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Highlights: 

Population prevalence of gestational hypercalcemia was 1.7% in the third trimester. 

Hyperparathyroidism and vitamin D toxicity were excluded as main causes. 

No cases with profiles suggestive of mutations in the CYP24A1 gene were found.  

Hypercalcemic women had a relatively high serum 1,25(OH)2D concentration despite 

an appropriately suppressed PTH, suggestive of abnormal gestational adaptions.  
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ABSTRACT  

Gestational hypercalcemia is associated with an increased risk of maternal, fetal and 

neonatal morbidity and mortality. Hypercalcemia may develop during pregnancy in 

individuals who were previously asymptomatic. The increased sensitivity during pregnancy 

may be related to physiological, gestational alterations in vitamin D and calcium metabolism 

and may be influenced by gene variants. The prevalence is unknown.  

We investigated the prevalence of hypercalcemia in trimester 3 (T3) in a population 

representative prospective cohort study (n=1832) in South-West Sweden. Women with 

serum albumin (Alb) adjusted calcium (CaAlb) ≥ 2.65 mmol/L in T3 (n=30) were matched to 

normo-calcemic controls, and markers of calcium and vitamin D metabolism were 

investigated in trimester 1 (T1) and T3. Serum concentrations of Ca, phosphate (P), 

Magnesium (Mg), Alb and creatinine (Cr), parathyroid hormone (PTH; T3 only), vitamin D 

metabolites (total 25(OH)D, 1,25(OH)2D, 24,25(OH)2D, and free 25(OH)D) were analysed in 

T1 and T3. CaAlb (Payne; inter-laboratory difference: UEA=0.15+0.9*UGOT; UEA 2.54 = UGOT 

2.65) and estimated glomerular filtration rate (eGFR; modified 4-variable MDRD) and 

vitamin D metabolites ratios (VMR) were calculated. Normally and non-normally distributed 

data were presented as mean (SD) or median (95%CI). Group differences in relationships 

between vitamin D metabolites and with PTH were investigated with multiple regression 

analyses. 

Hypercalcemia in T3 was found in 1.7% of women. PTH concentrations suggestive of primary 

hyperparathyroidism was found in 1 woman and none had 25(OH)D or 24,25(OH)2D 

concentrations in the toxicity range or suggestive of mutations in the CYP24A1 gene. CaAlb 

was significantly higher in hypercalcemic cases compared to controls in T1 (2.44 (2.30-2.80) 

vs 2.37 (2.25-2.49) mmol/L) and T3 (2.63 (2.52-2.78) vs 2.46 (2.31-2.58) mmol/L). Serum P 

was higher among cases than controls in T3 (1.12 (0.16) vs 1.07 (0.18) mmol/L) but not in T1 

(1.12 (0.18) and 1.12 (0.16) mmol/L). PTH in T3 was lower in cases (1.6 (1.6-2.8) vs 2.3 (2.1-

2.8) pmol/L) but 1,25(OH)2D concentrations were similar. There were no significant group 

differences in serum 25(OH)D, free 25(OH)D, 24,25(OH)2D, Mg, Alb, Cr and eGFR. Regression 

analyses did not show significant differences between cases and controls in relationships 

between vitamin D metabolites and with PTH, except for the free 25(OH)D-PTH relationship 

and a higher free:total 25(OH)D ratio in cases at T1.  

In conclusion, most common causes of hypercalcemia were excluded in the majority of 

women. Hypercalcemic women had a relatively high serum 1,25(OH)2D concentration 

despite an appropriately suppressed PTH, suggestive of abnormal gestational adaptions.  
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Introduction  

Hypercalcemia is found in 0.2-4% of community-dwelling people and hospital patients (1). 

The most common causes are malignancy and primary hyperparathyroidism and less 

commonly, vitamin D toxicity and hypocalciuria (1, 2). During pregnancy, hypercalcemia may 

develop in individuals who were previously asymptomatic (1-3). This may be due to genetic 

predisposition. The increased susceptibility during pregnancy may be related to 

physiological, pregnancy induced alterations in vitamin D and calcium metabolism (4), 

including an increase in 1,25(OH)2D concentration and intestinal calcium absorption and 

renal excretion. Placental vitamin D metabolism may also play a role. In addition, to meet 

the recommended dietary vitamin D intake, many women are taking vitamin D supplements 

during pregnancy, which increases vitamin D exposure. Gestational hypercalcemia is 

associated with an increased risk of maternal, fetal and neonatal morbidity and mortality, 

including maternal hypertension and renal impairment, fetal growth restriction and 

neonatal hypocalcemia (2). The prevalence of gestational hypercalcemia is unknown and in 

most countries, screening for hypercalcemia is not part of antenatal care 

(https://www.nice.org.uk/guidance/cg62; (2).  

