
UNIVERSITY OF EAST ANGLIA

DOCTORAL THESIS

Modelling Volatility in Energy
Markets

Author:
Wenxue WANG

Supervisors:
Dr. Fuyu YANG

Prof. Peter MOFFATT

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

School of Economics

https://www.uea.ac.uk/
http://www.uea.ac.uk/economics


ii

January 21, 2020



iii

Declaration of Authorship
I, Wenxue WANG, declare that this thesis titled, “Modelling Volatility in En-
ergy Markets ” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:





v

Abstract
Oil price uncertainty has a significant impact on economic growth and finan-
cial market performance, and understanding the drivers of oil price dynam-
ics is vital for the global economy. It makes volatility modelling in crude
oil pricing an essential topic for academics and practitioners. Geopolitical
events in OPEC countries disrupting oil supply has long been the main driver
of oil volatility, while the U.S. shale revolution has led to new dynamics on
the supply side of the global oil market. The volatility transmission mech-
anism between crude oil and other assets in the investment market plays a
crucial role in shaping international investments and economic policies. This
thesis examines the channels of oil price dynamics and the volatility trans-
mission mechanism between oil and other financial assets.

Chapter 2 compares the performance of GARCH models, stochastic volatility
models, and OVX implied volatility index regarding out-of-sample forecast-
ing accuracy in oil futures prices. To do so, the dataset of West Texas Inter-
mediate (WTI) oil active in the U.S. markets and the Brent Crude dominating
the European market for the period 2004-2015 is adopted, which includes the
steep price drop in 2014. GJR-GARCH model suggests that leverage effect
exists, while the stochastic volatility models are used to examine series de-
pendence and heavy-tailed distribution in oil return series. The most impor-
tant finding for this chapter is the detection of over-fitting in the GJR-GARCH
model and stochastic volatility models.

Chapter 3 examines whether the shale revolution has dampened the role of
geopolitical risk in oil price volatility. Using the Structural Break Thresh-
old Vector Autoregressive (SBT-VAR) framework proposed by Galvão (2006),
this chapter identifies threshold effects and a structural break in April 2014.
Furthermore, this study extends the framework of Galvão (2006) to a struc-
tural SBT-VAR system by allowing for conditional heteroskedasticity. No-
tably, impulse responses of oil price and (co)variance to the shock of geopolit-
ical risk are compared over 170 periods, including before and after the shale
oil revolution. We find that the impulse response functions of oil prices to a
unit structural geopolitical risk shock have become smoother after the break-
point in 2014 compared with those before the break. The main finding as we
are expecting initially and intuitively is that the covariance response between
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geopolitical risk and oil price reduce with shale production shock compared
to without. However, composing one extra unit of shale production shock
makes the volatility response of oil prices to a geopolitical risk shock reaching
a higher level.

Chapter 4 examines volatility spillovers and dynamic correlations between
crude oil exchange-traded fund (ETF), various renewable energy ETFs, and
the S&P 500 ETF by using multivariate GARCH-in-mean specifications. We
find that the conditional volatility of the nuclear ETF has a significant posi-
tive effect on the oil ETF return, oppositely the volatility of the S&P 500 ETF
negatively spillovers to the return of the oil ETF. The most important finding
is that the long-term persistent volatility spillover from the S&P 500 ETF to
renewable energy ETFs is significantly negative. Another result reveals that
the dynamic correlations concurrently decrease before the financial crises (in
2008 and 2011 respectively) and then dramatically increase in the post-crisis
period. Evidence shows that the dynamic correlation between oil ETF and
S&P 500 ETF has always been positive since U.S. net imports of crude oil and
petroleum products gradually decrease from 2005 onwards.
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Chapter 1

Introduction

1.1 Overview

The theme of this thesis is the market for oil. It is a highly important market
because oil has been one of the most important drivers of economic growth
for the past 200 years. It is also important because it is a fossil fuel, and its
continued extraction is causing ever more severe environmental problems.
For this reason, we are not only interested in the oil market. We are also
interested in the market for renewable energy resources. Moreover, the oil
market activities impact on the wider financial market in many ways, even-
tually shaping final investment decisions.

The purpose of this introductory chapter is firstly to provide some historical
and institutional background that motivates the research. Then we provide
an outline of the three main chapters and identify the links between them.

1.2 Background

Crude oil is a mixture of hydrocarbons formed from plants and animals that
lived millions of years ago. It is considered one kind of fossil fuel, and also
as a form of non-renewable energy. It cannot be used directly. However,
it has many useful constituents. A barrel of crude oil is, through the refin-
ing process, converted into the following petroleum products in roughly the
following proportions: liquid petroleum gases (LPG), naphtha and gasoline
(50%); diesel fuel, heating oil, jet fuel, kerosene (40%); residual fuel oil (10%).
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We are most interested in the price of crude oil. The oil price has shown
huge variation in recent decades. Much of this variation is easily explained
in terms of economic and geopolitical factors. For the U.S. market before
1973, the price of oil was regulated by the government. However, the grow-
ing domestic demand for oil put a strain on the U.S. oil market. The U.S. be-
came increasingly dependent on oil imports from the Middle East. It started
the modern era of oil markets. Hamilton (2003b) concluded that a negative
shock to the supply of crude oil caused the oil price shock of 1973/74. But
Baumeister and Kilian (2016a) argued that the oil crisis of 1973/74 was driven
more by increased demand for oil rather than by reductions in oil supply. The
next major oil crisis was in 1979/80, which Hamilton (2003b) is attributed to
the supply reduction caused by the Iranian Revolution. Kilian and Murphy
(2014) clarified the viewpoint that the Iranian Revolution impacted on the oil
price by affecting oil price expectations rather than the flow of oil production.
They estimated that one third of the cumulative price increase was related to
a surge in inventory demand in anticipation of future oil shortages. The re-
maining two-thirds of the cumulative oil price increase was associated with
the cumulative effects of demand shocks. There was a systematic decline in
the price of oil at the beginning of the 1980s, which was caused partly by the
shift in global monetary policy (rising interest rates).

Meanwhile, having experienced the 1973 crisis, numerous non-OPEC coun-
tries, such as Mexico, Norway, and the United Kingdom, found ways of be-
coming oil producers themselves. As a result, the global market share of
OPEC decreased from 53% in 1973 to 43% in 1980, and then to 28% in 1985.
This increasing world oil production dragged the oil price downward. In
1990, geopolitical events, including Iraq’s invasion of Kuwait, disrupted the
supply of crude oil, leading to a sharp increase in the oil price. However,
it recovered to a low price level in 1991 as a result of low oil inventory de-
mand (Kilian, 2008). In 1997, the Asian financial crisis casued the oil price to
weaken further. In 1999, increasing demand for oil inventories brought the
oil price upward (Kilian and Murphy, 2014). In 2002/03, geopolitical events
- this time civil unrest in Venezuela and the second Iraq War - further stimu-
lated the oil market recovery. The surge continued until 2008, as a result of
increasing demand and the expanding global economy, and an all-time high
price of $145.93 was reached in June 2008. Following that, the 2008 global
financial crisis sent the oil price plummeting, reaching a low of $30.28 in De-
cember of the same year. After that low point, there was a gradual recovery
of the oil price until 2014, settling at a price above $100.
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In late 2014, there was another sharp drop, this time caused by the shale
oil boom in the U.S.. Interestingly, ever since that drop in price, the price
has stayed reasonably close to $50. The reason for this is again associated
with the shale market. There were reports 1 that whenever the oil price fell
below $50, shale production became unprofitable and was severely reduced,
removing the downward pressure on price. When the price rose above $50,
shale production resumed and put downward pressure on the price once
again. Hence the presence of shale production has fulfilled a price-stabilising
role in this period.

At the time of completing this thesis (28 September 2019), the oil price is
$55.91.

1.3 Crude Oil Benchmarks

In the last section, we discussed the movement of the oil price in recent
decades, relating these movements to economic and geopolitical factors. How-
ever, it is important that there is actually more than one oil price.

Crude oil benchmarks are used to provide a price reference for the crude
oil market. There are essentially two benchmarks: West Texas Intermediate
(WTI hereafter); and Brent Blend (Brent hereafter). In the last section, all
quoted oil prices were WTI prices.

WTI represents the benchmark price in the U.S. market. The oil represented
by this benchmark is also known as Texas light sweet. It is produced by
blending several U.S. local crude oil streams. While drilling for oil takes place
in many US states, most of the refineries are located in the Midwest and Gulf
Coast regions. For the past three decades, the delivery point for WTI crude
oil (also crude contracts) is in Cushing, Oklahoma, which is a major trading
hub. Cushing has a large number of intersecting pipelines and storage facili-
ties. It provides convenient access for refiners and suppliers, either inbound
or outbound, from or to any location in the U.S.. The advantages of WTI as a
benchmark are that it has high liquidity, high trading volume, and high trans-
parency. WTI is the underlying commodity of oil futures contracts traded on
the New York Mercantile Exchange (NYMEX), managed and owned by the
Chicago Mercantile Exchange (CME) Group.

1Carlson D., “Oil prices plummet amid continued oversupply, with no end in sight”, The
Guardian, 6 August 2016
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Brent crude oil is the other leading benchmark in the crude oil market world-
wide (two-thirds of all oil traded globally belongs to Brent), although mainly
in Europe. One reason for the popularity of Brent is that it is water-borne,
which means it is easier to transport than WTI which is land-locked. Brent
crude oil is extracted from the North Sea and is also as known as “Brent
Blend", “London Brent", or “Brent Petroleum". The main transaction point
for Brent is the London-based International Petroleum Exchange, which since
2001 has been a subsidiary of the Intercontinental Exchange (ICE), also based
in London. Here, options and futures on oil-related commodities are traded.

We are particularly interested in the difference between the WTI price and
the Brent price. There are a number of reasons why the two prices might be
different. The first is a difference in the quality (composition) of the crude oil.
Specifically, WTI is “sweeter” (lower sulphur content) and “lighter” (lower
density) than Brent. This essentially means that WTI is easier to refine and
process. The second possible reason for the price difference is the extraction
location. Less expensive delivery of the product clearly results in a lower
final price. Crude oil extracted from the sea has a clear advantage in trans-
portation over land-based oil which relies on the capacity of pipelines. For
this Brent has lower transportation costs than land-based oil such as WTI.

Both of the reasons mentioned above would be expected to give rise to the
WTI price being higher than the Brent price. However, for most of the last
decade at least, the Brent price has been higher.

On the basis of no-arbitrage arguments, the Brent price should exceed the
WTI price by the cost of transporting WTI from Cushing to the Brent trade
hub. Since Brent is more easily traded than WTI, there is little chance for
speculators attempting to profit from price spread.

Another reason for the WTI price being lower is the shale oil boom, which
began around 2011. This had the effect of boosting supply in the U.S., but
not in the rest of the world, because of the oil export ban that had been in
place since 1977. The oil export ban was lifted in 2015, and unsurprisingly
this coincided with a convergence of the two benchmarks.
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1.4 Shale Oil

The U.S. found the most significant oil shale reserve in the world, but in
early 1980 the shale oil extraction was in the experimental stage. And its
development was limited by the high cost of the industrial process. There-
fore, shale oil had no competitive advantage against conventional oil, which
cost less than the shale oil to be extracted. Since 2000, the combination of
techniques of horizontal drilling and hydraulic fracturing have led to a new
era for shale oil - the shale revolution. In this time, shale oil production has
rapidly increased and now plays an essential role in the U.S. energy market.

The term “shale oil" is widely used in oil research. Actually in the United
States, the oil and natural gas, extracted from low-permeability formations,
including that associated with shale formations, as typically referred to as
“tight oil production” rather than shale oil production. In the chapter, we
still use “shale oil production” in line with other researchers.

1.5 Oil and the Financial Market

Investment in the crude oil market is continually significant and can be achieved
by purchasing oil company stocks, oil exchange-traded fund (ETF), oil fu-
tures, and so on. And ETF is a more and more popular way to gain substan-
tial exposure to oil. The advantages of oil-related investment are summarised
as diversification, profit potential, and tax advantages, whereas the disad-
vantages are volatility, liquidity, commissions, and complexity. Therefore,
we advise investors who are interested in the oil investment that market in-
vestigation and careful and comprehensive consideration should be carried
out.

1.6 Oil and the Environment

As regards the adverse effect of relying on oil, climate change threaten hu-
man living environment is the firmly one. To combat climate change, the
Paris Agreement was reached worldwide at the end of 2015. International
investment in renewable energy sources has increased by roughly 240 bil-
lion U.S. dollars in alternative energy section in the years 2000 to 2016. And
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the U.S. proposed the Clean Power Plan in 2014. As a solution for the U.S.
environmental problems, renewable energy is dramatically expanded, then
rapidly developed and applied widely. The consumption of U.S. renewable
energy has doubled between 2000 and 2017 (U.S. Energy Information Ad-
ministration (EIA)), getting 11% of total U.S. energy consumption in 2017.
Nuclear energy, as an alternative to clean and sustainable energy, provides
about 20% of total U.S. electricity (EIA & U.S. Department of Energy (DOE)).

1.7 The Motivation of the Research and the Con-

nection between Each Chapter

Oil price uncertainty has a significant impact on economic growth and finan-
cial market performance, and understanding the drivers of oil price dynam-
ics is vital for the global economy. It makes volatility modelling in crude
oil pricing an essential topic for academics and practitioners. Geopolitical
events in OPEC countries disrupting oil supply has long been the main driver
of oil volatility, while the U.S. shale revolution has led to new dynamics on
the supply side of the global oil market. The volatility transmission mech-
anism between crude oil and other assets in the investment market plays a
crucial role in shaping international investments and economic policies. This
thesis examines the channels of oil price dynamics and the volatility trans-
mission mechanism between oil and other financial assets.

Chapter 2 aims to investigate volatility estimation and volatility forecasting
of Brent and WTI futures prices. Volatility is a critical issue in such fields as
risk management, asset allocation, and trading on futures volatility. How-
ever, volatility cannot be observed directly. Forecasting volatility is crucial
for futures investment, and it is also a measure of the potential losses of as-
sets. Besides, volatility can impact on the macroeconomy. Sadorsky (1999)
demonstrated that the increase in oil price is linked to inflation and economic
recession, which would affect interest rates, exchange rates, and further in-
vestment. Therefore, researchers make many efforts to point out how volatil-
ity preforms and many empirical works focus on volatility estimation and
forecasting.

Kat and Heynen (1994) found evidence that the stochastic volatility model
provides the best predictions for stock indices, whereas, for currencies, the
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GARCH(1,1) model is the best. Chan and Grant (2016) compared a vari-
ety of GARCH and stochastic volatility models for estimating nine series of
energy prices, and concluded the stochastic volatility model is favorable to
their GARCH counterpart. Moreover, the stochastic volatility model with
moving average innovations is the best model for all series. Wei (2012) pro-
vided consistent results in volatility forecasting, that the stochastic volatility
model outperforms GARCH-type model. Lehar, Scheicher, and Schittenkopf
(2002) argued that the GARCH model dominates both stochastic volatility
and the benchmark Black-Scholes model in forecasting intraday FTSE 100
option prices. However, there is limited research focusing on the OVX index,
GARCH-type models, and stochastic volatility models contrast and compar-
ison in terms of Brent and WTI futures market. Moreover, previous studies
focus on model variance, exploring instead of capturing data series stylish
behaviour. To my understanding about a good volatility model, fitting the
data and forecasting accuracy is essential. Chapter 2 emphasizes the features
of the data series in a specific period, and tests the forecast ability during the
time of oil price decline. Further, we consider the over-fitting problem, which
is ignored by other researchers.

The choice of models in Chapter 2 is motivated by the following consider-
ations. The volatility of financial time series is generally not constant over
time (heteroscedasticity), and it shows long persistence (volatility cluster-
ing). Specifically, crude oil futures prices are characterized by time-varying
volatility. The Autoregressive conditional heteroscedasticity (ARCH) model
and the generalized autoregressive conditional heteroscedasticity (GARCH)
model are able to model financial data series using conditional variances. The
Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model is constructed
by adding a leverage effect term in the GARCH model. The leverage effect
term shows that good news (positive shock) and bad news (negative shock)
in the market have different effects on volatility. GARCH-type models can
provide accurate out-of-sample one-step forecasts. Meanwhile, the stochas-
tic volatility model is also a popular method to model volatility. In the ad-
vanced stochastic volatility model, ‘moving average process’ (MA) is added
to the return measure equation. The reason is there is long persistence in fi-
nancial asset return, generally. Concerning the superior stochastic volatility
model, the Student’s t-distributed error is employed instead of the normal
distributed error. The reason is the distributions of financial data always
show leptokurtosis and heavy tail characteristics. Additionally, the CBOE
Crude Oil Volatility (OVX) index is chosen as a measure for market volatility



8 Chapter 1. Introduction

forecasting because it can represent the market’s expectation of stock market
volatility. In the forecast part, the proxies of real variance are generated by
squared return. The forecasting variance is extracted from the different mea-
surement discussed above. We apply the forecasting variance and the proxy
variance into six loss functions to evaluate the forecast ability, and further
confirm the optimal forecasting model.

Moreover, from Chapter 2, we known Brent-WTI price spread widening in
2011, and the oil price collapse in 2014 have triggered my interest to inves-
tigate the volatility dynamics in Chapter 3. There are some detailed explana-
tions following concerning the data features mentioned above.

Crude oil can not be consumed unless it is refined or transformed. There-
fore, the quality of crude oil is assessed through two main criteria: density
(API degree) and sulphur content, which is closely related to the cost of the
refining process and the quality and quantity of crude oil production. WTI,
with less sulphurous and being light, is superior to Brent. Theoretically, WTI
should attract a premium relative to Brent. But the oil price varies not only
on substance (quality spread) but also locations (location spread). And Fat-
touh (2010) provided evidence that the price differentials between crude oils
are stationary from 1997 to 2008. However, after 2010 WTI has traded below
Brent. The main reason is the Shale Revolution has expanded the crude oil
supply in the U.S., causing the price of WTI to decline. And the U.S. has a ban
on oil exports, which means WTI is stuck in the local market. It also can be a
reason for its price decrease. Moreover, fears to the closure of the Suez Canal
and potential disruption in Brent supplies widened the Brent-WTI spread in
2011. Chapter 2 investigates the difference of volatility dynamics in terms of
Brent and WTI under this crucial period.

Another feature in this period applied in Chapter 2 is the crude oil price col-
lapse in 2014. Baumeister and Kilian (2016b) provided quantitative evidence
that negative demand shock and positive supply shock contributed to the
price decline. And the remaining oil price decline is accounted for by a shock
to oil price expectations (lowering the demand for oil inventories) lowed and
a shock to the demand for oil (weakening economy). In Chapter 2, we assess
the forecasting ability of different volatility measures through this turbulent
time of the crude oil market.

Based on the research finding of Chapter 2, we have the intuition that there is
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a structural break roughly located in 2014/15. And we intend to find an ap-
propriate model being able to give definitive evidence for that. Meanwhile,
the shale oil revolution impressed me that it has started the U.S oil indepen-
dent pathway. Further we am wondering if the shale oil production boom
has changed the oil dynamics in the U.S. market. It is how we gradually pick
up some pieces from chapter 2, and that motivates me to explore more.

Not surprisingly in chapter 3, we investigate whether the shale revolution has
dampened the role of geopolitical risk in oil price volatility. Ideally, a con-
stant threshold and a break in April 2014 are supported by the data, when
the Galvão (2006)’s Structural Break Threshold Vector Autoregressive (SBT-
VAR) model is applied. Furthermore, this chapter extends Galvão (2006)’s
framework to a structural SBT-VAR system by allowing for conditional het-
eroskedasticity. The main finding as we are expecting initially and intuitively
is that the covariance response between geopolitical risk and oil price reduce
with shale production shock compared to without. However, composing
one extra unit of shale production shock makes the volatility response of oil
prices to a geopolitical risk shock reaching a higher level.

During the time of spending on the first two studies, we have learned from
the previous literature that the oil price is not only affecting the macroecon-
omy through several channels, but also the oil price dynamics and financial
market performance have tight connections. Also, how people efficiently
approach oil investment in the financial market excites me. After a com-
prehensive investigation in the financial market, ETF investment holds ap-
peal for me. In the intervening period, renewable energy applications and
its bright future draw my attention as well. When we go deeper into the
research on energy markets, we have a stronger feeling that humans can not
just focus on the economic growth. Environmental sustainability and benefits
are increasingly crucial. Then we finalized my research objectives of chapter
4. This chapter examines volatility spillovers and dynamic correlations be-
tween crude oil exchange-traded fund (ETF), various renewable energy ETFs,
and the S&P 500 ETF by using multivariate GARCH-in-mean specifications.
The multivariate GARCH model is also recommended in the section of fur-
ther research in chapter 2.
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1.8 Contribution of this Study

This thesis attempts to provide a comprehensive perspective on econometric
modelling in the oil market. In the long-run, oil price drivers and the chan-
nels to oil price dynamics are investigated. Also, the short-run performance
of the oil market is explored. In particular, the volatility spillovers between
the oil ETF and other ETF markets are probed. This study not only focuses on
the crude oil physical market (research object: crude oil spot price), but also
the financial market (research objects: crude oil futures price and crude oil
ETF price). This thesis provides a broad review for this research field, which
is outstanding in previous crude oil studies.

In chapter 2, we discuss the in-sample estimation results and compare the out-
of-sample forecast abilities in terms of OVX index, GARCH-type models, and
stochastic volatility models by using Brent and WTI crude oil futures daily
return. chapter 2 contributes in several aspects as the following discussion.
Previous literature rarely focuses on comparing and contrast of volatility ex-
tracted from different models. To fill the gap, we examine the adequacy of
OVX, GARCH-type models, and stochastic volatility models in describing
and forecasting the crude oil futures volatility behaviour. Previous works
generally adopted one or two loss functions. Whereas, we include six loss
functions in this chapter, which provide more elaborate evidence concern-
ing the predictability of volatility. It provides sufficient guidance for optimal
model choices. The next contribution is benefiting from the valuable market
information in the period. One feature is about the price difference between
Brent and WTI. After 2010, it shows divergence in prices of Brent and WTI.
Moreover, there was a massive oil price turbulence in 2014. Therefore, the
data, including this period, is worth being researched, and this chapter con-
tributes to extracting useful information from the valuable data. The second
one is there is a significant price collapse in crude oil futures market com-
mencing 2014. The majority of previous works just focused on the 2008 crisis,
but this work can explore model performance in forecasting the severe price
decline of crude oil since 2014 as well. It is a crucial and sensitive time in
crude oil volatility research. The most important contribution in this chap-
ter is the detection of over-fitting in the GJR-GARCH model and stochastic
volatility models.

In chapter 3, we investigate whether the shale revolution has dampened the
role of geopolitical risk in oil price volatility. The first contribution is the
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structural model is identified. Specifically, the reduced form Structural Break
Threshold Vector Autoregressive (SBT-VAR) model is extended to a struc-
tural SBT-VAR model, and the structural innovations by allowing for condi-
tional heteroskedasticity is identified. Compared with the conventional re-
duced form VAR and TVAR models, an SBT-VAR with a constant threshold
and a break in April 2014 are supported by the data. The second contribution
is analyzing the conditional (co)variance impulse response concerning two
distinct shock scenarios, one with only a geopolitical risk shock, the other
with a simultaneous shale production shock and a geopolitical risk shock.
Finally, The volatility responses are due to the identified contemporaneous
relationships amongst geopolitical risk, shale production, and oil prices, and
are conditional on volatilities at the points in time. With the extra unit shale
production shock, we find that the volatility response of oil prices to a geopo-
litical risk shock is higher, but the response is less correlated with the geopo-
litical risk factor.

In chapter 4, We mainly contribute in two aspects. The first one is to provide
evidence for volatility spillovers between crude oil ETF, renewable energy
ETFs, and the S&P 500 ETF in the U.S. ETF markets. Volatility, as a proxy of
risk, is significantly meaningful and crucial not only for researchers but also
for the practitioners, such as policymakers, portfolio managers, investors,
consumers, and producers. However, volatility modelling rarely has been
focused on the energy ETF markets. We focus on the volatility spillovers
and further risk management by constructing hedging strategy and portfo-
lio weights in crude oil, renewable energy ETFs, and S&P 500 ETF. And we
identify the oil ETF uncertainty has a negative and significant effect on the
S&P 500 ETF return. Two factors drive the volatility of energy ETFs. One
is relative to the energy market, and the other is the stock market. The dy-
namic correlation results tell us that renewable energy ETF is in tandem with
the S&P 500 ETF. It is valuable to investigate in ETF volatilities because it
provides risk management implication for practice. The second contribution
is applying the GARCH-in-mean model to analyze the volatility spillover ef-
fect of energy ETFs on the mean level of the S&P 500 ETF, and vice versa. The
previous energy market research mainly focuses on the volatility spillover in
the variance level. They rarely investigate the volatility effect on asset re-
turns. And BEKK GARCH-in-mean is generally applied. Our advantage
is empirically using DCC and CCC VARMA-GARCH-in-mean model to ex-
plore the volatility spillover and conditional dynamic correlation together.
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The most interesting finding is negative volatility spillovers in long persis-
tence between renewable energy ETF and the S&P 500 ETF, which breaks
the initial Bollerslev’s positive striction to all the elements in the covariance
matrix.

1.9 The Structure of the Thesis

The thesis is organized in five chapters, and the rest of the thesis is structured
as follows:

Chapter 2: Forecasting Volatility of Crude Oil Future Returns:

Empirical Evidence from OVX, GARCH-type Models, and Stochas-

tic Volatility Models

This chapter compares the performance of GARCH models, stochastic volatil-
ity models, and OVX implied volatility index regarding out-of-sample fore-
casting accuracy in oil futures prices. To do so, the dataset of West Texas
Intermediate (WTI) oil active in the U.S. markets and the Brent Crude dom-
inating the European market for the period 2004-2015 is adopted, which in-
cludes the steep price drop in 2014. GJR-GARCH model suggests that lever-
age effect exists, while the stochastic volatility models are used to examine
series dependence and heavy-tailed distribution in oil return series. The most
important finding for this chapter is the detection of over-fitting in the GJR-
GARCH model and stochastic volatility models.

Chapter 3: The Shale Revolution, Geopolitical Risk, and Oil

Price Volatility

This chapter examines whether the shale revolution has dampened the role
of geopolitical risk in oil price volatility. Using the Structural Break Thresh-
old Vector Autoregressive (SBT-VAR) framework proposed by Galvão (2006),
this chapter identifies the threshold effect and a structural break in April
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2014. Furthermore, this study extends Galvão (2006)’s framework to a struc-
tural SBT-VAR system by allowing for conditional heteroskedasticity. No-
tably, impulse responses of oil price and (co)variance to the shock of geopolit-
ical risk are compared over 170 periods, including before and after the shale
oil revolution. We find that the impulse response functions of oil prices to a
unit structural geopolitical risk shock have become smoother after the break-
point in 2014 compared with those before the break. The main finding as we
are expecting initially and intuitively is that the covariance response between
geopolitical risk and oil price reduce with shale production shock compared
to without. However, composing one extra unit of shale production shock
makes the volatility response of oil prices to a geopolitical risk shock reach-
ing a higher level.

Chapter 4: Volatility Spillovers in the Crude Oil ETF, S&P 500

ETF, and Renewable Energy ETF (Exchange-Traded Fund)

This chapter examines volatility spillovers and dynamic correlations between
crude oil exchange-traded fund (ETF), various renewable energy ETFs, and
the S&P 500 ETF by using multivariate GARCH-in-mean specifications. We
find that the conditional volatility of the nuclear ETF has a significant posi-
tive effect on the oil ETF return, oppositely the volatility of the S&P 500 ETF
negatively spillovers to the return of the oil ETF. The most important finding
that is the long-term persistent volatility spillover from the S&P 500 ETF to
renewable energy ETFs is significant negative. Another result reveals that
the dynamic correlations concurrently decrease before the financial crises (in
2008 and 2011 respectively) and then dramatically increase in the post-crisis
period. Evidence shows that the dynamic correlation between oil ETF and
S&P 500 ETF has always been positive since U.S. net imports of crude oil and
petroleum products gradually decrease from 2005 onwards.
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Chapter 2

Forecasting Volatility of Crude Oil
Futures Returns

Evidence from OVX, GARCH-type Models, and Stochastic Volatil-
ity Models

2.1 Introduction

The extensive use of crude oil has undoubtedly been one of the most critical
drivers of the growth of the world economy over the past 100 years. At the
same time, economic globalization also promoted the prosperity of the crude
oil market. The oil crisis in the 1970s struck global oil markets and resulted
in large fluctuations in crude oil prices. As a consequence, crude oil futures
emerged, and the trade volumes had rapid growth since then. By now, the
crude oil futures has become an essential component in futures markets. It
is also a significant indicator in the financial market, and investors generally
reference it as a market barometer. Not just to the investors, but also re-
searchers and policymakers, crude oil futures is quite a current topic. Brent
and WTI are the benchmarks in the crude oil market, and they are the re-
search objectives in my work.

The crude oil can not be consumed unless it is refined or transformed. There-
fore, the quality of crude oil is related to two main criteria: density (API
degree) and sulphur content. The reason is it is closely related to the cost
of the refining process and the quality and quantity of crude oil production.
WTI, with less sulphurous and being light, is superior to Brent. Theoretically,
WTI should be paid for with a premium to Brent. But oil price varies not
only on substance (quality spread) but also locations (location spread). And
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Fattouh (2010) provided evidence that the price differentials between crude
oils are stationary from 1997 to 2008. However, WTI has traded below Brent
commencing 2010. The main reason is the Shale Revolution has boomed the
crude oil supply in the U.S., then the price of WTI declined. And the U.S. has
a ban on oil exports, which means WTI is stuck in the local market. It also
can be a reason for its price decrease. On the other hand, fears of the closure
of the Suez Canal and potential disruption in Brent supplies widened the
Brent-WTI spread in 2011. This chapter investigates the difference in volatil-
ity dynamics in terms of Brent and WTI under this crucial period.

Another feature in this period applied in this chapter is the crude oil price
collapse in 2014. Baumeister and Kilian (2016b) provided quantitative evi-
dence that negative demand shock and positive supply shock contribute to
the price decline. And the remaining oil price decline is accounted for by a
shock to oil price expectations (lowing the demand for oil inventories) lowed
and a shock to the demand for oil (weakening economy). In this chapter,
we assess the forecasting ability of different volatility measures through this
storm time of the crude oil market.

This chapter aims to investigate volatility estimation and volatility forecast-
ing of Brent and WTI futures prices. Volatility is a critical issue in such fields
as risk management, asset allocation, and taking bets on futures volatility.
However, volatility cannot be observed directly. Forecasting volatility is cru-
cial for futures investment, and it is also a measure of the potential losses of
assets. Besides, volatility can impact on the macroeconomy. Sadorsky (1999)
demonstrated that the increase in oil price is linked to inflation and economic
recession, which would affect interest rates, exchange rates, and further in-
vestment. Therefore, researchers make many efforts to point out how volatil-
ity preforms, and many empirical works focus on volatility estimation and
forecasting.

Kat and Heynen (1994) found evidence that the stochastic volatility model
provides the best predictions for stock indices, whereas, for currencies, the
GARCH(1,1) model is the best. Chan and Grant (2016) compared a variety
of GARCH and stochastic volatility models for estimating nine series of en-
ergy prices, and concluded the stochastic volatility model is favorable to their
GARCH counterpart. Moreover, the stochastic volatility model with moving
average innovations is the best model for all series. Wei (2012) provided
the consistent results in volatility forecasting that the stochastic volatility
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model outperforms the GARCH-type model. Lehar, Scheicher, and Schit-
tenkopf (2002) argued that the GARCH model dominates both stochastic
volatility and the benchmark Black-Scholes model in forecasting intraday
FTSE 100 option prices. However, there is limited research focusing on the
OVX, GARCH-type, and stochastic volatility model contrast and comparison
in terms of Brent and WTI futures market. Furthermore, previous studies
focus on model variance, exploring instead of capturing data series stylish
behaviour. To my understanding of a good volatility model, fitting the data
and forecasting accuracy is essential. This chapter emphasizes the features
of the data series in a specific period. And test the forecast ability in price
decline time. Further, we consider the over-fitting problem, which is ignored
by other researchers.

The volatility in financial time series is not constant over time (heteroscedas-
ticity), and it shows long persistence (volatility clustering). Accurately, crude
oil futures prices are characterized by time-varying volatility. The Autore-
gressive conditional heteroscedasticity (ARCH) model and the generalized
autoregressive conditional heteroscedasticity (GARCH) model have performed
well in modelling financial data series via adopting conditional variances.
The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model is constructed
by adding a leverage effect term in the GARCH model. The leverage ef-
fect term shows that good news (positive shock) and bad news (negative
shock) in the market have different effects on volatility. GARCH-type mod-
els can provide accurate out-of-sample one-step forecasts. Meanwhile, the
stochastic volatility model is also a popular method to model volatility. In
the advanced stochastic volatility model, the ‘moving average process’ (MA)
is added to the return measure equation because there is a long persistence in
financial asset return, generally. Concerning the superior stochastic volatil-
ity model, the Student’s t-distributed error is employed instead of a normally
distributed error, because the distributions of financial data always show lep-
tokurtosis and heavy tail characteristics. Additionally, the CBOE Crude Oil
Volatility (OVX) index is chosen as a measure for market volatility forecasting
because it can represent the market’s expectation of stock market volatility.
In the forecast part, the proxies of real variance are generated by squared
returns. We use six loss functions to evaluate the forecastability of different
forecasting models, and furtherly confirm the optimal forecasting model.

Motivated by the previous discussion, this chapter adopts crude oil futures
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prices to address several research questions. Firstly, we compare and con-
trast the forecasting volatility of Brent and WTI during the same period when
the same model applied. Although Brent and WTI are both the benchmarks
in crude oil markets, they are active in different markets, i.e., Europe mar-
ket and America market, respectively. It is interesting to figure out whether
they have consistent responses or not. The results show that Brent and WTI
indeed have distinct performances in volatility estimation. WTI is more sen-
sitive to the market spur than Brent, and the fluctuations of WTI last longer
than Brent’s. On the other hand, there is a strong correlation between WTI
and Brent. The movements of Brent and WTI are driven by the same dynam-
ics (Klein, 2018), and the increase in oil price contributes to global market
factors (Kang, Kang, and Yoon, 2009).

As previously discussed, secondly, this chapter investigates the difference
of volatility dynamics in terms of Brent and WTI, under this crucial period.
Another feature in this period applied in this chapter is the crude oil price
collapse in 2014. In this chapter, we assess the forecasting ability of different
volatility measures through this storm time of the crude oil market. It is the
initial time to research crude oil volatility in this aspect.

Thirdly, we compare the more flexible GARCH variant (GJR-GARCH) against
the standard GARCH in terms of in-sample estimation and out-of-sample
forecasting. Also, the performance of the GARCH model and ARCH model is
constructed as well. Generally, models, including more information, usually
have stronger predictive power. GJR-GARCH model includes an innovation
term compared with the GARCH model, which can indicate the leverage ef-
fect. Accurately, it can detect if there are different effects on volatility from
upward returns and downward returns. The leverage effect usually is signif-
icant in financial data series and provides more accurate predictive results.
Similarly, compared to the ARCH model, the GARCH model has an addi-
tional term of last period’s conditional variance standing for the volatility
clustering. Results in this work support that the GJR-GARCH model has su-
periority because it can extract more information from data. And the leverage
effect does exist in crude oil volatility modelling. In the volatility forecasting
of the GARCH-type models for Brent, the GJR-GARCH model is the best.
By contrast, for WTI, the ARCH model exhibits the most accurate forecast
ability.



2.1. Introduction 19

Fourthly, we test if the stochastic volatility model added an error persis-
tency process (MA(1)) in crude oil return series better than the plain stochas-
tic volatility model. Further, whether Student’s t-distribution is a more ap-
propriate error distribution description for MA(1) process, compared with
normal distribution? Comparing stochastic volatility models, respectively,
with the MA(1) process with normal distribution and MA(1) process with
Student’s t-distribution can answer this question. Based on the results of
stochastic volatility modelling, Student’s t-distributed error is also able to
provide more accurate estimation results in both Brent and WTI returns. As
regards the forecasting of stochastic volatility models, the evidence for the
best model for Brent is mixed. In contrast, the plain stochastic volatility
model is the best for WTI.

Moreover, the out-of-sample forecasting performance of OVX, GARCH-type
models and stochastic volatility models are compared and contrasted with
loss function values. GARCH-type models are employed in this chapter be-
cause they representatively hold the prior predictive power in the conditional
variances. As an alternative method for GARCH-type models, the stochastic
volatility models can also predict the time-varying volatility. The differences
in the volatility forecast abilities between GARCH-type models and stochas-
tic volatility models will be explored in this chapter. The result answers that
GARCH-type models perform better than the stochastic volatility models ei-
ther in Brent or WTI crude oil futures market. OVX index can provide the
optimal forecast in the volatility of Brent futures. By contrast, for WTI, the
ARCH model exhibits the most accurate forecast ability.

Finally, to identify the over-fitting problem, the in-sample forecasting and
out-of-sample forecasting are compared. The conclusion is the stochastic
volatility models suffer from over-fitting. For the other models, the results
are mixed. The GJR-GARCH model appears to suffer from over-fitting in
one case, but not the other.

With the aforementioned considerations in mind, this study contributes to
several aspects as the following discussion. Previous literature rarely focuses
on comparing and contrast volatility extracted from different models. To
fill the gap, we examine the adequacy of OVX, GARCH-type models, and
stochastic volatility models in describing and forecasting crude oil futures
volatility behavior. Previous works generally adopted one or two loss func-
tions. Whereas, we include six loss functions in this chapter, which provide
more elaborate evidence concerning the predictability of volatility. It gives
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sufficient guidance for optimal model selection. The next contribution is ben-
efiting from the valuable market information in the period applied in this
chapter. One feature is about the price difference between Brent and WTI.
After 2010, it shows a divergence in prices of Brent and WTI. Moreover, there
was a massive oil price turbulence in 2014. Therefore, the data, including this
period, is worth being researched, and this chapter contributes to extracting
useful information from the valuable data. The second one is there is a sig-
nificant price collapse in the crude oil futures market commencing 2014. The
majority of previous works just focused on the 2008 crisis. Still, this work can
explore model performance in forecasting the severe price decline of crude
oil since 2014 as well. It is a crucial and sensitive time in oil volatility research.

The rest of this chapter proceeds as follows. Section 2 introduces the previ-
ous work done by others. Section 3 briefly presents the data sets we analyze.
Section 4 introduces the basic models and the empirical identification strat-
egy. Section 5 discusses the primary analyses of the GARCH-type models
and stochastic volatility models. Meanwhile, this part presents the results of
estimation and forecasting. Section 6 concludes.

2.2 Literature Review

2.2.1 Different Measures of Volatility

Risk is unobserved, so several kinds of volatility or variances (the square of
the volatility) are used to be a representation of this kind of uncertainty in
assets. Among different methods measuring the volatility, the most straight-
forward way is historical volatility calculation. It is well known as the stan-
dard deviation (volatility) of a data series. However, it is only used for some
fundamental financial problems because of its unpredictability and fixed in-
dicators. The market has unpredictably changed over time, so it is not ap-
propriate or accurate to forecast volatility by historical volatility.

Secondly, implied volatility calculated by options is applied broadly in volatil-
ity research, and the VIX index is used as a popular measure for it. Martens
and Zein (2002) showed that historically, high-frequent data used by the
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GARCH model has superior forecasting capability rather than implied volatil-
ity index. The GARCH model typically performs well in the in-sample esti-
mate rather than an out-sample forecast. Comparing with implied volatil-
ity, GARCH-type models have more accurate predictive ability. The reason
might be that the structure breaking can cause volatility persistence (Ag-
nolucci, 2009). It is robust support for the GARCH model choice of volatility
prediction.

Thirdly, realized volatility plays a crucial role in predictive works as the
proxy of actual volatility. Szakmary et al. (2003) found the evidence from 35
futures markets, which implied volatility holds optimal unbiased predictive
ability comparing historical fluctuations. In their paper, realized volatility
provided a standard for comparing-predictive capabilities of implied volatil-
ity and historical volatility. Realized volatility is also used to construct mod-
els. Corsi (2009) adopted the Heterogeneous Autoregressive model of real-
ized volatility (HAR-RV) in volatility estimation of US dollar to Swiss Franc
rate. Haugom et al. (2014a) added implied volatility and other market vari-
ables in the HAR-RV model. The result exhibited more accurate predictive
ability by adding implied volatility and other variables combinational.

Despite that, conditional variances predicted by GARCH-type models and
the volatility extracted in stochastic volatility models are respectively widely
adopted in the financial market. The CBOE Crude Oil Volatility (OVX) index
is calculated from the option contracts, which can represent the market’s ex-
pectation of stock market volatility. However, there is limited literature on
the comparison of the forecast abilities of the three measures of the volatility.
To fill the gap, this chapter examines the volatility behavior in the crude oil
market by using OVX, GARCH-type models, and stochastic volatility mod-
els.

