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COIDEMPOTENT SUBCOALGEBRAS AND SHORT EXACT SEQUENCES

OF FINITARY 2-REPRESENTATIONS

AARON CHAN AND VANESSA MIEMIETZ

Abstract. In this article, we study short exact sequences of finitary 2-
representations of a weakly fiat 2-category. We provide a correspondence between
such short exact sequences with fixed middle term and coidempotent subcoalge-
bras of a coalgebra 1-morphism defining this middle term. We additionally relate
these to recollements of the underlying abelian 2-representations.

Introduction

The subject of 2-representation theory originated from [CR, KL, Ro] and is the higher
categorical analogue of the classical representation theory of algebras. The articles
[MM1]–[MM6] develop the 2-categorical analogue of finite-dimensional algebras and
their finite-dimensional modules, by defining and studying finitary 2-categories and
their finitary 2-representations. One of the fundamental questions in representation
theory is to find the simple representations of a given algebra. The question of how to
define the 2-categorical analogue of these was answered in [MM5] where the notion of
simple transitive 2-representations was defined and a Jordan-Hölder theory for finitary
2-categories is provided. Since then, there has been considerable effort to classify simple
transitive 2-representations for certain classes of finitary 2-categories.

Most of the 2-categories appearing in the categorification of Lie theoretic objects are
examples of the so-called weakly fiat 2-categories. An important defining property
of weakly fiat 2-categories is that, roughly speaking, all 1-morphisms have adjoints
(often called duals for monoidal categories, which, after strictification, can be viewed
as 2-categories with a single object). The article [MMMT] shows that every finitary 2-
representation over a weakly fiat 2-category can be realised as the category of injective
right comodules over a coalgebra 1-morphism. This gives a new approach to studying
finitary 2-representations. It is shown in [MMMZ] that a coalgebra 1-morphism is
cosimple if and only if the corresponding 2-representation is simple transitive. In other
words, classifying simple transitive 2-representations is equivalent to classifying cosimple
coalgebra 1-morphisms (up to Morita–Takeuchi equivalences).

This article takes a slightly different direction. After all, another important aspect
of the theory of modules over algebras is homological algebra, i.e. how to build all
representations from simple ones. The 2-analogue for homological theory associated to
finitary 2-categories has so far only been studied in [CM], where an analogue of Ext-
groups are introduced and studied. In this article, instead, we look back at the definition
of short exact sequence of (finitary) 2-representations used in [CM] (originally from
[SVV]), and relate them to comodules categories over coalgebra 1-morphisms. The
questions we ask are the following.

• How do we realise a finitary sub-2-representation in the language of comodule
theory over coalgebra 1-morphisms?

• When can we fit the quotient morphism of 2-representations induced by a
subcoalgebra into a short exact sequence of 2-representation?
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• What is the relation between the coalgebra 1-morphisms generating the
three finitary 2-representations appearing in a short exact sequence of 2-
representations?

It turns out that the answer is closely related to coidempotent subcoalgebras (see
Definition 10) and recollements of abelian categories. More precisely, our main theorem
(Theorem 20) states that

• given a coidempotent subcoalgebra D of a coalgebra 1-morphism C, we can
construct a coalgebra 1-morphism A from a certain injective C-comodule I
such that there is a short exact sequence

0 −→ injC (A)
−�AI
−−−−→ injC (C)

−�CD
−−−−→ injC (D) −→ 0

of 2-representations, where −�YX denotes the cotensor product functor;

• given a short exact sequence of 2-representations

0 −→ N −→ M −→ K −→ 0

and choosing a coalgebra 1-morphism C with M ∼= injC (C), there exists a
subcoalgebra D of C, unique up to isomorphism and necessarily coidempotent,
such that injC (D) is equivalent to the quotient 2-representation K.

Moreover, passing to the abelianised 2-representations, in the above situation, we have
a recollement of abelian categories

comodC (D)
−�DDC // comodC (C)

[I,−]
//

−�CD

mm

[D,−]
qq

comodC (A),

−�AI

mm

[[I,C],−]
qq

where [X,−] denotes the internal hom functor.

The paper is organised as follows. In Section 1, we provide a summary of the setup
and results from previous articles on the subject which we need for our purposes. In
Section 2, we discuss some preliminary results about recollements and functors between
comodules categories. We also provide a correspondence between subcoalgebras of
a given coalgebra and subcategories of its comodule categories that are closed under
subobjects, quotients and closed under the action by the 2-category, generalising results
in [NT]. In Section 3, we define coidempotent subcoalgebras, show that they correspond
to Serre subcategories of the category of comodules, and discuss their relationship with
recollements. This then leads to the statement and the proof of the main theorem in
the final subsection. Finally, we provide some examples in Section 4.

Acknowledgements. AC is supported by a JSPS International Research Fellowship.
Part of this research was carried out during a visit of AC to the University of East
Anglia, whose hospitality is gratefully acknowledged.

1. Recollections.

Let k be an algebraically closed field.

1.1. 2-categories and 2-representations. We start by recalling some terminology on
finitary categories and 2-categories. We refer to reader to [Le, McL] for more detail on
general 2-categories and to [MM1, MM2, MM3, MM4, MM5, MM6] for more detail on
2-representations of finitary 2-categories.

A k-linear category is called finitary if it is idempotent complete, has only finitely
many isomorphism classes of indecomposable objects and all morphism spaces are finite
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dimensional. The collection of finitary k-linear categories, together with additive k-
linear functors and all natural transformations between such functors, forms a 2-category

denoted by A
f
k
.

In [MM1], a finitary 2-category C was defined to be a 2-category such that

• C has finitely many objects;

• each morphism category C(i, j) is in A
f
k
;

• horizontal composition is biadditive and bilinear;

• for each i ∈ C , the identity 1-morphism 1i is indecomposable.

We denote by ◦0 and ◦1 the horizontal and vertical compositions in C , respec-
tively.

A finitary 2-category C is called weakly fiat if it has a weak anti-equivalence (−)∗

reversing the direction of both 1- and 2-morphisms, such that, for a 1-morphism F,
the pair (F,F∗) is an adjoint pair, see [MM1, Subsection 2.4]. It is called fiat if (−)∗

is weakly involutive. We denote the weak inverse of (−)∗ by ∗(−), obtaining another
adjoint pair (∗F,F).

A finitary 2-representation of C is a 2-functor from C to A
f
k
. An important example

of a finitary 2-representation is, for each i ∈ C , the principal 2-representation Pi :=
C(i,−).

We can (injectively) abelianise both the 2-category C and, for a 2-representationM, the
category M :=

∏

i∈C
M(i) and use the notation (−) for the injective abelianisation

(2)-functor. For the 2-category, this needs to be done in a rather technical way, see
[MMMT, Section 3.2] to preserve strictness of horizontal composition. Note that,
provided that C is weakly fiat, composition in C is left exact in both variables. Indeed,
left and right multiplication by 1-morphisms in C is exact thanks to the existence
of adjoints, and all 1-morphisms of C can be regarded as kernels of 2-morphisms in
C , whence application of the snake lemma yields the claim, cf. [MMMZ, Subsection
3.1].

For M, it is equivalently possible to use the classical diagrammatic abelianisation, see
[Fr], or [MMMT, Section 3.1] for a presentation adapted to our notation. This induces
an abelian 2-representation M on M.

Both finitary and abelian 2-representations of C form 2-categories, denoted C -afmod
and C -mod, respectively, in which 1-morphisms are strong 2-natural transformations,
which we also simply call morphisms of 2-represenations, and 2-morphisms are modifi-
cations, see [MM3, Section 2] for details.

In slight abuse of notation, we will, for any 2-representation M, write FX rather than
M(F)(X).

A 2-representation M ∈ C-afmod is said to be transitive, cf. [MM5, Subsection
3.1], if, for any indecomposable objects X,Y ∈ M, there exists a 1-morphism F in C

such that Y is isomorphic to a direct summand of FX . We say that a transitive 2-
representation M is simple transitive, cf. [MM5, Subsection 3.5], if M has no proper
C -invariant ideals. In [MM5, Section 4], it was proved that every M ∈ C -afmod has a
weak Jordan-Hölder series with transitive subquotients, and the list of their respective
simple transitive quotients is unique up to permutation and equivalence.