Recently, inactivating mutations or gene variants of the cytochrome P450 family 24 

subfamily A member 1 (CYP24A1) gene have been identified as a cause of hypercalcemia. 

Variants in CYP24A1, the gene coding for the 24-hydroxylase enzyme lead to low 

concentrations of the catabolic product 24, 25 di-hydroxy vitamin D (24,25(OH)2D), elevated 

1, 25 di-hydroxy vitamin D  (1,25(OH)2D) and Fibroblast Growth Factor 23 (FGF23) and 

consequently hypercalcemia (5-8). The phenotype tends to be heterogeneous suggesting 

that variations may occur in several parts of the gene with differential effects on CYP24A1 

activity. Gestational alterations in metabolism and vitamin D supply may trigger the 

consequences of otherwise asymptomatic gene variants in vitamin D metabolic pathways. 

The prevalence of mutations or important variants in the CYP24A1 gene are unknown (1).  

The aim of this study was to assess the prevalence of hypercalcemia in late pregnancy in a 

population representative prospective cohort study. In a nested case-control study, we 

investigated potential causes of hypercalcemia and differences in vitamin D metabolism in 

early and late pregnancy.  

 

Materials and methods  
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Study participants 

The GRAVID study is a prospective cohort study, conducted in the Västra Götaland region in 

the South West of Sweden, at a latitude 57-58 N. During autumn 2013 to spring 2014, 

pregnant women were recruited from gestational week 4 when registering with one of the 

participating antenatal care units. The only exclusion criterion was a pregnancy exceeding 

16 weeks at inclusion. The GRAVID cohort is population representative and multi-ethnic. The 

primary outcome was the association between vitamin D status (serum 25 hydroxy vitamin 

D) and the risk of gestational complications, with a focus on pre-eclampsia. Data were 

collected during two routine visits to antenatal care units and from medical records as 

previously described (9-11). In total 2125 women were included of which 1827 provided a 

blood sample in trimester 1 (T1), before gestational week 16 (with majority of samples 

collected between week 8-12) and in trimester 3 (T3) after gestational week 31, (with the 

majority of samples collected between week 32-35).   

Case-control study of gestational hypercalcemia  

The current study is retrospective, explorative secondary analyses and utilized banked 

serum samples collected in T3 to investigate the prevalence of hypercalcemia in the full 

cohort. Cases, i.e., individuals with an albumin (Alb) adjusted calcium (Ca) concentration 

(CaAlb) ≥ 2.65 mmol/L were matched to a normo-calcemic control. In this nested case-

control study, markers of vitamin D metabolism were analyzed in T1 and T3 in order to 

investigate  causes of hypercalcemia and identify endocrine profiles suggestive of variants in 

the CYP24A1 gene. Matching was conducted on the following criteria: firstly for parity (± 1), 

single or multifetal pregnancy, maternal continent of birth (North Europe, Continental 

Europe, America, Asia or Africa), gestational age at sampling in T3 (±14 days) and at delivery 

(±21 days), season of conception (November-April or May-October); secondary matching 

was performed on maternal age (±10 years) and BMI (±10 kg/m2) at T1.  

Ethics  

Ethical approval was obtained from the Regional Ethics Committee in Gothenburg (Dnr 897-

11, T439-13) and the UEA Faculty of Medicine and Health Sciences Research Ethics 

Committee  (2017/18 – 149). All procedures were conducted in line with the Declaration of 

Helsinki. Written informed consent was obtained from all participating women. Study 

information and consent forms were available in 9 languages and interpreters were 

consulted when required.  