2.2.2 Previous Research about GARCH-type Models and Stochas-

tic Volatility Models

GARCH-type models are widely used to estimate the volatility of the finan-
cial asset and show outstanding performance. It is essential to discuss the im-
portance and history of GARCH-type models here. Starting with the autore-
gressive moving average (ARMA) model, it holds the stationary property,
which is defined such that the variances are constant, and it is uncorrelated
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with time (Diebold, Kilian, and Nerlove, 2006). These kinds of models per-
form well on the modelling of a stationary time series with constant volatility.
However, an issue will arise when the time series processes are concerned
with asset prices in the financial market. The argument is that usually, the
variances of this kind of data are time-varying, so the stationary property for
the ARMA model is no longer well satisfied. Breaking new ground, Engle
(1982) provided the ARCH model in econometrics, firstly, which is superior
compared to the ARIMA model in modelling the inflation rate of the UK.
Time-changing conditional variances characterize the ARCH model, and the
time-changing conditional variances of the ARCH model were the first to
model changing variances (Engle, 1982). On this basis, the GARCH model
was produced in 1986. Specifically, autoregression of the conditional vari-
ances is added to the variances equations. Meanwhile, the method of ARMA
quotation is adopted. In the GARCH model, not only is the time-varying
uncertainty of the risk expressed in the explanatory variable but also lag(s)
of the conditional variances(s) has better explanatory power. There is longer
memory representing in the GARCH model due to the conditional variances
depending on previous periods (Bollerslev, 1986). Therefore, the GARCH
model experientially supports volatility analyses of financial time series. It
explains volatility characteristics more accurately, in terms of long memory
and time-varying.

There are a large number of extending models based on linear GARCH mod-
els, such as non-linear GARCH models and nonparametric GARCH mod-
els. There are some discussions concerning the evaluation of GARCH-type
models. Non-linear models developed by Agnolucci (2009) perform bet-
ter than linear models. Meanwhile, it solves the problem in the previous
paper of Agnolucci (2009), that the standardization of function affects the
volatility forecasting (Wei, Wang, and Huang, 2010). There are similar view-
points for component generalized autoregressive conditional heteroskedas-
tic (CGARCH) model and fractionally integrated generalized autoregressive
conditional heteroskedastic (FIGARCH) model. They are both performing
better in the prediction of the data in long memory and persistence. Data per-
sistence is always a crucial characteristic to model (Kang, Kang, and Yoon,
2009). However, the GARCH model can not explain the symmetric effects
on volatility. GJR-GARCH model proposed by Glosten, Jagannathan, and
Runkle (1993) includes the leverage effect. It is also used in this chapter as
an alternative of GARCH model. It is a drawback in this model because,
in reality, there are asymmetric effects from positive shocks and negative



2.2. Literature Review 23

shocks. There is skewed distribution in oil returns, and inequality is hard
to achieve in the real world. In this situation, the Quadratic GARCH model
is a better alternative to the traditional GARCH model (Franses and Van
Dijk, 1996). Gokcan (2000) forecasted the volatility in the stock market by
linear GARCH model and non-linear GARCH models. EGARCH model is
focused on among the non-linear GARCH models, which extend Gokcan’s
work, including EGARCH and GJR-GARCH models from Franses and Van
Dijk (1996). In Franses and Van Dijk (1996)’s paper, the GJR-GARCH model
was the representative of the non-linear GARCH model.

Researchers also focus on the investigation of some specific relationships be-
tween volatility and other macro variables. Multivariate GARCH models
are popular in this field. Agnolucci (2009) suggested that a combination of
macroeconomic variables and predictive results are both necessary in volatil-
ity analysis. Similarly, Gospodinov and Jamali (2015) tested the dynamic re-
sponse of stock market volatility to monetary policy. They also point out that
Federal actions have a significant effect on stock volatility by employing the
vector autoregressive GARCH (VAR-GARCH) model. Multivariate volatility
models are also recommended to explore the relationship between commodi-
ties for constructing an investment strategy portfolio. Volatility estimation is
an indispensable element for a diversified portfolio application. Markowitz’s
approach can minimize risk under a given level of expected returns, and it
has become a standard method to control the risk and effectively allocate
assets (Markowitz, 1968) efficiently. When there is a negative correlation of
volatilities responding to different asset returns, it suggests the diversifica-
tion can reduce the unsystematic risk. A paper concluded that the Constant
Conditional Correlation (CCC)GARCH model, Dynamic Conditional Corre-
lation (DCC) GARCH model, and Baba-Engle-Kraft-Kroner (BEKK) GARCH
model, suggested storing more Brent futures than Brent spot to reduce risk
(Chang, McAleer, and Tansuchat, 2011).

Besides conditional volatility, stochastic volatility estimated by the stochastic
volatility model can also obtain time-varying volatility. This model can be
estimated by Markov Chain Monte Carlo (MCMC) methods in the context
of Bayesian inference. According to Shephard (2005), the original stochastic
volatility model is messy, but several researchers have made contributions
in this field (Clark, 1973; Tauchen and Pitts, 1983; Engle, 1982). Modern
stochastic volatility models apply continuous-time, and old papers usually
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adopt discrete time. There are still some innovations in the stochastic volatil-
ity model that Shiraya and Takahashi (2015) develop, including a new for-
mula for option pricing in a local stochastic volatility model with jumps.
Another application of a stochastic volatility model is the organization of
herding behaviour. Babalos, Stavroyiannis, and Gupta (2015) examined the
herding behaviours by the evidence from the stochastic volatility model.

Other types of stochastic volatility models are also employed in volatility
forecasting. The stochastic volatility diffusion model was used in foreign cur-
rency option pricing, and it showed optimal forecasting ability (Melino and
Turnbull, 1990). Ozturk and Richard (2015) applied a stochastic volatility
model with leverage effect to analyze S&P 500 stock returns of 24 companies
from six different sections. It pointed out that financial and energy compa-
nies are remarkably different from others. However, it still is demonstrated
that there are some connections between these two markets. The stochas-
tic volatility diffusion model was then applied in stock price distribution
(Stein and Stein, 1991). Adding moving average terms in the plain stochastic
volatility model can improve the predictive power in inflation (Chan, 2013).
Applications of stochastic volatility and GARCH model were used for es-
timation in S&P 500 index daily return and US/Canadian dollar exchange
rate, which indicated the GARCH model with the Student’s t-distribution
held the best performance (Gerlach and Tuyl, 2006). A paper applied several
stochastic volatility models to detect if heavy-tail and series dependence ex-
ist in exchange rates and silver spot price (Chan and Hsiao, 2013). And this
chapter follows the steps of Chan and Hsiao (2013) to analyze the stochastic
volatility in the crude oil market.

2.2.3 Empirical Works on Futures Volatility of Crude Oil

Initially, research mainly focuses on volatility modelling of the stock prices
and exchange rates. The literature on volatility study has often contributed
to researches relative to energy commodities futures, metal commodities fu-
tures, and agriculture commodities futures in recent years. Bracker and Smith
(1999) applied GARCH, exponential generalized autoregressive conditional
heteroskedastic (EGARCH), asymmetric generalized autoregressive condi-
tional heteroskedastic (AGARCH), and GJR-GARCH model in volatility esti-
mation of the copper futures market. Further, Multivariate volatility models
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which Efimova and Serletis (2014) applied in investigating spillovers and in-
teractions among the U.S. oil market, is at the cutting edge of the natural gas
market and electricity markets. At the same time, there are also relationships
between volatility and macroeconomic variables. Guo and Kliesen (2005)
found that the volatility of the New York Mercantile Exchange (NYMEX)
crude oil future has a significant effect on macroeconomic variables. At the
same time, terrorist attacks and military conflict can affect volatility. The fore-
casting ability of the GARCH model is introduced by Marzo and Zagaglia
(2010) in the energy market.

Either modelling or forecasting volatility is a significantly crucial topic in fi-
nancial research. There are still a large number of papers that focus on the oil
options market in recent decades. One is about the forecast abilities of long
memory autoregressive fractionally integrated moving average (ARFIMA)
model, short memory ARMA model, GARCH model, and option implied
volatility model (Pong et al., 2004). Fan et al. (2008) studied the ‘Value at
Risk’ of WTI and Brent using a generalized error distribution GARCH-type
model. And this HAR-RV-IV-EX model is an improvement of Corsi (2009)’s
HAR-RV model in 2009 employed in the crude oil futures market. Agnolucci
(2009) demonstrated that GARCH-type models perform better than implied
volatility obtained from Black-Scholes formula when involving oil price. Wei,
Wang, and Huang (2010) examined Brent and WTI volatility using GARCH-
type models and capture long memory asymmetric volatility in the crude
oil market. Besides the GARCH model and implied volatility, there are other
methods of comparisons. One recent research of Chinese oil futures volatility
contained three models: ARCH-type models, stochastic volatility model, and
realized volatility model (Wei, 2012). Musaddiq (2012) concluded that GJR-
GARCH (1, 2) is the best predictive model in oil futures volatility. Implied
volatility, realized volatility, and other explanatory market variables are em-
bedded in the HAR-RV model to forecast the WTI futures volatility (Haugom
et al., 2014a). Therefore, GARCH-type models are adopted in this chapter.

Concerning the application of volatility in the crude oil futures market, it is
an increasingly valuable research topic. The reason for it is that time-varying
volatilities in the financial market usually are used for oil derivative pricing,
risk management, and portfolio allocation. This chapter can provide practical
suggestions for further volatility research and investment practice. Cong et
al. (2008) examined the interactive relationship between the oil price and the
Chinese stock market. A paper showed oil volatility has a significant impact
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on macroeconomic indicators in the Thai economy (Rafiq, Salim, and Bloch,
2009). Du, Cindy, and Hayes (2011) researched the linkage between crude
oil volatility and agricultural commodity market. Chang, McAleer, and Tan-
suchat (2011) generated an optimal portfolio in crude oil spot and futures
returns, using a multivariate GARCH model. Arouri, Jouini, and Nguyen
(2011) explored portfolio strategy in crude oil and the stock market. They
also applied several multivariate models. Sadorsky (2012) developed the re-
search of crude oil and stock volatility, which focused on the stock prices are
especially from clear energy companies and technology companies.

2.3 Data and Descriptive Statistics

2.3.1 Background of Brent and WTI

West Texas Intermediate (WTI) crude oil futures were generally recognized
as a global benchmark for crude oil pricing, which holds the largest trade
volume in the worldwide crude oil futures markets. However, WTI futures
prices became lower than the futures price of Brent crude oil (from the North
Sea) at the end of 2010, and this trend intensified in 2011 because of Egypt’s
political instability. Since then, Brent futures have been gradually regarded
as another benchmark in the crude oil futures market. WTI and Brent cur-
rently have provided the standard and reference in the oil pricing process,
and they have made oil trades easier. Therefore, the prices of WTI and Brent
are involved in this study.

Specifically, WTI is the underlying commodity of the Chicago Mercantile Ex-
change Group’s oil futures contracts. The delivery point for WTI crude oil is
Cushing, Oklahoma, which is a major trading hub and has been the delivery
place for over three decades. Cushing has plenty of intersecting pipelines
and storage facilities. It provides convenient access for refiners and suppli-
ers, at the same time either inbound to Cushing from all directions or out-
bound through dozens of pipelines. The apparent advantages of WTI are
that they have the most liquidity, most customers, and most transparency.
On the other hand, Brent crude oil is also a significant benchmark in the
crude oil market worldwide. Brent crude oil is extracted from the North Sea
and is also known as Brent Blend, London Brent, and Brent Petroleum. The
primary transaction point for Brent is the International Petroleum Exchange.
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Brent usually is active in Europe, while America has the highest transaction
volume of WTI. Therefore, it is one of the reasons why the macro events have
initially and persistently different effects on Brent and WTI.

2.3.2 Descriptive Statistics

OVX index, calculated from the option contracts, provides the market ex-
pectation of investors. The OVX is specifically the name for crude oil VIX
index. VIX is a measure of the implied volatility index collected from the
Chicago Board Option Exchange (CBOE), which is calculated by S&P 500 in-
dex options. Investors also call the index the fear index or the fear gauge.
Occasionally it has become a proxy for market volatility because it can rep-
resent the market’s expectation of stock market volatility. The VIX index is
quoted in percentage points and represents the annual standard deviation to
the expected movement. OVX measures explicitly the market’s expectation
of near-term volatility of crude oil prices by applying the same methodology
as VIX generation. To implement the OVX index, I transfer the data forma-
tion from the annual standard deviations in percentages to daily variance.

Brent and WTI, as primary benchmarks, provide price reference in the whole
crude oil market, then numerous studies choose them as research objective.
The selection in length and frequency of time series data capably affect the
performance of modelling. The research concluded that the relatively suffi-
cient data length for GARCH-type model is around ten years if daily prices
are applicable. Therefore, daily prices of Brent and WTI crude oil near month
futures from January 1, 2004, to June 22, 2015, are involved in this research.
The unit of future oil price is dollar per barrel (US/bbl.), and it is available in
the DataStream database.

TABLE 2.1: Summary of data group specification

Data Groups Start time End time
Whole group data of price 01.01.2004 22.06.2015
Whole group data of return 02.01.2004 22.06.2015
Subgroup data for Estimation 02.01.2004 31.12.2013
Subgroup data for Forecast 01.01.2014 22.06.2015

The whole data set includes 2992 observations on daily returns from January
2, 2004, to June 22, 2015. I divide it into two subsamples. From January
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2, 2004, to December 31, 2013, is used for in-sample estimation and the re-
maining part (from January 1, 2014, to June 22, 2015) is for the out-of-sample
forecasting. We can see a detailed summary in Table 2.1.

FIGURE 2.1: Price trend of Brent and WTI volume against time

Figure 2.1 in the Appendix displays the historical prices of Brent and WTI
over the last decade. At the beginning of 2008, the financial crisis knocked
80% off the crude oil market, from nearly 150 dollars per barrel (the high-
est price point) downward to 30 dollars per barrel. Crude oil price did not
rebound until 2009. The two branches of oil prices showed distinct trends
from 2011 to 2014. In the period, Brent WTI spread diverged, and the Brent
price surpassed the WTI price. During this period, Brent reached a relatively
high level of roughly 125 dollars per barrel in the middle of 2011, while WTI
reached 110 dollars per barrel. The reason why the Brent price was higher
than the WTI’s is that the crude oil in North America was oversupplied.
After that, Brent and WTI dramatically dropped under 50 dollars per bar-
rel again, because robust global production exceeded demand in the fourth
quarter of 2014. Specifically, the output of global crude oil increased. On the
other hand, substitutes of crude oil, such as shale gas, decreased the demand
for crude oil. At the beginning of 2015, both of them increased to roughly 65
dollars per barrel. It results in Brent WTI spread to be converging from 2014.
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FIGURE 2.2: Time Path of Brent and WTI return

Volatility clustering results in volatility persistence, and this is popular in
financial assets. To be more explicitly, volatility clustering refers to large
changes in observations tend to be followed by large changes, while small
changes follow small changes. We can see the high level of volatility per-
sistence in Figure 2.2. And it indicates that WTI is more volatility persistent
than Brent. Moreover, WTI’s price is more sensitive to market fluctuations.
For example, WTI had an earlier response to the 2008 financial crisis. As a
result, it is more difficult and taking a long time for WTI than Brent to recover
from market turbulence.
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FIGURE 2.3: Price trend of Brent and WTI volume against time

Figure 2.3 contrasts the return series of Brent and WTI. The returns of Brent
and WTI kept to about 0.05 dollars per barrel most time in the period. During
the crisis period, it nearly achieved 0.2 dollars per barrel. Most of the time,
WTI returns exceed Brent returns, either on the upward or on the downward.

FIGURE 2.4: Distributions of returns and squared returns in Brent
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FIGURE 2.5: Distributions of returns and squared returns in WTI

FIGURE 2.6: Quantile-Quantile (Q-Q) plot with quantiles of normal
distribution and return distribution respectively for Brent and WTI
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In Figure 2.4 and Figure 2.5, Brent returns have a higher kurtosis coefficient
than WTI. It demonstrates there is a higher probability that more Brent daily
returns than WTI’s located at the tails in distribution. Based on Figure 2.6, we
conclude that the tails’ distribution of Brent return and WTI return are fatter
than the normal distribution tails. (Bradley and Taqqu, 2003) concludes the
distribution has characteristics displayed by stylized fact, which is a fat-tailed
distribution rather than a normal distribution.

TABLE 2.2: Descriptive statistics for Brent and WTI returns and
squared returns

number of
observations

Mean(%)
Standard
deviation (%)

Maximum Minimum Skewness Kurtosis

Brent
Return

2992 0.02232 2.10898 0.17969 -0.16709 0.02937 8.62275

WTI
Return

2992 0.02049 2.31476 0.16413 -0.12826 -0.03523 8.20420

Brent
Return2 2992 0.04447 0.12279 0.03228 0 12.54675 257.235

WTI
Return2 2992 0.05357 0.14378 0.02694 0 7.96592 92.0579

Table 2.2 concludes the statistic results. There are 2992 observations in each
return series. The means of daily prices are quite small, while the stan-
dard deviations are large. The mean of Brent (0.00022) is higher than WTI’s
(0.0002049), whereas the corresponding standard deviation (0.021) is lower
than WTI’s (0.023). It is consistent with the previous return plots. The annual
volatility is around 0.333(0.021 ∗

√
252) for Brent and 0.365(0.023 ∗

√
252) for

WTI. The absolute values of maximum and minimum of Brent returns are
higher than WTI’s, which means the range of Brent returns is larger than
WTI. It provides consistent evidence again that the distribution of Brent re-
turn has a fatter tail than WTI’s. The skewness of normal distribution is 0,
and the kurtosis is 3. The skewness of Brent is positive (skewed to the right),
and WTI is negative (skewed to the left). Negative skewness means that the
lower tail of the distribution is fatter than the upper tail (Cashin and McDer-
mott, 2002). Under this circumstance, the mean of WTI return is smaller than
the median of WTI return, and the median is smaller than the mode. The
kurtosis of crude oil futures return is relatively higher than 3 (the kurtosis of
standard normal distribution). The peak value of Brent is larger than WTI’s.
Then we confirm that the leptokurtosis and heavy tails are the statistic char-
acteristics for Brent and WTI futures returns.
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TABLE 2.3: Preliminary tests for Brent and WTI returns

Jarque-Bera Q(4) Q(20) ADF P-P ARCH test
Brent Return 3941.819∗∗ 4.0543 24.4579 −57.724∗∗ −57.744∗∗ 51.762∗∗

WTI return 3377.062∗∗ 14.7586∗∗ 55.1940∗∗ −57.24∗∗ −57.242∗∗ 144.435∗∗

Brent Squared Return 8136438∗∗ 208.8708∗∗ 1188.1045∗∗ −47.876∗∗ −50.257∗∗ 0.263
WTI Square Return 1020415∗∗ 551.6950∗∗ 2616.7092∗∗ −43.663∗∗ −48.432∗∗ 41.503∗∗

1

∗∗ indicates rejection at the 1% significance level
∗ indicates rejection at the 5% significance level

Table 2.3 presents the results of preliminary tests for Brent returns and WTI
returns. The Jarque-Bera test (normal distribution test) at the 1% level strictly
rejects normality. The Ljung-Box Q-statistic rejects the hypothesis of no se-
rial autocorrelation at 1% significance level up to 20th order except Brent re-
turns (Wei, Wang, and Huang, 2010). Augmented Dickey-Fuller (ADF) test
and Phillips-Perron test both conclude rejections of unit root at 1% significant
level. Thus, all the variables are stationary and they can be directly employed
in estimation without any transformations. ARCH effect holds the null hy-
pothesis (H0) which is no ARCH effect and alternative hypothesis (H1) is
that ARCH(1) disturbance exist. And the result supports that the return se-
ries have the ARCH effect.

2.4 Methodology Frameworks

2.4.1 GARCH-Type Models

Starting with asset price modelling, xt denotes the futures price, and it is
modelled with its own lagged price xt−1 and a drift term α. Asset return is
denoted by yt and it is independent identically distributed. The return series
is stationary, so it can be used to model without any transformation. ln xt

xt−1
is

the formula to calculate the daily return, which also is as known as the rate of
increase in price (Bentes, 2015). In asset volatility modelling, asset returns are
the input variable. As previously discussed, volatility can be understood as
the uncertainty of price changes. E(µ) is the expectation value of the mean,
which is constant. Volatility is used to measure the uncertainty (E(εt)). The
asset returns normally is a mean-reverting process, which implies that it is
changing over time but around the same average value-µ (Dokuchaev, 2007).
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xt = α + xt−1 + δt (2.1)

∆ ln (xt) = yt = µ + εt (2.2)

E(∆ ln (xt)) = E(µ + εt) (2.3)

= E(µ) + E(εt) (2.4)

yt = cy + ut (2.5)

Where, ut ∼ N(0, σ2
t ) (2.6)

Autoregressive Moving Average (ARMA) model is one of the most general
frameworks to catch the characteristics of the return series. In this conven-
tional econometric model, homoscedasticity is the classic assumption. Specif-
ically, the variance of the disturbance term is assumed to be constant (V(ut) =

σ2
t ). Nevertheless, the stylish fact of the return plot demonstrates that the

economic time series exhibit periods of unusually large volatility followed by
periods of relative tranquility. The characteristic goes against the assumption
of homoscedasticity. Therefore, the ARCH model proposed by Engle (1982)
and GARCH model developed by Bollerslev (1986) assume volatility with
persistency and time-varying characteristics. In other words, heteroscedas-
ticity of financial asset returns in the GARCH model does not need to suffer
from the stationary constraint (Engle, 2001).

There is no evidence supporting the autoregressive process in crude oil re-
turn series according to the ADF test result. Therefore, I impose the mean
term and an unpredictable error term ut in the return equation, which is fol-
lowing the works of Musaddiq (2012) and Wei (2012). In the empirical liter-
ature, order one is the most popular choice for ARCH effect term, GARCH
effect term, and leverage effect term. And I also follow this step. The maxi-
mum likelihood estimation method is used to estimate GARCH-type models.

Engle (1982) introduced ARCH model to estimate the variance of United
Kingdom Inflation. In ARCH model, time-varying variances (conditional
heteroscedasticity) are generated (var(ut) = σ2

t ). The standard ARCH(1)
model is given by
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σ2
t = var(ut/ut−1) (2.7)

σ2
t = cσ + au2

t−1 (2.8)

Where σ2
t denotes the variance of ut conditional on the value of ut−1. It means

the variances in current period depend on the error term of the previous pe-
riod. Conditional variances demonstrate that variance in the current period
(σ2

t ) cannot be known until the previous period’s variance (σ2
t−1) is known.

When data series exhibits heteroskedasticity and volatility clustering, GARCH(1,1)
model has better fitting performance. Based on Engle’s work, Bollerslev
(1986) put forward the GARCH model. In this specification, the conditional
variance is defined as:

σ2
t = cσ + au2

t−1 + bσ2
t−1 (2.9)

The assumption for GARCH-type model is σ2
t is a nonnegative function. Fur-

thermore, cσ, a and b are positive and a + b < 1 (Bollerslev, 1986). GARCH
model allows both autoregressive and moving average components in the
heteroscedastic variance. GARCH model is suggested to provide a relatively
accurate estimation for conditional variances compared to the ARCH model
because the variance in the last period increase the additional explanation
ability for volatility modelling. The variances that come out at this period
always depend on last period’s result. Therefore, GARCH-type models are
also expected to provide more accurate out-of-sample one-step forecast than
the ARCH model.

Although the GARCH(1,1) model deal with heteroskedasticity and volatility
clustering properly, it is not able to explain the leverage effect in financial
time series data. To fill this gap, the GJR-GARCH model was proposed by
Glosten, Jagannathan, and Runkle (1993). Basically, it allows bad news (nega-
tive shocks) and good news (positive shocks) have different effects on volatil-
ity. The size of ut is used to measure the different information of news. It is
constructed to model the asymmetric ARCH effect resulting from a weaker
influence of positive market shocks (ut−1 ≥ 0). It can capture the asymmetric
leverage effect. It encourages researchers to consider psychology expectation
of the investors. The GJR-GARCH model is defined as follow:
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σ2
t = cσ + au2

t−1 + bσ2
t−1 + λu2

t−1γt−1 (2.10)

Where, γt−1 = 1, i f ut−1 > 0, (2.11)

and γt−1 = 0, i f ut−1 ≤ 0 (2.12)

It is easy to understand the advantage of the GJR-GARCH model in a stock
example. One widespread phenomenon in the financial market is a signif-
icant negative relationship between current return and futures volatility in
financial assets. And the explanation is the negative shock to the stock price
reduces the value of a firm’s equity relative to its debt. It means the current
return decreases. Therefore, the leverage (debt-to-equity) ratio rises, and the
riskiness of stockholders also rise. In other words, asset volatility increases.
Then it seems that negative shocks on return have large potential impact
on volatility than those positive shocks. Furthermore, GJR-GARCH model
counts the asymmetric leverage volatility effect.

Overall, ARCH effect(s) have bursts of volatility followed by recovery, and
GARCH effect(s) exhibits persistence in volatility clusters (Bollerslev, 1986).
GJR-GARCH term(s) represents the impact of negative market shock. GARCH
model and GJR-GARCH model are extending frameworks on the basis of the
ARCH model, and they are expected to exhibit optimal estimate and forecast-
ing abilities, which is evidenced by (Kang, Kang, and Yoon, 2009).

2.4.2 Stochastic Volatility Models

As an alternative to GARCH models, the stochastic volatility model is ap-
plied by voluminous previous works to identify time-varying volatility. The
main feature of GARCH-type models is that the conditional variance of re-
turn can be estimated if previous returns are observed. The definition of
return in the GARCH model is explicit, but in the stochastic volatility model,
it is indirect via the structure of the model (Shephard, 2005). Taylor (1982) de-
fined that εt decides the sigh of return and µt determines volatility clustering
and fat tails in the marginal distribution (Shephard, 2005).
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Financial time series data generally exhibit properties departing from clas-
sic assumptions of series independence and normality in economic time se-
ries. Chan and Hsiao (2013) applied a variety of highly flexible stochas-
tic volatility models to estimate the volatilities of exchange rates and silver
spot prices. Stochastic volatility models in the chapter are used to capture
the prominent features in financial data series regarding volatility cluster-
ing, heavy-tailedness, and serial dependence. Based on the data description,
daily return series of crude oil is observed volatility clustering, leptokurtosis,
and serial dependence. In this chapter, I follow the same steps to apply the
stochastic volatility models to analyze the volatility of Brent and WTI crude
oil futures returns.

The plain vanilla stochastic volatility model is the standard stochastic volatil-
ity model in variety stochastic volatility model. The assumption of the mea-
surement equation is constant mean and series independent errors. With
regards to the next two kinds of models, more explanatory indicators which
can simulate more complicated markets are added to these models. It makes
a closer modelling to the real market. This model can be estimated by Markov
Chain Monte Carlo (MCMC) methods in the context of a Bayesian inference.
There are 20000 draws from the posterior distribution using Gibbs sampler,
after a burn-in period of 1000.

yt = µy + ut (2.13)

ut = exp(
ht

2
)εt (2.14)

ht = µh + φh(ht−1 − µh) + ζt (2.15)

Where, εt ∼ N(0, 1), ζt ∼ N(0, σh
2) (2.16)

In the return measurement equation, µy denotes the constant conditional
mean. The conditional variance of yt is Var(yt | ht) = exp(ht), and ht is
called log-volatility. εt is independent of ζt in any leads and lags. I assume
| φh |< 1 and the states ht are initialized with h1 ∼ N(µh, σ2

h /(1− φ2
h)). For

identification, the invertibility condition is imposed-the roots of the charac-
teristic polynomial associated with MA coefficients ψ = (ψ1, . . . , ψq)′ are all
outside the unit circle.
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The assumption of the model specification is prior distribution for µh, φh and
σ2

h are independent.We consider the independent prior distribution below:

p(µh, φh, σ2
h) = p(µh)p(φh)p(σ2

h) (2.17)

µh ∼ N(µh0, Vµh), φh ∼ N(φh0, Vφh)1(| φh |< 1), σ2
h ∼ IG(νh, Sh) (2.18)

Plain stochastic volatility model assumes the errors in the measurement equa-
tion are serially independent given the log-volatilities. In this case, errors
exhibit persistency under the real market circumstance. Stochastic volatility
model with an MA(1) process for normally distributed error is an extension
model of the standard stochastic volatility model, which assumes moving
average errors in the return equation. Here, ut shows the market serially
dependency.

yt = µy + ut (2.19)

ut = exp(
ht

2
)εt + ψ1exp(

ht−1

2
)εt−1 + . . . + ψqexp(

ht−q

2
)εt−q (2.20)

ht = µh + φh(ht−1 − µh) + ζt (2.21)

Where, εt ∼ N(0, 1), ζt ∼ N(0, σh
2) (2.22)

εt and ζt are independent of each other. As before, we assume | φh |< 1 and
the states ht are initialized with h1 ∼ N(µh, σ2

h /(1− φ2
h)). Under the moving

average variant, the conditional variance of yt is given by

Var(yt|µ, ψ, h) = exp(ht) + ψ2
1exp(ht−1) + . . . + ψ2

qexp(ht−q) (2.23)

The conditional variance through two channels to be time-varying. The first
one is moving average of the q+ 1 most recent variances exp(ht), . . . , exp(ht−q).
And the second one is the log-volatilities ht is in a stationary AR(1) process.
The difference from the standard stochastic volatility model is that yt is no
longer serially independent (even after conditioning on the log-volatilities).
The conditional autocovariances are given by
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Cov(yt, yt−j | µ, ψ, h) =
q−j

∑
i=0

ψi+jψiexp(ht−i) (2.24)

where j = 1, . . . , q and 0 for j > q, and φ0 = 1. The autocovariances of yt are
also time-varying due to the presence of the time-varying log-volatility.

To complete the model spesification, we assume independent prior distribu-
tions for µ, ψ, µh, φh and σ2

h . We assume a multivariate normal prior with
support in the region where the invertibility conditions on ψ hold. For other
model parameters, we assume the following independent prior distributions

p(µ, ψ, µh, φh, σ2
h) = p(µ)p(ψ)p(µh)p(φh)p(σ2

h) (2.25)

µ ∼ N(µ0, Vµ), µh ∼ N(µh0, Vµh), φh ∼ N(φh0, Vφh)1(| φh |< 1), σ2
h ∼ IG(νh, Sh)

(2.26)

The normal distribution is inappropriate to characterise the presence of out-
liers, as the financial assets returns always have the characteristics of high-
kurtosis and fat-tails. Therefore, Student’s t-distribution is applied to address
this issue.

yt = µy + ut (2.27)

ut = exp(
ht

2
)λ1/2

t εt + ψ1exp(
ht−1

2
)λ1/2

t−1εt−1 + . . . + ψqexp(
ht−q

2
)λ1/2

t−qεt−q

(2.28)

ht = µh + φh(ht−1 − µh) + ζt (2.29)

Where, (λt|ν) ∼ inverse gamma(ν/2, ν/2), εt ∼ N(0, 1), ζt ∼ N(0, σh
2)

(2.30)

εt, ζt and λt are independent of each other. As before, we assume | φh |< 1
and the states ht are initialized with h1 ∼ N(µh, σ2

h /(1− φ2
h)). λ1/2

t εt has a
standard Student’s t-distribution with degree of freedom parameter ν. Koop,
Poirier, and Tobias (2007), Nakajima and Omori (2009), and Wang, Chan,
and Choy (2011) adopt the consistent stochastic volatility spesification with
Student’s t-distributed errors. The Student’s t-distribution can be written as
a mixture of normal distribution.
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To complete the model specification, we assume independent prior distribu-
tions for µ, ν, ψ, µh, φh and σ2

h . ν follows a uniform distribution with mean
ν̄/2 and support (0, ν̄). For other model parameters, we assume the follow-
ing independent prior distributions

p(µ, ν, ψ, µh, φh, σ2
h) = p(µ)p(ν)p(ψ)p(µh)p(φh)p(σ2

h) (2.31)

µ ∼ N(µ0, Vµ), ν ∼ U(0, ν̄), µh ∼ N(µh0, Vµh), (2.32)

φh ∼ N(φh0, Vφh)1(| φh |< 1), σ2
h ∼ IG(νh, Sh) (2.33)

2.4.3 Forecasting Methodology and Evaluation Methodology

The rolling window method is adopted to obtain the out-of-sample forecast-
ing volatility, which is following the studies of Lv (2018), Sévi (2014), Hau-
gom et al. (2014b). As aforementioned, the forecast evaluation spans the pe-
riod from January 1, 2014, to June 22, 2015. The rolling window length is
2608. For each next period forecasting, the estimation subsample is rolled
forward by adding one new day in and dropping the most distant day off.
The forecasting processes gain time-varying parameters and do not overlap,
and the sample size remains fixed. I also present the loss function values
based on the in-sample forecast to identify over-fitting.

Andersen, Bollerslev, and Lange (1999) concludes that it is an effective and ef-
ficient way to evaluate predictive capacity by using loss functions. However,
Lopez et al. (2001) discuss that there is not a most appropriate evaluation of
volatility forecast. Therefore, I adopt six loss functions in this chapter rather
than a single selection.Following the works of Kang, Kang, and Yoon (2009),
Wei, Wang, and Huang (2010), Sadorsky (2006). Squared returns is calcu-
lated to apply in the loss functions as the proxy variances and denoted as σ2

t

hereafter. The forecasting variance (squared volatility) is indicated by σ̃2
t . N

is the number of forecasting data. In principle, the smaller value obtained
using loss functions, the better forecasting accuracy it is achieving.

Following the steps of Patton (2011), we evaluate the forecast ability mainly
reference the MSE value and GMLE value, as we use imperfect proxy vari-
ance when compare volatility forecasts.
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Mean Square Error Function

MSE =
1
N

N

∑
1
(σ2

t − σ̃2
t )

2
(2.34)

Mean Absolute Error Function

MAE =
1
N

N

∑
1

∣∣∣(σ2
t − σ̃2

t )
∣∣∣ (2.35)

Mean Squared Error adjusted for Heteroskedasticity Function

HMSE =
1
N

N

∑
1

(
1− σ2

t
σ̃2

t

)2

(2.36)

Mean Absolute Error adjusted for Heteroskedasticity Function

HMAE =
1
N

N

∑
1

∣∣∣∣1− σ2
t

σ̃2
t

∣∣∣∣ (2.37)

Logarithmic Loss Function

LL =
1
N

N

∑
1

(
ln
(

σ2
t

)
− ln

(
σ̃2

t

))2
(2.38)

Gaussian Quasi-Maximum Likelihood Function

GMLE =
1
N

N

∑
1

(
ln
(

σ̃2
t

)
+

σ2
t

σ̃2
t

)
(2.39)

Where, σ̃2
t is the forecast variance and σ2

t is proxy variance.

MSE is the average squared difference between the proxy of actual variances
and the corresponding predictive variances. Squared returns are used to be
the proxy variances. With the same principle, MAE is the absolute value of
the average difference. Generally, other extensional models are all based on
these two loss functions. HMSE is the squared difference between one and
the ratio of proxy variances and estimation variances. Koopman, Jungbacker,



42 Chapter 2. Forecasting Volatility of Crude Oil Futures Returns

and Hol (2005) apply MSE and MAE to measure the forecasting ability of
GARCH-family models and implied-type models in the financial market.
And Liu and Wan (2012) examines the predictive abilities of GARCH-class
models by using loss functions.

Instead of squared value, HMAE operates absolute value. Penalize variance
asymmetrically forecasts the results in the Logarithmic loss function, which
was employed by Pagan and Schwert (1990). It needs to be acknowledged
that the function will be inaccurate when the actual variance is too low be-
cause the function will reach a huge value. HMSE (Bollerslev and Ghysels,
1996) is a better transformation of Logarithmic loss function. Gaussian quasi-
maximum likelihood function was suggested by Bollerslev, Engle, and Nel-
son (1994) to employ in estimating GARCH models.

Logarithmic loss function penalizes the inaccurate forecast variances because
when real variances are small, its logarithm value will get far away from zero.
It exaggerates the gap between proxy values and predictive ones. Gaussian
quasi-maximum likelihood (GMLE) function was implicitly recommended
by Bollerslev, Engle, and Nelson (1994) and it was also mentioned again in
Lopez and Walter (2000). GMLE index holding a lower value indicates that
the model has better estimation ability (Huang, Wang, and Yao, 2008). MSE is
the average squared difference between the proxy of actual variances and the
corresponding predictive variances. Squared returns are used to be the proxy
variances. With the same principle, MAE is the absolute value of the average
difference. Generally, other extensional models are all based on these two
loss functions. HMSE is the squared difference between one and the ratio of
proxy variances and estimation variances. Koopman, Jungbacker, and Hol
(2005) apply MSE and MAE to measure the forecasting ability of GARCH-
family models and implied-type models in the financial market. And Liu
and Wan (2012) examines the predictive abilities of GARCH-class models by
using loss functions.

Instead of squared value, HMAE operates absolute value. Penalize variance
asymmetrically forecasts the results in the Logarithmic loss function, which
was employed by Pagan and Schwert (1990). It needs to be acknowledged
that the function will be inaccurate when the actual variance is too low be-
cause the function will reach a huge value. HMSE (Bollerslev and Ghysels,
1996) is a better transformation of Logarithmic loss function. Gaussian quasi-
maximum likelihood function was suggested by Bollerslev, Engle, and Nel-
son (1994) to employ in estimating GARCH models.
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Logarithmic loss function penalizes the inaccurate forecast variances because
when real variances are small, its logarithm value will get far away from zero.
It exaggerates the gap between proxy values and predictive ones. Gaussian
quasi-maximum likelihood (GMLE) function was implicitly recommended
by Bollerslev, Engle, and Nelson (1994) and it was also mentioned again in
Lopez and Walter (2000). GMLE index holding a lower value indicates that
the model has better estimation ability (Huang, Wang, and Yao, 2008).

2.5 Empirical Results

2.5.1 Estimation Results for Different Volatility Models

In this section, I discuss the in-sample estimation results and compare the
out-of-sample forecast abilities in terms of OVX index, GARCH-type models,
and stochastic volatility models. Daily returns of Brent and WTI crude oil fu-
tures are employed, from 2nd January 2004 to 31th December 2013, is applied
in GARCH-type models and stochastic volatility models. There are 2608 ob-
servations in total. The mean of Brent daily return is 0.02232%, and WTI re-
turn is 0.02049%, which is smaller than the constant in return measurement
equations in GARCH-type models and stochastic volatility models. I use a
continuous and an error term to model the return measurement equation. I
do not include the AR(1) autoregressive process in the return measurement
equation, because the return series is stationary and directly applicable.

2.5.1.1 GARCH Models Estimation Results

Table 2.4 presents the in-sample estimation results for the three GARCH-type
specifications discussed in Section 4. In the ARCH(1) model, the ARCH effect
parameter a is strongly significant at 1% level in each group. The parameter
implies when the last period’s squared residual (a2

t−1) changes one unit, the
conditional variance of Brent in this period will roughly change 10% of it
(a2

t−1). For WTI, the change is relatively higher getting 26%. The squared er-
rors of Brent exhibit high autocorrelation than WTI. Also, ARCH term detects
the feature well.

