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A novel stratification framework for predicting outcome in
patients with prostate cancer
Bogdan-Alexandru Luca1,2, Vincent Moulton2, Christopher Ellis1,2, Dylan R. Edwards1, Colin Campbell3, Rosalin A. Cooper4,
Jeremy Clark1, Daniel S. Brewer1,5 and Colin S. Cooper1

BACKGROUND: Unsupervised learning methods, such as Hierarchical Cluster Analysis, are commonly used for the analysis of
genomic platform data. Unfortunately, such approaches ignore the well-documented heterogeneous composition of prostate
cancer samples. Our aim is to use more sophisticated analytical approaches to deconvolute the structure of prostate cancer
transcriptome data, providing novel clinically actionable information for this disease.
METHODS: We apply an unsupervised model called Latent Process Decomposition (LPD), which can handle heterogeneity within
individual cancer samples, to genome-wide expression data from eight prostate cancer clinical series, including 1,785 malignant
samples with the clinical endpoints of PSA failure and metastasis.
RESULTS: We show that PSA failure is correlated with the level of an expression signature called DESNT (HR= 1.52, 95% CI= [1.36,
1.7], P= 9.0 × 10−14, Cox model), and that patients with a majority DESNT signature have an increased metastatic risk (X2 test, P=
0.0017, and P= 0.0019). In addition, we develop a stratification framework that incorporates DESNT and identifies three novel
molecular subtypes of prostate cancer.
CONCLUSIONS: These results highlight the importance of using more complex approaches for the analysis of genomic data, may
assist drug targeting, and have allowed the construction of a nomogram combining DESNT with other clinical factors for use in
clinical management.

British Journal of Cancer https://doi.org/10.1038/s41416-020-0799-5

BACKGROUND
Driven by technological advances and decreased costs, a plethora
of genomic datasets now exists. This is illustrated by the
availability of expression data from over 1.3 million samples from
the Gene Expression Omnibus,1 and DNA sequence data on
25,000 cases from the International Cancer Genome Consortium.2

Such datasets have been used as the raw material for the
discovery of disease subclasses, using a variety of mathematical
approaches. Hierarchical clustering, k-means clustering, and self-
organising maps have been applied to expression datasets,
leading, for example, to the discovery of five molecular breast
cancer types (Basal, Luminal A, Luminal B, ERBB2-overexpressing
and Normal-like).3 The inherent shortcoming of this type of
approach is the implicit assumption of sample assignment to a
particular cluster or group. Such analyses are in complete contrast
to the well-documented heterogeneous composition of most
individual cancer samples.4,5

Unsupervised analysis of prostate cancer transcriptome profiles
using the above approaches has failed to identify robust disease
categories that have distinct clinical outcomes.6,7 Noting that
prostate cancer samples used in genome-wide studies frequently

harbour multiple cancer lineages, and can have intra-tumour
variations in genetic compositions,8–10 we applied an unsuper-
vised learning method called latent process decomposition
(LPD)11 that can take into account the issue of heterogeneity of
composition within individual cancer samples. By heterogeneity,
we mean that an individual cancer sample can be made up of
several different components that each has distinct properties. We
had previously used Latent Process Decomposition: (i) to confirm
the presence of the basal and ERBB2-overexpressing subtypes in
breast cancer transcriptome datasets;12 (ii) to demonstrate that
data from the MammaPrint breast cancer recurrence assay would
be optimally analysed using four separate prognostic categories;12

and (iii) to show that patients with advanced prostate cancer can
be stratified into two clinically distinct categories based on
expression profiles in blood.13 LPD (closely related to Latent
Dirichlet Allocation) is a mixed membership model in which the
expression profile for a single cancer is represented as a
combination of the underlying latent (hidden) signatures. Each
latent signature has a representative gene expression pattern. A
given sample can be represented over a number of these
underlying functional states, or just one such state. The
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appropriate number of signatures to use is determined using the
LPD algorithm by maximising the probability of the model, given
the data.
The application of LPD to prostate cancer transcriptome

datasets led to the discovery of an expression pattern, called
DESNT, that was observed in all datasets examined.14 Cancer
samples were assigned as DESNT when this pattern was more
common than any other signature, and this designation was
associated with poor outcomes independently of other clinical
parameters, including Gleason, clinical stage and PSA. In this
paper, we test whether the presence of even a small proportion of
the DESNT cancer signature confers poor outcome, and uses LPD
to develop a new prostate cancer stratification framework.

METHODS
Transcriptome datasets
Eight publicly available transcriptome microarray datasets derived
from prostatectomy samples from men with prostate cancer were
used, and are referred to as Memorial Sloan Kettering Cancer
Centre (MSKCC),7 CancerMap,14 CamCap,6 Stephenson,15 TCGA,16

Klein,17 Erho18 and Karnes.19 There were 1785 samples from
primary malignant tissue, and 173 from normal tissue (Table 1).
MSKCC also had data from 19 metastatic cancer samples. The
CamCap dataset was produced by combining two Illumina
HumanHT-12 V4.0 expression beadchip datasets (GEO: GSE70768
and GSE70769) obtained from two prostatectomy series (Cam-
bridge and Stockholm).6 The original CamCap6 and CancerMap14

datasets have 40 patients in common, and thus 20 of the common
samples were excluded at random from each dataset. Each
Affymetrix Exon microarray dataset was normalised using the RMA
algorithm,20 implemented in the Affymetrix Expression Console
software. For CamCap and Stephenson, previous normalised
values were used. For the TCGA dataset, the counts per gene,
previously calculated, were used16 and transformed, using the
variance-stabilising transformation implemented in the DESeq2
package.21 For the CamCap and CancerMap datasets, the ERG
gene alterations had been scored by fluorescence in situ
hybridisation.6,14 Only probes corresponding to genes measured
by all platforms were retained. The ComBat algorithm from the sva
R package and quantile transformation, was used to mitigate
series-specific effects. Flow diagrams presenting each of the
analyses performed in this study, with the datasets used, are
shown in the Supplementary Materials. The ethical approvals
obtained for each dataset are listed in the original publications.