Sample collection, processing and biochemical analyses 

Non-fasting venous blood samples were collected in serum gel tubes. Blood was allowed to 

clot for 30-120 min and serum was separated and stored at -70C until analyses. For 

screening of T3 samples, serum total Ca and Alb were analyzed by standard colorimetric 

methods at the Sahlgrenska University Hospital in collaboration with University of 
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Gothenburg (UGOT). Samples for the nested case-control study were sent to University of 

East Anglia (UEA) on dry ice and stored at -70C. Serum concentrations of  total Ca, Alb , 

phosphate (P), creatinine, and magnesium were all measured by photometric assays (COBAS 

c501, Roche Diagnostics, Germany) and intact parathyroid hormone (PTH) (T3 only) by 

electro-chemilumicescent immunoassay (ECLIA)(COBAS e601, as before). The inter assay 

CVs were <10%.  Serum 1,25(OH)2D3 was measured by ECLIA (DiaSorin LIAISON XL, Saluggia, 

Italy) and had an inter assay CV of <10%. Free 25(OH)D concentrations were measured by 

ELISA (DIASource Immunoassays, Louvain-la Neuve, Belgium). The lower limit of detection 

was 4.8 pmol/L and the intra-assay variation was <15%. Vitamin D binding protein 

concentrations were measured by an ImmunDiagnostik AG kit (Bensheim, Germany), but 

inter and intra- assay performance did not meet Good Laboratory Practice quality criteria 

and resulted in irreproducible and improbable data and were therefore not reported.  

Serum concentrations of 25(OH)D3, 25(OH)D2 and 24,25(OH)2D3 and 24,25(OH)2D2 were 

simultaneously quantified by liquid chromatography tandem mass spectrometry (LC-

MS/MS) (Micromass Quattro Ultima Pt, Waters) as described previously (5, 12, 13). Serum 

C3-epi 25(OH)D3 (3-epi 25(OH)D) was analysed separately using protein precipitation 

followed by quadrupole tandem mass spectrometry. In short, 100 µl of sample was 

combined with 100 µL of 0.1 mol/L ZnSO4 (2.88g ZnSO4 in 100ml in acetonitrile and 0.1% 

formic acid) and then spiked with 200 µL of 3-epi 25(OH)D3-[13C5] internal standard from 

IsoSciences (Pennsylvania, U.S.) in acetonitrile, mixed well, and allowed to precipitate at 

4C. The contents were centrifuged and the supernatant collected. Analyses were 

performed using a Flux Instruments HPLC module interfaced with a Micromass Quattro 

Ultima Pt (Waters, U.K.) quadrupole mass spectrometer. Separations were performed on a 

Restek pentafluorophenyl (2.7µm, 100 x 2.1mm) column in gradient mode (Mobile phase A- 

water and 0.1% formic acid, Mobile Phase B- methanol and 0.1% formic acid). The inter-

assay coefficients of variation were <15% for all vitamin D metabolites. The LOQ in serum 

and standard solutions was 0.1 nmol/L for 25(OH)D3, 25(OH)D2  and 24,25(OH)2D3 and 1.5 

nmol/L for C3-epi 25(OH)D3. Assay performance was traceable to NIST standards (NIST 

972A)(5, 12, 13).  

All analyses were performed in singleton, except free 25(OH)D, which was performed in 

duplicate. Assay performance was monitored using kit and in-house controls and under 

strict standardisation according to Good Laboratory Practice. External quality assurance was 

obtained through participation in DEQAS (www.deqas.org) and NEQAS for PTH and was 

consistently within acceptable limits.  

Derived variables  

Albumin adjusted calcium (CaAlb) was calculated according to Payne. There were inter-

laboratory differences in the measured concentrations of calcium and albumin and 

therefore in the resulting calculated concentration of CaAlb and the laboratory specific 

reference range.  A conversion algorithm was derived from regression analyses 
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(UEA=0.15+0.9*UGOT). The measured UGOT value of CaAlb = 2.65 mmol/L therefore equates 

to 2.54 mmol/L as measured at UEA. UEA data are reported, unless stated otherwise. 

Estimated glomerular filtration rate (eGFR) was calculated according to the modified 4-

variable modification of diet in renal disease (MDRD) equation without race (14). Serum 

25(OH)D concentrations are given as the sum of 25(OH)D3 and 25(OH)D2. The following 

Vitamin D metabolites ratios (VMR) were calculated: 25:1,25(OH)2D, 25:24,25(OH)2D and 

25:free 25(OH)D and presented in molar:molar concentrations (5, 15). 