Correspondingly in the GARCH(1,1) model, the ARCH effect parameter of
Brent (0.037) is also smaller than WTI’s (0.055). Additionally, the GARCH
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effect is 0.95 of Brent and 0.93 of WTI. It strongly shows series autocorrelation
in conditional variances. The estimation results of the GARCH term indicate
there is a significant and high level of volatility persistence in Brent and WTI
futures market. Moreover, the effect is slightly stronger in Brent than it in
WTI. In GARCH specification, both GARCH effect and ARCH effect in Brent
and WTI estimations are strongly significant at 1% level.
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TABLE 2.4: In-sample estimation results of GARCH-type models

Brent WTI
Parameter ARCH(1) GARCH(1,1) GJR-GARCH(1,1,1) ARCH(1) GARCH(1,1) GJR-GARCH(1,1,1)
Mean equation
cy 8.15E-04 7.03E-04 4.23E-04 1.09E-03 6.96E-04 3.87E-04

(0.049) (0.043) (0.223) (0.006) (0.048) (0.284)
Variance equation
cσ 4.15E-04 1.21E-06 1.33E-06 4.05E-04 4.04E-06 3.89E-06

(0.000) (0.000) (0.015) (0.000) (0.001) (0.001)
a 0.1013 0.0376 0.0579 0.2632 0.0545 0.0753

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
b 0.9599 0.9625 0.9375 0.9420

(0.031) (0.000) (0.000) (0.000)
λ -0.0470 -0.0505

(0.000) (0.000)
Log-likelihood 6336.696 6598.716 6613.514 6202.461 6473.645 6483.654
AIC -12667.39 -13189.43 -13217.03 -12398.92 -12939.29 -12957.31
BIC -12649.79 -13165.97 13187.7 -12381.32 -12915.83 -12927.98
Observations 2608 2608 2608 2608 2608 2608
Degree of freedom 3 4 5 3 4 5
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Turning to the estimation result for Brent and WTI by using GJR-GARCH(1,1,1)
model. ARCH effect parameter of a2

t−1 is roughly 0.058 for Brent and 0.075
for WTI. Brent still exhibits a slightly stronger GARCH effect (0.96) than WTI
(0.94). Particularly, the TARCH term in this model represents the leverage
effect. The coefficient of the TARCH term is expected to be negative in the
analysis of financial assets. It implies there are smaller effects on the con-
ditional variance (σ2

t ) if there is a positive shock on the market in the last
period than those negative shocks. In other words, a negative effect will be
on conditional variances (σ2

t ) if there is a decline in return in the last period.
Larger return decrease in the last period will trigger higher conditional vari-
ance this period. There will be a total effect of 0.011 (0.058 minuses 0.047)
of last period’s squared residual on this period’s variance if there is a non-
negative shock (at−1 ≥ 0) on the Brent crude oil market. Respectively, the
effect increases to around 0.058 if there is a negative shock from the market.
Concerning WTI, there will be a total effect of 0.025 (0.075 minus 0.05) of last
period’s squared residual on this period’s variance if there is increasing re-
turn in the last period. Respectively, the effect turns to around 0.075 if there is
a decreased return in the last period. The negative impact is nearly triple as
the positive impacts in WTI. TARCH term can distinguish the upwards and
downwards of returns in the crude oil market, which has distinct influences
in the conditional variances. It demonstrates that a strongly significant lever-
age effect exists in Brent and WTI volatility modelling. All the parameters are
strongly significant at 1% level. What is of interest, is that if either positive
effect or negative effect comes from the market, conditional variances of WTI
are more sensitive than Brent ones.

In conclusion, all the effects of GARCH-type models are strongly signifi-
cant at 1% level except for the GARCH effect being significant at 5% level
in the GARCH(1,1) model of Brent estimation. In the ARCH model, the
ARCH effect in WTI is twice as much as Brent’s. However, ARCH effect
parameters are lower than the corresponding ones in the GARCH model
and GJR-GARCH model, which is the same situation in Brent and WTI. The
ARCH effect is stronger in WTI modelling than Brent’s. Conversely, Brent ex-
hibits stronger ARCH and GARCH effect than WTI. It means the last period’s
squared error term and conditional variance have more influence on this pe-
riod’s conditional variance in Brent than WTI. In the GJR-GARCH model,
the ARCH effect and GARCH effect exhibits a similar characteristic as pre-
viously discussed concerning TARCH. Larger leverage effect exists in WTI
model than Brent model, which implies downside price change will have
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more impact on WTI than Brent. Notably, negative shocks will increase more
volatility in WTI futures price than Brent counterpart. In a nutshell, the lever-
age effect in the WTI futures market is stronger than the Brent market. We
can also say that the investors holding WTI are more sensitive to the negative
news (negative shocks in the market) than the Brent futures holders.

I use the information criterion of AIC and BIC to test the preferred model, as
the ARCH(1) model is nested in the GARCH(1,1) model and the GARCH(1,1)
is nested in the GJR-GARCH(1,1,1) model. The selection principle is the min-
imum value (more negative) means the best goodness of fit of the model.
Both information criterion in table 2.4 support that the GJR-GARCH(1,1,1)
model performed the best.

FIGURE 2.7: Conditional variances from ARCH(1) model for WTI
and Brent

According to Figure 2.7, Brent and WTI have similar patterns for the condi-
tional variances extracted from the ARCH(1, 1) model. It illustrates WTI has
higher conditional variances than Brent’s in the same period. Rationally, the
variances show a rapid increase during the financial crisis in 2008. What is
most impressive, is that the conditional variance of WTI always has an ear-
lier reaction to stimulations, which is even stronger and more persistent than
Brent. For example, in April 2008, the WTI variance reached the highest point
of nearly 0.08 in the recent decade. It should be the earliest reaction to the cri-
sis. After one month, there is a similar increasing trend of variances for Brent.
There is some volatility clustering of WTI standing during the period, but it
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does not correspondingly appear in Brent’s variance. It also means compared
to Brent, WTI is more sensitive to market changes.

FIGURE 2.8: Conditional variances from GARCH (1, 1) model for
WTI and Brent

Based on Figure 2.8, it shows the broadly same changes in both Brent and WTI
figures. When the financial crisis in 2008 hits, WTI had an earlier response to
the vulnerable market. During the crisis period, the conditional variance of
WTI also shows higher volatility persistence and more turbulence than Brent.
The highest variance level in WTI is nearly 0.005, larger than the 0.0035-the
highest level of Brent in January 2009. The conditional variance of WTI still
tends to be larger and keeps longer than Brent’s.
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FIGURE 2.9: Conditional variances from GJR-GARCH (1, 1, 1)
model for WTI and Brent

The Figure 2.9 shows that the conditional variance of WTI and Brent extracted
from the GJR-GARCH(1,1,1) model exhibit similar patterns as well. At the
early years of the whole period, it explores several unexpected changes. Roughly
in the first half of 2005, WTI shows an obvious higher upward than Brent.
After it, at the end of 2006, in contrast, Brent illustrates bigger volatility than
WTI. But, the conditional variances of WTI usually are higher than Brent, es-
pecially during the 2008 crisis. The highest point of WTI is nearly 0.005, and
the corresponding one for Brent is around 0.0035. WTI is the first one to react
to the crisis and the last one to recover from the crisis. WTI variances are
more persistent than Brent variances.
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FIGURE 2.10: In-Sample predict in one-step for Brent crude oil fu-
ture

FIGURE 2.11: In-Sample predict in one-step for WTI crude oil future

Figure 2.10 shows the one-step in-sample forecast of Brent conditional vari-
ances, which are responding extracted from the ARCH(1), the GARCH(1,1)
and the GJR-GARCH(1,1,1) model. The conditional variance from the ARCH
model exhibits more spikes than the GARCH model and the GJR-GARCH
model, but less volatility persistence is predicted by the ARCH model. It
seems like oscillation takes more time to recover in the GARCH model and
GJR-GARCH model. In general GARCH and GJR-GARCH model provide
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very similar tendencies, except the GJR-GARCH model, predict higher vari-
ances at the beginning time of the crisis.

Based on the combining conditional variances in WTI (Figure 2.11), the high
spikes still present in the conditional variance extracted from the ARCH
model. Much larger conditional variances are predicted of WTI than Brent.
What is the most attractive sign, is a spike of 0.008, which shows the first
response of crude oil change to the crisis by ARCH model. GARCH model
usually illustrates slight larger volatility than the GJR-GARCH model during
crisis time. The crisis impact lasts from the middle of 2008 to the interim of
the next year. GARCH model predicts the highest point of conditional vari-
ances being nearly 0.045, and the homologous one in GJR-GARCH model is
just above 0.003.

2.5.1.2 Stochastic Volatility Models Estimation Results

TABLE 2.5: In-sample estimation results of Stochastic Volatility
models

Brent WTI

Parameter Plain SV SV MA
Normal

SV MA
Student’s t Plain SV SV MA

Normal
SV MA
Student’s t

µy 8.69E-04 8.75E-04 8.76E-04 7.74E-04 7.76E-04 7.77E-04
µh -7.6047 -7.5986 -7.6514 -7.5428 -7.5205 -7.5332
φh 0.9882 0.9880 0.9880 0.9885 0.9888 0.9889
σ2

h 0.0081 0.0082 0.0078 0.0095 0.0092 0.0088
ψ 0.0051 0.0058 -0.0363 -0.0349
ν 44.9383 44.5402

Table 2.5 shows the estimation results for the stochastic volatility models.
Firstly, I compare the estimation results of the plain stochastic volatility model
in terms of Brent and WTI futures returns. The average daily Brent return is
estimated to be 8.69E-04. The posterior mean of the AR(1) coefficient of the
state equation is 0.9882, which indicates a relatively high level of persistence.
It is also the explanation for volatility clustering in the Brent futures mar-
ket. The expectation of WTI daily return is 7.74E-04, which is lower than
Brent (8.69E-04). Conversely, the mean of log-volatility of WTI is higher. The
persistency of log-volatility of WTI is nearly the same as Brent’s. The vari-
ance of log volatility is higher in WTI than Brent, which means WTI volatility
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changes in a larger range than Brent. In other words, there is larger uncer-
tainty in WTI investment compared to Brent.

Secondly, the model we discuss here is an extension of the plain stochastic
model presented the last part, in series dependency of error terms in the mea-
surement equation. This model allows the errors for persistence via moving
average process with order 1 (MA(1)). The market is not assumed as effective
as the plain stochastic volatility modelling. The mean of Brent daily return is
8.75E-04 and also high persistency exists in log-volatility. The special aspect
of the extended model is the MA(1) process of error terms obtained returns.
Not only does this period’s error term affect this period’s return, but also the
last period’s error term has an effect by multiplying 0.0051. The 90% credi-
ble interval of last period error term’s coefficient is (-0.03135, 0.04203), which
means it can be zero because of zero included. There is also a probability that
the errors are series independent.

Unlike the plain stochastic models of Brent and WTI, the mean of WTI re-
turn is lower than Brent, but the persistence is slightly higher. What stays the
same is that the variance of log-volatility is still more significant than Brent.
The most valuable result is the property of the MA process. Last term error
holds the negative effect on WTI but positive effect on Brent. It means that
the previous term error has opposing direction effects on last term return
and this term return. It is weakly capable of lower turbulence and stronger
recovery than the plain model in WTI. Moreover, the differences between
two adjacent daily volatilities became smaller. The reason is a slightly nega-
tive effect (-0.0363) from the last term error on this term’s, so the difference
between the two continuous days’ returns shrinks in WTI compared to Brent.
In this model, we can also see that 0.98882 is a considerably high persistency
of log-volatility.

Another classic and conventional assumption is a normal distribution, which
ignores the presence of outliers. In financial series data, the heavy-tailed
and higher top distribution is capable of explaining more extreme values.
Student’s t-distribution is one of the most useful and efficient distributions
to express leptokurtosis.
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FIGURE 2.12: Posterior means (blue line) and 90% credible inter-
vals (red line and green line) of the time-varying standard deviation
exp

(
ht
2

)
based on the Brent crude oil future daily returns in plain

stochastic volatility model

FIGURE 2.13: Posterior means (blue line) and 90% credible inter-
vals (red line and green line) of the time-varying standard deviation
exp

(
ht
2

)
based on the WTI crude oil future daily returns in plain

stochastic volatility model

Figure 2.12 shows 90% credible intervals (red line and green line) of the time-
varying standard deviation exp( ht

2 ) based on the Brent return in the plain
stochastic volatility model. Volatilities always change. Before 2008 the high-
est point of the fluctuation reached more than 0.04 in 2005. The highest
volatility peaked 0.07 during the global financial crisis in 2008. There is a
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dramatic drop after 2010, which was even lower than before the crisis but
more persistent.

More fluctuations exist in WTI than Brent in the corresponding timings from
Figure 2.13. The highest point of WTI is 0.08 during the 2008 crisis, and the
volatility goes up in 2009 sharply and goes down violently at the beginning of
2010. WTI exhibits a higher level of volatility than Brent at the same periods.
What is surprising is that the oscillations became weaker after 2014.

FIGURE 2.14: density of ψ estimated of p(ψ|yt) based on the Brent
crude oil future daily returns in Stochastic volatility model with

MA(1) process for normally distributed error

FIGURE 2.15: density of ψ estimated of p (ψ|yt) based on the WTI
crude oil future daily returns in Stochastic volatility model with

MA(1) process for normally distributed error
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According to Figure 2.14, the distribution of the parameters is concentrated
between -0.08 and 0.1, which is virtually mass around 0. It is consistent with
the estimation result of 0.005052. There is a limited effect of last period’ errors
in Brent return modelling. The MA(1) process does not significantly exist in
Brent return.

Based on Figure 2.15, the range of MA parameters is from -0.13 to 0.05, which
also include zero. However, the main part of the parameters is not centered
on 0. It is obvious that the MA process is recommended in the WTI volatility
process rather than Brent. Most of the coefficients are located in the left zero
areas, which indicate that the slight negative effects (-0.0363) are found in
last period errors. The obvious difference between Brent and WTI is the sign
of the previous period’s error term’s effect on this period’s return. In Brent
result, it is an insignificant positive effect, while it is a negative effect in WTI
estimation, and it is more significant than the Brent result. In conclusion,
the last period’s errors have a significant negative effect on WTI but a weak
positive effect on Brent. Adding the MA(1) process should be a more useful
explanation in WTI than Brent.

FIGURE 2.16: Posterior means (blue line) and 90% credible inter-
vals (red line and green line) of the time-varying standard deviation
exp

( yt
2

)
based on the Brent crude oil future daily returns in Stochas-

tic volatility model with MA(1) process for normally distributed error
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FIGURE 2.17: Posterior means (blue line) and 90% credible inter-
vals (red line and green line) of the time-varying standard deviation
exp

( yt
2

)
based on the WTI crude oil future daily returns in Stochastic

volatility model with MA(1) process for normally distributed error

Figure 2.17 of WTI is very similar as the result from the plain stochastic volatil-
ity model and it is consistent with these two models’ comparison of Brent.

FIGURE 2.18: density of ψ estimated of p (ψ|yt) (left panel) and den-
sity of υ (right panel) estimated of p (υ|yt) based on the Brent crude
oil future daily returns in Stochastic volatility model with MA(1)

Student’s t-distributed error
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FIGURE 2.19: density of ψ which estimated of p (ψ|yt) (left panel)
and density of υ (right panel) estimated of p (υ|yt)) based on the
WTI crude oil future daily returns in Stochastic volatility model with

MA(1) process for Student’s t-distributed error

According to Figure 2.18, the estimation result is similar to those obtained in
the previous models. The range of the percentage of the last period’s error-
parameter is also not useful here, which include zero. It is consistent with the
result in the MA(1) process for the normally distributed error. The density of
υ is concentrated between 40 and 50, which indicates it is a proper application
of Student’s t-distributed error here.

According to Figure 2.19, the mass of ψ distribute to the left of zero. Therefore
there is evidence for the MA(1) process in WTI return series. It is a consis-
tent result of the normally distributed error in MA(1) process. The sign of
the effect of last period’s error is also negative in WTI, and Brent return cor-
respondingly generate the negative sign. Concerning the υ distribution, the
concentrated values are far away from zero, so Student’s t-distributed error
is an efficient assumption for the WTI modelling. By comparing the parame-
ters in inverse gamma distribution, Brent return (44.9383) is more leptokurtic
than WTI return (44.54021). It is consistent with the Kernel density estima-
tion results in Section 3. In conclusion, plain stochastic volatility model and
stochastic volatility model with an MA(1) process for normally distributed
error perform similarly in Brent estimation. MA(1) process is not effective
in Brent return, but it gains some efficiency in WTI estimation. Stochas-
tic volatility model with MA(1) Student’s t-distributed error is the optimal
model for both Brent and WTI, mainly because the Student’s t-distribution
provides an appropriate fitting.
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FIGURE 2.20: Posterior means (blue line) and 90% credible inter-
vals (red line and green line) of the time-varying standard deviation
exp

( yt
2

)
based on the Brent crude oil future daily returns in Stochas-

tic volatility model with MA(1) process for Student’s t-distributed
error

FIGURE 2.21: Posterior means (blue line) and 90% credible inter-
vals (red line and green line) of the time-varying standard deviation
exp

( yt
2

)
based on the WTI crude oil future daily returns in Stochastic

volatility model with MA(1) process for Student’s t-distributed error

Mean returns of Brent are always bigger than WTI in the three models, which
is also consistent with the GARCH model and GJR-GARCH model. There-
fore, the log-volatility of Brent holds a more significant mean than WTI. Tur-
bulences of WTI show stronger persistence than Brent. It makes sense that
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WTI is active in the American area, while Brent is normally traded in Euro-
pean countries. The macro events’ effects are larger under more open eco-
nomic circumstance (such as in America). MA(1) process is useful in WTI
return modelling, but not in Brent one. Brent return has a more significant
leptokurtosis than WTI. It is also a consistent result as data preparation work,
and the detailed results can be seen in Figure 2.4, Figure 2.5, and Figure 2.6 in
Section 3.

2.5.2 Forecast Results and Detection of Over-fitting

I use the squared return series as the proxy of the real variance in the crude oil
market. The squared return is convenient to apply in predictive ability eval-
uation. OVX index is the implied volatility index collected from the CBOE
platform. It represents the market expectation of crude oil futures. Moreover,
GARCH volatility and stochastic forecasting volatility are constructed using
the rolling forecasting methodology discussed in Section 4.

Table 2.7 presents the value of loss function for the OVX index, GARCH-
type models, and stochastic volatility models in out-of-sample forecasting.
At first, we focus on the forecast evaluation on the Brent oil futures. The
MSE, HMAE, HMSE, and GMLE each rank the OVX index the most accu-
rate forecasting method. The MAE, MSE, LL, and GMLE select the GARCH-
type models as a better forecasting model than the stochastic volatility model.
Furtherly, the GJR-GARCH model exhibits more superior forecasting ability
than the ARCH and GARCH counterparts. The GJR-GARCH model incorpo-
rates more information than ARCH and GARCH models, and it fit the stylish
fact of Brent futures very well. I suppose it is the reason for the GJR-GARCH
model producing the smaller forecasting errors than the ARCH model and
GARCH model. The results from the stochastic volatility models, the model
with moving average order 1 process and normal distributed errors has the
worst forecasting ability, but evidence regarding the best forecasting model
in the stochastic volatility subgroup is mixed. However, we have some ev-
idence (MAE, LL, and GMLE) that the stochastic volatility model imposed
the student’s t-distributed errors have better forecasting performance than
the counterparts with normal distributed errors.
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TABLE 2.6: In-sample forecasting evaluation across competing models

MAE(×104) R ,MSE(×106) R HMAE R HMSE R LL R GMLE R
ARCH 5.2327† 6 1.5987† 6 1.1368† 6 8.0848† 6 7.7875† 6 −6.6965† 6
GARCH 4.9342 2 1.4587 5 1.0466 5 3.1473 5 6.8638 2 -6.8979 5

Brent GJR-GARCH 4.9066∗ 1 1.4358 4 1.0416 4 2.9991 4 6.8113∗ 1 -6.9090 4
PLAIN SV 5.1860 4 1.3624 2 0.8714 2 1.3716 2 7.4601 4 -6.9258 3
SV MA NORMAL 5.1861 5 1.3618∗ 1 0.8708∗ 1 1.3675∗ 1 7.4607 5 -6.9262 2
SV MA STUDENT’S T 5.1066 3 1.3690 3 0.8847 3 1.4795 3 7.3875 3 −6.9284∗ 1
ARCH 6.2330† 6 2.0954† 6 1.1327† 6 6.5141† 6 7.3272† 6 −6.5943† 6
GARCH 5.7050 2 1.8083 5 1.0423 5 4.2785 4 6.3918 2 -6.8023 5

WTI GJR-GARCH 5.6600∗ 1 1.7988 4 1.0393 4 4.4649 5 6.3551∗ 1 -6.8097 4
PLAIN SV 5.8140 5 1.6620∗ 1 0.8596∗ 1 1.3912∗ 1 6.8379 4 -6.8565 2
SV MA NORMAL 5.8131 4 1.6636 2 0.8612 2 1.4033 2 6.8398 5 -6.8554 3
SV MA STUDENT’S T 5.7386 3 1.6744 3 0.8757 3 1.5410 3 6.7683 3 −6.8568∗ 1

2

∗ indicates the best fitting model
† indicates the worst fitting model

Column R indicates the ranking of goodness of fit
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TABLE 2.7: Out-of-sample forecasting evaluation across competing models

MAE(×104) R MSE(×107) R HMAE R HMSE R LL R GMLE R

Brent

OVX 3.9958 3 5.0250∗ 1 0.8226∗ 1 1.0007∗ 1 36.3950† 7 −7.5088∗ 1
ARCH 4.6464 4 6.9477 4 1.0995 6 4.0835 5 10.3691 4 -7.0348 4
GARCH 3.4526∗ 1 6.3645 3 1.1737† 7 7.3008† 7 6.7006∗ 1 -7.4580 3
GJR-GARCH 3.5672 2 6.3155 2 1.0739 5 4.6751 6 6.9601 2 -7.4957 2
Plain SV 6.2640 6 8.4142 5 1.0220 2 2.6197 2 12.1600 5 -6.8700 6
SV MA NORMAL 6.3856† 7 8.6815† 7 1.0623 4 3.4279 4 12.1899 6 −6.8394† 7
SV MA STUDENT’S T 6.1623 5 8.4691 6 1.0613 3 2.7414 3 11.9015 3 -6.8776 5

WTI

OVX 4.5640 2 9.9164 4 1.1484 6 6.4389† 7 13.6945† 7 -6.9904 4
ARCH 4.3075∗ 1 5.8209∗ 1 0.7477∗ 1 0.6765∗ 1 8.9825 3 -7.0764 3
GARCH 4.6193 3 9.2540 3 0.9311 3 1.7877 3 7.2915∗ 1 −7.1706∗ 1
GJR-GARCH 4.7024 4 9.2127 2 0.9042 2 1.5138 2 7.4304 2 -7.1670 2
Plain SV 6.4440 5 11.3949 5 1.0530 4 2.4897 4 10.6657 5 -6.6749 5
SV MA Normal 6.6623† 7 12.3995† 7 1.1235 5 4.1115 5 10.6758 6 -6.6025 6
SV MA Student’s t 6.5401 6 12.2780 6 1.1714† 7 5.1473 6 10.6329 4 −6.5841† 7

3

∗ indicates the best fitting model
† indicates the worst fitting model

Column R indicates the ranking of goodness of fit
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Turning to the forecasting evaluation results for WTI futures, each value of
the loss function supports the GARCH-type models are superior to stochas-
tic volatility models in volatility forecasting. Notably, loss function values of
MAE, MSE, HMAE, and HMSE support the ARCH model as the best model,
while LL and GMLE rank the GARCH model the toppest. Superisely, GJR-
GARCH model is not the best one in WTI futures volatility forecasting. In
the results of the stochastic volatility subgroup, plain stochastic volatility
model is superior, which means the moving average process and Student’s
t-distribution are not expectingly effective in stochastic volatility forecasting.

In Table 2.6, we see that the best models for fitting in-sample are GJR-GARCH
model and stochastic volatility type models. However, out-of-sample, the
best models seems to be simpler models, such as ARCH. This strongly sug-
gests that the most complex models, GJR-GARCH model, and stochastic
volatility type models, suffer from over-fitting.

2.6 Conclusion

In this chapter, I investigate the performance of volatility modelling and fore-
casting in crude oil futures markets. In particular, I compare the OVX in-
dex, the GARCH-type models, and stochastic volatility models concerning
estimation and forecasting abilities in crude oil futures markets (Brent and
WTI). As alternatives to the ARCH model, the GARCH model is the most
popular one, and the GJR-GARCH model incorporates the information of
the leverage effect. On the other hand, the plain stochastic volatility model
and another two advanced stochastic volatility models are adopted to iden-
tify the moving average process of order 1 in return series, and Student’s
t-distribution is also verified.

According to the findings presented in this chapter, many conclusions can
be drawn from the previous analysis. First of all, I find that the volatility re-
sponses of Brent and WTI to the market stimulation are distinct. Specifically,
WTI is generally more sensitive than Brent to the market changes, and its
fluctuation also keeps a little longer than Brent. Further, the investors hold-
ing WTI are more vulnerable to the negative news (negative shocks in the
market) than the Brent futures holders. Based on the volatility patterns ex-
tracted from the GARCH-type models and stochastic volatility models, WTI
has a quicker and stronger response to the 2008 financial crisis compared
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with Brent. The variance of WTI is still more persistent than Brent’s. The rea-
son is that WTI and Brent operate in different areas. WTI is a considerably
common commodity in the American market, while Brent takes over the Eu-
ropean market for more than forty years. The American futures market is the
most changeable and unpredicted market overall, globally. Moreover, in an
open market, it is easier to trigger a financial crisis and more challenging to
recover. Macro events, for instance, wars, systematically cause more insta-
bility in America than Europe. Because of the high degree of freedom of the
American market, investors are more sensitive, and the government tends
to make delayed policy decisions. Therefore it is reasonable for WTI’s quick
response to the market stimulation. Briefly, WTI is always the first reaction
to market stimulation, and it also needs more time to calm down after the
financial crisis than Brent.

In terms of estimation of the GARCH-type models, we find the significant ev-
idence that the model extracting more information from the data, can provide
more effective estimation results. Accurately, I identify the Brent and WTI
futures returns have the financial data characteristic of the leverage effect. It
is the downward returns of crude oil that tends to have more influence on
volatility than the upward returns. It is a reasonable interpretation for mar-
ket investors’ psychology that investors tend to be more worried about price
decline than the price increase. The leverage effect indeed exists in Brent, and
WTI futures, which is also demonstrated by Kristoufek (2014) but go against
the adverse leverage effect of WTI in Aboura and Chevallier (2013)’s study.
As mentioned before, the WTI futures have a stronger leverage effect than
Brent futures.

Concerning the estimation of stochastic volatility models, the most impor-
tant result is that the moving average process is not useful in Brent crude oil
volatility modelling, while it is effectively helpful in WTI volatility analysis.
It means that stochastic volatility modelling of Brent returns a constant mean
process rather than a moving average with order one. WTI comparatively
holds more significant financial characteristics than Brent. It is also a reason
why WTI shows a more and stronger cluster than Brent, which is also con-
sistent with the GARCH-type model estimation results in this chapter. In the
third stochastic volatility model estimation, Student’s t-distributed error is
also able to provide more accurate estimation results in both Brent and WTI
returns, which is generally closer to real financial market circumstance than
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the normal distribution described. Therefore, crude oil futures are one com-
mon form of financial derivative, provides the evidence for the characteristic
of departing from normality.

In terms of the volatility forecast, I mainly conclude that GARCH-type mod-
els perform better than the stochastic volatility models either in Brent or WTI
crude oil futures market. OVX index can provide the optimal forecast in the
volatility of Brent futures. In the volatility forecasting of the GARCH-type
models for Brent, the GJR-GARCH model is the best. By contrast, for WTI,
the ARCH model exhibits the most accurate forecast ability. As regards the
forecasting of stochastic volatility models, the evidence for the best model
for Brent is mixed. In contrast, the plain stochastic volatility model is the
best for WTI. When I consider the over-fitting problem, I furtherly compare
the in-sample and out-of-sample forecasting results. Then we conclude the
stochastic volatility models suffer from over-fitting. For the other models,
the results are mixed. The GJR-GARCH model appears to suffer from over-
fitting in one case, but not the other.

Based on what I discussed above, there are several aspects to extend in fu-
tures research. First, GARCH-type models with Student’s t-distribution is
expected to provide efficient predictive ability. So it is valuable to investigate
further. Second, it would be worthwhile to compare multivariate GARCH
models in fitting multiple energy prices. Third, it would be attractive to con-
struct a multivariate model by including some macroeconomic variables to
the current form. I can further identify the interaction between the crude oil
market and the macroeconomics. Finally, it would improve the forecasting
evaluation by using high-frequency intraday data as proxy volatility.

On a final note, arbitrarily choosing a volatility model to forecast is not wise.
The findings presented in this chapter provide evidence on how to select
a volatility forecasting model for financial practitioners, energy economists,
and policymakers. However, the data sample length and the choice for loss
functions and proxy variance make evaluation vary as regards as the fore-
casting performance of the different models.
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2.7 Appendix to Chapter 2

Table 2.8: Posterior means, standard deviations and quantiles of model parameters
Brent daily returns data

Table 2.9: Posterior means, standard deviations and quantiles of model parameters
WTI daily returns data

Table 2.10: Posterior means, standard deviations and quantiles of model
parameters Brent daily returns data

Table 2.11: Posterior means, standard deviations and quantiles of model
parameters WTI daily returns data

Table 2.12: Posterior means, standard deviations and quantiles of model
parameters Brent daily returns data
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Table 2.13: Posterior means, standard deviations and quantiles of model
parameters WTI daily returns data
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Chapter 3

The Shale Revolution, Geopolitical
Risk, and Oil Price Volatility

3.1 Introduction

Understanding the price dynamics of crude oil is crucial for policymakers,
business leaders, and consumers. Because the variation in oil prices is sus-
ceptible to supply shocks, it is therefore important to analyse the impacts of
geopolitical risk, which has been one of the main security risks to oil supply.

Due to the advances in technology in fracking shale oil, the supply condition
in the global oil market has changed. It was confirmed by the U.S. Energy
Information Administration on July 16, 2018, “the U.S. oil output from seven
major shale formations is expected to rise to a record 7.47 million barrels per
day in August 2018". As the shale revolution continues to drive oil produc-
tion, we have observed low oil prices between June 2014 and February 2016.
Although the shale revolution is not solely responsible for the substantial fall
in oil prices since 2014, Kilian, 2017 argue that the Brent price of crude oil was
lower by $10 than it would have been in the absence of the fracking boom.

The long quote above constitutes one of the hypotheses for the consequential
technology changes in the shale oil industry: “(the shale revolution) should
reduce the volatility of the oil price". Thus, in this chapter, one of our ob-
jectives is to investigate the impact of geopolitical uncertainties on oil price
volatility under a simultaneous shale oil production shock.

Most of oil price-related research focuses on the nonlinear relationship be-
tween oil prices and GDP growth, such as in Hamilton, 2003a. Consistent
with most of the findings in the literature, Hamilton, 2003a concludes that
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upside risks in oil prices are more of a threat than the downside risks in real
economic activities. The framework laid by Hamilton, 2009 and Kilian, 2009a
lead many recent studies, such as Prest, 2018, to identify the oil shocks and
improve our understanding of their historical causes and consequences. The
oil price driving force has been identified from both the supply and the de-
mand sides, see Dées et al., 2007 and Hamilton, 2009. Empirical evidence also
supports that most of the historical oil price shocks were caused by physical
disruptions of supply, see Hamilton, 2009. Hamilton, 2009 finds that the oil
price run-up of 2007-08 was a joint effect of stagnating world production and
demand. We follow a similar direction, and besides evaluating the oil price
volatility responses to exogenous shocks, we focus on the nonlinear oil prices
dynamics and its response to geopolitical risks amidst the shale revolution.

With respect to econometric modelling, the seminal chapter by Sims, 1980
proposes to use the Vector Autoregressive (VAR) to conduct macroeconomic
analysis. For instance, a bivariate VAR model is employed in Kilian and
Vigfusson, 2011 to study how GDP responds to asymmetric oil price changes.
The baseline VAR model is specified as follows:

yt = Γ0 + Γ1yt−1 + . . . + Γpyt−p + ut, (3.1)

where yt = (y1t, . . . , ykt)
T and yt ∈ Rk×1. The vector of intercepts Γ0 ∈

Rk×1 and the coefficients are squared matrix Γi ∈ Rk×k with i = 1, . . . , p.
Therefore, eq. (3.1) can be summarized as

yt = ΓXt + ut, (3.2)

denoting Γ =
(
Γ0, Γ1, . . . , Γp

)
, and Xt =

(
1, yt−1, yt−2, . . . , yt−p

)T where

Γ ∈ Rk×(kp+1), and Xt ∈ R(kp+1)×1. The error term ut
i.i.d∼ MN (0, Σu), where

Σu ∈ Rk×k and MN (0, Σ) denotes a multivariate normal distribution with
mean 0 and a constant covariance matrix Σ.

The baseline VAR model has been generalized in many different dimensions
to capture nonlinear dynamics in macroeconomic variables. For example, a
time-varying-parameter VAR (TVP-VAR) (Koop and Korobilis, 2013) and a
smooth-transition VAR (Hubrich and Teräsvirta, 2013) are proposed to ad-
dress different types of nonlinearities. To answer our question, whether the
response of oil price to geopolitical risk has changed under the shale revo-
lution, we apply a generalization of the baseline VAR model - a structural
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break threshold VAR (SBT-VAR) model proposed by Galvão, 2006.

In order to quantify the dependent variable yt’s response to a specific exoge-
nous shock, mutually independent structural shocks have to be identified.
Because of the covariance Σu specification in a reduced form VAR system,
a hypothetical shock, therefore, cannot be isolated from other error terms.
Hence, it is impossible to provide a clear interpretation of the impulse re-
sponse function using the reduced form VAR. Therefore, the reduced form
VAR has been extended to a structural VAR (SVAR) in the literature. There
are many ways to identify the structural shocks in SVAR, such as by imposing
different identification restrictions. An SVAR model is specified as follows:

A0yt = A1Xt + εt, (3.3)

where εt are serially and mutually uncorrelated structural innovations. The
reduced form VAR in eq. (3.2) and SVAR in eq. (3.3) can be linked with
ut = A0

−1εt and Σu =
(

A0
−1)Σε

(
A0
−1)T

, where ut and Σu can be achieved
by estimation and treated as observables. From eq. (3.2) and eq. (3.3), Γ

in VAR has the form Γ = A0
−1A1, where A1 is a reflection of the feedback

dynamics in SVAR.

Identifying the structural shocks has been a focus in the literature. One obvi-
ous solution to identification is to use the Cholesky decomposition, i.e. Σε is
normalized to unity, then Σu

Σu =
(

A0
−1
) (

A0
−1
)T

. (3.4)

By Cholesky decomposition, A0
−1 is the lower triangular. Thus, the statis-

tical innovation ut depends recursively on the mutually uncorrelated struc-
tural innovation εt .

The use of Cholesky decomposition, i.e., by imposing exclusion restrictions
on A0, relies on the ordering of the variables. Therefore, justifications of
the ordering have to be made after consulting economic theory. The exclu-
sion restriction on the impact effects of structural shocks has been applied in
Sims, 1980 and Kilian, 2009a. In Blanchard and Quah, 1989, identification is
achieved by restrictions on the long-run effects. For instance, the restriction
is imposed on the aggregate demand shock, assuming the aggregate demand
shock has no long-run impact on the GNP. Restrictions, such as on the signs
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of the responses of specific variables to a shock, were used for identifica-
tion in Uhlig, 2005. Interested readers can find a comprehensive review of
the various identification methods in Kilian and Lütkepohl, 2017. Because
of the drawbacks of identifications through Cholesky decomposition and
sign restriction methods, Bouakez, Essid, and Normandin, 2013, Bouakez,
Chihi, and Normandin, 2014, Lütkepohl and Netšunajev, 2014, Lütkepohl
and Netšunajev, 2017 and Elder and Serletis, 2010a propose to use a GARCH
specification for the structural innovation to identify the SVAR model. In
this chapter, we utilized the identification procedure by allowing for het-
eroskedasticity in the structural innovations, and illustrate that using an ex-
clusion restriction on A0 may arrive at very different inferences of the im-
pulse response functions.

With respect to empirical applications in the literature, SVAR has been uti-
lized to analyse the oil prices’ responses to different measures of geopolitical
risks. For instance, Coleman, 2012 finds that the frequency of fatal terrorist
attacks in the Middle East and the U.S. troop numbers in the Middle East ex-
plains a significant amount of variation in crude oil prices. Chen et al., 2016
find a significant and positive casual effect of OPEC political risk on Brent
crude oil prices. Rather than using dummy variables and focusing on a spe-
cific geopolitical event as in Noguera-Santaella, 2016, we apply a geopolitical
risk index, constructed by Caldara and Iacoviello, 2018, to a structural break
threshold VAR (SBT-VAR) model. With the SBT-VAR model specification, the
unknown breakpoint and threshold can be estimated using maximum likeli-
hood. Then, the reduced form SBT-VAR model is generalized to its structural
form, which is identified through a GARCH specification in the structural
innovations as in Bouakez, Essid, and Normandin, 2013 and Lütkepohl and
Netšunajev, 2017. Finally, we analyse the impulse response functions of the
oil prices to geopolitical shocks. Further, we compare the volatility impulse
responses of oil prices to geopolitical shocks under two distinct scenarios. In
the first scenario, oil price volatilities respond to a simultaneous shale pro-
duction shock and a geopolitical risk shock. In the second scenario, the oil
price volatilities respond to a hypothetical shock from only one source, i.e.,
the geopolitical risk.

The chapter is organized as follows: Section 2 presents the model. Section 3
illustrations the empirical results. Section 4 concludes.
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3.2 Methodology

3.2.1 Reduced Form SBT-VAR and Structural SBT-VAR

In order to identify the changing dynamics in the oil price, first, we apply a
reduced form Structural Break Threshold VAR (SBT-VAR) model proposed
by Galvão (2006). The SBT-VAR is a generalization of the baseline VAR
model, which is specified in eq. (3.2).

The reduced form SBT-VAR is specified as

yt =
[
Γ1Xt I1,t−d1 (r1) + Γ2Xt

(
1− I1,t−d1 (r1)

)]
It (τ) +[

Γ3Xt I2,t−d2 (r2) + Γ4Xt
(
1− I2,t−d2 (r2)

)]
(1− It (τ)) + ut, (3.5)

where I (·) is an indicator function. Denote the threshold as ri, the delay pa-
rameter as di, the break-point as τ, and the transition variable as z, then, the
threshold and break indicator functions are defined as Ii,t−di (ri) = 1

(
zt−di ≤ ri

)
,

and It (τ) = 1 (t ≤ τ). The error term (or statistical innovation), ut, follows a
multivariate normal, ut

i.i.d∼ MN (0, Σu), and Σu ∈ Rk×k.

As mentioned before, a reduced form model is not sufficient for the im-
pulse responses analysis because the correlation of the statistical innovations
makes it impossible to disentangle the marginal effects of exogenous shocks.
Therefore, in order to analyse how the oil prices respond to the structural
shocks of geopolitical risks before and after the shale revolution, we are mo-
tivated to identify the mutually independent structural shocks in a regime-
changing system.

Nonlinear structural models, incorporating thresholds and breaks are pro-
posed in Baum and Koester, 2011 and Galvão and Marcellino, 2013. We ex-
tend the reduced form SBT-VAR to its structural form and denote the struc-
tural model as SBT-SVAR hereafter. The SBT-SVAR is specified as follows:

A0yt =
[
A1Xt I1,t−d1 (r1) + A2Xt

(
1− I1,t−d1 (r1)

)]
It (τ) +[

A3Xt I2,t−d2 (r2) + A4Xt
(
1− I2,t−d2 (r2)

)]
(1− It (τ)) + εt,(3.6)
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where ut = A0
−1εt or A0ut = εt . The coefficient matrix Γi can be found

from Γi = A0
−1Ai with i = 1, 2, 3, 4.

The (co)variance of the error term of the model in the reduced form Σu in eq.
(3.5) and the unconditional variance of structural shocks Σε in eq. (3.6) can
be linked by Σu =

(
A0
−1)Σε

(
A0
−1)T

. We impose normalization on the Σε.
Then, Σε is normalized to an identify matrix, Ik with Ik ∈ Rk×k, and Σu is

Σu =
(

A0
−1
) (

A0
−1
)T

, (3.7)

or in the form of the precision matrix

Σu
−1 = A0

T A0. (3.8)

A0 is the upper-triangular matrix by applying a Cholesky factorization.

Similarly to the case with a simple structural VAR in eq. (3.3), restricting A0

as a lower triangular matrix and using the Cholesky decomposition offers
a straightforward solution to identify the structural shocks in a structural
SBT-VAR (SBT-SVAR) model in eq. (3.6). However, using the Cholesky de-
composition implies restrictions on the direction of contemporaneous effects
of structural shocks.

For instance, suppose the order of the variables is fixed and the structural er-
ror is εt = (εt,GPR, εt,ShaleP, εt,OilP)

T, where εt,GPR, εt,ShaleP, and εt,OilP are
the orthogonal mutually independent structural shocks to geopolitical risk,
to shale oil production, and to oil prices at time t, respectively. A lower tri-
angular restriction in A0

−1 implies that a structural shock in geopolitical risk
has an instantaneous impact on shale oil production, the oil price, not vice
versa. Similarly, the shale oil production shocks, εt,ShaleP, instantaneously
affect the oil price, but not vice versa. These assumptions on the contempo-
raneous relationship amongst the variables appear to be too restrictive and
unrealistic.

Next section demonstrates another flexible method for identification - allow-
ing for heteroskedastic structural errors. The identification method is applied
to the STB-SVAR model in our empirical applications.
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3.2.2 GARCH Structural Errors

Rather than using the Cholesky decomposition method to identify eq. (3.6),
we can exploit the conditional heteroskedasticity, i.e. Σε,t, in the structural
shocks εt, to identify more unrestricted elements in A0. The SVAR with
GARCH (structural) innovations has been proposed in Lütkepohl and Netšu-
najev, 2017, Bouakez, Essid, and Normandin, 2013, Bouakez, Chihi, and Nor-
mandin, 2014, and Sentana and Fiorentini, 2001. A SVAR with GARCH-m
type innovations is proposed in Elder and Serletis, 2010a.

