to generate a founder F2 population. The population, N=2,304 gametes, was 

evaluated for recombination events across the Mla3 locus. Following single-seed 

descent, DNA was extracted from leaf tissue of F2 and F3 recombinants using a CTAB 

gDNA extraction protocol modified for 96-well plate-based extraction (Dawson et al., 

2016; Stewart and Via, 1993).  

 

Genetic markers designed for the barley oligonucleotide pool assay (BOPA1) panel 

were converted to Kompetitive allele specific PCR (KASP) markers, which are also 

SNP based (Close et al., 2009). KASP markers are listed in Appendix Table 7-8.  

Briefly, KASP SNP genotyping utilises two competitive, allele-specific forward 

primers and one common reverse primer for allele-specific oligo extension, 

amplification, and fluorescence output. Genotyping was performed by the Genotyping 

service at the JIC, Norwich, UK. Parental lines of mapping populations were 

genotyped to identify polymorphic markers. Additional markers were generated 

across the Mla locus by amplify sequence from parental lines using primers designed 

from the Mla locus accession Morex (Wei et al., 1999). SNPs were identified between 

parental accessions and KASP markers generated.  

 

Genetic maps were created using JoinMap v4 was used using default parameters (van 

Ooijen, 2006). Genetic distances were estimated using the Kosambi mapping function. 

Integrity of the genetic map was evaluated through comparison with the current OPA 

consensus genetic map of barley (Muñoz- Amatriaín et al. 2011). The genetic map 

was evaluated using Rstudio (Version 1.1.463) and the R/qtl package (Version 1.44.9) 

(Broman et al., 2003).  

 

Pyricularia oryzae isolates and culture 

 

P. oryzae isolates KEN54-20 and Sasa2 were obtained from the group of Ryohei 

Terauchi (Iwate Biotechnology Research Centre, Kitakami, Iwate, Japan). Protocols 

for culturing and inoculation were similar as described by Jia et al., (2003) and Parker 

et al., (2008). Isolates were maintained on Potato Dextrose Agar media at 24°C and 

as frozen stocks of dried mycelia on Whatman filter paper (GE Healthcare Whatman™ 
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Qualitative Filter Paper: Grade 1 Circles, Fisher Scientific UK) at -20°C. Hyphal tips 

were transferred to oatmeal agar (20 g oatmeal, 10 g agar, 2.5 g sucrose, addition of 

ddH20 to 500 ml) plates (deep petri dish 100 x 20 mm) for the production of spores 

and incubated for 10-15 days at 24°C. To increase spore production some plates were 

used for a second time after washing and a further 10-15 day incubation.  

 

Pyricularia oryzae conidal suspension 

 

Conidia were collected by the addition of 8ml dH20 to the oatmeal agar plates and 

gentle scraping with the tip of a 1.5ml Eppendorf. Suspension was poured and filtered 

through Miracloth (Merck Chemicals, Ref.: 475855-1r) and collected in a 50 ml 

Corning tube. Spore concentration was counted via haemocytometer and adjusted to 

1 x 105 spores per ml. Tween 20 (Merck Chemicals, CAS Number: 9005-64-5) was 

added to a final concentration of 0.01%.  

 

Pyricularia oryzae spot inoculations  

 

Spot inoculations were carried out on detached leaves in boxes (Display Box with 

Push Fit Lid, 126 x 82 x 22mm, azpack.co.uk) on agar (2.5g Agar-agar (Fisher, CAS 

9002-18-0); 50ml benzimidazole (1g/1L H2O stock soltution); 450ml H2O).  Barley 

was germinated at 25°C under a 16-h light and dark cycle and 1-week old seedlings 

were used for inoculation at emergence of second leaf. The first leaf was cut and 

placed on agar inside the boxes. Each leaf was inoculated with 3 to 4 drops of 5µl of 

conidal suspension. Boxes were placed at 25°C in a Sanyo growth cabinet and 

maintained under continuous light for the first 24 hours. After 24hrs droplets were 

removed from the leaves using sterile Miracloth and boxes returned to 25°C in a 16-h 

light and dark cycle. Detached leaves were monitored for development of lesions and 

phenotyped 7 days post inoculation (dpi), however phenotypes could be observed 

from 5dpi. Phenotypes were scored as resistant on a scale of 0 = complete resistance; 

1 = small brown resistant spots; 2 = susceptible larger eyespot lesions; 3 = larger 

spreading lesions; 4 = hyper susceptibility (Figure 3-4).  
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Pyricularia oryzae spray inoculations  

 

Spray inoculations were carried out on whole 1-week old seedlings at emergence of 

second leaf. Barley was germinated 25°C under a 16-h light and dark cycle with 9 

seeds placed in an FP9 pot, with 8 pots in a tray. Each tray was sprayed with ~5ml of 

conidal suspension using a 20 mm atomiser spray bottle (Ampulla; Ref.: 

X9031CL/C1118W50). Trays were placed in polythene autoclave bags tied with tape 

and placed inside a Sanyo cabinet at at 25°C under a 16-h light and dark cycle. Bags 

remained covering the plants until phenotyping due to containment requirements. First 

leaves were phenotyped 7 dpi and scored on a similar scale to spot inoculations.  

 

Victorin sensitivity assays 

 

Victorin sensitivity assays were carried out by Tom Wolpert and Jennifer Lorang at 

Oregon State University using the protocol as described in Lorang et al., 2010. Briefly, 

the second and third leaves of 4-week old plants were incubated in 20µg/ml victorin 

and scored over a 48hr period as 0 = insensitive or 1 = sensitive.   

 

Microscopy 

 

For macroscopic phenotyping, infected leaves were imaged 7 dpi using a stereo 

microscope using the 1x objective. For fluorescence microscopy phenotyping, leaves 

were cleared 7dpi in a 1.0 M KOH solution, neutralised by washing in 50 mM Tris at 

ph 7.5, and stained with a chitin-specific fluorophore (20 μg/mL WGA-FITC (Sigma–

Aldrich; L4895- 10MG) in 50 mM Tris at pH 7.5), as described in Dawson et al., 

(2016) and adapted from Ayliffe et al., (2013, 2011). P. oryzae growth within leaves 

was visualised under blue excitation on a fluorescence microscope with a GFP filter 

using a 10x, and 20x objective. Images were observed and taken via the Leica 

Application Suite software and scale bars added using the Fiji distribution of ImageJ 

(Version 2.0.0-rc-69/1.52p) (Schindelin et al., 2012) using the Bio-formats plugin 

(Linkert et al., 2010).  
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Isolation of genomic DNA  

 

DNA from all structured populations was extracted from leaf tissue following a 

CTAB- based protocol (Stewart and Via, 1993). In brief, 3 g of leaf tissue were ground 

on liquid N2 and homogenized with 20 mL of CTAB extraction buffer (2% CTAB, 

100 mM Tris-HCl pH8.0, 20 mM EDTA pH8.0, 1.4 M NaCl, 1% β-Mercaptoethanol). 

Samples were incubated for 30 min at 65°C followed by two chloroform extractions 

and ethanol precipitation. DNA was then resuspended in 1x TE, 50 µg/mL RNase A 

solution and incubated for 1 h at 37°C. DNA was subsequently precipitated with 2.5 

volumes of ice-cold 95% ethanol and resuspended in 1x TE. Quantification of DNA 

samples was performed using a Nanodrop spectrophotometer (Thermo Scientific) and 

the Qubit dsDNA HS Assay Kit (Molecular Probes, Life Technologies). 

 

RNAseq and de novo assembly 

 

First and second leaf tissue was harvested at 10 days after sowing of barley and oat 

accessions grown in the greenhouse. Tissue was flash frozen in liquid nitrogen and 

stored at -80 °C. Tissue were homogenized into a fine powder in liquid nitrogen-

chilled pestle and mortars. RNA was extracted, purified, and quality assessed as 

described by Dawson et al. (2016). RNA libraries were constructed using Illumina 

TruSeq RNA library preparation (Illumina; RS-122-2001). Barcoded libraries were 

sequenced using either 100 or 150 bp paired-end reads. Library preparation and 

sequencing was performed at either the Earlham Institute (Norwich, United Kingdom) 

or BGI (Shenzhen, China). Quality of all RNAseq data was assessed using FastQC 

(0.11.5) (Andrews, 2010). Trinity (2.4.0) (Grabherr et al., 2011)was used to assemble 

de novo transcriptomes using default parameters and Trimmomatic (Bolger et al., 

2014) for read trimming. Genes of interest were identified in de novo assemblies using 

BLAST+ (v2.2.9) (Camacho et al., 2009). 

 

Phylogenetic tree construction  

 

Phylogenetic tree construction was carried out as outlined in Chapter 2, following 

multiple alignment using the full-length DNA sequence of Mla alleles.  
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4 Mla3 confers resistance to multiple pathogens 

 

 

4.1 Abstract 

 

The majority of NB-LRR-encoding disease resistance genes recognise single pathogen 

species; few NB-LRRs are known to have the capacity to recognise multiple 

pathogens. Following fine-mapping of Mla3, Rmo1, and Lov1 outlined in the previous 

chapter, this chapter continues with molecular cloning, transformation, and 

phenotypic analysis of candidate genes. Using sequence capture and RNAseq, we 

discovered copy number variation for Mla3 (RGH1; 3 copies), with one expressed 

copy containing a 6 bp deletion in the LRR region—Mla3D6. The RGH2 family 

member contains an integrated Exo70F1, and this is in head-to-head orientation with 

RGH3. The stable transgenic barley found that Mla3 conditions powdery mildew and 

rice blast resistance, whereas Mla3D6, RGH2-Exo70F1, and RGH3 do not confer 

resistance to either pathogen. Assessment of a diversity panel of barley accessions 

containing the candidate genes suggests the role of Mla3 in victorin sensitivity. This 

work, coupled with the recent discovery of direct interaction of MLA and AVRa 

effectors (Saur et al., 2019), suggests that MLA3 has the capacity to recognize 

molecular structures conserved among plant pathogen effectors. Identification of 

AVR-Rmo1 from P. oryzae and AVRa3 from B. graminis in combination with victorin 

toxin will provide a means to unravel the underlying mechanism of multiple pathogen 

recognition by Mla3.  

 

4.2 Introduction  

 

A major characteristic of known disease resistance genes encoding nucleotide-binding 

domain leucine-rice repeat proteins (NB-LRRs) is their ability to recognise a single 

pathogen, or a subset of isolates within a species. Flor's (1971) seminal work in flax 

and flax rust established the gene-for-gene hypothesis, postulating that single plant 

resistance (R) gene and avirulence gene of a pathogen determine the outcome of their 

interactions. When a plant R gene recognises a pathogen effector an immune response 
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is activated. Recognised effectors are subsequently determined avirulence genes for 

they specify the virulence profile of the pathogen. Direct interactions between R genes 

and effectors were first demonstrated for the tomato serine-threonine protein kinase 

Pto and Pseudomonas syringae AvrPto proteins (Pedley and Martin, 2003; Scofield et 

al., 1996; Tang et al., 1996) and for rice NB-LRR Pi-ta and the Pyricularia oryzae 

AVR-Pita proteins (Bryan et al., 2000; Jia et al., 2000).  

 

Few identified NB-LRRs have the capacity to recognise multiple pathogens (Kourelis 

and Van Der Hoorn, 2018). The tomato NB-LRR Mi-1.2 confers race-specific 

resistance to three species of root-knot nematodes of the genus Meloidogyne, the 

potato aphid (Macrosiphum euphorbiae), and sweet potato whiteflies in the genus 

Bemisia (Casteel et al., 2006; Milligan et al., 1998; Nombela et al., 2003; Vos et al., 

1998). All three species are phloem feeders and Mi-1.2 is associated with reduced 

reproduction and abundance of the pests (Casteel et al., 2006; Guo et al., 2016). Aphid 

and white fly resistance manifests in the adult plant, whereas root-knot nematode 

resistance is maintained throughout the life history of the plant (Fiona L Goggin et al., 

2004; Martinez de Ilarduya et al., 2004). In addition, expression of Mi-1.2 in eggplant 

(Solanum melongena) only provided nematode resistance, suggesting additional 

components necessary for multiple pathogen resistance (Fiona L. Goggin et al., 2004). 

However, the mechanism of Mi-1.2-mediated resistance remains unknown.  

 

The paired RPS4 and RRS1 NB-LRRs from Arabidopsis thaliana confer resistance to 

the fungal pathogen Colletotrichum higginsianum, and direct-recognition of the 

effectors AvrRps4 from P. syringae pv. tomato and PopP2 from Ralstonia 

solanacearum (Narusaka et al., 2013, 2009). The WRKY-domain of RRS1 C-terminal 

fusion has been shown to interact with and recognise AvrRps4, and acetylation of the 

WRKY domain by PopP2 triggers an RPS4-mediated defence response (Sarris et al., 

2015; Williams et al., 2014). Mutations and truncations of the RRS1-R allele abolish 

PopP2—but not AvrRps4—recognition by the NB-LRR pair (Ma et al., 2018). In 

addition, the linked paralogous pair RRS1-B/RPS4-B only recognises AvrRps4 and not 

PopP2 (Ma et al., 2018; Saucet et al., 2015). There are distinct genetic requirements 

of RPS4 and RRS1 for response to AvrRps4 and PopP2; multiple recognition by 

RPS4/RRS1 occurs via different mechanisms and recognition capacity is varied 
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between alleles—new alleles may have the capability for additional expanded 

recognition specificities.  

 

Pathogens have an expanded repertoire of effectors, evolved to disrupt and manipulate 

multiple different host targets. Pathogens can evade recognition by gene loss or 

sequence diversification of an effector. Due to this, direct recognition by NB-LRRs 

without an integrated domain is thought to limit the potential for multiple pathogen 

recognition. This can be mitigated by NB-LRRs present as diverse allelic series at the 

population level, and/or if NB-LRRs recognise conserved pathogen effectors. In 

addition, an indirect mechanism for NB-LRR recognition—such as guarding the 

modifications of host proteins—buffers against rapidly evolving effectors. For 

example, RIN4 is the target of diverse effectors of Pseudomonas and its cleavage, 

depletion, or phosphorylation is recognized by both RPS2 and RPM1 NB-LRRs in A. 

thaliana (H.-S. Kim et al., 2005; Kim et al., 2009; M. G. Kim et al., 2005; Liu et al., 

2011). 

 

Non-NB-LRR resistance mechanisms have also been shown to confer resistance 

against multiple pathogens. Typically, non-NB-LRR mediated resistance is thought to 

occur via modifications of the host environment to limit pathogen growth. The wheat 

Lr34 gene encodes an ATP binding cassette (ABC) transporter and confers resistance 

to the three rusts; leaf rust (Puccinia triticina), stripe rust (P. striiformis), stem rust (P. 

graminis f. sp. tritici); and powdery mildew (Blumeria graminis) in adult plants 

(Chauhan et al., 2015; Ellis et al., 2014; Krattinger et al., 2015, 2009). Lr34 belongs 

to the same protein family as A. thaliana PEN3—an ATP binding cassette transporter 

involved in penetration resistance—suggesting its role in general plant immunity; 

PEN3 also confers resistance to non-adapted pathogens (Stein et al., 2006). Lr34 

expressed in barley activates multiple defence pathways and  provides resistance to P. 

triticina f. sp. hordei and B. graminis f. sp. hordei (Bgh)—pathogens of barley which 

do not normally infect wheat (Chauhan et al., 2015; Risk et al., 2013). In addition, 

transgenic rice plants expressing Lr34 showed increased resistance against multiple 

isolates of the pathogen P. oryzae (Krattinger et al., 2015). These observations across 

multiple grass species suggest a shared mechanism of resistance against a broad-

spectrum of pathogens.  
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Similar to Lr34, the wheat Lr67 hexose-proton transporter confers quantitative 

resistance to multiple pathogens of rust and mildew (Ellis et al., 2014; Herrera-Foessel 

et al., 2014; Moore et al., 2015). Lr67-mediated resistance can be transferred to barley, 

retaining the capability to recognise multiple pathogens (Milne et al., 2019). Lr67res, 

the resistant allele of Lr67, differs by two amino acids compared to the susceptible 

allele, which render it incapable of transporting glucose (Moore et al., 2015). The 

resistance mechanism is hypothesised to be due to the limitation of sucrose for 

nutrients or signalling (Milne et al., 2019). Both Lr34 and Lr67 function in the adult 

plant, providing partial resistance or slowed pathogen growth. Generally, identified 

adult plant resistance does not require specific recognition of pathogen effector 

molecules, differing from the NB-LRR-mediated resistance mechanism which often 

terminates in the hypersensitive response and cell death (Ellis et al., 2014; Milne et 

al., 2019).  

 

While NB-LRRs are associated with resistance to biotrophic pathogens, necrotrophic 

pathogens exploit these immune receptors: byactivating an immune response to their 

benefit. Necrotrophic host-selective toxins (HSTs) can act in a similar manner to 

biotrophic effectors: both function to facilitate infection of host tissue by the pathogen. 

However, biotrophic pathogens exploit the host whilst maintaining viability, as they 

require living tissue to complete their life-cycle, whereas necrotrophic pathogens 

benefit from host cell death (Friesen et al., 2008; Lewis, 1973; Wang et al., 2014). 

Biotrophic effectors are under selection to evade recognition, driving complex co-

evolutionary relationships between host and pathogen. Necrotrophic effectors actively 

destroy host tissue through the secretion of broad-acting toxic metabolites and 

proteins, and through the action of HSTs (Laluk and Mengiste, 2010). Described as 

inverse gene-for-gene interactions, HSTs only function on hosts with the 

corresponding susceptibility or sensitivity gene. The NB-LRR Tsn1 from wheat 

mediates susceptibility to ToxA produced by the necrotrophic pathogens 

Stagonospora nodorum and Pyrenophora tritici-repentis (Faris et al., 2010). In 

Sorghum bicolor, the Pc locus conditions sensitivity to a HST produced by the fungal 

pathogen Periconia circinata (Nagy and Bennetzen, 2008). Natural resistant alleles, 

pc, harbour rearrangement of a tandemly duplicated NB-LRR family at the locus and 

arise via unequal crossing over (Nagy et al., 2007; Nagy and Bennetzen, 2008). 

Selection for maintenance of biotrophic resistance must outweigh selection pressure 
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to lose necrotrophic susceptibility in order to maintain these NB-LRRs in the genome; 

however, to what degree this is the case is not entirely clear. Of NB-LRRs recognising 

HSTs characterised to date, biotrophic resistance has yet to be identified (Wang et al., 

2014). 

 

Sensitivity to the HST victorin produced by B. victoriae in barley was mapped to the 

Mla3 locus. Genetic coupling of Mla3, Rmo1, and Lov1 was outlined in the previous 

chapter. Here, Agrobacterium-based transformation and phenotypic assessment of 

three candidate genes—Mla3, Mla3D6, and the paired RGH2-Exo70F1/RGH3—is 

described. We confirm Mla3 confers resistance to Bgh and P. oryzae; characterisation 

of victorin sensitivity is ongoing. Based on the recent work by Saur et al., (2019) that 

suggests direct recognition of effectors from Bgh and the comparison with LOV1-

mediated susceptibility in A. thaliana, we propose the two hypotheses for Mla3 

recogntion: a direct mechanism of recognition of multiple pathogens and an indirect 

recognition mechanism via a guardee—a proposed thioredoxin h family member.  

 

4.3 Results 

 

Candidate RGH family members cloned from the Mla3 locus 

 

As outlined in the previous chapter, Mla3, Rmo1, and Lov1 were in complete genetic 

coupling at the Mla3 locus. Three NB-LRR gene families are present at the Mla locus, 

RGH1 (Mla), RGH2, and RGH3 (Wei et al., 2002, 1999). Using RNAseq and RenSeq-

PacBio sequencing, we identified these alleles from barley accession Baronesse. The 

RGH1 family member, Mla3 was found to have at least two copies: a full-length 

sequence identical to the previously published allele (Seeholzer et al., 2010), and an 

additional copy with a 6 bp deletion in the LRR region (Mla3D6). From RNAseq data, 

we estimate there are at least three copies of Mla3—two full length, and one Mla3D6 

based on the ratio of Mla3D6 transcripts to reads from Mla3. The RGH2 family 

member has an integrated Exo70F1 and is hypothesised to function as a pair with 

RGH3 due to their head-to-head orientation in the genome and phylogenetic 

relationship (Bailey et al., 2018). Based on screening of a genetic diversity panel in 
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the previous chapter, RGH2-Exo70F1 and RGH3 have been excluded as candidates 

for Rmo1 and Lov1 and were retained as negative controls. 

 

All four candidate genes were cloned via PCR amplification—Mla3 and Mla3D6 from 

cDNA, and RGH2-Exo70F1 and RGH3 from gDNA. Mla3 and Mla3D6 were placed 

in an expression construct containing the Mla6 promoter and terminator, with RGH2-

Exo70F1 and RGH3 maintained in the native form and head-to-head orientation. The 

construct includes ~1.5 kb of RGH2-Exo70F1 terminator and ~1.1 kb of RGH3 

terminator; the promoters are embedded within the coding sequence of the partner, 

with ~300 bp sequence between them (Figure 4-1). RGH2 and RGH3 have an 

embedded bi-directional promoter therefore the native promoter and terminator 

system was used. The Mla6 promoter/terminator system was selected due to 

insufficient promoter/terminator regions for Mla3, despite the use of RenSeq-PacBio. 

Use of the Mla6 expression construct also allows for direct comparison of Mla6 and 

Mla3D6 coding sequence by eliminating native promoter variation.  

 

The transformable accession Golden Promise is susceptible to KEN54-20 

 

All constructs were transformed into the barley accession Golden Promise via 

Agrobacterium mediated transformation of immature embryos. Golden Promise is 

susceptible to Bgh and the P. oryzae isolate KEN54-20 (+AVR-Rmo1) (Figure 4-2). 