1.2. Coalgebra 1-morphisms and their comodule categories. A coalgebra 1-
morphism in C is a coalgebra object in

∐

i∈C
C(i, i), i.e. a direct sum C of 1-

morphisms in
∐

i∈C
C(i, i)equipped with 2-morphisms µC : C → CC and εC : C →
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1 =
⊕

i∈C
1i, called comultiplication and counit respectively, satisfying coassociativ-

ity (µC ◦0 idC) ◦1 µC = (idC ◦0 µC) ◦1 µC and counitality (idC ◦0 εC) ◦1 µC = idC =
(εC ◦0 idC) ◦1 µC.

A right (resp. left) comodule over C is a 1-morphismM in C together with a coaction
ρM : M → MC (resp. λC : M → CM) such that (idM ◦0 µC)◦1 ρM = (ρM ◦0 idC)◦1 ρM
and (idM ◦0 εC) ◦1 ρM = idM (resp. (µC ◦0 idM) ◦1 ρM = (idC ◦0 λM) ◦1 ρM and
(εC ◦0 idM) ◦1 ρ = idM). Note that the last condition implies that all coaction maps
are monomorphisms in C .

The cotensor product over C of a right C-comodule M with a left C-comodule N is
the kernel of the map

MN
ρM◦0idN−idM◦0λN
−−−−−−−−−−−−→ MCN.

1.3. Internal homs and 2-representations. Let C be a weakly fiat 2-category. This
subsection is essentially a summary of [MMMT, Sections 4]. Note that results there
were stated for a fiat 2-category, but none of the proofs use involutivity of (−)∗, hence
all proofs go through verbatim for the weakly fiat case.

Let M be a finitary 2-representation of C and N ∈ M. Recall the internal hom functor
[N,−] : M → C , which is defined as the left adjoint to the evaluation of the action on
N , i.e.

HomM(−,FN) ∼= HomC ([N,−],F)

for all F ∈ C . The internal hom [N,N ] has the structure of a coalgebra 1-morphism and
for any M ∈ M, [N,M ] has the structure of a right [N,N ]-comodule in C . The cate-
gory consisting of such right [N,N ]-comodule in C carries the structure of an abelian
2-representation of C , denoted by comodC [N,N ], and the finitary 2-representation on
the subcategory of injective right [N,N ]-comodules is denoted by injC [N,N ]. The lat-

ter is equivalent to the additive closure in comodC [N,N ] of {F[N,N ] | F ∈ C}. Note
that, as shown in [MMMT, Proof of Lemma 6], F[X,Y ] ∼= [X,FY ] for all X,Y ∈ M
and all F ∈ C ; the same holds also for X,Y ∈ M by the same proof. Note also that
comodC [N,N ] is equivalent to injC [N,N ].

In [MMMT, Section 4], it was shown that when M is transitive, then the realisa-
tion morphism [N,−] defines an equivalence of abelian 2-representations between M

and comodC [N,N ], and also restricts to an equivalence of finitary 2-representations
between M and injC [N,N ]. In fact, the same proof works for any GM(N), i.e.
for arbitrary N ∈ M, the realisation morphism induces an equivalence of finitary 2-
representations between GM(N) and injC [N,N ]. In particular, one can always realise

a finitary 2-representation as injC [N,N ] by taking N as the direct sum of all indecom-

posable objects (up to isomorphisms). As such, from now on, we do not distinguish
between comodules (resp. injective comodules) over a coalgebra 1-morphism and ob-
jects of an abstract abelian (respectively, finitary) 2-representation.

1.4. Extensions of 2-representations. A sequence

(1) 0 // A
F // B

G // C // 0

in A
f
k
will be called short exact (cf. [SVV, Subsection 2.2.1]) provided that

• F is full and faithful;

• G is full and dense;

• the kernel of G coincides with the ideal of B generated by F(A).

A sequence of morphisms Φ,Ψ of additive 2-representations

0 // N
Φ // M

Ψ // K // 0
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will be called an extension of 2-representations, provided that the underlying se-
quence

0 // N
Φ // M

Ψ // K // 0

is short exact in A
f
k
, where in the second sequence Φ and Ψ refer to the underlying

additive functors.

2. Preliminary results

In this section, we collect some preliminary results leading towards our main theo-
rem.

2.1. Recollements of abelian categories. Recall that a diagram

A
i // B

e //

p

kk

q

ss

C

r

jj

l
tt

of abelian categories is a recollement provided that

• (q, i, p) and (l, e, r) are adjoint triples;

• the functors l, r and i are fully faithful;

• the image of i is a Serre subcategory, which is the kernel of e.

Lemma 1. Let

A
i // B

e //

p

kk

q

ss

C

r

jj

l
tt

be a recollement of abelian categories with enough injectives, where (q, i, p) and (l, e, r)
are adjoint triples. Then the sequence given by r and p restricts to a short exact
sequence of additive categories

(2) 0 → Inj C
r
→ InjB

p
→ InjA → 0.

between the full subcategories of injective objects.

Proof. The sequence restricts since both r and p are right adjoints to exact functors
and hence preserve injectives.

By the definition of recollement, r is fully faithful. Since pi is naturally isomorphic to
the identity functor on A (see e.g.[PV, Proposition 2.7(ii)]), p is necessarily full and
dense.

It remains to show that the kernel of p coincides with the ideal I in InjB generated
by (the full subcategory given by) the essential image of r restricted to Inj C. It is
well-known that pr = 0 (see e.g.[PV, Proposition 2.7(ii)]), so it immediately follows
that, considering the restricted sequence (2), I is contained in the kernel of p. For
simplicity, we say that an object is in I if its identity morphism is in I.

Assume that Q1, Q2 ∈ InjB are both not annihilated by p, and hence are not objects
in I. We claim that if f : Q1 → Q2 is annihilated by p, it factors over some I ∈ I.
Indeed, as ip(M) is the maximal subobject of M with composition factors belonging to
i(A) for any M ∈ B, ip is a subfunctor of IdB. Thus, we have a commutative diagram
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of solid arrows

ip(Q1)� _

��

ip(f)=0
// ip(Q2)� _

��
Q1

f
//

����

Q2

Q1/ip(Q1)

f̄

55❧
❧

❧
❧

❧
❧

❧
❧

meaning that f factors over Q1/ip(Q1) as indicated by the dashed arrow f̄ .

Considering the exact sequence

0 → ip(Q1) → Q1 → re(Q1)

(cf. [FP, Proposition 4.2], [Ps, Proposition 2.6(ii)]) and letting I ′ be the injective hull
of e(Q1) ∈ C, we obtain a monomorphism Q1/ip(Q1) →֒ r(I ′), and hence the injective
hull I of Q1/ip(Q1), which is a direct summand of r(I ′), is in I. By injectivity of Q2,
f̄ now factors over I, so f factors over I ∈ I, as claimed. �

2.2. Functors between comodule categories. From now on, C will denote a weakly
fiat 2-category.

Lemma 2. Let C,C′ be coalgebra 1-morphisms in C and Y a C,C′-bicomodule.

(i) For any M ∈ comodC (C′), the internal hom [Y,M ] is a right C-comodule in C .

(ii) [Y,−] : comodC (C′) → comodC (C) is left adjoint to −�CY .

Proof. Both statements are proved in exactly the same way as in the classical case of
coalgebras over a field, see [BW, 12.6, 12.7]. �

Lemma 3. Let C,C′ be coalgebra 1-morphisms in C and Y a C,C′-bicomodule. The
following statements are equivalent:

(a) Y ∈ injC (C′).

(b) [Y,−] is exact.

If either condition is satisfied, we have [Y,−] ∼= −�C′ [Y,C′] as functors from
comodC (C′) to comodC (C)

Proof. The same proof as in [BW, 12.8, 23.7] shows that [Y,−] : comodC (C′) →
comodC (C) is exact if and only if I�CY is injective for all injective C-comodules I. In
our setting, since every injective I is direct summand in comodC (C) of FC for some
1-morphism F, this is equivalent to C�CY ∈ injC (C′), but C�CY ∼= Y. The last
statement is proved in the same way as in loc. cit. �

Since [C,C] ∼= C by the definition of realisation morphism, an immediate consequence
of Lemma 3 is the following result.

Corollary 4. For a coalgebra 1-morphism C in C , we have an isomorphism between
[C,−] and the identity functor on comodC (C).

Lemma 5. Let C be a coalgebra 1-morphism in C , I ∈ injC (C). Then

I�C[M,C] ∼= [M, I]

for all M ∈ comodC (C).
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Proof. Any I ∈ injC (C) is a direct summand in comodC (C) of FC for some 1-morphism
F ∈ C . Since all functors are additive, the claim follows from

FC�C[M,C] ∼= F[M,C] ∼= [M,FC].