In the context of analysing the responses of oil prices and oil price volatil-
ities to geopolitical risk shocks under the shale production, a flexible A0 is
needed. A flexible A0 requires a relaxation of restrictions on the contempo-
raneous relationship amongst the variables. In other words, a flexible A0

allows for impact effects of an oil price shock (εt,OilP) on shale oil production
and geopolitical risk. For instance, the low oil prices since 2014 did not help
with the recent Venezuela crisis1 and it is reasonable to believe that the oil
price shock has had impact effects on geopolitical risk in Venezuela.

By utilizing the estimated statistical innovations ût from the SBT-VAR model
in eq. (3.5) and a GARCH specification of heteroskedasticity in Σε,t, we can
identify more unrestricted elements in A0 in a more realistic setting. Recall
that the statistical innovation ut and the structural innovations εt are linked
by A0, where

ut = A0
−1εt, (3.9)

or A0ut = εt, and the unconditional statistical innovation is Σu =
(

A0
−1)Σε

(
A0
−1)T

.
For convenience, the unconditional variance of the structural innovations are
normalized to unity, i.e. E

(
εtεt

T) = Ik with Ik ∈ Rk×k. Denote the informa-
tion set up to t is Ft, Et−1 (·) ≡ E (· | Ft−1), the heteroskadastic (co)variance
of the statistical innovation and structural innovation conditional on the his-
torical information are Σu,t = Et−1

(
utut

T) and Σε,t = Et−1
(
εtεt

T).
1“Its oil revenues account for about 95% of its export earnings. But when the oil

price plummeted in 2014, Venezuela was faced with a shortfall of foreign currency."
in How Venezuela’s crisis developed and drove out millions of people, BBC, Aug 22, 2018
https://www.bbc.co.uk/news/world-latin-america-36319877
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In Lütkepohl and Milunovich, 2016, a GARCH(1,1) process is specified for
the conditional variance of the structural innovations:

Σε,t = (Ik − ∆1 − ∆2) + ∆1 ◦
(

εt−1εt−1
T
)
+ ∆2 ◦ Σε,t−1, (3.10)

where ∆1 and ∆2 are diagonal matrices, and “◦" denotes the Hadamard prod-
uct operator. If ∆1 and ∆2 are null, then Σε,t is constant. Whereas, if ∆1 and
∆2 are positive semi-definite, then (Ik − ∆1 − ∆2) is positive definite, which
indicates that at least one of the structural innovations follow a GARCH(1,1)
process. Therefore, the GARCH(1,1) specification for an individual condi-
tional structural variance is

σ2
m,t|t−1 = (1− γm − δm) + γmε2

m,t−1 + δmσ2
m,t−1|t−2, m = 1, . . . , k. (3.11)

We follow a two-step procedure, see Bouakez, Essid, and Normandin, 2013
and Bouakez, Chihi, and Normandin, 2014, to estimate the ARCH coeffi-
cients ∆1 and GARCH coefficients ∆2 by maximizing the likelihood function
as follows:

log L ≈ −T log
∣∣∣det (A0)

∣∣∣− 1
2

T

∑
t=1

log
∣∣∣det (Σε,t)

∣∣∣− 1
2

T

∑
t=1

εt
TΣε,t

−1εt, (3.12)

where the initialization Σε,0 =
(
ε0ε0

T) = Ik. This initialization is consistent
with the intercept term Ik in eq. (3.10).

The first step requires extracting the estimated statistical innovations ût from
eq. (3.5). The reduced form SBT-VAR(p) in eq. (3.5) is estimated using maxi-
mum likelihood (ML)2, where the order of p is pre-selected by estimating the
baseline VAR in eq. (3.1) using AIC and BIC. Please refer to Galvão, 2006 for
discussions regarding the estimation procedure with the reduced form SBT-
VAR model. Then, the T× k matrix of statistical innovation ût can be treated
as observables in the second step.

2The ML estimation is achieved by r̂1, r̂2, τ̂ = min
L ≤ r1 ≤ rU

rL ≤ r2 ≤ rU
τL ≤ τ ≤ τU

log
(
det
(
Σ̂ (r1, r2, τ)

))
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The second step involves estimating the structural parameters, i.e. the non-
zero elements in A0, as well as ∆1 and ∆2. As pointed in Lütkepohl and
Netšunajev, 2017, this GARCH type structural error resembles the General-
ized Orthogonal GARCH (GO-GARCH) model proposed in Weide, 2002. As
pointed out in Lanne and Saikkonen, 2007, the GO-GARCH is a special case
of factor-GARCH model. This GO-GARCH representation in the statistical
innovation not only helps us to identify A0 but also offers us a convenient
form for the (co)variance impulse response analysis in the next step.

3.2.3 Generalized Impulse Response Functions with SBT-SVAR

In Hamilton, 1994, p.92, p.327, the impulse response functions reflect how
the perturbing shock spreads across time. Evaluation of the dynamic conse-
quence of structural shocks is a particular interest of policy makers. Denote
h as the periods succeeding one unit structural shock ξ j,t on variable j at time
t, given the information available up to t as Ft−1, the impulse response func-
tions, IR in a linear covariance stationary VAR(p) system can be calculated
by

IR
(
h, ξ j,t,Ft−1

)
=

∂yt+h

∂ξ j,t
(3.13)

using the Wold representation of a VAR(p).

However, in a nonlinear system, such as the SBT-SVAR model specified in
eq. (3.6), eq. (3.13) can no longer be used to calculate the impulse response
functions. In the nonlinear SBT-SVAR model, the variable responses to a
shock not only depend on the estimated delay variable di, but also depend
on the history preceding the shock. Moreover, the perturbing shock might
trigger a regime switch if the threshold variable z goes above the threshold
ri.

To evaluate the impact effects of structural shocks in a non-linear SBT-SVAR
system, we apply the Generalized Impulse Response Functions (GIRF) pro-
posed by (Koop, Pesaran, and Potter, 1996), which requires a h-step ahead
forecasting of the conditional mean of yt+h, in response to a one-unit struc-
tural shock, E [yt+h | ξt,Ft−1], and a h-step ahead forecasting of yt+h only
conditional on the history, E [yt+h | Ft−1]. The GIRF is then

GIRF (h, ξt,Ft−1) = E [yt+h | ξt,Ft−1]− E [yt+h | Ft−1] . (3.14)
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3.2.4 Variance Impulse Response Functions with GARCH Struc-

tural Errors

Besides evaluating the impact effects of structural shocks on the conditional
means by using the GIRF suggested by Koop, Pesaran, and Potter, 1996,
we are also interested in tracing the dynamic responses of the conditional
(co)variances Σu,t to perturbing structural shocks. In particular, we want to
compare the dynamic responses of the conditional covariance between oil
prices and geopolitical risk under two distinct scenarios - one with a simul-
taneously perturbing shale production structural shock and one without.

In the spirit of Koop, Pesaran, and Potter, 1996, Hafner and Herwartz, 2006
propose a variance impulse response function (VIRF). Denote Σu,t as the ini-
tial conditional variance preceding the strucutral shock ξt, the general ex-
pression for VIRF is

Vt+h (ξt) = E[vech (Σu,t+h) | ξt,Ft−1]− E[vech (Σu,t+h) | Ft−1]. (3.15)

The VIRF calculates the differences between the expectation of volatility con-
ditional on a perturbing shock ξt and the history Ft−1, and the expectation
of volatility only conditional on the history. Hafner and Herwartz, 2006 con-
sider a vec representation of multivariate GARCH(1,1) specified as

vech(Σu,t) = W + Ã1 vech
(

ut−1ut−1
T
)
+ B̃1 vech(Σu,t−1). (3.16)

Using eq. (3.15) and using VARMA representation of GARCH model, the
general analytic expression for VIRF in Hafner and Herwartz, 2006 is as fol-
lows:

Vt+h (ξt) = φhD+
k

(
Σu,t

1/2 ⊗ Σu,t
1/2
)

Dk vech
(

ξtξt
T − Ik

)
, (3.17)

where φh =
(

Ã1 + B̃1
)h−1 Ã1, Dm denotes the duplication matrix defined by

the property vec(Z) = Dm vech(Z) for any symmetric (m×m) matrix Z, and
D+

m denotes its Moore-Penrose inverse.

In the previous section, we propose to parameterize the heteroskedastic sta-
tistical innovations ut with a GO-GARCH model. The analytic expression of
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VIRF in eq. (3.17) offers an obvious solution to analyse the dynamic impact
effects of a structural shock on the conditional (co)variances.

In order to apply eq. (3.17), we have to make a connection between the
vec GARCH and the GO-GARCH(1,1) representations. In Weide, 2002 and
Bauwens, Laurent, and Rombouts, 2006b, the GO-GARCH model is a gen-
eralization of the Orthogonal-GARCH model, which is also a special case of
the factor GARCH models. Thus, the GO-GARCH model is nested in the
general BEKK model (Engle and Kroner, 1995a), where its properties follow
from those of the BEKK model. Hence, we first transform the GO-GARCH
into the BEKK, and then into its vec GARCH representation. See Appendix
(3.5.1) for the transformation from a GO-GARCH model to a vec GARCH. Fi-

nally, the VIRF in eq. (3.17) can be calculated using the estimated Â0
−1 from

the identified SBT-SVAR model.

The conditional moment profile framework proposed in Gallant, Rossi, and
Tauchen, 1993 is similar to the VIRF proposed in Hafner and Herwartz, 2006.
A comparison of the conditional moment profile of volatility to the baseline
profile, we refer to it as conditional volatility profile hereafter, is analogous
to VIRF. In Gallant, Rossi, and Tauchen, 1993, the shocks are interpreted as
a direct perturbation on yt. Therefore, the statistical innovation ut can be
viewed as an impulse or shock adding on the contemporaneous yt.

The analytic expressions of the conditional volatility profile are also given in
Hafner and Herwartz, 2006 based on the types of shock and baseline. Sup-
pose the baseline u0 is fixed to 0, a shock is fixed at δt, the conditional volatil-
ity profile is denoted as vt+h (δt),

vt+h (δt) = E[vech (Σu,t+h) | ut = u0 + δt,Ft−1]− E[vech (Σu,t+h) | ut = u0,Ft−1].
(3.18)

We skip the derivations in Hafner and Herwartz, 2006, but only demonstrate
the analytic expression of VIRF from Hafner and Herwartz, 2006 achieved
using the VMA representation,
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vt+h (δt) = φh

[
vech

(
(u0 + δt)(u0 + δt)

T
)
− vech

(
u0u0

T
)]

= φhD+
k vec

(
δtδt

T + 2δtu0
T
)

. (3.19)

Given the baseline u0 is fixed to 0, the conditional volatility profile simplifies
to

vt+h (δt) = φh vech
(

δtδt
T
)

. (3.20)

Suppose a fixed shock with size δt = Σu,t
1/2ξt, the conditional volatility

profile is then

vt+h

(
Σu,t

1/2ξt

)
= φh vech

(
Σu,t

1/2ξtξt
TΣu,t

1/2
)

= Vt+h (ξt) + φh vech
(

Σu,t
1/2
)

. (3.21)

Comparing eq. (3.15) and eq. (3.21), there is a clear connection between the
VIRF and the conditional volatility profile. However, the interpretations of
the perturbing shocks and the initial conditions are different. Gallant, Rossi,
and Tauchen, 1993 argue for a representative impulse response sequence,
that is either using an “average" initial condition or taking the average of
many impulse-response sequences conditional on many different initial con-
ditions draws drawn from their marginal density. Regarding the perturbing
shocks, Gallant, Rossi, and Tauchen, 1993 experiment with different sizes
of shocks in a bivariate system. Hafner and Herwartz, 2006 argue that the
choices of innitial condition (baseline) and shock could be arbitary. Hafner
and Herwartz, 2006 give a comprehensive discussion of the four different re-
sulting vt+h (δt) due to the permutations of (either fixed or random) baselines
and shocks.

Hafner and Herwartz, 2006 compare the conditional volatility profile in eq.
(3.18) with VIRF in eq. (3.15), focusing on the impact effects of two specific
events on the conditional volatilities.

To calculate the conditional volatility profile vt+h (δt) in (3.18), Hafner and
Herwartz, 2006 set the baseline as zero, i.e. u0 = 0. The estimated residual
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ût on the event day t is considered to be the perturbing shock δt, i.e. δt = ût.
Given the interpretation of shocks is different in the VIRF framework than
in the conditional volatility profile, to calculate Vt+h (ξt) in eq. (3.15), a stan-
dardized estimated residual is taken as the shock, i.e. ξt = ε̂t. Hence, using
eq. (3.9) we can estimate the shock ε̂t on day t using the estimated residual
ût and the estimated volatility state Σu,t. In this way, the identified structural
shock ε̂t in Hafner and Herwartz, 2006 is interpreted as a materialised shock,
which reflects the information in independent news.

In our case, we neither focus on the impact effects of a historical shock ξt

on a particular day, treating ξt = ε̂t as proposed in Hafner and Herwartz,
2006, nor try to directly inflict different contemporaneously related ut on yt,
treating δt = ût as proposed in Gallant, Rossi, and Tauchen, 1993, we arbi-
trarily choose fixed values of hypothetical ξt, and investigate the conditional
(co)variances respond to these hypothetical orthogonal shocks ξt, given dif-
ferent points in time with a heteroskedastic Σu,t.

Suppose the dependent variable yt is ordered as yt = (GPRt, 100×∆ log ShalePt,
100×∆ log OilPt)T, where 100×∆ log ShalePt calculates the percentage change
in the shale production and 100× ∆ log OilPt calculates the oil returns. Let
a hypothetical structural shock ξt at time t as ξt = εt = (1, 0, 0)T, the order
of the variables indicates that there is only one unit hypothetical structural
shock imposed on the geopolitical risk at time t. Similarly, let another type
of unit hypothetical structural shock ξ∗t be imposed on both geopolitical risk
and shale production simultaneously, i.e. ξ∗t = ε∗t = (1, 1, 0)T. Denoting the
VIRF with shock ξ∗t for h periods ahead as V∗t+h, and VIRF with shock ξt as
Vt+h, using eq. (3.17),

V∗t+h (ε
∗
t )−Vt+h (εt) = φhD+

k

(
Σu,t

1/2 ⊗ Σu,t
1/2
)

Dk vech
(

ξ∗t ξ∗T
t − ξtξT

t

)
(3.22)

calculates the differences in VIRF under two different circumstances given
a perturbing geopolitical shock, i.e. one under a simultaneous shale shock,
whereas the other without.

We now look at the differences in variance responses in the two scenarios
using the conditional volatility profiles. Suppose the shock δt directly in-
flicts on yt takes the form δt = Σ1/2

t εt, and suppose a hypothetical shock
εt = (1, 0, 0)T, the corresponding conditional variance profile is denoted as
vt+h. In another scenario, suppose the hypothetical shock consists of both a
geopolitical risk shock and a shale production shock, i.e. ε∗t = (1, 1, 0)T , and
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shock δ∗
t takes the form δ∗

t = Σ1/2
t ε∗t , denote the corresponding conditional

variance profile as v∗
t+h. Using eq. (3.18), the difference between these two

conditional (co)variance profiles under the two different direct perturbations
is

v∗t+h (δ
∗
t )− vt+h (δt) = φt+h

(
vech

(
Σ1/2

u,t ε∗t ε∗T
t Σ1/2

u,t
)
− vech

(
Σ1/2

u,t εtεT
t Σ1/2

u,t
))

= V∗t+h (ε
∗
t )−Vt+h (εt) (3.23)

Therefore, using a fixed baseline, the impact differences between the two
fixed hypothetical shocks ε∗t and εt has the same analytical expression in the
conditional volatility profile as that in the VIRF framework.

As seen from eq. (3.17), the three functions, V∗t+h (ε
∗
t )− Vt+h (εt), V∗t+h (ε

∗
t )

and Vt+h (εt), share the same rate of decay, which is determined by φh. Also,
because we fix the size of shocks in ε∗t and εt, vech

(
ε∗t ε∗T

t
)
− vech

(
εtεT

t
)

is
also fixed. Therefore, the volatility impulse responses difference, V∗t+h (ε

∗
t )−

Vt+h (εt), will mainly depend on the conditional variance Σu,t at that point in

time. It also depends on Â0
−1, which is also reflected in the decay parameter

φh.

In order to evaluate the impact effects of shale revolution, we analyse the dif-
ferences in VIRF, V∗t+h (ε

∗
t )− Vt+h (εt), or the differences in two conditional

volatilities profiles, v∗t+h (ε
∗
t )− vt+h (εt), under the two types of hypotheti-

cal shocks, i.e. shock ε∗t represents that shale production is imposed with a
simultaneous shock as well as geopolitical risk, whereas εt indicates only the
geopolitical risk variable is imposed with a unit shock.

3.3 Empirical results

In this section, we aim to analyse the changing dynamics of oil prices under
the shale oil revolution. Also, we would like to pin down the impact effects of
geopolitical risk on oil prices by allowing for simultaneous shale production
shocks.
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3.3.1 Data

For the measurement of geopolitical risk, we use an index constructed by Cal-
dara and Iacoviello, 2018. Caldara and Iacoviello, 2018 follow the method
proposed in Saiz and Simonsohn, 2013 and Baker, Bloom, and Davis, 2016
and conduct an automatic text search over 11 English newspapers, including
6 from the U.S., 4 British ones, and 1 Canadian newspaper. The index is con-
structed by counting the frequency of articles related to geopolitical risks, i.e.
GPR = No.GPRrisk articles/No.Total articles. In Caldara and Iacoviello,
2018, geopolitics is defined as “the practice of states and organizations to con-
trol and compete for territory", whereas geopolitical risk is defined as “risks
associated with wars, terrorist acts, or tensions between states that affect the
normal and peaceful course of international relations". Hence, the geopolit-
ical threat risk index constructed by Caldara and Iacoviello, 2018 relates to
threats of conflicts in the world and it represents the proportion of western
mainstream media coverage in English speaking countries. In fig. (3.1), the
top left plots the monthly geopolitical threat risk index (GPR).

Then the GPR index is standardized using
(
GPRt − GPR

)
/σGPR. The monthly

shale oil production (ShaleP), measured by thousands barrels per day, is col-
lected from the U.S. Energy Information Administration. The West Texas
Intermediate (WTI) crude oil spot prices, in dollars per barrel, are also collect
from the U.S. Energy Information Administration. Then, the WTI prices are
adjust to real prices using a monthly CPI index. The CPI index (for all urban
consumers) is collected from the Bureau of Labour Statistics, [1982-84=100]
3. The return of oil price is calculated by Rt = 100× log (∆OilPt). Fig. (3.1)
plots all original and transformed data series.

3.3.2 Estimation Results

First, the data yt = (GPRt, 100× ∆ log ShalePt, 100× ∆ log OilPt)
T is fitted

using five competing models, which are VAR, TVAR, SBVAR, SBTVAR with
changing thresholds, and SBTVAR with a constant threshold. The geopoliti-
cal threat risk Index, GPRt, is chosen as the threshold variable z. Table (3.1)
indicates that based on the LR, FPF and AIC criterion, the optimal lag length
is selected as p = 2 in the baseline VAR model from an Ordinary Least Square

3https://www.bls.gov/cpi/tables/supplemental-files/historical-cpi-u-201805.pdf
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FIGURE 3.1: Plots of data series. Top panel from left to
right plots: monthly GPR-threat index, monthly shale oil pro-
duction (ShaleP) in thousands barrels per day, CPI adjusted
monthly WTI oil price. Bottom panel from left to right plots:
GPR− threatt, standardized monthly GPR-threat index, 100×
∆ log ShalePt, monthly percentage change in shale oil produc-

tion, 100× ∆ log OilPt, monthly return on WTI
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(OLS) estimation. Therefore, we pre-specify p = 2 in the reduced form SBT-
VAR.

TABLE 3.1: Optimal lag length p selection in the baseline VAR

lag LL LR df p FPF AIC HQIC SBIC
0 -1497.62 301.937 14.223 14.243 14.271
1 -1365.41 264.41 9 0.000 93.918 13.056 13.133∗ 13.247∗

2 -1351.3 28.227∗ 9 0.001 89.48∗ 13.008∗ 13.142 13.341∗
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TABLE 3.2: Estimation results using the reduced form models

TVAR SBVAR SBTVARc SBTVAR

d̂ 12 − 1 15, 23
r̂ 0.088 − -0.089 -0.357

(-4.819, 4.417) (-12.332, -1.284) (0.043, 2.229)
TR1[-0.4252] 0.306
TR2[0.0333] (-3.345, 13.099)

τ̂ − 2007 2014.417 2013.75
(2006.917, 2007.667) (2013.483, 2014.750) (2013.482, 2014.750)
SB1[2007.000]
SB2[2011.750]

T[189] 139 59 105 68
50 130 43 72

9 41
32 8



3.3. Empirical results 85

Table (3.2) presents the estimation results using the competing models in
their reduced form. Then, we follow a “specific to general" approach in
Galvão, 2006, to select the model based on bounded Wald (W) and LM statis-
tics.

Denote θ1 under the null and θ2 under the alternative, the W and LM statistics
are

W (θ2) = n

(
SSR

(
θ̂1
)
− SSR (θ2)

SSR (θ2)

)
,

LM (θ2) = n

(
SSR

(
θ̂1
)
− SSR (θ2)

SSR
(
θ̂1
) )

.

Based on Altissimo and Corradi, 2002, BWald and BLM are the maximum
values of a Wald and LM statistic over a grid of possible values for the nui-
sance parameter. Using the asymptotic bounds (1/2ln(ln(T))), the decision
rule is that the model under alternative will be selected if Bounded Wald
(BWald) or Bounded LM statistic (BLM) is larger than 1. The bounded Wald
statistic (BWald) is

BWald =

 1
2 ln (ln (T))

 sup
θL

2≤θ2≤θU
2

W (θ2)

1/2
 > 1. (3.24)

Interested readers can refer to the simulation study in Galvão, 2006 with re-
spect to the ability of BWald and BLM to discriminate between different re-
duced form VAR specifications.

Table (3.3) presents the estimated BWald and BLM for the model selection
procedure. Step 1 consists two sets of model comparisons in 1A and 1B. The
baseline VAR is compared with the alternative TVAR and SBVAR models.
The BWald and BLM in 1B are both larger than 1. Therefore, SBVAR is se-
lected based on the desicion rule. As pointed out in Galvão, 2006, only if
none of the alternative hypotheses are rejected using the decision rule, the
VAR shall be chosen. Otherwise, if at least one of the statistics suggests rejec-
tion of the VAR, we have to proceed to step 2.

We then proceed to step 2, i.e. 2A1, 2A2, 2B1, and 2B2, which consists of
four sets of model comparison. According to the statistics in step 1 (1A and
1B) in table (3.3), BWald (BLM ) with SBVAR under the alternative is larger
than BWald (BLM ) with TVAR under the alternative, we use the statistics
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TABLE 3.3: BWald and LM bounds with monthly data 2000 : 1
- 2017 : 10. Selection rule: if BWald(BLM) > 1, choose model

under alternative.

H0 VS HA BWald BLM
1A VAR : TVAR 0.834 0.818
1B VAR : SBVAR 1.116 1.078

2A1 TVAR : SBTVARc 1.514 1.422
2A2 TVAR : SBTVAR 0.894 0.874
2B1 SBVAR : SBTVARc 1.308 1.248
2B2 SBVAR : SBTVAR 0.513 0.509

X1 TVAR : 3R-TVAR 1.171 1.127
X2 SBVAR : 2-SBVAR 1.277 1.221

in step 2B1 and 2B2 to verify whether the inclusion of a threshold improves
the SBVAR using estimated SBT-VAR and SBT-VARc under the alternative.
Because the statistic with SBT-VARc under the alternative (in 2B1) is larger
than the statistic with SBT-VAR under the alternative (in 2B2), the inclusion
of a constant threshold has to be considered. Therefore, from table (3.3), the
SBT-VARc model is chosen based on the decision rule. If both statistics in 2B
are smaller than 1, the SBVAR would have been chosen.

According to the estimation results in table (3.2), a break is detected in April/May,
2014. The 90% confidence interval, computed using bootstrap, for the break
is between April, May 2013 and September 2014.

3.3.3 GARCH Structural Innovations and a Flexible A0

Fig. (3.2) plots the estimated residuals ût from the reduced form SBT-VARc
model. From the histograms and a clustering patten of ût, we are incen-
tivized to use the GO-GARCH model and allow for heteroskedasticity in the
conditional (co)variances. Hence, with the GO-GARCH representation, we
are able to identify A0

−1 in
ut = A0

−1εt,

as well as to identify the heteroskedastic structural shocks εt.
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FIGURE 3.2: Heterskadsitic statistic innovation ût and fitted
distribution

Table (3.4) presents the estimated results from the GO-GARCH model in eq.
(3.9) and eq. (3.11). From table (3.4), the structural shocks in the standardized
geopolitical threat risk εt,GPR is estimated to follow a univariate GARCH(1,1)
process and the structural shocks in the oil returns εt,OilP are estimated to
follow an ARCH process.

TABLE 3.4: Identify A0
−1 with GARCH structural errors

Â−1
0 -0.945 0.323 -0.023

0.129 0.126 -0.983
-0.311 -0.947 -0.074

coef. t-prob
STAD GPR Threat γ̂1 0.122 0.034

δ̂1 0.817 0.000

∆ log Shale γ̂2 0.099 0.108
δ̂2 0.000 0.1878

∆ log OilP γ̂3 0.320 0.011
δ̂3 -0.054 0.490
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Fig. (3.3) plots the estimated conditional variance, covariance and correlation
for ut,GPR, ut,ShaleP and ut,OilP. Towards the end of 2011, there is a big spike
in the conditional covariance between shale production and oil prices, largely
due to the spike in the shale production variance. This result coincides with
the time line of the shale revolution after the successful horizontal drilling
experiment in Bakken Shale Play4.
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FIGURE 3.3: Estimated conditional (co)variance and correlation
using GO-GARCH structural errors. Top panel plots the condi-
tional variances, middle panel plots the conditonal covariances,

and bottom panel plots the conditional correlation.

3.3.4 Generalized Impulse Responses and Variance Impulse

Response Functions

Using eq. (3.14), we analyse the responses of oil returns to one-unit structural
shock in the geopolitical risk index. Because the geopolitical risk variable
(GPRt) is chosen as the threshold variable, a structural shock - in combination

4For more information relating to the history of advances in the technology of shale pro-
duction, through fracking oil from its rock formation, please see https://bakkenshale.com
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with the feedback effects from other endogenous variables such as ShalePt

and OilPt - may trigger a regime switch. Therefore, the impulse response
functions in the nonlinear SBT-SVARc may not appear to be smooth decaying
functions as it would be in a linear baseline VAR. Moreover, according to
eq. (3.5), the regime switch also depends on the estimated delay variable d̂i.
Therefore, the impulse response functions for h step ahead also depends on
the history Ft+h−1.

FIGURE 3.4: ∆Oil price responses to shock in GPR with GO-
GARCH structural errors

Using the estimated results from the reduced form SBT-VARc and Â0
−1 in

table (3.4), we impose a structural shock εt = (1, 0, 0)T, with t = 1, . . . , 170.
That is imposing a one unit shock on geopolitical risk, where εt,GPR = 1,
starting from August 2003. We would like to see how oil returns respond to
the same size of geopolitical shocks over time. The same exercise is repeated
over 170 periods. Fig. (3.4) plots these 170 generalized impulse response
functions of oil price returns to one - unit shock on the geopolitical risk vari-
able εt using eq. (3.14).
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FIGURE 3.5: ∆Oil price responses to shock in GPR a comparison
between 2003:08 and 2017:10. Dash line plots the GIRF of ∆Oil
price in August 2003. Solid line plots the GIRF of ∆Oil price in

August 2017.

We pick the first series (August 2003) and the last series (October 2017) from
fig. (3.4) and plot them together for an ad hoc comparison. Fig. (3.5) com-
pares the oil price responses to a one unit geopolitical risk shock before and
after the estimated break in 2014. Both fig. (3.4) and fig. (3.5) show that the
generalized impulse response functions are smoother towards the end of the
sample of 170.

Given that the size of the hypothetical structural shocks is fixed and the iden-

tified Â0
−1 does not vary with time, the smoothness in the response func-

tions imply that the impose structural shock εt did not induce abrupt regime
switches after the break. Given the GPR index around August 2003 and Oc-
tober 2017 are on a similar level, see from fig. (3.1), this difference in the
impulse response functions must be owing to a joint effort from the feedback
coefficient matrices (Â3 and Â4) and identified contemporaneous relation-

ship amongst the variables Â0
−1. The shock impact effects has a smoother

spread over time after the break.

Appendix (3.5.2) plots the generalized impulse response functions of oil prices
to a one unit structural shock in the geopolitical risk variable using the Cholesky

identification method, where Â0
−1 is restricted to be the lower triangular of

Σu via a Cholesky decomposition. We argue that, in line with the existing
literature, the Cholesky method to identify structural models implies restric-
tive and unrealistic assumptions.
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FIGURE 3.6: V∗t+h (ε
∗
t ) − Vt+h (εt) for σ2

OilP,t. The imposing
shock ξ∗t = (1, 1, 0)T represents a structural shock with one unit
on geopolitical risk with a simultaneous unity shale production
shock. Shock ξt = (1, 0, 0)T represents only geopolitical risk

variable is imposed with a unit structural shock.

Rather than focusing on the effects of a single historical event as proposed
in Hafner and Herwartz, 2006, we aim to uncover the (co)variance response
functions to different hypothetical orthogonal shocks at different points in
time. The two hypothetical shocks we impose on the system are ε∗t and εt,
where ε∗t = (1, 1, 0)T represents a simultaneous unity geopolitical risk shock
and a unity shale production shock, whereas εt = (1, 0, 0)T represents the
hypothetical unit structural shock is only imposed on the geopolitical risk
variable.

The variance impulse responses V∗t+h (ε
∗
t ) and Vt+h (εt) are then calculated

using eq. (3.15). Given the discussion in section (3.2.4), the difference in
VIRF, V∗t+h (ε

∗
t )−Vt+h (εt), and the difference in two conditional volatilities

profiles, v∗t+h (ε
∗
t )− vt+h (εt), have the same analytic expression. Therefore,

using eq. (3.22), the function φhD+
k
(
Σ1/2

u,t ⊗ Σ1/2
u,t
)

Dk vech
(

ξ∗t ξ∗T
t − ξtξt

T
)

is determined by φh and the estimated time-varying (co)variance Σu,t. Fig.
(3.6) plots the volatility impulse response difference of oil returns and fig.
(3.7) plots the difference of cov (GPRt, OilPt) responses, to the two types of
hypothetical shocks respectively.
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FIGURE 3.7: V∗t+h (ε
∗
t )− Vt+h (εt) for covGPRt,OilPt . The impos-

ing shock ξ∗t = (1, 1, 0)T represents a structural shock with one-
unit on geopolitical risk with a simultaneous unity shale pro-

duction shock. Shock ξt = (1, 0, 0)T

From fig. (3.6), the largest VIRF difference is at around 2003 and 2015 (0.035).
The smallest VIRF difference is at around 2010(0.01), which implies that the
extra unit shale oil production shock induces small positive increases on oil
price volatility. In other words, the conditional volatility of oil prices is higher
under a simultaneous geopolitical risk and shale oil production shock, com-
pared with the counterpart scenario where the shock is only imposed on
the geopolitical risk variable. Because the VIRF difference function, in eq.
(3.22), mainly depends on the conditional (co)variance at that point in time,
by examining fig. (3.3), the conditional variance σOilP in Σu,t is maximized
at around 2003 and 2015 periods, and minimized around 2010, it is not sur-
prising that a positive shale production shock does not lower the conditional
volatility response in oil price to geopolitical risk shocks.

From fig. (3.7), the geopolitical risk and oil price covariance responses (σGPRt,OilPt)
to the extra unit shale production shock (ε∗t = (1, 1, 0)T) is decreased by 5 ∼
20× 10−3 compared with the covariance responses without shale production
(εt = (1, 0, 0)T) in the 170 periods, apart from a small window around 2010.
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The differences of σGPRt,OilPt , which are the 4-th elements in vech
(
V∗t+h (ε

∗
t )−Vt+h (εt)

)
,

were maximized around 2015 and 2003, and minimized round 2010. The
shape of the differenced (co)variance response surface over these 170 sample
periods corresponds to the estimated conditional GO-GARCH (co)variance,
which is plotted in fig. (3.3).

3.4 Conclusion

In this chapter, we focus on two aspects: First, the impact of geopolitical
uncertainties on oil price volatility under the shale oil production. Second, oil
price impulse response functions under a structural geopolitical risk shock
amidst the shale revolution.

We extend a reduced form structural break threshold vector autoregressive
(SBT-VAR) model to its’ structural form (SBT-SVAR). Then, we allow for a
flexible contemporaneous relationship amongst the variables and identify
the structural innovations by allowing for heteroskedasticity. Compared with
the conventional reduced form VAR and TVAR models, a SBT-VAR with a
constant threshold is supported by the data. A break point in 2014 is iden-
tified. We find that the Cholesky decomposition method and fixing the or-
der of the variables may lead to misinterpretations and over-estimations of
the responses of oil price to the geopolitical risk shocks. Over a 170 sam-
ple period, the impulse response functions of oil prices to a unity structural
geopolitical risk shock is smoother after the break point in 2014 compared
with those before the break. We argue, given a similar level of the threshold
variable, i.e. the geopolitical risk index, the identified feedback coefficient
matrices in a structural SBT-VAR model help the imposed shock to smoothly
spread over time after 2014.

We then analyse the (co)variance impulse response with respect to two dis-
tinct shock scenarios, one with only a geopolitical risk shock, the other with
simultaneous shale production and geopolitical risk shocks. We find the con-
ditional volatility of oil prices are higher with a shale production shock than
without in the 170 sample period. Allowing for changes in the unconditional
variances could be a further extension to this research.
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The covariance response between geopolitical risk and oil price is reduced by
5 ∼ 20× 10−3 with the extra unit shale production shock. The scale of the dif-
ferences in the (co)variance responses over this 170 sample period depends
on the identified A0

−1 in the SBT-SVAR model, as well as the GO-GARCH
specification in the statistical innovations. The differences in the (co)variance
responses under the two scenarios also correspond to the estimated condi-
tional volatilities at those points in time.

In terms of the further research, firstly the impact of shale oil production on
the U.S. crude oil market is valuable to study by add other crude oil market
variables, such as crude oil inventory in the U.S. market. Also, it is interesting
to discuss in further if the U.S. becomes more dominant in the world crude
oil market by shale oil production boosting. Finally, it probably results dif-
ferent impose response if other structure model identify method is applied. I
encourage researchers to apply a different method to redo the same analysis.
It will be interesting to compare the difference and valuable to make some
conclusion.

3.5 Appendix to Chapter 3

3.5.1 GO-GARCH in BEKK representation

Denote information set up to t is Ft, Et−1 (·) ≡ E (· | Ft−1) and the statistical
innovation is

ut = A0
−1εt, (3.25)

where Σε,t = Et−1
(
εtεt

T) and Σu,t = Et−1
(
utut

T). The unconditional vari-
ance of the structural innovations are normalized to unity, i.e. E

(
εtεt

T) = I.
The unconditional variance of the statistical innovation is Σu =

(
A0
−1)Σε

(
A0
−1)T

.
The heteroskedasticity in the structural innovations can be specified with a
GARCH(1,1) process as follows

Σε,t = (I − ∆1 − ∆2) + ∆1 ◦
(

εt−1εt−1
T
)
+ ∆2 ◦ Σε,t−1, (3.26)

where ∆1 and ∆2 are diagonal matrices, and “◦" denotes the Hadamard prod-
uct operator. If ∆1 and ∆2 are null, then Σε,t is constant. ∆1 and ∆2 are posi-
tive semi-definite, and (I − ∆1 − ∆2) is positive definite, which indicate that
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at least one structural innovation is GARCH(1,1). Therefore, the GARCH(1,1)
for an individual conditional structural variance is

σ2
m,t|t−1 = (1− γm − δm) + γmε2

m,t−1 + δmσ2
m,t−1|t−2, m = 1, . . . , k. (3.27)

Therefore, the linear combination of A−1
0 and εt fit in a GO-GARCH repre-

sentation proposed in Weide, 2002.

A0
−1 = PΛ1/2UT, (3.28)

where P and Λ denote the matrices with the orthogonal eigenvectors and the
eigenvalues of Σu =

(
A0
−1)Σε

(
A0
−1)T

, respectively. U is the orthogonal
matrix of eigenvectors of A0

−1A0
−1T. In Weide, 2002, the matrices P and

Λ are estimated directly by means of unconditional information, e.g. from
the sample covariance matrix Σu. Therefore, in the GO-GARCH model, to
identify A0

−1, we have to identify the orthogonal matrix U. Considering
the GO-GARCH is nested in the more general BEKK model, we fit the GO-
GARCH in the BEKK representation.

Consider the BEKK model proposed by Baba, Engle, Kraft, and Kroener in
Baba et al., 1990,

Σu,t = C +
k

∑
i=1

Aiut−1ut−1
T Ai

T +
k

∑
j=1

BjΣu,t−1BT
j , (3.29)

matrices {Ak
i=1} and {Bk

j=1} are restricted to have identical eigenvector ma-
trix A0

−1, where the eigenvalues of Ai and Bj are all zero except for the i-th
and j-th one, respectively. Assume C can be decomposed as A0

−1Dc A0
−1T,

where Dc is a positive definite diagonal matrix. Then the associate BEKK
parameterization is equivalent to a GO-GARCH(1,1).

Proof. matrices {Ak
i=1} and {Bk

j=1} are restricted to have identical eigenvec-
tor matrix A0

−1 so that they can be diagonalized as

Ai = A0
−1DAi A0

−1T Bj = A0
−1DBj A0

−1T, (3.30)
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where DAi and DBj denote diagonal eigenvalue matrices. Note all elements
of DAi and DBj are zero except for the i-th and j-th elements. Therefore, de-
noting the only non-zero elements ai in DAi and bj in DBj , where ai and bj

represent the only non-zero eigenvalue of Ai. By substitution we have

Σu,t =A0
−1Dc A0

−1T +
k

∑
i=1

A0
−1DAi A0ut−1ut−1

T A0
TDAi A0

−1T

+
k

∑
j=1

A0
−1DBj A0Σu,t−1A0

TDBj A0
−1T

, (3.31)

which can be simplified to

Σu,t = A0
−1

[
Dc +

k

∑
i=1

DAi A0ut−1ut−1
T A0

TDAi +
k

∑
j=1

DBj A0Σu,t−1A0
TDBj

]
A0
−1T.

(3.32)

According to eq. (3.25), ut, where ut = A0
−1εt or εt = A0ut, represents

the unobserved components in the GO-GARCH model. Denoting Σε,t =

A0Σu,t A0 as the conditional covariance of εt, by arranging eq. (3.31), we find

Σε,t = Dc +
k

∑
i=1

DAi εt−1εt−1
TDAi +

k

∑
j=1

DBj Σε,t−1DBj . (3.33)

By the properties of matrices DAi and DBj , it follows that the sum can be
re-written using Hadamard product as

k

∑
i=1

DAi εt−1εt−1
TDAi = DA ◦ εt−1εt−1

T,
k

∑
j=1

DBj Σε,t−1DBj = DB ◦ Σε,t−1,

(3.34)

where DA = diag (a1, . . . , ak) and DB = diag (b1, . . . , bk). Then Dc, DA ◦
ut−1ut−1

T, and DB ◦Σε,t−1, are all diagonal, and Σε,t, the conditional covari-
ance matrix of εt, is also diagonal. Therefore, eq. (3.34) implies a univariate
GARCH(1,1) specification for εt as it is assumed by the GO-GARCH model.
Therefore, using our GARCH(1,1) specification in eq. (3.26),
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C = A0
−1Dc A0

−1T

Ai = A0
−1DAi A0

−1T

Bj = A0
−1DBj A0

−1T.

With the estimates of DA and DB, we can find matrices {DAi} with i =

1, . . . , k and {DBj} with j = 1, . . . , k. After formalizing the GO-GARCH into
the BEKK form, eq. (3.29) can be transformed to the corresponding vec form.

Vectorizing eq. (3.29),

vech (Σu,t) = vech (C) +
k

∑
i=1

vech
(

Aiut−1ut−1
T Ai

T
)
+

k

∑
i=1

vech
(

BjΣu,t−1Bj
T
)

,

(3.35)

Denote ⊗ as the Kronecker product operator, recognizing vec
(
xyT) = y⊗ x

and using the product rule 5 with Kronecker product, eq. (3.35) becomes

vec (Σu,t) = vec (C)+
k

∑
i=1

(Ai ⊗ Ai) vec
(

ut−1ut−1
T
)
+

k

∑
i=1

(
Bj ⊗ Bj

)
vec (Σu,t−1) .