At 24 hours post-inoculation, P. oryzae appressoria are clearly visible however no 

difference is observed between the response of Baronesse and Golden Promise. At 48 

hours post-inoculation, cell death is observed in Baronesse with dead cells stained blue 

through Trypan blue staining (Figure 4-2). Cell death is specific to cells penetrated by 

P. oryzae, as appressoria are present above dead cells and initial short intracellular 

hyphae are visible; cell death prevents further colonisation by the fungus. In contrast, 

Golden Promise supports growth of P. oryzae and intracellular hyphae are present 

within cells. No resistance response or cell death is evident in Golden Promise (Figure 

4-2).  
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Figure 4-1. Construct maps for RGH1 and RGH2-Exo70F1-RGH3 candidate 

genes. 

Generate of constructs of candidate genes, Mla3, Mla3D6, and RGH2-Exo70F1-RGH3 from 
cv. Baronesse for Agrobacterium-mediated transformation in pBRACT202 vector containing 
hygromycin plant selectable marker (35S-Hyg-nos; grey) and neomycin phosphotransferase 
(npt1; grey) conferring kanamycin resistance for bacterial selection. A) Construct design using 
RGH1 coding sequence (CDS; orange) with Mla6 promoter (green) and terminator (red) in 
the pBRACT202 backbone vector. The same construct design was used for Mla3 and Mla3D6. 
B) Native RGH2-Exo70F1 and RGH3 construct design in the pBRACT202 backbone vector, 
including annotations for the mRNA (red) and CDS (yellow).  
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Figure 4-2. Trypan blue staining of P. oryzae inoculated Baronesse and Golden 

Promise. 
White scale bars at the bottom right-hand of the images indicate 50 µm. Appressoria labelled 
with white arrows and the letter A; and inter-cellular hyphae labelled with black arrows and 
the letter I. Accessions Baronesse (resistant) and Golden Promise (susceptible) indicated at 
the left-hand side of the panels. A) Twenty-four hours post inoculation. B) Forty-eight hours 
post inoculation. 
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Mla3 confers resistance to Bgh 

 

Mla3, Mla3D6, and RGH2-Exo70F1-RGH3 transgenic Golden Promise T1 families 

were tested with the Bgh isolate CC148 (AVRa1, AVRa3, avra6). Eight seed from two 

spikes were evaluated per family. Eight T1 families were evaluated for Mla3 

(HVT_0665, HVT_0667, HVT_0668, HVT_0669, HVT_0670, HVT_0673, 

HVT_0674, and HVT_0675); six T1 families were evaluated for Mla3D6 (HVT_0266, 

HVT_0267, HVT_0268, HVT_0269, HVT_0272, and HVT_0275); and eight T1 

families for RGH2-Exo70F1-RGH3 (HVT_0615, HVT_0620, HVT_0623, 

HVT_0626, HVT_0634, HVT_0639, HVT_0641, and HVT_0643).  

 

Only full-length Mla3 was shown to confer resistance to Bgh CC148, with all 

transgenic Mla3D6 lines displaying susceptibility (Figure 4-3). Copy number analysis 

was performed on the individual lines using qPCR on the selectable marker 

(hygromycin). For the Mla3 T1 families the number of copies ranged from 0 to 6. For 

the Mla3D6 T0 lines, the number of copies of the transgenic insert varied from 1 to 4. 

All RGH2-Exo70F1-RGH3 transgenic barley lines were susceptible to Bgh. Copy 

number analysis of the RGH2-Exo70F1-RGH3 T0 lines varied from 0 to 4 copies. All 

positive Mla3 individuals were resistant and all Mla3D6 and RGH2-Exo70F1-RGH3 

individuals were susceptible, regardless of copy number.  

 

Mla3 confers resistance to P. oryzae isolate KEN54-20 

 

Rmo1 confers dominant, race-specific resistance to P. oryzae isolate KEN54-20 

(Inukai et al., 2006). Mla3, Mla3D6, and RGH2-Exo70F1-RGH3 transgenic T1 

families were screened with P. oryzae KEN54-20 using spot inoculation on detached 

leaves. Mla3 transgenic lines showed resistance to P. oryzae KEN54-20, 

recapitulating the wild-type phenotype. Analysis of segregating Mla3 transgenic T1 
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Figure 4-3. Mla3 confers resistance to Bgh isolate CC148. 

Transgenic lines of Mla3, Mla3D6, and RGH2-Exo70F1/RGH3 inoculated with Bgh isolate 
CC148 carrying AVRa3. Controls include resistant wild-type Baronesse and susceptible wild-
type Golden Promise used for transformation. Complete resistance shown by Baronesse and 
transgenic line Golden Promise + Mla3 (T1 family HVT_0667), whereas wild-type Golden 
Promise and transgenic lines Golden Promise + Mla3D6 (T1 family HVT_0275) and + RGH2-
Exo70F1/RGH3 (T1 family HVT_0634) are susceptible. Phenotypes are representative of 
inoculated T1 families. 
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families showed phenotypic variation, with some families displaying partial or no 

resistance. Mla3D6, and RGH2-Exo70F1-RGH3 transgenic individuals were fully 

susceptible (Figure 4-4). 

 

Based on the observation of variable expression in resistance to P. oryzae KEN54-20 

in contrast to the complete resistance shown for Bgh CC148, I hypothesised that 

sufficient expression of Mla3 is required to confer resistance. Copy number variation 

of the individual transgenic lines was evaluated, under the assumption copy number 

of the insert is correlated with expression. An inverse linear correlation was observed 

between the number of copies and the P. oryzae phenotypic score: multiple copies of 

Mla3 were required to complement the wild-type phenotype and confer complete 

resistance to KEN54-20 (Figure 4-5A). Except for one individual, complete resistance 

was only observed in individuals carrying two or more copies of the insert; a single 

copy was insufficient for complementation. Data were collated from the individual 

lines of the resistant T1 families and family HVT_0667 contained the highest number 

of resistant lines due to the segregation of higher insert copy number (Figure 4-5B). 

Two additional families HVT_0679 and HVT_0680 contained resistant lines with 4 

insert copies, showing a resistant phenotype of 1.5. However, complete resistance—a 

phenotypic score of 0—was only observed for the HVT_0667 family (Figure 4-5B). 

The transgene is driven by an Mla6 promoter and is assumed to be comparable to the 

native Mla3 promoter. Copy number variation is observed in wild-type Baronesse with 

an estimated three copies in the haploid genome—two Mla3, and one Mla3D6—

resulting in four hypothesised full-length Mla3 copies in the diploid plant.  

 

MLA3 specifically recognises AVR-Rmo1 

 

Due to the requirement of high copy number (and assumed high expression) being 

required for complementation in the transgenic lines, we were concerned that the 

observed resistance could be due to auto-activity of the transgene. Overexpression of 

NB-LRRs has been shown to cause constitutive defence activation and broad-

spectrum disease resistance to multiple pathogens (Lai and Eulgem, 2018; Li et al., 

2019). To evaluate this, resistant Mla3 transgenic lines need to be tested with a  
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Figure 4-4. Mla3 confers resistance to P. oryzae isolate KEN54-20. 

Transgenic lines of Mla3, Mla3D6, and RGH2-Exo70F1/RGH3 inoculated with P. oryzae 
isolate KEN54-20 containing AVR-Rmo1, including controls of WT Baronesse and Golden 
Promise. Complete resistance shown by WT Baronesse and transgenic line Golden Promise + 
Mla3 (HVT_0667), whereas WT Golden Promise and transgenic lines Golden Promise + 
Mla3D6 (HVT_0522) and + RGH2-Exo70F1/RGH3 (HVT_0626) are susceptible. 
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Figure 4-5. Mla3 transgenic lines carrying multiple copies of the Mla3 transgene 

construct are resistant to P. oryzae isolate KEN54-20. 
T1 families of Golden Promise + Mla3 showing resistance with varying copy number (0 to 6) 
inoculated with P. oryzae isolate KEN54-20. Phenotypic scores 0 and 1 = resistant; 2 to 4 = 
susceptible. A score of 1.5 was given to individuals with resistant lesions with evidence of a 
very small eyespot, and a score of 2.5 was given to an individual with a mixture of small and 
large lesions. Data from one replicate with 3 biological replicates. A) Number of individual 
lines from T1 families with insert copy number for each phenotypic score. Circle size and 
colour gradient indicate number of individuals at each plot point (small dark green circles = 
>5 through to large light green circles = 25). B) Separation of data shown in A) based on T1 
family.  
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P. oryzae isolate that is virulent on wild-type Baronesse carrying Mla3. Baronesse is 

susceptible to the P. oryzae isolate Sasa2, which lacks AVR-Rmo1. Transgenic Mla3 

lines with high copy number, that previously displayed resistance to KEN54-20, were 

spot inoculated with both KEN54-20 and Sasa2 in single spots in both proximal and 

distal positions to the leaf base. Mla3 shows specific recognition of KEN54-20 similar 

to wild-type Baronesse and fails to provide resistance to Sasa2, with clear susceptible 

lesions seen (Figure 4-6). Both Golden Promise and Nigrate are susceptible to KEN54-

20 and Sasa2. Specific resistance to KEN54-20 was maintained regardless of spot 

inoculation position on the leaf (Figure 4-7A).  

 

Mla3 confers a specific and clear resistance phenotype to KEN54-20. This can be used 

for screening of KEN54-20 mutants for a gain-of-virulence or loss of AVR-Rmo1 

function in order to identify AVR-Rmo1. Mutants of P. oryzae isolate KEN54-20 were 

generated using UV mutagenesis and isolated from susceptible lesions on wild-type 

Baronesse following a spray-based inoculation of irradiated spores. Loss of AVR-

Rmo1 function was confirmed following re-inoculation on Baronesse using a spot-

based method—currently a single mutant KEN54-20 M1 has been confirmed. Spot 

inoculations using KEN54-20 and the mutant KEN54-20 M1 were repeated on the 

resistant transgenic lines as described previously for the isolate Sasa2. Barley 

accession Golden Promise carrying Mla3 confers specific resistance through 

recognition of P. oryzae isolate KEN54-20, as the mutant KEN54-20 M1 was virulent 

in both proximal and distal positions on the leaf (Figure 4-7B).  

 

AVR-Rmo1 is present in multiple isolates  

 

The presence of AVR-Rmo1 determines the compatibility of P. oryzae isolates on 

barley lines carrying Mla3. Despite AVR-Rmo1 remaining unknown, different P. 

oryzae isolates can be evaluated for the prevalence of AVR-Rmo1 within the 

population. A diversity panel of 20 Japanese P. oryzae isolates were inoculated on 

Baronesse. Inoculations were performed using a spot inoculation of the first leaf on 

whole plants in the laboratory of Professor Ryohei Terauchi. Of the diversity panel, 9 

isolates were avirulent and are presumed to carry AVR-Rmo1 (Table 4-1). Additional  

  



 

 107 

 
 
 
 
 

 
 

Figure 4-6. Mla3 specifically recognises AVR-Rmo1. 
Transgenic Golden Promise + Mla3 (HVT_0934) spot inoculated with P. oryzae isolates 
KEN54-20 (+AVR-Rmo1) and Sasa2 (-AVR-Rmo1). Mla3 confers resistance to only isolates 
carrying AVR-Rmo1. Transgenic line Golden Promise +Mla3 HVT_0934 T2 used, from T1 
family HVT_0667. Controls Golden Promise used for transformation and hyper-susceptible 
Nigrate are susceptible to both Sasa2 and KEN54-20.  
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Figure 4-7. Mla3 specifically recognises AVR-Rmo1. 
Transgenic line Golden Promise +Mla3 HVT_0934 T2 used, from T1 family HVT_0667. A) 
Transgenic Golden Promise + Mla3 spot inoculated with P. oryzae isolates KEN54-20 (+AVR-
Rmo1) and Sasa2 (-AVR-Rmo1). Mla3 confers resistance to only isolates carrying AVR-Rmo1 
regardless of localisation of spot inoculation on leaf. B) Transgenic Golden Promise + Mla3 
spot inoculated with P. oryzae isolate KEN54-20 (+AVR-Rmo1) and a loss-of-AVR-Rmo1 
recognition mutant KEN54-20 M1. Mla3 confers resistance to only KEN54-20 carrying AVR-
Rmo1 regardless of localisation of spot inoculation on leaf. 
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Table 4-1. Diversity panel of 20 P. oryzae isolates inoculated on barley accession 

Baronesse (Mla3/Rmo1/Lov1). 

 
Phenotypes from two experiments where R = resistant, S = susceptible. Hyphen indicates 
isolate not used in the experiment.  
 
  

P. oryzae isolate HB_0243 HB_0245 
Ina168 WT - S  
Naga69-150 (30733) - R 
2403-1 S  S  
2012-1 R R 
24-22-1-1 - S 
85-141 S S 
Ina87T-56A R R 
83R-131B - S 
SL91-48D R  S  
H98-315-1 R S 
Sasamori121 - S 
0423-1 R S  
Ao92-06-02 R S 
TH68-126 - R 
TH68-140 - R 
TH68-141 - R 
Sasa2 S S 
Ina85-182 #E R - 
Ken 54-20 R R 
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replicates will be performed using spot inoculations on detached leaves to confirm 

phenotypes. Association genetics on these isolates and sequencing of mutagenized 

KEN54-20 isolate will provide powerful tools in the identification of AVR-Rmo1.  

  

4.4 Discussion  

 

Following the confirmation of the genetic coupling of Mla3, Rmo1, and Lov1 outlined 

in the previous chapter, this chapter details the characterisation of candidate genes at 

the Mla3 locus. The Mla locus is a resistance gene cluster containing three NB-LRR 

gene families. This region experiences suppressed recombination between haplotypes 

due to the presence of multiple repetitive regions, mobile elements, and different 

duplication events (Wei et al., 1999). Due to this, the Mla locus is unable to be 

assembled using current long read sequencing technologies and characterisation of the 

locus across barley haplotypes has been limited. RNA sequencing on 40 barley 

accessions found presence/absence, sequence, and copy number variation of the three 

NB-LRR gene families—RGH1, RGH2, and RGH3—including the integrated 

Exo70F1 within RGH2 alleles (Chapter 2).  

 

Here, the RGH1 family experiences copy number variation and within the accession 

Baronesse (Mla3/Rmo1/Lov1), full length Mla3 and Mla3D6 with a 6 bp deletion in 

the LRR are present. The RGH2-Exo70F1 and RGH3 alleles present are hypothesised 

to work as a pair due to their phylogenetic relationship and head-to-head orientation 

in the genome. The candidate genes were cloned via PCR, assembled into expression 

constructs, and transformed into susceptible barley accession Golden Promise. 

Screening of a diversity panel of accessions harbouring the same alleles of RGH1, 

RGH2, and RGH3 as Baronesse in the previous chapter, RGH2-Exo70F1 and RGH3 

were excluded for conferring Rmo1-mediated resistance and Lov1-mediated 

susceptibility. Therefore, complementation was used to assess Mla3 and Mla3D6 

function. Due to copy number variation of RGH1 family members and the small 6 bp 

polymorphism between alleles a silencing approach (such as using Barley Stripe 

Mosaic Virus) would be unreliable. Baronesse is also unable to be transformed so 

Cas9-mediated knock out was unfeasible.  
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Mla3 was shown to confer resistance to both Bgh and P. oryzae, recognising both 

AVRa3 and AVR-Rmo1 respectively. Neither Mla3D6 or RGH2-Exo70F1-RGH3 

conferred resistance to either pathogen. Resistance to P. oryzae was shown to require 

multiple copies of Mla3, whereas a single copy was sufficient for Bgh resistance. 

Furthermore, resistance to P. oryzae was specific to isolates carrying AVR-Rmo1 as 

Sasa2 (-AVR-Rmo1) and a mutant of KEN54-20 M1 with loss-of-AVR-Rmo1 function 

were virulent on resistant transgenics. Characterisation of transgenic lines for victorin 

sensitivity is ongoing. Mla3 is a single NB-LRR that is able to recognise two distinct 

pathogens; the hypothesis for Mla3 also conferring sensitivity to a necrotrophic HST 

is currently being tested. 

 

Although the majority of single NB-LRRs are pathogen species- or isolate-specific, a 

broader recognition specificity in a species can be maintained via allelic series within 

populations (Brown and Tellier, 2011; Dangl and Jones, 2001). Such polymorphisms 

are maintained through frequency dependent selection and balancing selection, as 

discussed in previous chapters. Mla alleles have been well characterised for conferring 

isolate-specific resistance to Bgh via functional divergence of alleles (Jørgensen, 

1994; Saur et al., 2019), yet their potential for multiple pathogen recognition is only 

now being realised (Moscou personal communication). Homologs of Mla, Sr33 in 

wheat (Triticum aestivum) and Sr50 in rye (Secale cereale), confer disease resistance 

to diverse races of stem rust pathogen Puccinia graminis f. sp. tritici, including 

virulent isolate TTKSK (Chen et al., 2017; Periyannan et al., 2013). Mla, Sr33, and 

Sr50 highlight the potential for orthologous genes to evolve new and different 

pathogen specificities. 

 

Saur et al., (2019) described a direct recognition mechanism of Bgh effectors, AVRa7, 

AVRa9, AVRa10, and AVRa22, by Mla alleles, MLA7, MLA9, MLA10, and MLA22 

respectively. These Bgh effectors are sequence unrelated, apart from the allelic 

AVRa10, and AVRa22, highlighting the capability of Mla alleles to recognise diverse 

pathogen proteins. Similarly, the wheat Pm3 NB-LRR alleles control isolate-specific 

resistance to wheat powdery mildew (Blumeria graminis f. sp. tritici), interacting 

through specific allele-effector combinations (Bourras et al., 2019, 2016, 2015). 

Sequence and functional diversity in alleles of the Arabidopsis NB-LRR RPP13 
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confer specificity of resistance to the oomycete pathogen Peronospora parasitica in a 

comparable manner (Allen et al., 2004; Ding et al., 2007a; Hall et al., 2009; Rose et 

al., 2004).  

 

Alleles of NB-LRRs can also provide resistance to very different pathogens. The 

Arabidopsis RPP8 gene family encodes NB-LRRs with diverse resistance 

specificities, with alleles conferring resistance to the oomycete H. arabidopsidis 

(RPP8); Turnip crinkle virus (HRT), and Cucumber mosaic virus (RCY1) (Cooley et 

al., 2000; Kuang et al., 2008; McDowell et al., 1998; Takahashi et al., 2002). Unequal 

crossing over that generates chimaeras between alleles is thought to be a driving force 

for new RPP8 specificities (Ding et al., 2007b; McDowell et al., 1998). 

 

Few single genes have been identified that confer resistance to multiple pathogens. Of 

these, even fewer encode NB-LRRs. The paired NB-LRRs RPS4/RRS1 confer 

complete resistance through the direct recognition of pathogen effector molecules (Ma 

et al., 2018; Narusaka et al., 2017). Tomato NB-LRR Mi-1.2 reduces pathogen 

abundance and life cycle completion through an as yet unknown mechanism (Goggin 

et al., 2006), in comparison to the defence-initiated cell death shown by RPS4/RRS1. 

This opens the potential for new mechanisms of immune defence regulated by NB-

LRRs, not only terminating in cell death and the hypersensitive response. Mla3-

mediated resistance results in cell death for P. oryzae (Figure 4-2) and Bgh, and is 

hypothesised upon recognition of victorin. These observations would suggest a shared 

downstream signalling cascade and immune response in all three interactions; 

however, each pathogen may require a different threshold level of immune response 

in order for resistance.  

 

Multiple copies of Mla3 are required to confer resistance to P. oryzae (Figure 4-5), 

yet a single copy was sufficient for resistance to Bgh. This could be due to a difference 

in requirement for expression level—assuming copy number correlates with 

expression and Mla6 and Mla3 promoters are comparable. Multiple copies of Mla3 

are present in wild-type Baronesse (Mla3/Rmo1/Lov1); if a single copy is sufficient 

for Bgh resistance, is recognition of P. oryzae or another unknown pathogen driving 

an increase in expression? Mla is an intracellular immune receptor; differential 

requirements could be due to variation between pathogens in effector expression or 
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presence within in cell. The threshold requirement for effector recognition could also 

be different between pathogens due to effector protein abundance, signalling 

initiation, overcoming immune suppression by the pathogen, or additional unknown 

factors. Only a single isolate of Bgh was used in this study and inoculating with diverse 

Bgh isolates carrying AVRa3 would test if a single copy of Mla3 is sufficient for 

resistance in all cases. More virulent isolates, or the presence of suppressors of 

recognition, may require a higher copy number of Mla3 to show the same level of 

resistance. In constrast, P. oryzae isolate KEN54-20 may also secrete suppressors of 

resistance or recognition. Identifying less virulent isolates carrying AVR-Rmo1 or 

transforming AVR-Rmo1 into less virulent isolates for inoculation of the Mla3 

transgenic panel may result in a lower copy number being sufficient for resistance.  

 

Increased expression level required for function could be driving duplication and copy 

number variation observed between Mla alleles. NB-LRRs are under tight regulation 

to prevent auto-activity and unwanted cell death; gene duplications are hypothesised 

to be an easier evolutionary route to increased expression rather than promoter 

mutations that could lead to deleterious consequences (Lai and Eulgem, 2018). The 

mechanism for increased resistance following higher expression, and the potential for 

newly acquired recognition to multiple pathogens is as yet unknown.    

 

Following NB-LRR duplication, there is opportunity for diversification and the 

evolution of new recognition specificities, however, the majority of duplicated R genes 

undergo pseudogenisation (Michelmore and Meyers, 1998). Copy number variation at 

the Rgh1 locus in soybean modulates resistance to soybean cyst nematode; the 

resistant Rgh1-b haplotype contains 10 tandem copies of the required three genes for 

resistance. Susceptible cultivars have only one copy present per haploid genome 

(Cook et al., 2012; Lee et al., 2015). Resistance can be recapitulated through 

overexpression of the three required genes in the locus that encode an amino acid 

transporter, an a-SNAP protein, and a WI12 (wound-inducible domain) protein, 

supporting the hypothesis that gene expression dosage is causal (Cook et al., 2012). 