�

2.3. The comodule category of a subcoalgebra and related functors. Let C =
(C, µC, ǫC) be a coalgebra 1-morphism. By a subcoalgebra D of C, we mean a
coalgebra 1-morphism D = (D, µD, ǫD) together with a monomorphism ι : D →֒ C in
C satisfying µD ◦1 ι = (ι ◦0 ι) ◦1 µD and ǫD = ǫC ◦1 ι.

Note that for any right D-comodule N with coaction map ρDN : N → ND, one naturally
obtains a right C-comodule by post-composing ρDN with idN ◦0 ι. This construction
give rise to a functor −�DDC (see the lemma below and [MMMZ, Section 3.4]). In
particular, a right C-comodule is in the essential image of −�DDC if its coaction map
ρCM : M → MC factors through idM ◦0 ι. This fact will be used throughout the rest of
the article.

Lemma 6. Let C be a coalgebra 1-morphism in C and D
ι
→֒ C be a subcoalgebra

with cokernel C
π
։ J. The natural morphism of 2-representations comodC (D) →

comodC (C) given by −�DDC is fully faithful, exact, and the subcategory it defines is
closed under quotients and subobjects.

Proof. The fact that −�DDC is faithful is obvious from the definition. By injectivity
of DD, it follows from Lemma 3 that [D,−] : comodC (D) → comodC (C) is exact and
[D,−] ∼= −�D[D,D]C ∼= −�DDC, hence −�DDC is exact.

To see that it is full consider a morphism f : M → N between two objects isomorphic
to M′

�DDC and N′
�DDC respectively, i.e. both coaction ρM and ρN factor over

ρDM : M → MD and ρDN : N → ND respectively. Consider the diagram

M
f

//

ρD
M

&&▲▲
▲▲

▲▲
▲▲

▲▲
▲

ρM

��

N

ρN

��

ρD
N

xxrrr
rr
rr
rr
rr

MD
f◦0idD //

idM◦0ιxxrr
rr
rr
rr
rr

ND
idN◦0ι

&&▲
▲▲

▲▲
▲▲

▲▲
▲

MC
f◦0idC

// NC.

where the triangles, the outer square and the lower trapezium commute. Then

(idN ◦0 ι) ◦1 ρ
D
N ◦1 f = ρN ◦1 f = (f ◦0 idC) ◦1 ρM

= (f ◦0 idC) ◦1 (idM ◦0 ι) ◦1 ρ
D
M

= (idN ◦0 ι) ◦1 (f ◦0 idD) ◦1 ρ
D
M.

Since (idN ◦0 ι) is mono, ρDN ◦1 f = (f ◦0 idD) ◦1 ρDM, so f is induced from a morphism
in comodC (D) and −�DDC is full.

LetM be isomorphic to an object of the formM′
�DDC, i.e. the coaction ρM : M → MC

factors over the inclusion idM ◦0 ι : MD →֒ MC.
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To show closure under quotients, let f : M ։ N be an epimorphism in comodC (C).
Consider the solid part of the diagram

M
f

// //

ρD
M &&▲▲

▲▲
▲▲

▲▲
▲▲

▲

ρM

��

N

ρN

��

σ

yyr r
r
r
r
r

MD
f◦0idD //

idM◦0ιxxrr
rr
rr
rr
rr

ND
idN◦0ι

%%▲
▲▲

▲▲
▲▲

▲▲
▲

MC
f◦0idC //

idM◦0π

��

NC

idN◦0π

��
MJ

f◦0idJ // NJ.

Since (idM ◦0 π) ◦1 ρM = (idM ◦0 π) ◦1 (idM ◦0 ι) ◦1 ρDM = (idM ◦0 (π ◦1 ι)) ◦1 ρDM = 0,
we have (idN ◦0 π) ◦1 ρN ◦1 f = (f ◦0 idJ) ◦1 (idM ◦0 π) ◦1 ρM = 0 and, since f is
epi, (idN ◦0 π) ◦1 ρN = 0. Hence ρN factors over the kernel of idN ◦0 π, which, by left
exactness of horizontal composition with idN is idN ◦0 ι. This yields the dashed arrow
σ. Now we have

(idN ◦0 ι) ◦1 σ ◦1 f = ρN ◦1 f = (f ◦0 idC) ◦1 ρM

= (f ◦0 idC) ◦1 (idM ◦0 ι) ◦1 ρ
D
M

= (idN ◦0 ι) ◦1 (f ◦0 idD) ◦1 ρ
D
M.

As (idN ◦0 ι) is mono, it follows that σ ◦1 f = (f ◦0 idD) ◦1 ρDM, so the coaction on N
indeed factors over ND as claimed.

To show closure under subobjects, let f : N →֒ M be a monomorphism. Consider the
solid part of the diagram

N � � f
//

σ

%%▲
▲

▲
▲

▲
▲

ρN

��

M

ρM

��

ρD
M

xxrrr
rr
rr
rr
rr

ND
f◦0idD //

idN◦0ιyyrr
rr
rr
rr
rr

MD
idM◦0ι

&&▲
▲▲

▲▲
▲▲

▲▲
▲

NC
f◦0idC //

idN◦0π

��

MC

idM◦0π

��
NJ

f◦0idJ // MJ.

As before, (idM◦0π)◦1ρM = 0, so (idM◦0π)◦1ρM◦1f = (f◦0idJ)◦1(idN◦0π)◦1ρN = 0
and since f ◦0 idJ is a monomorphism (using left exactness of horizontal composition
with idJ), furthermore, (idN ◦0 π) ◦1 ρN = 0. Hence, as above, ρN factors over ND,
giving the dashed arrow σ. Similarly to before,

(idM ◦0 ι) ◦1 (f ◦0 idD) ◦1 σ = (f ◦0 idC) ◦1 (idN ◦0 ι) ◦1 σ

= (f ◦0 idC) ◦1 ρN = ρM ◦1 f

= (idM ◦0 ι) ◦1 ρ
D
M ◦1 f

and thanks to monicity of idM ◦0 ι, we conclude (f ◦0 idD) ◦1 σ = ρDM ◦1 f .

It is immediate that in both cases that σ defines a right coaction on N. Indeed, in
general, if a right C-coaction ρN : N → NC factors over the inclusion idN ◦0 ι : ND →
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NC via a map σ, we have

(idN ◦0 ι ◦0 ι) ◦1 (σ ◦0 idD) ◦1 σ = [((idN ◦0 ι) ◦1 σ) ◦0 idC] ◦1 (idN ◦0 ι) ◦1 σ

= (ρN ◦0 idC) ◦1 ρN

= (idN ◦0 µC) ◦1 ρN

= (idN ◦0 µC) ◦1 (idN ◦0 ι) ◦1 σ

= (idN ◦0 ι ◦0 ι) ◦1 (idN ◦0 µD) ◦1 σ

where the first equality uses the interchange law twice, the second and fourth equalities
are the definition of σ , the third equality comes from ρN being a coaction, and the
last equality from ι being a coalgebra map. Cancelling the monomorphism idN ◦0 ι ◦0 ι
implies the first comodule axiom. For the second, we compute

(idN ◦0 εD) ◦1 σ = (idN ◦0 εC) ◦1 (idN ◦0 ι) ◦1 σ(idN ◦0 εC) ◦1 ρN = idN.

�

Lemma 7. Let C be a coalgebra 1-morphism in in C , and D
ι
→֒ C a subcoalgebra.

(i) −�DD�CD is naturally isomorphic to the identity morphism on comodC (D).

(ii) There is a monic natural transformation from −�CD�DDC to the identity mor-
phism on comodC (C).

Proof. Denote by Ψ the morphism (−�DDC) : comodC (D) → comodC (C) and by Φ
the morphism −�CD : comodC (C) → comodC (D). Note that Ψ ∼= [D,−] as argued
in the proof of Lemma 6, and (Ψ ∼= [D,−],Φ = −�CD) is an adjoint pair by Lemma
2. Now (i) and (ii) are exactly the same as [MMMZ, Corollary 7] and [MMMZ, Lemma
8] respectively. �

Lemma 8. Suppose S is a full subcategory of comodC (C) that is C -stable, subobject-
closed, and quotient-closed. Let i be the (fully faithful exact) embedding of S into
comodC (C) and p be its right adjoint. Then D := [ip(C), ip(C)] is a subcoalgebra
of C so that −�DDC : comodC (D) → comodC (C) induces an equivalence between
comodC (D) and S.

