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Abstract 

Developing future projections of shoreline change requires a good understanding of the driving coastal 

processes. These processes result primarily from the combination of mean sea level, waves, storm surges 

and tides, which are affected by global and regional climate change, and whose uncertainty increases with 

time. This paper reviews the current state of the art of methods used to model climate change-induced 

coastal erosion focusing on how climate change-related drivers and the associated uncertainty are 

considered. We identify research gaps, describe and analyse the key components of a comprehensive 

framework to derive future estimates of shoreline change and make suggestions for good practice. Within 

the scope of the review, we find that although significant progress has been made over the last decade, 

most of the studies limit uncertainty sampling to considering ranges of variation of forcing variables and 

ensembles of emissions scenarios, and applications with high level of probabilistic development remain 

few. Further research is necessary to fully (a) incorporate projected time series of coastal drivers into the 

erosion models, including bias correction; (b) sufficiently sample the uncertainty associated with each 

step of the top-down approach, including the consideration of different emission scenarios , inter- and 

intra-model variability, and multiple runs of erosion models or model ensembles; and (c) reduce 

uncertainty in shoreline change estimates by developing better datasets and model parameterisations, and 

progressing in detection and attribution. 

Keywords: climate change; sandy beaches; coastal erosion modelling; uncertainty treatment.  

1. Introduction  

Managing coastal erosion under climate change is increasingly recognising the need for reliable 

projections of shoreline change across time scales up to multidecadal and centennial. This information 

has many uses including defining setback lines and planning for the relocation of coastal assets 

(Wainwright et al., 2015; Jongejan et al., 2016), anticipating potential losses of flood protection (Stripling 

et al., 2017) and recreation (Toimil et al., 2018; Mehvar et al., 2018), and deciding whether to implement 

protection measures (e.g., beach nourishment). However, modelling coastal erosion at these timescales 

raises significant challenges. One challenge is that the long-term evolution of the shoreline involves  

interacting and coupled short- to long-term coastal processes. Although this has been recognised in the 

literature (Toimil et al., 2020), there is no consensus on how to model such long-term complex interplays 

appropriately beyond just a few years (Ranasinghe, 2016; Robinet et al., 2018). Another challenge is that 

short- and long-term drivers shaping the coast are altered by climate change, leading to additional 

uncertainty to current conditions  and potential significant impacts on future shoreline evolution. 

However, while assuming an increase in mean sea level and no changes in storminess is a common 

approach (e.g., Ranasinghe et al., 2012; Wainwright et al., 2015; Jongejan et al., 2016; Le Cozannet et al., 
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2019), little effort has been made to fully incorporate projections of waves (e.g., Zacharioudaki and 

Reeve, 2010; Casas-Prat et al., 2016), storm surges or river discharge, and even less to consider their 

combination. Finally, future estimates of shoreline change are influenced by uncertainties that arise from 

multiple sources (e.g., emissions scenarios, climate models, downscaling techniques, erosion models, 

data), which cascade through the complete modelling process, and accumulate in the final outcome 

(Ranasinghe, 2016). Since different coastal adaptation practitioners may have different preferences and 

acceptable degrees of risk (Losada et al., 2019), the need to communicate this uncertainty to end users 

and incorporate it into decision analysis has been recognised  (Hinkel et al., 2019). For example, coastal 

managers could be provided with knowledge on the mean or median shoreline position, its variance (e.g., 

the maximum beach retreat in 5, 10, 25 and 50 years), and the associated uncertainty, for any geomorphic 

setting, scenario and time frame. 

The release of the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report (AR4) in 

2007 was a turning point in several aspects. These included more evidence of the link between multiple 

physical impacts and climate change; observations of increasing temperatures, widespread loss of snow 

and ice, and rising global mean sea level; and increased confidence that extreme weather events will 

become more frequent in some regions and alter impacts such as coastal erosion. Importantly, it was 

recognised that although most attention was focused on sea-level rise and the associated inundation risk, 

erosion is another concerning coastal impact, and it requires projections of other coastal drivers including 

waves and surges (Hemer et al., 2010). Thus, methods that use projections of climate change-related 

drivers other than SLR and apply physics-based models able to simulate shoreline changes due to 

different forcings and consider uncertainty in some way (with a certain level of probabilistic 

development) are post AR4. Prior to AR4, coastal erosion approaches to estimate climate change -induced 

erosion were fundamentally based on a deterministic application of the Bruun  Rule. 

The study of the future evolution of the world’s coasts requires a comprehensive framework that 

considers all climate drivers shaping the shorelines, including climate change and a quantification of the 

associated uncertainty. This paper aims to review the current state of the art of methods used to model 

climate change-induced coastal erosion, placing a special emphasis on how projected drivers  feed erosion 

models and how uncertainties are treated therein. Furthermore, we analyse the key components that such 

a comprehensive framework would include, particularly those that have not been sufficiently considered 

to date. Our review includes the works published since the AR4 release in which methods to derive future 

shoreline changes are developed for and/or applied to mainland sandy beaches (both uninterrupted and 

inlet-interrupted) in temperate environments . Our current knowledge about future atmospheric processes 

in tropical and polar areas is still very limited and future projections of climate chan ge-related drivers in 

these regions (e.g., tropical cyclones and coral-related processes in the tropics, and ice-related processes 

in the poles) could be even more uncertain than for the rest of the world (Morim et al., 2019). Methods 

that use projections of climate change-related coastal erosion drivers (SLR, storm surges and waves) 

usually apply physics-based models. These models allow to efficiently simulate shoreline changes due to 

different drivers and consider uncertainty. Index-based and multicriteria analysis that do not specifically 

provide physics-based erosion estimates but vulnerability ranking (e.g., Gornitz, 1991; Alexandrakis and 

Poulos, 2014; Pantusa et al., 2018) are therefore excluded. Finally, inlet-related effects are considered in 
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terms of the impacts of these systems on adjacent beaches  (mainland), neglecting other morphodynamic 

interactions. 

The paper is structured as follows. Section 2 examines the main coastal drivers and processes responsible 

for shoreline change. Section 3 analyses the effects of climate change on coastal erosion drivers  and their 

potential consequences on shoreline evolution. Section 4 describes the cascade of uncertainty and 

dealing-with options. Section 5 reviews existing methods to model climate change-driven coastal erosion. 

Section 6 identifies research gaps to be addressed and discusses the key components of a comprehensive 

framework to model future shoreline changes  in which uncertainty is sufficiently sampled. Finally, 

Section 7 presents concluding remarks and provides several suggestions for good practice. 

2. Coastal drivers and processes responsible for shoreline change  

Coastal drivers and processes shaping shorelines occur across different time scales  (Stive et al., 2002; 

Cowell et al., 2003). Short-term drivers such as waves, storm surges, tides, and extreme fluvial discharges 

play fundamental roles in forcing short- (storm to interannual scale) and mid-term (multiannual to decadal 

scale) shoreline change (e.g., Yates et al., 2009; Splinter et al., 2014; Barnard et al., 2015). For example, 

unusually large shoreline recession can result from extreme conditions such as winter storms that persist 

over hours and days. These shoreline retreats can accumulate and grow if clusters of storms impact upon 

the coast (Coco et al., 2014), hampering beach recovery (Lee et al., 1998; Birkemeier et al., 1999; Dodet 

et al., 2019). Ultimately, the continuous erosion or accretion over months and years governs the seasonal 

and multiannual shoreline evolution patterns (e.g., Miller and Dean, 2004; Maspataud et al., 2009). 

Longer-term drivers and processes including slow-onset relative sea-level change, aeolian transport, 

natural soil erodibility, chronic fluvial sediment supply/lack of supply, and alongshore gradients in 

longshore transport are mainly responsible for long-term (and possibly chronic) shoreline changes 

(multidecadal to centennial scale) (Ashton and Murray, 2006; Sallenger et al., 2012).  

The relative contribution of the different coastal processes to the sediment budget , and hence to shoreline 

change is case-specific and strongly linked to the geomorphic setting. Here, we adopted the general 

division made by Ranasinghe (2016), distinguishing between the coasts that are interrupted by inlets  and 

those that do not (inlet-interrupted and uninterrupted thereinafter). In uninterrupted coasts we consider 

small pocket, long embayed and open beaches. Small pocket beaches experience limited or no net 

longshore sediment transport change, as diffraction and refraction effects compensate within the enclosed 

boundaries. In some cases, however, pocket beaches can have certain alongshore variability and rotate in 

response to wave action (Turki et al., 2013). Long embayed beaches also have limited net longshore 

sediment transport change although typically experience considerable alongshore variability (Burvingt et 

al., 2017). These beaches are generally aligned with the prevailing wave direction and are highly sensitive 

to small changes on this direction. Modelling shoreline change appropriately on long embayed beaches  

would therefore require the consideration of any shifts in wave direction and subsequent beach rotation . 

For instance, embayed beaches  can oscillate and rotate cyclically due to event-based and seasonal 

variations in mean wave direction in the short term (Short and Masselink, 1999; Masselink and 

Patriarchic, 2001), and slightly change their mean orientation over longer timescales (Harley, et al., 2011; 

Zacharioudaki and Reeve, 2011). The shoreline interannual variability in embayed beaches can be largely 
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attributed to large-scale climate fluctuations described by teleconnection pattern indices  such as the North 

Atlantic Oscillation (NAO) in the NE Atlantic coast (Thomas et al., 2011; Silva et al. 2012), the Arctic 

Oscillation (AO) and the Southern Oscillation Index (SOI) in the NW Pacific  coast (Ranasinghe et al., 

2004; Kuriyama et al., 2012), and El Niño-Southern Oscillation (ENSO), the Subtropical Ridge (STR) 

and the Southern Annular Mode (SAM) in the SE Australian coast (Barnard et al., 2015; Kelly et al., 

2019). Open beaches can experience large net longshore and cross-shore sediment transport changes 

(Vitousek et al., 2017; Robinet et al., 2018). In these beaches, regardless twenty-first century SLR, 

alongshore gradients in longshore sediment transport have long been assumed as the main shoreline 

change driver on long timescales (Cowell et al., 2003). On shorter timescales, cross-shore processes play 

a major role, controlling shoreline variability and extreme retreats. Finally, beaches near inlets have a 

more complex behaviour, as they are influenced by the climate change-driven drivers affecting 

uninterrupted coasts plus the effects of adjacent inlets (Ranasinghe et al., 2013; Toimil et al., 2017; 

Bamunawala et al., 2019). Inlets such as estuaries or barrier-islands inlets can alter the longshore 

transport along a shoreline by acting as sinks or sources. 

Short- and long-term climate-related coastal processes shaping shorelines are further modified by human 

action (Dean and Dalrymple, 2001). Examples include the rapid (and uncontrolled) development of 

coastal areas such (e.g., building on dunes) (Anthony et al., 2014); ports, navigational channels  and jetties 

affecting sediment movement patterns  (Saengsupavanich et al., 2008); groin fields causing sediment 

starvation or accumulation (Galgano, 2004); seawalls accelerating beach erosion by reflecting wave 

energy off the facing wall and reducing sediment input (Griggs, 1994); dams on rivers reducing sand 

supply to the coast (Frihy et al., 1991); sand mining of beaches and river beds that supply s and to these 

beaches (Anthony et al., 2015); and water level-related issues such as hydrocarbon and groundwater 

extraction, which can induce local ground subsidence and associated coastal inundation and erosion 

(Erban et al., 2014). 