Although this region does not contain NB-LRR genes, this dose dependency is 

consistent with previous observations of a required threshold of R genes for effective 

resistance (Bieri et al., 2004; Holt et al., 2005; Lai and Eulgem, 2018). Here, gene 
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duplications would lead to selection against sequence divergence of paralogs in order 

to retain recognition specificity. Copy number variation in Mla3 alleles could be a 

result of relaxed purifying selection on additional Mla3 copies above the required 

expression threshold. Mla3D6 could be an example of a new unknown recognition 

specificity. It is important to note the distinction of copy number variation from 

overexpression and auto-activity (Lee and Yeom, 2015) as specificity of Mla3 to AVR-

Rmo1 is retained (Figure 4-6, Figure 4-7).  

 

The direct recognition of Mla alleles (and homologs of Mla) is supported through 

yeast-two-hybrid assay and Nicotiana benthamiana infiltration assay, where co-

expression of MLA and Bgh AVRs is sufficient to trigger cell death (Chen et al., 2017; 

Saur et al., 2019). However, crystal structures of direct binding have not been solved, 

so the presence of additional proteins in complex or as additional recognition 

requirements cannot be excluded. The direct recognition of two different pathogens 

by Mla3 could be achieved via a shared structural conformation of AVRa3 and AVR-

Rmo1, effector-mediated protein modifications of Mla3 leading to immune activation, 

or the presence of an additional proteins conserved across species.  

 

Direct binding of MLA3 and AVRa3 has not yet been demonstrated. It is possible that 

Mla alleles could mediate recognition via different mechanisms, as different 

requirements for the signalling component Rar1 has demonstrated between alleles 

(Halterman and Wise, 2004; Shen et al., 2003). A simpler model for multiple pathogen 

recognition is via the guard model—where an NB-LRR monitors a host protein for 

pathogen-mediated modification. Multiple pathogens can target the same host protein, 

thought to be ‘hubs’ for immune receptor signalling or shared susceptibility targets. 

RIN4 is a known example, its perturbation is guarded by two NB-LRRs in A. thaliana 

(Axtell and Staskawicz, 2003; H.-S. Kim et al., 2005; Kim et al., 2009; M. G. Kim et 

al., 2005; Mackey et al., 2003, 2002; Russell et al., 2015), and by alleles of RPG1 in 

soybean (Glycine max) (Ashfield et al., 2014; Whitham et al., 2016). The guarding of 

RIN4 has evolved convergently as soybean RPG1 is not an ortholog of A. thaliana 

RPM1 (McDowell, 2004). The hypothesis of Mla3 conferring sensitivity to the HST 

victorin also challenges this direct recognition model.  The mechanism of victorin 

sensitivity in A. thaliana is mediated through LOV1, an NB-LRR, guarding a 
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thioredoxin h5. Victorin binding to the thioredoxin h5 triggers LOV1, resulting in cell 

death and sensitivity (Lorang et al., 2012; Wolpert and Lorang, 2016). Thioredoxins 

are highly conserved across species and regulate redox-mediated immune signalling 

pathways: thioredoxin h5 mediates specificity and reversibility during salicylic acid-

dependent plant immunity (Kneeshaw et al., 2014; Mata-Pérez and Spoel, 2019). As 

thioredoxins are also present in yeast, the assays used to evaluate the direct binding of 

MLA and Bgh AVRs are not independent of thioredoxins (Gan, 1991). Once AVRa3 

and AVR-Rmo1 have been identified, this hypothesis can be investigated.  

 

Clear hypotheses for the mechanism of Mla3-mediated multiple pathogen recognition 

are limited by a dearth of similar examples. A. thaliana RPS4/RRS1 remain the best 

characterised NB-LRRs conferring recognition of multiple pathogens and RIN4 the 

best described guardee across species (Kourelis and Van Der Hoorn, 2018). In 

comparison, knowledge of necrotrophic pathogen interactions is even more sparse: 

only A. thaliana RLM3 (TIR-NB class protein) has been associated with resistance to 

necrotrophic pathogens (Mengiste, 2012; Staal et al., 2008) and few NB-LRRs have 

been identified as sensitivity or susceptibility genes. Wheat Tsn1, an NB-LRR with an 

integrated serine/threonine protein kinase domain, confers sensitivity to the HST 

ToxA produced by both Stagonospora nodorum and Pyrenophora tritici-repentis 

(Chu et al., 2010; Faris et al., 2010; Friesen et al., 2008; Liu et al., 2017, 2006). In 

addition, in sorghum, the NB-LRR Pc mediates sensitivity to the PC toxin produced 

by Periconia circinata (Nagy and Bennetzen, 2008). While the NB-LRR-mediated 

immune response is effective against biotrophic pathogens, it remains as a 

susceptibility factor for necrotrophic pathogens.  

 

Comparing the structure and binding interfaces of victorin with effector candidates 

from Bgh and P. oryzae would provide an initial step in effector identification. 

Recognised Bgh alleles are sequence un-related yet hypothesised to share a conserved 

structural fold; this could represent a core structure of pathogen effectors shared across 

species.  Resolving the structure of AVRa3 and AVR-Rmo1 will allow for the 

identification of new specificities for Mla alleles, with the opportunity for engineering 

resistance against multiple pathogens. Characterisation of Bgh and P. oryzae 

recognition by Mla3 provides the second example of a single NB-LRR conferring 
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multiple pathogen recognition. Following confirmation of victorin, Mla3 could 

provide the first NB-LRR sensitivity gene with known biotrophic resistance function.  
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4.5 Materials and methods 

 

Oligonucleotides (primers) 

 

Primers were designed and were assessed for GC content (~50%) and secondary 

structures using mfold (Zuker, 2003). Primers were synthesised from Integrated DNA 

Technologies and Sigma-Aldrich using a standard desalting purification method at a 

stock concentration of 100 μM and stored at -20°C. Working solutions were diluted to 

10 μM. Primers used for polymerase chain reaction (PCR) for gene amplification and 

construct development are listed in Appendix Table 7-9.  

 

Polymerase chain reaction (PCR) and E. coli transformation 

 

Polymerase chain reactions (PCRs) were carried out to amplify regions of DNA for 

molecular cloning and to confirm the presence of target plasmids in transformed 

bacterial colonies—referred to as colony PCRs. E. coli colonies were touched with a 

pipette tip and diluted directly into the PCR reaction mix for colony PCRs. PCR 

reactions were performed using GoTaq G2 Flexi DNA polymerase (Promega; 

Catalogue number M7805), Phusion High Fidelity DNA polymerase (New England 

Biolabs Ltd; Catalogue number M0530S) and GoTaq Long PCR Master Mix 

(Promega; Catalogue number M4020). Reaction mixes were set up as per 

manufacturing instructions and reactions performed in a G-STORM and Bio-Rad 

thermal cycler. cDNA was used as the template for cloning of the RGH1 candidate 

genes, and gDNA the template for the RGH2-Exo70F1 and RGH3 construct. 

Annealing temperatures and elongation times were optimised for reaction based on 

primer combination.  
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Example PCR program for Phusion PCR: 

 
Example PCR program for colony PCR: 

 
PCR reactions were run on a 1% agarose gel in TBE buffer, longer fragments were 

run in a TAE buffer for cleaner band separation. Gel extraction of fragments was 

performed with the QIAquick gel extraction kit (Qiagen; Cat No.: 28704) according 

to the manufacturer’s instructions. Excised and cleaned fragments were A-tailed via 

incubation at 72ºC for 20 mins using GoTaq polymerase and dATPs. A-tailed 

fragments were cloned via the TOPO XL PCR Cloning Kit (Invitrogen; K7030-20) 

according to manufacturer’s instructions and transformed into DH5a E. coli 

competent cells (1 – 2 μl reaction into 50 μl cells). Transformations were kept on ice 

for 30 mins, heat-shocked at 42 ºC for 90 secs, then ice for 2 mins; recovered in 500 

μl L media via shaking at 37 ºC for 1 hour; and plated on L media plates in varying 

dilutions with appropriate selection for overnight growth at 37 ºC . Positive clones 

were identified using colony PCR as described previously using specific primers for 

amplification of the insert. Plasmids were extracted from positive colonies using 5 ml 

liquid cultures with the NucleoSpin Plasmid Purification kit (Macherey-Nagel; Ref.: 

11932392) and Sanger sequenced (GATC; 80 - 100 ng/ plasmid DNA, 5 μM primer). 

Plasmids were also confirmed through digestion with the restriction enzyme EcoRI 

(New England Biolabs; Ref.: R3101S) according to the manufacturer’s instructions. 

PCR step Temperature 
(ºC) 

Time 
(seconds)  

Number 
of cycles 

Priming 95  1 
Denaturing 95 30  

     30/32 Annealing Variable 15 
Extension 72 30s/1kb 
Final 
extension 

72 1min/1kb 1 

Hold 16 ∞ 1 
 

PCR step Temperature 
(ºC) 

Time  Number 
of cycles 

Initial 
denaturation 

95 7 min 1 

Denaturing 95 30 sec  
Annealing Variable 30 sec 
Extension 72 1 min/1kb 
Final 
extension 

72 5 min 1 

Hold 16 ∞ 1 
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Presence of Mla3D6 and differentiation between Mla3 was assessed via digestion with 

BspLI (Thermo Scientific; Cat No.: ER1151) which cuts on the 6bp indel.  

 

Construct development 

 

Constructs were assembled via multiple PCR fragments into the pBract202 vector 

backbone. pBract202 was generated by the Crop Transformation (BRACT) team at 

the John Innes Centre, Norwich, UK (Smedley and Harwood, 2015). The backbone 

contains the npt1 Kanamycin resistance gene for bacterial selection and the left border 

contains the 35S hygromycin selectable marker used for plant transformation.  

 

Primers for Gibson Assembly consisted of 20bp fusion from both fragments to be 

assembled (40bp total) and were assessed for GC content (~50%) and secondary 

structures using mfold (Zuker, 2003) (Appendix Table 7-9). Constructs were 

assembled via using Gibson Assembly (Gibson et al., 2008) with a Gibson Assembly 

master mix (New England Biolabs; Ref.: E2611).  Gibson Assembly is used for the 

assembly of large DNA constructs in a single tube isothermal reaction. Briefly, 

multiple overlapping gene fragments are designed and amplified via PCR; appropriate 

overlaps are unique ~18bp overhangs. Overlaps were added using the high fidelity 

Phusion polymerase. PCR products were digested with DpnI (New England Biolabs; 

Ref.: R0176S) to remove circular DNA. Fragments were resolved with gel 

electrophoresis (1% agarose in 1x TAE buffer) and excised using the Zymoclean Gel 

DNA Recovery Kit (Zymo Research; Ref.: D4008) for elution of high-concentration 

ultra-pure DNA. Fragments were added to the reaction tube in appropriate dilutions 

and ratios according to molecular weight, as outlined in the manufacturer’s 

instructions. The reaction tube was incubated at 50°C for 1 hour – fragments trimmed 

by an exonuclease creating single-stranded 3’ overhangs that anneal with their 

complementary counterparts, DNA polymerase extends 3’ ends of annealed 

fragments, and sealed with a DNA ligase. Competent E. coli DH5a cells were 

transformed with the successful construct as outlined above. Construct visualisation, 

primer development, and assessment was performed using the software Geneious 

(Version 9.0.5). Sequencing was performed by the company GATC using the Sanger 

sequencing method.  
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The Mla3 and Mla3D6 coding sequences (CDS) were amplified from cDNA isolated 

from barley accession Baronesse. The CDS was cloned into the pBract202 vector 

backbone containing the Mla6 promoter and terminator sequence.  

 

The native RGH2-Exo70F1-RGH3 construct was amplified from gDNA from barley 

accession Baronesse using primers designed on the contig identified via Renseq 

PacBio sequencing. The final construct contains the CDS of RGH2-Exo70F1 and 

RGH3 in native head-to-head orientation with 2 kb of native promoter and terminator 

sequence into the pBract202 vector backbone.   

 

Generation of transgenic barley 

 

Constructs were transformed into Agrobacterium tumefaciens AGL1 containing 

pSoup via electroporation (~100 ng plasmid into 50 μl cells), recovered in 500 μl L 

medium via shaking at 28°C for 2 hours, and grown on L media plates with appropriate 

selection for three days. Barley accession Golden Promise was transformed with via 

Agrobacterium-mediated transformation via the transformation team at TSL.  

 

Copy number assessment of transgenics  

 

Assessment of insert copy number of transgenic lines was performed via iDna 

Genetics Ltd (Norwich, UK) using a TaqMan Assay. Samples were analysed for copy 

number using real-time PCR using hygromycin gene sequence primers present on the 

transformed construct.  

 

Pyricularia oryzae assays and mutagenesis   

 

P. oryzae isolates were maintained, prepared, and inoculated as outlined in the 

previous chapter. Phenotypic assessment and copy number of insert was performed 

using Rstudio (Version 1.1.463) and the ggplot2 package (Version 3.1.0) (Wickham, 

2016).  
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Mutagenesis of P. oryzae isolate KEN54-20 was performed on the conidal suspension 

using ultraviolet light (UV). Spore concentration was adjusted to 1 x 105 spores per 

ml and placed inside a petri dish until the solution was just covering the entire base of 

the dish – a shallow depth is required to ensure even UV light penetration. The open 

petri dish was placed inside a UV Stratalinker 2400 (Stratagene) and exposed to set 

UV light. A dosage curve was generated to assess the UV dose at which spore death 

was at 50%, for KEN54-20 this was 20 seconds. The UV light exposed conidal 

suspension was then used for a spray-based inoculation as outlined in the previous 

chapter. Wild-type Baronesse was used for the isolation of KEN54-20 gain-of-

virulence mutants. Lesions were isolated from leaves 7 dpi, sterilised in ethanol for 30 

seconds, and placed on Potato Dextrose Agar (10g PDA, 6.25g agar per litre of H20). 

P. oryzae growth was sampled from each lesion, cultured, and re-inoculated onto 

Baronesse to confirm gain-of-virulence.  

 

Trypan blue staining  

 

The excised plant tissues were placed inside a 15ml Corning tube and immersed in 

trypan blue staining solution (2.5 mg ml–1 trypan blue in lactophenol (lactic acid, 

glycerol, liquid phenol and H2O in a ratio of 1:1:1:1)). Samples were boiled in a water 

bath in a fume hood for 1-2 minutes. Trypan blue staining solution was removed and 

replaced with chloral hydrate (Sigma Aldrich; CAS Number 302-17-0) at a 

concentration of 2.5 g/ml. Samples were placed in a rotator mixer for 24 hours with 

replacement of fresh chloral hydrate solution. Samples were maintained in 50 mM 

Tris at ph 7.5 prior to mounting for microscopy.  

 

Blumeria graminis assay 

 

Bgh isolate CC148 was obtained from James Brown (John Innes Centre) maintained 

on detached leaves on agar media. Bgh inoculations were carried out on seedlings at 

emergence of the second leaf. Bgh inoculum was maintained on susceptible barley 

varieties. Inoculation was carried out by laying pots on their side and gently shaking 

infected leaves over both sides.  
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5 Fine mapping of QRps1H conferring APR to Puccinia 

 

 

 

5.1 Abstract 

 

Resistance to plant pathogens is developmentally regulated; expression can occur 

during the seedling, adult, or all stages of the plant lifecycle. Previous work by Castro 

et al., (2003) identified an adult plant resistance QTL—QRps1H—that encompasses 

the Mla locus and developed a near-isogenic line containing this locus in a Baronesse 

genetic background (Verhoeven et al., 2011). This chapter outlines the fine-mapping 

of QRps1H through the development homozygous recombinant lines, marker 

saturation at the QRps1H locus, and field-based assessment of resistance contributed 

by this locus.  

 

5.2 Introduction 

 

Humans have been selectively breeding grass species such as wheat, barley and maize 

for traits such as flavour, ease of processing, and large grains throughout history to 

create the domesticated cereals we know today. The ability to resist disease was an 

important factor in crop selection as our ancestors were routinely plagued by 

pathogens causing mildew, blight, and rust. Modern agriculture relies heavily on large 

swathes of monocultures—a practice conducive to disease outbreaks and epidemics. 

With increasing globalisation, one of the major challenges facing agriculture today is 

increasing food production in the face of emerging virulent pathogens. Disease 

epidemics can occur following the introduction of new pathogen strains with increased 

virulence, or after existing field resistance has been defeated. Understanding the 

diversity in plant immune genes and identifying novel sources of resistance are key 

for breeding resistant crop varieties in preparation for prevention of future disease 

outbreaks. 
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The most well studied R genes confer monogenic, dominant or semi-dominant 

resistance and have been used extensively in agricultural breeding (St.Clair, 2010). 

Such resistance is termed qualitative resistance, referring to Mendelian genes that are 

of large effect, often acting in a gene-for-gene manner and exhibiting race-specificity 

(A. J. Castro et al., 2003; St.Clair, 2010). At the other end of the spectrum, multiple 

genes of small phenotypic effect often underlie quantitative disease resistance, with 

quantitative traits showing continuous variation in phenotype often outside Mendelian 

segregation ratios (Ariel J Castro et al., 2003). This continuum of resistance extends 

from complete resistance, to a moderate host defence response and reduction in 

disease severity with low expressivity of the phenotype and is dependent on the 

segregation and presence of causal genes. Quantitative genes can also show epistatic 

relationships, pleiotropy, or additive effects (St.Clair, 2010). Classical breeding using 

phenotypic and DNA marker assisted selection, with markers on or in linkage 

disequilibrium with the gene of interest, has been successful in mapping qualitative 

resistance (St. Clair, 2010). The “boom-and-bust” cycle of defeated major R genes 

overcome by pathogen adaptation is a major threat to plant resistance breeding; partial 

or quantitative resistance is increasingly being sought to lower pathogen selection 

pressure in the field (Burdon et al., 2014). 

 

The use of race-specific resistant cultivars is the most effective and environmentally-

benign method of disease control (Singh et al., 2011). Deployed in 1942, the Puccinia 

graminis f. sp. tritici (Pgt) resistance gene Rpg1 of barley has provided durable 

qualitative stem rust resistance (Brueggeman et al., 2002). However, virulence to 

deployed R genes is increasingly common. The TTKSK, or Ug99 strain, of Pgt was 

first detected in Uganda in 1998 and has since spread worldwide. New lineages of 

TTKSK have overcome the majority of R genes used in wheat (Triticum aestivum), 

including Sr31 derived from rye (Secale cereale), making TTKSK and its variants a 

threat to wheat production worldwide (Pretorius et al., 2000; Singh et al., 2016, 2015). 

A concerted research effort in the wake of TTKSK diagnosis has resulted in the 

identification of new quantitative trait loci and adult plant resistance (APR) genes for 

use in breeding for Pgt resistance (Bhavani et al., 2019). This pathosystem reveals 

how vulnerable agriculture can be to emerging pathogens; effective gene stewardship 

is crucial to ensure the limitation of future epidemics (Singh et al., 2016, 2011).  
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Puccinia striiformis, the causal agent of stripe rust is a common and devastating 

pathogen of grasses. Recent adaption to warmer climates has allowed P. striiformis to 

spread to areas without a previous history of the fungus (Hovmøller et al., 2011; Singh 

et al., 2016). Regular regional wheat crop losses around 0.1 to 5%, sometimes 25% 

are observed due to fungal infection (Savary et al., 2019, 2012). However, wheat yield 

losses of 70% or more are possible during an epidemic under favourable conditions 

(Wellings, 2011). Recent adaption to warmer climates has allowed P. striiformis to 

spread to areas without a previous history of the fungus (Hovmøller et al., 2011). The 

barley specialist Puccinia striiformis f. sp. hordei, (Psh) has spread extensively across 

the world over the last 40 years since being introduced into South America in 1975 

from Europe.  Today, Psh is found in all major barley producing areas worldwide with 

the exception of Australia, which remains an untouched island for Psh (Brown, 2015). 

Only P. striiformis f. sp. pseudo-hordei is present on naturalised barley-grass and can 

only infect a small number of Australian barley cultivars (Wellings, 2011; Wellings et 

al., 2000). Isolates first discovered in America we thought to have originated from 

European isolate 24, but now have diversified to over 31 different Psh races within 

the US (Chen and Line, 2002). In wheat, the emergent virulent ‘Warrior’ race of 

Puccina striiformis f. sp. tritici (Pst) quickly spread throughout Europe from 2011, 

dramatically altering the population structure by replacing previously present isolates 

(Hovmøller et al., 2016; Hubbard et al., 2015). The evolution of races with increased 

virulence, incursion of new exotic isolates, or the re-emergence of virulent strains in 

a new geographic area can all cause epidemics (Hovmøller et al., 2016; Hubbard et 

al., 2015). The rapid spread of genetically diverse Pst lineages highlights the need for 

the maintenance of genetic diversity within accessions and active surveillance of 

pathogen populations on a global scale (Hubbard et al., 2015; Wellings, 2011).   

 

Resistance in barley to Psh can be classified into two developmental categories: all 

stages or adult plant resistance (APR). Few genes in barley have been found for 

resistance to Psh, compared to over 70 Yr (yellow rust) resistance genes identified 

from wheat (Chen and Line, 1999; Hovmøller et al., 2011; Losert et al., 2017). A 

major qualitative resistance gene (Rpsx) has been mapped to the long arm of 

chromosome 7H and several quantitative trait loci (QTL) have been identified (A. J. 