Latent process decomposition
LPD11,12 is an unsupervised Bayesian approach that breaks down
(decomposes) each sample into component sub-elements (sig-
natures). Each signature is a representative gene expression

pattern. LPD is able to classify complex data based on the relative
representation of these signatures in each sample. LPD can
objectively assess the most likely number of signatures. We
assessed the hold-out validation log-likelihood of the data
computed at various numbers of signatures, and used a
combination of both the uniform (equivalent to a maximum
likelihood approach) and non-uniform (missed approach point)
priors to choose the number of signatures. For input, each dataset
was reduced to probes that detect the 500 genes with the
greatest variance across the MSKCC dataset. For robustness, LPD is
run 100 times with different seeds, for each dataset. Out of the
100 runs, we selected the run with the survival log-rank p-value
closest to the mode as a representative run that was used for
subsequent analysis.

OAS-LPD
The OAS-LPD (one added sample-LPD) algorithm is a modified
version of the LPD algorithm in which new sample(s) are
decomposed into LPD signatures, without retraining the model
(i.e. without re-estimating the model parameters µgk, σ

2
gk and α in

Rogers et al.11). Only the variational parameters Qkga and γak,
corresponding to the new sample(s), are iteratively updated until
convergence, according to Eq. (6) and (7) from Rogers et al.11 LPD
as presented by Rogers et al.11 was first applied to the MSKCC
dataset of 131 cancer and 29 normal samples, as described above.
The model parameters µgk, σ

2
gk and α, corresponding to the

representative LPD run, were then used to classify additional
expression profiles from all datasets, one sample at a time. A
detailed description is provided in the Supplementary Methods.

Statistical tests
All statistical tests were performed in R version 3.3.1. For
characterisation of signatures, each sample was assigned to the
signature that had the largest gamma (γ) value for that sample.

Correlations
Pearson correlations between the expression profiles between the
MSKCC and CancerMap were calculated for each of the eight
signatures: (i) for each gene, we select one corresponding probe at
random; (ii) for each probe, we transformed its distribution across
all samples to a standard normal distribution; (iii) the mean
expression for each gene across the samples assigned to signature
j (gene subgroup mean) in each dataset was determined; (iv) the
Pearson’s correlation between the gene subgroup mean expres-
sion profile in MSKCC vs the gene subgroup mean expression
profile in CancerMap is calculated for each signature.

Differentially expressed and methylated features
Differentially expressed probe sets were identified for each
signature by using a moderated t test implemented in the limma

Table 1. Transcriptome datasets.

Dataset Primary Normal Type Platform Citation

MSKCC7 131 29 FF Affymetrix Exon 1.0 ST v2 Taylor et al.7

CancerMap14 137 17 FF Affymetrix Exon 1.0 ST v2 Luca et al. 2017

Stephenson15 78 11 FF Affymetrix U133A Stephenson et al.15

Klein17 182 0 FFPE Affymetrix Exon 1.0 ST v2 Klein et al.17

CamCap6 147 73 FF Illumina HT12 v4.0 BeadChip Ross-Adams et al.6

TCGA16 333 43 FF Illumina HiSeq 2000 RNA-Seq v2 TCGA network 2015

Erho18 545 0 FFPE Affymetrix Exon 1.0 ST v2 Erho et al.18

Karnes19 232 0 FFPE Affymetrix Exon 1.0 ST v2 Karnes et al.19

The MSKCC study additionally reported expression profiles from 19 metastatic cancers. The ethical approvals obtained for each dataset are listed in the
original publications.
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R package (Benjamin–Hochberg false discovery rate <0.05,
differentially expressed in at least 50/100 runs; samples assigned
to the signature vs the rest).
Differential methylation was assigned at the probe level. Hypo-

and hypermethylated genes that are predictive of transcription
were identified using the methylMix R package (functionally
differentially methylated in at least 50/100 runs), using genes that
are found to be differentially expressed in that signature as input.
Datasets where there were <10 samples assigned to a signature
were removed from the identification of intersection genes for
that signature.