During the last decade, increasing emphasis has been placed on detection and attribution of coastal 

impacts (e.g., beach erosion) to their forcing (Cramer et al., 2014). Impact detection consists of 

identifying changes beyond a specified baseline, while attribution addresses the magnitude of these 

changes in relation to the influences of natural variability and human-related activities. Since some 

impacts are expected to have occurred in the past, both detection and attribution offer a form of validating 

and refining our projections about future changes, allowing the reduction of uncertainty in the modelling 

phase (Karl and Trenberth, 2003). This sort of extrapolation faces many limitations due to the complex 

and non-linear behaviour of beaches and because the absence of past impacts cannot constitute evidence 

against the possibility of future impacts. Furthermore, validating a model for current climate does not 

guarantee that it would perform well in the future, for example, if sea-level rise (SLR) exceeds the rates 

observed today. Nevertheless, it is not contested that the detection and attribution of shoreline changes are 

valuable to risk assessments (Stone et al., 2013). However, even when it is possible to detect an impact 

(e.g., observed shoreline retreat), more detailed understanding is required for attribution. It is currently 

generally understood that the impacts of human interventions have a major influence on coastal changes, 

but this does not mean that the effects of climate change and variability are negligible (Mentaschi et al., 

2018). A formal attribution involving precise quantification is  particularly challenging for coastal erosion 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

5 

due to the lack of high-resolution, continuous and long-term observations (more than 50-year records) of 

shoreline changes, and because disentangling the erosion led by climate-related coastal processes 

involves precise knowledge of the effects of other drivers. The latter point has a double constraint – the 

combined effect of climate and human drivers are non-linear and non-local in both space and time, 

implying lagged shoreline responses and transregional effects that can be tough to be understood, 

disentangled and quantified; and the ability of many beaches to self-adapt to climate changes further 

complicates the situation (Nicholls et al., 2016; Stone et al., 2013; Cramer et al., 2014). In what follows, 

we set aside human-induced perturbations and focus on how global and regional climate change can alter 

climate-related drivers, and thus future coastal processes and resulting shoreline change. 

3. Climate change effects on coastal drivers and consequences on shoreline evolution 

Climate change is altering mean sea level, mean and extreme wave conditions, storm surges , extreme sea 

levels, and river discharge (Wong et al., 2014). Changes in these climate-related drivers and the potential 

associated impacts on shoreline change are discussed below.  

3.1. Changes in mean sea level 

Based on process-based model studies , the IPCC in its 5th Assessment Report (AR5) estimated that 

global mean sea level was likely to rise 28-98 cm by 2100 above the 1986-2005 average, depending on 

the radiative forcing scenario (Church et al., 2013a), although not excluding a larger rise (Church et al., 

2013b). Specifically, the AR5 gave a probability of up to 16.5% to exceed the upper bound of this range 

by 2100 and estimated that only a collapse of the marine ice-sheets in Antarctica could lead to SLR 

exceeding 1 m by the end of the century. However, two processes were not included in AR5: (1) marine 

ice-sheets instability, which is potentially underway for two major glaciers of Western Antarctica (Favier 

et al., 2014; Joughin et al., 2014) and may lead to contributions to SLR of up to 30 cm by 2100 (Golledge 

et al., 2015); and (2) marine ice-cliffs instability, which could lead to contributions of Antarctica alone in 

the order of 1 m by 2100 (DeConto and Pollard, 2016), but which can happen only with large amounts of 

meltwater in Antarctica. While it is unsure that the latter process can occur during the 21
st

 century 

(Edwards et al., 2019), it cannot be excluded considering feedback mechanisms such as the meltwater 

induced ocean warming recently indicated by Bronselaer et al. (2019). The IPCC report on the Ocean and 

Cryosphere (SROCC) raised the likely range of global SLR projections by 10 cm to incorporate the 

marine ice-sheets instabilities, although it does not preclude higher changes (Oppenheimer et al., 2019). 

Hence, due to our incomplete knowledge of the contribution of the Antarctic ice-sheet, when modelling 

coastal impacts such as coastal erosion it might be prudent to consider SLR scenarios beyond the AR5 

and SROCC likely ranges (e.g., Nicholls et al., 2014; Hinkel et al., 2019). 

When assessing SLR impacts, it is important to consider local SLR rather than the global mean. Local or 

relative SLR comprises global and regional ocean changes, and local uplift or subsidence components  

induced by processes of both natural and anthropogenic origin (Nicholls and Cazenave, 2010). Regional 

sea-level changes display differences with global estimates due to changes in ocean density and 

circulation, changes in atmospheric pressure and changes in Earth Gravity, Earth Rotation and 

viscoelastic solid-Earth deformation in response to mass redistributions such as ice melting and 

groundwater extractions (Mitrovica et al. 2009; Slangen et al., 2012; Gregory et al., 2019). Relative SLR 
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may cause the chronic retreat of many coasts worldwide, either directly through the landward and upward 

displacement of the coastline (Bruun, 1962), or indirectly, by inducing sand volumes being trapped in 

inlet systems (Stive and Wand, 2003; van Goor et al., 2003).  

Where the nearshore bathymetry remains unaltered, changes in mean sea level could also have relevant 

effects on nearshore hydrodynamics, resulting in more instances of extreme level thresholds being 

reached at the shorefront (Vitousek et al., 2017; Wahl et al., 2017; Vousdoukas et al., 2018), and the 

possible amplification of storm surges, tides, waves and river discharge due to changing non-linear 

interactions (Arns et al., 2017; Idier et al., 2017). The latter can make a significant contribution to the 

total water level at the coast, for instance, raising design heights by an average of 48-56% relative to 

design changes caused by SLR alone (Arns et al., 2017). Although these interactions have not yet been 

explored in coastal erosion, it is important to note that even moderate increases in mean sea level could 

lead to a significant increase in the number of episodic climate-related extreme retreat events (Toimil et 

al., 2017).   

3.2. Changes in mean and extreme wave conditions  

Climate change is expected to alter mean and extreme wave conditions (Wong et al., 2014; Morim et al., 

2019). Variations in mean waves could result in increases or decreases in longshore drift (Idier et al., 

2013) and changes in the magnitude and frequency of oscillation and/or rotation cycles in long-embayed 

beaches (Ranasinghe, 2016); the second could cause more instances of erosion thresholds being 

exceeded. Historical observations of global wave power were investigated by Reguero et al. (2019), who 

found changes of around 0.4% per year since 1948 due to upper ocean warming. The analysis of global 

satellite data also confirmed small increases in mean wind speed and wave height in the Southern Ocean 

over this period, with stronger increases in extreme conditions (90th percentiles) in the past 30 years 

(Young and Ribal, 2019). Concerning future projections , Hemer et al.’s (2013) dynamical approach 

showed an increase of around 10% in Southern Ocean mean significant wave heights (Hsm) and a 

decrease in North Atlantic wave generation, with changes in Hsm of similar magnitude. Increases and 

decreases of approximately 0.5s in the annual mean wave period were found in these regions, 

respectively. The projected response in wave direction showed a general trend towards a greater southerly 

component to mean wave direction (3–5° directional shift) throughout the global ocean. A similar 

pattern was observed in Camus et al.’s (2017) statistical projections, which suggested annual Hsm 

increases in the Southern Ocean and eastern Pacific, and decreases in the North Atlantic Ocean, western 

North Pacific basin, Indian Ocean and Southern Hemisphere midlatitudes , with the magnitude of the 

increases four times higher than the magnitude of the decreases. Regarding the annual peak period 

changes, the authors found increases in the Southern Ocean, Eastern Pacific and Indian Ocean, and 

decreases in the North Atlantic Ocean and the Western Pacific Ocean until the Tropic of Capricorn .  

Wang et al.’s (2014) statistical projections consistently indicated that the occurrence frequency of the 

present-day 1-in-10-year extreme wave heights is likely to double or triple in many coastal regions 

around the world, although not everywhere (e.g. the Atlantic European coast exhibit a decrease), 

considering a high radiative forcing scenario by the end of the century. For the same scenario and time 

horizon, Mentashi et al. (2017) conducted a global analysis of changes in extreme energy fluxes, showing 
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a significant increase up to 30% in the 1-in-100-year return level for the majority of the coastal areas of 

the southern temperate zone, and a negative trend in the Northern Hemisphere. Later, Briceno and Wolf’s 

(2018) work highlighted a projected decrease in Hsm of the order 0.2 m across most of the European coast 

and an increase in annual maximum and the 99
th

 percentile of Hs of about 0.5 – 1 m in some areas, 

suggesting an increased intensity of rare high wave events in the future. Casas-Prat et al.’s (2018) 

dynamic projections including the entire Arctic Ocean agreed on a projected increase in surface wind 

speed in the Southern Hemisphere mid-high latitudes and additionally indicated that higher waves would 

be accompanied with increased peak wave period and increased wave age in the East Pacific and Indian 

Oceans, and a significant counter clockwise rotation in the mean wave direction in the Southern Oceans.  

More recently, Lemos et al. (2019) presented projected global mean wind speed, wave height, wave 

period and wave energy flux towards the mid-twenty first century, which indicate increases in the mid-to-

high latitudes of the Southern Hemisphere and in equatorial areas and decreases in the tropical and 

subtropical latitudes of the Northern Hemisphere.  

Despite the large inconsistencies between methodologies, there is strong consensus in the projected signal 

of change in both the mean and extreme ocean wind-wave height over the end of this century across 15 

and 5 out of 21 ocean regions, respectively. This has resulted from the consensus-based analysis 

conducted by Morim et al. (2018) to establish consistent patterns of impacts of global warming on the 

wind-wave climate across the globe. More recently, Morim et al. (2019) illustrated a summary of robust 

projected changes in offshore multivariate wave conditions in the vicinity of the world’s coastlines. These  

studies evidenced that current research is more focused on changes in wave height than in wave period 

and direction, although the latter may have important implications. For example, longer wave periods 

could lead to larger erosion volumes and landward retreat (e.g., van Gent et al., 2008; Castelle et al., 

2015), and variations in wave direction may significantly affect longshore sediment transport patterns 

(e.g., Adams et al., 2011; Harley et al., 2017). Additionally, in oscillatory embayed systems around many 

parts of the world, major changes in coastal responses are associated with changes in wave period and 

direction. For instance, the Interdecadal Pacific Oscillation changes the wave attack direction on 

Australian East Coast beaches through interactions with ENSO, STR, and SAM (Goodwin 2005; Kelly et 

al., 2019). Since these phenomena are expected to change their latitude and intensity under different 

radiative forcing scenarios (Wang and Cai, 2013; Yang et al., 2018), wave height and direction, and 

hence sediment transport may be affected. 

3.3. Changes in storm surges and extreme sea levels  

Storm surges are also significant features of the extreme coastal climate, which can contribute to higher 

total water levels at the shorefront and exacerbate episodic coastal erosion (Kriebel and Dean, 1985; 

Zhang et al., 2002). Published studies on storm surge changes have been limited to the analysis of 

extreme sea levels (ESL) resulting from the combination of mean sea level, tidal oscillations and storm 

surges, from long-term observations at a limited set of stations worldwide. These changes were found to 

be mainly driven by mean sea level variations (Menéndez and Woodworth, 2010). Removing this 

contribution, decadal and multidecadal variations of extremes events unrelated with mean sea level were 

detected and attributed to large-scale patterns of climate variability (e.g., the North Atlantic Oscillation), 
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which cannot be described by linear trends (Wahl and Chambers, 2015; Marcos et al., 2015). Considering 

different radiative forcing scenarios  and return periods, Vousdoukas et al. (2016) projected a slight 

increase in storm surge levels along the European coast, with regions below 50°N showing minimal 

change or a small decrease, except for the highest radiative forcing by 2100, for which a moderate 

increase was indicated. Lee et al. (2017), consistent with previous studies (e.g., Bender et al., 2010; 

Grinsted et al., 2013), identified a positive correlation between global mean temperature rise and 

increasing frequencies of Atlantic extreme storm surges. The strength of this relationship however was 

found uncertain and only confidently detectable within a multidecadal timescale.  