(3.36)

Denoting Dk as the duplication matrix, given vec(A) = Dk vech(A), eq.
(3.36) is

Dk vech (Σu,t) = Dk vech(C) +
k

∑
i=1

(Ai ⊗ Ai) Dk vech
(

ut−1ut−1
T
)

+
k

∑
i=1

(
Bj ⊗ Bj

)
Dk vech (Σu,t−1) . (3.37)

Define the generalized inverse of Dk as D+
k =

(
Dk

TDk
)−1

Dk
T, that is a

(k × (k + 1)/2) × (k2) matrix, where Dk where D+
k Dk = Ik Then, we can

have a unique transformation from BEKK to vech as follows:

5The product rule is (A⊗ B) (C⊗ D) = AC ⊗ BD, and vec[(Ax)
(
yT B

)
] =

(
BTy

)
⊗

(Ax) =
(

BT ⊗ A
)
(y⊗ x) =

(
BT ⊗ A

)
vec

(
xyT). vec (ABC) =

(
CT ⊗ A

)
vec B
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vech(Σu,t) = vech(C) + D+
k

(
k

∑
i=1

(Ai ⊗ Ai)

)
Dk vech

(
ut−1ut−1

T
)

+D+
k

(
k

∑
i=1

(
Bj ⊗ Bj

))
Dk vech (Σu,t−1) .

Given the vech model

vech(Σu,t) = W + Ã vech
(

ut−1ut−1
T
)
+ B̃ vech(Σu,t−1), (3.38)

We have the following relations

Ã = D+
k

(
k

∑
i=1

(Ai ⊗ Ai)

)
Dk,

B̃ = D+
k

(
k

∑
i=1

(
Bj ⊗ Bj

))
Dk.

After fitting the GO-GARCH in a vech GARCH form, we can apply the re-
sults in Hafner and Herwartz, 2006 and calculate VIRF.

3.5.2 GIRF with a Cholesky decomposition
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FIGURE 3.8: ∆Oil price responses to a structural shock in GPR
by a Cholesky decomposition.
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Chapter 4

Volatility Spillovers in ETFs

Crude Oil ETF, S&P 500 ETF, and Renewable Energy ETF (Exchange-
Traded Fund)

4.1 Introduction

An exchange-traded fund (ETF) is a collection of securities, which can be
traded on a stock exchange. Investors can use ETFs to enter a variety of as-
set classes, such as stocks, bonds, and commodities. Besides flexibility, ETF
having loads of advantages will be introduced in the following content. The
United States Oil ETF (USO) fund is applied in this chapter as oil ETF rep-
resentive, which is constructed by near-month NYMEX futures contracts on
WTI crude oil. It is favorable for short-term investors. Nowadays, renewable
energy has increasingly become a substitute for crude oil. Moreover, the con-
nection between them has been extending to the financial market. Further,
the price of oil has a substantial effect on the stock market, which is verified
by a significant amount of previous studies. Therefore, this chapter aims to
investigate the volatility spillovers in these three ETF markets.

Outstandingly, we have chosen to study the uncertainty dynamics in crude
oil and renewable energies in the ETF market. The investment in energy
derivatives is increasingly popular, especially via ETFs. The ETFs originally
and mainly issued in the U.S. market and gain rapid expansion, which reached
a high level of $5.12 trillion in June 2018 by contract with a monthly record of
$44 billion in 2013 (ETFGI). And there is still enormous potential for growth
in the ETF market (Financial Time, 2018). The ETF market has attracted to
growth investors and gained impressively rapid development, due to loads
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of advantages of ETF, such as diversification, low management fee, easy trad-
ing (therefore high liquidity), and tax-efficient. Since the last decade, renew-
able energy ETFs have been launched and expected a bright future. Buckle
et al. (2018) present ETFs play a dominant role in price discovery, comparing
with stock markets and futures contracts, in three major U.S. stock markets
(Dow Jones, NASDAQ, and S&P).

Nowadays, investors focus on ETF investment increasingly. And ETF is grad-
ually traded as hedging instrument. There are several reasons making ETF
popularity. The stock indice measure the stock market performance and pro-
vide information to investors to guide their investment behaviour. However,
indice are not tradeable. ETF solve this problem by replication index and
tracking its performance. And ETF is investable. Moreover, the underlying
index component is highly transparent in the ETF. So investors are able to ad-
just their strategy promptly and appropriately. Compared with future, ETF
also has its advantage that getting rid of maturity date.

The United States has been the second largest carbon dioxide emitter world-
wide, getting more than 5 millions kiloton of fossil fuel consumption in 2017
(EIA). The environmental damage and pollution generated by energy pro-
ducing and consuming processes make not only the U.S. also the world take
energy issues seriously. To combat climate change, the Paris Agreement is
reached worldwide at the end of 2015. International investment in renew-
able energy sources has increased roughly 240 billion U.S. dollars in alter-
native energy section in the years 2000 to 2016. And the U.S. proposed the
Clean Power Plan in 2014. As a solution for the U.S. environmental prob-
lems, renewable energy is dramatically expanded, then rapidly developed
and applied widely. The consumption of U.S. renewable energy has doubled
between 2000 and 2017 (U.S. Energy Information Administration (EIA)), get-
ting 11% of total U.S. energy consumption in 2017. Nuclear energy, as alter-
natively clean and sustainable energy, provides about 20% of the total U.S.
electricity (EIA & U.S. Department of Energy (DOE)).

Policy decisions influent crude oil price. Many nations endeavour to reduce
the environmental impact of the petroleum industry. On the other hand,
crude oil price fluctuations have been playing a crucial role in every field
of the economy. Based on the long run market activities, consumers and en-
terprises adjust their customer strategy according to upward oil fuel price.
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Households decline consumption and switch to substitutes for oil fuel en-
ergy. As reported in Managi and Okimoto, 2013’ study that there is a posi-
tive relationship between oil prices and clean energy prices. Rising oil prices
also increase the producing cost, and then depress the supply of the goods.
In macroeconomy, it decreases economic activities and reduces economic
growth (Rahman and Serletis, 2012) (Elder and Serletis, 2010b) (Rahman and
Serletis, 2011). Rising oil prices dampen the cash flow and reduce stock prices
in sequence as the producing cost increase. So the stock market also reacts to
oil price changing. Oil price uncertainty is considered an important driver of
stock price dynamics as well.

One question must be raised here that what is the actual relationship between
crude oil and renewable energies (including nuclear energy). Are they actu-
ally substitutes for crude oil in the U.S. energy market? We would like to
clarify the question according to the available information on the U.S. EIA
official website. Figure 4.1 in the appendix depicts the U.S. primary energy
consumption by source and sector in 2017. Crude oil, as one kind of liquid
raw material produced from fossil fuels, is refined into petroleum products.
Petroleum is the largest U.S. energy source, and the top two are the trans-
portation energy consumption and industrial sector energy consumption, re-
spectively taking 72% and 23% shares of the total in 2017. Whereas, 100%
nuclear energy and more than half renewable energy (57% shares of total)
have been used to create electricity. Figure 4.2 demonstrates wind energy con-
sumption and solar energy consumption have respectively increased rapidly
from 1990 to 2014. And the U.S. renewable energy consumption experienced
the largest percentage growth in renewable consumption from 2001 to 2014.
According to Figure 4.3 and Figure 4.4, wind energy takes a much bigger per-
centage in the U.S. energy consumption than solar energy in 2017, while solar
energy is projected to expand much by 2050. Generally speaking, renewable
energies are substitutes for crude oil according to energy sectoral consump-
tion in Figure 4.1. To be accurately speaking, wind energy, solar energy, and
nuclear energy are substitutes for crude oil since electric cars are becoming
more popular. Furtherly, nuclear energy can be substituted for natural gas,
as well as natural gas is an alternative to crude oil. It is another channel to ex-
plain the interaction between crude oil and other energies. Moreover, crude
oil and renewable energies can be influent by systematic risk in the energy
sector. Therefore, we are interested in the relationships between crude oil,
nuclear energy, and renewable energies.
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Moreover, the connection between oil and alternative energy resources ex-
ists not only in the physical market but also in the financial market. It is
widely acknowledged that rising oil prices have a positive effect on the stock
prices of alternative energy companies. Henriques and Sadorsky (2008) find
oil prices can be Granger causing the stock prices of alternative energy com-
panies. Researches on volatility co-movements and spillovers have provided
evidence on how volatility interactions have been working between differ-
ent energy derivatives. Sadorsky (2012) proposes volatility spillovers study
between oil prices and the stock prices of clean energy and technology com-
panies. Chang, McAleer, and Wang (2018a) exam and confirm significant
spillover effects in the natural gas spot, futures, and Exchange-Traded Fund
(ETF) markets for both USA and UK. And it defines the volatility spillover is
the delayed effect of a return shock in one asset to another asset. Reboredo
(2015) concludes the oil dynamics significantly affect the risk of renewable
energy stock prices. Chang, McAleer, and Wang (2018b) find significant and
positive latent volatility Granger causality relationship between crude oil,
solar, wind, and nuclear ETFs. Bondia, Ghosh, and Kanjilal (2016) indicate
the cointegration between alternative energy company stock prices and oil
prices have existed. Reboredo, Rivera-Castro, and Ugolini (2017) find non-
linear causality at higher frequencies and linear causality at lower frequen-
cies between oil prices and renewable energy stock prices. Luqman, Ahmad,
and Bakhsh (2019) provide evidence that oil prices have a neutral impact on
renewable and nuclear energy consumption in Pakistan economy. Reboredo
(2015) documents oil prices contribute to the downside and upside risks of
renewable energy companies were around 30%.

The price of crude oil is always considered to have an impact on stock re-
turns. But there are not consistent results about the relationship between
crude oil price uncertainty and stock returns. There is no finding about the re-
lationship between oil price changes and stock returns (Chen, Roll, and Ross,
1986)(Huang, Masulis, and Stoll, 1996)(Wei, 2003). Kling (1985), Sadorsky
(1999), Park and Ratti (2008), and Jones and Kaul (1996) provide evidence
that upward shocks in oil price have a significant effect on the stock returns.
Kilian and Park (2009) argue that demand-driven shock in oil prices have
more importance for understanding the changes in the stock market. And Al-
salman (2016) provides evidence that oil price increases and decreases have
symmetric effects on the U.S. aggregate stock return, but the symmetric ef-
fects do not exist across all the sectoral stock returns.
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One reasonable explanation for the relationship between oil and the stock
market is rising oil prices dampen the cash flow and reduce stock prices in
sequence as the producing cost increase. So the stock market also reacts to
oil price changes. Another one is based on the theory of stock valuation,
which explains stock price is the discounted value of expected future cash
flows. Wang and Liu (2016) conclude the determinants economics activ-
ities ((Hamilton, 1983);(Hamilton, 1996);(Hamilton, 2003b);(Kilian, 2009b)),
inflation rates ((LeBlanc and Chinn, 2004);(Chen, 2009)), and exchange rates
((Amano and Van Norden, 1998);(Wang and Wu, 2012);(Akram, 2004)) of ex-
pected future cash flows can be affected by oil prices. Oil price increases
can result in stock price decreases. Therefore, the oil price fluctuation is ex-
pected to be a factor driver in stock market returns. We apply the multivari-
ate GARCH-in-mean system to find the relationship between the uncertainty
of oil ETF price and the mean level of the S&P 500 ETF, and vice versa.

S&P 500 (SPX) index is composed of 500 largest U.S. publicly traded compa-
nies, basing on the market-capitalization-weighted principal. S&P 500 ETF
(SPY) is a tractor of the S&P 500 index. The oil ETF (USO) is a futures-based
commodity ETF, which is trying to track the oil commodity price. Renew-
able energy benchmark ETF (PBW) is trying to track the performance of the
stock market index (ECO) within renewable energy and energy conservation
companies. The solar energy ETF (TAN) is also an index fund, which holds
a concentrated portfolio on solar energy companies. The wind energy ETF
(FAN) focuses on index tracking in the wind energy industry. The nuclear
energy ETF (NLR) is a market-cap-weighted index fund of nuclear energy
companies.

Having briefly discussed the possible channels of interaction between crude
oil, renewable energy, and the stock market, we proceed to the discussion on
volatility spillovers and dynamic correlations of the previous research in this
field.

Volatility transmission mechanism between crude oil and alternative ener-
gies have been rarely researched. Lin and Li (2015) find volatility spillovers
from the oil market to natural gas market. Reboredo (2015) concludes the
oil dynamics significantly affect the risk of renewable energy stock prices.
Sadorsky (2012) proposes volatility spillovers study between oil price and
stock prices of clean energy and technology companies. Efimova and Serletis
(2014) find volatility spillovers return from oil to gas and electricity markets
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via using GARCH-in-mean model. Wen et al. (2014) also document signifi-
cant volatility spillovers between Chinese renewable energy and fossil fuel
companies. Based on the previous theories and market information of the in-
teraction between crude oil and clean energy resources, we have a strong in-
terest to study and sufficient reasons to believe there are volatility spillovers
between crude oil ETF and alternative energy ETFs.

Our study also involves S&P 500 ETF in analysis, because there are substan-
tial and empirical evidence on the impact of crude oil price uncertainty on
the stock market in an intensive way. Luo and Qin (2017) find crude oil
volatility index (OVX) shocks have a significant and negative effect on the
Chinese stock returns, and the effect is more significant after the recent fi-
nancial crisis. While they find positive price shock effects from oil prices to
the Chinese stock market. Sadorsky (1999) also argues that oil price volatil-
ity impacts stock returns. Then Oberndorfer (2009) also provides evidence
oil price volatility affects the European stock market. Regarding as negative
volatility spillovers between oil and stock, it is identified by (Malik and Ew-
ing, 2009)(Chiou and Lee, 2009)(Arouri and Nguyen, 2010). Awartani and
Maghyereh (2013) conclude dynamic spillover transmissions have intensi-
fied following the financial turmoil in 2008. Oppositely Zhu, Li, and Li (2014)
find weak dynamic dependence between crude oil prices and stock market
returns, exceptionally rises substantially in the post-crisis. There is a trend
to research on the dynamic correlation between crude oil and the stock mar-
ket. Hassan, Hoque, and Gasbarro (2019) point out the dynamic correlation
between the Islamic stock and crude oil increases during the global financial
crisis in China and India stock market. Filis, Degiannakis, and Floros (2011)
add detailed analysis by finding the contemporaneous correlation does not
differ for oil-importing and oil-exporting economies, and lagged oil prices
only exhibit a positive correlation with the stock market in the 2008 global
financial crisis.

We are interested in four aspects. Firstly, we identify how the volatilities
mutually work between diverse energy ETFs (including conventional energy
crude oil and non-conventional renewable energies). We not only allow the
volatility spillover to the volatility level but also volatility spillover to the
mean level. The multivariate GARCH-in-mean model is applied to figure
out the impact of crude oil ETF uncertainty on the alternative energy ETFs,
and vise versa.
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Secondly, as the crude oil price uncertainty on the stock market is substan-
tially addressed in previous literature. We are interested in the volatility dy-
namics between the crude oil ETF and the S&P 500 ETF. We suppose that the
crude oil ETF uncertainty has significant effects on the S&P 500 ETF return
in the U.S. ETF market. SPDR S&P 500 ETF trust fund (SPY) is applied here
to measure the ETF financial market performance. Further, we wonder if the
volatility of renewable energy ETFs have the contemporaneous effect on S&P
ETF return as well. Comparing with oil ETF, we expect the same directional
but weaker effect from alternative energy ETFs to S&P 500 ETF. The reason
for our expected results is the renewable energy ETFs are also in the energy
ETF section, but they have smaller market capitalization by contrast with oil
ETF.

Volatility links vary depends on different economic conditions. During the
recession, volatility spillovers and correlation generally show a high level.
Sadorsky (2012) find the evidence on this viewpoint that the dynamic condi-
tional correlation reaches its highest value since the 2008 recession because of
the effects of the economic downturn. Thirdly, we figure out that the volatil-
ity interactions do have different performances before, during and after a
financial crisis.

Moreover, Wang and Liu (2016) find the correlation between oil and the stock
market is always positive and stronger for the oil-exporting countries than
the oil-importing countries. The view is proved by Jung and Park (2011)
and Wang, Wu, and Yang (2013) that higher global economic activities drive
higher oil prices. And at the same time, it has more impacts on the oil-
exporting economies. The US historically has been a heavy importer of crude
oil, but since 2018 December it exports more oil than it ships in (Reuters, De-
cember 2018). The U.S. shale revolution has been helping boost overall U.S.
oil production. Therefore based on the previous literature and the U.S. shift-
ing from oil importer to exporter, we suppose the correlation between oil
and stock markets are stronger and keep positive nowadays than ten years
before.

We mainly contribute in two aspects. The first one is to provide evidence for
volatility spillovers between crude oil ETF, renewable energy ETFs and the
S&P 500 ETF in the U.S. ETF markets. Volatility, as a proxy of risk, is signifi-
cantly meaningful and crucial not only for researchers but also for the prac-
titioners, such as policymakers, portfolio managers, investors, consumers,
and producers. However, volatility modelling rarely has been focused on
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the energy ETF markets. We focus on the volatility spillovers and furtherly
risk management by constructing hedging strategy and portfolio weights in
crude oil, renewable energy ETFs and S&P 500 ETF. And we identify the oil
ETF uncertainty has a negative and significant effect on the S&P 500 ETF re-
turn. The volatility of energy ETFs is driven by two factors. One is relative
to the energy market and the other is the stock market. The dynamic correla-
tion results tell us that renewable energy ETF is in tandem with the S&P 500
ETF. It is valuable to investigate in ETF volatilities because it provides risk
management implication for practice.

The second contribution is applying the GARCH-in-mean model to analyze
the volatility spillover effect of energy ETFs on the mean level of the S&P
500 ETF, and vice versa. The previous energy market research mainly fo-
cuses on the volatility spillover in the variance level. They rarely investi-
gate the volatility effect on asset returns. And BEKK GARCH-in-mean is
generally applied. Our advantage is empirically applying DCC and CCC
VARMA-GARCH-in-mean model to explore the volatility spillover and con-
ditional dynamic correlation together. The most interesting finding is nega-
tive volatility spillovers in long persistence between renewable energy ETF
and the S&P 500 ETF, which breaks the initial Bollerslev’s positive striction
to all the elements in the covariance matrix. The conditions are checked to
base onConrad and Karanasos (2010)’s study. There is a failure to met all the
conditions.

The chapter is organized as follows: Section 2 discusses the dataset and vari-
ables applied in the empirical analysis. Section 3 presents the methodology
in multivariate GARCH-in-mean specifications. Section 4 illustrates the em-
pirical results. Finally, some conclusions and recommendations are given in
section 5.

4.2 Data Analysis

4.2.1 ETF Variables Introduction

This chapter applies daily data containing six ETFs to exam the volatility
spillover effects, and the data ranges are demonstrated in Table 4.4 in the
appendix. The choice of these ETFs depends on its existence and dominance
in the ETF market.
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We choose the United States Oil ETF (USO) fund as oil ETF, which is con-
structed by near-month NYMEX futures contracts on WTI crude oil. The
near-month contract is the nearest contract to maturity. The oil ETF is a
futures-based commodity ETF, which is trying to track the oil commodity
price. As oil is difficult to be stored or would incur high marginal stor-
age cost, oil ETF use oil future contracts to gain exposure to oil commodity
(Guedj, Li, and McCann, 2011). NYMEX and the Intercontinental Exchange
(ICE) are the main oil futures exchanges. The crude oil future contracts stan-
dardized for 1000 barrels of oil on one contract. The New York Mercantile
Exchange (NYMEX) West Texas Intermediate (WTI) future price comes from
the nearest maturity future contract. The construction method, rolling con-
tract in every month, make it particularly sensitive to short-term changes in
the spot price, but still may dramatically deviate from the spot price. The
method also results in heavy roll costs because of contango and backwarda-
tion. In other words, the spot price is normally higher than the forward price.
Then there will be a price difference when future contract roll over. The plot
of crude oil ETF (USO) price, oil future price, and the oil spot price is exhib-
ited in Figure 4.6 and Figure 4.7. Therefore, it is efficient to use a near-month
contract to explore oil commodity price. We can figure out that the price
spread between the oil near-month future price and the oil spot price is very
small. The ETF price approaches the crude oil commodity price downward.

SPDR S&P 500 ETF trust fund (SPY) tracks the massively popular U.S. in-
dex S&P 500. S&P 500 is weighting constructed by 500 largest market cap-
italization companies listed on the U.S. stock market. S&P 500 ETF is the
best-recognized and oldest ETF, and hold top ranking and greatest trading
volume. Therefore, it is used as a proxy of the U.S. market and treated as a
performance measurement of the U.S. stock market.

The Invesco WilderHill Clean Energy ETF (PBW) is an index fund, which
is trying to track the performance of the stock market index (ECO) of re-
newable energy and energy conservation companies. The index includes the
stocks and sectors are based on their significance for clean energy, technolog-
ical influence, and relevance to preventing pollution in the first place. The
energy industry area of renewable energy companies includes wind, solar,
biofuels and geothermal. Especially, it is structured in an equal-weighting
way instead of the cap-weighted benchmark.

The Invesco Solar ETF (TAN) is also an index fund, which holds a concen-
trated portfolio on solar energy companies. It adjusts company weight based
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on revenues from the solar-related activity. The First Trust Global Wind En-
ergy ETF (FAN) focuses on index tracking in the wind energy industry. The
weighting strategy is a float-adjusted market cap with strict limits on indi-
vidual holdings. The VanEck Vectors Uranium+Nuclear Energy ETF (NLR)
is a market-cap-weighted index fund of nuclear energy companies.

4.2.2 Preliminary Analyses

Daily prices of the ETFs are applied in this study, and the sample period
varies in the different applied dataset, covers from 10th April 2006 to 2nd
January 2019 reported in Table 4.4. Because the earliest data available for
ETFs is different. All of this dataset is available from Datastream. The ETFs
are measured in U.S. dollar, and they are listed active in the U.S. stock market.
The availability of data dictates this data set choice.

Raw data plots and time series graphs of the returns in Figure 4.8, Figure 4.9,
Figure 4.10, and Figure 4.11 in the appendix behind provide stylized facts,
that each group of time series data plot shows a consistent trend for all three
sequences. For each data series, continuously compounded daily return at
time t is calculated by price series as below formula shows:

yt = ln
(

pt

pt−1

)
× 100 (4.1)

Where ln
(

pt
pt−1

)
is the natural logarithm of the price at date t dividing by

the price at date t − 1. Base on the statistics results for each daily return
in Table 4.5, the mean and median are close to zero, and Student’s t-statistic
provides no evidence that the mean is from zero. The skewness and excess
kurtosis statistics include a test of the null hypotheses that each is zero. If the
skewness and excess kurtosis of the population values are zero if the statis-
tic series is the i.i.d. Normal distribution. Jarque-Bera is a test for normality
based upon the skewness and kurtosis measures combined. And we can see
it significantly rejects the assumption of the Normal distribution for each se-
ries. According to the kurtosis statistics, each series shows a higher level than
the Normal distribution. It is the reason we choose the multivariate Student’s
t-distribution for modelling multivariate GARCH-in-mean specification.

From Figure 4.12 to Figure 4.19, we can see volatility clustering (heteroskedas-
ticity) has occurred in all ETF return graphs. Moreover, pronounced volatility
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clustering between 2008 and 2009, and between 2011 and 2012, have occurred
contemporaneously in all three six graphs. It motivates us to apply the mul-
tivariate GARCH model. There is a strong positive unconditional correlation
between S&P 500 ETF and each renewable energy ETF. While the uncon-
ditional correlation between oil ETF and each other ETF is roughly half of
the unconditional correlation between S&P 500 ETF and each renewable en-
ergy ETF, but still positive. The unconditional correlation between squared
returns of each pair estimated series follow the similar pattern as return cor-
relation.

The multivariate Q statistic (Hosking, 1981) test result is reported in Table
4.12. The null hypothesis of this test is that there is no serial correlation
within each ETF return and also between them. In other words, all autocorre-
lations and lagged cross-correlations are zero. According to the MQ statistic
results, we have enough evidence to reject the null hypothesis and we should
include VAR process in the mean equation. Combining the information crite-
rion (AIC/BIC/HQ/Chi-Squared Test) reported by VAR lag selection tables
(Table 4.8, Table 4.9, Table 4.10, and Table 4.11), we select the lag order of 1.
Preliminary regression analysis showed there is no significant difference be-
tween a VAR with one lag and a VAR with three lags. We increase the VAR
lag number when the estimation result does not converge. For example, nor-
mally the lag order of 1 is selected. However, if we got a non-convergence in
the estimation result we have to move to order 2 for modelling the returns.

4.3 Methodology

4.3.1 Conditional Mean Definition

In the light of multivariate volatility spillovers analyses addressed by GARCH-
in-mean models, previous works identify how the volatility spillovers the
mean level. Engle, Lilien, and Robins (1987) extend the original ARCH frame-
work to allow the mean of a sequence to depend on its own conditional vari-
ance. Bollerslev, Chou, and Kroner (1992) apply the GARCH-in-mean model
to improve asset pricing theory, by allowing time-varying conditional vari-
ances of asset returns and a time-varying risk premium. The structural vec-
tor autoregression (VAR) model accommodated GARCH-in-mean errors are
broadly applied ((Elder, 1995);(Elder, 2004);(Elder and Serletis, 2010b);(Alsalman,
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2016)). They just focus on the effect of oil uncertainty on the output mean
level by allowing zero restriction, not vice versa. Ratti and Hasan (2013)
measure the effect of the return and volatility of oil price on the return and
volatility in the Australian sectoral stock. Some other works just focus on
how its own conditional variance affect on asset return (Efimova and Serletis,
2014). We improved GARCH-in-mean models mentioned above, by allowing
the variances of all returns in each mean equation ((Alsalman, 2016);(Rah-
man and Serletis, 2012);(Shields et al., 2005);(Grier and Perry, 2000);(Rahman
and Serletis, 2011)). However, the difference is we apply the vector ARMA-
GARCH constant conditional correlation (VARMA-GARCH-in-mean CCC)
model and VARMA-GARCH-in-mean dynamic conditional correlations (DCC)
model for the variance modelling part. The VARMA-GARCH model is pro-
posed by Ling and McAleer (2003). The detail is showed in the next part.

There are two components defined in multivariate GARCH specifications.
One is used to model the returns, while another one aims at the variances
and covariances modelling. We introduce three multivariate GARCH spec-
ifications (BEKK-GARCH model, CCC-VARMA-GARCH model, and DCC-
VARMA-GARCH model) to measure the conditional variance series of re-
newable energy ETF, the S&P 500 ETF, and crude oil ETF. Using GARCH-in-
mean terms explore if and how volatility spillovers influent to the mean level
of each return.

In the specification of the GARCH-in-mean model, all three variances are as-
sumed effect in each mean equation. Rahman and Serletis (2012) use the
GARCH-in-mean specification to study oil uncertainty and the Canadian
economy. The difference is we adopted conditional variances instead of con-
ditional volatility.

yt = c + Γ1yt−1 + Γ2yt−2 + Γ3yt−3 + ΨΣii,t + ut (4.2)

ut = σtvt, vt ∼ N(0, IN) (4.3)

ut|Ft−1 ∼ N(0, Σu,t) (4.4)
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where, Ft−1 denotes the available information set in period t− 1, and 0 is a
null vector. IN is the identity matrix of order N. Moreover,

yt =

 yre,t

ystock,t

yoil,t

 , Σii,t =

 σ2
re,t

, σ2
stock,t

σ2
oil,t

 , ut =

 ure,t

ustock,t

uoil,t

 (4.5)

Σu,t =

 σ2
re−re,t σ2

re−stock,t σ2
re−oil,t

σ2
stock−re,t σ2

stock−stock,t σ2
stock−oil,t

σ2
oil−re,t σ2

oil−stock,t σ2
oil−oil,t

 (4.6)

c =

 cre

cstock

coil

 , Γi
1 =

γi
11 γi

12 γi
13

γi
21 γi

22 γi
23

γi
31 γi

32 γi
33

 , Ψ =

ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33

 (4.7)

Where the vector yt includes three series of returns of renewable energy ETF
(wind ETF/solar ETF/nuclear ETF/renewable energy benchmark ETF), S&P
500 ETF, and oil ETF. c is the constant vector. Γi, i = 1, 2, 3 is the parameter
matrix in last i period of yt−i. Ψ catches the information of how conditional
variances influent the mean level of each return. Σii,t is stacking all condi-
tional variances in a vector.

Historical stock returns generally have serial correlations. And the risk pre-
mium term introduces serial correlations in the return series y. The volatility
processes in the variances equation are the reason for serial correlations intro-
duced. The model characterizes the evolution of the mean and the variance
of a time series simultaneously. Thus,

yt|Ft−1 ∼ N((c + Γiyt−i + ΨΣii,t), Σu,t) (4.8)

F is the information set.

The parameter ψ in the mean equation is risk premium parameter. Positive
ψ indicates that the return is positively related to its volatility and vice versa.
We apply conditional time-varying variances σ2 as a regressor in the mean
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equation, to capture the risk-return relationship. σ2 is the risk premium term.
A risk premium of an asset is a form of compensation for investors who tol-
erate the extra risk. In applications, there are several specifications of risk
premium are used, such as standard deviation σ and taking the natural log-
arithm of variances ln(σ2) (Engle, Lilien, and Robins (1987), Elyasiani and
Mansur (1998), Ryan and Worthington (2004)). The GARCH-in-mean model
allows a time-varying risk premium.

Given the evidence of the Jarque-Bera normality test, we characterize the
joint data generating process underlying ETF returns as a trivariate GARCH-
in-mean model within the errors from the multivariate Student’s t-distribution.
The Student’s t-distribution is fatter-tailed distribution than the Normal dis-
tribution. We allow for a fat-tailed distribution for the financial dataset we
applied in this chapter, then the multivariate Student’s t-distribution is se-
lected. Under the Student’s t-distribution assumption, the standardized er-
rors vt follow a multivariate Student’s t-distribution with ν degree of free-
dom.

4.3.2 Conditional Variances Definition

Turning on the definition of the conditional variances, we use three specifi-
cations: the BEKK-GARCH model, the CCC-VARMA-GARCH model, and
the DCC-VARMA-GARCH model. Engle and Kroner (1995b) introduce the
BEKK model, which using the quadratic form for the conditional covari-
ance matrix to impose its positivity. In fact, an early version of this chap-
ter was written by Baba, Engle, Kraft, and Kroner in 1991, which led to the
acronym BEKK. In the BEKK model below, C∗, A∗i and B∗j are N ∗N matrices,
while constant C∗ is represented by a lower triangular matrix. The resulting
product matrix will be the same in either upper triangular matrix or lower
triangular matrix definition for the constant C∗. The ARCH and GARCH
terms are formed by a sandwich product with an N × N matrix of coeffi-
cients around a symmetric matrix ut−iuT

t−i. In keeping with the literature, we
define the premultiplying matrix is the transposed one:

Σu,t = C∗C∗T +
i

∑
i=1

A∗Ti ut−iuT
t−i A

∗
i +

j

∑
j=1

B∗Tj Σu,t−jB∗j (4.9)
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When we try to interpret the result of the BEKK-GARCH model, we should
be careful. The parameter of the BEKK model does not represent directly
the impact of the different lagged terms of the elements of the covariance
matrix (Σu,t). Because of the standard use of the transpose of A∗i and B∗j as
the pre-multiplying matrix, the coefficients have the opposite interpretation
as aij is the effect of residual i on variable j, rather than j on i in most other
forms of GARCH models. The number of parameters in the BEKK(1,1,1)
model is N(5N + 1)/2. The difficulty when estimating a BEKK model is the
high number of unknown parameters. Therefore it is not surprising that the
BEKK model is rarely used when the number of the sequence is larger than
3 or 4 (Bauwens, Laurent, and Rombouts, 2006a). And the BEKK model can
have a poorly behaved likelihood function, which also makes the estimation
difficult. The reason for this difficulty is changing the signs of all elements
of C∗, A∗i or B∗j will have no effect on the value of the likelihood function
(Enders, 2008).

Ling and McAleer (2003) propose variances of the multivariate GARCH model
follow a VARMA process. Conditional variances include not just own lagged
squared residuals and own variances, but all the other returns’ lagged squared
residuals and variances in each variance equation (not to be confused with
VARMA model for the mean).

σ2
ii,t = cii +

3

∑
j=1

aiju2
j,t−1 +

3

∑
j=1

bijσ
2
jj,t−1 (4.10)

Where, aij is the parameter for lagged squared residuals for variable j with
effect on variance i, which also called ARCH effect term. While bij is the
GARCH effect term, which is the parameter for the lagged variance of vari-
able j with effect on variance i. We adopt the VARMA-GARCH specification
as the first model in CCC and DCC system for calculating the conditional
variances.

The CCC and DCC models can be viewed as nonlinear combinations of uni-
variate GARCH models. We define the individual conditional variances fol-
low a VARMA process mentioned above. Then we model the conditional
correlation matrix by imposing its positive definiteness at any time t. The
CCC model and the DCC model have the advantage that it can be applied to
very large numbers of variables compared with the BEKK model.
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Bollerslev et al. (1990) propose a constant conditional correlation GARCH
(CCC-GARCH) model. And Engle (2002) introduces dynamic conditional
correlations GARCH (DCC-GARCH) model, in which conditional correla-
tions are time dependent.

The CCC model is defined in matrix express as:

Σu,t = DtRDt, σ2
ij,t = (ρijσii,tσjj,t) (4.11)

Dt = diag(σ11,t · · · σNN,t), R = (ρij) (4.12)

The CCC model contains 2N2 + 2N parameters. Σu,t is positive definite if
and only if all the N conditional variances are positive and R is a symmetric
positive definite matrix with ρii = 1, ∀i. The restriction of constant con-
ditional correlations in the CCC model probably seems unrealistic in many
empirical applications. The DCC-GARCH model is introduced by setting the
conditional correlations time dependent.

The Engle (2002) DCC is defined as:

Σu,t = DtRtDt (4.13)

Rt = diag(q−1/2
11,t · · · q

−1/2
NN,t )Qtdiag(q−1/2

11,t · · · q
−1/2
NN,t ), (4.14)

Qt = (qij,t) = (1− α− β)Q + αυt−1υT
t−1 + βQt−1 (4.15)

Qt is an N ∗ N symmetric positive definite matrix. Q is the N ∗ N uncon-
ditional covariances matrix of υt. α and β are nonnegative scalar parameter
satisfying α + β < 1.

The correlation estimator is,

ρij,t =
qij,t

√qii,tqjj,t
(4.16)
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In the CCC model, σ2
ij,t = ρij(σii,tσjj,t). Whereas in the DCC model, covariance

σ2
ij,t is generated using variances from the GARCH model and correlation ρij

computed by qij. Actually, it shows σ2
ij,t =

qij,tσii,tσjj,t√qii,tqjj,t
. Restricted correlation

models (CCC and DCC) allows two-step procedures to estimate. GARCH
parameters are estimated at first and then correlation matrix Rt is computed.
To be more explicit, The first one is employing the quasi-maximum likelihood
estimation for conditional variances modelling. The variances are computed
using separate equations for each variable. Then the conditional correlation
matrix Rt is estimated by using the previous results (conditional variances).
Finally, the joint covariance matrix can be estimated.

We use four types of information criteria to select a best-fitting model. The
information criteria provide model assessment introducing penalty terms for
the number of parameters in the empirical estimated model. The penalty
terms in the BIC is bigger than the AIC. The Schwarz Bayesian Criterion is
also called the Bayesian Information Criterion.

AIC (Akaike In f ormation Criterion) = −2logL + k× 2 (4.17)

BIC (Schwarz Bayesian Criterion) = −2logL + k× logT (4.18)

HQ (Hannan−Quinn) = −2logL + k× 2log(logT) (4.19)

FPE (log) (Final Prediction Error) = −2logL + T log(
T + k
T − k

) (4.20)

Where K is the number of estimated parameters (or regressors) and T is the
number of observations. The best model holds the minimizes the chosen
criterion.

4.3.3 Estimation Method

Given that the errors vt are multivariate normal distributed. In this case, the
joint distribution has density function below:
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f (vt) =
T

∏
t=1

1
(2π)n/2 exp

{
−1

2
vT

t vt

}
(4.21)

Where T is the number of observations. Here E(vt) = 0 and E(vtvT
t ) = I.

Then the error vector ut = σtvt are conditionally multivariate-normally dis-
tributed as well. The joint density is the product of all the conditional den-
sities, so the log-likelihood function of the joint distribution is the sum of
the log-likelihood functions of the conditional distributions. Therefore we
estimate the parameters in BEKK-GARCH specification with the errors from
the multivariate normal distribution using the log-likelihood function below
equation 23 for the heteroskedastic system equation 22:

yt =E(yt|Ft−1) + ut

Var(ut|Ft−1) = Σu,t
(4.22)

L(θ) =
T

∑
t=1

Lt(θ)

ln(L(θ))BEKK,N = −1
2

T

∑
t=1

(n ln(2π) + ln |Σu,t|+ uT
t Σ−1

u,t ut)

(4.23)

Where n is the number of variables, three in our case and θ denotes the un-
known parameters to be computed in u, t and Σu,t.

Respectively the log-likelihood function of CCC-GARCH model and DCC-
GARCH model with the errors from the multivariate normal distribution are
shown below, by substituting Σu,t = DtRDt, and Σu,t = DtRtDt:

ln(L(θ))CCC,N = −1
2

T

∑
t=1

(
n ln(2π) + 2 ln (|Dt|) + ln (|R|) + ut

TD−1
t R−1D−1

t ut

)
(4.24)
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ln(L(θ))DCC,N = −1
2

T

∑
t=1

(
n ln(2π) + ln (|Σu,t|) + ut

TΣ−1
u,t ut

)
= −1

2

T

∑
t=1

(n ln(2π) + ln (|DtRtDt)) + ut
T
t D−1

t R−1
t D−1

t ut)

= −1
2

T

∑
t=1

(
n ln(2π) + 2 ln (|Dt|) + ln (|Rt|) + ut

TD−1
t R−1

t D−1
t ut

)
(4.25)

When the errors vt are multivariate student’s t-distributed with the degree of
freedom ν. In this case, the joint distribution has density function below:

f (zt|ν) =
T

∏
t=1

Γ
(

ν+n
2

)
Γ
(

ν
2

)
[π(ν− 2)]n/2

[
1 +

vT
t vt

ν− 2

]− n+ν
2

(4.26)

The likelihood function of ut = σtvt is shown:

L(θ) =
T

∏
t=1

Γ
(

ν+n
2

)
Γ
(

ν
2

)
[π(ν− 2)]n/2 |Σu,t|1/2

[
1 +

uT
t Σu,t

−1ut

ν− 2

]− n+ν
2

(4.27)

Therefore, the log-likelihood function of BEKK-GARCH model, CCC-GARCH
model, and DCC-GARCH model with the errors from the multivariate Stu-
dent’s t-distribution are shown below,

ln(L(θ))BEKK,T =
T

∏
t=1

Γ
(

ν+n
2

)
Γ
(

ν
2

)
[π(ν− 2)]n/2 |Σu,t|1/2

[
1 +

uT
t Σu,t

−1ut

ν− 2

]− n+ν
2

(4.28)

ln(L(θ))CCC,T =
T

∑
t=1

(
ln
[

Γ
(

ν + n
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− ln
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2
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(4.29)
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ln(L(θ))DCC,T =
T
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(4.30)

The quasi-maximum likelihood method is applied in Estima RATS to esti-
mate multivariate GARCH systems. The estimation for the CCC-GARCH
and the DCC-GARCH is adopted a two-stage approach. First, the param-
eters in the univariate GARCH model is estimated for each data series by
replacing Rt with the identity matrix In in the likelihood function. In the
second stage, the likelihood function above is applied to compute the rest
parameters (ρij in CCC, α and β in DCC). When the errors are assumed to
be Student’s t-distributed, the first stage is the same as a normal distribu-
tion, which means assuming univariate GARCH model following a normal
distribution. Then in the second stage, ν, α, and β are estimated.

Ling and McAleer (2003) investigate the asymptotic normality of the quasi-
maximum-likelihood estimator for the Vector ARMA-GARCH model (VARMA-
GARCH). In this study, they make the assumption that all the parameters on
ARCH effect (aij) and GARCH effect (bij) are nonnegative. However, it con-
cludes that the assumption may be too strong in practice. The estimation re-
sults will show some minor modifications (Ahn and Reinsel, 1988). The neg-
ative volatility spillovers in the unrestricted extended constant conditional
correlation GARCH (UECCC-GARCH) model is discussed by Conrad and
Karanasos (2010). It relaxes the assumption of nonnegative volatility feed-
back, which is firstly imposed by Bollerslev (1986) to restrict parameters in
the univariate GARCH process. It is a sufficient condition on a positive def-
inition of the conditional variance-covariance matrix but not necessary (Nel-
son and Cao, 1992)(Tsai and Chan, 2008). Conrad and Karanasos (2010) also
suppose and suggest to derive a further asymptotic theory for the VARMA-
GARCH model by relaxing nonnegative volatility spillovers assumption.