Survival analyses and nomogram
Survival analyses were performed using Cox proportional hazard
models, the log-rank test and Kaplan–Meier estimator, with
biochemical recurrence after prostatectomy as the end point.
For nomogram construction, the Cox proportional hazard model
was fitted on the meta-dataset obtained by combining MSKCC,
CancerMap and Stephenson datasets, and validated on CamCap,
using the rms R package. The Gleason grade was divided into <7,
3+ 4, 4+ 3 and >7, the pathological stage in T1–T2 vs T3–T4,
while DESNT percentage and PSA were considered continuous
covariates. The missing values for the predictors were imputed
using the flexible additive models with predictive mean matching,
implemented in the Hmisc R package. The linearity of the
continuous covariates was assessed using the Martingale resi-
duals.22 The lack of collinearity between covariates was deter-
mined by calculating the variance inflation factors (VIF) (VIF values
between 1.04 and 3.01).23 All covariates met the Cox proportional
hazard assumption, as determined by the Schoenfeld residuals.
The internal validation and calibration of the Cox model were
performed by bootstrapping the training dataset 1000 times. The
calibration of the model was estimated by comparing the
predicted and observed survival probabilities at 5 years. For
comparing the discrimination accuracy of two non-nested Cox
models, the U-statistic calculated by the Hmisc rcorrp.cens
function was used.

Detecting over-representation of genomic features
Mutated cancer genes identified by the Cancer Genome Atlas
Research Network (2015)16 were examined at the sample level.
The under-/over-representation of these features in samples
assigned to a particular LPD signature was determined using the
χ2 independence test.

Pathway over-representation analysis and signature correlation
analysis
The GO biological process annotations were tested for over-
representation (or under-representation) in the lists of differen-
tially expressed genes in each signature, using clusterProfiler
version 3.4.4. For a given pathway and a given sample, the
pathway activation score was calculated as indicated in Levine
et al.24 Using the complete combined dataset of all eight datasets,
Z scores were calculated for each sample for each of the 17,697
MSigDB v6.0 gene sets. These were correlated with DESNT γ
values, and the top 20 sets with the highest absolute Pearson’s
correlation were selected. The resulting p values from pathway
over-representation analysis were adjusted for multiple testing
using the false discovery rate.

RESULTS
Presence of DESNT signature as a continuous variable is associated
with poor clinical outcome
In our previous studies, LPD was detected between three and
eight underlying signatures (also called processes) in expression
microarray datasets collected from prostate cancer samples after
prostatectomy.14 Decomposition of the MSKCC dataset7 gave

eight signatures.14 Figure 1a illustrates the proportion of the
DESNT expression signature identified in each MSKCC sample,
with individual cancer samples being assigned as a “DESNT
cancer” when the DESNT signature was the most abundant as
shown in Fig. 1a and Fig. 1c. Based on PSA failure, patients with
DESNT cancer always exhibited poorer outcome relative to other
cancer samples in the same dataset.14 The implication is that it is
the presence of regions of cancer containing the DESNT signature
that conferred poor outcome. If this idea is correct, we would
predict that cancer samples containing a smaller contribution of
DESNT signature, such as those shown in Fig. 1b for the MSKCC
dataset, should also exhibit poorer outcome.
To increase the power to test this prediction, we combined

transcriptome data from the MSKCC,7 CancerMap,14 Stephenson15

and CamCap6 studies (n= 503). There was a significant association
with PSA recurrence when the proportion of expression assigned
to the DESNT signature was treated as a continuous variable
(HR= 1.52, 95% CI= [1.36, 1.7], P= 9.0 × 10−14, Cox proportional
hazard regression model). The outcome became worse as the
proportion of DESNT signature increased. For illustrative purposes,
cancer samples were divided into four groups based on the
proportion of DESNT, with 47.4% of cancer samples containing at
least some DESNT cancer (proportion > 0.001, Fig. 2a). PSA failure-
free survival at 60 months is 82.5%, 67.4%, 59.5% and 44.9% for
the proportion of DESNT signature being: <0.001; 0.001 to 0.3;
0.3–0.6; and >0.6, respectively (Fig. 2b).
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Fig. 1 LPD decomposition of the MSKCC dataset. a DESNT bar
chart from the LPD decomposition of the MSKCC dataset,14 showing
the number ID assigned to 23 example samples that had some
amount of DESNT signature. b, c Pie charts showing the relative
proportions of the eight LPD signatures in 23 example samples.
DESNT is in red; other LPD signatures are represented by different
colours as indicated in the key. The number next to each pie chart
indicates which cancer it represents from the bar chart above.
Individual cancer samples were assigned as a “DESNT cancer” when
the DESNT signature was the most abundant; examples are shown
in the right-hand box (c, “DESNT”). Many other cancer samples
contained a smaller proportion of DESNT cancer: examples shown in
a larger box (b, “SOME DESNT”).
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Nomogram for DESNT predicting PSA failure
The proportion of DESNT cancer was combined with other clinical
variables (Gleason grade, PSA levels, pathological stage and the
surgical margin status) in a Cox proportional hazard model, and
fitted to a combined dataset of 318 cancer samples (MSKCC,
CancerMap and Stephenson); CamCap cancer samples (n= 185)
were used for external validation. The proportion of DESNT was an
independent predictor of worse clinical outcome (HR= 1.33, 95%
CI= [1.14, 1.56], P= 3.0 × 10−4), along with Gleason grade=4+ 3
(HR= 2.43, 95% CI= [1.10, 5.37], P= 2.7 × 10−2), Gleason grade>7
(HR= 5.05, 95% CI= [2.35, 10.89], P < 1 × 10−4) and positive
surgical margins (HR= 1.65, 95% CI= [1.07, 2.56], P= 2.2 × 10−2)
(Fig. S1: Supplementary Fig. 1). PSA level and pathological stage
were below the threshold of statistical significance (P= 0.09, HR=
1.14, 95% CI= [0.97, 1.34]) and (P= 0.055, HR= 1.51, 95% CI=
[0.99, 2.31]), respectively. At internal validation, the Cox model
obtained a 1000 bootstrap-corrected C index of 0.747, and at
external validation a C index of 0.795. Using this model, a
nomogram was constructed for use of DESNT cancer information
in conjunction with clinical variables to predict the risk of
biochemical recurrence at 1, 3, 5 and 7 years following
prostatectomy (Fig. 2c, Fig. S1).