Future changes in all the components of ESLs along Europe’s coasts (considering mean sea level, tides, 

waves and storm surges) were analysed by Vousdoukas et al. (2017). The authors found that by the end of 

this century, the 1-in-100-year ESL is on average projected to increase by 81 cm for the highest radiative 

forcing scenario, and that changes in storm surges and waves enhance the effects of relativ e SLR along 

the majority of northern European coasts, locally with contributions up to 40%. More recently, 

Vousdoukas et al. (2018) presented global dynamic probabilistic projections of ESLs, which indicated a 

very likely increase of the global average 1-in-100-year ESL of 58–172 cm under the highest radiative 

forcing scenario, mostly due to mean sea-level rise. That rise in ESLs could result in an unprecedented 

frequency of extreme coastal erosion events along many parts of the world.  

3.4. Changes in river discharge 

Finally, climate change could produce large variations in river flows and the associated solid discharge 

due to increased evapotranspiration, changing precipitation and snow (Wong et al., 2014; Gattuso et al., 

2015). For instance, Nakaegawa et al. (2013) projected future discharges of major global rivers in the late 

twenty-first century. These projections suggested increases in annual mean river discharges in high 

latitudes, in India and the south-eastern United States but decreases in broad regions of Europe, western 

Asia, the western United States, Central America, and the southern half of the Amazon River basin.  

Shortly after, Santini and di Paola (2015) projected an overall global decrease in mean annual discharge 

over both the medium and long term considering different radiative forcing scenarios. This trend is 

especially relevant for coasts near inlets, where increases or decreases in fluvial discharge may cause 

decreases or increases of shoreline retreat, respectively (Ranasinghe et al., 2013).  

4. Addressing uncertainty  

Future projections of long-term and storm erosion are predominantly assessed to date using top-down or 

scenario-led approaches (Zscheischler et al., 2018). This perspective involves undertaking a sequence of 

steps in which information cascades from one step to the next, and so does the associated uncertainty 

(Wilby and Dessai, 2010). Such expansion of the envelope of uncertainty through the model chain has 

been widely described in the literature using the paradigm of the cascade of uncertainty (Mitchell and 

Hulme, 1999).  

4.1. The cascade of uncertainty in climate change-driven erosion modelling 

Here we adopt the broad structure that a thorough climate change impact  quantification study would 

ideally follow suggested by Ranasinghe (2016). The first step consists of the generation of scenarios of 
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atmospheric greenhouse gas (GHG) emissions  based on hypothetical socio-economic and demographic 

pathways. Biogeochemical models are then applied to translate emissions scenarios into GHG and aerosol 

concentration scenarios , which are the fundamental input to coupled atmosphere-ocean Global Climate 

Models (GCMs) for producing climate projections at the global scale. In a subsequent step, global climate 

projections can be downscaled to the regional/local scale using dynamic (through Regional Climate 

Models, RCMs) or statistical downscaling methods (Laugel et al., 2014). GCMs and RCMs do not 

include information on coastal drivers. Instead, they provide climate variables (e.g., wind, sea-level 

pressure and ice coverage) that are used to predict future changes in waves and storm surges  statistics 

(e.g., Camus et al., 2017), or as forcings for wave generation or ocean circulation numerical models to 

dynamically generate time series of these dynamics (e.g., Casas-Prat et al., 2018). The downscaling 

output therefore conditions the erosion modelling approach (i.e., future statistics vs time series). 

Generating future time series from statistical downscaling output could be possible but it would require 

additional steps (Toimil et al., 2017). The selection of GCMs and RCMs (with horizontal grid spacing of 

typically 0.56º-3.75º and 0.11º-0.44º, respectively) can be influenced by many factors, inter alia, whether 

the variables of interest proceed from the same model realisation, initialisation and physics, if they are 

available for the scenarios and time periods  needed, and if they would allow obtaining time series of 

drivers at the required resolution (e.g., it would be unrealistic to use monthly wind fields to derive hourly 

time series of waves). Importantly, the resulting time series of drivers requires bias correction. The 

following step within the top-down approach may involve the application of regional coastal forcing 

models if more detailed spatial scales are required (e.g., transference of coastal drivers to the beach). 

Finally, projected coastal drivers are fed into erosion models (e.g., to estimate the possible evolution of 

the shoreline over the simulated period). These models ideally need to be simulated with hundreds of 

combinations of forcing variables to sufficiently quantify the uncertainty that accumulates through the 

multiple model tiers in the top-down approach (e.g., using the Monte Carlo method). This comprehensive 

sequence of steps is displayed in Fig. 1. 

The paradigm of the cascade of uncertainty has traditionally assumed that biases from GCMs and RCMs 

are independent and behave approximately additive, and thus that uncertainty increases when global data 

is translated into regional data (Sørland et al., 2018). This would indicate that using GCMs to drive 

RCMs would not lead to intrinsic improvements or more reliable results beyond higher-resolution details 

or ‘more detailed noise’ (Keer, 2013). It is evident that RCMs cannot modify the larger-scale atmospheric 

circulation and thus it is not obvious if they can improve larger scale properties (Rammukainen, 2010). It 

has been proven however that RCMs can in some cases reduce the biases compared to the driving GCM 

in the control period (Sørland et al., 2018), although there is no guarantee of the same influence on the 

climate change signal (Teichmann et al., 2013). While any definitive conclusion can be drawn in one 

direction or the other, evidence suggests that the propagation of uncertainty from top to bottom could not 

be a monotonically increasing phenomenon in all situations. In either case, even if uncertainty reduces at 

the GCM-RCM step, the number of permutations grows through the model chain as the possibility of 

GCM-RCM combinations also increases.  

Two types of uncertainty can be identified throughout this process : (1) Knowledge Uncertainty (KU) due 

to our imperfect knowledge of the climate change problem; and (2) Intrinsic Uncertainty (IU), which is 
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inherent to the problem (Giorgi, 2010). For example, the uncertainty associated with emissions scenarios 

and internal variability of the climate system can be considered as IU (see Fig 1). The IPCC in AR5 uses 

four Representative Concentration Pathways  (RCP2.6, RCP4.5, RCP6.0 and RCP8.5, Moss et al., 2010) 

corresponding to different trajectories of GHG emissions. RCPs include implicit policy actions to achieve 

mitigation and were selected to illustrate different targets in terms of radiative forcing at 2100. The IU 

associated with climate variability is overall addressed through ensembles of transient and credible 

simulations starting at different times in the control period. KU (categorized as “bad” uncertainty) is 

mainly due, but not limited to the following aspects (also shown in Fig 1): 1) an approximate 

representation of the relevant processes in biogeochemical models (concentration scenario uncertainty); 

2) many different descriptions of dynamic and physical processes (GCM-RCM configuration 

uncertainty); 3) systematic model errors (bias uncertainty); 4) the application of downscaling methods  to 

provide climate information at the resolution required by coastal erosion models (downscaling 

uncertainty); and 5) the development and implementation of coastal erosion models, provided our 

incomplete understanding of coastal processes  and sediment-transport mechanisms, as well as limited 

computational resources (epistemic and aleatory uncertainty, respectively). KU needs to be reduced as 

much as possible to advance science understanding, with the paradox that an increase in knowledge may 

lead to discovering new processes ultimately increasing uncertainty  (Giorgi, 2010).  

These two types of uncertainty can be quantified in different ways or described qualitatively (Mastrandrea 

et al., 2010). However, quantitative descriptors of uncertainties provided by the climate science 

community generally do not cover the full range of possible outcomes , often excluding low-probability 

high-impact outcomes, which can be relevant for decision making on coastal adaptation (Hinkel et al., 

2019). 

The importance of uncertainty depends on many different factors (Giorgi, 2010), including the time 

horizon of the projection, the climate-related variable considered and the scale at which the erosion model 

is applied. Overall, scenario and GCM-RCM configuration uncertainty dominate long-term climate 

change, especially at the global scale. The internal variability becomes of primary importance for short- 

and mid-term twenty-first century projections and higher order climate statistics. For example, the 

uncertainty associated with downscaling approaches dominates over scenario and GCM-RCM 

configuration uncertainty in global wave climate projections (Hemer et al., 2013; Morim et al., 2018; 

Morim et al., 2019). Uncertainty in the erosion models can account for the 20-40% of uncertainty in 

shoreline change projections by 2100 (Le Cozannet et a., 2019).  

When assessing climate change-driven coastal erosion, two simplifications usually apply. The first relates 

to the difficulty of implementing top-down approaches to assess impacts produced by multiple interacting 

drivers. Long-term shoreline changes result from the combined effect of multiple drivers and hazards in 

the weather and climate domain spanning over a range of temporal scales (i.e., compound weather and 

climate events, Zscheischler et al., 2018). For this reason, to date the effect of climate change has been 

considered primarily in a single driver (e.g., SLR in Ranasinghe et al., 2012; wave projections in Casas-

Prat el al., 2016) or, if in more than one driver, in each of them independently (e.g., SLR and wave 

projections in Vitousek et al., 2017; SLR and changes in river discharge in Ranasinghe et al., 2013).  
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The second simplification is associated with the challenge of conducting a full uncertainty quantification. 

Probabilistic frameworks offer great promise in assessing uncertainty from different sources . However, an 

impracticable number of simulations would be required to sample the full uncertainty space covering 

multiple emissions scenarios, different GCM-RCM configurations, internal variability, bias  correction, 

downscaling methods, and erosion model parametrization and implementation. To date, most assessments 

of climate change-driven coastal erosion have limited the exploration of the uncertainty space mainly to 

individual dimensions. This is the case of addressing uncertainty in GCM-RCM configuration using a 

reduced number of GCMs or RCMs for a particular scenario (e.g., Casas-Prat el al., 2016); and modelling 

the shoreline evolution probabilistically using thousands of synthetic multi-variate time-series of waves 

and storm surges, but considering only a few potential SLR trajectories (e.g., Toimil et al., 2017). 

Multiple runs of the erosion model would ideally be needed to draw random samples from appropriate 

distributions fitted to the range of values of the forcing variables, which already considers the uncertainty 

accumulated through the top-down approach (Ranasinghe, 2016). 