Statistical analyses 

Data were tested for normality, converted to natural logs if required and retested for 

normality. Since natural logs conversion did not consistently result in normally distributed 

data, parametric and non-parametric tests were applied, as appropriate. Differences 

between cases and controls and changes between T1 and T3 were tested by paired T-tests, 

the Wilcoxon Signed Ranks Test for numeric data, or Chi square test for categorical data. 

Differences between cases and the full cohort were tested by unpaired T-tests for 

continuous data or the Chi square test for categorical data. Normally distributed data were 

presented as mean and SD and non-normally distributed as median and 95% CI, categorical 

data as percentage (%).  

To assess group differences in the relationships between vitamin D metabolites and 

between vitamin D metabolites and PTH, multiple regression analyses were conducted with 

the inclusion of group (hypercalcemic/control) and an interaction term (group*independent 

variable) as co-variates. This approach , together with the VMRs, is used in the differential 

diagnosis of individuals suspected to carry gene variants in the vitamin D hydroxylation enzymes.   

Analyses were conducted separately for T1 and T3 data. No correction for gestational week 

at the time of blood sampling was required as these did not differ between cases and 

controls. All analyses were conducted in SPSS Statistics version 25 (Armonk, New York: IBM 

Corp). 

 

Results 

Prevalence of gestational hypercalcemia and characteristics of hypercalcemic women 

A total of 1827 women were screened for hypercalcemia in T3, of which 31 (1.7%) had a 

(UGOT measured) CaAlb concentration ≥ 2.65 mmol/L (UEA equivalent ≥ 2.54 mmol/L). N=30 

could be matched to controls for further analyses. Matching failed in 1 woman because of 

high BMI in combination with a multi-fetal pregnancy.  

Compared to the full GraviD cohort (n=2046), hypercalcemic women had a higher BMI and 

were more likely to be obese (27% vs 10%) . In addition, they were more likely to develop 
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gestational hypertension and to give birth to a small for gestational age child.  There were 

no differences in birth weight (Table 1).   

Vitamin D intakes from food sources (fatty fish, milk, yoghurt/sourmilk and margarine; (11)) 

in the full cohort and hypercalcemic women were similar in both trimesters (Table 1).   

 

Markers of calcium and vitamin D metabolism in hypercalcemic cases and matched controls 

Serum CaAlb was significantly higher in cases compared to controls in both trimesters (Fig 1). 

This was determined by significantly higher serum calcium concentrations (not shown); 

serum albumin did not differ between cases and controls in either T1 or T3 and were within 

the reference range (Table 2). Already in T1, three women had a serum CaAlb in the 

hypercalcemic range. In two of these women, PTH concentrations in T3 were elevated with 

low normal 25(OH)D and 24,25(OH)2D concentrations (see below). The third woman had a 

high-normal concentration of 25(OH)D (>160 nmol/L), but this was not in the toxic range (> 

225 nmol/L). All three women had 1,25(OH)2D concentrations in the mid-range of values 

observed in this study in both T1 and T3. Serum phosphate was higher in cases in T3, but not 

in T1 (Table 2). There were no differences between cases and controls in serum magnesium, 

creatinine and eGFR.  

Serum PTH in T3 was lower in cases than in controls. PTH concentrations could not 

measured in T1. PTH concentrations suggestive of primary hyperparathyroidism (> 6.9 

pmol/L) was found in only one of the cases and borderline in another. Serum 1,25(OH)2D 

concentrations were similar but the concentration range was wider in cases than in controls 

(Fig 1). The majority of observed concentrations in both cases and controls were above the 

published references ranges in healthy adults (36-144 pmol/L (16)) but  were within those 

observed in pregnant women using the same assay (17, 18). Serum 25(OH)D concentrations 

did not differ between cases and controls and no 25(OH)D concentrations in the toxicity 

range were found (Fig 1).  There were also no differences between cases and controls in 

serum free 25(OH)D and 3-epi 25(OH)D and 24,25(OH)2D concentrations at T1 and T3. 

Similar to earlier studies in pregnant and non-pregnant women, multiple regression analyses 

showed that total 25(OH)D significantly and strongly predicted 24,25(OH)2D. Serum 

25(OH)D also significantly predicted free 25(OH)D and 3-epi 25(OH)D, but not 1,25(OH)2D 

and PTH (T3 only). Group (hypercalcemic cases/control) and the interaction term 

(group*independent variable) were non-significant in all of these models, indicating 

relationships did not differ between the hypercalcemic cases and control group (Table 3). 