Proof. Consider the right C-comodule B given by the sum of all images of right C-
comodule morphisms of the form f : M → C with M ∈ S. Since S is quotient-closed,
we have B ∈ S. In particular, B coincides with ip(C) (which is the sum of all subobjects
of C in S), and the counit of the adjoint pair (i, p) therefore defines a monomorphism
ι′ : B → C.

For any F ∈ C , there is an exact sequence

0 → HomcomodC (C)(FB,B)
Hom(FB,ι′)=ι′◦−
−−−−−−−−−−−→ HomcomodC (C)(FB,C)

in C . Since S is C-stable, we have FB ∈ S. By the construction of B, every morphism
from an object of S to C factors through ι′, so the morphism in the above exact
sequence is surjective and hence an isomorphism. Using the adjoint pairs ([B,−],−·B)
and (F,F∗), and the fact that F[X,Y ] ∼= [X,FY ] for all X,Y ∈ comodC (C) and all
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1-morphism F, we obtain the following commutative diagram

HomcomodC (C)(FB,B)
ι′◦− //

∼

��

HomcomodC (C)(FB,C)

∼

��
HomC ([B,FB],1)

−◦[ι′,FB]
//

∼

��

HomC ([C,FB],1)

∼

��
HomC (F[B,B],1)

−◦F[ι′,B]
//

∼

��

HomC (F[C,B],1)

∼

��
HomC ([B,B],F∗)

−◦[ι′,B]
// HomC ([C,B],F∗).

Hence, the bottom row is an isomorphism which holds for any 1-morphism F. Thus,
[ι′,B]: [C,B] → [B,B] is an isomorphism whose inverse we denote by α. Using that
[C,−] ∼= IdcomodC (C) by Corollary 4 yields commutative diagram

[B,B]
α

∼
// [C,B]

[C,ι′]
//

∼

��

[C,C]

∼

��
B
� � ι′ // C,

with vertical isomorphisms. In particular, [C, ι′] is mono. So setting D := [B,B], we
obtain a monomorphism ι : D → C in C .

Showing that D
ι
→֒ C is a subcoalgebra is equivalent to showing that [B,B]

θ
→֒ [C,C]

is a subcoalgebra, where θ := [C, ι′] ◦ α. For simplicity, let us denote by µC, ǫC the
comultiplication and counit of [C,C] throughout the rest of the proof.

We first verify the compatibility of the counit maps of D and C, i.e. ǫD = ǫC ◦θ. Using
the definition θ = [C, ι′] ◦ α and that α is the inverse of ([ι′,B])−1, this is equivalent
to showing that ǫC ◦1 [C, ι

′] = ǫD ◦1 [ι
′,B]. Recall that, for any X ∈ comodC (C), the

counit of [X,X] is the map in C corresponding to idX under the adjunction isomorphism
HomC ([X,X],1) ∼= HomcomodC (C)(X,X). We consider the commutative diagrams

HomC ([C,C],1)
∼

−◦1[C,ι′]

��

HomcomodC (C)(C,C)

−◦ι′

��
HomC ([C,B],1)

∼
HomcomodC (C)(B,C)

and

HomC ([B,B],1)
∼

−◦1[ι
′,B]

��

HomcomodC (C)(B,B)

ι′◦−

��
HomC ([C,B],1)

∼
HomcomodC (C)(B,C)

where the second is obtained from combining the natural transformation [ι′,−] :
[C,−] → [B,−] with the adjoint pairs ([B,−],− · B) and ([C,−],− · C). Since
idC ◦1 ι′ = ι′ ◦1 idB, and these two maps correspond to ǫC ◦1 [C, ι′] and ǫD ◦1 [ι′,B]
respectively on the left columns of the diagrams, the latter two maps are equal, as
claimed.
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To show compatibility of the comultiplications, let us start by recalling some essential
facts. For any X,Y ∈ comodC (C), the coevaluation map coevX,Y : Y → [X,Y]X
is the map corresponding to id[X,Y] under the adjunction HomC ([X,Y], [X,Y]) ∼=
HomcomodC (C)(Y, [X,Y]X). The comultiplication of the coalgebra [X,X] is given by

the map in C corresponding to (id[X,X] ◦0 coevX,X) ◦1 coevX,X.

Observe that the following diagram is commutative.

B
coevB,B //

id

��

[B,B]B
id[B,B]◦0coevB,B

//

id

��

[B,B][B,B]B

idD◦0α◦0ι
′

��
B

coevB,B //

id

��

[B,B]B
id[B,B]◦0coevB,B

//

α◦0ι
′

��

[B,B][C,B]C

α◦0[C,ι′]◦0idC

��
B

coevC,B //

ι′

��

[C,B]C
id[C,B]◦0coevC,C

//

[C,ι′]◦0idC

��

[C,B][C,C]C

[C,ι′]◦0id[C,C]C

��
C

coevC,C // [C,C]C
id[C,C]◦0coevC,C

// [C,C][C,C]C

Indeed, commutativity of the top left square is trivial; that of the bottom right square is
easy, since both maps are just [C, ι′]◦0coevC,C. It is also easy to see that commutativity
of the top (resp. middle) right square follows immediately from that of the middle (resp.
bottom) left square as the former are obtained from the latter by horizontally composing
with identity maps.

To see that the middle left square commutes (i.e. coevC,B = (α ◦0 ι′) ◦1 coevB,B), we
use the commutative diagrams

HomC ([C,B], [C,B])
∼

[ι′,B]◦1−

��

HomcomodC (C)(B, [C,B]C)

([ι′,B]◦0idC)◦−

��
HomC ([C,B], [B,B])

∼
HomcomodC (C)(B, [B,B]C)

and

HomC ([B,B], [B,B])
∼

−◦1[ι
′,B]

��

HomcomodC (C)(B, [B,B]B)

(id[B,B]◦0ι
′)◦−

��
HomC ([C,B], [B,B])

∼
HomcomodC (C)(B, [B,B]C),

as well as [ι′,B] ◦1 id[C,B] = id[B,B] ◦1 [ι
′,B]. Together, these yield

([ι′,B] ◦0 idC) ◦1 coevC,B = (id[B,B] ◦0 ι
′) ◦1 coevB,B,

hence coevC,B = (α ◦0 idC) ◦1 (id[B,B] ◦0 ι
′) ◦1 coevB,B = (α ◦0 ι′) ◦1 coevB,B.

Commutativity of the bottom left square (i.e. coevC,C◦1 ι′ = ([C, ι′]◦0 idC)◦1coevC,B)
follows similarly from the commutative diagrams

HomC ([C,C], [C,C])
∼

−◦1[C,ι′]

��

HomcomodC (C)(C, [C,C]C)

−◦ι′

��
HomC ([C,B], [C,C])

∼
HomcomodC (C)(B, [C,C]C)
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and
HomC ([C,B], [C,B])

∼

[C,ι′]◦1−

��

HomcomodC (C)(B, [C,B]C)

([C,ι′]◦0idC)◦−

��
HomC ([C,B], [C,C])

∼
HomcomodC (C)(B, [C,C]C),

together with [C, ι′] ◦1 id[C,B] = id[C,C] ◦1 [C, ι
′].

Now that we know all six squares commute, composing the maps on the outer boundary
of the big square yields

(3) µ∨
C ◦1 ι

′ = (θ ◦0 θ ◦0 ι
′) ◦1 µ

∨
D,

where µ∨
C := (id[C,C] ◦0 coevC,C)◦1 coevC,C and µ∨

D := (id[B,B] ◦0 coevB,B)◦1 coevB,B

are the maps that correspond to µC and µD respectively under adjunction.

Using the commutative diagram

HomC ([C,C], [C,C][C,C])
∼

−◦1[C,ι′]

��

HomcomodC (C)(C, [C,C][C,C]C)

−◦ι′

��
HomC ([C,B], [C,C][C,C])

∼
HomcomodC (C)(B, [C,C][C,C]C),

we can see that the left-hand map µ∨
C ◦1 ι′ of (3) corresponds to µC ◦1 [C, ι′] under

the adjunction isomorphism of the bottom row.