LPD algorithm for detecting the presence of DESNT cancer in
individual samples
The ability of LPD to detect structure is likely to be dependent on
sample size, cohort composition, disease severity range and data
quality. We observed optimal decompositions varying between
three and eight underlying signatures in different datasets.14

When we examined the two datasets that had an optimal eight
underlying signatures (MSKCC and CancerMap), we noted a
striking relationship: based on correlations of expression profiles,
all eight of the LPD signatures appeared to be common (Fig. S2;
R2 > 0.5). To provide a more consistent classification framework
where the number of classes did not vary between datasets, we
therefore used the MSKCC dataset and its decomposition into
eight distinct signatures as a reference for identifying categories
of prostate cancer type.

LPD is a computer-intensive procedure, and analyses can take
days to run on a high-performance computing cluster. This would
restrict ease of DESNT detection for clinical implementation. We
therefore developed a variant of LPD called OAS-LPD, where data
from a single additional cancer sample could be decomposed into
signatures, following normalisation, without repeating the entire
LPD procedure. LPD model parameters11 were first derived by
decomposition of the MSKCC dataset into eight signatures. These
signature parameters were then used as a framework for
decomposition of additional data from single samples, selected
in this case from a dataset, or in the future from a patient
undergoing assessment in the clinic. To test this procedure, we
applied OAS-LPD individually to cancer samples from MSKCC,
CancerMap, Stephenson and CamCap (Fig. S3), and repeated Cox
regression analysis and nomogram construction. The proportion
of DESNT (P= 0.0011, HR= 1.53, 95% CI= [1.19, 1.98]), Gleason=
4+ 3 (P= 0.0061, HR= 2.83, 95% CI= [1.35, 5.96]), Gleason>7 (P
< 1 × 10−4, HR= 5.39, 95% CI= [2.54, 11.44]) and surgical margin
status (P= 0.0015, HR= 2.00, 95% CI= [1.30, 3.07]) remained
independent predictors of clinical outcome (Fig. S4). Notably, the
performance of the Cox model (internal validation C index=
0.742; external validation C index= 0.786) was not significantly
different to that of the original separate dataset Cox model (train
dataset Z=−0.65, two-tailed P= 0.52; validation dataset Z= 0.89,
two-tailed P= 0.38; U-statistic), and the nomogram (Fig. S5) had
almost an identical presentation of parameters to that shown in
Fig. 2c. This observation is consistent with the high degree of
correlation between LPD and OAS-LPD DESNT gamma values
across the MSKCC, CancerMap, Stephenson and CamCap datasets
(P= 2.39 × 10−110).

New categories of prostate cancer
We wished to determine whether LPD signatures were charac-
terised by particular clinical or molecular features, indicating that
they represented distinct categories of prostate cancer. OAS-LPD
using the MSKCC-derived model of gene signatures was applied
to all datasets (n= 1958, Table 1), and each sample was assigned
to the signature that was the most abundant. Samples from non-
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Fig. 2 Stratification of prostate cancer samples based on the percentage of DESNT cancer present. For these analyses, the data from the
MSKCC, CancerMap, CamCap and Stephenson datasets were combined (n= 503). a Plot showing the proportion of DESNT signature in each
cancer sample, and the division into four groups of increasing DESNT. Group 1 samples have a proportion of <0.001 of the DESNT signature.
b Kaplan–Meier plot showing the biochemical recurrence (BCR)-free survival based on the proportion of DESNT cancer present, as determined
by LPD. The number of cancer patients in each group are indicated (bottom right), and the number of PCR failures in each group are shown in
parentheses. The definition of Groups 1–4 is shown in Fig. 2a. Cancer samples with proportions up to 0.3 DESNT (Group 2) exhibited poorer
clinical outcome (χ2 test, P= 0.011) compared with cancer samples lacking DESNT (<0.001). Cancer samples with the intermediate (0.3–0.6)
and high (>0.6) proportions of DESNT also exhibited significantly worse outcome (P= 2.6 × 10−5 and P= 8.3 × 10−9, respectively, compared
with cancer samples lacking DESNT. The combined log-rank P= 1.3 × 10–8). c Nomogram model developed to predict PSA-free survival at 1, 3,
5 and 7 years using proportion of DESNT. Assessing each clinical variable in a single patient has a corresponding point score (top scales). The
point scores for each variable are added to produce a total point score for each patient. The predicted probability of PSA-free survival at 1, 3, 5
and 7 years, can be determined by drawing a vertical line from the total point score to the probability scales below.
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cancerous (benign) prostate tissue were more frequently assigned
to LPD2, LPD4 and LPD8 than to the other groups (P < 0.05, χ2 test,
Fig. S3, Table S1). When datasets with linked clinical data were
combined (MSKCC, CancerMap, Stephenson and CamCap,
Fig. 3a–c), primary cancers assigned to DESNT had worse outcome
(P= 3.4 × 10−14, log-rank test, DESNT-assigned samples vs the
rest), while those assigned to LPD4 had improved outcome (P=
0.0081, log-rank test, LPD4-assigned samples vs the rest) as
judged by PSA failure. Cancer samples with ERG alterations
assigned to signature LPD3 also exhibited better outcome (P <