4.2. Approaches to address uncertainty in climate change-driven coastal erosion modelling  

Current approaches to address uncertainty in the assessment of climate change-driven coastal erosion are 

displayed in Table 1. They include deterministic, multiple-deterministic, ensemble, objective/subjective-

probability and probabilistic approaches , which start from no uncertainty consideration and then are 

ranked in order of increasing uncertainty sampling, although with some nuances. Deterministic 

approaches involve a single model simulation with a single set of forcing variables, providing single-

value estimates of coastal erosion with high uncertainty that is not quantified. Multiple-deterministic 

approaches sample uncertainty to some degree by considering ranges of values of forcing variables 

(typically the mean or median value and the variance corresponding to a single GHG emissions scenario 

or an RCP for a given time horizon) or input parameters, yielding a range of associated coastal erosion 

estimates. Assessments that use ensembles go one step further by considering uncertainty that cascades  

through the top-down approach. This can be achieved, inter alia, by incorporating forcing variables 

related to a set of scenarios (e.g., GHG emissions scenarios or RCPs) and/or a set of GCM-RCM 

configurations, or by applying more than one erosion model. Results can be expressed on an individual 

basis for each scenario, GCM-RCM configuration, and erosion model, or as a statistical aggregate of the 

ensembles considered. The forcing variables associated with the scenarios considered in the ensemble 

approach can be couched in deterministic or multiple-deterministic terms (single value or range of values, 

respectively). Objective/subjective-probability methods characterise coastal erosion drivers and 

processes, and model parameters using probability distributions . Objective and subjective probability 

distributions are derived from observations and expert judgement, respectively. This approach does not 

fully implement statistical models in order to generate "real" synthetic conditions for erosion models, and 

hence cannot sufficiently quantify the uncertainty that accumulates through the model tiers (Fig. 1). 

Finally, probabilistic approaches apply statistical models (e.g., joint probabilities, copulas, autoregressive 

models, etc.) and undertake multiple runs of the erosion model to simulate random samples from 

appropriate distributions fitted to the range of values of the forcing variables . These forcing variables  

derive from regional coastal forcing models  and already incorporate the uncertainty introduced by the 

GHG and aerosol concentration scenarios and GCM-RCM configurations. Both objective/subjective-
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probability and probabilistic approaches can provide probabilistic estimates of shoreline change over 

time. 

Uncertainty approaches Descriptions adopted in this paper  

Deterministic 
Single set of input data, model configuration and model simulation, typically related 
to one GHG emissions scenario or RCP and for a given time horizon. Uncertainty is 

not considered. 

E.g., Rosati et al.’s (2013) model application using a single SLR value. 

E.g., Alexandrakis et al.’s (2015) model application using a representative value of 

significant wave height combined with a single SLR scenario (for three time slices). 

Multiple-deterministic  Limited sets of input data, model configurations and model simulations, typically 

related to one GHG emissions scenario or RCP and for a given time horizon. 

Uncertainty is sampled by considering a range of variation of forcing variables or 
model parameters. 

E.g., Dean and Houston’s (2016) model application using mean and standard 

deviation SLR values associated with the four RCPs. 

Ensemble 
Sets of input data, model configurations and model simulations, typically related to 
different GHG emissions scenarios or RCPs, GCM-RCM configurations, and erosion 

models, sampling the associated uncertainty that cascades through the top -down 

approach. Results can be expressed separately for each run, or in the form of statistic 

aggregates that are representative of the ensemble. 

E.g., Allenbach et al.’s (2015) approach using one model ensemble. 
E.g., Monioudi et al. ‘s (2017) approach using three model ensembles. 

Objective/Subjective-

probability 

Input data and model parameters characterised through probability distributions. 

These approaches do not fully implement statistical models, instead they translate 
observations or expert opinions into objective or subjective probability distributions, 

respectively, which are can be used to propagate uncertainty across models. Results 

can be provided in terms of probabilistic estimates over time, typically related to 

different GHG emissions scenarios or RCPs. 

E.g., Le Cozannet et al.’s (2016) subjective-probability approach for idealized wave 
exposed sandy beaches in which the authors define probability functions for the 

parameters involved in the sand budget. 

E.g., Le Cozannet et al.’s (2019) objective-probability approach in which the authors 

define probability functions for the parameters involved in the sand budget . The 

values of the foreshore slopes are determined by considering the difference between 
two model approaches, one of them probabilistic. 

Probabilistic  
Input data and model parameters characterised through probability distributions. 

These approaches rely on the explicit application of statistical models and multiple 
realisations of the erosion model to provide random samples from appropriate 

distributions fitted to the range of values of the forcing variables derived from 

regional coastal forcing models, which already incorporate the uncertainty that 

cascades through the top-down approach. Results can be provided in terms of 

probabilistic estimates over time, typically related to different GHG emissions 
scenarios or RCPs. 

E.g., Ranasinghe et al.’s (2012) approach that combines probabilistic series of storm 

events and the mean value of SLR associated with one RCP. 

E.g., Toimil et al.’s (2017) approach that combines probabilistic multivariate series 

of waves and storm surges and the mean and standard deviation values of SLR 
associated with one RCP. 

Table 1 Current approaches used to consider uncertainty in climate change-driven coastal erosion modelling. 

Using the approaches described in Table 1, uncertainty can be considered in the coastal drivers modelling 

phase (box 1 in Fig. 2, from the GHG emissions scenarios to the generation of projected forcing variables 

to feed into the erosion models), in the coastal processes modelling phase (box 3 in Fig. 2 e.g., through 

multiple realisations of the erosion model, or using an ensemble of models  or model parameters), or in 

both (box 5 in Fig. 2, dark grey components). In either case, the uncertainty sampled is transferred to the 

outcome (box 4 in Fig. 2).  

SLR is a key climate-change driver shaping future shorelines  worldwide in the long-term. However, it is 

in turn a deeply uncertain process in terms of magnitude and rate of change, especially by the latter part 
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of this century and beyond. This has led to a growing body of literature focused on studying SLR 

components and the associated uncertainty. 

4.3. Uncertainty in sea-level rise as a key climate-change coastal driver 

SLR is expected to amplify the episodic erosion from storms and drive chronic erosion on sandy 

shorelines (Ranasinghe, 2016). AR5 and SROCC SLR projections are obtained by summing different 

contributions such as the thermal expansion of ocean water, the melting of glaciers, ice caps and ice-

sheets and changes in land water storage (Church et al., 2013; Oppenheimer et al., 2019). To produce 

global and regional projections, the AR5 sampled the uncertainty associa ted with these contributions, 

considering that for each RCP, SLR will “likely” (i.e., more than 67% probability, Mastrandrea et al., 

2010) be within the 5-95% range, from modelling results based on the CMIP5 climate projections. A 

medium confidence is given to the likely range of sea-level projections delivered in AR5 based on a 

qualitative assessment of the outcome by IPCC authors. 

However, AR5 and SROCC project SLR likely ranges excluding higher magnitudes of ice loss  in 

Antarctica and Greenland, which only apply if less likely outcomes are included. Potential high-end 

impacts on shoreline changes would be underestimated if only SLR projections characterizing just likely 

sea-level changes are considered (Nicholls et al., 2014). As a result, high-end scenarios (i.e., possible 

although unlikely scenarios) for end-century global SLR have been proposed by many authors based on 

semi-empirical models (Rahmstorf, 2007), probabilistic projections (Jevrejeva et al., 2014), expert 

knowledge mainly associated with future ice-sheet contributions (Bamber and Aspinall, 2013; Horton et 

al., 2014), or by running models with particularly unfavourable settings (DeConto and Pollard, 2016; 

Hansen et al., 2016). Recent studies highlight the large inherent uncertainties associated with the potential 

rapid disintegration of the Antarctic Ice Sheet (DeConto and Pollard, 2016). These results were 

incorporated into updated probabilistic SLR projections (Le Bars et al., 2017; Kopp et al., 2017). Such 

unfavourable scenarios were also integrated into other uncertainty frameworks based on extra-

probabilistic theories that seek to account for the uncertainty in probabilistic measures (i.e., upper and 

lower probability bounds) (Ben Abdallah et al., 2014; Le Cozannet et al., 2017).  

The spatial variability of local SLR, which is an important driver of coastal erosion, arises from regional 

steric and ocean-dynamics effects, as well as from non-climatic effects such as glacio-isostatic 

adjustment, tectonics and sediment compaction (Wöppelmann and Marcos, 2016). Probabilistic local 

SLR projections are generally obtained combining 1) a joint probability distribution of global mean 

thermal expansion and regional ocean dynamics derived from a CMIP5 ensemble; 2) glacier mass-

balance changes; 3) anthropogenic changes in land-water storage; 4) ice sheet contributions (including 

consideration of extreme contributions such as expert elicitation in Bamber and Aspinall, 2013, or 

physical model results including ice-shelf hydrofracturing and ice-cliff collapse in DeConto and Pollard, 

2016); and 5) regional non-climatic effects based upon a spatiotemporal statistical model of tide-gauge 

observations (Kopp et al., 2014; Kopp et al., 2017), or GPS data in combination with other geodetic 

approaches (Wöppelmann et al., 2013). Uncertainty associated with SLR contributions for each of the 

individual components is sampled using each time-dependent probability distributions of cumulative 

contributions. 
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4.4. Approaches to address uncertainty in sea-level rise 

Table 2 summarizes and describes the perspectives identified in the literature to address uncertainty in 

SLR projections, which take the no consideration of uncertainty as a starting point and then are  ranked in 

order of increasing uncertainty sampling, although with some nuances . Deterministic SLR estimates are 

highly uncertain and typically correspond to the mean or median value of a GHG emissions scenario or to 

an RCP for a given time horizon. Multiple-deterministic ranges of SLR values typically refer to the mean 

or median value and variance associated with a GHG emissions scenario or with an RCP for a given time 

horizon. Ensembles consist of a set of SLR estimates, either single values or ranges, related to a set of 

scenarios, typically of GHG emissions or RCPs and for a given time horizon. It is common to work with 

statistics that are representative of the ensemble (e.g., in terms of percentiles), albeit not necessarily. 

Probabilistic SLR distributions usually provide complete probability density functions of SLR over time, 

which are typically associated with GHG emissions scenarios or RCPs. However, the tails of these 

distributions are highly uncertain, especially for the contribution from ice sheets and non-climate effects 

where subsidence is large (Stammer et al., 2019). Finally, extra-probabilistic SLR distributions seek to 

explicitly consider the imprecise and/or incomplete information in probabilistic confidence intervals, for 

example, by combining model outcomes and expert knowledge. Importantly, the different approaches can 

also be combined. For example, according to our terminology, AR5 and SROCC provide multiple-

deterministic SLR projections (likely ranges) for an ensemble of RCPs based on the propagation of 

uncertainties summing sea-level change components. Further, in both AR5 and SROCC, the probability 

of each SLR component is derived from an ensemble approach (see Le Bars 2018 for detailed 

explanations of this procedure). 

Uncertainty approaches Descriptions adopted in this paper  

Deterministic Single SLR value, typically the mean or median value corresponding to a GHG 

emissions scenario or to an RCP. 
E.g., the RCP8.5 SLR median value.  

Multiple-deterministic Range of SLR values, typically the mean or median value and variance 

corresponding to a GHG emissions scenario or to an RCP. 

E.g., the RCP8.5 SLR likely range (the 5 to 95% range of the projections of 
CMIP5 models). 

Ensemble SLR values (single values or ranges) associated with more than one scenario, 

typically with GHG emissions scenarios or RCPs. These values can be used 
independently or in the form of statistic aggregates.  

E.g., SLR values associated with different RCPs. 

E.g., SLR values associated with Nicholls et al.’s (2014) high-end scenarios. 

Probabilistic Probability density function of SLR values, typically associated with GHG 

emissions scenarios or RCPs. 

E.g., Kopp et al.’s (2014) probabilistic SLR projections. 

E.g., Kopp et al.’s (2017) probabilistic SLR projections considering the 

potential rapid disintegration of the West Antarctic Ice Sheet. 

Extra-probabilistic Credible probability function of SLR values conveying aleatory uncertainties as 

well as uncertainties on the shape of the distribution itself. 