Castro et al., 2003). Moseman and Reid (1961), identified the first barley Psh 

qualitative resistance gene denoted Yr4—later renamed Rps4—located close to the 
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Mla locus on chromosome 1H (Brown et al., 2001). Since the discovery of this gene 

multiple QTL have been mapped, but no underlying causal genes have been identified 

as yet. Chen et al., (1994) mapped a major effect Psh resistance gene on 5H and a 

minor effect 4H QTL accounting for 57% and 10% of the variation in adult plant 

disease severity, respectively. Chen and Line (1999) identified at least 20 genes 

involved in Psh resistance across 18 cultivars, present singularly and polygenically, 

suggesting a complex genetic architecture of quantitative resistance to Psh. Toojinda 

et al., (2000) identified QTLs on chromosomes 1H, 2H, 3H, and 6H as principal 

determinants of resistance to Psh. Due to the presence of resistance alleles in the 

susceptible parent, Toojinda et al., (2000) hypothesised unique combinations of 

multiple alleles may underlie stripe rust resistance. The quantification of seedling and 

APR has been more difficult to characterise with previously identified ‘dual’ 

resistance QTL on 4H separating into 4Ha and 4Hb, for APR and seedling resistance 

respectively, favouring the hypothesis of differential gene control through 

developmental stages (Castro et al., 2002). In further work using a DH population, 

Castro et al., (2002) showed seedling resistance localised to 5H and 6H QTLs and to 

regions already implicated to be involved in APR. As seedling resistance against Psh 

is limited across all adult-plant stages (Gyawali et al., 2017), breeding efforts have 

shifted to utilising quantitative resistance.  

 

The basis of this resistance and potential separation of adult and seedling resistance 

will only be elucidated through fine mapping, cloning, and confirmation of candidate 

genes within significant QTLs. Quantitative resistance could be a result of differential 

control of different aspects of the defence signalling pathway, or resistance at varying 

points of the pathogen infection and life cycle. This has been shown for three R genes 

in barley cv. Golden Promise that confer resistance to Pst. Rps7 and Rps6 prevent 

colonization and Rps8 prevents Pst pustule formation. Rps7 colocalises with Mla, 

providing another example to of multiple pathogen recognition at the Mla locus 

(Moscou et al., unpublished).  

 

The barley near-isogenic (BISON) lines were developed to dissect the quantitative, 

more complex, polygenic inheritance of adult plant resistance to barley stripe rust 

(Richardson et al., 2006; Verhoeven et al., 2011). Using marker assisted selection, 

Psh resistance loci were introgressed into the susceptible genetic background of 



 

 127 

Baronesse individually and in all combinatorial allele introgressions. The donors of 

the resistance alleles were cv. BCD47 (4H and 5H) and BCD12 (1H), developed from 

double haploid lines created by (A. J. Castro et al., 2003; Ariel J Castro et al., 2003). 

Two control lines were also created: BISON 0-QTL, selected for the susceptible 

Baronesse alleles at all QTL locations, and resistant line BISON 7H containing a 

qualitative major gene on chromosome 7H, derived from the experimental line D3-

6/B23 (Ariel J Castro et al., 2003). The separation of resistance QTLs into different 

experimental lines is a valuable tool in the characterisation of quantitative resistance 

in the barley-Psh model pathosystem (Vales et al., 2005). 

 

The recurrent parent Baronesse used in the BISON lines is susceptible to Psh 

(Verhoeven et al., 2011). In this chapter, the mapping population of BISON 1H x 

Baronesse has been used in a recombination screen to delineate QRps1H and 

investigate the relationship to Mla. Homozygous recombinants have been used in field 

trials to fine-map QRps1H and introgression of QRps1H into elite barley cultivars has 

been initiated.  
 

5.3 Results 

 

QRps1H encompasses the Mla12 locus 

 

QRps1H has previously been identified on the short arm of chromosome 1H and has 

been introgressed into a near-isogenic line BISON 1H (Verhoeven et al., 2011). A 

recombination screen using BISON 1H (QRps1H) x Baronesse (qrps1H ) F2 identified 

346 recombinants based on N = 1,510 gametes across a 24 cM spanning the QTL 

introgression (Figure 5-1). A genetic map of the 1H chromosome of the BISON 1H x 

Baronesse population was developed using nine KASP (Kompetitive Allele Specific 

PCR) markers (Figure 5-1). The linkage map was 24.4 cM, where cM was calculated 

using the Kosambi mapping function. A further recombination screen identified 144 

homozygous recombinants, from 67 unique F2:3 families, spanning the QTL (Figure 

5-1). Homozygous recombinants were generated to ensure that regions encompassing 

critical recombinants will be fixed in material analysed in the field.  
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Figure 5-1. Genetic map of the short arm of chromosome 1H encompassing 

QRps1H in the BISON 1H x Baronesse population. 
The distal end of the short arm of chromosome 1H based on non-redundant KASP markers 
based on a recombination screen including N = 1,510 gametes. A) Black numbers of the left-
hand side correspond to the cM distance with marker names on the right-hand side. Red 
numbers on the left-hand side correspond to the number of recombination events between 
markers. B) Log-likelihood (LOD) of the location of QRps1H with inferred marker positions 
on the genetic map (dashed grey lines) based on comparison to the barley SNP consensus map 
as identified by Verhoeven et al., (2011).  
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QRps1H confers resistance to Psh 

 

The population was evaluated for Psh resistance in three environments spanning three 

years, including the 2019 field season which is ongoing at the time of completion of 

this thesis (Table 5-1). Forty-two homozygous F2:3 families were sent to Patrick Hayes 

at Oregon State University for field trials in 2017 using a randomised complete block 

design with two replicates. Seed was bulked in the field for use in 2018 field trials. 

Seventy F3 lines were sent to Ravi Singh at CIMMYT, Mexico, of which 63 were 

unique F2:3 families.  

 

Field trials in 2017 and 2018 at Church Farm, JIC experienced no disease pressure as 

infection failed despite field inoculation of bulked spores, susceptible spreader rows, 

and the transplanting of inoculated seedlings into the field. Yellow pustules 

characteristic of Psh were not observed on material in the field. In addition, the trial 

in Oregon during 2017 failed to have sufficient establishment of Psh infection—

despite the observation of initial infection. Field trials at Oregon and CIMMYT 

(Mexico) in 2018 were successful and experienced a maximum disease pressure of 

80% and 100%, respectively.  

 

Using data from the 2018 OSU field trial scored as percent severity (scale from 0 to 

100%), QRps1H was mapped using interval mapping (Figure 5-2). QRps1H was 

narrowed to an interval under the peak marker K_3_0933 at 3.84 cM with a LOD score 

of 4.96 (Figure 5-2). The average of the two replicates gave a significant peak of 4.96 

compared to the peak of 3.31 for replicate 1 and 2.4 for replicate two, all of which are 

above the experiment-wise threshold (Figure 5-2). The phenotype by genotype plot at 

the peak marker (K_3_0933) shows slight separation of the BISON 1H (resistant; 

BCD12 donor of QRps1H) and Baronesse (susceptible) genotypes, but QRps1H is not 

yet mendelised in this population (Figure 5-3). 

 

Field trails in Mexico were phenotyped three times over a 17-day period and scored 

as percent severity and reaction type for each plot. The coefficient index (CI) was 

  



 

 130 

  

 

 

 

 

Table 5-1. Summary of field trials. 

 

 
JIC: John Innes Centre; UK: United Kingdom; OSU: Oregon State Univeristy; USA: United 
States of America; CIMMYT: International Maize and Wheat Improvement Center; RCBD: 
Randomised Complete Block Design. 
  

Year Site + GPS coordinates Sowing Date Phenotyping 
date 

Design Disease 
pressure 

2017 Church Farm, JIC, UK 13 Mar 2017 NA RCBD, 
two 
replicates 

0 

2017 OSU, Oregon, USA 31 Jan 2017 22 Jun 2017 RCBD, 
two 
replicates 

0 

2018  Church Farm, JIC, UK 26 Mar 2018 NA RCBD, 
two 
replicates 

0 

2018 OSU, Oregon, USA 17 Oct 2017 23 May 2018 RCBD, 
two 
replicates 

0-80% 

2018 CIMMYT, Mexico May 2018 13 Aug 2018 
23 Aug 2018 
30 Aug 2018 

RCBD, 
two 
replicates 

0-100% 

2019 CIMMYT, Mexico 06 Jun 2019 ongoing RCBD, 
two 
replicates 

ongoing 
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Figure 5-2. Interval mapping on the BISON1H x Baronesse F2:5 mapping 

population using Psh 2018 field trails at Oregon State University. 
LOD scan of QRps1H for Psh percent severity including each individual replicate and the 
average of both replicates. The black horizontal line represents the maximum experiment-wise 
threshold across replicates and average based on 1,000 permutations. 
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Figure 5-3. Phenotype by genotype plot of the marker K_3_0933 located at the 

peak of QRps1H from phenotypic data from 2018 field trails at Oregon State 

University. 
Genotype A = susceptible parent Baronesse, B = resistant parent BISON 1H (BCD12 donor 
of QRps1H).  
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calculated from these two values using a weighted average for reaction type (Results 

Table 5-2). Data from Mexico showed higher significance and improved fine-mapping 

of QRps1H compared to Oregon. Psh infection showed increasing severity over time, 

with the highest LOD score under the peak marker (K_3_0933) of 12.5 from the 

average of replicates from the final phenotyping date (Figure 5-4A). The first 

phenotyping date had a LOD score of 1.16 below the maximum experiment-wise 

threshold (Figure 5-4A). The peak LOD score from the second phenotyping date was 

10.8 and the overall average of the phenotyping scores gave a peak of 11.5 both above 

maximum experiment-wise threshold (Figure 5-4A).  

 

Using the CI gave similar LOD peaks under the marker K_3_0933 to the percent 

severity phenotypes (Figure 5-4B): incorporating the reaction type with the percent 

severity into the CI did not substantially improve the peak LOD score (Figure 5-4B). 

The CI data gave a slightly lower LOD peak of 11.5 for the highest phenotyping date 

and 10.6 for the overall average. The LOD peak of the second phenotyping date 9.34 

was also above the maximum experiment-wise threshold. The first phenotyping date 

gave a LOD score of 1.1 for the peak marker which fell below the experiment-wise 

threshold.  

 

The phenotype by genotype plot using the peak marker K_3_0933 and phenotypic 

data using the average from the last phenotyping date of the  Mexico field trial showed 

increased separation between the BISON 1H resistant genotype and the Baronesse 

susceptible genotype—which displays near complete separation of QRps1H and 

qrps1H in the population (Figure 5-5). Increased resolution through the generation of 

new genetic markers and phenotypic data from further years of field trials over 

multiple locations are required in the delineation of QRps1H.    

 

BISON lines confer varying resistance to Psh  

 

The panel of BISON lines were included in the Mexico field trials, alongside the donor 

lines BCD12 and BCD47 (Verhoeven et al., 2011). BCD12 is the donor of the 1H 

QTL and showed high levels of resistance with a maximum of 15% Psh severity 
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Figure 5-4. QTL analysis of QRps1H in the BISON1H x Baronesse F3:4 mapping 

population using phenotypic data from 2018 field trials at CIMMYT, Mexico. 
LOD scan of QRps1H including the average of two replicates at three phenotyping dates. 
Phenotyping dates include 13th August 2018 (orange; 130818), 23rd August 2018 (blue; 
230818), 30th August 2018 (yellow; 300818), and the overall average (black). The black 
horizontal line represents the maximum experiment-wise threshold across replicates and 
average based on 1,000 permutations. A) LOD scan of QRps1H including the average of two 
replicates at three phenotyping dates. B) Coefficient Index (CI) including the average of the 
coefficient index of the two replicates at the three phenotyping dates. 
  



 

 135 

 
 
 
 
 

 
 

Figure 5-5. Phenotype by genotype plot of the marker K_3_0933 located at the 

peak of QRps1H from phenotypic data from 2018 field trials at CIMMYT, 

Mexico. 

Genotype A = susceptible parent Baronesse, B = resistant parent BISON 1H (BCD12 donor 
of QRps1H). 
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scored (Figure 5-6).  BISON 1H fails to recapitulate the donor resistance with a higher 

maximum 40% Psh severity under the highest disease pressure at the third 

phenotyping date (Figure 5-6). BCD47, the donor of the 4H and 5H resistance QTLs 

shows almost complete resistance to Psh, having a maximum 5% severity (Figure 5-6). 

Introgression of both QTL in BISON 4H and 5H also fails to complement to the wild-

type resistance levels, showing similar percent infection severity as the single 

introgression of the 4H QTL. The 5H resistance QTL is very weak, reaching 100% 

infection severity at the final phenotyping date (Figure 5-6). The combination of the 

1H, 4H, and 5H QTLs in the BISON 1H + 4H + 5H line showed almost complete 

resistance with a maximum 5% infection severity across the phenotyping dates 

suggesting an additive effect of the QTLs (Figure 5-6). This resistance was slightly 

stronger than the introgression of the 7H qualitative resistance gene Rpsx (A. J. Castro 

et al., 2003; Verhoeven et al., 2011) which showed a maximum of 10% severity during 

the field trial (Figure 5-6).   

 

Mla12 does not confer APR to Psh  

 

The Mla locus has been associated with resistance to multiple pathogens, and Mla3 

shown to confer multiple pathogen recognition (Chapter 4). QRps1H encompasses the 

Mla12 locus so Mla12 is a candidate gene for conferring APR to Psh. The barley 

mutant lines mla12-m66, rar1-m82, and rar1-m100 derived from barley cv. Sultan5 

(Mla12) are deficient in Mla12-mediated hypersensitive resistance to Blumeria 

graminis f. sp. hordei (Torp and Jørgensen, 1986). The line mla12-m66 carries a 

mutation in Mla12; and rar1-m82 and rar1-m100 carry mutations in Rar1 which is 

required for the Mla12 dependent disease response (Hückelhoven et al., 2000; Torp 

and Jørgensen, 1986). These mutant lines and the wild-type Sultan5 were included in 

the field trials in Mexico to evaluate the role of Mla12 in Psh resistance. The line 

Manchuria was used as a susceptible control. The greatest disease pressure was 

observed at the third phenotyping date; however, no difference was observed between 

the mutant lines and the wild-type Sultan5 as both showed similar levels of infection 

across all the phenotyping dates (Figure 5-7). These data suggest Mla12 is not the 

causal gene underlying QRps1H.  
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Figure 5-6. Psh percent severity of BISON introgression lines from 2018 field 

trials at CIMMYT, Mexico. 
BISON lines include the null control line BISON 0-QTL, BISON 1H, BISON 4H, BISON 
5H, BISON 7H, BISON 1H + 4H, BISON 1H + 5H, BISON 4H + 5H, and BISON 1H + 4H 
+ 5H. Control lines include susceptible parent Baronesse, the donor of the 1H QTL BCD12, 
and the donor of the 4H and 5H QTLs BCD47 (Verhoeven et al., 2011). Top panel shows data 
from phenotyping date 13th August 2018 (130818) from replicate 1 (orange) and replicate 2 
(blueish green); middle panel shows phenotyping data from 23rd August 2018 (230818) of 
replicate 1 (brown) and replicate 2 (blue); and bottom panel shows phenotyping data from 30th 
August 2018 (300818) of replicate 1 (green) and replicate 2 (pink). 
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Figure 5-7. Psh percent severity of Mla12 and Rar1 mutants from 2018 field trials 

at CIMMYT, Mexico. 
Mutants include mla12-m66, rar1-m82, rar1-m100 and wild-type Sultan 5. Manchuria is the 
susceptible control. Top panel shows data from phenotyping date 13th August 2018 (130818) 
from replicate 1 (orange) and replicate 2 (blueish green); middle panel shows phenotyping 
data from 23rd August 2018 (230818) of replicate 1 (brown) and replicate 2 (blue); and bottom 
panel shows phenotyping data from 30th August 2018 (300818) of replicate 1 (green) and 
replicate 2 (pink). 
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Mildew resistance loci confer little resistance to Psh  

 

The Siri introgression panel contains mildew loci introgressed into recurrent parent 

Siri background (Kølster and Stølen, 1987). This panel was included in the field trial 

to assess if known mildew resistance loci would confer resistance to Psh. Wild-type 

Siri was moderately resistant to Psh, showing a maximum 60% infection severity 

under the highest disease pressure (Figure 5-8). The 12 introgression lines S01, S02, 

S03, S04, S06, S07, S09, S10, S12, S13, and S17 showed varying degrees of resistance 

to Psh (Figure 5-8). The lines S03 (Mla6), S10 (Mla12), and S17 (Mlk) showed 

increased resistance than the wild-type, with other lines showing a greater degree of 

susceptibility (Figure 5-8).  S06 (Mla7 (Moseman)) and S09 (Mla10) were variable 

across the replicates in comparison to the wild-type (Figure 5-8). As other lines 

showed a higher percent severity compared to the recurrent parent Siri, susceptibility 

genes could have been introgressed from the donor lines, or resistance genes lost or 

disrupted from the wild-type background. However, these data are generated from one 

year of field trials: while trends can be observed, additional replicates over multiple 

years are required for conclusive conclusions.  

 

Introgression of the Mla12 locus in line S10 confers moderate resistance to Psh, 

comparable to the BISON 1H containing QRps1H. The Mla12 locus in S10 originates 

from the donor line Emir (Kølster and Stølen, 1987), whereas QRps1H in BISON 1H 

originates from Shyri (Toojinda et al., 2000; Verhoeven et al., 2011). Shyri is a two-

rowed feed barley developed by ICARDA/CIMMYT (GSHO 2430, Lignee 

640//Kober/Teran 78) and released in Ecuador (USDA GRIN; NordGen) and Emir 

(CIho 13541; PI 321787) is a two-row line originating from Germany with a 

Delta//Agio/3/Kenia/Arabische pedigree (Chen and Line, 2002; Díaz-Perales et al., 

2003; USDA GRIN)—they are unlikely to have a shared heritage. Mla12 may be 

involved in the Psh resistance response, or an additional linked gene at the locus is 

causal.  
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Figure 5-8. Psh percent severity of Siri introgression panel from 2018 field trials 

at CIMMYT, Mexico. 
Wild-type recurrent parent Siri and introgression lines of mildew loci. Top panel shows data 
from phenotyping date 13th August 2018 (130818) from replicate 1 (orange) and replicate 2 
(blueish green); middle panel shows phenotyping data from 23rd August 2018 (230818) of 
replicate 1 (brown) and replicate 2 (blue); and bottom panel shows phenotyping data from 30th 
August 2018 (300818) of replicate 1 (green) and replicate 2 (pink).  
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Introgression of QRps1H into elite UK cultivars 
 

Current elite spring barley cultivars used in the UK harbour varying levels of 

resistance to yellow rust, (AHDB, 2019). Elite UK barley cultivars were obtained from 

Limagrain and include LG Diablo spring malting variety, LG Tomahawk spring feed 

variety, LG Casting spring variety, and LG Mountain and LG Flynn winter two-row 

feed varieties. LG Tomahawk has shown high resistance to stripe rust (AHDB, 2019) 

however additional introgression of QRps1H would only aid in the mitigation of future 

susceptibility. All cultivars were recently released from 2018 so have yet to experience 

varying Psh disease pressure.  Crosses for the introgression of QRps1H into elite UK 

cultivars were initiated in spring 2018, and F1 were advanced in winter 2019. These 

crosses will be used in future marker-assisted backcrossing to generate introgression 

lines. Evaluation of introgressions under field conditions will establish the resistance 

potential of QRps1H in these backgrounds.  

 

 

5.4 Discussion 

 

The barley near-isogenic (BISON) lines were created aid in the dissection of 

quantitative, more complex, polygenic inheritance (Richardson et al., 2006; 

Verhoeven et al., 2011) and the introgression of quantitative resistance into breeding 

through marker assisted selection (A. J. Castro et al., 2003). Pyramiding quantitative 

and qualitative resistance genes aims to provide protection against the emergence of 

races virulent on large effect R genes (A. J. Castro et al., 2003). A resistance QTL 

(QRps1H) conferring APR to Psh was previously mapped to the short arm of 

chromosome 1H (Toojinda et al., 2000) and was introgressed into the near-isogenic 

line BISON 1H, in the recurrent parent Baronesse (Verhoeven et al., 2011). QRps1H 

encompasses the Mla12 locus and a mapping population of BISON 1H x Baronesse 

was used to fine-map QRps1H to investigate the relationship to Mla12. Critical 

homozygous recombinants across the Mla12 locus were used in successful field trials 

at Oregon State University, USA, and CIMMYT, Mexico. Disease pressure and 

infection was highest in Mexico, where phenotyping data were taken over three 

timepoints with increasing percent severity recorded (Table 5-2). QRps1H was 

narrowed to 5 cM, encompassing the Mla12 locus; additional marker saturation and 
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further years of field trials are necessary to delineate this region further. This peak was 

maintained across both field sites: QRps1H is robust against disease pressure from 

different Psh populations. QRps1H is not yet mendelised in this population (Figure 

5-3, Figure 5-5), additional genetic markers and map saturation alongside further 

phenotypic data is required.  

 

BISON 1H is a useful donor of the 1H resistance allele, however it displays 

undesirable agronomical characteristics such as semi-dwarf height and poor kernel 

plumpness (Verhoeven et al., 2011). Introgression of QRps1H into elite cultivars is 

necessary: in doing so, the resistance capabilities of these lines will be increased to 

protect against future epidemics. The initial cross and one round of marker-assisted 

backcrossing has been performed to date of QRps1H into LG Diablo, LG Tomahawk, 

LG Casting, LG Mountain, and LG Flynn produced by Limagrain. Although 

introgression of a single QTL conferring partial resistance may not provide effective 

protection, the additional resistance QTL identified on 4H, 5H, and 7H (Rpsx) (Ariel 

J Castro et al., 2003) provide additional loci for pyramiding in future.   

 

Based on observations of the multiple pathogen recognition capabilities of Mla alleles, 

it cannot be excluded that Mla12 could be the causal Psh resistance gene underlying 

QRps1H. However, the power of the BISON 1H x Baronesse population to fine-map 

QRps1H may be limited due to suppressed recombination observed across the Mla 

locus. The Siri panel line S10 containing introgression of the Mla12 locus showed 

increased resistance and a lower percent severity than the wild-type recurrent parent 

(Figure 5-8). Considering mutants in the Mla12-dependent resistance response failed 

to show increased susceptibility compared to the wild-type (Figure 5-7), Psh 

resistance could be due to a tightly linked gene at the locus rather than Mla12 itself. 