0.05, log-rank test, comparison to all other ETS-positive cancer
samples) in all three datasets where ERG status was available
(Fig. 4b–d).
To gain information about the new LPD categories, we

examined the distribution of genetic alterations in the decom-
position of the TGCA dataset16 (Fig. 4a). LPD3 cancer samples had
over-representation of ETS and PTEN gene alterations, and under-
representation of CDH1 and SPOP gene alterations (P < 0.05, χ2

test, Table 2). LPD5 cancer samples exhibited exactly the reverse
pattern of genetic alteration: there was under-repression of ETS
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and PTEN gene alterations, and over-representation of SPOP and
CHD1 alterations (Table 2). The statistically different distribution of
ETS-gene alterations in samples assigned to LPD3 and LPD5,
observed in the TGCA dataset, was confirmed in the CamCap and

CancerMap dataset (Table 2). In summary, we have identified
three additional prostate cancer categories that have altered
genetic and/or clinical associations: LPD3, LPD4 and LPD5 (Fig. 5),
and that may be relevant for drug targeting.
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Fig. 4 Genomic and Clinical Properies of LPD Categories. a OAS-LPD subgroups in The Cancer Genome Atlas Dataset (n= 333). Cancer
samples were assigned to subgroups based on the most prominent signature as detected by OAS-LPD. The types of genetic alteration are
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showing PSA-free survival outcomes for ETS-rearrangement positive cancers in LPD3 compared with all other ETS-positive cancers for the
CancerMap, CamCap and TCGA datasets.
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Altered patterns of gene expression and DNA methylation
We examined samples assigned to each OAS-LPD signature for
genes with significantly altered expression levels in all eight
datasets (P < 0.05 after FDR correction, samples in the LPD group
vs all other LPD categories from the same dataset, Supplementary
data 1). LPD3 cancer samples exhibited seven commonly over-
expressed genes, including ERG, GHR and HDAC1. Pathway
analysis suggested the involvement of Stat3 gene signalling
(Fig. S6a, Supplementary data 2). LPD5 exhibited 47 significantly
overexpressed genes and 13 under-expressed genes. Many of the
genes had established roles in fatty acid metabolism and the
control of secretion (Fig. S6b). LPD6- and LPD8 cancers had failed
to exhibit statistically significant changes in genetic alteration or
clinical outcome in this study, but did have characteristic altered
patterns of gene expression (Fig. S6c, e). The five genes commonly
overexpressed in LPD6 cancers suggested involvement in metal
ion homoeostasis. In total, 30 genes were overexpressed, and 36
genes under-expressed in in LPD8 cancers, including several
genes involved in extracellular matrix organisation. Cross-
referencing differential methylation data available for the TCGA
dataset with genes associated with each LPD group indicated that
many expression changes may be explained, at least in part, by
changes in DNA methylation (Fig. 5, Fig. S7, Supplementary
data 3).

DESNT as a signature of metastasis
The MSKCC study includes data from 19 metastatic cancer
samples. For each metastatic sample, DESNT was the most
abundant signature when OAS-LPD was applied (Fig. 3d). Two of
the studied datasets (MSKCC and Erho) had publicly available
annotations, indicating that the patients, from which primary
cancer expression profiles were examined, had progressed to
develop metastasis after prostatectomy (Fig. S3). From nine cancer
patients developing metastasis in the MSKCC dataset, five
occurred from samples in which the DESNT signature is most

common (X2 test, P= 0.0017), and of 212 cancer patients
developing metastases in the Erho dataset, 50 were from DESNT
cancers (X2 test, P= 0.0019) (Fig. S8). From these studies, we
concluded that DESNT cancers have an increased risk of
developing metastasis, consistent with the higher risk of PSA
failure. For the Erho dataset, membership of LPD1 was associated
with lower risk of metastasis (X2 test, P= 0.026, Fig. S8).
To further investigate the underlying nature of DESNT cancer,

we used the transcriptome profile for each primary prostate
cancer sample to investigate associations with the 17,697 signa-
tures and pathways annotated in the MSigDB database. The top
20 signatures, where expression was associated with the
proportion of DESNT, are shown in Table S2. The third most
significant correlation was to genes downregulated in metastatic
prostate cancer. This resulting data give additional clues to the
underlying biology of DESNT cancer, including associations with
genes altered in ductal breast cancer, in stem cells and during
FGFR1 signalling.

DISCUSSION
We have confirmed a key prediction of the DESNT cancer model
by demonstrating that the presence of a small proportion of the
DESNT cancer signature confers poorer outcome. The proportion
of DESNT signature can be considered a continuous variable, such
that as DESNT cancer content increases, the outcome became
worse. This observation led to the development of nomograms for
estimating PSA failure at 3, 5 and 7 years following prostatectomy.
The result provides an extension of previous studies in which
nomograms incorporating Gleason score, stage and PSA value
have been used to predict outcome following surgery.25

The match between the eight underlying signatures detected
for the MSKCC and CancerMap datasets was used as the basis for
developing a novel classification framework for prostate cancer. A
new algorithm called OAS-LPD was developed to allow rapid

Table 2. Correlation of OAS-LPD subgroups with genetic alterations in The Cancer Genome Atlas Dataset.