E.g., Ben Abdallah et al.’s (2014) approach using belief functions. 

E.g., Le Cozannet et al.’s (2017) approach based on the possibility theory.  

Table 2 Current approaches used to consider uncertainty in SLR. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

15 

Deterministic, multiple-deterministic, ensemble and probabilistic approaches used to consider uncertainty 

in SLR have been implemented in assessments of climate change-driven shoreline changes (see examples 

in Table 1). As it will be shown in the literature review provided in Section 5, to date some research 

works still limit uncertainty sampling exclusively to SLR, mainly incorporating an ensemble of GHG 

emissions scenarios or RCPs. 

5. Methods to assess climate change-driven shoreline evolution  

Significant progress has been made over the last decade to develop a range of methods for the assessment 

of climate change-driven coastal erosion based on our present state of knowledge and resources. 

Modelling strategies composed of different physics-based (or empirical) models simulating cross-shore or 

long-shore processes, and other sinks or sources that contribute to the sediment  budget have proven able 

to reproduce observed shoreline changes over a broad range of time scales to a fair degree of accuracy 

while accounting for uncertainty. In what follows, we review existing methods developed and/or applied 

to model climate change-driven shoreline changes in uninterrupted and inlet-interrupted coasts; identify 

their components; and discern the approaches used to sample uncertainty (from Table 1 and Table 2). 

In order to provide a coherent and streamlined assessment of the state-of-the-art, we assume that the key 

components that may be involved in a comprehensive modelling of climate change-driven coastal erosion 

can be organised as presented in Fig. 2. Many of these components  have already been discussed above. 

From bottom to top in Fig. 2, the first challenge when it comes to developing projections of coastal 

erosion – namely mid- and long-term shoreline changes or storm erosion (box 4) – is to identify and 

simulate the responsible coastal processes (box 3). These coastal processes may differ among coastal 

typologies (box 2) and are generated by different combinations of coastal drivers such as mean sea level, 

waves, storm surges, tides and river discharge, which may be affected, directly or indirectly, by global 

and regional climate change (box 1). Finally, uncertainty arising from different sources and introduced at 

every step (see Fig. 1) can be considered using diverse approaches with different levels of robustness 

(box 5; see also Table 1). 

The division in uninterrupted and inlet-interrupted coastlines (first level), and pocket, long-embayed and 

open beaches (second level) responds to organisation purposes  and intends to be an informative, 

illustrative and clear way for coastal experts to follow the contents of this review. As this review is 

focused on methods rather than models, the models used do not fall into a specific category, but their 

applications do. Whenever the reviewed studies fall into more than one class (e.g., regional assessmen ts 

that apply to different beach typologies), the classification criterion has been to include them in the 

category (or categories) in which we consider they could be more relevant. 

Importantly, coastal processes and shoreline changes are linked to the geomorphic setting (e.g., the fact 

that in pocket beaches alongshore gradients in longshore sediment transport are often neglected), but it 

does not mean that every reviewed study considers all erosion drivers and includes all coastal processes 

relevant for the typology of beach they are analysing. Quite the opposite, many simplifying assumptions 

are made, and much remains to be done in this field of research.  

5.1. Uninterrupted coasts  
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5.1.1. Small pocket beaches  

Pocket beaches are typically small beaches located between headlands. Most studies in the literature 

ideally assume that little or no exchange of sediment occurs with adjacent coasts, neglecting alongshore 

gradients in longshore sediment transport within the sand budget (Vitousek et al., 2017). Over the last 

fifty years, the method most widely used to obtain projections of coastal recession due to SLR has been 

the Bruun Rule (Bruun, 1962). The Bruun Rule predicts the landward and upward displacement of the 

cross-shore profile in response to a rise in mean sea level. However, determining if this approach 

performs within acceptable limits is difficult, as SLR is at present a minor contributor to shoreline change 

on many world coasts . This has led numerous authors to question its adequacy e.g., demonstrating its 

conservationism, recommending it be abandoned (Cooper and Pilkey, 2004), suggesting only to consider 

it as broadly indicative estimates  (Ranasinghe and Stive, 2009), and offering other alternatives (Rosati et 

al, 2013; Dean and Houston, 2016; Atkinson et al., 2018; Beuzen et al., 2018). These alternatives 

incorporate additional physical processes, which are relevant for shoreline change over different time 

scales. 

Future shorelines at small pocket beaches will be shaped not only chronically by long-term SLR, but also 

episodically due to the action of short-term waves and local water levels . Only two approaches in this 

category consider these effects in combination: the methodology proposed by Toimil et al. (2017) to 

manage coastal erosion probabilistically at the regional scale; and the ensemble approach presented by 

Monioudi et al. (2017). 

Toimil et al. (2017) developed a methodology to predict shoreline changes due to waves, storm surges, 

astronomical tides, and SLR probabilistically. Since the statistical projections of waves and storm surges  

developed by the authors using 40 GCMs showed very small changes , the approach relies on historical 

data and a vector autoregressive VAR model (Solari and van Gelder, 2012) to generate thousands of 

synthetic 90-year multivariate hourly time series of these dynamics with different chronologies . The time 

series are combined with the astronomical tide reconstructed over this century and three regional SLR 

curves (multiple-deterministic SLR approach using the RCP8.5 mean values and standard deviations) into 

a shoreline evolution model. The model comprises two modules: cross-shore transport due to wave setup, 

storm surges and astronomical tides following an equilibrium model (Miller and Dean, 2004); and cross-

short transport due to SLR following an equilibrium beach profile change model (based on Bruun, 1962). 

The data and model allow hourly probabilistic estimates of extreme retreats, short- and mid-term 

shoreline variability, and long-term changes, as well as to quantify the associated uncertainty. Feeding 

high-resolution time series of drivers into the shoreline evolution model has the advantage of implicitly 

considering storm occurrence and grouping and beach recovery without the need of introducing 

additional variables into the stochastic simulation. In this study, which was undertaken in 52 pocket 

beaches along the North Spanish coast, uncertainty related to the top-down approach is sampled using a 

range of likely SLR values over the whole century associated with the RCP8.5 and multiple chronologies 

of waves and storm surges. 

Monioudi et al. (2017) presented an assessment of the SLR-induced erosion on Aegean archipelago 

beaches (Greece), providing statistic aggregates for model ensembles. The authors apply the following 
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seven cross-shore erosion models in stationary mode: Bruun (Bruun, 1988), Edelman (Edelman, 1972), 

Dean (Dean, 1991), SBEACH (Larson and Krauss, 1989), Leont’yev (Leont’yev, 1996), XBeach 

(Roelvink et al., 2010), and Boussinesq (Karambas and Koutitas, 2002). Two model ensembles are 

created: a “long-term” ensemble consisting of the Bruun, Dean and Edelman analytical models; and a 

“short-term” ensemble including the numerical SBEACH, Leont’yev, XBeach and Boussinesq models. 

The former is used to assess SLR-driven recession; and the latter to obtain beach retreat due to episodic 

extreme sea levels (i.e., due to storm surges and waves). Finally, a third model ensemble results from the 

combination of the other two. The models are run using a range of plausible energetic wave conditions  

(offshore significant wave heights of 1-4 m and associated periods of 4-8 s), seven median (d50) grain 

sizes, five linear profile slopes , and eleven SLR scenarios (ensemble SLR approach assuming increases 

from 0.05 to 2 m). About 5500 experiments are carried out considering all the possible combinations, and 

the means (best fits) of the lowest and highest projections yielded by the models with equal weighting 

within the ensembles are the final outcomes. The approach is based on the proposition that as models 

have differential sensitivity to environmental factors, ensemble applications may provide more reliable 

ranges than individual models  and consider uncertainty in the erosion models used (the last step in the 

top-down approach). 

5.1.2. Long embayed beaches 

Embayed beaches have shorelines of typically spiral-shaped curvature, in which climate change-induced 

variations in longshore and cross -shore sediment transport may lead to significant changes in their 

rotation and mean orientation, possibly resulting in their permanent re-alignment (Harley et al., 2015; 

Ranasinghe, 2016). Zacharioudaki and Reeve (2011) explored what the evolution of the coast around 

Poole Bay (UK) could be under a range of variations in future wave characteristics. Although 

considerably relevant to shoreline change, variations in mean sea level, tidal range and the swell 

component of wave conditions have been excluded from this work, which according to the authors  was 

intended to be a preliminary study directly applicable to beaches expos ed to little or no swell. The one-

line model described in Zacharioudaki and Reeve (2010) is used to provide monthly and seasonal 

statistics of shoreline change for the time-slice 2071-2100 with respect to 1961-1990. In order to obtain 

time series of monthly or seasonal shoreline positions, the model is performed for individual 30-year time 

series of projected waves that combine two GCMs and a RCM run at two spatial resolutions, and with the 

shoreline set back to its initial shape after each shoreline shape output is derived. The authors adopted an 

ensemble approach, sampling uncertainty associated with two emission scenarios (A1 and B2 from 

Nakicenovic et al., 2000) and nine climate experiments. 

Studies in embayed beaches also include the Probabilistic Coastline Recession (PCR) model first 

developed by Ranasinghe et al., (2012) and further applied by Wainwright et al. (2015) and Jongejan et 

al. (2016) at Narrabeen Beach (Sydney, Australia). The PCR model provides probabilistic estimates of 

net long-term coastal dune recession as a proxy for cross-shore beach displacement landwards  due to the 

combined effect of storm erosion and SLR projections  (McInnes et al., 2007). To that end, and assuming 

no changes in storminess over this century, 110-year time series of storms are generated using joint 

probability distributions of design storm characteristics within a Monte Carlo method (Callaghan et al., 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

18 

2008) in which storm grouping is included as an additional parameter. For each storm, SLR is also 

occurring (deterministic SLR approach), and dune recession is estimated using the dune impact model 

proposed by Larson et al. (2004). Beach recovery between storms that is obtained empirically and 

incorporated in the model. The authors concluded that the bootstrapping technique employed in the model 

(i.e., computing recessions until exceedance probabilities greater than 0.01% convergence) allows 

minimizing the uncertainty associated with predicted probabilistic estimates. The uncertainty sampled is 

therefore limited to the multiple time series of sequences of design storms and the associated multiple 

model runs, disregarding any other aspect related to the top-down approach. 

Simpler assessments of shoreline change in other long embayed beaches include the works developed by 

Snoussi et al (2009), Yoshida et al. (2013) and Alexandrakis et al. (2015), which only consider cross-

shore transport. Following earlier analysis (e.g. Nicholls and Leatherman, 1995), the first is a 

straightforward application of the Bruun Rule to determine the upward and landward displacement of the 

Tangier coast (Morocco) for an ensemble of three SLR scenarios (global-mean estimates) for the time 

horizons 2050 and 2100. The second projected shoreline recession by 2100 in five Japanese beaches 

using a parameterised Bruun Rule, in which the berm height is  formulated in terms of the breaking 

significant wave height and the mean significant wave period . The authors developed a multiple-

deterministic approach by extrapolating mean and maximum past trends of wave height variation, and the 

thermal-expansion, land-ice-melt and land-subsidence components of regional SLR to the end of the 

century. In addition, they considered both minimum and maximum global-mean SLR rates given by the 

A1B scenario (multiple-deterministic SRL approach). Alexandrakis et al. (2015) obtained shoreline 

retreats deterministically in the beach in front of Rethymnon city (Crete Island) for three time slices using 

the associated SLR global-mean values (deterministic SLR approach) by applying the Dean (1991) 

formula. 