Relationships were similar in both trimesters. Replacing total 25(OH)D with free 25(OH)D as 

the independent variable did not materially change these findings, except for PTH. Free 

25(OH)D significantly predicted PTH (Table 3). There were group differences in the 

relationship between free 25(OH)D and PTH, where no relationship was observed in the 
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hypercalcemic group, there was a significant negative relationship in the control group. 

Serum PTH in T3 did not predict 1,25(OH)2D or 24,25(OH)2D  (Table 4).  Serum 24,25(OH)2D 

did not predict 1,25(OH)2D in either trimester.  

No differences in VMRs between cases and controls were found except for a higher 

total:free 25(OH)D ratio in cases in T1. Concentrations of 24,25(OH)2D and VMRs of 

25(OH)D:24,25(OH)2D outside the reference range established in non-pregnant women and 

suggestive of gene variants in CYP24A1 were not found (Table 2).  

Changes of markers of calcium metabolism and vitamin D metabolism from trimester 1 to 3 

In controls, serum total Ca decreased during pregnancy, but this was not observed in cases 

(not shown). Serum Alb showed the expected gestational decrease in both groups. As a 

result, serum CaAlb significantly increased in both groups, but more so in cases compared to 

controls. Serum magnesium and creatinine decreased and eGFR increased in both groups as 

expected during the course of pregnancy (Table 2).  

In both groups, serum 1,25(OH)2D concentrations significantly increased, serum 25(OH)D 

and 24,25(OH)2D concentrations remained unaltered and free 25(OH)D decreased. These 

changes are according to expected gestational changes (Fig 1). The VMR of 25(OH)D: 

1,25(OH)2D decreased significantly only in cases and the 25(OH)D: free 25(OH)D ratio 

increased in controls but remained unchanged in cases (Fig 1, Table 2). 1,25(OH)2D: 

24,25(OH)2D increased from T1 to T3 in both cases and controls (Table 2).  

 

Discussion 

The prevalence of gestational hypercalcemia was 1.7% in the third trimester in this 

population representative cohort of pregnant women residing in South West Sweden. In our 

subsequent nested case-control study, we did not find primary hyperparathyroidism and 

vitamin D toxicity as the main causes of hypercalcemia. In hypercalcemic women, PTH was 

suppressed but concomitant 1,25(OH)2D concentrations were similar to controls. Serum 

concentrations of vitamin D metabolites did not suggest abnormalities in the activity of the 

catabolic enzyme CYP24A1 as a cause hypercalcemia in any of the women.   

The prevalence of hypercalcemia of 1.7%, which is higher than reported in the general 

population (1) and in other pregnant women (2). Rey suggested that this may partly caused 

by under-diagnosis of gestational hypercalcemia, as no routine antenatal or general 

screening is performed. In addition, clinical symptoms, particularly when hypercalcemia is 

mild, are not very specific and similar to common pregnancy ailments, such as nausea, 

constipation and fatigue (2).  

Consistent with earlier reports, we found a higher proportion of gestational hypertension 

and children born small for gestational age in the hypercalcemic group (3, 8, 19) compared 
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to the full cohort. Despite this and the increased risk of neonatal hypocalcemia associated 

with maternal hypercalcemia, monitoring of plasma calcium is not part of antenatal care in 

most countries. Data regarding the use of medication to reduce blood pressure were not 

available for this cohort. However, the most common types of anti-hypertensive medication 

in Sweden are beta blockers (Labetalol) and calcium antagonists and these are associated 

with a reduced serum calcium rather an increase and were therefore an unlikely cause of 

hypercalcemia (personal communication Maria Bullarbo )(20).  