In practice, the negative volatility spillovers get high-end adjustments using
NLPAR in the Estima RATS. NLPAR allows changing the parameter settings
(the estimation method used, the initial guess values, and the number of iter-
ations) during the iterative estimation process. It makes the estimation pro-
cess avoiding "dead-end" parameter paths, otherwise a fairly large negative
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covariance (bij) this period might push the relative variance zero or negative
in the next period.

4.4 Empirical Results and Discussions

The multivariate GARCH-in-mean model specifications are estimated by quasi-
maximum likelihood methods (QMLE) using the BFGS algorithm. The BEKK
model is the most computationally intensive of the models we applied.

Based on the estimation results of multivariate GARCH-in-mean models (BEKK-
GARCH, CCC-VARMA-GARCH, DCC-VARMA-GARCH), fitting data of four
types of renewable energy ETFs in different model specifications are com-
pared and contrasted. And we find some significant volatility spillover ef-
fect, by using renewable energy ETFs, S&P 500 ETF, and crude oil ETF. The
details are furtherly discussed in an explicit way below. In order to mea-
sure the efficiency of the parameterized model in the model performances of
fitness, we compare four types of information criteria reported in Table 4.13
(AIC, BIC, HQ and FPE). All the criteria show that the DCC model is the best
model, and they rank the BEKK model as the second best.

According to the information criteria values, the model is fitting substantially
better by applying the multivariate Student’s t-distribution to model the er-
rors comparing with the Normally distributed errors. The shape parameter
ν for the degree of the Student’s t-distribution is listed in the estimation out-
put. Moreover, the empirical probability of a residual being in the left 0.05
tail is computed basing on saved residuals and variance-covariance matrices.
We can conclude that the S&P 500 ETF has the fattest tail, and any one of the
renewable ETF has a fatter tail than oil ETF shown by Table 4.41.

4.4.1 Volatility Spillovers in Mean Level

Turning first to the GARCH-in-mean terms estimation results reported in Ta-
ble 4.14, Table 4.15, and Table 4.16, we have some results discussed below.
In this model, we allow each variance of three returns to enter each mean
level. The point estimates for the free elements in Ψ from the mean equation
in multivariate GARCH-in-mean system individually represent the effect of
the conditional variances of the renewable energy ETF, the S&P 500 ETF and



122 Chapter 4. Volatility Spillovers in ETFs

the oil ETF on each return of their own. The elements in matrix Ψ capture the
effects of uncertainty on ETFs.

In Table 4.16, the coefficient on the conditional variance of the S&P 500 ETF
in its own return equation equals 0.0742 with a p-value of 0.0400, is given
by ψ22 in DCC model with the multivariate Student’s t-distribution when we
apply wind ETF return as the renewable energy ETF for estimation. It indi-
cates that the S&P 500 ETF volatility has a significant and positive effect on
its own return. We can find the matching volatility spillover effect when we
change the wind renewable energy ETF to solar renewable energy ETF, but
not in renewable energy nuclear ETF neither renewable energy benchmark
ETF. These findings are consistent with the theoretical model made in the lit-
erature on the Capital Asset Pricing Model (CAPM), which is introduced by
(Sharpe, 1964)(Lintner, 1975). It describes the relationship between risk and
return. The positive relationship indicates investors, who are assumed to be
risk averse, require a high return as compensation for bearing extra risk. We
also find the oil ETF volatility has a significant negative effect on the S&P 500
ETF return, as it is shown by in bold (ψ23) in Table 4.14, Table 4.15, and Table
4.16. We get consistent results when different renewable energy ETFs is ap-
plied except the renewable energy benchmark ETF. It is consistent with some
previous literature that oil uncertainty has a significant and negative effect
on stock performance. However, the uncertainty effect of renewable energy
ETFs does not show out the results we expected. It implicates the renew-
able energy benchmark ETF has dampened even eliminated the effect of oil
uncertainty on ETF stock market. It is plausible the renewable energy bench-
mark ETF (PBW) changed the dominant role of oil ETF (USO) in energy ETF
sector because PBW tracks an index (ECO) of highly diverse in the range of
underlying assets about wind, solar, biofuels, and geothermal energy-related
companies.

More precisely, the GARCH-in-mean effects are shown in the third mean
equation (oil ETF) when we apply the nuclear ETF data. The coefficient
0.0788 with a p-value of 0.0220 (ψ31) in Table 4.15 nuclear column, indicates
the conditional volatility of the nuclear ETF has a significant positive effect
on the oil ETF. We get similar results as Alsalman (2016) proposed the stock
return of coal industry level response positively to uncertainty in oil prices.
Oppositely, the S&P 500 ETF uncertainty negatively spillovers to the return
of the oil ETF, as it is -0.1308 with a p-value of 0.0217 shown by ψ32 in Table
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4.15. It indicates the S&P 500 ETF uncertainty has a significant and nega-
tive effect on the oil ETF return. By contrast, nuclear ETF uncertainty has a
significant and positive effect on the oil ETF return.

Turning to the VAR process in the returns, the most important finding is The
previous period returns of S&P 500 ETF and oil ETF consistently have nega-
tive effects on its own current returns, which means they both are in the mean
reverse process. One of the strongest effects in the renewable energy mean
equation is that period lag of S&P 500 ETF return negatively affects current
period wind ETF return and solar ETF, while it has positive effects on cur-
rent period nuclear ETF and renewable energy ETF (γi

12). And the previous
period return of oil negatively affect the current period S&P 500 ETF return,
demonstrated by (γi

23) in Table 4.32 and Table 4.36.

4.4.2 Volatility Spillovers between Conditional Variances

Based on the estimation results of the conditional variance of three multivari-
ate GARCH specifications, different models are compared and constructed.
And the volatility spillovers between renewable energy ETFs, S&P 500 ETF,
and crude oil ETF are discussed further in an explicit way below.

Starting with the own conditional GARCH effect terms bii, it measures the
long-term persistence and the own conditional ARCH effect terms aii mea-
sure the short-term persistence. They are clearly important in explaining con-
ditional volatility. The bii terms and the aii terms are statistically significant
at the 1% level in each of multivariate GARCH models. The coefficient b11

refers to the GARCH term in the renewable energy ETFs equation, while the
coefficient b22 refers to the GARCH term in the S&P 500 ETF equation and the
coefficient b33 refers to the GARCH term in the oil ETF equation. The renew-
able energy ETFs and the oil ETF has shown a larger amount of long-term
persistence than the S&P 500 ETF. For each variance, the aii is much smaller
than the bii, which indicates the own volatility long-run (GARCH) persis-
tence is larger than the short-run (ARCH) persistence. We also conclude that
the “own" effect on variance is always dominant (the diagonal elements are
larger than the off-diagonals).

Comparing volatility spillovers in BEKK, CCC and DCC models, we find
the strongest evidence is found from the estimates of the BEKK model. The
restricted correlation models (CCC and DCC) shows less evidence of it. We
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start the volatility spillover analysis in BEKK models. For the short-term per-
sistence when applying wind ETF, there is evidence of volatility spillovers
from S&P 500 ETF to wind ETF (a21) and from S&P 500 ETF to oil ETF (a23).
There is also evidence of long-term persistence volatility spillovers from wind
ETF to S&P 500 ETF (b12) and from S&P 500 ETF to wind ETF (b21). Solar ETF
has shown the consistent volatility spillovers in the BEKK model fitting in as
the solar ETF shows. For nuclear ETF, there is evidence of short-term per-
sistence volatility spillovers from S&P 500 ETF to nuclear ETF (a21). There is
also evidence of long-term persistence volatility spillovers from nuclear ETF
(b12) to S&P 500 ETF, from nuclear ETF to oil ETF (b13), from S&P 500 ETF
to nuclear ETF (b21), and from S&P 500 to ETF oil ETF (b23). For renewable
energy benchmark ETF, there is evidence of short-term persistence volatility
spillovers from S&P 500 ETF to renewable energy benchmark ETF (a21) and
from S&P 500 ETF to oil ETF (a23). There is also evidence of long-term persis-
tence volatility spillovers from S&P 500 ETF to renewable energy benchmark
ETF (b21) and from S&P 500 ETF to oil ETF (b23).

Looking across the full suite of models (BEKK, CCC, and DCC with the mul-
tivariate Normal distribution or the multivariate Student’s t-distribution),
there is some consistent evidence for volatility spillovers. When wind ETF
is applied, there is the consistent evidence that the short-term persistence
volatility spillover effect from S&P 500 ETF to renewable energy ETF (a21 in
BEKK, a12 in CCC and a12 in DCC) in six models. The long-term volatility
persistence and the short-term volatility persistence both spillover from S&P
500 ETF to solar ETF (a21 and b21 in BEKK model, a12 and b12 in CCC/DCC
model) is shown in six models. The nuclear ETF and the renewable ETF are
shown the consistent results as the results in solar ETF. Previous literature
rarely finds consistent estimation results in applying different multivariate
GARCH specifications, as their results are somewhat mixed across different
models. Then we conclude that S&P 500 ETF volatility has a significant effect
on the volatility of renewable energy ETFs, which shows the positive short-
term persistence volatility spillover and the negative long-term persistence
volatility spillover.

In the CCC model, all correlations between renewable energy ETFs, the S&P
500 ETF, and oil ETF are positive and strong significant at the 1% level. The
correlation between renewable energy ETFs and the S&P 500 ETF (ρ21) is
the highest. Except for the renewable energy benchmark ETF, the corre-
lation between the S&P 500 ETF and oil ETF (ρ32) ranks second high, but
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slightly higher the correlation between renewable energy and oil ETF (ρ31).
Outstandingly, the oil ETF has a higher correlation with renewable energy
benchmark ETF(ρ31), rather than with S&P 500 ETF(ρ32). We conclude that
renewable energy ETF has moved much closer to S&P 500 ETF than with oil
ETF. Moreover, S&P 500 ETF has moved much closer to renewable energy
ETF than with oil ETF. Each pair of returns moves in lockstep as all the cor-
relations are positive.

Based on the time-varying conditional correlation estimated by the DCC model,
there is volatility clustering pattern for each series. And the dynamic condi-
tional correlation really changes a lot compared with the constant correlation
in the CCC model. Each pair of the correlations has dramatically decreased
most to negative before the financial crises respectively in September 2008
and 2011. In the post-crisis periods, there is a coincidence that the correlation
has risen getting the highest level historically. We conclude the correlation in-
creases after the financial crisis (individually in 2008 and in 2011). The most
important finding is that the dynamic correlation between oil ETF and S&P
500 ETF are always positive since U.S. net imports of crude oil and petroleum
products gradually decrease commencing 2005 (shown in Figure 4.20, Figure
4.21, Figure 4.22, and Figure 4.23). It is consistent evidence in Wang and Liu
(2016)’s study.

4.4.3 Negative Volatility Spillovers

In Section 4.4.2, the volatility spillover estimates reported in Tables 4.17-4.40
in Appendix were interpretated. The estimates of the aij parameters were in-
terpreted in terms of short-term volatility spillovers, and the bij parameters
in terms of long-term volatility spillovers.

Most of these spillover estimates are positive, indicating positive volatility
spillovers. However, some are negative. Negative volatility spillover is an
intriguing estimation result in above-presenting outcomes. To be explicit,
the negative long-term persistence volatility spillover (b12) is strongly signif-
icant, consistent, and robust from stock to renewable energy, whatever which
kind of renewable energy ETF (wind ETF/ solar ETF/ nuclear ETF/ renew-
able energy benchmark ETF) is applied in estimation. For example, consider
the estimate of b12 in Table 4.39 of Appendix (b12 = -0.1635; p-value=0.0000).
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This estimate represents a strongly significant negative long-term volatility
spillover from the renewable energy benchmark ETF to the S&P 500 ETF.

Negative volatility spillovers have been found in other contexts. For exam-
ple, Conrad and Karanasos (2010) find evidence that variability in industrial
production (real variability) affects variation in consumer prices (nominal
uncertainty) negatively, and this result supports theories of optimal mone-
tary policy proposed by Fuhrer (1997) and others.

Negative volatility spillovers also raise interesting theoretical issues. In early
versions of multivariate GARCH models, it was assumed that all volatility
spillovers need to be positive in order to guarantee that the conditional vari-
ance is positive (e.g., see (Jeantheau, 1998)). The assumption of nonnega-
tive volatility feedback, which is firstly imposed by Bollerslev (1986) to re-
strict parameters in the univariate GARCH process. It is a sufficient condi-
tion for positive-definiteness of the conditional variance-covariance matrix
but not necessary (Nelson and Cao, 1992)(Tsai and Chan, 2008). Ling and
McAleer (2003) investigate the asymptotic normality of the quasi-maximum-
likelihood estimator for the Vector ARMA-GARCH model (VARMA-GARCH).
In this study, they followed Bollerslev (1986)’s step to assume that all the pa-
rameters on ARCH effect (aij) and GARCH effect (bij) are nonnegative. He
and Teräsvirta (2004) examed the fourth-moment structure of an extended
CCC GARCH model, which model is first defined by Jeantheau (1998). This
study also mentioned that this model specification is also seen in Ling and
McAleer (2003)’s paper. Therefore, we conclude that Jeantheau (1998), Ling
and McAleer (2003), He and Teräsvirta (2004) adopted the same model spec-
ification having rich autocorrelation structure, but they research different
question on econometric theories.

However, the assumption of the specification seems too strong in practice.
That is the reason we got negative volatility spillover estimation results by
applying Ling and McAleer (2003)’s methodology. The lucky thing is the neg-
ative volatility spillovers in the unrestricted extended constant conditional
correlation GARCH (UECCC-GARCH) model is discussed by Conrad and
Karanasos (2010). More recent work has established that this is a sufficient
but not a necessary condition. The necessary condition is specified in Propo-
sition 1 of Conrad and Karanasos (2010), and this condition allows negative
volatility spillovers. In this study, Conrad and Karanasos (2010) also suppose
and suggest to derive a further asymptotic theory for the VARMA-GARCH
model by relaxing nonnegative volatility spillovers assumption.
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Conrad and Karanasos (2010) provided the conditions for positive condi-
tional variance when the negative volatility spillovers are allowed. We con-
clude the conditions below referring to Conrad and Karanasos (2010)’s study.
Conrad and Karanasos (2010) intensively discuss the conditions for the most
often applied specification-the bivariate model of order (1, 1).

Proposition 1 of Conrad and Karanasos (2010) is as follows:

PROPOSITION 1: Let Assumptions A1 and A2 be satis-
fied and φ1 6= φ2. The following conditions are necessary
and sufficient for σit > 0, i = 1, 2, for all t in the bivariate
UECCC-GARCH(1, 1) model:

(a) For the two constants, we require
w1 = (1− b22)c11 + b12c22 > 0,
w2 = (1− b11)c22 + b21c11 > 0.
(b) Condition (C1) in Theorem 1 reduces to (C1’)
(b11 − b22)

2 > −4b12b21 and φ1 > 0.
Condition (C2) becomes (C2’)
(b11 − φ2)a11 + b12a21 > 0,
(b11 − φ2)a12 + b12a22 > 0,
b21a11 + (b22 − φ2)a21 > 0,
b21a12 + (b22 − φ2)a22 > 0.
Condition (C3) amounts to (C3’a)
a11 ≥ 0, a12 ≥ 0,
a21 ≥ 0, a22 ≥ 0.
and (C3’b)
b11a11 + b12a21 ≥ 0, b11a12 + b12a22 ≥ 0,
b21a11 + b22a21 ≥ 0, b21a12 + b22a22 ≥ 0.

φ1 and φ2 are the inverse roots of β(z). And we order them as follows:
| φ1 |≥| φ2 |. cii, aij, and bij, i = 1, 2, are the parameters in a bivariate GARCH
model.

Correspondingly, we estimate the model with only two variables (renew-
able energy ETFs and the S&P 500 ETF), which show the negative volatility
spillover between. Consistently, the negative volatility spillover has shown
up again in the two-variable estimation results as Table 4.1 presents below.
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After estimation, we particular check the conditions of Conrad and Karana-
sos (2010)’s Proposition 1 are satisfied in my results. Here, we verify this
condition for the set of estimates reported in Table 4.1.

The condition is checked using Table 4.2 and Table 4.3. All the checking re-
sults reject C2’, but the values are slightly under zero (condition requires the
value above zero). The checking results are reasonable, and we expected.
Based on what we are introducing concerning the econometric theory, the
methodology of Ling and McAleer (2003) (generating estimation results) and
the conditions from Conrad and Karanasos (2010)’s study are under different
assumptions. We arbitrarily check the conditions to confirm the necessary
for our further research. It is beneficial to investigate whether the Ling and
McAleer (2003)’s theory holds under the necessary and sufficient conditions
derived by Conrad and Karanasos (2010).

In Table 4.2 and Table 4.3, we see that in all model estimated. There is a failure
to meet all of the conditions. To be specific, particular problems arise to meet
C2’. However, the violation appears to be slight. This leads to the question
of whether a statistical test of the conditions can be developed. This is an
interesting question for further research.

For example, consider the estimate of b12 in Table 4.1 of RE DCC N column
(b12 = −0.1817 with statistically highly significant as p-value < 0.001). It is
a piece of strong evidence for negative volatility spillovers from renewable
energy benchmark ETF to S&P 500 ETF. The corresponding condition check
result is in Table 4.3 in the second to the last column. We can see that besides
two conditions of C2’ are slightly violated the rest conditions met. Other
evidence is shown by various renewable energy ETF is substitute applied in
Table 4.1.

4.4.4 Implications

During the post-financial crisis period, the dynamic correlation between oil
ETF and S&P 500 ETF has been getting a very high level. It implicates the
oil ETF or oil future is not a safe haven to protect stock investor’s profits
when they construct stock portfolios. And most GARCH-in-mean estima-
tion results provide evidence that oil ETF uncertainty negatively affects S&P
500 ETF. It will be a double risky portfolio strategy to hold oil ETF and S&P
500 ETF during an economic downturn condition or during world turmoil.
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TABLE 4.1: Multivariate GARCH-in-mean Model Estimation Result of Renewable Energy ETF and S&P 500 ETF

Coefficient Wind CCC N Wind CCC T Wind DCC N Wind DCC T Solar CCC N Solar CCC T Solar DCC N Solar DCC T
c11 0.0665 0.0429 0.0325 0.0097 0.0499 0.0429 0.0451 0.0377
c22 0.0360 0.0234 0.0203 0.0045 0.0240 0.0128 0.0209 0.0099
a11 0.0713 0.0562 0.0548 0.0375 0.0333 0.0353 0.0309 0.0330
a12 0.0448 0.0282 0.0808 0.0559 0.1164 0.1487 0.1675 0.2103
a21 0.0136 0.0067 0.0090 -0.0001 0.0009 0.0015 0.0000 0.0006
a22 0.1034 0.1046 0.1225 0.1205 0.1231 0.1273 0.1339 0.1368
b11 0.8988 0.9255 0.9390 0.9641 0.9661 0.9668 0.9666 0.9665
b12 -0.0536 -0.0360 −0.0855∗ −0.0578∗ −0.1673∗∗∗ −0.1844∗∗∗ −0.1750∗∗∗ −0.1982∗∗∗

b21 -0.0098 0.0001 0.0031 0.0161 0.0021 0.0025 0.0017 0.0019
b22 0.8490 0.8563 0.8440 0.8537 0.8334 0.8472 0.8467 0.8595

Coefficient Nuclear CCC N Nuclear CCC T Nuclear DCC N Nuclear DCC T RE CCC N RE CCC T RE DCC N RE DCC T
c11 0.0378 0.0220 0.0155 0.0063 0.0724 0.0620 0.0605 0.0415
c22 0.0340 0.0253 0.0191 0.0084 0.0326 0.0213 0.0256 0.0124
a11 0.0263 0.0214 0.0157 0.0059 0.0351 0.0450 0.0329 0.0440
a12 0.0932 0.0592 0.0822 0.0711 0.1294 0.1120 0.1813 0.1600
a21 0.0008 -0.0020 -0.0011 -0.0031 0.0047 0.0061 0.0041 0.0050
a22 0.1145 0.1096 0.1195 0.1063 0.1060 0.1005 0.1187 0.1147
b11 0.9594 0.9675 0.9978 1.0009 0.9556 0.9459 0.9557 0.9479
b12 −0.1086∗∗∗ -0.0616 −0.1138∗∗∗ −0.0820∗∗∗ −0.1782∗∗∗ −0.1419∗∗ −0.1817∗∗∗ −0.1418∗∗∗

b21 -0.0021 0.0047 0.0214 0.0185 -0.0034 -0.0039 -0.0049 -0.0034
b22 0.8531 0.8675 0.8345 0.8714 0.8549 0.8714 0.8704 0.8818

1

∗∗∗ indicates p-value < 0.001
∗∗ indicates p-value < 0.01
∗ indicates p-value < 0.05



130
C

hapter
4.

Volatility
Spillovers

in
ETFs

TABLE 4.2: (Part1) Condition Check for Multivariate GARCH-in-mean Model Estimation Result of Various Renewable Energy ETF
and S&P 500 ETF

Conditions Wind CCC N Wind CCC T Wind DCC N Wind DCC T Solar CCC N Solar CCC T Solar DCC N Solar DCC T
(a)

w1 = (1− b22)c11 + b12c22 0.0081 0.0053 0.0033 0.0012 0.0043 0.0042 0.0033 0.0033
w2 = (1− b11)c22 + b21c11 0.0030 0.0017 0.0013 0.0003 0.0009 0.0005 0.0008 0.0004

Satisfied w1 > 0 and w2 > 0 yes yes yes yes yes yes yes yes
(b) (C1’)

(b11 − b22)
2 0.0025 0.0048 0.0090 0.0122 0.0176 0.0143 0.0144 0.0115

−4b12b21 -0.0021 0.0000 0.0011 0.0037 0.0014 0.0019 0.0012 0.0015
φ1 0.9078 0.9255 0.9361 0.9549 0.9634 0.9627 0.9640 0.9628

(b11 − b22)
2 > −4b12b21 and φ1 > 0 yes yes yes yes yes yes yes yes

(b) (C2’)
(b11 − φ2)a11 + b12a21 0.0035 0.0036 0.0043 0.0038 0.0042 0.0038 0.0036 0.0033
(b11 − φ2)a12 + b12a22 -0.0029 -0.0018 -0.0030 -0.0013 -0.0055 -0.0063 -0.0038 -0.0054
b21a11 + (b22 − φ2)a21 -0.0006 0.0000 0.0001 0.0006 0.0001 0.0001 0.0001 0.0001
b21a12 + (b22 − φ2)a22 0.0005 0.0000 -0.0001 -0.0002 -0.0001 -0.0001 -0.0001 -0.0001

(b11 − φ2)a11 + b12a21 > 0 yes yes yes yes yes yes yes yes
(b11 − φ2)a12 + b12a22 > 0 no no no no no no no no
b21a11 + (b22 − φ2)a21 > 0 no yes yes yes yes yes yes yes
b21a12 + (b22 − φ2)a22 > 0 yes yes no no no no no no

(b) (C3’a)
a11 0.0713 0.0562 0.0548 0.0375 0.0333 0.0353 0.0309 0.0330
a12 0.0448 0.0282 0.0808 0.0559 0.1164 0.1487 0.1675 0.2103
a21 0.0136 0.0067 0.0090 -0.0001 0.0009 0.0015 0.0000 0.0006
a22 0.1034 0.1046 0.1225 0.1205 0.1231 0.1273 0.1339 0.1368

a11 ≥ 0 yes yes yes yes yes yes yes yes
a12 ≥ 0 yes yes yes yes yes yes yes yes
a21 ≥ 0 yes yes yes no yes yes yes yes
a22 ≥ 0 yes yes yes yes yes yes yes yes

(b) (C3’b)
b11a11 + b12a21 0.0633 0.0517 0.0507 0.0362 0.0320 0.0338 0.0299 0.0318
b11a12 + b12a22 0.0347 0.0223 0.0654 0.0470 0.0918 0.1202 0.1385 0.1761
b21a11 + b22a21 0.0109 0.0057 0.0078 0.0005 0.0008 0.0014 0.0001 0.0006
b21a12 + b22a22 0.0874 0.0895 0.1037 0.1038 0.1029 0.1082 0.1137 0.1180

b11a11 + b12a21 ≥ 0 yes yes yes yes yes yes yes yes
b11a12 + b12a22 ≥ 0 yes yes yes yes yes yes yes yes
b21a11 + b22a21 ≥ 0 yes yes yes yes yes yes yes yes
b21a12 + b22a22 ≥ 0 yes yes yes yes yes yes yes yes
All conditions met? no no no no no no no no
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TABLE 4.3: (Part 2)Condition Check for Multivariate GARCH-in-mean Model Estimation Result of Various Renewable Energy ETF
and S&P 500 ETF

Conditions Nuclear CCC N Nuclear CCC T Nuclear DCC N Nuclear DCC T RE CCC N RE CCC T RE DCC N RE DCC T
(a)

w1 = (1− b22)c11 + b12c22 0.0019 0.0014 0.0004 0.0001 0.0047 0.0050 0.0032 0.0031
w2 = (1− b11)c22 + b21c11 0.0013 0.0009 0.0004 0.0001 0.0012 0.0009 0.0008 0.0005

Satisfied w1 > 0 and w2 > 0 yes yes yes yes yes yes yes yes
(b) (C1’)

(b11 − b22)
2 0.0113 0.0100 0.0267 0.0168 0.0101 0.0056 0.0073 0.0044

−4b12b21 -0.0009 0.0012 0.0097 0.0061 -0.0024 -0.0022 -0.0036 -0.0019
φ1 0.9615 0.9645 0.9812 0.9879 0.9613 0.9527 0.9651 0.9545

(b11 − b22)
2 > −4b12b21 and φ1 > 0 yes yes yes yes yes yes yes yes

(b) (C2’)
(b11 − φ2)a11 + b12a21 0.0028 0.0022 0.0024 0.0009 0.0029 0.0028 0.0024 0.0025
(b11 − φ2)a12 + b12a22 -0.0023 -0.0010 -0.0015 -0.0004 -0.0051 -0.0051 -0.0044 -0.0046
b21a11 + (b22 − φ2)a21 -0.0001 0.0001 0.0004 0.0001 -0.0001 -0.0001 -0.0001 -0.0001
b21a12 + (b22 − φ2)a22 0.0000 0.0000 -0.0002 -0.0001 0.0002 0.0002 0.0002 0.0002

(b11 − φ2)a11 + b12a21 > 0 yes yes yes yes yes yes yes yes
(b11 − φ2)a12 + b12a22 > 0 no no no no no no no no
b21a11 + (b22 − φ2)a21 > 0 no yes yes yes no no no no
b21a12 + (b22 − φ2)a22 > 0 yes yes no no yes yes yes yes

(b) (C3’a)
a11 0.0263 0.0214 0.0157 0.0059 0.0351 0.0450 0.0329 0.0440
a12 0.0932 0.0592 0.0822 0.0711 0.1294 0.1120 0.1813 0.1600
a21 0.0008 -0.0020 -0.0011 -0.0031 0.0047 0.0061 0.0041 0.0050
a22 0.1145 0.1096 0.1195 0.1063 0.1060 0.1005 0.1187 0.1147

a11 ≥ 0 yes yes yes yes yes yes yes yes
a12 ≥ 0 yes yes yes yes yes yes yes yes
a21 ≥ 0 yes no no no yes yes yes yes
a22 ≥ 0 yes yes yes yes yes yes yes yes

(b) (C3’b)
b11a11 + b12a21 0.0252 0.0209 0.0158 0.0062 0.0327 0.0417 0.0307 0.0410
b11a12 + b12a22 0.0769 0.0505 0.0684 0.0625 0.1048 0.0917 0.1517 0.1354
b21a11 + b22a21 0.0006 -0.0017 -0.0005 -0.0026 0.0039 0.0051 0.0034 0.0042
b21a12 + b22a22 0.0975 0.0954 0.1015 0.0940 0.0902 0.0871 0.1024 0.1006

b11a11 + b12a21 ≥ 0 yes yes yes yes yes yes yes yes
b11a12 + b12a22 ≥ 0 yes yes yes yes yes yes yes yes
b21a11 + b22a21 ≥ 0 yes no no no yes yes yes yes
b21a12 + b22a22 ≥ 0 yes yes yes yes yes yes yes yes
All conditions met? no no no no no no no no
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Therefore, investors should take the sector rotation investment strategy and
switch to an investment vehicle negatively or not correlated to the target ETF
asset to maintain positions in whether bullish market or bearish of an eco-
nomic circle.

The oil ETF uncertainty has no significant effect on S&P 500 ETF while re-
newable energy benchmark ETF applying in estimation. It implicates the
renewable energy benchmark ETF has dampened even eliminated the effect
of oil uncertainty on ETF stock return. It is plausible the renewable energy
benchmark ETF (PBW) changed the dominant role of oil ETF (USO) in energy
ETF sector.

The nuclear ETF uncertainty has a significant and positive effect on oil ETF.
The connection is originally from the U.S. energy consumption market. Fig-
ure 4.1 and Figure 4.3 shows the natural gas is a substitute respectively to
petroleum and nuclear electric power in the different energy sector in the
U.S. market. Therefore, the effect of nuclear energy on the crude oil mar-
ket can not be negligible. Figure 4.18 demonstrates the dynamic correlation
between nuclear ETF and oil ETF has been upward reaching roughly zero
commencing 2014 beginning, which is the significantly booming phrase for
the U.S. shale oil revolution. The U.S. is predominantly an oil-importer be-
fore the U.S. shale oil revolution, and the worldwide oil supply disruptions
influent the U.S. oil market furtherly transmit to the whole energy sector.
Nevertheless, the transmission mechanism has diminished, before the U.S.
oil price has not been as vulnerable as before. Our finding suggests investors
construct oil derivative portfolio with nuclear ETF or nuclear energy-related
companies stocks. We confirm that the role of nuclear ETF as safe-haven
against crude oil ETF in the U.S. financial market.

The dynamic correlation between renewable energy ETFs and S&P 500 ETF
are relatively stable comparing other correlation pairs. Especially the renew-
able benchmark ETF correlate to S&P 500 ETF in a very high and firm level.
Entering one asset in long position can be hedged with a short position in
a second asset. Furtherly, investors should adopt a market-timing strategy
when they hold the renewable benchmark ETF. The reason is the renewable
benchmark ETF perform in tandem with the S&P 500 ETF. The high depen-
dence level to S&P 500 ETF provides a barometer for the renewable bench-
mark ETF investment.
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Finally, we give a suggestion to investors who are interested in energy deriva-
tives. The policy and the physical market situation have driven the financial
instruments for energy markets dramatically. And the U.S. dependence level
of oil imports has influent the energy-related company stock price. Moreover,
the dynamic correlation trends during business circle might provide useful
information for adopting efficient investment strategies in future similar sce-
narios.

4.5 Conclusion

There is a large amount of previous literature studying how the oil price un-
certainty affects the financial market but very limit research has focused on
the ETF market. And the GARCH-in-mean model is less used to explore
the volatility spillover effects. In this chapter, we investigate the volatility
spillovers and the dynamic correlation between crude oil ETF, renewable en-
ergy ETFs, and S&P 500 ETF via applying three multivariate GARCH speci-
fications respectively with errors from the multivariate Normal distribution
and the multivariate Student’s t-distribution. We mainly have four findings.

First, the S&P 500 ETF volatility has a significant and positive effect on the
return of itself, which is consistent with the theoretical CAPM model. We also
find oil ETF volatility has a significant negative effect on the S&P 500 ETF
return, which is consistent with previous literature on oil uncertainty has
a significant and negative effect on stock performance. Outstandingly, the
renewable energy benchmark ETF (PBW) changed the dominant role of oil
ETF (USO) in energy ETF sector. The uncertainty of oil ETF has a consistent
and negative effect on the S&P 500 ETF return, whereas the effect diminishes
when PBW ETF is applied instead of other renewable ETFs. In one word, the
PBW ETF has changed the channel of volatility spillovers to return. When
nuclear ETF data is applied, the conditional volatility of the nuclear ETF has
a significant positive effect on the oil ETF, oppositely the volatility of S&P 500
ETF negatively spillovers to the return of the oil ETF. However, there is no
evidence that the volatility spillovers to renewable energy ETF mean level as
we expected. And the volatility of renewable energy does not affect the S&P
500 ETF return.

Second, we find consistent evidence of volatility spillovers in the conditional
variance level in applying different multivariate GARCH specifications (BEKK,
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CCC, and DCC). The S&P 500 ETF volatility has a significant effect on the
volatility of renewable energy ETFs, which shows the positive short-term
persistence volatility spillover and the negative long-term persistence volatil-
ity spillover. To be more specific, the increase of squared errors in the last
period of the S&P 500 ETF results in a growth of this period conditional vari-
ance of renewable energy ETFs. On the other hand, this period conditional
variance of renewable energy ETFs will decrease when the last period condi-
tional variance of S&P 500 ETF increases.

Third, we can see that the correlation between renewable energy ETF and
S&P 500 ETF is significantly higher than the other two pairs of correlations
according to the restricted constant correlation estimation results. About the
dynamic correlation results, we conclude the correlation decrease before the
financial crisis (in 2008 and in 2011 individually) then dramatically increases
after the financial crisis. More importantly, we find the consistent evidence
in Wang and Liu (2016)’s study that the dynamic correlation between oil ETF
and S&P 500 ETF are always positive commencing 2005 since U.S. net im-
ports of crude oil and petroleum products gradually decrease.

Finally, we find the DCC model is the best model, and the BEKK model is
the second best according to the information criteria. The log-likelihood is
substantially better when the multivariate Student’s t-distributed errors are
applied comparing with using the model with the multivariate Normal dis-
tributed errors.

Our finding as well as provides several valuable implications for investors.
oil ETF or oil future is not a safe haven to construct S&P 500 ETF portfolios
especially during a downturn economy. Therefore, investors should take the
sector rotation investment strategy. Investors are suggested to construct oil
derivative portfolio with nuclear ETF or nuclear energy-related companies
stocks. We confirm that the role of nuclear ETF as safe-haven against crude
oil ETF in the U.S. financial market. Entering renewable benchmark ETF in
long position can be hedged with a short position in S&P 500 ETF and verse
visa. Furtherly, investors should adopt a market-timing strategy when they
hold the renewable benchmark ETF.

As regarding the future research, risk management can apply in practice by
constructing hedging strategy and portfolio weights between crude oil, re-
newable energy ETFs and S&P 500 ETF. Secondly, we might explore the fore-
casting abilities in different multivariate GARCH specifications. If there are
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not consistent results as the in-sample estimation ability contrast results, we
have to consider the overfitting problem. The last suggestion is applying the
impulse response function to check the price shocks and volatility shocks in
ETFs.

4.6 Appendix to Chapter 4

The advantage of renewable energy is being replenished naturally over a rel-
atively short period, such as energy producing by wind, solar, nuclear and so
on. While the conventional energy, crude oil resource we focused on, natu-
rally takes millions of years to have been formed. Obviously, the consuming
time of crude oil is much quicker than the formation process. Renewable en-
ergy resources do not suffer from long-term availability problems, but con-
ventional energy is finite, they will eventually run out in the future. The
globally rising demand for energy, especially in the emerging market, like
China and India, is definitely a fact we have to face and a problem we have
to deal with, but it is not the biggest challenge brought by fossil fuel resource.

It is well known that carbon dioxide is released during the consumption
of crude oil production, which has strengthened the greenhouse effect and
caused global warming. Oil spills, during transport across the sea, can dam-
age the sea environment and endanger marine ecosystem to the ocean an-
imals as well. Especially it has caused deadly harm when ocean creatures
are coated with oil. In addition, separating crude oil into a wide array of
petroleum production creates toxins, which is not only directly damage hu-
man health, also generate air pollution to threaten climate change.

4.6.1 ETF in Financial Market

A stock index or stock market index is statistical measurement (typically
a weighted average) of the changes in a portfolio (constructed by several
stocks). The financial market participants use indices to track the perfor-
mance of the stock market, as the trades of every single stock is difficult to
track. The NASDAQ Composite, Dow Jones Industrial Average, and S&P
500 are the three major U.S. stock indices. An index fund, also called index
tracker, is used to track the index. Mutual fund and the exchange-traded



136 Chapter 4. Volatility Spillovers in ETFs

fund can be used as an index fund. And the major type if ETF is index ETF,
which is an attempt to replicate the performance of a specific index.

Except for the index ETF, there are also other types of ETFs, such as stock ETF,
bond ETF, commodity ETF, currency ETF and so on. ETF is traded on stock
exchanges, which means it traded like a stock. ETF is traded at a different
time compared with a mutual fund, and it sometimes weighted by revenue
rather than market capitalization. ETFs are structured variously in distinct
regions. It contains assets of bonds, stocks, commodities and so on. The
ETF shareholders hold the ownership of ETF shares. Ideally, ETF is traded
close to its underlying asset value. In this way, ETF closely tracks the return
(performance) of the underlying asset (securities).

Underlying assets could be stocks, bonds, commodities, currencies, interest
rates, and stock market indices. A derivative is a financial security (contract)
which value is based on underlying assets, such as futures contracts, forward
contracts, swaps an options.

The primary market refers to where the securities are created. It is the first
time for the firm to sell new stocks and bonds to the public. The secondary
market is where the trades have activities for selling and buying stocks. The
secondary market could be broken down into action market and dealer mar-
ket. Especially, the “over-the-counter" market refers to the trading did not
occur at a physical market. The third market and fourth markets deal with
the transaction of significant volumes of shares between broker-dealers and
large institutions through over-the-counter electronic networks.

4.6.2 Bi-variate GARCH Models

4.6.2.1 Overview of Multivariate GARCH Model

The GARCH(I,J) specification with N dimensions for a conditional variance-
covariance matrix at period t is:

ut−iuT
t−i =

u1

· · ·
uN

 [u1 · · · uN

]
=

u1u2 · · · u1uN

· · · · · · · · ·
uNu1 · · · uNuN

 (4.31)
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Σu,t =

σ2
1

· · ·
σ2

N

 [σ2
1 · · · σ2

N

]
=

σ2
11 · · · σ2

1N

· · · · · · · · ·
σ2

N1 · · · σ2
NN

 (4.32)

Consider a bi-variate full-VEC model in GARCH(1,1) process with full pa-
rameters :

σ2
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σ2
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σ2
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(4.33)

Indivadual variances and covariance expression:

σ2
11,t = c10 + a11u2

1,t−1 + a12u1,t−1u2,t−1 + a13u2
2,t−1 + b11σ2

11,t−1 + b12σ2
12,t−1 + b13σ2

22,t−1

(4.34)

σ2
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2,t−1 + b21σ2
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σ2
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(4.36)

Consider a DVEC model in a bi-variate example:
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Individual variances and covariance expression:

σ2
11,t = c10 + a11u2

1,t−1 + b11σ2
11,t−1 (4.38)
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σ2
12,t = c20 + a22u1,t−1u2,t−1 + b22σ2

12,t−1 (4.39)

σ2
22,t = c30 + a33u2

2,t−1 + b33σ2
22,t−1 (4.40)

Considering a two-variable case for BEKK model with lag 1 for parameter
matrics:

Σu,t =

[
σ2

11,t σ2
12,t

σ2
12,t σ2

22,t

]
(4.41)

C∗ =
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[
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]
(4.44)

Consider a bi-variate BEKK GARCH(1,1) under matrix multiplications:
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Consider a individual variance expression:

σ2
11,t = (c2

11 + c2
12) + (α2

11u2
1,t−1 + 2α11α21u1,t−1u2,t−1 + α2

21u2
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11σ2

11,t−1 + 2b11β21σ2
12,t−1 + b2

21σ2
22,t−1) (4.48)
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In the case of N dimensional CCC GARCH model, the conditional covari-
ances matrix can be written as:

Σt =


σ1,t · · · 0

... . . . ...
0 · · · σN,t




1 ρ12 · · · ρ1N

ρ21 1 · · · ...
...