5.1.3. Open beaches 

Open beaches are relatively long beaches (nearly) unprotected at their ends and where both cross-shore 

and longshore sediment transport are often essential components of the sediment budget. Current works at 

open beaches include the analysis of future wave-driven coastal sediment transport developed by Casas-

Prat et al. (2016); Rosati et al.’s (2013) and Dean and Houston’s (2016) modified Bruun Rule 

formulations used to assess SLR-induced shoreline response (the latter also recently applied by 

Karunarathna et al., 2018); the approach proposed by Vitousek et al. (2017) for predicting the shoreline 

evolution driven by longshore and cross-shore transport due to projected waves and SLR; the cross-shore 

model ensemble performed by Allenbach et al. (2015); and the assessment of SLR-driven shoreline 

retreats along the European sandy coasts presented by Thiéblemont et al. (2019). In addition, we include 

the studies presented by Le Cozannet et al. (2016, 2019), which focused on quantifying uncertainty in 

future shoreline change. 

Casas-Prat et al. (2016) follow a top-down approach to evaluate future longshore and cross-shore 

sediment-transport volumes along the Catalan coast (Spain). These result from climate change projections 

in which an ensemble of five GCM-RCM configurations is performed under the A1B scenario (IPCC, 

2007). The authors give particular emphasis to how inter-model variability translates from wave 
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projections to wave-driven coastal impacts , in this case, through waves . Both the CERC equation (US 

Army Corps of Engineers, 1984) and Mendoza and Jimenez’s (2006) erosion potential method are used to 

compute longshore and cross -shore sediment-transport rates, respectively. Using computationally non-

expensive modelling tools allows assessing the suitability of each GCM-RCM combination considered to 

forecast changes in coastal dynamics. It is important to qualify that this work does not yield future 

shoreline change specifically. Instead, it provides projected wave-driven changes in sand volumes eroded 

after storm episodes, and the cumulative volumes lost over 30 years (without considering beach 

recovery), for the period 2071-2100 with respect to 1971-2000. However, we consider this contribution to 

be relevant for the review because of the use of regional wave projections to compute longshore and 

cross-shore erosion. The authors deal with the uncertainty added by the RCMs to the sediment transport 

response by analysing discrepancies in patterns of change of forcing wave parameters. 

Rosati et al. (2013) developed a modified form of the Bruun Rule that deems the full range of parsing 

cross-shore transport from seaward to landward boundaries, based on the prevailing storm and surge 

conditions (overwash and aeolian processes) and whether there is a deficit or surplus of sand in the pro file 

with respect to the equilibrium beach profile. The authors illustrated the framework deterministically in 

Cayo Costa (Florida) considering a rise in mean sea level of 0.5 m as the only climate-related driver. 

Similar to Stive et al. (1991), Cowell et al. (2003), and Stive (2004), Dean and Houston (2016) proposed 

a sediment budget with the terms representing diverse phenomena affecting shoreline change. These 

phenomena include the Bruun-Rule recession, onshore transport, sediment sources (e.g., beach 

nourishment), sinks that take sand from the littoral system (e.g., ebb shoal growth, dredged material 

disposal outside the littoral zone), and longshore transport gradients. The application use the RCP SLR 

scenarios enhanced with land subsidence rates as climate-related drivers, yielding projected shoreline-

change rates from 2015 to 2100, and assuming beach nourishment at the rate from 1972 to 2007. The 

authors sample uncertainty by using an ensemble of SLR scenarios and considering the mean values and 

standard deviations in both relative SLR scenarios and sediment transport rates .  

Le Cozannet et al. (2016) presented a subjective-probability approach focused on quantifying uncertainty 

in the evolution of sandy shorelines under the Bruun Rule assumption. They adopt the sedimentary 

budget proposed by Stive (2004) and a beta SLR distribution with a regional deviation (probabilistic 

global SLR projections) to provide future shoreline changes that account for uncertain hydro-sedimentary 

processes in low- and high-energy coasts. This application is generic and considers the case of idealized 

wave-exposed sandy beaches with infinite sand availability , for which the authors define realistic 

probability functions for the parameters involved in the sand budget: Bruun-Rule recession, storm wave-

induced retreat, aeolian transport, cross-shore effects (e.g., wave-nonlinearity-driven onshore sand 

transport), and longshore sedimentary processes with and without groins. Le Cozannet et al. (2016) use 

ranges of typical values provided by Stive (2004) that were based on observations in the Netherlands and 

Australia. Using a quasi-Monte-Carlo approach, uncertainties propagate through the model and shoreline 

projections are provided in probabilistic terms. Ultimately, the authors perform a global sensitivity 

analysis (Saltelli et al., 2008) to determine the contribution of each uncertain input parameter to the 

variance of the model outcome. 
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Following a top-down approach, Vitousek et al. (2017) proposed a modular scheme integrating longshore 

and cross-shore transport induced by GCM-projected waves and regional SLR estimates, which applies to 

both open and small pocket sandy beaches (in the latter case, disabling the longshore component). The 

model is composed by longshore transport due to waves following a one-line approach (Larson et al., 

1997); cross-shore transport due to waves using an equilibrium shoreline change model (Yates et al., 

2009; Long and Plant, 2012); and cross-shore transport due to SLR employing an equilibrium beach 

profile change model (Bruun, 1962). The application of the model to the forecast period (2010-2100) 

provides the shoreline evolution over the next 90 years due to projected time series of wave conditions  

derived from one GCM-RCM composition combined with seven regional SLR scenarios. Uncertainty is 

therefore sampled by considering an ensemble of SLR scenarios. A relevant aspect is that the model is 

somewhat empirical, as key model parameters are auto-selected using an extended Kalman filter for data 

assimilation to optimise the match between data and model hindcasts. The algorithm of data assimilation 

helps reduce epistemic uncertainty associated with the erosion model. 

Similar to Monioudi et al. (2017), Allenbach et al. (2015) developed an analysis of SLR-induced erosion 

on the Black Sea open beaches. They provide statistics of shoreline retreat obtained by the application of 

an ensemble of six cross-shore erosion models (the longshore-transport component is neglected). These 

include Bruun (1988), Dean (1991); Edelman (1972); Leont’yev (1996), XBeach (Roelvink et al., 2010), 

and SBEACH (Larson and Kraus, 1989). Following more than 17000 experiments that combine different 

wave conditions (significant wave heights of 0.5-6 m and periods of 3-12 s), seven median (d50) grain 

sizes, five linear profile slopes, and eleven SLR scenarios (ensemble SLR approach assuming increases 

up to 2 m), the means (best fits) of the lowest and highest projections by the model ensemble are 

estimated. In their study, results from all models have equal weighting in the ensemble projected ranges 

of shoreline recession; and uncertainty is considered in terms of statistic aggregates (e.g., mean value and 

variance).  

Karunarathna et al. (2018) carried out an assessment of past and future changes on a dune-fronted beach 

along the Sefton coast (Liverpool Bay, UK). The authors model the dune response to extreme waves and 

water level events using XBeach (Roelvink et al., 2010), and the SLR-induced medium-long term (i.e., 

multidecadal) shoreline change through the application of Dean and Houston’s (2016) modified Bruun 

Rule. XBeach, which does not currently reproduce beach recovery, and hence is restricted to short-term 

applications, is implemented to simulate historical 2D morphodynamic change during past storm 

conditions (including cross-shore and longshore transport). Climate change is only considered to obtain 

medium-long term erosion. The assessment provides rates of beach change for an ensemble of six 

regional SLR scenarios. 

At the European scale, Thiéblemont et al. (2019) presented a first estimate of the contribution of regional 

SLR to coastal erosion on sandy coasts under likely and high-end sea-level rise scenarios by the end of 

the twenty-first century. The authors developed pan-European high-end scenarios based on the upper 

bound of the RCP8.5 scenario and on high-end estimates of global and regional components of sea-level 

projections considering their uncertainty (e.g., using a multi-model ensemble and the AR5/SROCC 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

21 

median and likely ranges). Shoreline changes along the European coast are estimated using the Bruun rule 

(Bruun, 1962) for an ensemble of three regional SLR scenarios. 

More recently, Le Cozannet et al. (2019) presented an objective-probability approach aimed at 

quantifying uncertainty in shoreline change projections  due to SLR. The authors estimate the uncertainty 

related to the coastal erosion model by comparing two approaches in the coast of Aquitaine (France): the 

Bruun Rule and the PCR model (described in section 4.1.1). The results indicate that the equilibrium 

response of the PCR in the study region can be emulated by the Bruun Rule equation with modified 

foreshore slopes (i.e., the PCR surrogate model). Assuming no human interventions, inlets nor other 

major sediment sources/sinks, a sediment budget that considers the PCR surrogate model and the effects 

of longshore gradients in sediment transport derived empirically is set up. The approach provides 

projected shoreline changes in probabilistic terms, in which uncertainty is sampled using probabilistic 

regional SLR projections associated with three RCPs (Kopp et al., 2014) and defining probability 

functions that account for uncertainty in vertical ground motions , observed longshore sediment trends, 

and shoreface beach slopes. The PCR surrogate model has negligible computation costs  and allow to 

perform a global sensitivity analysis (Saltelli et al., 2008), which requires thousands of simulations to 

quantify the uncertainty associated with different aspects. 

5.2. Inlet-interrupted coasts  

Shorelines near inlets  are influenced not only by climate change-related drivers affecting uninterrupted 

coasts but also by impacts that inlets can have on their evolution. Ranasinghe et al. (2013) and Toimil et 

al. (2017) studied the climate change-induced effects that wave- and tide-dominated estuaries can lead to 

in adjacent coasts, respectively. The first yields the maximum potential beach retreat that may occur by 

2100; the second incorporates these effects into a shoreline evolution model, providing hourly shoreline  

changes over the whole century. Both studies succeed in proving that not considering sediment 

demands/supplies others than the Bruun effect (Bruun, 1962) in the sand budget of these systems may 

well lead to misleading shoreline-change estimates, which had already been recognised before (e.g., 

Stive, 2004). Ranasinghe et al. (2013) addressed this issue by developing a scale-aggregated model for 

wave-dominated, micro-tidal environments, which have little or no intertidal flats, backwater marshes or 

ebb tidal deltas. In this work, the physical processes considered to contribute to shoreline change are the 

SLR-driven Bruun effect (Bruun, 1962), the basin infilling due to the SLR-induced increase in basin 

accommodation space, and the basin volume change due to climate change-driven increases or decreases 

in river flow and increases or decreases in fluvial sediment supply. The model is applied deterministically 

to assess long-term shoreline retreat at four inlets including the Wilson Inlet and the Swan River System 

(Australia), without providing uncertainty estimates . The authors use global SLR projections 

(deterministic SLR approach), rainfall and river inflow (IPCC, 2007). More recently, a slightly-modified 

version of this model was applied by Bamunawala et al. (2019) to the same inlet systems. The only 

difference between this approach and Ranasinghe et al.’s (2013) is the method adopted to quantify the 

fluvial sediment supply. Bamunawala et al. (2019) includes the effects of additional factors such as 

changes in temperature, land use and land management practices. 
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Toimil et al. (2017) proposed a simplified scale-aggregated model for tide-dominated, macro-tidal 

environments in response to climate change-modified forcing. The model was applied to five inlet 

systems in Asturias, a coastal region in the North of Spain. According to the nature of these inlets, the 

physical processes considered as shoreline-change contributors are the SLR-driven landward 

displacement of the coastline (Bruun, 1962), the basin infilling due to the SLR-induced increase in basin 

accommodation space, and the SLR-driven ebb tidal delta volume change. In this case, fluvial sediment 

supply is considered negligible as the estuaries included in the assessment are regulated by dams or 

permanently dredged. The authors couple the SLR-induced shoreline recession due to basin infilling and 

ebb tidal delta volume change (acting as longshore sinks) with the shoreline evolution model described in 

Section 4.1.1 to obtain probabilistic estimates of hourly shoreline changes from 2010 to 2100. Within this 

probabilistic approach, uncertainty is sampled by combining thousands of synthetic multi-variate time-

series of waves and storm surges with three SLR possible evolutions related to the RCP8.5 mean and 

standard deviation values (multiple-deterministic SLR approach). Importantly, it should be noted that the 

use of the equilibrium formulation to describe the complex behavior of an inlet is based on simplifying 

assumptions. For example, considering that the estuary and its elements reach a dynamic equilibrium 

state, since the formulation are not able to describe either their temporal evolution or their spatial 

distribution. Additionally, there is a lag between SLR and the system's morphological response. 