We claim that the right-hand map (θ ◦0 θ ◦0 ι′)µ∨
D of (3) corresponds to (θ ◦0 θ) ◦1

µD ◦1 [ι′,B] under the same adjunction isomorphism. Indeed, using the commutative
diagram

HomC ([B,B], [B,B][B,B])
∼

−◦1[ι
′,B]

��

HomcomodC (C)(B, [B,B][B,B]B)

(id[B,B][B,B]◦0ι
′)◦1−

��
HomC ([C,B], [B,B][B,B])

∼

(θ◦0θ)◦1−

��

HomcomodC (C)(B, [B,B][B,B]C)

(θ◦0θ◦0idC)◦1−

��
HomC ([C,B], [C,C][C,C])

∼
HomcomodC (C)(B, [C,C][C,C]C),

the correspondence between µD and µ∨
D on the top row induces the correspondence

between µD◦1[ι′,B] and (id[B,B][B,B]◦0ι
′)◦1µ∨

D on the second row, which in turn induces
a correspondence between (θ ◦0 θ) ◦1 µD ◦1 [ι

′,B] and (θ ◦0 θ ◦0 idC) ◦1 (id[B,B][B,B] ◦0
ι′) ◦1 µ∨

D = (θ ◦0 θ ◦0 ι′) ◦1 µ∨
D on the bottom row.

Thus, (3) is equivalent to saying that µC ◦1 [C, ι′] = (θ ◦0 θ) ◦1 µD ◦1 [ι′,B]. Since
θ = [C, ι′] ◦1 ([ι′,B])−1, we obtain that µC ◦1 θ = (θ ◦0 θ) ◦1 µD. This completes the
proof of the compatibility between comultiplications of D and [C,C] ∼= C under θ.

It remains to show the equivalence −�DDC : comodC (D) → S. For a D-comodule
M, we have an exact sequence 0 → M → FD in comodC (D) for some F ∈ C . Recall
that ip(C) = B ∼= [C,B] ∼= [B,B], so we have isomorphisms of right C-comodules
ip(C) ∼= DC

∼= C�CD�DDC. In particular, we have DC ∈ S. Since S is C -stable,
we have (FD)�DDC

∼= FDC ∈ S, so it follows from the assumption of S being closed
under subobjects that M�DDC ∈ S. Hence, −�DDC induces a well-defined functor
from comodC (D) to S.

Recall from Lemma 6 that −�DDC is fully faithful. It remains to show that it is dense.
Indeed, if M ∈ S, then we have an exact sequence 0 → M → FC in comodC (C) for
some F ∈ C , which induces an exact sequence 0 → ip(M) → ip(FC). By assumption,
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we have ip(M) = M. Since by assumption i(FM) ∼= Fi(M) for all M ∈ S, we also have
p(FN) ∼= Fp(N) for all N ∈ comodC (C), as can be seen from the chain of isomorphisms

HomS(M, p(FN)) ∼= HomcomodC (C)(i(M),FN)

∼= HomcomodC (C)(
∗Fi(M),N)

∼= HomcomodC (C)(i(
∗FM),N)

∼= HomS(
∗FM, p(N))

∼= HomS(M,Fp(N)),

which holds for any M ∈ S. We thus have ip(FC) ∼= F(ip(C)) ∼= FD, which is in
the essential image of −�DDC. Thus, as comodC (D) is closed under subobjects by
Lemma 6 and −�DDC is exact, M is also in the essential image of −�DDC. �

This leads us to the following proposition, which generalises [NT, Theorem 4.2(iii)].

Proposition 9. The construction in Lemma 8 induces a bijection between the set
of C-stable subobject-closed quotient-closed full subcategories of comodC (C) up to
equivalence and the set of subcoalgebras of C up to isomorphism.

Proof. Let Ω be the set of C -stable subobject-closed quotient-closed full subcategories
of comodC (C) up to equivalence, and Φ be the set of subcoalgebras of C up isomor-
phism. By Lemma 8, assigning S 7→ [ip(C), ip(C)], where i is the inclusion of S into
comodC (C) and p is the right adjoint of i, defines a map f : Ω → Φ.

On the other hand, for a subcoalgebra D, it follows from Lemma 6 that comodC (D) is
equivalent to a subobject-closed quotient-closed full subcategory of comodC (C). Note
that this subcategory is also C -stable as D is a coalgebra 1-morphism in C . Clearly,
isomorphic subcoalgebras define the same full subcategory up to equivalence. Hence,
we have a map g : Φ → Ω.

Starting with S ∈ Ω, we have gf(S) = comodC (f(S)), which is equivalent to S by
Lemma 8; this means that gf = idΩ. For D ∈ Φ, Lemma 7 says that the inclusion of
comodC (D) into comodC (C) and its right adjoint are given by −�DDC and −�CD
respectively. Since C�CD�DDC

∼= DC, the subcoalgebra fg(D) is given [DC,DC].
By the same argument as in the first two paragraphs in the proof of Lemma 8, we
have [DC,DC] ∼= [C,D] ∼= D. Therefore, we have fg(D) ∼= D, i.e. fg = idΦ as
required. �

3. Coidempotent subalgebras and extensions

3.1. Coidempotent subcoalgebras. Following [NT], we define the following notion,
which, in the classical setting, is dual to idempotent quotient algebras A/AeA.

Definition 10. Let C be a coalgebra 1-morphism in C and D a subcoalgebra of C. We
say thatD an coidempotent subcoalgebra of C if µ−1

C (CD+DC) = D or, equivalently,
for J = C/D, the map µJ := (idJ ◦0πJ)◦1 ρJ : J → JJ is a monomorphism in C , where
πJ : C → J is the natural projection and ρJ is the right C-coaction map of J.

Lemma 11. Let C be a coalgebra 1-morphism in C andD a subcoalgebra. Set J = C/D
and let I be the injective hull of J in comodC (C).

(i) D is coidempotent if and only if J�CD = 0.

(ii) For Q ∈ injC (C), if Q�CD = 0, then Q ∈ addinjC (C){FI | F ∈ C}. Moreover,

the converse holds when D is coidempotent.
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Proof. (i) Applying J�C− to the exact sequence 0 → D → C
π
→ J → 0 of C-C-

bicomodules yields and exact sequence

0 −→ J�CD −→ J�CC
idJ�π
−→ J�CJ.

Now consider the diagram

J�CC� _

α

��

idJ�π // J�CJ� _

α′

��
JC

idJ◦0π //

idJ◦0µC−ρJ◦0idC

��

JJ

idJλJ−ρJ◦0idJ

��
JCC

idJC◦0π // JCJ,

where λJ is the left C-coaction map of J. Using the interchange law and the induced
(left) C-comodule structure of J, the lower square commutes, which yields the commu-

tativity of the upper square. Since there is an isomorphism β : J
∼
−→ J�CC, we have

α ◦1 β = ρJ. The induced map µJ : J → JJ is precisely (idJ ◦0 π) ◦1 ρJ. Hence, we
have two exact sequences

0 // J�CD //

��

J�CC

β−1 ∼

��

idJ�π // J�CJ� _

α′

��
0 // kerµJ

// J
µJ // JJ

so that the right-hand square commutes. This implies that J�CD ∼= kerµJ. The claim
follows.

(ii) Realise Q ∈ injC (C) as a direct summand (inside injC (C)) of GC, for some 1-

morphism G ∈ C , with complement Q′. Let −�DDC : comodC (D) →֒ comodC (C)
be the morphism from Lemma 6 given by extending the coaction from D to C.

Consider the exact sequence

0 → GD → Q⊕Q′ → GJ

in comodC (C). We claim that if the induced morphism α : GD → Q is nonzero, then
Q�CD 6= 0. Indeed, as GD is in the essential image of −�DDC, the nonzero image Z
of α, as a quotient of GD, is also in the essential image of −�DDC by Lemma 6, and
isomorphic to Z′

�DDC for some Z′ ∈ comodC (D). On the one hand, applying −�CD
to the monomorphism Z →֒ Q yields a monomorphism Z�CD →֒ Q�CD. On the other
hand, it follows from Lemma 7(i) that Z�CD ∼= Z ′

�DD�CD ∼= Z ′ is nonzero. Thus
we obtain that Q�CD is also nonzero, as claimed.

Therefore, if Q�CD = 0, then Q is not in the coimage of the first map of the exact
sequence above. This implies that Q is isomorphic to a subobject of GJ, which in turn
is a subobject of GI. Injectivity of Q implies that it is in fact isomorphic to a direct
summand of GI.