Mla loci contain considerable variation in the RGH1, RGH2, and RGH3 alleles present 

(Chapter 2) with haplotype divergence contributing to suppressed recombination. 

Therefore, sequencing and complementation of candidate genes from the resistant 

Mla12 haplotype is required for characterisation. As considerable variation was 

observed in the percent severity of Psh infection and disease pressure across 

phenotyping dates during the field trial, Psh inoculations in a controlled environment 

may reveal more consistent or subtle differences in resistance and allow for finer 

characterisation of candidate genes. Mla alleles are known to function effectively at 
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the seedling and adult level. Mla12 is a ‘slow acting’ resistance gene permitting the 

growth of haustoria and more elongating secondary hyphae of Blumeria graminis f. 

sp. hordei (Bgh). Overexpression of Mla12 converted to the fast-acting type 

suggesting the protein accumulation or complexes are rate limiting (Boyd et al., 1995; 

Shen et al., 2003). Developmental regulation could also affect the expression of 

Mla12. The field trial at CIMMYT included mutants in Mla12 and Rar1 – the required 

chaperone for some Mla alleles (Hückelhoven et al., 2000; Shen et al., 2003) – 

however phenotypic results were variable across replicates and timepoints. 

Phenotyping in controlled environments and more field data is required to confirm 

this.  

 

P. striiformis is a devastating fungal pathogen of grasses. It is increasingly found in 

warmer regions as the pathogen adapts to higher temperatures and with a greater 

ability to cause disease (Hovmøller et al., 2011). The aggressive ‘Warrior’ race of Pst 

highlights the potential danger of the emergence of increased virulence, were Psh to 

follow the same trajectory. The use of resistant cultivars is the best approach to disease 

control, especially with interest in reducing fungicide use, however resistance in 

barley is limited to few QTL (Brown et al., 2001; Yan and Chen, 2008). The majority 

of barley malting cultivars grown in the United States display a degree of susceptibility 

to Psh (Yan and Chen, 2008). In 2000, the cultivar Bancroft was released as a new 

resistant cultivar yet was found infected with Psh soon after release (Wesenberg et al., 

2001). Phenotypic characterisation showed cv. Bancroft to have high-temperature 

APR to Psh alongside isolate-specific all-stage resistance (Chen and Moore, 2003; 

Yan and Chen, 2008). However, the all stage resistance present in Bancroft is 

ineffective against the current population of Psh present in the United States (Yan and 

Chen, 2008). Psh in North and South America exhibits more heterogeneity than 

European populations (Brown et al., 2001); current germplasm is ineffective 

protection for future incursions and evolution of increased Psh virulence.  

 

Partial, quantitative resistance is associated with a long latency period, a low infection 

frequency, a decreased spore production, and a short infectious period of pathogen 

infection (Sandoval-Islas et al., 2007; Singh et al., 2015; St.Clair, 2010). It is thought 

to reduce the selection pressure on the pathogen by permitting limited life-cycle 

competition. In the cereal-rust pathosystem, phenotyping has often been described as 
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a score of disease severity at a given time-point of development, such as flag-leaf 

latency period which is highly correlated with partial resistance in the field (Sandoval-

Islas et al., 2007). Effective resistance against multiple rust pathogens at the adult 

stage has been shown in wheat for Lr34 (McIntosh, 1992; Spielmeyer et al., 2005), 

Lr46 (Kolmer et al., 2015; Lillemo et al., 2008, 2007), and Lr67 (Herrera-Foessel et 

al., 2014, 2011; Hiebert et al., 2010). Lr34 encodes an ABC transporter (Krattinger et 

al., 2015, 2009), Lr67 encodes a hexose sugar transporter (Milne et al., 2019), and 

Lr46 remains unknown. Lr34res—the resistant allele of Lr34—confers resistance only 

at the adult stage in wheat, whereas expression of Lr34res in barley also functions at 

the seedling stage (Risk et al., 2013). Lr34res induces various defence pathways in 

barley and is thought to enhance basal resistance through increased lignification 

(Chauhan et al., 2015; Krattinger et al., 2019). To date, effective APR resistance is 

mediated by mechanisms other than NB-LRRs (Jafary et al., 2006). When resistance 

is described as ‘durable’, it is often in comparison to short-lived large effect 

resistance—often NB-LRR mediated—which is overcome rapidly by pathogen 

evolution following deployment in the field. The most cited example of ‘durable’ 

resistance is mlo of barley—a  loss of function mutation that confers broad-spectrum 

resistance to the adapted pathogen Bgh (Acevedo-Garcia et al., 2014; Büschges et al., 

1997; Jørgensen, 1992). While the mechanism of mlo resistance remains unknown, it 

has remained effective for over 30 years in the field (Kusch and Panstruga, 2017; 

Lyngkjær et al., 2000). In contrast, the Mla locus is a known resistance gene complex 

containing multiple NB-LRR families (Wei et al., 2002, 1999). Elucidating the 

relationship of QRps1H with the Mla locus will reveal the potential involvement NB-

LRR resistance genes in conferring APR, and further the breadth of multiple pathogen 

recognition specificities at Mla.  
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5.5 Materials and methods 

 

BISON 1H x Baronesse population and genetic map construction  

 

The H. vulgare accessions BISON 1H and Baronesse were crossed and allowed to 

self-pollinate to generate a founder F2 population. The population, N = 1,510 gametes 

from 6 selfed F1 individuals, was evaluated for recombination events across QRps1H. 

Following single-seed descent, DNA was extracted from leaf tissue of F2 and F3 

recombinants using a CTAB gDNA extraction protocol modified for 96-well plate-

based extraction (Dawson et al., 2016; Stewart and Via, 1993). 

 

Genetic maps were created using JoinMap v4 with default parameters (van Ooijen, 

2006). Genetic distances were estimated using the Kosambi mapping function. 

Integrity of the genetic map was evaluated through comparison with the current OPA 

consensus genetic map of barley (Muñoz- Amatriaín et al. 2011). The genetic map 

was evaluated using Rstudio (Version 1.1.463) and the R/qtl package (Version 1.44.9) 

(Broman et al., 2003).  

 

Plant growth  

 

Seedlings were germinated in John Innes Peat & Sand Mix (85% Fine Peat, 15% Grit, 

2.7kg/m³ Osmocote 3-4 months, Wetting Agent, 4kg/m³ Maglime, 1kg PG Mix). 

Leaves were sampled at second leaf emergence, DNA extracted, and individuals 

genotyped for recombination events. Recombinants were transferred to FP9 pots in 

John Innes Cereal Mix (40% Medium Grade Peat, 40% Sterilised Soil, 20% 

Horticultural Grit, 1.3kg/m³ PG Mix 14-16-18 + Te Base Fertiliser, 1kg/m³ Osmocote 

Mini 16-8-11 2mg + Te 0.02% B, Wetting Agent, 3kg/m³ Maglime, 300g/m³ 

Exemptor) and grown in a greenhouse under natural conditions.  

 

Puccinia striiformis f. sp. hordei (Psh) assays 

 

Psh isolate B01/2 was collected from the United Kingdom in 2001 and maintained at 

the National Institute of Agricultural Botany (NIAB) in Cambridge, UK on susceptible 
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barley cultivars. Ureodineospores were stored at 6°C after collection. At The 

Sainsbury Laboratory, ureodineospores were bulked from susceptible cultivars and 

stored at -80°C prior to phenotyping. For field trials in Oregon State University (OSU), 

Oregon, USA and CIMMYT, Mexico natural inoculum was used.  

 

Barley accessions used in field trials are listed in Appendix Table 7-6. For phenotyping 

data collected at OSU, Psh infection was scored as a percent severity across each plot. 

For data collected at CIMMYT, Mexico, infection phenotypes were collected as a 

percentage score of infection severity and a reaction score (Stubbs et al., 1986). 

Reaction score was converted to a constant value according to Stubbs (1986), for 

mixed reaction score a weighted average was calculated. A coefficient of infection 

was calculated through the multiplication of the percent severity and reaction score.  

 

Table 5-2. field reaction and corresponding constant value. 

 

 

QTL and phenotypic analysis  

 

Files and data were prepared using the QKcartographer scripts 

(https://github.com/matthewmoscou/QKcartographer) and analysed with RStudio 

(Version 1.1.463) using the R/qtl package (Version 1.44.9) (Broman et al., 2003). 

QTL genotype probabilities were calculated using the calc.genoprob() function using 

default parameters and a step-size of 1 cM. Interval mapping was performed using the 

scanone() function using default parameters (maximum likelihood via the EM 

algorithm) and a genotyping error rate of 0.01. Statistical significance for QTLs was 

determined by performing 1,000 permutations and controlled at α = 0.05 (Doerge and 

Churchill, 1996). The experiment-wise threshold was taken from the maximum 5% 

LOD threshold calculated from the average of each replicate and the overall average. 

Reaction  Symbol Constant value 

Resistant R 0.2 
Moderately Resistant MR 0.4 

Intermediate or M  M 0.6 

Moderately susceptible  MS 0.8 
Susceptible  S 1.0 
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The function lodint() was used to calculate the 2 LOD support interval for each of the 

field trials.  

 

Phenotyping data from control lines included in the Mexico field trials were analysed 

with RStudio (Version 1.1.463) and plotted using the ggplot2 package (Version 3.1.0) 

(Wickham, 2016). 
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6 Discussion  
 

 

“Therefore, it appears likely that several of the defence 
mechanisms against powdery mildew also are effective against 

many other factors that may damage barley plants.” 

— (Jørgensen, 1994) 

 

The Mla locus provides an excellent genetic resource for the study of NB-LRR gene 

evolution. A wealth of phenotypic, genetic, and genomic resources have been accrued 

over decades of research, beginning with the investigation of the barley and Bgh 

interaction in the early 20th century (Jørgensen, 1994). This thesis is the cumulation of 

observations, curiosities, and investigations of the Mla locus; molecular biology and 

sequencing technology only now provide the tools in which to confirm prior 

hypotheses.  

 

6.1 The evolution of the Mla locus  
 

The Mla locus is a known resistance gene cluster with a wealth of haplotype and allelic 

diversity of Mla NB-LRRs conferring isolate-specific resistance to Bgh (Halterman et 

al., 2001; Halterman and Wise, 2004; Jørgensen, 1994; Seeholzer et al., 2010; Shen 

et al., 2003; Zhou et al., 2001) The majority of Mla alleles are in repulsion (Jørgensen, 

1994) and evidence of suppressed recombination across the Mla locus suggests a 

mechanism for maintaining haplotype diversity (Wei et al., 1999). While additional 

RGH families of RGH2 and RGH3 are known to be present at the locus (Wei et al., 

1999), investigations of these NB-LRRs pales in comparison to RGH1 (Mla). Here, 

we found extensive presence/absence and sequence diversity of alleles, including 

presence/absence of an integrated Exo70F1 domain at the C-terminus of RGH2. This 

forms a trans-species polymorphism maintained through multiple speciation events 

over 24 million years.  

 

Many plant-pathogen interactions are described as gene-for-gene interactions. At the 

Mla locus it is clear there are extensive allelic series and polymorphisms of the RGH 

families, reflecting the diversity of the RGH1 family in conferring isolate-specific 
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resistance to Bgh. RGH families at Mla form a stable polymorphism maintained 

through speciation and may represent NB-LRRs that recognise conserved pathogens 

of grasses, or effector conformations common to conserved pathogens of grasses. 

However, the recognised effectors by RGH1 are sequence-unrelated (Lu et al., 2016; 

Saur et al., 2019) suggesting that allelism does not reflect co-evolution of NB-LRR-

effector interactions; effector polymorphisms can also be generated through 

presence/absence variation and may extend across multiple pathogen species. A high 

level of genetic variation exists in recognised effectors within Bgh populations (Saur 

et al., 2019) and Bgh populations can rapidly change virulence gene frequencies in the 

field (Hovmøller, 1993). In response, balancing selection acts to maintain diverse 

alleles of RGH1 in the population.  

 

Observations of the genetic architecture of species reveals the evolutionary processes 

acting on them. Stable polymorphisms are present under certain conditions: the 

maintenance of this trans-species polymorphism predicts alleles are long-lived and 

genetic variation is detectable in natural populations; balancing selection can then act 

to sustain allele frequencies (Brown and Tellier, 2011). The gene-for-gene model and 

the coupling of plant and pathogen life cycles is an unstable equilibrium that drives an 

arms race between host and pathogen (Brown, 2015; Tellier et al., 2014). The addition 

of ecological parameters such as spore dispersal and environmental conditions 

alleviates such a tight interaction and generates direct frequency-dependent selection: 

where the fitness effect of an allele declines as its frequency in the population increases 

(Brown, 2015; Cowger and Brown, 2019). The advantage of—and selection for—

virulence is highest when host resistance is also high. Increased virulence in the 

pathogen population decreases the advantage of resistance: defeated R genes are no 

longer selected for. A cost of virulence prevents the continuing evolution of aggressive 

pathogen species, however experimental examples are sparse (Brown, 2015). In 

theory, extreme virulence can be capped due to antagonistic or lethal effector 

combinations; restrictions in mutations to evade recognition, or the presence of an R 

gene that recognises an indispensable core pathogen component (in the absence of 

suppressors of recognition/immune response). Pathogen populations are not isogenic: 

accumulation of effectors and virulence components is not a viable method of 

evolution.  
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The diversity of RGH1, RGH2, and RGH3 alleles at the Mla locus is thought to be due 

to the fluctuating selection from variable pathogen pressures. From the work outlined 

in this thesis describing the multiple pathogen recognition capabilities by Mla3, 

selection on this allele over evolutionary history comes from not only Bgh populations, 

but also those of P. oryzae. In other haplotypes, additional pathogen species may also 

contribute to selection for multiple pathogen recognition at the locus: spot blotch 

(Bilgic et al., 2006; Leng et al., 2018) and Psh (A. J. Castro et al., 2003; Verhoeven 

et al., 2011) among others also mapped to the region. Balancing selection also 

increases diversity at closely-linked neutral sites, as recombination events rarely occur 

between them (Charlesworth, 2006); it is possible that balancing selection acting on 

Mla alleles is inadvertently leading to maintenance of RGH2 and RGH3 allelic pools. 

Coupled with diversifying selection and supressed recombination over the whole Mla 

locus, extreme haplotype variation is present of all three RGH families. The 

recognition specificities of RGH2 and RGH3 alleles is unknown: allelic variation may 

be an artefact of RGH1 selection rather than of functional relevance.  

  

True alleles rarely exist in combination—only one allele is present in the same 

genomic location. Where multiple Mla specificities are present, often silencing of one 

copy occurs (Seeholzer et al., 2010). This suggests additional mechanisms are present 

to maintain polymorphism outside of suppressed recombination. Incompatible 

interactions of NB-LRRs can give rise to hybrid necrosis: an uncontrolled 

hypersensitive response that results in stunting and death of the plant (Barragan et al., 

2019; Bomblies, 2009; Chae et al., 2016). The population dynamics of hybrid necrosis 

suggests this would lead to loss of detrimental alleles and fixation of non-detrimental 

alleles in the population through purifying selection. The maintenance of diverse 

alleles through the action of diversifying or balancing selection must counteract such 

stabilising selection. For paired NB-LRRs, the genetic linkage of pairs—observed 

through their head-to-head orientation and embedded promoters—limits the potential 

for recombination events leading to loss of pairs.  

 

Identified long-lived polymorphisms predominately exist in presence/absence 

variation: examples from A. thaliana include RPM1 (Stahl et al., 1999; Tian et al., 

2003), RPP1 (Botella et al., 1998; Goritschnig et al., 2016; Rehmany et al., 2005), 

RPS2 (Caicedo et al., 1999), and RPS5 (Karasov et al., 2014). Allelic variants of NB-
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LRRs are present in A. thaliana, but the expansive diversity observed also arises from 

paralogs. RPP13 of A. thaliana exists in copy number variation and paralogs are also 

present at different loci (Hall et al., 2009; Rose et al., 2004). Alleles of RPP13 were 

also found to evolve at different rates, forming different clades independent of 

geographic origin (Ding et al., 2007a). Expansive allelic series at a single locus such 

as Mla are few—only Pm alleles of wheat are comparable (Bourras et al., 2019, 2015). 

Characterising the frequency of each Mla allele within the population would be the 

first step in assessing the evolutionary dynamics of the RGH1 family.  

 

The RGH2-Exo70F1 integration exists as presence/absence, including frameshifts 

between RGH2 and Exo70F1 resulting in non-integrated forms. This suggests that 

once integrated, RGH2-Exo70F1 is not fixed: this could be an indication of balancing 

selection of RGH2 alleles. In barley, an integrated CC domain was found in one allele 

of RGH2—domain integrations within this gene family may be pervasive.  It is 

possible that variable integrated domains exist; the sequencing of multiple individuals 

within a species from different populations is necessary to assess this hypothesis. 

However, the repeated identification of an integrated Exo70F1 across species is 

greater than expected from chance suggesting RGH2-Exo70F1 has been maintained 

through selection. Exo70 proteins are involved in the tethering of vesicles to the 

plasma membrane and may also provide tissue or spatial specificity of localisation (He 

et al., 2007; Žárský et al., 2009). There are two hypotheses for Exo70 integration: that 

the Exo70 is involved in the intracellular localisation of the NB-LRR-ID or Exo70 is 

a decoy involved in effector binding. The involvement of Exo70 in plant immunity is 

increasingly being elucidated, especially for Exo70F and FX clades (Fujisaki et al., 

2015; Ostertag et al., 2013; Stegmann et al., 2014). Functions of integrated domains 

outside of effector recognition have yet to be demonstrated.  

 

The duplication of resistance genes observed at the Mla locus is a mechanism for the 

birth of R genes: allowing for neofunctionalization of new specificities (Michelmore 

and Meyers, 1998). Gene duplication provides potential for unequal crossing over and 

recombination of sequence similar Mla alleles (e.g. Mla3 and Mla23)—permitting 

recombination in the locus. Such events could account for the different RGH allele 

combinations: the same RGH2-Exo70F1/RGH3 alleles are present in the accessions 

Baronesse and Maritime, yet alongside quite different RGH1 (Mla) alleles. New 
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paralogs either undergo pseudogenisation or diversification and neofunctionalization 

into new resistance specificities (Michelmore and Meyers, 1998). The identification 

of copy number variation of Mla3 alleles challenges this binary outcome; selection 

has maintained identical copies of Mla3 within the genome. The inability to assemble 

the locus via long-read sequencing technologies is a limitation of assessing the genetic 

architecture of the Mla3 locus: the number of copies of Mla3 remains unconfirmed. 

Chromosome flow-sorting and conformation capture (Belton et al., 2012) of 

chromosome 1H from Baronesse has been initiated—the reduction of undesired 

sequencing and proximity labelling may aid the assembly of the region. Of course, the 

generation and sequencing of a BAC library for the Mla3 haplotype—as performed 

for the reference sequence—is another method in which to assemble the locus but the 

cost is prohibitive.  

 

Evidence presented in this thesis drives the hypothesis of copy number variation for 

increased recognition specificity: a higher number of gene copies are required for P. 

oryzae recognition. However, RNA sequencing needs to be performed on transgenic 

lines to confirm the correlation of copy number and expression of the transgene. The 

panel of increasing copy number, if indeed it is correlated to expression, provides an 

opportunity to investigate intermediate phenotypes. Requirements for resistance could 

be elucidated through the quantification and molecular characterisation of phenotypes; 

arrest of P. oryzae growth may be terminated at an earlier and crucial timepoint with 

higher copy number. NB-LRR expression and regulation is tightly controlled via 

epigenetic factors, transcription factors, and small RNAs (Bhattacharjee et al., 2013; 

Elmore et al., 2011; Kong et al., 2018; Lee and Yeom, 2015; Zhai et al., 2011); it is 

unclear how increasing expression of Mla3 via increasing copy number is affected by 

such regulation. Combinatory pathogen inoculations would also show if any inter-

specific interactions or variation is present in the resistance response.  

 

Mla alleles are known to be highly expressed (Halterman et al., 2001). The generation 

of Mla3 overexpression lines driven, for example, by the ubiquitin promoter would be 

useful for comparison (and also would alleviate potential trans-silencing effects of 

multiple copies of the Mla3 transgenic insert). Overexpression lines of Mla3 would 

provide a resource with which to investigate the potential costs of the high expression 

of NB-LRR genes. The majority of A. thaliana NB-LRRs are expressed at low level 



 

 154 

and show tissue specificity in expression patterns (Tan et al., 2007). Increased NB-

LRR expression is thought to confer fitness costs to the plant—tight regulation has 

evolved to prevent detrimental effects (Brown, 2015; Y. Li et al., 2010). However, 

few examples have been shown experimentally. Presence of the NB-LRR RPM1 from 

A. thaliana confers a fitness cost of reduced seed set under field conditions (Tian et 

al., 2003) and tissue specificity through epigenetic regulation of the rice Pigm NB-

LRR gene cluster prevents a yield detriment (Deng et al., 2017). Overexpression of 

NB-LRRs via transgenic means is known to result in constitutive activation of defence 

which can lead to growth defects and stunting of plants (Lai and Eulgem, 2018; Li et 

al., 2019; Oldroyd and Staskawicz, 1998). It is curious then how Mla alleles can be 

expressed at such high levels without detrimental effects? Preliminary work from the 

lab suggests Mla is expressed highly and constitutively: Mla alleles can be identified 

from RNAseq data from uninfected leaves. Quantification of Mla3 expression, 

including at developmental timepoints, tissue specificity, and following pathogen 

inoculation, would be the first step in investigating this question.  