TCGA CancerMap CamCap

ETS– ETS+ χ2 P-val ERG– ERG+ χ2 P-val ERG– ERG+ χ2 P-val

LPD1 8 3 0.0588 13 4 0.0851 0 3 0.235

LPD2 4 8 0.827 3 3 1 0 2 0.467

LPD3 9 67 1.45 × 10−08 5 15 0.00977 4 17 0.00299

LPD4 14 21 1 14 15 0.619 1 2 0.987

LPD5 65 5 2.20 × 10−16 19 1 0.000180 34 0 1.15 × 10−11

LPD6 13 22 0.802 5 5 1 2 4 0.657

DESNT 13 66 1.17 × 10−06 6 15 0.0207 9 24 0.00274

LPD8 9 6 0.193 8 4 0.540 4 1 0.371

PTEN SPOP CHD1

Non-homdel Homdel χ2 P-val Non-mut Mut χ2 P-val Non-homdel Homdel χ2 P-val

LPD1 10 1 0.896 8 3 0.213 9 2 0.309

LPD2 12 0 0.284 12 0 0.436 12 0 0.756

LPD3 55 21 0.000894 73 3 0.0400 76 0 0.0211

LPD4 35 0 0.0174 31 4 1 34 1 0.603

LPD5 67 3 0.00830 51 19 4.46 × 10−06 57 13 7.69 × 10−06

LPD6 29 6 0.903 32 3 0.825 34 1 0.603

DESNT 60 19 0.0167 75 4 0.0795 76 3 0.432

LPD8 15 0 0.195 14 1 0.889 14 1 1

Statistically significant differences are italicised.
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assessment of the presence of the signatures in individual cancer
samples. In total, four clinically or genetically distinct subgroups
were identified (DESNT, LPD3, LPD4 and LPD5, Fig. 5). The
functional significance of the new disease groupings, for example,
in determining drug sensitivity, remains to be established.
However, with the use of OAS-LPD, it will be possible to undertake
assessments of the response of patients in each of the groups
DESNT, LPD3, LPD and LPD5 to drug treatments. There is limited
overlap between the new classification and previously proposed
subgroups based on genetic alterations.16,26–29

Multiplatform data (expression, mutation and methylation data
from each cancer sample) are available for many cancer types, for
example from The Cancer Genome Atlas. This has prompted the
development of additional methods for sub-class discovery that
can combine information from different platforms, including the
copula-mixed model,30 Bayesian consensus clustering,31 and the
iCluster model.16 Such approaches can suffer from the problem of
sample assignment to a particular cluster or group, and the failure
to take into consideration the heterogeneous composition of
individual cancer samples. These observations highlight the need
to develop methods similar to LPD that can be applied to
multiplatform data.
An important issue for patients diagnosed with prostate cancer

is that the clinical outcome is highly variable, and precise
prediction of the course of disease progression at the time of
diagnosis is not possible.32 In some studies, the use of population
PSA screening can reduce mortality from prostate cancer by up to
21%.33 However many, if not most, prostate cancers that are
currently detected by PSA screening are clinically insignificant.34

Overdiagnosis of clinically insignificant prostate cancer is a major
issue, and is set to increase still further.35 There is therefore an
urgent need for the identification of cancer categories that are
associated with clinically aggressive or indolent disease to allow
the targeting of radical therapies to men that need them. For
breast cancer, unsupervised hierarchical clustering of transcrip-
tome data resulted in a classification system that is routinely used
to guide the management and treatment of this disease. Here we
established a novel classification framework for the analysis of
prostate cancer that has its origins in unsupervised analyses of
transcriptome data. In future studies, we plan to analyse the utility
of DESNT and other LPD processes (particularly LPD3, LPD4 and
LPD5) in managing prostate cancer patients, including predicting
the response to drug treatment. This will be performed through
the assessment of LPD status in the contexts of established clinical
trials. For evaluation, we would plan to use each LPD assignment
(e.g. DESNT, LPD3, LPD4 and LPD5) as a continuous variable, as
illustrated here by the development of a nomogram for the use of
DESNT in predicting PSA failure. In conclusion, our results
highlight the importance of devising and using more sophisti-
cated approaches for the analysis of genomic datasets from all
biological systems.
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Fig. 5 A classification framework for prostate cancer. Based on the analyses of genetic and clinical correlations, we consider that there is
good evidence for the existence of LPD3, LPD4 and LPD5 as separate cancer categories, moderate evidence of the existence of LPD6 and
LPD8 (based on alteration of expression only) and weak evidence for LPD1. The methylation column lists all genes that exhibit differential
expression, and that also contain at least one locus that is differentially methylated.

A novel stratification framework for predicting outcome in patients with. . .
B-A Luca et al.

8



AUTHOR CONTRIBUTIONS
C.S.C., D.S.B. and V.M. were involved in funding acquisition and supervised the
project. C.S.C., D.S.B., B-A.L. and V.M. were involved in conceptualisation and planned
the data analysis. B-A.L., C.E. and D.S.B. performed the majority of the analyses and
investigations, with additional analysis and insight provided by V.M., D.R.E., C.C., R.A.
C., J.C. and C.S.C. B-A.L., C.E., C.C., D.S.B. and C.S.C. were involved in developing the
methodology for the project. C.S.C., D.S.B. and B-A.L. wrote the original draft of
the paper. All authors reviewed and edited the paper. All authors read and approved
the final paper.