Let us now assume D is coidempotent and show the converse. Let F0 be the injective
hull of J in C and ϑ : J →֒ F0 the canonical embedding. Since the induced comultipli-
cation on J is, by assumption, a monomorphism in C and composition in C is left exact,
we have monomorphisms J →֒ JJ →֒ F0J in comodC (C). We obtain a commutative
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diagram

J �
�

µJ

//
� _

ρJ

��

JJ� _

ϑ◦0idJ

��
JC

idJ◦0π

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦
� _

ϑ◦0idC

��

F0J

F0C

idF0◦0π
77 77♦♦♦♦♦♦♦♦♦♦♦♦♦

in comodC (C). By injectivity of F0C, the resulting maps τ = (ϑ ◦0 idJ) ◦1 µJ and
σ = (ϑ ◦0 idC) ◦1 ρJ in the diagram

J
� � τ //
� _

σ

��

F0J
κ

||

❥
❧

♦
r

✉

F0C
idF0◦0π

<< <<

give rise to the dotted map κ : F0J → F0C, such that the diagram commutes both
ways around. The equality κ◦1 (id◦0 π)◦1 σ = κτ = σ implies that κ◦1 (id◦0 π) is the
identity on I as a direct summand of F0C and hence I is a direct summand of F0J. By
part (i), we have F0J�CD = 0. In particular, its direct summand I�CD is also zero,
and hence any Q ∈ addinjC (C){FI | F ∈ C} satisfies Q�CD = 0. �

Lemma 12. Suppose D
ι
→֒ C is a coidempotent subcoalgebra. Let I be the injective

hull of the cokernel of ι and M be a simple C-comodule with injective hull Q. Then
the following are equivalent.

(i) M�CD = 0.

(ii) Q�CD = 0.

(iii) Q ∈ add{FI | F ∈ C}.

Proof. (ii)⇔(iii): This is Lemma 11 (ii).

(ii)⇒(i): Clear by left exactness of −�CD.

(i)⇒(ii): By Lemma 7 (ii), Q�CD�DDC is a subcomodule of Q, which has simple
socle M in the case when it is non-zero. Since the smallest non-trivial subcomodule M
of Q is annihilated by −�CD, it follows that Q�CD�DDC = 0. But −�DDC is fully
faithful, so Q�CD = 0. �

3.2. Coidempotent subcoalgebras and Serre subcategories. In this subsection,
we provide a correspondence between coidempotent subcoalgebras of a coalgebra 1-
morphism C and Serre subcategories of comodC (C). Throughout this subsection, we

let D
ι
→֒ C be a subcoalgebra, let J, πJ be defined by the short exact sequence

0 → D
ι
→֒ C

πJ

։ J → 0

and µJ = (idJ ◦0 πJ) ◦1 ρJ the induced multiplication on J.

Lemma 13. If D
ι
→֒ C is a coidempotent subcolagebra, then the fully faithful exact

embedding −�DDC sends comodC (D) to a Serre subcategory of comodC (C).

Proof. By Lemma 6, it remains to show closure under extensions.

For any M ∈ comodC (C), we denote by σM the composition (idM ◦0 πJ) ◦1 ρM ,
where ρM is the coaction map. Then M being in the essential image of comodC (C) is

equivalent to σM = 0. Let 0 → X
f
−→ Y

g
−→ Z → 0 be a short exact sequence of right
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C-comodule such that X,Z is in the essential image of −�DDC. Our aim is to show
that σY is zero.

Since horizontal composition is left exact, we have commutative diagram

0 // X
f

//

ρX

��

Y

ρY

��

g
// Z

ρZ

��

// 0

0 // XC
f◦0idC

// Y C
g◦0idC

// ZC

in C with exact rows.

This induces a commutative diagram where all C’s and ρ’s above are replaced by J
and σ respectively. Hence we have (g ◦0 idJ) ◦1 σY = σZ ◦1 g = 0, which means that
the image of σY is in the kernel of g ◦0 idJ. Exactness of the top row of the diagram
implies that there is φ : Y → XJ so that (f ◦0 idJ) ◦1 φ = σY . Thus, we have

(σY ◦0 idJ) ◦1 σY = (σY ◦0 idJ) ◦1 (f ◦0 idJ) ◦1 φ

= ((σY ◦1 f) ◦0 idJ) ◦1 φ

= (((f ◦0 idJ) ◦1 σX) ◦0 idJ) ◦1 φ

= 0.

On the other hand, (Y
ρY
−−→ Y C

ρY ◦0idC
−−−−−→ Y CC) = (Y

ρY
−−→ Y C

idY ◦0µC
−−−−−→ Y CC) and

this induces (σY ◦0 idJ) ◦1 σY = (idY ◦0 µJ) ◦1 σY . Combining this with the argument
in the previous paragraph, we see that (idY ◦0 µJ) ◦1 σY = 0. Since D is coidempotent
(i.e. µJ is mono) and horizontal left composition with idY preserves monicity, we obtain
that idY ◦0 µJ is mono, which implies σY = 0 as required. �

Lemma 14. Let K be the kernel of µJ. Then there is a short exact sequence

0 → D → µ−1
C (CD + DC) → K → 0

of right C-comodules, and K is also a D-comodule.

Proof. The right C-comodule map πJ : C ։ J induces a commutative diagram

C
µC //

πJ

��

CC

πJ◦0idC

��

idC◦0πJ // CJ

πJ◦0idJ

��
J

ρJ

// JC
idJ◦0πJ

// JJ,

in comodC (C). Since µJ := (idJ ◦0 πJ) ◦1 ρJ, µ
−1
C (CD+DC) = ker((πJ ◦0 πJ) ◦1 µC)

coincides with ker(µJ ◦1 πJ).

We have a commutative diagram

0 //

��

C
idC //

πJ

��

C //

(πJ◦0πJ)◦1µC

��

0

0 // K
ιK

// J
µJ

// JJ

where both rows are exact. Now the snake lemma provides the required short exact
sequence 0 → D → µ−1

C (CD + DC) → K → 0 of right C-comodules.
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Consider the following commutative diagram

K
ιK //

ρK

��

J

ρJ

��
KC

ιK◦0idC //

idK◦0πJ

��

JC

idJ◦0πJ

��
KJ

ιK◦0idJ

// JJ

in comodC (C). This yields

(ιK ◦0 idJ) ◦1 (idK ◦0 πJ) ◦1 ρK = (idJ ◦0 πJ) ◦1 ρJ ◦1 ιK = µJ ◦1 ιK = 0.

In particular, since ιK◦0 idJ is mono (as, again, horizontal composition inherits monicity
of ιK), we deduce that (idK ◦0 πJ) ◦1 ρK = 0, as required to show that K is indeed a
right D-comodule. �

Remark 15. All maps in the above proof are in fact morphisms of C-C-bicomodules,
so the exact sequence in the statement of the lemma can be interpreted as an exact
sequence of C-C-bicomodules. A similar proof shows that K is also a D-D bicomodule.

Proposition 16. Suppose D
ι
→֒ C is a subcoalgebra. Then the fully faithful embedding

−�DDC sends comodC (D) to a Serre subcategory of comodC (C) if, and only if, D is
coidempotent.

Proof. If D is coidempotent, we have already shown in Lemma 13 that comodC (D)
embeds as a Serre subcategory. It remains to show the converse.

Recall from Lemma 14 that we have a short exact sequence of right C-comodules

0 → D → D2 → K → 0,

with D2 = µ−1
C (CD + DC). Furthermore, D and K are both right D-comodules,

meaning their C-coaction map factors through id ◦0 ι, that is, D,K are in the essential
image of −�DDC.

Since a Serre subcategory is extension-closed, we obtain that D2 is in the essential image
of −�DDC. Note that C�CD�DDC = DC is the maximal subobject of C that belongs
to the essential image of −�DDC. However, D2 is a subobject of C (the cokernel being
the image of µJ), so we deduce that D2

∼= D, i.e. D is coidempotent. �

3.3. Coidempotent subcoalgebras and recollements. We have now shown C -stable
Serre subcategories of comodC (C) can be associated to a coidempotent subcoalgebra
of D. It is natural to ask what the quotient comodC (C)/ comodC (D) is, or how the
results in the previous subsection fit into the framework of recollements.

Lemma 17. Let I be an injective C-comodule. The following hold.

(i) Let M be a simple C-comodule with injective hull Q, then [I,M] = 0 if and only
if Q is not in add{FI | F ∈ C}.

(ii) The full subcategory of comodC (C) given by the C-comodules M with [I,M] = 0
is equivalent to comodC (D) for some coidempotent subcoalgebra D of C.