 

The Mla locus has been associated with multiple pathogen recognition and it was 

hypothesised that this could be driving the maintenance of diverse haplotypes: 

increasing the recognition specificities within a population. The identification of the 

multiple pathogen recognition capabilities of Mla3 provides evidence for this 

hypothesis. It is possible that this phenomenon is conserved between alleles, this could 

be elucidated through the cloning of additional Mla specificities from haplotypes 

where multiple recognition specificities map to the Mla locus. How Mla alleles—

especially as singleton NB-LRRs—have this capability remains unknown.  

 

6.2 Mechanism of multiple pathogen recognition by Mla3  
 

Major questions remain: what is the mechanism of Mla3 recognition and how does 

this facilitate recognition of multiple pathogens? There are two competing hypotheses 

for this: direct recognition by Mla3 or indirect recognition via an Mla3 guardee. While 

direct recognition has been all but shown via crystal structure for a subset of Mla 

alleles (Lu et al., 2016; Saur et al., 2019), indirect recognition cannot be excluded.  
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Identification of AVRa3 and AVR-Rmo1 is crucial for unravelling the recognition 

mechanism and establishing protein interactions. Few AVR genes from Bgh have been 

characterised to date. Cloned effectors from Bgh encode CSEPs (candidate secreted 

effector proteins) or RALPHs (RNase-like proteins expressed in haustoria) and many 

more are encoded in the genome (Lu et al., 2016; Saur et al., 2019; Spanu, 2017). In 

comparison, the majority of P. oryzae effectors are small secreted proteins that lack 

homology to known proteins (Valent and Khang, 2010; Yoshida et al., 2009; Zhang 

and Xu, 2014). P. oryzae MAX (Magnaporthe avirulence proteins and ToxB-like) 

effectors are sequence-unrelated, sharing less than 25% sequence similarity, and are 

grouped only via their shared structural fold (de Guillen et al., 2015; Franceschetti et 

al., 2017). The direct recognition of two effectors can be explained via a structural 

similarity; Bgh and P. oryzae appear not to be limited by species-specific sequence-

related effector proteins so similarities may occur.   

 

Mutagenesis of P. oryzae isolate KEN54-20 was successful in generating a confirmed 

gain-of-virulence mutant on Mla3—KEN54-20 M1. Additional putative mutants have 

been isolated and are waiting re-inoculation for confirmation, and further rounds of 

mutagenesis could be undertaken to generate additional virulent isolates. Sequencing 

of KEN54-20 M1 is ongoing and the addition of further mutants will provide more 

sequencing data and power for comparative analyses in the identification of AVR-

Rmo1. SNPs or indels present in the coding sequences of predicted effector candidates 

will be prioritised, however mutations in regulatory elements or genes required for 

AVR-Rmo1 function could also be causal for the gain-of-virulence phenotype. From 

initial inoculations, the mutant KEN54-20 M1 appears not to be compromised in 

growth and virulence, with only functional AVR-Rmo1 disrupted. This suggests that 

only AVR-Rmo1 function is mutated and this effector is not essential for virulence. 

Competition experiments against the wild-type KEN54-20 on a susceptible line will 

assess the virulence capabilities of the two isolates and confirm this observation. 

Existing isolates with knock-out and complementation of known effectors can also be 

screened on wild-type Baronesse and resistant transgenic lines, in a reverse-genetic 

approach for effector confirmation. Bgh is less amenable to experimental manipulation 

as P. oryzae. Many candidate CSEPs have been identified following genome 

sequencing, and mapping populations have been generated, that could be screened 
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against Mla3. Once AVR-Rmo1 has been confirmed, the predicted structure can be 

used to screen Bgh candidates that share structural similarities. 

 

Genetic evidence implicates Mla3 as also conditioning Lov1 sensitivity. The structure 

of HST victorin produced by B. victoriae is known. Victorin exists as a group of 

closely-related cyclized pentapeptides with victorin C the predominant form: 

composed of glyoxylic acid and a cyclic combination of five amino acids (Wolpert et 

al., 2002; Wolpert and Lorang, 2016). Victorin binds to thioredoxin h5 in A. thaliana 

via the active-site cysteine 39 and this interaction triggers AtLOV1-mediated 

sensitivity (Lorang et al., 2012). Victorin sensitivity is present across species and a 

conserved mechanism for sensitivity has been proposed, as thioredoxins are essential 

components of plants (Wolpert and Lorang, 2016). Recognition via a guard model 

does not alleviate the necessity for a shared structure of effectors; however, 

perturbation of a guardee can occur in multiple ways. RIN4 of A. thaliana is a clear 

example; effector-mediated modification of RIN4—through a multitude of ways—is 

guarded by numerous NB-LRRs (H.-S. Kim et al., 2005; Kim et al., 2009; M. G. Kim 

et al., 2005; Liu et al., 2011; Russell et al., 2015). Barley thioredoxin h5 will certainly 

be included in interaction experiments with AVRa3 and AVR-Rmo1.  

 

Mla3-mediated victorin sensitivity and subsequent susceptibility to B. victoriae 

provides an opposing selection pressure against that of its resistance function. A 

susceptibility gene to B. sorokiniana—the causal agent of spot blotch—is present in 

the cultivar Bowman at the Mla locus (Leng et al., 2018). As efficient immune 

receptors, Mla alleles may also provide effective susceptibility factors. The trade-offs 

between biotrophic resistance and necrotrophic susceptibility contribute to the 

frequency-dependent selection of Mla alleles. Other sensitivity or susceptibility genes 

identified that recognise necrotrophic pathogen effectors and HSTs have yet to 

demonstrate a resistance function—although this is hypothesised (Faris et al., 2010; 

Wang et al., 2014). The Mla3 (alongside other candidate gene) transgenic lines are 

currently being tested for victorin sensitivity with Thomas Wolpert and Jennifer 

Lorang. If confirmed, Mla3 would represent the first sensitivity gene with a known 

resistance function and provide a direct cost of resistance.  
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Not only proteinaceous effectors are recognised from P. oryzae. A secondary 

metabolite produced by some isolates of P. oryzae, is synthesised by the ACE1 gene 

cluster and is recognised by Pi33 from resistant rice cultivars (Ballini et al., 2006; 

Collemare et al., 2008; Fox and Howlett, 2008). ACE1 differs from other known 

effectors as it encodes a polyketide synthase (PKS) fused to a nonribosomal peptide 

synthetase (NRPS). Polyketides are major fungal secondary metabolites involved in 

diverse biological activities with important roles in pathogenicity (Collemare et al., 

2008). The Pi33 locus contains LRR-Kinases and NB-LRR encoding genes, but the 

causal Pi33 gene has yet to be identified (Ballini et al., 2007; Berruyer et al., 2003). 

ACE1 expression is coupled to the onset of appressorium-mediated penetration of the 

host cuticle (Collemare et al., 2008; Fudal et al., 2007); this fits the timepoint for 

Mla3-mediated resistance (Figure 4-2). Characterising the product of ACE1 synthesis 

has proven difficult: the recognised ACE1 avirulence determinant remains unknown 

(Song et al., 2015). Assessing the genome of P. oryzae KEN54-20 for an intact ACE1 

as candidate for AVR-Rmo1 is a high priority; the product of ACE1 may share a 

recognition mechanism with victorin.  

 

Comparing these observations between systems, there lacks a clear common 

mechanism to explain the multiple pathogen recognition shown by Mla3. The most 

tempting hypothesis is that of the guard model, with Mla3 activated on perturbation 

of another host protein by each pathogen. This model is established for AtLOV1 

recognition of victorin (Sweat and Wolpert, 2007) and other biotrophic effectors 

(Dodds et al., 2009). However, this is difficult to reconcile with the recent 

experimental evidence for direct recognition by Mla alleles by Saur et al., (2019). 

Direct recognition of sequence-unrelated effectors—even of both proteinaceous and 

metabolite—may be facilitated by the adoption of a similar structural fold. The direct 

recognition via an LRR domain is limited by the rapid diversification of effectors and 

the strong selection pressure they are under to evade recognition; it is not an intrinsic 

limitation of the protein structure. Structural insights of Mla3 and the corresponding 

effectors or interacting partners, in the case of indirect recognition, will provide clues 

to the mechanism of multiple pathogen interaction, or yield a mechanism for direct 

perception of multiple effectors and a HST.  
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6.3 Engineering resistance  
 

Increasing interest has focused on the potential for engineering NB-LRRs for 

expanded or novel recognition. Prior attempts at modifications of coding regions or 

domain swaps led to constitutive activation, autoimmunity, and rendered NB-LRRs 

non-functional; inter-domain interactions crucial for regulation and function are easily 

disrupted. A challenge remains of understanding the NB-LRR structure: only recently 

has a crystal structure of an NB-LRR been defined (Wang et al., 2019a). The defined 

NB-LRR ZAR1 recognises effector-mediated modification of PBS1-like protein 2 

(PBL2) kinase in complex with resistance-related kinase 1 (RKS1) (Wang et al., 

2019b). Due to the variation of NB-LRRs (Bailey et al., 2018; Kourelis and Van Der 

Hoorn, 2018), it is likely that other examples adopt distinct confirmations and interact 

with pathogen products in different ways—the application of the ZAR1 system to 

other NB-LRRs is thought to be limited. The LRR domain hypothesised to directly 

bind effectors is incredibly diverse and appears to bear little correlation to the effectors 

recognised: no patterns or correlations have been observed in this region that could 

provide predictions for binding interfaces amenable to modification. Interacting 

partners and even the effectors recognised remain unknown for many NB-LRRs 

(Kourelis and Van Der Hoorn, 2018); without this knowledge engineering is almost 

futile. Exceptions exist with the engineering of known interaction sites such as through 

the modification of cleavage sites within NB-LRRs (Kim et al., 2016) and TALE 

binding sites in the promoters of executor genes (Hummel et al., 2012; Zeng et al., 

2015).  

 

The discovery of functional integrated domains (Cesari et al., 2014; Césari et al., 

2014; Kroj et al., 2016; Sarris et al., 2016) provides a foundation for engineering. 

While large domain swaps with divergent proteins is hypothesised to disrupt 

conformational structure and inter-domain interactions, domain modification or 

substitution with closely related domains from the same protein family may provide a 

feasible approach. It has not escaped attention that RGH2-Exo70F1 provides an 

opportunity for engineering. Assuming RGH2-Exo70F1 (and RGH3 partner) is a 

functional NB-LRR, this provides a base for targeted modification. Swapping the 

Exo70F1 domain for the rice OsExo70F3 and OsExo70F2 proteins which bind AVR-

Pii from P. oryzae (Fujisaki et al., 2015) would be an initial target. If effector binding 
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is sufficient for NB-LRR activation, then the OsExo70F3 chimaera would recapitulate 

the resistance shown in rice, and the OsExo70F2 chimaera would provide a novel 

mechanism for AVR-Pii resistance—Pii-mediated resistance in rice is only via 

OsExo70F3 (Fujisaki et al., 2015). Crystal structures of Exo70s bound to effectors 

would reveal the sites of interaction; targeted amino acid swaps or the generation of 

chimaeric domains of these regions may prove less disruptive to function than whole 

domain modification. However, whether RGH2-Exo70F1 is functional and what 

pathogen it is recognising has yet to be shown.  

 

Genome editing has accelerated resistance breeding: allowing the transfer of NB-

LRRs across species in a rapid and efficient manner and providing targeted and 

efficient gene modifications (Krenek et al., 2015; Yin et al., 2017). Although 

translation into agriculture remains restricted due to regulation and lack of societal 

acceptance (Araki and Ishii, 2015). Unexpected consequences of transformation have 

arisen: the APR resistance of Lr34 has been shown to confer seedling resistance in 

transgenic tetraploid durum wheat (Triticum turgidum) blurring the developmental 

divide (Rinaldo et al., 2017). In addition, the transfer of Lr34 into barley provides 

resistance to addition pathogens and results in the constitutive activation of multiple 

defence pathways (Chauhan et al., 2015; Risk et al., 2013). Distinctions could be due 

to endogenous regulation and expression of genes during development; the transfer to 

other species via transgenic means disrupts this regulation. Once identified, 

transformation and/or modification of the underlying causal gene of QRps1H may 

provide seedling resistance to Psh—and potentially multiple pathogens.   

 

P. oryzae is a devastating disease of rice, and recent emergence of wheat blast 

highlights the persistent threat that this pathogen has on modern cereal production 

(Islam et al., 2016; Maciel et al., 2014; Wilson and Talbot, 2009). Epidemics of blast 

on barley have occurred in Japan and northern Thailand and barley accessions are 

known to be susceptible to P. oryzae (Inukai et al., 2006; Kawai et al., 1979; 

Matsumoto and Mogi, 1979; Sato et al., 2001). The major factor limiting the impact 

of P. oryzae is the current location and climate of barley growing areas. Identification 

of new sources of resistance are beneficial for agricultural breeding to mitigate future 

epidemics. As seen by the recent incursion of wheat blast into Bangladesh, agricultural 

production can quickly be decimated by the favourable combination of a virulent 
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isolate, amenable climate, and susceptible varieties. Identification of Mla3 conferring 

resistance to P. oryzae isolates carrying AVR-Rmo1 provides potential for control of 

this pathogen—testing wheat blast isolates against Mla3 is a priority. Sequencing data 

from isolates can be mined for the presence of AVR-Rmo1, once it has been identified, 

and Mla3 deployed to confer resistance. Transformation of Mla3 into wheat and rice 

is also paramount for resistance breeding in these species. Mla alleles could also 

provide resistance against other effectors from P. oryzae, assuming multiple pathogen 

recognition capabilities are shared. 

 

6.4 Future perspectives  
 

Human civilisation has changed the dynamics of plant-pathogen interactions: 

migration and globalisation has led to the acceleration of plant and inadvertent 

pathogen movement. Evolutionary curated dynamics have been disrupted—

introducing novel species into areas previously uncolonized. The distribution of NB-

LRR genes in agricultural systems imposes local selection on neighbouring pathogen 

populations and can provide reservoirs for pathogens: the ‘Oases in the desert’ model 

of pathogen evolution occurs with the presence of swathes of susceptible agricultural 

monocultures; the long-distance dispersal of spores allows pathogens to move 

between them (Brown, 2015) and epidemics are born. Rapid pathogen evolution 

allows for adaptation to new environments and hosts; however, new interactions have 

the potential to reveal plant R genes with multiple pathogen recognition capabilities—

for both resistance and sensitivity.  

 

Since the first cloning of a plant resistance gene, a lot has changed in our 

understanding of the plant immune system. Presumed simple gene-for-gene 

interactions have expanded to a wealth of NB-LRR recognition mechanisms, pathogen 

effector-mediated modifications of host proteins, and sheer diversity of NB-LRRs. 

With the advent of new sequencing technologies and molecular tools, NB-LRR 

repertoires can be characterised. Population dynamics including inter- and intra-

specific diversity can be assessed through the increasing number of individuals 

sequenced—revealing complex selection pressures and evolutionary history of the 

plant immune system. Wild relatives of modern crop species can be mined for R gene 

variation and novel recognition specificities for use in breeding.  
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Now, the major challenge remains of the translation of research into effective 

deployment in agriculture. Modern agriculture is reliant on high-yielding crop 

varieties, chemical control, and improved farming practice. However, food insecurity 

is an increasing threat—and an existing crisis for many people. Future agriculture will 

be increasingly reliant on resistance breeding due to improving environmental 

stewardship, climate change, and increasing genetic technology (Kettles and Luna, 

2019; Savary et al., 2019). For this, understanding plant-microbe interactions not only 

on a molecular scale but also in an evolutionary context will be crucial. Science will 

have to provide the knowledge and tools to face the upcoming challenges of climate 

change and the increasing demand for food with a scarcity of resources. However, the 

fear is that the future of agriculture lies not in scientific understanding, but in human 

cooperation on a local and global scale—a monumental undertaking unparalleled in 

human history.  
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7 Appendices 
 

 
 
Figure 7-1. Maximum likelihood phylogenetic tree of Exo70F family members 

from diverse Poales species. 

Branch support was generated using 1,000 bootstraps, with orange dots designating support 
from 80-100%. Species abbreviations listed in Appendix Table 7-1. A. thaliana (At; 
AT5G50380.1) used as an outgroup. 
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Table 7-1. Species acronyms. 

 
  

Species Acronym
Achnatherum splendens Acs
Aegilops sharonesis Ash
Aegilops speltoides Aspe
Aegilops tauschii Aet
Agropyron cristatum Agc
Agropyron desertorum Agd
Agrostis stolonifera Ags
Aphelia sp. Asp
Arabidopsis thaliana At
Avena sativa Avs
Brachypodium distachyon Bdi
Brachypodium stacei Bst
Bromus inermis Bin
Centrolepis monogyna Cmo
Cyperus alternifolius Cal
Dactylis glomerata Dgl
Ecdeiocolea monostachya Emo
Elegia fenestrata Efe
Eleocharis dulcis Edu
Festuca pratensis Fpr
Flagellaria indica Fin
Holcus lanatus Hla
Hordeum pubiflorum Hp
Hordeum vulgare Hvu
Joinvillea ascendens Jas
Juncus effusus Jef
Lachnocaulon anceps Lan
Leersia perrieri Lpe
Mayaca fluviatilis Mfl
Melica nutans Mnu
Nardus stricta Nst
Neoregelia carolinae Nca
Oropetium thomaeum Ot
Oryza australiensis Oau
Oryza barthii Oba
Oryza coarctata Oco
Oryza glaberrima Ogla
Oryza glumipatula Oglu
Oryza meridionalis Omer
Oryza meyeriana Omey
Oryza minuta Omi
Oryza nivara Oni
Oryza officinalis Oof
Oryza punctata Opu
Oryza rufipogon Oru
Oryza sativa Os
Phalaris arundinacea Par
Phyllostachys edulis Ped
Poa annua Pan
Poa infirma Pin
Poa pratensis Ppr
Poa supina Psu
Secale cereale Sc
Setaria italica Si
Sorghum bicolor Sb
Stegolepis ferruginea Sfe
Stipa lagascae Sla
Streptochaeta angustifolia San
Triticum aestivum TaA
Triticum aestivum TaB
Triticum aestivum TaD
Triticum urartu Tur
Typha latifolia Tla
Xyris jupicai Xju
Zea mays Zm
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Table 7-2. Identical gene clusters in Exo70F1 phylogenetic analysis. 

 

 
 

  

Cluster Members 
HvuRGH2Baronesse HvuRGH2Baronesse, HvuRGH2Martime 

Hvu Hvu, HvuAB12, HvuAramir, HvuBarke, HvuBaronesse, 
HvuBCD12, HvuBCD47, HvuCI16139, HvuCI16147, 
HvuCI16153, HvuCIho4196, HvuDuplex, HvuEmir, 

HvuFongTien, HvuGZ, HvuHarunaNijo, HvuHeilsFranken, 
HvuHindmarsh, HvuHOR1428, HvuIgri, HvuManchuria, 

HvuMaritime, HvuMorex, HvuRussell, HvuSultan5, 
HvuWBDC172 

HvuWBDC110 HvuWBDC110, HvuI5, HvuSusPtrit, HvuWBDC008 
HvuFinniss HvuFinniss, HvuBetzes, HvuBowman, HvuCommander, 

HvuGoldenPromise, HvuPallas, HvuQ21861 
AetPI499262 AetPI499262, AetAT76, AetKU20252 
AetKU2093 AetKU2093, AetERS399496 
AetKU2087 AetKU2087, AetKU2003 
AetKU2124 AetKU2075, AetKU2078, AetKU2124, Aet2220007, AetATL, 

AetTQ27 
AetRGH2D2220009 AetRGH2AUS1891, AetRGH2D2220009 

Ash409 Ash396, Ash409, Ash546, Ash548, Ash1998, Ash2020, 
Ash2205, Ash6793, Ash6856 

AshRGH22172 AshRGH22172, AshRGH22233, AshRGH26793 
AshRGH2575 AshRGH2396, AshRGH2575 

AvsRGH2Hanyou5 AvsRGH2Huazao2, AvsRGH2Hanyou5, AvsRGH2Mongolia 
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Table 7-3.  Parameter estimates of dN/dS (ω) in different Exo70 gene families. 

 
Codons, number of codons used to estimate ω; κ, transition:transversion ratio; ω, dN/dS ratio. 
 
 

 

Table 7-4. Parameter and log likelihood estimates of dN/dS (ω) in non-

integrated and integrated Exo70F1 homologs. 

 

 
Significant differences in ω were observed for H0 vs. H2 (p<0.001) and H2 vs. H3 (p=0.003). 
Variables: κ, transition:transversion ratio, ω dN/dS ratio, lnL, log-likelihood. All likelihood 
ratio tests had degrees of freedom of 1. 
  

Gene family Species Genes Codons κ ω 
Exo70A1 7 7 407 1.87 0.07 
Exo70A2 4 4 355 2.22 0.48 
Exo70A3 6 6 309 2.63 0.08 
Exo70A4 5 5 420 2.16 0.55 
Exo70B1 7 7 362 2.59 0.09 
Exo70B2 4 4 345 4.01 0.30 
Exo70B3 7 8 434 1.88 0.10 
Exo70C1 7 8 382 1.94 0.08 
Exo70C2 7 8 313 2.56 0.08 
Exo70D1 7 8 428 2.08 0.12 
Exo70D2 7 9 352 2.63 0.07 
Exo70E1 7 8 470 2.67 0.24 
Exo70F1 6 7 443 2.32 0.15 
Exo70F2 7 8 232 2.04 0.10 
Exo70F3 7 7 440 1.57 0.11 
Exo70F4 7 8 369 2.23 0.11 
Exo70F5 4 4 167 2.53 0.43 
Exo70G1 7 8 444 3.69 0.10 
Exo70G2 7 7 519 1.85 0.16 
Exo70H1 7 9 359 2.41 0.13 
Exo70I1 7 7 426 2.97 0.08 

 

Model κ ω0 ω1 ωa ωb lnL 
H0 (one ω) 2.418 0.217 = ω0 = ω0 = ω0 -13005.2 
H1 (two ω; ω0 and ω1) 2.418 0.220 0.078 = ω0 = ω0 -13003.5 
H2 (two ω; ω0 and ωa) 2.437 0.092 = ωa 0.413 = ω0 -12871.9 
H3 (three ω; ω0, ωa, ωb) 2.435 0.075 = ωa 0.413 0.118 -12867.4 
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Table 7-5. Gene identifiers for Exo70 gene family. 