ADDITIONAL INFORMATION
Ethics approval and consent to participate All data were from other publications.
The ethical approvals obtained for each dataset are listed in the original publications.

Data availability The datasets analysed during this study are available (Table 1). The
majority are available from the Gene Expression Omnibus repository:

● MSKCC:7 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE21034

● CancerMap:14 https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE94767

● Klein:17 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE62667

● CamCap:6 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE70768 and https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE70769

● Erho:18 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE46691

● Karnes:19 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE62116

● Stephenson:15 data available from the corresponding author
of this paper.

● TCGA:16 data available from the TCGA Data Portal https://
portal.gdc.cancer.gov/projects/TCGA-PRAD.

Competing interests C.S.C., D.S.B., B-A L. and V.M. are co-inventors on a patent
application from the University of East Anglia on the detection of DESNT prostate
cancer.

Funding information This work was funded by the Bob Champion Cancer Trust, The
Masonic Charitable Foundation successor to The Grand Charity, The King Family, The
Hargrave Foundation and The University of East Anglia. We acknowledge support
from Movember, from Prostate Cancer UK, The Big C Cancer Charity, Callum Barton
and from The Andy Ripley Memorial Fund.

Supplementary information is available for this paper at https://doi.org/10.1038/
s41416-020-0799-5.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene

expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210
(2002).

2. Consortium, I. C. G., Anderson, W., Artez, A., Bell, C., Bernabé, R. R., Bhan, M. K. et al.
International network of cancer genome projects. Nature 464, 993–998 (2010).

3. Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A. et al. Repeated
observation of breast tumor subtypes in independent gene expression data sets.
Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

4. Blanco-Calvo, M., Concha, Á., Figueroa, A., Garrido, F. & Valladares-Ayerbes, M.
Colorectal cancer classification and cell heterogeneITY: A SYSTEMs oncology
approach. Int J. Mol. Sci. 16, 13610–13632 (2015).

5. Polyak, K. Heterogeneity in breast cancer review series introduction hetero-
geneity in breast cancer. J. Clin. Invest. 121, 3786 (2011).

6. Ross-Adams, H., Lamb, A. D. D., Dunning, M. J. J., Halim, S., Lindberg, J., Massie, C.
M. M. et al. Integration of copy number and transcriptomics provides risk

stratification in prostate cancer: a discovery and validation cohort study. EBio-
Medicine 2, 1133–1144 (2015).

7. Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S. et al.
Integrative genomic profiling of human prostate cancer. Cancer Cell. 18, 11–22
(2010).

8. Cooper, C. S., Eeles, R., Wedge, D. C., Van Loo, P., Gundem, G., Alexandrov, L. B.
et al. Analysis of the genetic phylogeny of multifocal prostate cancer identifies
multiple independent clonal expansions in neoplastic and morphologically nor-
mal prostate tissue. Nat. Genet. 47, 367–372 (2015).

9. Boutros, P. C., Fraser, M., Harding, N. J., de Borja, R., Trudel, D., Lalonde, E. et al.
Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat.
Genet. 47, 736–745 (2015).

10. Tsourlakis, M.-C., Stender, A., Quaas, A., Kluth, M., Wittmer, C., Haese, A. et al.
Heterogeneity of ERG expression in prostate cancer: a large section mapping
study of entire prostatectomy specimens from 125 patients. BMC Cancer 16, 641
(2016).

11. Rogers, S., Girolami, M., Campbell, C. & Breitling, R. The latent process decom-
position of cDNA microarray data sets. IEEE/ACM Trans. Comput. Biol. Bioinforma.
2, 143–156 (2005).

12. Carrivick, L., Rogers, S., Clark, J., Campbell, C., Girolami, M. & Cooper, C. Identifi-
cation of prognostic signatures in breast cancer microarray data using Bayesian
techniques. J. R. Soc. Interface 3, 367–381 (2006).

13. Olmos, D., Brewer, D., Clark, J., Danila, D. C., Parker, C., Attard, G. et al. Prognostic
value of blood mRNA expression signatures in castration-resistant prostate can-
cer: a prospective, two-stage study. Lancet Oncol. 2045, 1–11 (2012).

14. Luca, B., Brewer, D. S., Edwards, D. R., Edwards, S., Whitaker, H. C., Merson, S. et al.
DESNT: a poor prognosis category of human prostate cancer. Eur. Urol. Focus. 4,
842–850 (2018).

15. Stephenson, A. J., Smith, A., Kattan, M. W., Satagopan, J., Reuter, V. E., Scardino, P.
T. et al. Integration of gene expression profiling and clinical variables to predict
prostate carcinoma recurrence after radical prostatectomy. Cancer 104, 290–298
(2005).

16. Network CGAR, Cancer Genome Atlas Research Network. The molecular tax-
onomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

17. Klein, E. A., Yousefi, K., Haddad, Z., Choeurng, V., Buerki, C., Stephenson, A. J. et al.
A genomic classifier improves prediction of metastatic disease within 5 years
after surgery in node-negative high-risk prostate cancer patients managed by
radical prostatectomy without adjuvant therapy. Eur. Urol. 67, 778–786 (2015).