(iii) Let D be the subcoalgebra of C given in (ii), and M a simple D-comodule. Then
M�DDC is a simple C-comodule whose injective hull is not in add{FI | F ∈ C} ⊂
injC (C).
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Proof. (i): By the defining property of internal homs, [I,M] = 0 is equivalent to
HomcomodC (C)(M,FI) ∼= HomC ([I,M],F) = 0 for all F ∈ C . This is the same as

saying that M is not in the socle of any of the object in add{FI | F ∈ C}.

(ii): Let A be the coalgebra 1-morphism given by [I, I]. Then [I,−] : comodC (C) →
comodC (A) is exact by Lemma 3. The full subcategory in the claim is then the kernel
of an exact functor, hence a Serre subcategory. This subcategory is clearly C -stable
as [I,−] is a morphism of 2-representations. Now it follows from Lemma 8 that this
category is equivalent to comodC (D) for some subcoalgebra D of C, and D being
coidempotent follows from Lemma 16.

(iii): Since comodC (D) embeds (via −�DDC) as a Serre subcategory of comodC (C),
M�DDC is a simple C-comodule. By the defining property of this Serre subcategory,
[I,M�DDC] = 0, and the claim follows from (i). �

For a subcoalgebra D of C, Lemma 2 tells us that there is an adjoint triple

([DDC,−],−�DDC
∼= [CDD,−],−�CD)

between the comodule categories of these two coalgebras. It follows from Lemma 6
that −�DDC is fully faithful.

On the other hand, if we pick an injective C-comodule I and let A to be the coalgebra
1-morphism given by [I, I], then we obtain another adjoint triple

([[I,C],−],−�C[I,C] ∼= [I,−],−�AI)

between the comodule categories of C and A. Note that the middle isomorphisms
follow from Lemma 3. Moreover, −�AI is fully faithful; one can see this by showing
[I,−]◦(−�AI) is naturally isomorphic to the identity functor on comodC (A). Indeed, as
[I,−] ∼= −�C[I,C], the functor is naturally isomorphic to −�AI�C[I,C] ∼= −�A[I, I] =
−�AA ∼= IdcomodC (A), where the first isomorphism uses Lemma 5.

Similarly, we show that [I, [[I,C],−]] ∼= IdcomodC (A) to demonstrate that [[I,C],−] is

fully faithful. To this end, we compute, for all M,M′ ∈ comodC (A), that

HomcomodC (A)([I, [[I,C],M]],M′) ∼= HomcomodC (C)([[I,C],M]],M′
�AI)

∼= HomcomodC (A)(M,M′
�AI�C[I,C])

∼= HomcomodC (A)(M,M′),

where the last isomorphism uses the same argument as in the previous paragraph.

Suppose C and either one of D or I is given. We would like to understand when the
two adjoint triples above defines a recollement

(4) comodC (D)
−�DDC // comodC (C)

[I,−]
//

−�CD

mm

[D,−]
qq

comodC (A).

−�AI

mm

[[I,C],−]
qq

of comodule categories. In other words, we ask under what conditions on D and I,
comodC (D) embeds via −�DDC as a Serre subcategory and coincides with the kernel
(category) of the exact functor [I,−].

Proposition 18. Suppose D
ι
→֒ C is a coidempotent subcoalgebra, and I the injective

hull in comodC (C) of the cokernel of ι. Then we have a recollement of the form (4).

Proof. We already know from Proposition 16 that the essential image of comodC (D)
under −�DDC is a Serre subcategory of comodC (C). It remains to show that this
coincides with the full subcategory consisting of M ∈ comodC (C) such that [I,M] = 0.
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It suffices to check that [I,M] = 0 ∈ comodC (A) if and only if M ∼= M�CD�DDC.
Furthermore, it suffices to check that these conditions are equivalent for simple objects
M.

Let Q be the injective hull of M. It follows from Lemma 17(i) that [I,M] = 0 is
equivalent to Q not being in add{FI | F ∈ C}. By Lemma 12 this is then equivalent
to M�CD 6= 0.

As M�CD�DDC is a subcomodule of M, the assumption of M being simple means
that M�CD 6= 0 is equivalent to M�CD�DDC

∼= M. �

Proposition 19. Let C be a coalgebra 1-morphism, and I an injective C-comodule.
There exists a subcoalgebra D of C, unique up to isomorphism, which is maximal
with respect to I�CD = 0, and such that injC (D) is equivalent to the quotient 2-

representation injC (C)/GinjC (C)(I). Furthermore, D is coidempotent.

Proof. Consider the exact sequence of 2-representations

0 → GinjC (C)(I) → injC (C)
π
→ K → 0.

The construction in [MMMZ, Section 3.2] produces, for any full and dense morphism
of 2-representations, an embedding of a subcoalgebra, and this embedding is strict if
and only if the full and dense morphism is not an equivalence.

Explicitly, in our situation, this construction defines the coalgebra 1-morphism D via

HomK(C,FC) ∼= HomC (D,F)

for all 1-morphisms F in C and produces an embedding ι : D →֒ C.

Furthermore, K is equivalent to injC (D) and the full and dense morphism of 2-

representations injC (C) ։ injC (D) corresponding to π is given by −�CD by [MMMZ,

Proposition 11].

We assert that D is maximal among subcoalgebras B of C with I�CB = 0. Firstly,
note that we indeed have I�CD = 0 by exactness of

(5) 0 → GinjC (C)(I) → injC (C)
−�CD
−−−−→ injC (D) → 0.

Secondly, if B is another subcoalgebra of C, strictly containing D, then we obtain
a full and dense morphism of 2-representations injC (B) ։ injC (D) that is not an
equivalence. Hence the kernel of −�CB would be strictly contained in the kernel of
−�CD. By exactness of (5), the latter ideal (of injC (C)) is the same as the ideal

generated by GinjC (C)(I), so there must be some Q ∈ GinjC (C)(I) so that Q�CB 6= 0.

But Q�CB is a direct summand of FI�CB, so we deduce that I�CB 6= 0.

It remains to show that D is coidempotent. We first claim that the essential im-
age in comodC (D) of the fully faithful functor −�DDC is closed under extensions.
Indeed, assume M1,M2 are in the full subcategory given by the essential image of
−�DDC. In particular, for i = 1, 2, we have Mi

∼= Mi�CD�DDC, which implies
that no composition factor of Mi is annihilated by −�CD. Consider an extension
0 → M1 → M → M2 → 0 in comodC (C). Then also no composition factor of M
is annihilated by −�CD, which implies that there is no map from M to any injective
Q ∈ GinjC (C)(I).

We obtain a commutative diagram with exact rows

0 // M1�CD�DDC

∼

��

// M�CD�DDC� _

��

// M2�CD�DDC

∼

��
0 // M1

// M // M2
// 0
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in comodC (C).

Let q : M → N be the cokernel map of the middle vertical map in the diagram and let

M � � j
//

q

����

Q1
g

//

q1

��

Q2

q2

��
N � � j′

// Q′
1

g′

// Q′
2

in be a lift of q to an injective presentation. Since q is annihilated by −�CD, the
map q1�CD factors over g�CD. By fullness of −�CD, this implies that there already
is a map h : Q2 → Q′

1 such that setting q′1 = q1 − hg, we have q′1�CD = 0. Note
that replacing q1 by q′1 and q2 by q2 − g′h defines another lift of q to a map between
injective presentations, so without loss of generality, we may assume that we already
had q1�CD = 0 by choosing q1 appropriately. By exactness of (5), this implies that q1
factors over an object FI in GinjC (C)(I) and the first two columns of the diagram give

rise to a commutative diagram

M � � j
//

q

����

Q1

q1

��

!!❈
❈❈

❈❈
❈❈

FI

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

N
� � j′

// Q′
1.

Now the fact that there is no nonzero map from M to any object in GinjC (C)(I) implies

that j′q = q1j = 0 and by monicity of j′, we conclude that q = 0. Therefore, the
embedding M�CD�DDC →֒ M is an isomorphism, meaning that M is in the essential
image of −�DDC. This finishes the proof for the claim that the essential image of
−�DDC is extension-closed.