Ranasinghe et al. (2013) considered a linearized single-element version of ASMITA (Aggregated Scale 

Morphological Interaction between a Tidal-inlet system and the Adjacent coast) only valid for small inlet-

basin systems (van Goor et al., 2003), in which they showed that this lag effect could be represented by 

including a coefficient in the basin-infilling equation. 

ASMITA is a scale-aggregated model first developed by Stive et al. (1998) and based on the conservation 

of sediment within a three-element system (ebb delta, channel, and basin) and the adjacent nearshore area 

(beach). The model assumes that the morphological interaction between the three system elements are 

due to diffusive sediment transport and that the system is in morphological equilibrium if undisturbed. 

When the system is perturbed (e.g. due to SLR), the three elements change their volume and evolve 

towards an empirically specified dynamic equilibrium state. Under this condition, the basin borrows sand 

from the adjacent beach to satisfy a demand that is proportional to the rate of SLR. Hinkel et al. (2013) 

undertook the first global analysis of erosion of sandy beaches due to global-mean SLR including an 

adapted version of ASMITA (Stive and Wang, 2003).  The authors developed and applied a simple first-

order erosion model in which SLR-induced shoreline recession is obtained considering the direct effect of 

profile translation on open sandy beaches (i.e., the Bruun effect) and the indirect erosion near selected 

tidal inlets and estuaries. Climate uncertainty is sampled by considering an ensemble of SLR scenarios 

and three climate sensitivities. 

5.3. Summary of reviewed works 

In order to summarize the major differences and similarities between the works described above, Tables 

3 and 4 provide a classification based on the following criteria: coastal typology, coastal processes, 

climate-related drivers, approaches to deal with uncertainty and type of outcomes (boxes 1, 3, 4 and 5 in 

Fig. 2). Table 3 illustrates for typology the relation between the coastal processes modeled and the 
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climate-related drivers considered. The columns corresponding to sinks and sources refer to any transport 

other than strictly cross-shore or longshore. The row corresponding to others includes non-climate drivers 

and non-modeled sediment-transport rates. Table 4 reflects for each typology the relation between the 

approaches used to consider uncertainty (described in Table 1) and the type of outcomes provided.  

Finally, Fig. 3 shows some of examples of the coastal sites  investigated in the reviewed papers, which 

include uninterrupted (small pocket, long embayed and open beaches) and inlet -interrupted coastlines in 

temperate environments , displayed in alphabetical order. 

 Cross-shore transport Longshore transport Sediment sinks Sediment sources 

 Uninterrupted coasts 

Small pocket beaches 

Waves Toimil et al., 2017; 

Monioudi et al., 2017 

   

Storm surges Toimil et al., 2017; 

Monioudi et al., 2017 

   

Tides Toimil et al., 2017    

Sea-level rise Toimil et al., 2017; 

Monioudi et al., 2017 

   

 Long embayed beaches 

Storms** Ranasinghe et al., 2012; 

Wainwright et al., 2015; 

Jongejan et al., 2016 

   

Waves Yoshida et al., 2013; 

Alexandrakis et al., 2015 

Zacharioudaki and 

Reeve, 2011 

  

Sea-level rise Snoussi et al., 2009;  

Ranasinghe et al., 2012; 

Yoshida et al., 2013; 

Alexandrakis et al., 2015; 

Wainwright et al., 2015; 

Jongejan et al., 2016; 

   

 Open beaches 

Waves Casas-Prat et al., 2016*; 

Vitousek et al., 2017; 

Allenbach et al., 2015 

Casas-Prat et al., 2016*; 

Vitousek et al., 2017 

  

Sea-level rise Rosati et al., 2013; 

Dean and Houston, 2016; 

Le Cozannet et al., 2016; 

Vitousek et al., 2017; Le 

Cozannet et al., 2019; 

Allenbach et al., 2015; 

Karunarathna et al., 2018; 

Thiéblemont et al., 2019 

   

O thers Le Cozannet et al., 2019 Dean and Houston, 

2016; Karunarathna et 

al., 2018; Le Cozannet et 

al., 2016, 2019 

Rosati et al., 2013; 

Dean and Houston, 

2016; Le Cozannet 

et al., 2016; 

Vitousek et al., 

2017; Karunarathna 

et al., 2018 

Rosati et al., 2013; 

Dean and Houston, 

2016; Le Cozannet et 

al., 2016; Vitousek et 

al., 2017; 

Karunarathna et al., 

2018 

 Inlet-interrupted coasts 

Waves Toimil et al., 2017    

Storm surges Toimil et al., 2017    

Tides Toimil et al., 2017    

Sea-level rise Hinkel et al., 2013; 

Ranasinghe et al., 2013; 

Toimil et al., 2017 

 Ranasinghe et al., 

2013; Toimil et al., 

2017; Bamunawala 

et al., 2019 

 

River discharge   Ranasinghe et al., 

2013; Bamunawala 

et al., 2019 

Ranasinghe et al., 

2013; Bamunawala et 

al., 2019 

O thers    Hinkel et al., 2013 

Table 3 Classification of the post AR4 reviewed papers emphasizing the relation between the coastal processes 

modeled and the climate-related drivers considered. Note that for organization purposes we assigned the studies that 
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cover more than one coastal typology (i.e., regional assessments) to the category (or categories) they are most 

relevant for. (*): provides projected wave-driven changes in erosion volumes rather than shoreline change 

specifically. (**): erosion model forcing derived from the combination of wave parameters, tidal anomaly and storm 

duration. 

Table 4 Classification of post AR4 reviewed papers emphasizing the relation between how uncertainty is considered, 

and the type of outcomes provided. Note that for organization purposes we assigned the studies that cover more than 
one coastal typology (i.e., regional assessments) to the category (or categories) they are most relevant for. (*): 

provides projected wave-driven changes in erosion volumes rather than shoreline change specifically. 

6. Discussion  

Developing future projections of shoreline changes that include the effects of climate change and provide 

robust uncertainty estimates  is a major challenge that requires a comprehensive framework. Currently, 

there is no fully satisfactory coastal erosion model that allows coupling of hydrodynamics and 

 Deterministic Multiple -

deterministic 

Ensemble  O bjective/ 

Subjective-

probability 

Probabilistic 

 Uninterrupted coasts 

Small pocket beaches 

Extreme retreats   Monioudi et al., 

2017 

 Toimil et al., 

2017 

Mid-term change     Toimil et al., 

2017 

Long-term 

change  

  Monioudi et al., 

2017 

 Toimil et al., 

2017 

 Long embayed beaches 

Extreme retreats     Ranasinghe et al., 

2012; Wainwright 

et al., 2015; 

Jongejan et al., 

2016 

Short- /mid-term 

variability 

  Zacharioudaki 

and Reeve, 2011 

  

Long-term 

change  

Alexandrakis et 

al., 2015 

Yoshida et al., 

2013 

Snoussi et al., 

2009; 

Zacharioudaki 

and Reeve, 2011 

 Ranasinghe et al., 

2012; Wainwright 

et al., 2015; 

Jongejan et al., 

2016 

 Open beaches 

Extreme retreats   Allenbach et al., 

2015; Casas-Prat 

et al., 2016*; 

Vitousek et al., 

2017 

  

Short- /mid-term 

variability 

  Casas-Prat et al., 

2016*; Vitousek 

et al., 2017 

  

Long-term 

change  

Rosati et al., 

2013; 

 Allenbach et al., 

2015; Dean and 

Houston, 2016; 

Casas-Prat et al., 

2016*; Vitousek 

et al., 2017; 

Karunarathna et 

al., 2018; 

Thiéblemont et 

al., 2019 

Le Cozannet et 

al., 2016, 2019 

 

 Inlet-interrupted coasts 

Extreme retreats     Toimil et al., 

2017 

Short- /mid-term 

variability 

    Toimil et al., 

2017 

Long-term 

change  

Ranasinghe et 

al., 2013; 

Bamunawala et 

al., 2019 

 Hinkel et al., 

2013 

 Toimil et al., 

2017 
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morphodynamics; reproduces short-, mid- and long-term shoreline changes accurately, and is not highly 

computationally time-consuming, enabling the consideration of uncertainty through the complete top-

down approach (according to Fig. 1). Furthermore, our incomplete understanding of the littoral sediment 

transport mechanisms (box 3 in Fig. 2), our inability to represent fully the hydrodynamics of the surf zone 

(box 1 in Fig. 2), our (limited but growing) computational resources , and the deep uncertainty in 

projected shoreline-change drivers (Fig. 1) are good reasons to think that such an “ideal” approach may 

well be some time in the making. In the interim, this  review demonstrates the significant progress made 

since the AR4 release to develop a range of methods and physics-based models to assess coastal erosion 

under climate change. It also highlights that more remains to be done, including the identification of some 

key research gaps. 

For any geomorphic environment (box 2 in Fig. 2) and GHG emissions scenario (box 1 in Fig. 2), coastal 

managers would benefit from knowledge on the time evolution of the mean or median shoreline position, 

the likelihood of extreme retreat events associated with different return periods  (box 4 in Fig. 2), and the 

quantification of the associated uncertainty, which accumulates through the top-down approach (box 5 in 

Fig. 2), to make better decisions. For that purpose, considering an ensemble of climate change scenarios 

(e.g., the RCPs based on GHG and aerosol concentrations), future time series of coastal drivers such as 

mean sea level, waves, storm surges, tides, and fluvial discharge if applicable, need to be downscaled to 

the beach system (Fig. 1). However, there is no study yet available that fully incorporates and 

appropriately combines future time series of these dynamics to obtain estimates of climate change-driven 

shoreline change. Only three research works have implemented dynamical projections of waves (i.e., 

Zacharioudaki and Reeve, 2011; Casas-Prat et al., 2016; Vitousek et al., 2017) considering one or more 

GCM-RCM configurations. Nevertheless, none of them correct the bias before using RCM (or GCM, if 

this were the case) output as boundary conditions for regional coastal forcing and erosion models (Fig. 1), 

which probably results in misleading probability distribution functions of shoreline recession, particularly 

in the tails, reducing the ability to reproduce extreme events. Further, bias correction techniques can 

improve statistics that depend strongly on the temporal sequence of the original field (Dosio and Paruolo, 

2011; Charles et al., 2012). This is especially important for coastal erosion given the demonstrated 

influence of the chronology in extreme retreat events  (e.g., Toimil et al., 2017). Another striking aspect is 

the lack of consideration of uncertainty in the internal variability of climate models  (Fig. 1), for instance, 

through different model initialisations and realisations. While it is true that inter-model variability can 

overshadow the internal variability of the models themselves and it may not affect the average 

climatology significantly, it may influence the day-to-day model solution, modulating or masking 

physically forced signals, and even leading to the amplification of climate variab ility, and consequently 

affecting shoreline change estimates. 