... · · · ρN−1N

ρN1 · · · ρNN−1 1




σ1,t · · · 0
... . . . ...
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When N = 2,

Σt =

(
σ1,t 0
0 σ2,t

)(
1 ρ12

ρ21 1

)(
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0 σ2,t

)
=

(
σ2

1,t ρ12σ1,tσ2,t

ρ12σ1,tσ2,t σ2
2,t

)
(4.50)

Consider a expression of bi-variate DCCE,

ρ12,t =
(1− α− β)q12 + αυ1,t−1υ2,t−1 + βq12,t−1√

((1− α− β)q11 + αυ2
1,t−1 + βq11,t−1)((1− α− β)q22 + αυ2

2,t−1 + βq22,t−1)

(4.51)

Then consider a expression of bi-variate DCCT,

ρ12,t = (1− θ1 − θ2)ρ12 + θ2ρ12,t−1 + θ1
∑M

m=1 υ1,t−mυ2,t−m√
(∑M

m=1 υ2
1,t−m)(∑

M
h=1 υ2

2,t−m)
(4.52)

4.6.3 Figures
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FIGURE 4.1: U.S. Primary Energy Consumption by Source and
Sector in 2017
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FIGURE 4.2: U.S. Renewable Energy Consumption 1990-2014

FIGURE 4.3: U.S. Energy Consumption by Energy Source in
2017
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FIGURE 4.4: Electricity Energy Generation History and Projec-
tions

FIGURE 4.5: U.S. Net Imports of Crude oil and Petroleum Prod-
ucts
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FIGURE 4.9: Solar, Stock and Oil ETF PRICE
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FIGURE 4.11: Renewable Energy, Stock and Oil ETF PRICE
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FIGURE 4.12: Returns including Wind ETF
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FIGURE 4.13: Returns including Solar ETF
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FIGURE 4.14: Returns including Nuclear ETF
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FIGURE 4.15: Returns including RE Benchmark ETF
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Squared Returns

wind ETF

stock ETF

WTI ETF

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0.0

25.0
50.0
75.0

100.0
125.0
150.0
175.0
200.0

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

FIGURE 4.16: Returns including Wind ETF
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FIGURE 4.17: Returns including Solar ETF
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FIGURE 4.18: Returns including Nuclear ETF
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FIGURE 4.19: Returns including RE Benchmark ETF
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Conditional Correlations
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FIGURE 4.20: Dynamic Conditional Correlation-Wind ETF
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FIGURE 4.21: Dynamic Conditional Correlation-Solar ETF
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Conditional Correlations
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FIGURE 4.22: Dynamic Conditional Correlation-Nuclear ETF
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4.6.4 Tables
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TABLE 4.4: ETF Data Information

Symbol ETF Name ETF
Categories Asset Class Timespan Observations Frequency Market Currency

USO United States Oil Fund Crude Oil Equity 10/04/2006 02/01/2019 Daily United States Dollar
SPY SPDR S&P 500 S&P 500 Equity 10/04/2006 02/01/2019 Daily United States Dollar

FAN First Trust Global
Wind Energy Wind Equity 18/06/2008 02/01/2019 Daily United States Dollar

TAN Invesco Solar Solar Equity 15/04/2008 02/01/2019 Daily United States Dollar

NLR Vanv Uranium
+ Nuclear Energy Nuclear Equity 15/08/2007 02/01/2019 Daily United States Dollar

PBW Wilderhill Clean Energy
Renewable
Energy
Benchmark

Equity 10/04/2006 02/01/2019 Daily United States Dollar
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TABLE 4.5: Statistics for daily returns

WTI SP 500 Wind Solar Nuclear Benchmark
Mean -0.0581 0.0197 -0.0367 -0.0939 -0.0280 -0.0476

Median 0.0000 0.0284 0.0000 0.0000 0.0000 0.0000
Maximum 9.1691 13.5577 17.7453 19.7607 12.1101 15.8199
Minimum -11.2995 -10.3637 -13.5412 -20.7752 -14.0703 -14.5550
Std. dev. 2.0999 1.1972 1.7879 2.8792 1.5715 2.0703
Skewness -0.1774 -0.1306 -0.3307 -0.3481 -0.8846 -0.3871

Siginif Level(Sk=0) 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000
(Excess)Kurtosis 2.5368 14.7867 12.7429 7.1314 11.0825 5.8442

Siginif Level(Ku=0) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Student’s t(Mean=0) -1.5965 0.9515 -1.0773 -1.7249 -0.9723 -1.3268

Siginif Level(Mean=0) 0.1104 0.3413 0.2814 0.0846 0.3309 0.1846
Jarque-Bera 908.2228 30273.9330 18656.4622 5981.4199 15586.5782 4810.5665

Siginif Level(JB=0) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Observations 3322 3322 2750 2796 2970 3322
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TABLE 4.6: Correlations between daily returns

WTI SP 500 Wind Solar Nuclear Benchmark
WTI 1 0.4117 0.4496 0.4020 0.4222 0.4050

SP 500 0.4117 1 0.7930 0.6815 0.7193 0.7945
Wind 0.4496 0.7930 1 \ \ \
Solar 0.4020 0.6815 \ 1 \ \

Nuclear 0.4222 0.7193 \ \ 1 \
Benchmark 0.4050 0.7945 \ \ \ 1

TABLE 4.7: Correlations between squared daily returns

WTI SP 500 Wind Solar Nuclear Benchmark
WTI 1 0.3327 0.4080 0.4479 0.4033 0.3665

SP 500 0.3327 1 0.7263 0.6288 0.6218 0.7754
Wind 0.4080 0.7263 1 \ \ \
Solar 0.4479 0.6288 \ 1 \ \

Nuclear 0.4033 0.6218 \ \ 1 \
Benchmark 0.3665 0.7754 \ \ \ 1

TABLE 4.8: VAR Lag Selection-including Wind ETF Return

Lags AIC SBC/BIC HQ Chi-Squared Test
0 10.4008764 10.4073426* 10.4032122 0.0000000
1 10.3868743 10.4127295 10.3962076* 56.4709497
2 10.3822864 10.4275162 10.3986029 30.6682492
3 10.3794263 10.4440162 10.4027116 25.9652536
4 10.3774958 10.4614314 10.4077354 23.4531602
5 10.3765471* 10.4798138 10.4137263 20.7981961*
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TABLE 4.9: VAR Lag Selection-including Solar ETF Return

Lags AIC SBC/BIC HQ Chi-Squared Test
0 11.7324308 11.7388083 11.7347325 0.0000000
1 11.7098732 11.7353739* 11.7190709 80.9927335
2 11.7005276* 11.7451376 11.7166074* 44.1569583
3 11.7018771 11.7655825 11.7248250 14.3457819
4 11.7014686 11.7842553 11.7312706 19.2914077
5 11.7017889 11.8036428 11.7384309 17.2968909*

TABLE 4.10: VAR Lag Selection-Nuclear ETF Return

Lags AIC SBC/BIC HQ Chi-Squared Test
0 10.4061485 10.4122129* 10.4083306 0.0000000
1 10.3947310 10.4189807 10.4034512 51.8852416
2 10.3857119* 10.4281345 10.4009578* 44.8107102
3 10.3887269 10.4493101 10.4104862 9.1662183
4 10.3889774 10.4677087 10.4172376 17.3997923
5 10.3890273 10.4858943 10.4237761 18.0313472*

TABLE 4.11: VAR Lag Selection-RE Benchmark ETF

Lags AIC SBC/BIC HQ Chi-Squared Test
0 10.6122576 10.6177801 10.6142334 0.000000
1 10.5832823 10.6053656* 10.5911791 114.140042
2 10.5738702 10.6125046 10.5876781* 49.281534
3 10.5722372* 10.6274126 10.5919462 23.511217
4 10.5747981 10.6465048 10.6003984 9.632681
5 10.5750976 10.6633256 10.6065793 17.166800*
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TABLE 4.12: Multivariate Q Test

Wind ETF Return Solar ETF Return Nuclear ETF Return RE Benchmark ETF Return
Test Run Over 2006:04:11 to 2016:10:24 2008:04:16 to 2019:01:02 2007:08:16 to 2019:01:02 2006:04:11 to 2019:01:02

Lags Tested 1, Degrees of Freedom 9
Q Statistic 29.95587 79.46677 51.87136 112.7274

Signif Level 0.00045 0.00000 0.00000 0.0000
Lags Tested 5, Degrees of Freedom 45

Degrees of Freedom 45 Degrees of Freedom 45 Degrees of Freedom 45 Degrees of Freedom 45
Q Statistic 89.33166 173.8159 140.5165 209.8704

Signif Level 0.00009 0.0000 0.0000 0.0000



158
C

hapter
4.

Volatility
Spillovers

in
ETFs

TABLE 4.13: Information Criteria

Normal Distribution Student-t Distribution
AIC BIC HQ FPE AIC BIC HQ FPE

BEKK

Wind 9.211 9.308 9.246 9.211 9.062 9.161 9.098 9.062
Solar 10.573 10.668 10.607 10.573 10.389 10.487 10.425 10.389

Nuclear 9.297 9.387 9.329 9.297 9.016 9.109 9.049 9.016
RE 9.603 9.685 9.632 9.603 9.468 9.553 9.498 9.468

CCC

Wind 9.278 9.394 9.320 9.278 9.115 9.214 9.151 9.115
Solar 10.640 10.755 10.682 10.640 10.435 10.532 10.470 10.435

Nuclear 9.396 9.486 9.428 9.396 9.130 9.259 9.176 9.130
RE 9.670 9.753 9.700 9.670 9.528 9.613 9.558 9.528

DCC

Wind 9.196 9.219 9.230 9.196 9.053 9.150 9.089 9.054
Solar 10.564 10.677 10.605 10.564 10.376 10.490 10.417 10.376

Nuclear 9.291 9.380 9.323 9.291 8.995 9.086 9.028 8.995
RE 9.579 9.660 9.608 9.579 9.450 9.533 9.480 9.450
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TABLE 4.14: GARCH-in-mean Coefficients Ψ Estimation Result
(Part 1)

Wind Solar Nuclear RE

BEKK
Normal

Distribution

ψ11 -0.0110 -0.0019 0.0094 -0.0217
(0.6677) (0.8386) (0.6918) (0.3753)

ψ12 0.0449 0.0548 0.0548 0.0228
(0.3332) (0.2485) (0.4648) (0.0804)

ψ13 -0.0025 -0.0126 -0.0051 -0.0057
(0.7647) (0.3339) (0.5243) (0.6189)

ψ21 -0.0181 -0.0001 -0.0037 0.0036
(0.3880) (0.9808) (0.8183) (0.7892)

ψ22 0.0683 0.0376 0.0322 0.0284
(0.0659) (0.1424) (0.2376) (0.4120)

ψ23 -0.0089 -0.0086 -0.0078 -0.0083
(0.0974) (0.0976) (0.2261) (0.1752)

ψ31 -0.0251 0.0027 0.0566 0.0244
(0.4684) (0.7537) (0.0848) (0.2984)

ψ32 0.0250 -0.0291 -0.0872 -0.0660
(0.6360) (0.3523) (0.0372) (0.1775)

ψ33 0.0073 0.0098 0.0020 0.0073
(0.6187) (0.3920) (0.8986) (0.6276)

BEKK
Student’s

t-distribution

ψ11 -0.0067 -0.0038 -0.0092 -0.0198
(0.7952) (0.7020) (0.6561) (0.4254)

ψ12 0.0328 0.0299 0.0492 0.0833
(0.4127) (0.5008) (0.1269) (0.1328)

ψ13 0.0009 -0.0030 -0.0056 -0.0078
(0.9256) (0.6574) (0.1955) (0.3922)

ψ21 -0.0162 0.0014 0.0003 0.0022
(0.3878) (0.7638) (0.9863) (0.8667)

ψ22 0.0669 0.0266 0.0374 0.0267
(0.0462) (0.2494) (0.1234) (0.4547)

ψ23 -0.0094 -0.0069 -0.0102 -0.0085
(0.1172) (0.0289) (0.0074) (0.0985)

ψ31 -0.0087 0.0003 0.0747 0.0143
(0.8044) (0.9568) (0.0242) (0.5510)

ψ32 -0.0084 -0.0311 -0.0940 -0.0491
(0.8660) (0.2491) (0.0331) (0.3731)

ψ33 0.0053 0.0099 -0.0046 0.0052
(0.7351) (0.2625) (0.4291) (0.5426)
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TABLE 4.15: GARCH-in-mean Coefficients Ψ Estimation Result
(Part 2)

Wind Solar Nuclear RE

CCC
Normal

Distribution

ψ11 -0.0121 -0.0125 -0.0250 -0.0197
(0.7513) (0.2920) (0.4565) (0.5569)

ψ12 0.0461 0.0872 0.0667 0.0924
(0.4962) (0.1411) (0.2009) (0.2393)

ψ13 0.0043 -0.0078 -0.0075 -0.0065
(0.6862) (0.6038) (0.3848) (0.6027)

ψ21 -0.0255 -0.0033 -0.0103 0.0124
(0.3365) (0.4864) (0.5998) (0.4952)

ψ22 0.0925 0.0572 0.0616 0.0122
(0.0762) (0.0286) (0.0863) (0.7908)

ψ23 -0.0064 -0.0089 -0.0108 -0.0067
(0.3626) (0.1761) (0.1263) (0.3493)

ψ31 -0.0333 0.0046 0.0720 0.0349
(0.4910) (0.5288) (0.0840) (0.1052)

ψ32 0.0159 -0.0500 -0.1443 -0.1024
(0.8557) (0.1811) (0.0364) (0.0343)

ψ33 0.0224 0.0178 0.0178 0.0156
(0.1937) (0.2148) (0.2854) (0.3020)

CCC
Student’s

t-distribution

ψ11 -0.0138 -0.0111 -0.0054 -0.0050
(0.6211) (0.4021) (0.8480) (0.8802)

ψ12 0.0428 0.0649 0.0451 0.0587
(0.3862) (0.2742) (0.2961) (0.4452)

ψ13 0.0013 -0.0038 -0.0053 -0.0063
(0.8418) (0.7958) (0.4372) (0.5521)

ψ21 -0.0225 -0.0010 -0.0043 0.0162
(0.2811) (0.8401) (0.8159) (0.3481)

ψ22 0.0893 0.05125 0.0525 0.0006
(0.0177) (0.0701) (0.0664) (0.9887)

ψ23 -0.0091 -0.0082 -0.0115 -0.0059
(0.0179) (0.1723) (0.0424) (0.3300)

ψ31 -0.0257 0.0009 0.0788 0.0291
(0.5218) (0.8988) (0.0220) (0.3495)

ψ32 0.0022 -0.0362 -0.1308 -0.0837
(0.9739) (0.3091) (0.0217) (0.2464)

ψ33 0.0147 0.0136 0.0070 0.0099
(0.2649) (0.3130) (0.5670) (0.5188)
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TABLE 4.16: GARCH-in-mean Coefficients Ψ Estimation Result
(Part 3)

Wind Solar Nuclear RE

DCC
Normal

Distribution

ψ11 -0.0008 -0.0081 -0.0134 -0.0194
(0.9816) (0.4424) (0.6548) (0.5579)

ψ12 0.0268 0.0756 0.0568 0.0926
(0.6649) (0.1696) (0.2122) (0.2425)

ψ13 0.0028 -0.0091 -0.0057 -0.0061
(0.7717) (0.5543) (0.4867) (0.6323)

ψ21 -0.0139 -0.0022 -0.0114 0.0067
(0.5646) (0.6352) (0.5793) (0.6984)

ψ22 0.0673 0.0451 0.0518 0.0242
(0.1535) (0.0989) (0.1647) (0.5970)

ψ23 -0.0089 -0.0091 -0.0107 -0.0085
(0.1714) (0.1714) (0.1121) (0.2345)

ψ31 -0.0256 0.0043 0.0413 0.0342
(0.3748) (0.6030) (0.3009) (0.2622)

ψ32 0.0224 -0.0398 -0.0797 -0.0959
(0.6724) (0.3259) (0.1802) (0.1849)

ψ33 0.0144 0.0134 0.0078 0.0130
(0.3511) (0.3281) (0.6220) (0.4188)

DCC
Student’s

t-distribution

ψ11 -0.0082 -0.0072 -0.0159 -0.0130
(0.7523) (0.1165) (0.6091) (0.6670)

ψ12 0.0361 0.0530 0.0574 0.0691
(0.4386) (0.0705) (0.1358) (0.3489)

ψ13 0.0016 -0.0041 -0.0048 -0.0056
(0.8559) (0.5416) (0.4765) (0.6162)

ψ21 -0.0172 -0.0001 0.0044 0.0074
(0.3608) (0.9598) (0.8485) (0.6422)

ψ22 0.0742 0.0410 0.0459 0.0165
(0.0400) (0.0078) (0.1614) (0.6997)

ψ23 -0.0109 -0.0089 -0.0130 -0.0078
(0.0594) (0.0017) (0.0214) (0.2092)

ψ31 -0.0114 0.0024 0.0688 0.0228
(0.7470) (0.7401) (0.0410) (0.4176)

ψ32 -0.0044 -0.0357 -0.0826 -0.0713
(0.9386) (0.2146) (0.0694) (0.2981)

ψ33 0.0094 0.0113 -0.0030 0.0089
(0.5308) (0.2000) (0.8292) (0.5444)
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TABLE 4.17: BEKK GARCH-in-mean Parameter Estimates with
Normal Distribution [Wind Energy]

Wind Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Wind (1) γ1
11 0.0032 0.8663 c11 0.1046 0.0042

Stock (1) γ1
12 -0.0462 0.0762 c21 0.0964 0.0004

WTI (1) γ1
13 0.0005 0.9673 c22 0.1169 0.0000

Constant c1 0.0328 0.4049 c31 -0.0065 0.8907
σ2

11ψ11 -0.0111 0.6677 c32 0.0885 0.0299
σ2

22ψ12 0.0450 0.3332 c33 0.0813 0.0868
σ2

33ψ13 -0.0025 0.7647 a11 0.2149 0.0000
Stock Mean a12 0.0382 0.0455
Wind (1) γ1

21 0.0154 0.1706 a13 -0.0027 0.9146
Stock (1) γ1

22 -0.0573 0.0019 a21 0.1013 0.0065
WTI (1) γ1

23 -0.0038 0.6501 a22 0.3181 0.0000
Constant c2 0.0911 0.0002 a23 0.1119 0.0141

σ2
11ψ21 -0.0182 0.3880 a31 0.0037 0.7419

σ2
22ψ22 0.0684 0.0660 a32 -0.0016 0.8682

σ2
33ψ23 -0.0090 0.0974 a33 0.1895 0.0000

Oil Mean b11 0.9904 0.0000
Wind (1) γ1

31 -0.0461 0.0942 b12 0.0148 0.0478
Stock (1) γ1

32 0.0666 0.1123 b13 0.0131 0.1654
WTI (1) γ1

33 -0.0453 0.0240 b21 -0.0602 0.0002
Constant c3 0.0353 0.4591 b22 0.9061 0.0000

σ2
11ψ31 -0.0251 0.4685 b23 -0.0503 0.0208

σ2
22ψ32 0.0250 0.6361 b31 0.0027 0.3117

σ2
33ψ33 0.0073 0.6188 b32 0.0020 0.4067

b33 0.9818 0.0000
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TABLE 4.18: BEKK GARCH-in-mean Parameter Estimates with t-
distribution [Wind Energy]

Wind Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Wind (1) γ1
11 0.0191 0.4270 c11 0.0278 0.3680

Stock (1)γ1
12 -0.0616 0.0727 c21 0.0934 0.2402

WTI (1) γ1
13 0.0001 0.9957 c22 0.0880 0.2682

Constant c1 0.0324 0.3733 c31 -0.0417 0.6924
σ2

11ψ11 -0.0067 0.7952 c32 0.1110 0.0257
σ2

22ψ12 0.0328 0.4128 c33 -0.0001 0.9999
σ2

33ψ13 0.0009 0.9257 a11 0.1630 0.0000
Stock Mean a12 0.0081 0.6780
Wind (1) γ1

21 0.0290 0.0544 a13 -0.0215 0.3897
Stock (1) γ1

22 -0.0798 0.0011 a21 0.1220 0.0000
WTI (1) γ1

23 -0.0038 0.6208 a22 0.3278 0.0000
Constant c2 0.1097 0.0000 a23 0.0878 0.0557

σ2
11ψ21 -0.0162 0.3879 a31 0.0009 0.9298

σ2
22ψ22 0.0669 0.0462 a32 -0.0060 0.5480

σ2
33ψ23 -0.0094 0.1172 a33 0.1902 0.0000

Oil Mean b11 0.9992 0.0000
Wind (1) γ1

31 -0.0353 0.2585 b12 0.0189 0.0001
Stock (1) γ1

32 0.0002 0.9961 b13 0.0105 0.1289
WTI (1) γ1

33 -0.0307 0.1142 b21 -0.0538 0.0000
Constant c3 0.0545 0.2348 b22 0.9143 0.0000

σ2
11ψ31 -0.0087 0.8045 b23 -0.0284 0.1185

σ2
22ψ32 -0.0084 0.8661 b31 0.0014 0.5338

σ2
33ψ33 0.0053 0.7351 b32 0.0020 0.4041

b33 0.9812 0.0000
Shape ν

(t degrees)
6.7653 0.0000
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TABLE 4.19: BEKK GARCH-in-mean Parameter Estimates with
Normal Distribution [Solar Energy]

Solar Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Solar (1) γ1
11 0.0740 0.0000 c11 0.1673 0.0000

Stock (1) γ1
12 -0.0482 0.1254 c21 0.0993 0.0000

WTI (1) γ1
13 0.0018 0.9244 c22 0.1154 0.0000

Constant c1 0.0308 0.6306 c31 0.0455 0.0121
σ2

11ψ11 -0.0019 0.8387 c32 0.0528 0.0517
σ2

22ψ12 0.0548 0.2485 c33 0.1111 0.0000
σ2

33ψ13 -0.0126 0.3339 a11 0.1730 0.0000
Stock Mean a12 0.0070 0.3671
Solar (1) γ1

21 0.0000 0.9960 a13 0.0113 0.2526
Stock (1) γ1

22 -0.0448 0.0065 a21 0.1848 0.0000
WTI (1) γ1

23 -0.0048 0.5031 a22 0.3538 0.0000
Constant c2 0.0815 0.0025 a23 0.1044 0.0011

σ2
11ψ21 -0.0001 0.9808 a31 0.0004 0.9752

σ2
22ψ22 0.0376 0.1424 a32 0.0048 0.5734

σ2
33ψ23 -0.0086 0.0976 a33 0.1987 0.0000

Oil Mean b11 0.9856 0.0000
Solar (1) γ1

31 -0.0270 0.0165 b12 0.0033 0.0813
Stock (1) γ1

32 0.0548 0.0183 b13 0.0009 0.7179
WTI (1) γ1

33 -0.0445 0.0121 b21 -0.0544 0.0001
Constant c3 -0.0055 0.9151 b22 0.9161 0.0000

σ2
11ψ31 0.0027 0.7538 b23 -0.0416 0.0007

σ2
22ψ32 -0.0291 0.3524 b31 0.0016 0.6221

σ2
33ψ33 0.0098 0.3927 b32 0.0006 0.7738

b33 0.9798 0.0000
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TABLE 4.20: BEKK GARCH-in-mean Parameter Estimates with t-
distribution [Solar Energy] (Table 17)

Solar Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Solar (1) γ1
11 0.0457 0.0167 c11 0.1535 0.0000

Stock (1) γ1
12 -0.0120 0.8118 c21 0.0936 0.0000

WTI (1) γ1
13 -0.0098 0.5874 c22 0.0913 0.0000

Constant c1 0.0441 0.3473 c31 0.0244 0.5457
σ2

11ψ11 -0.0038 0.7021 c32 0.0349 0.3168
σ2

22ψ12 0.0299 0.5008 c33 -0.1180 0.0000
σ2

33ψ13 -0.0030 0.6575 a11 0.1495 0.0000
Stock Mean a12 -0.0022 0.8197
Solar (1) γ1

21 -0.0027 0.6989 a13 -0.0048 0.6717
Stock (1) γ1

22 -0.0362 0.0666 a21 0.2262 0.0000
WTI (1) γ1

23 -0.0045 0.5266 a22 0.3542 0.0000
Constant c2 0.0891 0.0000 a23 0.0920 0.0154

σ2
11ψ21 0.0014 0.7639 a31 0.0026 0.8775

σ2
22ψ22 0.0266 0.2494 a32 0.0029 0.7731

σ2
33ψ23 -0.0069 0.0290 a33 0.2078 0.0000

Oil Mean b11 0.9912 0.0000
Solar (1) γ1

31 -0.0242 0.0776 b12 0.0044 0.0449
Stock (1) γ1

32 0.0078 0.8468 b13 0.0026 0.2827
WTI (1) γ1

33 -0.0312 0.0688 b21 -0.0675 0.0000
Constant c3 0.0307 0.4091 b22 0.9249 0.0000

σ2
11ψ31 0.0003 0.9569 b23 -0.0267 0.0450

σ2
22ψ32 -0.0311 0.2491 b31 0.0018 0.6193

σ2
33ψ33 0.0099 0.2625 b32 0.0010 0.6716

b33 0.9787 0.0000
Shape ν

(t degrees)
6.0516 0.0000
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TABLE 4.21: BEKK GARCH-in-mean Parameter Estimates with
Normal Distribution [Nuclear Energy] (Table 18)

Nuclear Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Nuclear (1) γ1
11 -0.0211 0.3379 c11 0.0361 0.0829

Stock (1) γ1
12 0.0572 0.0391 c21 -0.0087 0.8783

WTI (1) γ1
13 -0.0138 0.1968 c22 0.1390 0.0000

Constant c1 0.0041 0.8974 c31 -0.1057 0.0000
σ2

11ψ11 0.0094 0.6918 c32 0.0257 0.6081
σ2

22ψ12 0.0228 0.4648 c33 0.0000 1.0000
σ2

33ψ13 -0.0051 0.5243 a11 0.1389 0.0000
Stock Mean a12 -0.0183 0.1620

Nuclear (1) γ1
21 -0.0073 0.6314 a13 -0.0020 0.9152

Stock (1) γ1
22 -0.0305 0.1822 a21 0.1118 0.0000

WTI (1) γ1
23 -0.0138 0.0812 a22 0.3497 0.0000

Constant c2 0.0811 0.0009 a23 0.0718 0.0255
σ2

11ψ21 -0.0037 0.8183 a31 -0.0025 0.7576
σ2

22ψ22 0.0322 0.2376 a32 -0.0031 0.7269
σ2

33ψ23 -0.0078 0.2261 a33 0.1873 0.0000
Oil Mean b11 0.9938 0.0000

Nuclear (1) γ1
31 0.0113 0.7099 b12 0.0174 0.0000

Stock (1) γ1
32 0.0151 0.7169 b13 0.0119 0.0218

WTI (1) γ1
33 -0.0551 0.0039 b21 -0.0308 0.0000

Constant c3 0.0023 0.9614 b22 0.9181 0.0000
σ2

11ψ31 0.0566 0.0848 b23 -0.0357 0.0019
σ2

22ψ32 -0.0872 0.0372 b31 0.0015 0.3851
σ2

33ψ33 0.0020 0.8986 b32 0.0035 0.1293
b33 0.9823 0.0000
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TABLE 4.22: BEKK GARCH-in-mean Parameter Estimates with t-
distribution [Nuclear Energy] (Table 19)

Nuclear Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Nuclear (1) γ1
11 -0.0332 0.0595 c11 0.0421 0.0201

Stock (1) γ1
12 0.0514 0.0257 c21 -0.0530 0.1749

WTI (1) γ1
13 -0.0003 0.9657 c22 0.0938 0.0002

Constant c1 0.0384 0.1125 c31 -0.1164 0.0000
σ2

11ψ11 -0.0092 0.6562 c32 -0.0246 0.6357
σ2

22ψ12 0.0492 0.1269 c33 0.0000 1.0000
σ2

33ψ13 -0.0056 0.1955 a11 0.1406 0.0000
Stock Mean a12 -0.0184 0.1704

Nuclear (1) γ1
21 -0.0017 0.8959 a13 -0.0147 0.5439

Stock (1) γ1
22 -0.0331 0.0978 a21 0.0634 0.0013

WTI (1) γ1
23 -0.0101 0.0974 a22 0.2915 0.0000

Constant c2 0.0946 0.0000 a23 0.0685 0.0772
σ2

11ψ21 0.0003 0.9863 a31 -0.0006 0.9355
σ2

22ψ22 0.0374 0.1234 a32 -0.0049 0.5570
σ2

33ψ23 -0.0102 0.0074 a33 0.1835 0.0000
Oil Mean b11 0.9916 0.0000

Nuclear (1)γ1
31 -0.0042 0.8647 b12 0.0160 0.0001

Stock (1)γ1
32 -0.0071 0.8435 b13 0.0135 0.0412

WTI (1) γ1
33 -0.0512 0.0021 b21 -0.0163 0.0027

Constant c3 0.0244 0.5431 b22 0.9427 0.0000
σ2

11ψ31 0.0747 0.0242 b23 -0.0279 0.0222
σ2

22ψ32 -0.0940 0.0331 b31 0.0007 0.6376
σ2

33ψ33 -0.0046 0.4292 b32 0.0017 0.3608
b33 0.9829 0.0000

Shape ν
(t degrees)

5.7590 0.0000
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TABLE 4.23: BEKK GARCH-in-mean Parameter Estimates with
Normal Distribution [RE Energy] (Table 20)

RE Mean Coefficient P-value
Variance
Equation

Coefficient P-value

RE (1) γ1
11 0.0170 0.3942 c11 0.1760 0.0000

Stock (1) γ1
12 0.0849 0.0085 c21 0.1077 0.0000

WTI (1) γ1
13 -0.0119 0.4092 c22 0.0977 0.0000

Constant c1 0.0303 0.5118 c31 0.0452 0.0576
σ2

11ψ11 -0.0217 0.3754 c32 0.0575 0.0609
σ2

22ψ12 0.0934 0.0804 c33 0.1124 0.0000
σ2

33ψ13 -0.0057 0.6189 a11 0.1734 0.0000
Stock Mean a12 -0.0008 0.9475
RE (1) γ1

21 -0.0185 0.0568 a13 -0.0006 0.9746
Stock (1) γ1

22 -0.0111 0.5595 a21 0.1552 0.0002
WTI (1) γ1

23 -0.0104 0.1628 a22 0.3435 0.0000
Constant c2 0.0695 0.0072 a23 0.1202 0.0026

σ2
11ψ21 0.0036 0.7893 a31 0.0034 0.7922

σ2
22ψ22 0.0284 0.4120 a32 0.0013 0.8780

σ2
33ψ23 -0.0084 0.1753 a33 0.1937 0.0000

Oil Mean b11 0.9860 0.0000
RE (1) γ1

31 -0.0218 0.2910 b12 0.0077 0.0639
Stock (1) γ1

32 0.0575 0.1458 b13 0.0078 0.1444
WTI (1) γ1

33 -0.0539 0.0026 b21 -0.0494 0.0010
Constant c3 -0.0324 0.5445 b22 0.9202 0.0000

σ2
11ψ31 0.0244 0.2984 b23 -0.0498 0.0009

σ2
22ψ32 -0.0660 0.1775 b31 0.0004 0.8992

σ2
33ψ33 0.0073 0.6276 b32 0.0004 0.8462

b33 0.9799 0.0000
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TABLE 4.24: BEKK GARCH-in-mean Parameter Estimates with
t-distribution [RE Energy]

RE Mean Coefficient P-value
Variance
Equation

Coefficient P-value

RE (1) γ1
11 0.0134 0.3764 c11 0.1576 0.0000

Stock (1) γ1
12 0.0873 0.0017 c21 0.0823 0.0000

WTI (1) γ1
13 -0.0108 0.4046 c22 0.0746 0.0000

Constant c1 0.0760 0.1029 c31 0.0096 0.7815
σ2

11ψ11 -0.0198 0.4255 c32 0.0701 0.0203
σ2

22ψ12 0.0833 0.1328 c33 0.0941 0.0042
σ2

33ψ13 -0.0078 0.3922 a11 0.1636 0.0000
Stock Mean a12 -0.0026 0.8451
RE (1) γ1

21 -0.0099 0.1976 a13 -0.0177 0.3341
Stock (1) γ1

22 -0.0186 0.2706 a21 0.1765 0.0000
WTI (1) γ1

23 -0.0113 0.0906 a22 0.3197 0.0000
Constant c2 0.0914 0.0008 a23 0.1439 0.0001

σ2
11ψ21 0.0022 0.8666 a31 -0.0004 0.9740

σ2
22ψ22 0.0267 0.4547 a32 0.0040 0.6290

σ2
33ψ23 -0.0085 0.0985 a33 0.1949 0.0000

Oil Mean b11 0.9873 0.0000
RE (1) γ1

31 -0.0134 0.4991 b12 0.0044 0.2672
Stock (1) γ1

32 0.0218 0.5478 b13 0.0104 0.0263
WTI (1) γ1

33 -0.0499 0.0034 b21 -0.0508 0.0001
Constant c3 0.0144 0.7903 b22 0.9370 0.0000

σ2
11ψ31 0.0143 0.5510 b23 -0.0506 0.0000

σ2
22ψ32 -0.0491 0.3731 b31 0.0012 0.6716

σ2
33ψ33 0.0052 0.5426 b32 0.0000 0.9959

b33 0.9805 0.0000
Shape ν

(t degrees)
7.2554 0.0000
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TABLE 4.25: CCC GARCH-in-mean Parameter Estimates with Nor-
mal Distribution [Wind Energy]

Wind Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Wind (1) γ1
11 -0.0020 0.9381 c11 0.0684 0.0000

Wind (2) γ2
11 0.0144 0.4745 c22 0.0361 0.0000

Stock (1) γ1
12 -0.0262 0.5112 c33 0.0447 0.0000

Stock (2) γ2
12 -0.0226 0.4141 a11 0.0668 0.0000

WTI (1) γ1
13 0.0061 0.6106 a12 0.0400 0.1057

WTI (2) γ2
13 0.0130 0.3272 a13 0.0003 0.9121

Constant c1 0.0133 0.7534 a21 0.0122 0.0130
σ2

11ψ11 -0.0121 0.7513 a22 0.0923 0.0000
σ2

22ψ12 0.0461 0.4962 a23 0.0037 0.0163
σ2

33ψ13 0.0043 0.6862 a31 -0.0044 0.7147
Stock Mean a32 0.0351 0.1641
Wind (1) γ1

21 0.0066 0.6989 a33 0.0458 0.0000
Wind (2) γ2

21 0.0120 0.3194 b11 0.9003 0.0000
Stock (1) γ1

22 -0.0503 0.0670 b12 -0.0574 0.1828
Stock (2) γ2

22 -0.0404 0.0328 b13 0.0020 0.5672
WTI (1) γ1

23 -0.0010 0.9017 b21 -0.0106 0.2000
WTI (2) γ2

23 0.0126 0.1588 b22 0.8514 0.0000
Constant c2 0.0809 0.0031 b23 -0.0011 0.5370

σ2
11ψ21 -0.0255 0.3365 b31 -0.0114 0.5575

σ2
22ψ22 0.0925 0.0762 b32 -0.0256 0.5523

σ2
33ψ23 -0.0064 0.3626 b33 0.9488 0.0000

Oil Mean R(2,1) ρ21 0.7246 0.0000
Wind (1) γ1

31 -0.0443 0.1587 R(3,1) ρ31 0.3862 0.0000
Wind (2) γ2

31 0.0048 0.8414 R(3,2) ρ32 0.4155 0.0000
Stock (1) γ1

32 0.0406 0.3498
Stock (2) γ2

32 -0.0116 0.7329
WTI (1) γ1

33 -0.0334 0.0920
WTI (2) γ2

33 0.0109 0.6061
Constant c3 -0.0041 0.9389

σ2
11ψ31 -0.0333 0.4910

σ2
22ψ32 0.0157 0.8557

σ2
33ψ33 0.0224 0.1937
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TABLE 4.26: CCC GARCH-in-mean Parameter Estimates with t-
distribution [Wind Energy]

Wind Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Wind (1) γ1
11 0.0140 0.4695 c11 0.0486 0.0001

Stock (1) γ1
12 -0.0461 0.0953 c22 0.0257 0.0000

WTI (1) γ1
13 0.0024 0.8278 c33 0.0378 0.0003

Constant c1 0.0463 0.1324 a11 0.0571 0.0001
σ2

11ψ11 -0.0139 0.6212 a12 0.0211 0.3577
σ2

22ψ12 0.0429 0.3862 a13 0.0004 0.9002
σ2

33ψ13 0.0013 0.8418 a21 0.0082 0.1346
Stock Mean a22 0.0921 0.0000
Wind (1) γ1

21 0.0196 0.1154 a23 0.0034 0.0395
Stock (1) γ1

22 -0.0711 0.0002 a31 0.0092 0.4750
WTI (1) γ1

23 -0.0026 0.7271 a32 0.0122 0.6528
Constant c2 0.1049 0.0000 a33 0.0486 0.0000

σ2
11ψ21 -0.0225 0.2812 b11 0.9216 0.0000

σ2
22ψ22 0.0893 0.0178 b12 -0.0359 0.3219

σ2
33ψ23 -0.0091 0.0179 b13 0.0005 0.8653

Oil Mean b21 -0.0040 0.6411
Wind (1) γ1

31 -0.0327 0.2663 b22 0.8572 0.0000
Stock (1) γ1

32 -0.0206 0.6341 b23 -0.0008 0.6032
WTI (1) γ1

33 -0.0184 0.2963 b31 -0.0244 0.2079
Constant c3 0.0431 0.3657 b32 -0.0029 0.9479

σ2
11ψ31 -0.0257 0.5218 b33 0.9495 0.0000

σ2
22ψ32 0.0022 0.9740 R(2,1) ρ21 0.7119 0.0000

σ2
33ψ33 0.0147 0.2650 R(3,1) ρ31 0.3717 0.0000

R(3,2) ρ32 0.4163 0.0000
Shape ν

(t degrees)
6.5691 0.0000



172 Chapter 4. Volatility Spillovers in ETFs

TABLE 4.27: CCC GARCH-in-mean Parameter Estimates with Nor-
mal Distribution [Solar Energy]

Solar Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Solar (1) γ1
11 0.0882 0.0000 c11 0.0461 0.0001

Solar (2) γ2
11 0.0447 0.0073 c22 0.0197 0.0000

Stock (1) γ1
12 -0.0512 0.2795 c33 0.0540 0.0000

Stock (2) γ2
12 -0.0927 0.0236 a11 0.0380 0.0000

WTI (1) γ1
13 0.0017 0.9317 a12 0.1026 0.0001

WTI (2) γ2
13 0.0168 0.3568 a13 -0.0091 0.0102

Constant c1 0.0507 0.3745 a21 0.0012 0.1395
σ2

11ψ11 -0.0125 0.2920 a22 0.1135 0.0000
σ2

22ψ12 0.0872 0.1411 a23 0.0030 0.0460
σ2

33ψ13 -0.0078 0.6038 a31 -0.0004 0.8260
Stock Mean a32 0.0215 0.0889
Solar (1) γ1

21 0.0031 0.6531 a33 0.0498 0.0000
Solar (2) γ2

21 0.0195 0.0002 b11 0.9625 0.0000
Stock (1) γ1

22 -0.0548 0.0093 b12 -0.1762 0.0000
Stock (2) γ2

22 -0.0630 0.0006 b13 0.0131 0.0044
WTI (1) γ1

23 -0.0028 0.7335 b21 0.0022 0.0894
WTI (2) γ2

23 0.0141 0.0652 b22 0.8282 0.0000
Constant c2 0.0872 0.0014 b23 0.0006 0.7395

σ2
11ψ21 -0.0033 0.4864 b31 -0.0033 0.1583

σ2
22ψ22 0.0572 0.0286 b32 -0.0198 0.3695

σ2
33ψ23 -0.0089 0.1761 b33 0.9424 0.0000

Oil Mean R(2,1) ρ21 0.6096 0.0000
Solar (1) γ1

31 -0.0192 0.1322 R(3,1) ρ31 0.3659 0.0000
Solar (2) γ2

31 0.0159 0.2060 R(3,2) ρ32 0.3993 0.0000
Stock (1) γ1

32 0.0199 0.5606
Stock (2) γ2

32 -0.0353 0.3293
WTI (1) γ1

33 -0.0297 0.1207
WTI (2) γ2

33 0.0112 0.4912
Constant c3 -0.0296 0.5853

σ2
11ψ31 0.0046 0.5288

σ2
22ψ32 -0.0500 0.1811

σ2
33ψ33 0.0178 0.2148
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TABLE 4.28: CCC GARCH-in-mean Parameter Estimates with t-
distribution [Solar Energy]

Solar Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Solar (1) γ1
11 0.0489 0.0036 c11 0.0399 0.0016

Stock (1) γ1
12 0.0084 0.8288 c22 0.0074 0.1390

WTI (1) γ1
13 -0.0154 0.3722 c33 0.0370 0.0020

Constant c1 0.0571 0.3794 a11 0.0346 0.0000
σ2

11ψ11 -0.0111 0.4021 a12 0.1180 0.0016
σ2

22ψ12 0.0649 0.2743 a13 0.0025 0.6942
σ2

33ψ13 -0.0038 0.7959 a21 0.0016 0.1381
Stock Mean a22 0.1118 0.0000
Solar (1) γ1

21 -0.0029 0.6506 a23 0.0037 0.0707
Stock (1) γ1

22 -0.0351 0.0599 a31 0.0008 0.7409
WTI (1) γ1

23 -0.0070 0.3267 a32 0.0250 0.2612
Constant c2 0.0848 0.0017 a33 0.0566 0.0000

σ2
11ψ21 -0.0010 0.8401 b11 0.9681 0.0000

σ2
22ψ22 0.0513 0.0702 b12 -0.1894 0.0005

σ2
33ψ23 -0.0082 0.1724 b13 0.0014 0.8404

Oil Mean b21 0.0030 0.0683
Solar (1) γ1

31 -0.0215 0.0960 b22 0.8373 0.0000
Stock (1) γ1

32 -0.0083 0.8137 b23 0.0007 0.7370
WTI (1) γ1

33 -0.0234 0.1911 b31 -0.0021 0.5221
Constant c3 0.0236 0.6327 b32 -0.0278 0.4243