18. Erho, N., Crisan, A., Vergara, I. A., Mitra, A. P., Ghadessi, M., Buerki, C. et al. Dis-
covery and validation of a prostate cancer genomic classifier that predicts early
metastasis following radical prostatectomy. PLoS ONE 8, e66855 (2013).

19. Karnes, R. J., Bergstralh, E. J., Davicioni, E., Ghadessi, M., Buerki, C., Mitra, A. P. et al.
Validation of a genomic classifier that predicts metastasis following radical
prostatectomy in an at risk patient population. J. Urol. 190, 2047–2053 (2013).

20. Irizarry, R. A., Hobbs, B., Collin, F., Beazer‐Barclay, Y. D., Antonellis, K. J., Scherf, U.
et al. Exploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics 4, 249–264 (2003).

21. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

22. Therneau, T. M., GRAMBSCH, P. M. & Fleming, T. R. Martingale-based residuals for
survival models. Biometrika 77, 147–160 (1990).

23. Hair J. F., Black W. C., Babin B. J., Anderson R. E. & Tatham R. L. Multivariate data
analysis. (Pearson Education Limited, Essex, UK, 1998).

24. Levine, D. M., Haynor, D. R., Castle, J. C., Stepaniants, S. B., Pellegrini, M., Mao, M.
et al. Pathway and gene-set activation measurement from mRNA expression
data: the tissue distribution of human pathways. Genome Biol. 7, R93 (2006).

25. Shariat, S. F., Kattan, M. W., Vickers, A. J., Karakiewicz, P. I. & Scardino, P. T. Critical
review of prostate cancer predictive tools. Future Oncol. 5, 1555–1584 (2009).

26. Attard, G., Clark, J., Ambroisine, L., Fisher, G., Kovacs, G., Flohr, P. et al. Duplication
of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate
cancer. Oncogene 27, 253–263 (2008).

27. Reid, A. H. M., Attard, G., Ambroisine, L., Fisher, G., Kovacs, G., Brewer, D. et al.
Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at
low and high risk of death from prostate cancer. Br. J. Cancer 102, 678–684
(2010).

28. Mosquera, J. M., Beltran, H., Park, K., MacDonald, T. Y., Robinson, B. D., Tagawa, S.
T. et al. Concurrent AURKA and MYCN gene amplifications are harbingers of
lethal treatmentrelated neuroendocrine prostate cancer. Neoplasia 15, 1–IN4
(2013).

29. Rodrigues, L. U., Rider, L., Nieto, C., Romero, L., Karimpour-Fard, A., Loda, M. et al.
Coordinate loss of MAP3K7 and CHD1 promotes aggressive prostate cancer.
Cancer Res. 75(Mar), 1021–1034 (2015).

30. Rey M., Roth V. Copula Mixture Model for Dependency-seeking Clustering. In:
Proceedings of the 29th International Conference on Machine Learning
(Edinburgh, Scotland, UK, 2012).

A novel stratification framework for predicting outcome in patients with. . .
B-A Luca et al.

9

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21034
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE21034
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94767
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94767
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62667
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62667
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70768
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70768
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70769
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46691
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46691
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62116
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62116
https://portal.gdc.cancer.gov/projects/TCGA-PRAD
https://portal.gdc.cancer.gov/projects/TCGA-PRAD
https://doi.org/10.1038/s41416-020-0799-5
https://doi.org/10.1038/s41416-020-0799-5


31. Lock, E. F. & Dunson, D. B. Bayesian consensus clustering. Bioinformatics 29,
2610–2616 (2013).

32. Buyyounouski, M. K., Pickles, T., Kestin, L. L., Allison, R. & Williams, S. G. Validating
the interval to biochemical failure for the identification of potentially lethal
prostate cancer. J. Clin. Oncol. 30, 1857–1863 (2016).

33. Schröder, F. H., Hugosson, J., Roobol, M. J., Tammela, T. L. J., Zappa, M., Nelen, V.
et al. Screening and prostate cancer mortality: results of the European Rando-
mised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up.
Lancet 384, 2027–2035 (2014).

34. Etzioni, R., Gulati, R., Mallinger, L. & Mandelblatt, J. Influence of study features and
methods on overdiagnosis estimates in breast and prostate cancer screening.
Ann. Intern Med. 158(Jun), 831–838 (2013).

35. Parker, C. & Emberton, M. Screening for prostate cancer appears to work, but at
what cost? BJU Int. 104, 290–292 (2009).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

A novel stratification framework for predicting outcome in patients with. . .
B-A Luca et al.

10

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A novel stratification framework for predicting outcome in patients with prostate cancer
	Background
	Methods
	Transcriptome datasets
	Latent process decomposition
	OAS-LPD
	Statistical tests
	Correlations
	Differentially expressed and methylated features
	Survival analyses and nomogram
	Detecting over-representation of genomic features
	Pathway over-representation analysis and signature correlation analysis

	Results
	Presence of DESNT signature as a continuous variable is associated with poor clinical outcome
	Nomogram for DESNT predicting PSA failure
	LPD algorithm for detecting the presence of DESNT cancer in individual samples
	New categories of prostate cancer
	Altered patterns of gene expression and DNA methylation
	DESNT as a signature of metastasis

	Discussion
	Acknowledgements
	Author contributions
	ADDITIONAL INFORMATION
	References