The simulation of the coastal erosion model is placed at the base of the uncertainty cascade (Fig. 1). 

When it comes down to this step, the model ideally has to be run with at least hundreds of combinations 

of the forcing variables that would already account for the uncertainty associated with the emissions 

scenarios and GCM-RCM configurations to sufficiently quantify uncertainty (Ranasinghe, 2016). 

However, within the scope of this review, there are only two different methodologies developed and 

applied so far that allow modelling of coastal erosion probabilistically (i.e., Ranasinghe et al., 2012; 
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Toimil et al., 2017), both relying on robust statistical models to stochastically generate synthetic time 

series of coastal erosion drivers . These studies have made a significant step forward to accommodate the 

new demand for risk-based informed coastal planning frameworks , although none of them sample 

uncertainty through all the steps within the top-down process (Fig. 1). Furthermore, only one study uses 

probabilistic SLR projections and combines them with other coastal drivers (i.e., Le Cozannet et al., 

2019). Finally, few studies attempt to quantify (or partially reduce) uncertainty associated with the 

erosion models themselves, arising from their sensitivity to multiple factors , their dependence on many 

empirical parameters, and their failure to realistically simulate coastal processes (the so-called epistemic 

uncertainty, see Fig. 1). There are four works addressing uncertainty in this regard: Allenbach et al. 

(2015) and Monioudi et al. (2017) consider model uncertainty by performing coastal erosion model 

ensembles; Le Cozannet et al. (2019) carry out a variance-based global sensitivity analysis to quantify the 

uncertainty associated with the erosion model; and Vitousek et al. (2017) reduce model uncertainty by 

applying an algorithm of data assimilation. While approaches with a certain level of probabilistic 

development enable uncertainty to be quantified, accuracy in coastal erosion modelling can only be 

increased by using better datasets (e.g., climate change drivers such as projected sea level or waves with 

higher spatial and temporal resolution), improving our knowledge on coastal processes and sediment 

transport mechanisms (e.g., progressing in detection and attribution), and developing better erosion 

models (e.g., calibrated and validated with field data and with enhanced model parameterizations ). 

7. Conclusions and suggestions for good practice 

The assessment of shoreline change is a complex site-specific issue. The most influential factors include 

the physical characteristics of sediment, local wave and sea level conditions, the bathymetry, as well as 

the orientation, configuration and exposure of the coast. Over the last decade there has been important 

progress towards improving our knowledge and information base (climate-change coastal drivers) and 

developing and implementing more comprehensive methodologies to assess coastal erosion due to 

climate change, the key components of which could be organised as presented in Fig. 2. However, further 

research is still needed to integrate drivers and processes appropriately, and to provide more robust 

projections of shoreline change according to decision makers’ needs , including uncertainty estimates . 

Considering our present understanding and resources, and the application at the scale of coastal 

management, the following five suggestions could be considered good practice in the field. 

First, consideration of the full range of climate-related forcing conditions  (box 1 in Fig. 2) driving 

shoreline change alongside any other sediment sink and source relevant to the sediment budget (box 3 in 

Fig. 2). For example, neglecting the effect of waves and storm surges and assuming sea-level rise as the 

only driver for coastal erosion may misrepresent the impact of climate change and result in insufficient 

action or even maladaptation (e.g., Summers et al., 2018). This could be crucial for coastal managers who 

require knowledge of the likelihood of occurrence of extreme retreat events associated with specific 

return periods in the future. Further, although sediment sinks and sources are mostly linked to sediment 

transport mechanisms (e.g., sand dredging and nourishment, sediment trapping, headland erosion, aeolian 

transport), they can also include other processes such the effects of a compressible substrate, which can 

be important for beaches that overlay mud or peat deposits  (e.g., Rosati et al., 2010). 
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Second, ensuring consistency between coastal erosion drivers and processes, attempting to reproduce 

them accurately (boxes 1 and 3 in Fig. 2). Detailed process-based models capable of resolving the 

hydrodynamic and morphologic forcing are often prohibitive in computation terms to simulate long-term 

shoreline change, although they do not necessarily provide improved skills over simplified models 

(French et al., 2015). However, the development of process-based models that can simulate 100 years of 

2DH morphological evolution within a few minutes could become a realistic alternative to simpler and 

more efficient physics-based models (e.g., equilibrium beach profile and shoreline evolution models, and 

one-line models), which are to date the most used to compute climate change-driven erosion. In either 

case, there are critical aspects that need to be considered when modelling coastal e rosion. For instance, 

using sequences of design storms instead of time-series of waves, storm surges and tides to derive storm 

erosion requires incorporating storm spacing as an additional forcing parameter within the statistical 

model (e.g., Callaghan et al., 2008). A similar rationale applies for beach recovery, a weak link in 

morphodynamic understanding that needs to be accounted for appropriately when modelling erosion 

beyond the scale of a single storm (Karunarathna et al., 2018), even if this requires empirical treatment 

(Ranasinghe et al., 2012). Other examples include estimating inlet-induced effects approximately when 

not implementing a process-based 2DH/3D model (Ranasinghe et al., 2013; Toimil et al., 2017; 

Bamunawala et al., 2018); and not to consider beaches as infinite but recognise that they have boundaries 

constrained by geomorphic or human settings. These boundaries can be considered part of the coastal 

system and modelled in an integrated fashion in sandy beaches, following an approach similar to 

Walkden and Hall (2005) for soft-rock shores.  

Third, the progression from single event (e.g., storms) to multidecadal/centennial timescales may require 

increased generalization of modelling approaches (Cowell et al., 2003). However, solid understanding of 

processes is fundamental to support any simplifying assumption (box 3 in Fig. 2). For example, assuming 

a stable bathymetry is only acceptable if two conditions are met. The first condition is that rapid-onset 

dynamics (i.e., waves and storm surges) are constant. A second requirement is that no human action is to 

be made. It is important that this model generalization does not necessarily imply low-resolution 

outcomes, which ultimately shall meet coastal managers’ requirements.  

Fourth, uncertainty ideally needs to be considered across all components of the model framework (box 5 

in Fig. 2). This involves uncertainty sampling not to be limited to executing the impact model several 

times with different climate-related drivers, for example, with many GCM-RCM configurations, multiple 

chronologies of waves and storm surges  (or storm events), and probabilistic sea-level rise. There are other 

uncertain factors that may influence shoreline change such as sediment transport-related processes, model 

parameters, and the initial coastal configuration, which could also be couched probabilistically. 

Considering the whole range of uncertainty through the complete process of modelling climate change-

driven coastal erosion would lead to a fully probabilistic approach  (Table 5). Although it is not realistic 

to expect to achieve fully probabilistic assessments  in the near future, other uncertainty perspectives such 

as extra-probabilistic theories derived from the study of sea-level rise may be worth exploring in the field 

of erosion modelling (also included in Table 5). This could be achieved by integrating complementary 

information such as expert judgement into the probabilistic confidence intervals (e.g., using the maximum 

entropy principle as in Le Cozannet et al., 2016). Further, more emphasis could be given to low-
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probability high-consequence impacts. The effects of combining likely and high-end scenarios have been 

considered for sea-level rise, but much less so for other important forcing variables such as waves and 

storminess. 

Potential uncertainty 

approaches 

Descriptions adopted in this paper  Experience 

Extra-probabilistic  
Credible probability functions conveying aleatoric uncertainties 

as well as uncertainties on the shape of the distribution itself. 

Inherited from 

sea-level rise 

Fully probabilistic 
The full space of input data and model parameters are 

characterised through probability distributions. 

Not realised yet 

Table 5 Potential approaches to address uncertainty in climate change-driven coastal erosion modelling (also 

displayed in box 5 in Fig. 2). 

Finally, stakeholders’ needs play a fundamental role in defining the required model outcomes (box 4 in 

Fig. 2) and indirectly the selection of the models to be used. If the objective is to obtain an estimate of the 

magnitude of an extreme recession at a time horizon, a shoreline evolution model would ideally need to 

be configured and applied time series (or appropriately reduced time-series) of relevant system forcing 

that extend at least to the target time horizon. Working with high-resolution time-series of shoreline 

evolution may also allow the analysis of shoreline changes at seasonal, interannual and interdecadal time 

scales. Instead, if one wants to know the long-term net recession, working with time-series of shoreline 

change may not be indispensable. In either case, coastal managers would benefit from the full range of 

probable magnitudes and their associated uncertainty to make sound decisions about risk reduction and 

adaptation in the context of current practice and governance arrangements. An alternative may consist of 

shifting from predicting top-down approaches that use scenarios  to provide future shoreline changes to 

resilience-oriented bottom-up approaches, in which the focus is on first identifying stakeholder’s needs 

and preferences (e.g., risk aversion), and then co-producing the most appropriate method accordingly. 

Participatory appraisals may offer great promise in this regard. 

Acknowledgements  

Alexandra Toimil acknowledges the financial support from the Universidad de Cantabria through the 

2018 Postdoctoral Fellowship Program. The work reported here was partially funded by ECLISEA 

Project, part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by UC-IHC, HZG, BRGM, 

NCSRD and CNRS, and co- funded by the European Union (Grant 690462). Alexandra Toimil and Iñigo 

J. Losada were also funded by the Spanish Government through the grant RISKCOADAPT (BIA2017-

89401-R). We thank Jeremy Rohmer for advising on sea-level rise aspects. 

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

29 

 

Figure 1 Generic sequence of comprehensive steps followed in top-down assessments of climate change-driven 

coastal erosion and associated sources of uncertainty that cascade through the whole process (based on Ranasinghe, 
2016). As an example, it illustrates how projected waves and storm surges can be derived. Note: the figure shows a 

general outline and the uncertainty cascade expanding from top to bottom does not necessarily follow a linear 

sequence. 
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Figure 2 Main components involved in the modelling of climate change-driven coastal erosion on sandy beaches. 
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Figure 3 Illustration of some of the coastal sites investigated in the reviewed papers, which include uninterrupted 

(small pocket, long embayed and open beaches) and inlet-interrupted coasts. Following the alphabetical order, 

numbers refer to [1] Alexandrakis et al. (2015), [2] Allenbach et al. (2015), [3] Bamunawala et al. (2019), [4] Casas-

Prat et al. (2016), [5] Dean and Houston (2016), [6] Hinkel et al. (2013), [7] Jongejan et al. (2016), [8] Karunarathna 
et al. (2018), [9] Le Cozannet et al. (2016), [10] Le Cozannet et al. (2019), [11] Monioudi et al. (2017), [12] 

Ranasinghe et al. (2012), [13] Ranasinghe et al. (2013), [14] Rosati et al. (2013), [15] Snoussi et al. (2009), [16] 

Thiéblemont et al. (2019), [17] Toimil et al. (2017), [18] Vitousek et al. (2017), [19] Wainwright et al. (2015), [20] 

Yoshida et al. (2015), [21] Zacharioudaki and Reeve (2011). Basemaps are from Google Earth. 
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