 
  

Identifier Gene
AT5G03540.1 AtExo70A1
AT5G52340.1 AtExo70A2
AT5G52350.1 AtExo70A3
AT5G58430.1 AtExo70B1
AT1G07000.1 AtExo70B2
AT5G13150.1 AtExo70C1
AT5G13990.1 AtExo70C2
AT1G72470.1 AtExo70D1
AT1G54090.1 AtExo70D2
AT3G14090.1 AtExo70D3
AT3G29400.1 AtExo70E1
AT5G61010.1 AtExo70E2
AT5G50380.1 AtExo70F1
AT4G31540.1 AtExo70G1
AT1G51640.1 AtExo70G2
AT3G55150.1 AtExo70H1
AT2G39380.1 AtExo70H2
AT3G09530.1 AtExo70H3
AT3G09520.1 AtExo70H4
AT2G28640.1 AtExo70H5
AT1G07725.1 AtExo70H6
AT5G59730.1 AtExo70H7
AT2G28650.1 AtExo70H8
Bradi5g26580.1.p BdExo70A1
Bradi5g26587.6.p BdExo70A2
Bradi4g24960.1.p BdExo70A3
Bradi4g41980.2.p BdExo70A4
Bradi2g53820.1.p BdExo70B1
Bradi2g22490.1.p BdExo70B3
Bradi4g41750.1.p BdExo70C1
Bradi4g24680.3.p BdExo70C2
Bradi4g31270.1.p BdExo70D1
Bradi3g37580.1.p BdExo70D2
Bradi2g50730.2.p BdExo70E1
Bradi2g59057.1.p BdExo70F1
Bradi3g43960.2.p BdExo70F2
Bradi5g07740.2.p BdExo70F3
Bradi3g41160.1.p BdExo70F4
Bradi5g04622.2.p BdExo70FX1
Bradi2g50515.1.p BdExo70FX10
Bradi5g25512.2.p BdExo70FX11a
Bradi5g25531.1.p BdExo70FX11b
Bradi5g01926.1.p BdExo70FX2a
Bradi5g01930.1.p BdExo70FX2b
Bradi3g32640.2.p BdExo70FX3
Bradi3g03860.1.p BdExo70G1
Bradi1g33940.1.p BdExo70G2
Bradi5g06870.2.p BdExo70H1
Bradi3g40510.1.p BdExo70I1
HORVU2Hr1G123320.1 HvExo70A1
HORVU2Hr1G123350.m1 HvExo70A2
HORVU4Hr1G021040.1 HvExo70A3
HORVU5Hr1G040140.3 HvExo70A4
HORVU3Hr1G088110.3 HvExo70B1
HORVU1Hr1G070390.1 HvExo70B3
HORVU5Hr1G039240.1 HvExo70C1
HORVU4Hr1G020050.1 HvExo70C2
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Identifier Gene
HORVU5Hr1G062200.3 HvExo70D1
MLOC_19124.1 HvExo70D2
HORVU3Hr1G073850.1 HvExo70E1a
HORVU3Hr1G073910.1 HvExo70E1b
HORVU3Hr1G094570.3 HvExo70F1
HORVU7Hr1G028060.3 HvExo70F2
MLOC_59065.1 HvExo70F3
HORVU7Hr1G054020.2 HvExo70F4
HORVU2Hr1G116970.2 HvExo70F5
HORVU7Hr1G030080.3 HvExo70FX1
HORVU2Hr1G118460.1_1_377 HvExo70FX11a
HORVU2Hr1G118520.1 HvExo70FX11b.a
HORVU2Hr1G118500.1 HvExo70FX11c
HORVU2Hr1G118450.1 HvExo70FX11d
HORVU2Hr1G118510.1 HvExo70FX11e
HORVU2Hr1G118490.1 HvExo70FX11f
HORVU4Hr1G079440.1 HvExo70FX12a
HORVU2Hr1G003540.3_1213_1543 HvExo70FX2
HORVU7Hr1G082050.1 HvExo70FX3a
HORVU0Hr1G021500.1_32_517 HvExo70FX3b
MLOC_11137.3 HvExo70FX4
HORVU6Hr1G021690.1 HvExo70G1
HORVU7Hr1G098020.1 HvExo70G2
MLOC_56456.1 HvExo70H1
HORVU7Hr1G052100.1 HvExo70I1
HvRGH2_1025_1637 HvRGH2
LOC_Os04g58880.1 OsExo70A1
LOC_Os04g58870.1 OsExo70A2
LOC_Os11g05880.1 OsExo70A3
LOC_Os01g61180.1 OsExo70B1
LOC_Os01g61190.1 OsExo70B2
LOC_Os05g39610.1 OsExo70B3
LOC_Os12g06840.1 OsExo70C1
LOC_Os11g06700.1 OsExo70C2
LOC_Os09g26820.1 OsExo70D1
LOC_Os08g35470.1 OsExo70D2
LOC_Os01g55799.1 OsExo70E1
LOC_Os01g69230.1 OsExo70F1
LOC_Os02g30230.1 OsExo70F2
LOC_Os04g31330.1 OsExo70F3
LOC_Os01g05580.1 OsExo70F4a
LOC_Os08g41820.1 OsExo70F4b
LOC_Os10g33850.1 OsExo70F4c
LOC_Os06g14450.1 OsExo70F5
LOC_Os01g56210.1 OsExo70FX10
LOC_Os06g08460.1 OsExo70FX1a
LOC_Os01g49460.1_57_151 OsExo70FX1b
LOC_Os12g24620.1_57_141 OsExo70FX1c
LOC_Os04g02070.1 OsExo70FX2
LOC_Os07g10920.1 OsExo70FX3a
LOC_Os07g10970.1 OsExo70FX3b
LOC_Os07g10910.1_198_700 OsExo70FX4a
LOC_Os07g10940.1_186_709 OsExo70FX4b
LOC_Os07g10960.1 OsExo70FX4c
LOC_Os02g36619.1 OsExo70FX5a
LOC_Os01g28600.1 OsExo70FX5b
LOC_Os01g67820.1 OsExo70FX6a
LOC_Os01g67810.1 OsExo70FX6b
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Identifier Gene
LOC_Os11g36400.1 OsExo70FX7
LOC_Os08g13270.1 OsExo70FX8a
LOC_Os08g13570.1 OsExo70FX8b
LOC_Os09g17810.1 OsExo70FX8c
LOC_Os05g30660.1 OsExo70FX9a
LOC_Os05g30680.1 OsExo70FX9b
LOC_Os05g30700.1 OsExo70FX9c
LOC_Os05g30640.1 OsExo70FX9d
LOC_Os05g30620.1 OsExo70FX9e
LOC_Os02g05620.1 OsExo70G1
LOC_Os06g48330.1 OsExo70G2
LOC_Os12g01040.1 OsExo70H1a
LOC_Os11g01050.1 OsExo70H1b
LOC_Os11g42989.1 OsExo70H2a
LOC_Os11g43049.1 OsExo70H2b
LOC_Os03g33520.1 OsExo70H2c
LOC_Os08g40840.1 OsExo70I1
Oropetium_20150105_26701A OtExo70A1
Oropetium_20150105_14997A OtExo70A3a
Oropetium_20150105_28040A OtExo70A3b
Oropetium_20150105_10903A_1_562 OtExo70A4
Oropetium_20150105_18752A OtExo70B1
Oropetium_20150105_03308A OtExo70B3
Oropetium_20150105_10873A OtExo70C1
Oropetium_20150105_14956A OtExo70C2
Oropetium_20150105_05783A OtExo70D1
Oropetium_20150105_02148A OtExo70D2
Oropetium_20150105_05787A OtExo70D3a
Oropetium_20150105_27432A OtExo70D3b
Oropetium_20150105_12609A OtExo70E1
Oropetium_20150105_09017A OtExo70F1
Oropetium_20150105_11249A OtExo70F2a
Oropetium_20150105_27473A OtExo70F2b
Oropetium_20150105_08821A OtExo70F3
Oropetium_20150105_14692A OtExo70F4a
Oropetium_20150105_14694A OtExo70F4b
Oropetium_20150105_16002A OtExo70F5
Oropetium_20150105_17316A OtExo70FX1
Oropetium_20150105_16422A_1014_1125 OtExo70FX13
Oropetium_20150105_23831A OtExo70FX2
Oropetium_20150105_24834A OtExo70FX5a
Oropetium_20150105_26562A_89_686 OtExo70FX5b
Oropetium_20150105_13125A OtExo70FX6a
Oropetium_20150105_13124A OtExo70FX6b
Oropetium_20150105_05298A OtExo70FX9
Oropetium_20150105_14354A OtExo70G1
Oropetium_20150105_16262A OtExo70G2
Oropetium_20150105_26824A OtExo70H1a
Oropetium_20150105_27340A OtExo70H1b
Oropetium_20150105_28021A OtExo70H1c
Oropetium_20150105_14767A OtExo70I1
Sobic.006G274600.1.p SbExo70A1
Sobic.005G044300.5.p SbExo70A3
Sobic.008G043600.1.p SbExo70A4
Sobic.003G341700.2.p SbExo70B1
Sobic.003G341800.1.p SbExo70B2
Sobic.009G171000.1.p SbExo70B3
Sobic.008G048200.1.p SbExo70C1
Sobic.005G049200.1.p SbExo70C2
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Identifier Gene
Sobic.002G215100.1.p SbExo70D1
Sobic.007G148700.1.p SbExo70D2
Sobic.003G305400.1.p SbExo70E1
Sobic.003G405700.1.p SbExo70F1
Sobic.004G153600.1.p SbExo70F2
Sobic.006G047100.1.p SbExo70F3
Sobic.007G194400.1.p SbExo70F4
Sobic.010G271700.1.p SbExo70FX13a
Sobic.010G272501.1.p SbExo70FX13b
Sobic.010G271600.1.p SbExo70FX13c
Sobic.010G272000.2.p SbExo70FX13d
Sobic.010G272700.1.p SbExo70FX13e
Sobic.010G271901.1.p SbExo70FX13f
Sobic.010G271800.1.p SbExo70FX13g
Sobic.010G272400.2.p SbExo70FX14a
Sobic.010G272101.1.p SbExo70FX14b
Sobic.010G272200.1.p SbExo70FX14c
Sobic.010G271501.1.p SbExo70FX14d
Sobic.010G269950.1.p SbExo70FX14e
Sobic.003G155600.1.p SbExo70FX5
Sobic.003G393400.1.p SbExo70FX6a
Sobic.003G393500.1.p SbExo70FX6b
Sobic.010G044700.1.p SbExo70FX8
Sobic.004G041100.1.p SbExo70G1
Sobic.010G248100.1.p SbExo70G2
Sobic.008G000500.1.p SbExo70H1
Sobic.007G202700.1.p SbExo70I1
ScExo70 ScExo70
Seita.3G007900.1.p SiExo70A1
Seita.3G008100.1.p SiExo70A2
Seita.8G040000.1.p SiExo70A3
Seita.7G295900.1.p SiExo70A4
Seita.5G366100.1.p SiExo70B1
Seita.5G366200.1.p SiExo70B2
Seita.3G207400.1.p SiExo70B3
Seita.7G292600.1.p SiExo70C1
Seita.8G045500.1.p SiExo70C2
Seita.2G217900.1.p SiExo70D1
Seita.6G171200.1.p SiExo70D2
Seita.5G328000.1.p SiExo70E1
Seita.5G431300.1.p SiExo70F1
Seita.1G167500.1.p SiExo70F2
Seita.7G070200.1.p SiExo70F3
Seita.6G222200.1.p SiExo70F4
Seita.4G113200.1.p SiExo70F5
Seita.5G035600.1.p SiExo70FX13a
Seita.4G232500.1.p SiExo70FX13b
Seita.4G285400.1.p SiExo70FX13c
Seita.4G285700.1.p SiExo70FX14a
Seita.4G285500.1.p SiExo70FX14b
Seita.4G285800.1.p SiExo70FX14c
Seita.1G165300.1.p SiExo70FX14d
Seita.4G050300.1.p SiExo70FX1a
Seita.4G050500.1.p SiExo70FX1b
Seita.5G431900.1.p SiExo70FX3a
Seita.1G130000.1.p SiExo70FX3b
Seita.5G432000.1.p SiExo70FX4a
Seita.5G432100.1.p SiExo70FX4b
Seita.5G432200.1.p_191_611 SiExo70FX4c
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Identifier Gene
Seita.5G175300.1.p SiExo70FX5
Seita.5G419400.1.p SiExo70FX6a
Seita.5G419600.1.p SiExo70FX6b
Seita.4G068100.1.p SiExo70FX8a
Seita.4G068000.1.p SiExo70FX8b
Seita.1G088800.1.p SiExo70G1
Seita.4G244700.1.p SiExo70G2
Seita.4G117500.1.p SiExo70H1a
Seita.9G423500.1.p SiExo70H1b
Seita.6G212800.1.p SiExo70I1
NM_001196530.1 ZmExo70A1
AC208346.3_FGP004 ZmExo70B1
GRMZM2G141392_P01 ZmExo70B2
GRMZM2G065566_P01 ZmExo70B3a
GRMZM5G869403_P01 ZmExo70B3b
GRMZM2G330361_P01 ZmExo70C1a
GRMZM2G343437_P01 ZmExo70C1b
GRMZM2G066464_P01 ZmExo70C2a
GRMZM2G348151_P01 ZmExo70C2b
GRMZM2G135817_P01 ZmExo70D1a
GRMZM2G143029_P01 ZmExo70D1b
GRMZM2G029527_P01 ZmExo70D2a
GRMZM2G076389_P01 ZmExo70D2b
GRMZM2G390691_P01_1_526 ZmExo70D2c
GRMZM2G111657_P01 ZmExo70E1
GRMZM2G003518_P01 ZmExo70F1a
GRMZM2G022159_P01 ZmExo70F1b
GRMZM2G111782_P02 ZmExo70F2a
GRMZM2G370741_P01_1_107 ZmExo70F2b
AC208418.3_FGP009_1_207 ZmExo70F2c
AC218988.3_FGP003_1_112 ZmExo70F2d
GRMZM2G059965_P01 ZmExo70F3
GRMZM2G165301_P01 ZmExo70F4
GRMZM2G163172_P01 ZmExo70FX1
GRMZM2G436742_P01_306_677 ZmExo70FX4
GRMZM2G437490_P01 ZmExo70FX5a
GRMZM2G353483_P01 ZmExo70FX5b
GRMZM2G177227_P01 ZmExo70FX6
GRMZM5G815077_P01 ZmExo70FX8
GRMZM2G067313_P01 ZmExo70G1a
GRMZM2G146711_P01 ZmExo70G1b
GRMZM2G166032_P01 ZmExo70G1c
GRMZM2G162065_P01 ZmExo70G2
GRMZM2G357443_P01 ZmExo70H1
GRMZM2G149474_P01 ZmExo70I1
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Table 7-6. List of Barley accessions. 

 
 

  

Accession name PI/CI Number Experiment used Source Psh Field Trial 
Baronesse - Mo, Bgh, victorin Oregon State University Norwich, Oregon, CIMMYT
BCD47 PI 659444 Mo, Bgh, victorin Oregon State University Norwich, Oregon, CIMMYT
Nigrate CIho 2444 Mo, Bgh, victorin USDA-GRIN -
Golden Promise PI 343079 Mo, Bgh, victorin - -
SxGP DH47 - Mo, Bgh, victorin - -
Maritime - Mo, Bgh, victorin Wolfgang Spielmeyer -
Duplex CIho 12420 Mo, Bgh, victorin USDA-GRIN -
Finniss - Mo, Bgh, victorin Wolfgang Spielmeyer -
HOR 1428 PI 548708 Mo, Bgh, victorin USDA-GRIN -
Manchuria CIho 2330 Mo, Bgh, victorin USDA-GRIN -
Bowman PI 483237 Mo, Bgh, victorin - -
Grannenlose Zweizeilige PI 548740 Mo, Bgh, victorin USDA-GRIN -
Siri - Mo, Bgh, victorin John Innes Centre -
S01 - Mo, Bgh, victorin John Innes Centre -
S02 - Mo, Bgh, victorin John Innes Centre -
S03 - Mo, Bgh, victorin John Innes Centre -
S04 - Mo, Bgh, victorin John Innes Centre -
S06 - Mo, Bgh, victorin John Innes Centre -
S07 - Mo, Bgh, victorin John Innes Centre -
S09 - Mo, Bgh, victorin John Innes Centre -
S10 - Mo, Bgh, victorin John Innes Centre -
S11 - Mo, Bgh, victorin John Innes Centre -
S12 - Mo, Bgh, victorin John Innes Centre -
S13 - Mo, Bgh, victorin John Innes Centre -
S15 - Mo, Bgh, victorin John Innes Centre -
S17 - Mo, Bgh, victorin John Innes Centre -
Siri - APR Psh John Innes Centre Norwich, Oregon
S01 - APR Psh John Innes Centre Norwich, Oregon
S02 - APR Psh John Innes Centre Norwich, Oregon
S03 - APR Psh John Innes Centre Norwich, Oregon
S04 - APR Psh John Innes Centre Norwich, Oregon
S06 - APR Psh John Innes Centre Norwich, Oregon
S07 - APR Psh John Innes Centre Norwich, Oregon
S09 - APR Psh John Innes Centre Norwich, Oregon
S10 - APR Psh John Innes Centre Norwich, Oregon
S11 - APR Psh John Innes Centre Norwich, Oregon
S12 - APR Psh John Innes Centre Norwich, Oregon
S13 - APR Psh John Innes Centre Norwich, Oregon
S15 - APR Psh John Innes Centre Norwich, Oregon
S17 - APR Psh John Innes Centre Norwich, Oregon
BISON 0-QTL - APR Psh Oregon State University Norwich, Oregon, CIMMYT
BISON 1H - APR Psh Oregon State University Norwich, Oregon, CIMMYT
BISON 4H - APR Psh Oregon State University Norwich, Oregon, CIMMYT
BISON 5H - APR Psh Oregon State University Norwich, Oregon, CIMMYT
BISON 7H - APR Psh Oregon State University Norwich, Oregon, CIMMYT
BISON 1H+4H - APR Psh Oregon State University Norwich, Oregon, CIMMYT
BISON 1H+5H - APR Psh Oregon State University Norwich, Oregon, CIMMYT
BISON 4H+5H - APR Psh Oregon State University Norwich, Oregon, CIMMYT
BISON 1H+4H+5H - APR Psh Oregon State University Norwich, Oregon, CIMMYT
BCD12 - APR Psh Oregon State University Norwich, Oregon, CIMMYT
Manchuria CIho 2330 APR Psh USDA-GRIN Norwich, CIMMYT
HV_14947 LG Diablo APR Psh Limagrain Europe Norwich, CIMMYT
HV_14948 LG Tomahawk APR Psh Limagrain Europe Norwich, CIMMYT
HV_14949 LG Mountain APR Psh Limagrain Europe Norwich, CIMMYT
HV_14950 LG Flynn APR Psh Limagrain Europe Norwich, CIMMYT
HV_14951 LG Casting APR Psh Limagrain Europe Norwich, CIMMYT
HV_05659 rar1-m82 (Sultan 5) APR Psh Roger Wise Norwich, CIMMYT
HV_05660 rar1-m100 (Sultan 5) APR Psh Roger Wise Norwich, CIMMYT
HV_05059 mla 12-m66 (Sultan 5)APR Psh Roger Wise Norwich, CIMMYT
HV_07885 Sultan 5 APR Psh Roger Wise Norwich, CIMMYT
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Table 7-7. Table of Siri panel. 

 
  

Siri panel line Historical introgression Mla  haplotype 
Siri Mla8 Mla8
S01 Mla1 Mla1
S02 Mla3 Mla3
S03 Mla6 Mla6
S04 Mla7 (Nordal) Mla7 (Nordal)
S06 Mla7 (Moseman) Mla7 (Moseman)
S07 Mla9, Mlk Mla9
S09 Mla10, Ml-(Du2) Mla10
S10 Mla12 Mla12
S11 Mla13 Mla13
S12 Mlc Mla22
S13 Ml-(1402) Mla23
S15 Ml-(Ru2) Ml-(Ru2)
S17 Mlk Mlk
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Table 7-8. List of KASP markers. 