σ2
11ψ31 0.0009 0.8989 b33 0.9419 0.0000

σ2
22ψ32 -0.0362 0.3091 R(2,1) ρ21 0.6167 0.0000

σ2
33ψ33 0.0136 0.3130 R(3,1) ρ31 0.3777 0.0000

R(3,2) ρ32 0.4113 0.0000
Shape ν

(t degrees)
5.8869 0.0000
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TABLE 4.29: CCC GARCH-in-mean Parameter Estimates with Nor-
mal Distribution [Nuclear Energy]

Nuclear Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Nuclear (1) γ1
11 -0.0006 0.9784 c11 0.0392 0.0000

Stock (1) γ1
12 0.0318 0.3125 c22 0.0314 0.0000

WTI (1) γ1
13 -0.0053 0.6356 c33 0.0387 0.0001

Constant c1 0.0415 0.2246 a11 0.0372 0.0081
σ2

11ψ11 -0.0249 0.4565 a12 0.0883 0.0000
σ2

22ψ12 0.0668 0.2009 a13 0.0003 0.8838
σ2

33ψ13 -0.0075 0.3848 a21 0.0023 0.4284
Stock Mean a22 0.1011 0.0000

Nuclear (1) γ1
21 -0.0072 0.6531 a23 0.0042 0.0081

Stock (1) γ1
22 -0.0336 0.1701 a31 -0.0068 0.1241

WTI (1) γ1
23 -0.0125 0.1580 a32 0.0411 0.0425

Constant c2 0.0835 0.0018 a33 0.0534 0.0000
σ2

11ψ21 -0.0103 0.5999 b11 0.9408 0.0000
σ2

22ψ22 0.0616 0.0864 b12 -0.1088 0.0001
σ2

33ψ23 -0.0108 0.1263 b13 0.0036 0.1399
Oil Mean b21 -0.0047 0.3196

Nuclear (1) γ1
31 0.0242 0.4542 b22 0.8584 0.0000

Stock (1) γ1
32 -0.0180 0.6926 b23 -0.0013 0.4926

WTI (1) γ1
33 -0.0423 0.0400 b31 0.0097 0.2758

Constant c3 -0.0045 0.9306 b32 -0.0652 0.0284
σ2

11ψ31 0.0720 0.0840 b33 0.9428 0.0000
σ2

22ψ32 -0.1443 0.0364 R(2,1) ρ21 0.6177 0.0000
σ2

33ψ33 0.0178 0.2854 R(3,1) ρ31 0.3458 0.0000
R(3,2) ρ32 0.3827 0.0000
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TABLE 4.30: CCC GARCH-in-mean Parameter Estimates with t-
distribution [Nuclear Energy]

Nuclear Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Nuclear (1) γ1
11 -0.0334 0.0152 c11 0.0250 0.0001

Nuclear (2) γ2
11 -0.0036 0.8235 c22 0.0235 0.0000

Nuclear (3) γ3
11 0.0076 0.5696 c33 0.0290 0.0035

Stock (1) γ1
12 0.0551 0.0032 a11 0.0371 0.0054

Stock (2) γ2
12 0.0006 0.9791 a12 0.0502 0.0019

Stock (3) γ3
12 -0.0021 0.9073 a13 0.0011 0.5853

WTI (1) γ1
13 0.0031 0.6801 a21 0.0002 0.9559

WTI (2) γ2
13 0.0237 0.0013 a22 0.0975 0.0000

WTI (3) γ3
13 -0.0117 0.1549 a23 0.0050 0.0093

Constant c1 0.0465 0.0730 a31 -0.0056 0.3635
σ2

11ψ11 -0.0055 0.8480 a32 0.0367 0.1128
σ2

22ψ12 0.0451 0.2962 a33 0.0560 0.0000
σ2

33ψ13 -0.0053 0.4372 b11 0.9403 0.0000
Stock Mean b12 -0.0556 0.0364

Nuclear (1) γ1
21 -0.0033 0.7332 b13 0.0021 0.3461

Nuclear (2) γ2
21 0.0150 0.2023 b21 0.0008 0.8778

Nuclear (3) γ3
21 -0.0050 0.6166 b22 0.8636 0.0000

Stock (1) γ1
22 -0.0339 0.0152 b23 -0.0012 0.5074

Stock (2) γ2
22 -0.0366 0.0334 b31 0.0037 0.7615

Stock (3) γ3
22 -0.0134 0.3450 b32 -0.0438 0.2288

WTI (1) γ1
23 -0.0072 0.2256 b33 0.9450 0.0000

WTI (2) γ2
23 0.0143 0.0115 R(2,1) ρ21 0.6301 0.0000

WTI (3) γ3
23 -0.0197 0.0028 R(3,1) ρ31 0.3521 0.0000

Constant c2 0.1021 0.0000 R(3,2) ρ32 0.3866 0.0000

σ2
11ψ21 -0.0043 0.8160

Shape ν
(t degrees)

5.5580 0.0000

σ2
22ψ22 0.0525 0.0664

σ2
33ψ23 -0.0115 0.0424

Oil Mean
Nuclear (1) γ1

31 0.0004 0.9864
Nuclear (2) γ2

31 0.0435 0.0894
Nuclear (3) γ3

31 -0.0366 0.1027
Stock (1) γ1

32 -0.0187 0.4865
Stock (2) γ2

32 -0.0661 0.0717
Stock (3) γ3

32 0.0034 0.9103
WTI (1) γ1

33 -0.0410 0.0083
WTI (2) γ2

33 0.0069 0.6489
WTI (3) γ3

33 0.0066 0.6784
Constant c3 0.0368 0.3490

σ2
11ψ31 0.0789 0.0220

σ2
22ψ32 -0.1309 0.0217

σ2
33ψ33 0.0070 0.5670
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TABLE 4.31: CCC GARCH-in-mean Parameter Estimates with Nor-
mal Distribution [RE Energy]

RE Mean Coefficient P-value
Variance
Equation

Coefficient P-value

RE (1) γ1
11 0.0092 0.7156 c11 0.0637 0.0000

Stock (1) γ1
12 0.1072 0.0228 c22 0.0265 0.0000

WTI (1) γ1
13 -0.0076 0.6178 c33 0.0491 0.0001

Constant c1 0.0349 0.5755 a11 0.0354 0.0000
σ2

11ψ11 -0.0198 0.5570 a12 0.1194 0.0000
σ2

22ψ12 0.0924 0.2393 a13 -0.0004 0.8665
σ2

33ψ13 -0.0065 0.6027 a21 0.0048 0.0401
Stock Mean a22 0.1032 0.0000
RE (1) γ1

21 -0.0198 0.1066 a23 0.0010 0.3627
Stock (1) γ1

22 -0.0078 0.7556 a31 -0.0120 0.0204
WTI (1) γ1

23 -0.0134 0.0905 a32 0.0514 0.0154
Constant c2 0.0517 0.1379 a33 0.0496 0.0000

σ2
11ψ21 0.0124 0.4953 b11 0.9608 0.0000

σ2
22ψ22 0.0122 0.7908 b12 -0.1913 0.0000

σ2
33ψ23 -0.0067 0.3493 b13 0.0034 0.3286

Oil Mean b21 -0.0003 0.9500
RE (1) γ1

31 -0.0204 0.3929 b22 0.8419 0.0000
Stock (1) γ1

32 0.0403 0.3963 b23 0.0016 0.3387
WTI (1) γ1

33 -0.0374 0.0528 b31 0.0038 0.6446
Constant c3 -0.0487 0.3383 b32 -0.0392 0.2804

σ2
11ψ31 0.0349 0.1052 b33 0.9418 0.0000

σ2
22ψ32 -0.1024 0.0343 R(2,1) ρ21 0.7463 0.0000

σ2
33ψ33 0.0156 0.3020 R(3,1) ρ31 0.3644 0.0000

R(3,2) ρ32 0.3469 0.0000
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TABLE 4.32: CCC GARCH-in-mean Parameter Estimates with t-
distribution [RE Energy]

RE Mean Coefficient P-value
Variance
Equation

Coefficient P-value

RE (1) γ1
11 0.0079 0.7343 c11 0.0603 0.0001

Stock (1) γ1
12 0.1000 0.0249 c22 0.0194 0.0021

WTI (1) γ1
13 -0.0089 0.5054 c33 0.0339 0.0242

Constant c1 0.0566 0.3304 a11 0.0419 0.0001
σ2

11ψ11 -0.0050 0.8802 a12 0.1015 0.0022
σ2

22ψ12 0.0587 0.4453 a13 0.0038 0.3145
σ2

33ψ13 -0.0063 0.5521 a21 0.0059 0.0342
Stock Mean a22 0.0952 0.0000
RE (1) γ1

21 -0.0101 0.3577 a23 0.0025 0.1259
Stock (1) γ1

22 -0.0201 0.3694 a31 -0.0079 0.2507
WTI (1) γ1

23 -0.0141 0.0366 a32 0.0454 0.0768
Constant c2 0.0631 0.0486 a33 0.0557 0.0000

σ2
11ψ21 0.0162 0.3481 b11 0.9510 0.0000

σ2
22ψ22 0.0006 0.9887 b12 -0.1500 0.0009

σ2
33ψ23 -0.0059 0.3300 b13 -0.0021 0.6092

Oil Mean b21 -0.0023 0.6302
RE (1) γ1

31 -0.0110 0.6161 b22 0.8638 0.0000
Stock (1) γ1

32 0.0173 0.6997 b23 -0.0008 0.6541
WTI (1) γ1

33 -0.0403 0.0231 b31 0.0041 0.7054
Constant c3 -0.0034 0.9596 b32 -0.0390 0.3376

σ2
11ψ31 0.0291 0.3496 b33 0.9398 0.0000

σ2
22ψ32 -0.0838 0.2465 R(2,1) ρ21 0.7379 0.0000

σ2
33ψ33 0.0099 0.5188 R(3,1) ρ31 0.3668 0.0000

R(3,2) ρ32 0.3490 0.0000
Shape ν

(t degrees)
7.0138 0.0000
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TABLE 4.33: DCC GARCH-in-mean Parameter Estimates with
Normal Distribution [Wind Energy]

Wind Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Wind (1) γ1
11 0.0085 0.7164 c11 0.0283 0.0003

Stock (1) γ1
12 -0.0449 0.2034 c22 0.0162 0.0004

WTI (1) γ1
13 0.0023 0.8598 c33 0.0259 0.0001

Constant c1 0.0056 0.8780 a11 0.0492 0.0002
σ2

11ψ11 -0.0008 0.9817 a12 0.0807 0.0006
σ2

22ψ12 0.0268 0.6649 a13 0.0020 0.3556
σ2

33ψ13 0.0029 0.7717 a21 0.0094 0.0505
Stock Mean a22 0.1126 0.0000
Wind (1) γ1

21 0.0163 0.2682 a23 0.0041 0.0048
Stock (1) γ1

22 -0.0574 0.0188 a31 0.0048 0.6317
WTI (1) γ1

23 -0.0046 0.5904 a32 0.0352 0.1467
Constant c2 0.0810 0.0005 a33 0.0443 0.0000

σ2
11ψ21 -0.0140 0.5647 b11 0.9492 0.0000

σ2
22ψ22 0.0673 0.1535 b12 -0.0955 0.0053

σ2
33ψ23 -0.0090 0.1714 b13 -0.0007 0.7720

Oil Mean b21 0.0057 0.4996
Wind (1) γ1

31 -0.0347 0.2321 b22 0.8450 0.0000
Stock (1) γ1

32 0.0429 0.3558 b23 -0.0021 0.2034
WTI (1) γ1

33 -0.0440 0.0247 b31 -0.0112 0.4608
Constant c3 0.0208 0.6519 b32 -0.0220 0.5466

σ2
11ψ31 -0.0257 0.3748 b33 0.9520 0.0000

σ2
22ψ32 0.0225 0.6725 α 0.0316 0.0000

σ2
33ψ33 0.0144 0.3512 β 0.9630 0.0000
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TABLE 4.34: DCC GARCH-in-mean Parameter Estimates with t-
distribution [Wind Energy]

Wind Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Wind (1) γ1
11 0.0284 0.1286 c11 0.0124 0.0163

Stock (1) γ1
12 -0.0636 0.0330 c22 0.0040 0.3815

WTI (1) γ1
13 0.0000 0.9983 c33 0.0145 0.0469

Constant c1 0.0279 0.4035 a11 0.0363 0.0006
σ2

11ψ11 -0.0083 0.7523 a12 0.0520 0.0201
σ2

22ψ12 0.0361 0.4387 a13 0.0014 0.5145
σ2

33ψ13 0.0016 0.8560 a21 0.0008 0.8649
Stock Mean a22 0.1112 0.0000
Wind (1) γ1

21 0.0284 0.0131 a23 0.0030 0.0629
Stock (1)γ1

22 -0.0764 0.0001 a31 0.0064 0.5511
WTI (1) γ1

23 -0.0052 0.4724 a32 0.0239 0.3914
Constant c2 0.1082 0.0000 a33 0.0471 0.0000

σ2
11ψ21 -0.0173 0.3608 b11 0.9667 0.0000

σ2
22ψ22 0.0742 0.0401 b12 -0.0600 0.0408

σ2
33ψ23 -0.0109 0.0595 b13 -0.0015 0.4561

Oil Mean b21 0.0168 0.0383
Wind (1) γ1

31 -0.0228 0.4078 b22 0.8529 0.0000
Stock (1) γ1

32 -0.0152 0.7078 b23 -0.0015 0.3511
WTI (1) γ1

33 -0.0289 0.0722 b31 -0.0052 0.7312
Constant c3 0.0485 0.2655 b32 -0.0191 0.6240

σ2
11ψ31 -0.0115 0.7471 b33 0.9516 0.0000

σ2
22ψ32 -0.0044 0.9386 α 0.0220 0.0000

σ2
33ψ33 0.0095 0.5308 β 0.9761 0.0000

Shape ν
(t degrees)

6.9901 0.0000
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TABLE 4.35: DCC GARCH-in-mean Parameter Estimates with
Normal Distribution [Solar Energy]

Solar Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Solar (1) γ1
11 0.0768 0.0000 c11 0.0335 0.0029

Solar (2) γ2
11 0.0337 0.0354 c22 0.0134 0.0017

Stock (1) γ1
12 -0.0403 0.4152 c33 0.0402 0.0001

Stock (2) γ2
12 -0.0792 0.0493 a11 0.0368 0.0000

WTI (1) γ1
13 0.0002 0.9904 a12 0.1435 0.0006

WTI (2) γ2
13 0.0103 0.5880 a13 -0.0112 0.0129

Constant c1 0.0393 0.5432 a21 0.0005 0.5474
σ2

11ψ11 -0.0082 0.4425 a22 0.1250 0.0000
σ2

22ψ12 0.0757 0.1696 a23 0.0016 0.3400
σ2

33ψ13 -0.0091 0.5543 a31 -0.0005 0.5189
Stock Mean a32 0.0371 0.0420
Solar (1) γ1

21 -0.0008 0.9079 a33 0.0477 0.0000
Solar (2) γ2

21 0.0169 0.0071 b11 0.9612 0.0000
Stock (1) γ1

22 -0.0403 0.0540 b12 -0.1588 0.0018
Stock (2) γ2

22 -0.0545 0.0022 b13 0.0146 0.0085
WTI (1) γ1

23 -0.0064 0.4321 b21 0.0019 0.1542
WTI (2) γ2

23 0.0112 0.1545 b22 0.8466 0.0000
Constant c2 0.0889 0.0010 b23 0.0014 0.5185

σ2
11ψ21 -0.0023 0.6353 b31 -0.0027 0.0903

σ2
22ψ22 0.0452 0.0989 b32 -0.0206 0.3930

σ2
33ψ23 -0.0091 0.1714 b33 0.9456 0.0000

Oil Mean α 0.0327 0.0000
Solar (1) γ1

31 -0.0247 0.0827 β 0.9575 0.0000
Solar (2) γ2

31 0.0057 0.6814
Stock (1) γ1

32 0.0377 0.3533
Stock (2)γ2

32 -0.0221 0.5574
WTI (1) γ1

33 -0.0380 0.0420
WTI (2) γ2

33 0.0047 0.8017
Constant c3 -0.0210 0.6868

σ2
11ψ31 0.0043 0.6030

σ2
22ψ32 -0.0399 0.3260

σ2
33ψ33 0.0134 0.3282
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TABLE 4.36: DCC GARCH-in-mean Parameter Estimates with t-
distribution [Solar Energy]

Solar Mean Coefficient p-value
Variance
Equation

Coefficient p-value

Solar (1) γ1
11 0.0487 0.0001 c11 0.0299 0.0160

Solar (2)γ2
11 0.0284 0.0147 c22 0.0041 0.3741

Stock (1) γ1
12 -0.0022 0.9357 c33 0.0264 0.0127

Stock (2) γ2
12 -0.0679 0.0191 a11 0.0333 0.0000

WTI (1) γ1
13 -0.0107 0.4598 a12 0.1569 0.0002

WTI (2) γ2
13 0.0019 0.8873 a13 -0.0003 0.9625

Constant c1 0.0498 0.1173 a21 0.0008 0.4387
σ2

11ψ11 -0.0073 0.1166 a22 0.1207 0.0000
σ2

22ψ12 0.0530 0.0705 a23 0.0021 0.2495
σ2

33ψ13 -0.0041 0.5416 a31 0.0005 0.8282
Stock Mean a32 0.0395 0.0714
Solar (1) γ1

21 -0.0027 0.5995 a33 0.0535 0.0000
Solar (2) γ2

21 0.0112 0.0198 b11 0.9659 0.0000
Stock (1) γ1

22 -0.0333 0.0063 b12 -0.1663 0.0017
Stock (2) γ2

22 -0.0427 0.0003 b13 0.0024 0.7057
WTI (1) γ1

23 -0.0055 0.3783 b21 0.0024 0.1060
WTI (2) γ2

23 0.0117 0.0392 b22 0.8589 0.0000
Constant c2 0.0916 0.0000 b23 0.0007 0.7039

σ2
11ψ21 -0.0001 0.9599 b31 -0.0018 0.5552

σ2
22ψ22 0.0410 0.0079 b32 -0.0249 0.3773

σ2
33ψ23 -0.0090 0.0018 b33 0.9445 0.0000

Oil Mean α 0.0292 0.0000
Solar (1) γ1

31 -0.0233 0.0534 β 0.9623 0.0000

Solar (2) γ2
31 0.0046 0.6691

Shape ν
(t degrees)

6.1483 0.0000

Stock (1) γ1
32 0.0026 0.9326

Stock (2)γ2
32 -0.0360 0.2003

WTI (1) γ1
33 -0.0289 0.0417

WTI (2) γ2
33 0.0102 0.4513

Constant c3 0.0220 0.6531
σ2

11ψ31 0.0024 0.7402
σ2

22ψ32 -0.0357 0.2147
σ2

33ψ33 0.0113 0.2000
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TABLE 4.37: DCC GARCH-in-mean Parameter Estimates with
Normal Distribution [Nuclear Energy]

Nuclear Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Nuclear (1) γ1
11 -0.0114 0.6143 c11 0.0128 0.0001

Stock (1) γ1
12 0.0397 0.1840 c22 0.0150 0.0001

WTI (1) γ1
13 -0.0118 0.2591 c33 0.0238 0.0021

Constant c1 0.0167 0.5968 a11 0.0155 0.0000
σ2

11ψ11 -0.0135 0.6548 a12 0.0809 0.0000
σ2

22ψ12 0.0568 0.2122 a13 0.0013 0.3345
σ2

33ψ13 -0.0057 0.4867 a21 -0.0006 0.8311
Stock Mean a22 0.1086 0.0000

Nuclear (1) γ1
21 -0.0129 0.4025 a23 0.0033 0.0110

Stock (1) γ1
22 -0.0173 0.4463 a31 -0.0039 0.4218

WTI (1) γ1
23 -0.0179 0.0308 a32 0.0352 0.0740

Constant c2 0.0861 0.0005 a33 0.0498 0.0000
σ2

11ψ21 -0.0114 0.5793 b11 0.9982 0.0000
σ2

22ψ22 0.0518 0.1648 b12 -0.1160 0.0000
σ2

33ψ23 -0.0107 0.1121 b13 0.0005 0.7885
Oil Mean b21 0.0204 0.0012

Nuclear (1) γ1
31 -0.0006 0.9854 b22 0.8442 0.0000

Stock (1) γ1
32 0.0186 0.6630 b23 -0.0014 0.3660

WTI (1) γ1
33 -0.0545 0.0051 b31 0.0150 0.0856

Constant c3 0.0083 0.8650 b32 -0.0479 0.1020
σ2

11ψ31 0.0414 0.3010 b33 0.9450 0.0000
σ2

22ψ32 -0.0797 0.1803 α 0.0119 0.0000
σ2

33ψ33 0.0078 0.6221 β 0.9872 0.0000
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TABLE 4.38: DCC GARCH-in-mean Parameter Estimates with t-
distribution [Nuclear Energy]

Nuclear Mean Coefficient P-value
Variance
Equation

Coefficient P-value

Nuclear (1) γ1
11 -0.0356 0.0470 c11 0.0053 0.0416

Stock (1) γ1
12 0.0509 0.0185 c22 0.0072 0.0411

WTI (1) γ1
13 -0.0040 0.6452 c33 0.0163 0.0480

Constant c1 0.0439 0.1012 a11 0.0046 0.1439
σ2

11ψ11 -0.0159 0.6092 a12 0.0699 0.0000
σ2

22ψ12 0.0575 0.1358 a13 0.0027 0.0638
σ2

33ψ13 -0.0049 0.4765 a21 -0.0017 0.5224
Stock Mean a22 0.1009 0.0000

Nuclear (1) γ1
21 -0.0054 0.6683 a23 0.0032 0.0391

Stock (1) γ1
22 -0.0292 0.0908 a31 -0.0071 0.1708

WTI (1) γ1
23 -0.0122 0.0794 a32 0.0356 0.1018

Constant c2 0.0915 0.0000 a33 0.0531 0.0000
σ2

11ψ21 0.0044 0.8486 b11 1.0072 0.0000
σ2

22ψ22 0.0460 0.1615 b12 -0.0951 0.0000
σ2

33ψ23 -0.0129 0.0215 b13 -0.0012 0.4584
Oil Mean b21 0.0224 0.0008

Nuclear (1) γ1
31 -0.0119 0.6167 b22 0.8599 0.0000

Stock (1) γ1
32 -0.0039 0.9110 b23 -0.0013 0.4225

WTI (1) γ1
33 -0.0494 0.0057 b31 0.0144 0.2200

Constant c3 0.0239 0.5828 b32 -0.0334 0.3122
σ2

11ψ31 0.0688 0.0410 b33 0.9454 0.0000
σ2

22ψ32 -0.0827 0.0694 α 0.0164 0.0000
σ2

33ψ33 -0.0030 0.8292 β 0.9830 0.0000
Shape ν

(t degrees)
5.9585 0.0000
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TABLE 4.39: DCC GARCH-in-mean Parameter Estimates with
Normal Distribution [RE Energy]

RE Mean Coefficient P-value
Variance
Equation

Coefficient P-value

RE (1) γ1
11 0.0080 0.7457 c11 0.0361 0.0002

Stock (1) γ1
12 0.1013 0.0301 c22 0.0128 0.0119

WTI (1) γ1
13 -0.0128 0.3876 c33 0.0370 0.0007

Constant c1 0.0275 0.6446 a11 0.0327 0.0000
σ2

11ψ11 -0.0194 0.5580 a12 0.1413 0.0000
σ2

22ψ12 0.0927 0.2425 a13 -0.0032 0.2326
σ2

33ψ13 -0.0061 0.6324 a21 0.0037 0.1103
Stock Mean a22 0.1093 0.0000
RE (1) γ1

21 -0.0208 0.0821 a23 -0.0001 0.9436
Stock (1) γ1

22 -0.0043 0.8645 a31 -0.0124 0.0111
WTI (1) γ1

23 -0.0137 0.0761 a32 0.0550 0.0120
Constant c2 0.0644 0.0510 a33 0.0473 0.0000

σ2
11ψ21 0.0068 0.6984 b11 0.9648 0.0000

σ2
22ψ22 0.0243 0.5971 b12 -0.1635 0.0000

σ2
33ψ23 -0.0085 0.2345 b13 0.0058 0.0998

Oil Mean b21 0.0009 0.8312
RE (1) γ1

31 -0.0244 0.2869 b22 0.8626 0.0000
Stock (1) γ1

32 0.0485 0.2918 b23 0.0027 0.1576
WTI (1) γ1

33 -0.0509 0.0056 b31 0.0032 0.6761
Constant c3 -0.0471 0.4715 b32 -0.0253 0.4407

σ2
11ψ31 0.0342 0.2622 b33 0.9454 0.0000

σ2
22ψ32 -0.0960 0.1849 α 0.0291 0.0000

σ2
33ψ33 0.0130 0.4188 β 0.9638 0.0000
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TABLE 4.40: DCC GARCH-in-mean Parameter Estimates with
t-distribution [RE Energy]

RE Mean Coefficient P-value
Variance
Equation

Coefficient P-value

RE (1) γ1
11 0.0079 0.7364 c11 0.0346 0.0072

Stock (1) γ1
12 0.0968 0.0255 c22 0.0081 0.1046

WTI (1) γ1
13 -0.0128 0.3662 c33 0.0260 0.0442

Constant c1 0.0587 0.2765 a11 0.0407 0.0005
σ2

11ψ11 -0.0130 0.6671 a12 0.1142 0.0014
σ2

22ψ12 0.0691 0.3490 a13 0.0006 0.8555
σ2

33ψ13 -0.0056 0.6162 a21 0.0040 0.1346
Stock Mean a22 0.0996 0.0000
RE (1) γ1

21 -0.0108 0.3199 a23 0.0013 0.3466
Stock (1) γ1

22 -0.0155 0.5048 a31 -0.0079 0.2399
WTI (1) γ1

23 -0.0143 0.0463 a32 0.0485 0.0590
Constant c2 0.0802 0.0069 a33 0.0541 0.0000

σ2
11ψ21 0.0075 0.6422 b11 0.9531 0.0000

σ2
22ψ22 0.0165 0.6997 b12 -0.1077 0.0178

σ2
33ψ23 -0.0078 0.2093 b13 -0.0007 0.8552

Oil Mean b21 -0.0006 0.8991
RE (1) γ1

31 -0.0150 0.4845 b22 0.8871 0.0000
Stock (1) γ1

32 0.0229 0.5996 b23 -0.0004 0.7777
WTI (1) γ1

33 -0.0483 0.0034 b31 0.0024 0.8161
Constant c3 -0.0001 0.9985 b32 -0.0219 0.5445

σ2
11ψ31 0.0229 0.4177 b33 0.9417 0.0000

σ2
22ψ32 -0.0713 0.2982 α 0.0265 0.0000

σ2
33ψ33 0.0090 0.5444 β 0.9685 0.0000

Shape ν
(t degrees)

7.5681 0.0000
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TABLE 4.41: Probability of a residual being below 0.05 level-left 0.05 tail

Wind Solar Nuclear RE
Wind Stock WTI Solar Stock WTI Nuclear Stock WTI RE Stock WTI

BEKK 0.0648 0.0688 0.0597 0.0601 0.0655 0.0555 0.0603 0.0674 0.0543 0.0638 0.0684 0.0542
CCC 0.0706 0.0720 0.0622 0.0626 0.0694 0.0590 0.0674 0.0708 0.0563 0.0684 0.0708 0.0599
DCC 0.0593 0.0648 0.0593 0.0616 0.0655 0.0583 0.0626 0.0653 0.0553 0.0635 0.0647 0.0578
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TABLE 4.42: Variance Equation Estimation Results of Bivariate GARCH Model on S&P 500 ETF and various Renewable Energy
ETFs (for Negative Volatility Spillovers) (Part 1)

GARCH-CCC
Normal

Distribution

GARCH-CCC
Student’s

t-Distribution

GARCH-DCC
Normal

Distribution

GARCH-DCC
Student’s

t-Distribution
W

in
d

Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value
c11 0.0665 0.0000 0.0429 0.0002 0.0325 0.0001 0.0097 0.0392
c22 0.0360 0.0000 0.0234 0.0000 0.0203 0.0000 0.0045 0.2289
a11 0.0713 0.0000 0.0562 0.0002 0.0548 0.0003 0.0375 0.0009
a12 0.0448 0.0614 0.0282 0.2700 0.0808 0.0014 0.0559 0.0153
a21 0.0136 0.0070 0.0067 0.2450 0.0090 0.0975 -0.0001 0.9893
a22 0.1034 0.0000 0.1046 0.0000 0.1225 0.0000 0.1205 0.0000
b11 0.8988 0.0000 0.9255 0.0000 0.9390 0.0000 0.9641 0.0000
b12 -0.0536 0.1595 -0.0360 0.3310 -0.0855 0.0158 -0.0578 0.0391
b21 -0.0098 0.2178 0.0001 0.9926 0.0031 0.7201 0.0161 0.0398
b22 0.8490 0.0000 0.8563 0.0000 0.8440 0.0000 0.8537 0.0000

So
la

r

c11 0.0499 0.0000 0.0429 0.0002 0.0451 0.0000 0.0377 0.0012
c22 0.0240 0.0000 0.0128 0.0028 0.0209 0.0000 0.0099 0.0100
a11 0.0333 0.0000 0.0353 0.0000 0.0309 0.0000 0.0330 0.0001
a12 0.1164 0.0032 0.1487 0.0009 0.1675 0.0003 0.2103 0.0003
a21 0.0009 0.3058 0.0015 0.2285 0.0000 0.9820 0.0006 0.6007
a22 0.1231 0.0000 0.1273 0.0000 0.1339 0.0000 0.1368 0.0000
b11 0.9661 0.0000 0.9668 0.0000 0.9666 0.0000 0.9665 0.0000
b12 -0.1673 0.0009 -0.1844 0.0004 -0.1750 0.0010 -0.1982 0.0008
b21 0.0021 0.1173 0.0025 0.1536 0.0017 0.1951 0.0019 0.2392
b22 0.8334 0.0000 0.8472 0.0000 0.8467 0.0000 0.8595 0.0000
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TABLE 4.43: Variance Equation Estimation Results of Bivariate GARCH Model on S&P 500 ETF and various Renewable Energy
ETFs (for Negative Volatility Spillovers) (Part 2)

GARCH-CCC
Normal

Distribution

GARCH-CCC
Student’s

t-Distribution

GARCH-DCC
Normal

Distribution

GARCH-DCC
Student’s

t-Distribution

N
uc

le
ar

Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value
c11 0.0378 0.0000 0.0220 0.0257 0.0155 0.0000 0.0063 0.0056
c22 0.0340 0.0000 0.0253 0.0000 0.0191 0.0000 0.0084 0.0073
a11 0.0263 0.1877 0.0214 0.6182 0.0157 0.0000 0.0059 0.0836
a12 0.0932 0.0000 0.0592 0.0706 0.0822 0.0000 0.0711 0.0000
a21 0.0008 0.7526 -0.0020 0.5728 -0.0011 0.6856 -0.0031 0.1264
a22 0.1145 0.0000 0.1096 0.0000 0.1195 0.0000 0.1063 0.0000
b11 0.9594 0.0000 0.9675 0.0000 0.9978 0.0000 1.0009 0.0000
b12 -0.1086 0.0002 -0.0616 0.3474 -0.1138 0.0000 -0.0820 0.0000
b21 -0.0021 0.6283 0.0047 0.6316 0.0214 0.0008 0.0185 0.0035
b22 0.8531 0.0000 0.8675 0.0000 0.8345 0.0000 0.8714 0.0000

R
E

Be
nc

hm
ar

k

c11 0.0724 0.0000 0.0620 0.0000 0.0605 0.0000 0.0415 0.0009
c22 0.0326 0.0000 0.0213 0.0001 0.0256 0.0000 0.0124 0.0053
a11 0.0351 0.0000 0.0450 0.0001 0.0329 0.0000 0.0440 0.0001
a12 0.1294 0.0000 0.1120 0.0019 0.1813 0.0000 0.1600 0.0000
a21 0.0047 0.0551 0.0061 0.0343 0.0041 0.0879 0.0050 0.0756
a22 0.1060 0.0000 0.1005 0.0000 0.1187 0.0000 0.1147 0.0000
b11 0.9556 0.0000 0.9459 0.0000 0.9557 0.0000 0.9479 0.0000
b12 -0.1782 0.0000 -0.1419 0.0013 -0.1817 0.0000 -0.1418 0.0008
b21 -0.0034 0.4421 -0.0039 0.4068 -0.0049 0.2093 -0.0034 0.4078
b22 0.8549 0.0000 0.8714 0.0000 0.8704 0.0000 0.8818 0.0000
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Chapter 5

Conclusion

5.1 Main Findings and Contributions

There are a number of conclusions draw from the second chapter. Based on
the crude oil market, the volatility responses of Brent and WTI to the market
stimulation are distinct. Specifically, WTI is generally more sensitive than
Brent to the market changes, and its fluctuation also keeps a little longer
than Brent. Based on the estimation results of the GJR-GARCH model, the
leverage effect is strongly significant in both crude oil futures markets (Brent
and WTI). Notably, negative shocks will increase more volatility in WTI fu-
tures price than Brent counterpart. In a nutshell, the leverage effect in the
WTI futures market is stronger than the Brent market. We can also say that
the investors holding WTI are more sensitive to the negative news (negative
shocks in the market) than the Brent futures holders. In terms of the volatil-
ity forecast, I mainly conclude that GARCH-type models perform better than
the stochastic volatility models either in Brent or WTI crude oil futures mar-
ket. OVX index can provide the optimal forecast in the volatility of Brent
futures. By contrast, for WTI, the ARCH model exhibits the most accurate
forecast ability. Outstandingly, over-fitting is important. Thus, Researchers
should pay attention to this. For example, GJR-GARCH model and stochas-
tic volatility models perform poorly in out-of-sample forecasting as suffering
from over-fitting verified by this chapter.

The main finding of the third chapter is threefold. A breakpoint in 2014 is
identified by the structural break threshold vector autoregressive (SBT-VAR)
model. After successfully the structural form (SBT-SVAR) extended, I further
construct the impulse response functions and find the evidence that the im-
pulse response functions of oil prices to a unity structural geopolitical risk
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shock are smoother after the breakpoint in 2014 compared with those be-
fore the break. The most important find is the covariance response between
geopolitical risk and oil price is reduced by 5 ∼ 20× 10−3 with the extra unit
shale production shock. It provides evidence that shale oil production has
suppressed the impact of geopolitical risk on the U.S. crude oil price volatil-
ity.

There are a large number of interesting findings in the fourth chapter. I state
them in an explicite way as following.

The Capital Asset Pricing Model (CAPM) introduced by (Sharpe, 1964)(Lint-
ner, 1975) describes the relationship between risk and return. The positive
relationship indicates investors, who are assumed to be risk averse, require
a high return as compensation for bearing extra risk. First, the S&P 500 ETF
volatility has a significant and positive effect on the return of itself, which is
consistent with the theoretical CAPM model. We also find oil ETF volatility
has a significant negative effect on the S&P 500 ETF return, which is consis-
tent with previous literature on oil uncertainty has a significant and negative
effect on stock performance. Outstandingly, the renewable energy bench-
mark ETF (PBW) changed the dominant role of oil ETF (USO) in energy ETF
sector. The uncertainty of oil ETF has a consistent and negative effect on the
S&P 500 ETF return, whereas the effect diminishes when PBW ETF is applied
instead of other renewable ETFs. In one word, the PBW ETF has changed the
channel of volatility spillovers to return. When nuclear ETF data is used,
the conditional volatility of the nuclear ETF has a significant positive effect
on the oil ETF, oppositely the volatility of S&P 500 ETF negatively spillovers
to the return of the oil ETF. However, there is no evidence that the volatil-
ity spillovers to renewable energy ETF mean level as we expected. And the
volatility of renewable energy does not affect the S&P 500 ETF return.

Second, we find consistent evidence of volatility spillovers in the conditional
variance level in applying different multivariate GARCH specifications (BEKK,
CCC, and DCC). The S&P 500 ETF volatility has a significant effect on the
volatility of renewable energy ETFs, which shows the positive short-term
persistence volatility spillover and the negative long-term persistence volatil-
ity spillover. To be more specific, the increase of squared errors in the last
period of the S&P 500 ETF results in a growth of this period conditional vari-
ance of renewable energy ETFs. On the other hand, this period conditional
variance of renewable energy ETFs will decrease when the last period condi-
tional variance of S&P 500 ETF increases.
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Based on this part, the strongly significantly negative volatility spillovers
from renewable energy benchmark ETF to S&P 500 ETF is noticeable. And
the conditions from Conrad and Karanasos (2010)’s study is checked using
bivariate GARCH estimation results. The reason is the conditions (Conrad
and Karanasos (2010)) we checked is different from the model (Ling and
McAleer (2003)) we applied. There is a failure to meet all of the conditions,
so we suggest a statistical test of the conditions can be developed for further
research.

Third, we can see that the correlation between renewable energy ETF and
S&P 500 ETF is significantly higher than the other two pairs of correlations
according to the restricted constant correlation estimation results. About the
dynamic correlation results, we conclude the correlation decrease before the
financial crisis (in 2008 and 2011 individually) then dramatically increases af-
ter the financial crisis. More importantly, we find the consistent evidence in
Wang and Liu (2016)’s study that the dynamic correlation between oil ETF
and S&P 500 ETF are always positive commencing 2005 since U.S. net im-
ports of crude oil and petroleum products gradually decrease.

Finally, we find the DCC model is the best, and the BEKK model is the sec-
ond best according to the information criteria. The log-likelihood is substan-
tially better when the multivariate Student’s t-distributed errors are applied
to compare with using the model with the multivariate Normal distributed
errors.

Our finding as well as provides several valuable implications for investors.
oil ETF or oil futures is not a safe haven to construct S&P 500 ETF portfolios,
especially during a downturn economy. Therefore, investors should take the
sector rotation investment strategy. Investors are suggested to construct oil
derivative portfolio with nuclear ETF or nuclear energy-related companies
stocks. We confirm that the role of nuclear ETF as safe-haven against crude
oil ETF in the U.S. financial market. Entering renewable benchmark ETF in
long position can be hedged with a short position in S&P 500 ETF and verse
visa. Furtherly, investors should adopt a market-timing strategy when they
hold the renewable benchmark ETF.
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5.2 Recommendations for Future Research

Based on what I discussed in chapter 2, there are several aspects to extend in
future research. First, GARCH-type models with Student’s t-distribution is
expected to provide efficient predictive ability. So it is valuable to investigate
further. Second, it would be worthwhile to compare multivariate GARCH
models in fitting multiple energy prices. Third, it would be interesting to add
some macroeconomic variables in multivariate modelling. I can further iden-
tify the interaction between the crude oil market and the macroeconomics. Fi-
nally, it would improve the forecasting evaluation by using high-frequency
intraday data as proxy volatility. And I advise that arbitrarily choosing a
volatility model to forecast is not wise. The findings presented in this chapter
provide evidence on how to select a volatility forecasting model for financial
practitioners, energy economists, and policymakers. However, the data sam-
ple length and the choice for loss functions and proxy variance make evalu-
ation vary as regard as the forecasting performance of the different models.

In terms of the further research about chapter 3, firstly the impact of shale oil
production on the U.S. crude oil market is valuable to study by adding other
crude oil market variables, such as crude oil inventory in the U.S. market.
Also, it is interesting to discuss in further if the U.S. becomes more dominant
in the world crude oil market by shale oil production boosting. Finally, it
probably results in different impose response if other structure models iden-
tify method is applied. I encourage researchers to use a different approach to
redo the same analysis. It will be interesting to compare the difference and
valuable to make some conclusion.

As regarding the future research for chapter 4, risk management can apply
in practice by constructing hedging strategy and portfolio weights between
crude oil, renewable energy ETFs, and S&P 500 ETF. Secondly, we might ex-
plore the forecasting abilities in different multivariate GARCH specifications.
If there are not consistent results as the in-sample estimation ability contrast
results, we have to consider the overfitting problem. The third suggestion is
applying the impulse response function to check the price shocks and volatil-
ity shocks in ETFs. Finally, we strongly suggest a statistical test of the condi-
tions can be developed for further research, as there is a failure to meet all of
the conditions.
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