By Lemma 6, we already know that −�DDC embeds comodC (D) as a full subcategory
of comodC (C) that is closed under subobjects and quotients. So the essential image
of −�DDC being also closed under extensions implies that it is a Serre subcategory.
Now the statement that D is coidempotent follows from Proposition 16, whereas the
uniqueness of D follows from Proposition 9. �

3.4. The main result.

Theorem 20. (i) Let C be a coalgebra 1-morphism in C and suppose D is a coidem-
potent subcoalgebra of C. Set J := C/D. Let I be the injective hull of J
inside comodC (C) and set A = [I, I].Then we have a short exact sequence of
2-representations

0 −→ injC (A)
−�AI
−−−−→ injC (C)

−�CD
−−−−→ injC (D) −→ 0.

(ii) Suppose

0 −→ N −→ M −→ K −→ 0

is a short exact sequence of 2-representations. Then, choosing a coalgebra 1-
morphism C with M ∼= injC (C), there exists a subcoalgebra D of C, unique
up to isomorphism, which is maximal with respect to X�CD = 0 for all X ∈
∐

i∈C
N(i), and such that injC (D) is equivalent to the quotient 2-representation

K. Furthermore, D is coidempotent.



COIDEMPOTENT SUBCOALGEBRAS AND SHORT EXACT SEQUENCES OF 2-REPRESENTATIONS 21

Proof. (i) The assumption is precisely that of Proposition 18, so we obtain a recollement
of the form (4). Now the claim follows from Lemma 1.

(ii) Choose I such that, under the equivalenceM ∼= injC (C), the 2-subrepresentationN

corresponds to GinjC (C)(I). Then, for a subcoalgebra D of C, we have X�CD = 0 for

all X ∈
∐

i∈C
N(i) if and only if I�CD = 0. The claim now follows from Proposition

19. �

4. Examples

4.1. Projective functors over dual numbers. Let R = k[x]/(x2) be the ring of dual
numbers. Consider the 2-category CR of projective functors on R-mod, see e.g. [MM1,
Example 2]. More precisely, this is the 2-category with one object i, which we identify
with a small category R equivalent to R-mod, and CR(i, i) is the full subcategory
of all endofunctors of R given by functors isomorphic to tensoring over R with an
R-R-bimodule in add(R ⊕R⊗k R).

The 2-category CR has two indecomposable 1-morphisms 1 and F corresponding to
the identity functor and to tensoring with R⊗R, respectively.

Since the principal 2-representation P = CR(i,−) is generated by 1, we have a coal-
gebra 1-morphism CP corresponding to P given by [1,1]. Using the fact that the
underlying category of P is precisely CR, one can see that [1,1] ∼= 1 as an object in
CR(i, i) and comultiplication and counit are both the identity map. Note that this
argument applies for any principal 2-representation of a finitary 2-category.

There are two simple transitive 2-representations, denoted byCL,C1

, up to equivalence
(see [MM5] for details). Here C

1

is the trivial 2-representation, whose underlying
category is equivalent to k-mod, where F acts by annihilating everything. On the other
hand, CL is the natural 2-representation, whose underlying category is equivalent to
R-proj, where F acts as R⊗k R⊗R −.

It follows from [MMMT, Theorem 22] that the as an object of CR(i, i), the coalgebra
1-morphism CL := [R,R] is isomorphic to F. For C

1

, the corresponding coalgebra
1-morphism C

1

:= [k, k] can be calculated via the defining adjunction isomorphisms
HomC

R
(C

1

,G) ∼= HomC
1

(i)(k,Gk) for all indecomposable 1-morphisms G, which

yield that it is is isomorphic to the simple socle L
1

of 1 in CR(i, i). In fact, C
1

is a
quotient 2-representation of P, so C

1

is a subcoalgebra of CP, which implies that the
counit and comultiplication maps defining C

1

are both the identity map on L
1

.

There is a short exact sequence of finitary 2-representations

0 → CL ⊠A → P → C
1

→ 0,

where CL ⊠ A is the inflation of CL by A := R-proj (see [MM6] for details about
inflations). Computing coalgebra 1-morphism corresponding to CL⊠A via the defining
adjunction isomorphism HomC ([R ⊗ R,R ⊗ R],F) ∼= HomCL⊠A(R ⊗ R,F(R ⊗ R))

shows that its underlying object in CR(i, i) is isomorphic to F⊕F. Thus, the coalgebra
1-morphisms D,C in Theorem 20 corresponding to the above short exact sequence are
C
1

, CP. Since the quotient of 1 by L
1

has simple socle LF, the coalgebra 1-morphism
is A = [F,F] and it has underlying object in CR(i, i) given by F⊕ F.

Let us look at another finitary 2-representation M, whose underlying category is equiv-
alent to Λ-proj, where Λ := EndR(R ⊕ k) (the action of CR is naturally induced by
that on the natural 2-representation CL). There is a short exact sequence of

0 → CL → M → C
1

→ 0.
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We already explained that the coalgebra 1-morphisms A,D corresponding to the first
and last term, respectively, are F and L

1

. It is possible to calculate the object in
CR(i, i) underlying the coalgebra 1-morphism CM corresponding to M as follows.

First note that there is a quotient morphism P → M, so we can take CM is to
be the subcoalgebra of CP given by [M,M ] with M being the underlying object of
CM in C = P(i). Note that the internal Hom used here is taken in P (instead
of M). The underlying object of CP is the injective object 1 of CR(i, i), and 1

turns out to be uniserial with four composition factor, LF, L1, LF, L1 from top to
socle, where LF is the simple socle of F. By the above short exact sequence, C

1

is
coidempotent subcoalgebra of CM and C

1

≇ CM, so the underlying object is not L
1

.
Since CP ≇ CM, the underlying object M of CM can only be either the length 2 or
the length 3 subobject of 1. These two objects can be distinguished by the dimension
of the Hom-space of maps to 1 in C - they are of dimension 1 and 2 respectively.
By construction, M ∼= [M,M ] = CM as objects in P(i) (c.f. Proof of Lemma 8)
and HomC (CM,1) ∼= HomP(M,M). Note that HomP(M,M) ∼= HomM(M,M) as
M(i) → P(i) is a fully faithful embedding.

We claim that HomM(M,M) ∼= k; in which case, we can conclude that M is the
subobject of 1 of length 2. Indeed, under the equivalence between the underlying
category of M and Λ-proj, M corresponds to the indecomposable projective Λ-module
P such that F(P ) /∈ add(P ). By the construction of 2-representation structure on
Λ-proj, F(P ′) ∈ add(P ′) for an indecomposable projective Λ-module P ′ if and only
if P ′ ∼= HomR(R ⊕ k, R). So we have P ∼= HomR(R ⊕ k, k), which is a uniserial
module with a 1-dimensional endomorphism ring; this means that HomM(M,M) = k,
as claimed.

Note that the comultiplication and counit maps defining CM are both identity, since
CM is a subcoalgebra of CP.

Let us summarise, for clarity, the object underlying each coalgebra 1-morphism corre-
sponding to the 2-representations mentioned, in the table below.

P C
1

CL CL ⊠A M

1 L
1

F F⊕ F
LF

L
1

4.2. Triangular coalgebras. In this section, we provide a more general class of exam-
ples. Let C be a weakly fiat 2-category, A and D coalgebra 1-morphisms in C with
comultiplications and counits given by µA, ǫA and µD, ǫD, respectively, and AMD a
A-D-bicomodule with left and right coactions λ respectively ρ. We define a coalgebra
structure µC, ǫC on C := A⊕D⊕M by specifying that

• the restriction of µC to X is µX for X ∈ {C,D},

• the restriction of ǫC to X is ǫX for X ∈ {C,D},

• the restriction of µC to M is

(

λ
µ

)

: M → AM⊕MD, and

• the restriction of ǫC to M is zero.

It is straightforward to check that this indeed defines a coalgebra structure on C.

We claim that D is a coidempotent subcoalgebra. It is a subcoalgebra by definition, so
we need to check that µ−1

C (CD + DC) = D. Now we have

CD+DC ∼= AD⊕DD⊕MD+DA⊕DM⊕DD.

As none of AD,DA,DM is in the range of µC, we have µ−1
C (CD+DC) = µ−1

C (DD⊕
MD). Since µC sends M to AM⊕MD, but only MD is a direct summand of CD+DC,
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we get that

µ−1
C (DD⊕MD) = µ−1

D (DD) ⊕
(

λ−1(0) ∩ ρ−1(MD)
)

.

It follows from the construction that µ−1
D (DD) = D, whereas λ−1(0) = 0 due to λ

being mono, so we obtain µ−1
C (CD + DC) = D, i.e. D is coidempotent as claimed.
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