 

M
arker nam

e
Source m

arker nam
e 

Purpose 
Forw

ard prim
er allele 1

Forw
ard allele prim

er 2
Com

m
on Reverse prim

er
K_3_1144

3_1144_60_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTTGACCGGCAAGACCGTCACC
GAAGGTGACCAAGTTCATGCTTGACCGGCAAGACCGTCACT

GCTTGGATCCACCCCCTC
K_1_0419

1_0419_120_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTTGGATGCTCTCAAGGAGACC
GAAGGTGACCAAGTTCATGCTTGGATGCTCTCAAGGAGACT

TCTGAGGCAAGCAGCAGC
K_66630

SCRI_RS_66630_159_R
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTTATCCAGTTCACTGCCCTCC
GAAGGTGACCAAGTTCATGCTTATCCAGTTCACTGCCCTCT

GGCTCCATCCATACACCTCA
K_82277

SCRI_RS_82277_126_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTCATACATCCGCTGGGCATCA
GAAGGTGACCAAGTTCATGCTCATACATCCGCTGGGCATCG

TGGCGGCGAAAAGAAGCA
K_232577

SCRI_RS_232577_124_R
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTAAGAGCGACCTCCTCCTCAC
GAAGGTGACCAAGTTCATGCTAAGAGCGACCTCCTCCTCAT

TTGTGGATGAGCACGGGC
K_3_0933

3_0933_60_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTGTAATCTACCTGTATGATTC
GAAGGTGACCAAGTTCATGCTGTAATCTACCTGTATGATTT

TCAGAAGAGTGCAGCATAACA
-

k08433_26_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTGGGATTTGTAGCAGCATGCA
GAAGGTGACCAAGTTCATGCTGGGATTTGTAGCAGCATGCG

CACCAACCCCCAGCCATC
-

k08302_100_R
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTCTGTAGCAAGTTGTTCATAC
GAAGGTGACCAAGTTCATGCTCTGTAGCAAGTTGTTCATAT

TCCAGATGGTCGGGAGGG
K_963924_115

HV5_963924_p1_115_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTAAATTGCACTTCATTGCAGC
GAAGGTGACCAAGTTCATGCTAAATTGCACTTCATTGCAGT

CAGGGATTACGCGAGCACT
K_2_1174

2_1174_120_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTACCGGCGCTCGATTAAGTCA
GAAGGTGACCAAGTTCATGCTACCGGCGCTCGATTAAGTCG

GCATCGCCGGGTGATACA
-

HV5_963924_p1_378_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTCAACATCAACACTCGTAGCA
GAAGGTGACCAAGTTCATGCTCAACATCAACACTCGTAGCG

CGCCACAACGCTCTTTGAC
-

M
LA_186_p1_111_R

Baronesse x BCD47
GAAGGTCGGAGTCAACGGATTTGTATCTAAGTATATACCCC

GAAGGTGACCAAGTTCATGCTTGTATCTAAGTATATACCCT
CCTTCGGCTACCCACTTCC

-
M

LA_132_p1_55_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTGGGTTAAACAAAAAATCTCC
GAAGGTGACCAAGTTCATGCTGGGTTAAACAAAAAATCTCT

TGGTTTTGCACTGGCCCT
-

15A08F2_133_R
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTTCTTCCCAACCCCACTAGTC
GAAGGTGACCAAGTTCATGCTTCTTCCCAACCCCACTAGTT

GCACAAGGTGGCGTCCAT
-

80H14R1F3_p1_152_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTGACAAGGGTCGGGGATTTTC
GAAGGTGACCAAGTTCATGCTGACAAGGGTCGGGGATTTTT

AGTTTCCTCACACTCACACCA
-

80H14R1F3_p2_128_R
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTTCCTGCTCTCAAACTGTAGC
GAAGGTGACCAAGTTCATGCTTCCTGCTCTCAAACTGTAGT

GGTTGCCCCAAGGTACCC
-

FW
A62F_199_F

Baronesse x BCD47
GAAGGTCGGAGTCAACGGATTTCTTGGGACGGCTTCACTAC

GAAGGTGACCAAGTTCATGCTTCTTGGGACGGCTTCACTAT
CGCCGCGACAACTCTAGT

K_M
LA_RGH1_2920

M
la_ORO_2920_R

Baronesse x BCD47
GAAGGTCGGAGTCAACGGATTGGCAGATCCACAATCCAAAC

GAAGGTGACCAAGTTCATGCTGGCAGATCCACAATCCAAAT
CACCCACCAAACGCAACG

-
M

LA_063_p1_73_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTCCTTGCAGATCAGTTGGAGC
GAAGGTGACCAAGTTCATGCTCCTTGCAGATCAGTTGGAGT

GACGATGGAGCTCGGTCG
-

M
LA_065_p1_78_F

Baronesse x BCD47
GAAGGTCGGAGTCAACGGATTCTATGGCGACCACCCGTAGC

GAAGGTGACCAAGTTCATGCTCTATGGCGACCACCCGTAGT
CCGTAGGCTGCTCGACAT

-
M

LA_079_p1_147_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTTGAAGATGAGTCAAGAGAAA
GAAGGTGACCAAGTTCATGCTTGAAGATGAGTCAAGAGAAC

ACCTGAGGACATCCGGCT
-

M
LA_080_p1_286_F

Baronesse x BCD47
GAAGGTCGGAGTCAACGGATTTCTTGGGACGGCTTCACTAC

GAAGGTGACCAAGTTCATGCTTCTTGGGACGGCTTCACTAT
CGCCGCGACAACTCTAGT

-
M

LA_118_p1_51_F
Baronesse x BCD47

GAAGGTCGGAGTCAACGGATTTGTGTTGACCAATTTGTTGC
GAAGGTGACCAAGTTCATGCTTGTGTTGACCAATTTGTTGT

TGTCAGTTGCATTTCGACAGG
-

M
LA_119_p1_166_R

Baronesse x BCD47
GAAGGTCGGAGTCAACGGATTCCGTTCCCATCCATTGCATA

GAAGGTGACCAAGTTCATGCTCCGTTCCCATCCATTGCATG
GTGAAGCAGTGGATAGCCGA
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Table 7-9. List of oligonucleotides (primers). 

 
 
  

Primer ID Sequence Manufacturer Gene construct Construct ID Internal ID
RP_Baronesse_225_t1_p1f GGCGTAGACACCGATCGG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t2_p1f CTTGGAGTCCGCCGTTGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t4_p1f CCCTTTCCTCGTCCGTCG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t5_p1f CCACCCCAAGCAGGTACG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t6_p1f TGCTGGTGCTGGTGTTGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t7_p1f GTCGTCGTCGGCGTAGAG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t8_p1f GCCCTCCAAATGGCGGAT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t9_p1f TCGTGACACTTCGCCCTTC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t10_p1f GCAAACCCATCGTCCCTCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t13_p1f TGCGGAACAGCTTCTCCG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t17_p1f GCAACTGGCGGAACTCCT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t18_p1f GTGAGGCCCGTAGTGCAG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t20_p1f GAGGCCAGTCAGGTGCTC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t21_p1f GAGCAGTGAGGGAAGGCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t22_p1f CGCCGCGACAACTCTAGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t23_p1f GGTCAGCTCACCAAGGCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t27_p1f TCCTTCCCACCGTTCCCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t30_p1f TCCCAGGTTGATGGTGCC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t34_p1f GAAGGTGGTGCCGTCGAA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t36_p1f TGTGCCGGTGAATCGCTT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t38_p1f CTCACCGGTGCCTCCATC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t39_p1f GAGTGGGCCTGCTCTTGG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t40_p1f ACCGCTCGTGTTTTTCT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t41_p1f CAACGACTGCTGGCTCGA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t42_p1f CCAAGCACAGTCGACCGA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t43_p1f GAGATCCGCGAGCTGACC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t46_p1f AGTGGGTATCCAATCAGGCT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t50_p1f AGTTAGTGCTGGGTGCGG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t54_p1f TGTCCTGCCAGTGGAAGC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t57_p1f GACGATGGAGCTCGGTCG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t61_p1f TTGGGGTATGCTTGCGGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t62_p1f GTCGTCCTCCAGCGACAC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t63_p1f GACAACCTTCCGGTCGCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t64_p1f ATCACCGCCGCTGTGAAA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t65_p1f TGCCTCTGCCGTTTTCGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t66_p1f AACCGAGGCCAGGCTAGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t67_p1f CAGAACCGACACCAGGGC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_t1_p1f AGCTTCCGCCATCGCTTT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t2_p1f GTCCGCCGGTCTTGTTGA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t3_p1f AGTCCCAGGCCGATCCAT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t4_p1f TGCCGTGCAAAGCCATTT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t5_p1f ACGCATTAAGCACCTATGGT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t6_p1f CTGCCACTCTCGGTGCAA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t7_p1f GCCACCGTCTAGGCAACA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t8_p1f CAGCAAGACCCTGCTGCT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t10_p1f ACCTCCAAATCAGGCGCC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t12_p1f CCGTGCCAACCTAGCCTC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t14_p1f GAGGAGCTCAGGCGAACC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t17_p1f ATTTTCAGGCCTGCCGCT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t18_p1f GCTACTCCCTCCGTCCCA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t20_p1f TCTGACCCCAGTCCCCAG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t21_p1f GGCACCAGTGAAGAGCGT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t23_p1f CAGCTTTCAAGGCACGCC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t24_p1f CCTGCAGGCCCAAATCGA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t27_p1f ACTGTGGACGGCAATTCCT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t31_p1f TGGTCACCAGCCAAAGCA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t34_p1f GGCCCAGGTATAGGTTGGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t36_p1f GGATTTCTTGGACTGATGCCA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
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RP_Baronesse_131_t39_p1f CGCCCTCCATGGAAAGCA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t41_p1f TGACCTCATCGGCCCAGA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t42_p1f TGGAAATGGCACCGGTGA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t43_p1f CGGAGCAGAACACAGCGA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t44_p1f GACAAGCACAGCACGCAC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t47_p1f CAGCCCAGCCCGTAAACA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t50_p1f CAAGCGCTTCGACCCTGA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t52_p1f CACCATCGAAGCTGCCCA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t55_p1f CACCACCTCTGCACCTCG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t56_p1f GACGGTGAGGTGTTGGGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t58_p1f TCAGCTGGTGCACGTGAG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t59_p1f CCAGGCCAACCGCAACTA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t60_p1f CACACTCCTCGATCGCGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t63_p1f GGAAGGCAGAGGCAGGTG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t66_p1f AAGGTCCGAAGCAACCCG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t69_p1f TCCGCTCTGCAATCGACG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t70_p1f GTCTCACGACTGCCACGT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t71_p1f GGTGTTCCCGCCATCCTT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t72_p1f CCGTGCTAGGCCAGAAGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t73_p1f CCGGGGAAGCCTGAATCC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t75_p1f AGCAACCGAGAATGGGCA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_225_d17_p1f TCGTGACACTTCGCCCTTC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_d33_p1f GCAACTGGCGGAACTCCT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_d50_p1f GGGATGTTGCCACTCAGGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_d86_p1f GGTCCGTTCACGCCATCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_d102_p1f CAGGCGATGGTTGGCTGA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_d121_p1f TTGGGGTATGCTTGCGGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d45_p1f CGTGCGGGTCAGCTTTCA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_d48_p1f CAGCCGTTGCGTTTGGTG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_d51_p1f GCACCCAGCGTTCCCCNA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_d54_p1f ACTGTGGACGGCAATTCCT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_d57_p1f AGGGACAAACGGCGACAA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_d60_p1f AATCCTTCGGCCACCCAC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_d63_p1f GGAGTCATCAACAGAAAGCGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_d76_p1f AGCTGATTGGCATCCAGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_d79_p1f GCTCGAAGGCAAGGGTCA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_d82_p1f TGACCTCATCGGCCCAGA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_d85_p1f CGGAGCAGAACACAGCGA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_225_t1_p1r ACAACGGCGGACTCCAAG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t2_p1r CGACGGACGAGGAAAGGG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t4_p1r CGTACCTGCTTGGGGTGG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t5_p1r CTCTACGCCGACGACGAC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t6_p1r GGAGGGCCGTCCGATCTA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t7_p1r CCATTTGGAGGGCCGTCC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t8_p1r GGAAGGTACGGAGACCTGC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t9_p1r AGCGGTCAGATCAGGGCT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t10_p1r TTGACGGCTGCGAGACTG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t13_p1r CTGGCTATGCGTCGGAGG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t17_p1r CTGCACTACGGGCCTCAC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t18_p1r GAGCACCTGACTGGCCTC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t20_p1r TGTTCGTCTGGACCGCAC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t21_p1r GCCTTGGTGAGCTGACCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t22_p1r GCCGGGCTTGTTCTTCCT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t23_p1r TGGAGCTTCCAGCCCAGA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t27_p1r AGCCGGATGTCCTCAGGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t30_p1r CTTCGCCGCAGCATTGTC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t34_p1r AGCGATTCACCGGCACAA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t36_p1r AGCTGCGCTTCCTCCAAG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
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RP_Baronesse_225_t38_p1r CCAAGAGCAGGCCCACTC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t39_p1r TCGTTCGTCACAAGGCCC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t40_p1r TCGAGCCAGCAGTCGTTG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t41_p1r GTCAGCTCGCGGATCTCC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t42_p1r TGATGGCGTGAACGGACC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t43_p1r GAGCTCCATGACGGCCTC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t46_p1r CATGTGCTCCCTGGCGAA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t50_p1r CAGCCAACCATCGCCTGA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t54_p1r CGGACGTTGTCTTCACCCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t57_p1r TGGCTCCACCTGTACCGA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t61_p1r GTGTCGCTGGAGGACGAC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t62_p1r TCACAGCGGCGGTGATTT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t63_p1r CAGACGACGACGACGAGG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t64_p1r ACGAAAACGGCAGAGGCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t65_p1r GCCCTGGTGTCGGTTCTG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t66_p1r CTCTAGTGAGGTAGGG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_t67_p1r CCTAGCTCTCGCGACTT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_t1_p1r ATGGATCGGCCTGGGACT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t2_p1r GCAGCTGACAGGGGTACA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t3_p1r GCTAGCAACAATGTCTTTGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t4_p1r CACCGAGAGTGGCAGAGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t5_p1r TGTTGCCTAGACGGTGGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t6_p1r CTGTGTACGCCGGACTGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t7_p1r AGCAGCAGGGTCTTGCTG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t8_p1r GGTTTGCGACTCCAGGCT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t10_p1r GAGGCTAGGTTGGCACGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t12_p1r GGTTCGCCTGAGCTCCTC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t14_p1r CTACTGGCGGCATCGGAG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t17_p1r TGGGACGGAGGGAGTAGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t18_p1r TGATGCGGAGGCCTGAGA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t20_p1r ACGCTCTTCACTGGTGCC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t21_p1r AGGCGTGCCTTGAAAGCT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t23_p1r CACCCACCAAACGCAACG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t24_p1r CTCTCTGCACTGCGAGGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t27_p1r TGTCGCCGTTTGTCCCTT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t31_p1r ACCACAACCCGCATTGTCA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t34_p1r GCAACATGCGCCAAAGGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t36_p1r TGCGATGCTGGATGCCAA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t39_p1r ACAAGCTCTGGGCCGATG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t41_p1r CTGCTCCGCCGTGAAGAA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t42_p1r TGCGGTGGTAGTGGCATC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t43_p1r CCCGTGGTGCTGGTGAAT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t44_p1r GGGGACGAAGATGCGAGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t47_p1r GCCTCCCTATGGCTTAGGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t50_p1r GGCCTCGTTCCATGACCA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t52_p1r CAGGTGGCGCAGGAAAGA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t55_p1r CCCCAACACCTCACCGTC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t56_p1r TTGGTCGCGGTTCACCTC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t58_p1r CGCGATCGAGGAGTGTGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t59_p1r CCGTAGTGAACTCGCCGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t60_p1r GCATGAAACCGTGCCGAA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t63_p1r ACCACATCACCTTGGCGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t66_p1r GGTGATCTGCCTTGCCGT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t69_p1r CAGGAGCCCCCTCAAAGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t70_p1r CCTTCTGGCCTAGCACGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t71_p1r CCGCGATCGAGGAAGACC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t72_p1r GATTCAGGCTTCCCCGGG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t73_p1r TGCCCATTCTCGGTTGCT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
RP_Baronesse_131_t75_p1r GGCGCTTTGGATCATCGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM067
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RP_Baronesse_225_d17_p1r GGAAGGTACGGAGACCTGC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_d33_p1r CAGTGGGACTCAGTGGCG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_d50_p1r ATGCCACACCGCCAATGA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_d86_p1r TCAGCAAGCATGGCAGCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_d102_p1r GCAACATGAACGCGTGCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_225_d121_p1r ATGGTGTCAGCATGCATAGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d45_p1r TCGATTTGGGCCTGCAGG Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d48_p1r GGTGCAGCAGGATGACGT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d51_p1r TGCACAAGAGCTTGGCAAC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d54_p1r TGGGGAGAATAGCAGCATGC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d57_p1r TAGCGGCGAGGCATATGC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d60_p1r TCCTTCGGTCCCTTGGCT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d63_p1r ACCACAACCCGCATTGTCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d76_p1r GGAGGGTTGGGCAAGACC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d79_p1r AGGGGCTCATGAAGAGGACT Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d82_p1r TCACCGGTGCCATTTCCA Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
RP_Baronesse_131_d85_p1r TGCGGTGGTAGTGGCATC Sigma-Aldrich RGH2, RGH3 HB_0207 MM067
Mla3_Baron_t1_p1f CAGTATCGGCCCCACCAC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t2_p1f TTACACGGGGGTGGCAAC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t3_p1f TTACACGGGGGTGGCAAC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t4_p1f ACAGCAAGCGACTGCCAT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t5_p1f CTCCGATGCCGCCAGTAG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t6_p1f AGCGTTCCCCCAGGAGAT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t7_p1f AGCGTTCCCCCAGGAGAT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t8_p1f GCATATGCCTCGCCGCTA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t9_p1f GCATATGCCTCGCCGCTA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t10_p1f GGTCTTGCCCAACCCTCC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t11_p1f GGTCTTGCCCAACCCTCC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t1_p1r GTTGCCACCCCCGTGTAA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t2_p1r ATGGCAGTCGCTTGCTGT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t3_p1r ATGGCAGTCGCTTGCTGT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t4_p1r CACCCACCAAACGCAACG Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t5_p1r ATCTCCTGGGGGAACGCT Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t6_p1r TAGCGGCGAGGCATATGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t7_p1r TAGCGGCGAGGCATATGC Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t8_p1r TGCGATGCTGGATGCCAA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t9_p1r TGCGATGCTGGATGCCAA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t10_p1r CTGCTCCGCCGTGAAGAA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_Baron_t11_p1r CTGCTCCGCCGTGAAGAA Sigma-Aldrich RGH1 (Mla3) HB_0200, HB_0204 MM033
Mla3_p1f TGCATAGTAGCTCGCTCTGC IDT RGH1 (Mla3) HB_0200, HB_0204 -
Mla3_p1r CGCCCACCCAAAATGTTTGT IDT RGH1 (Mla3) HB_0200, HB_0204 -
Mla3_p2f ACCTTTGACACCCGTGGATC IDT RGH1 (Mla3) HB_0200, HB_0204 -
Mla3_p2r AGGCGAACCCCCATTTCATT IDT RGH1 (Mla3) HB_0200, HB_0204 -
Mla3_p3f TCGATTGAAGCGACCCTCAC IDT RGH1 (Mla3) HB_0200, HB_0204 -
Mla3_p3r CCGAGTGCAGTCCTGATACA IDT RGH1 (Mla3) HB_0200, HB_0204 -
RGH2_t1_p1f AGCTGCGCTTCCTCCAAG IDT RGH2 HB_0207 -
RGH2_t1_p1r GAAGGTGGTGCCGTCGAA IDT RGH2 HB_0207 -
RGH2_t2_p1f AGCGATTCACCGGCACAA IDT RGH2 HB_0207 -
RGH2_t2_p1r ACCTGAGGACATCCGGCT IDT RGH2 HB_0207 -
RGH2_t3_p1f GGCACCATCAACCTGGGA IDT RGH2 HB_0207 -
RGH2_t3_p1r CCAGCCGACGAACCTTGT IDT RGH2 HB_0207 -
RGH2_t4_p1f TGGGAACGGTGGGAAGGA IDT RGH2 HB_0207 -
RGH2_t4_p1r AGGAAGAACAAGCCCGGC IDT RGH2 HB_0207 -
RGH2_t5_p1f ATGCCACACCGCCAATGA IDT RGH2 HB_0207 -
RGH2_t5_p1r CGCCGCGACAACTCTAGT IDT RGH2 HB_0207 -
RGH2_t6_p1f GCCGGGCTTGTTCTTCCT IDT RGH2 HB_0207 -
RGH2_t6_p1r TAGTACCGGCACCCCCAA IDT RGH2 HB_0207 -
RGH2_t7_p1f TGTTCGTCTGGACCGCAC IDT RGH2 HB_0207 -
RGH2_t7_p1r GCAACTGGCGGAACTCCT IDT RGH2 HB_0207 -
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RGH2_t8_p1f CAGTGGGACTCAGTGGCG IDT RGH2 HB_0207 -
RGH2_t8_p1r CGACCACCTTGAACGCCT IDT RGH2 HB_0207 -
RGH2_t9_p1f GGAGTTCCGCCAGTTGCT IDT RGH2 HB_0207 -
RGH2_t9_p1r TGCGGAACAGCTTCTCCG IDT RGH2 HB_0207 -
RGH2_t10_p1f CTGGCTATGCGTCGGAGG IDT RGH2 HB_0207 -
RGH2_t10_p1r CAGTCTCGCAGCCGTCAA IDT RGH2 HB_0207 -
RGH2_t11_p1f TTGACGGCTGCGAGACTG IDT RGH2 HB_0207 -
RGH2_t11_p1r TCGTGACACTTCGCCCTTC IDT RGH2 HB_0207 -
RGH3_t1_p1f GAGATCCGCGAGCTGACC IDT RGH3 HB_0207 -
RGH3_t1_p1r CCGGGGATGATTGCAGCA IDT RGH3 HB_0207 -
RGH3_t2_p1f GGTTGATGGGCACTCGCT IDT RGH3 HB_0207 -
RGH3_t2_p1r CAGCCAACCATCGCCTGA IDT RGH3 HB_0207 -
RGH3_t3_p1f GGGGGAAGGGTGTTCTGC IDT RGH3 HB_0207 -
RGH3_t3_p1r GCAACATGAACGCGTGCA IDT RGH3 HB_0207 -
RGH3_t4_p1f CAGGCGATGGTTGGCTGA IDT RGH3 HB_0207 -
RGH3_t4_p1r AACGAATCCCGCAACGGT IDT RGH3 HB_0207 -
RGH3_t5_p1f CACGAGTGCTGGACCTGG IDT RGH3 HB_0207 -
RGH3_t5_p1r TGGCTGGGTTGGAGTTGC IDT RGH3 HB_0207 -
RGH3_t6_p1f GGTTGCCCCAAGGTACCC IDT RGH3 HB_0207 -
RGH3_t6_p1r TGGCTCCACCTGTACCGA IDT RGH3 HB_0207 -
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