PTH is known to be decreased during pregnancy (21), while the plasma concentration of PTH 

related peptide (PTHrP) increases, which is produced by the placenta and fetal tissues and 

the mammary gland. PTH and PTHrP have partly overlapping effects. However, PTH 

secretion and plasma concentrations remain responsive to plasma calcium (22), whereas 

PTHrP concentrations may not (21). In the current study, we observed lower serum 

concentrations of PTH in hypercalcemic women compared to controls. Despite this, 

1,25(OH)2D concentrations were similar. This is possibly driven by PTHrP. However, this 

needs to be confirmed once an assay suitable for the measurement of PTHrP in 

concentrations found during normal pregnancy becomes available, agian. An alternative 

explanation for the relatively high concentrations of 1,25(OH)2D in hypercalcaemic women 

is an altered placental vitamin D metabolism. Placental 1,25(OH)2D and 24,25(OH)2D 

production and catabolism are not thought to be regulated by PTH. These metabolites 

mostly have an auto- or paracrine effect within the placenta (23, 24) and are normally not 

released into the circulation. The placenta has however been suggested to be a major site of 

CYP24A1 expression and therefore catabolism of 1,25(OH)2D and 25(OH)D and is potentially 

a source of circulating 24,25(OH)2D. Altered placental vitamin D metabolism and plasma 

concentrations of vitamin D  metabolites have been reported in women with pre-eclampsia 

(25).  

Serum 1,25(OH)2D concentrations were above published reference range in non-pregnant 

adults (36-144 pmol/L (16)) in the majority of cases and controls. In the first trimester of 

pregnancy, 1,25(OH)2D increases to approximately 2-3 fold higher concentrations than in 

non-pregnant women until delivery (21). Values observed in the current study were within 

ranges reported in another study with pregnant women using the same assay (17). Also in 

non-pregnant, healthy women, values over the reference range were frequently found with 

this assay (15). There are considerable differences in 1,25(OH)2D assay performance and 

these need to be considered in the interpretation of data (26).   

Concentrations of 24,25(OH)2D and VMRs of 25:24,25(OH)2D outside the reference range 

established in non-pregnant women, suggestive of gene mutations in CYP24A1, were not 

found in the current study. It is however possible that placental production of 24,25(OH)2D 

may mask this. Therefore, concentration intervals as applied in non-pregnant individuals 

might need to be validated in pregnant women with and without known abnormalities in 

enzyme activity levels of CYP24A1. Earlier publications suggest that the relationship 
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between 25(OH)D and 24,25(OH)2D does not substantially change during the course of a 

healthy pregnancy (27), despite considerable changes in vitamin D metabolism. This is 

expected to be different in women with CYP24A1 mutations.  

The investigation of interrelationships of vitamin D metabolites and those with PTH did not 

show pronounced differences between cases and controls. Similar to earlier studies in 

pregnant and non-pregnant women, total 25(OH)D was highly related to 24,25(OH)2D, free 

25(OH)D and 3-epi 25(OH)D. There was no significant relationship with 1,25(OH)2D and PTH 

since the latter are under strict metabolic control, whereas the plasma 25(OH)D 

concentration is not strictly regulated and is influenced by vitamin D supply and catabolism 

(28). Total and free 25(OH)D had similar relationships with other vitamin D metabolites. 

However, the total:free 25(OH)D ratio was higher in cases compared to controls in trimester 

1 and there was an, unexpected, highly significant relationship between free 25(OH)D and 

PTH in the 3rd trimester in controls, which was absent in cases. The involvement of the free 

fraction of 25(OH)D in pregnancy complications needs further investigation.  

Limitations of this study were the relatively mild hypercalcemia observed (CaAlb 2.65-2.82 

mmol/L). PTH measurements were not available in T1. There was also a lack of available 

sample types to enable the measurement of PTHrP and FGF23. For PTHrP, sample collection 

and processing protocols are critical and there is currently no commercial assay available 

that quantifies PTHrP in the concentration range found in healthy people, including during 

pregnancy.  Current FGF23 assays are not suitable for serum samples. However, serum 

phosphate concentrations were within or close to the normal range for all cases and 

controls and there were no differences in 24,25(OH)2D. Based on biochemical profiles in 

other, mostly non pregnant individuals, this suggests that neither a pathological elevation in 

PTHrP or FGF23 may be likely explanations for the findings in the hypercalcemic women in 

this study. This needs to be confirmed in further studies.  We could not report values for 

DBP due to poor assay performance. No urine samples were collected to enable a fuller 

investigation of the potential involvement of the kidney, i.e. to investigate hypocalciuria 

(29). Also, we based screening on the measurement of total calcium and albumin 

concentrations in serum and derived CaAlb from these data. Measurement of ionized calcium 

is considered to be a more sensitive marker of disorders in calcium metabolism (29) but was 

not part of the sample collection protocol since samples were collected in antenatal care 

centers without facilities for immediate laboratory measurements (9). We could also not 

explore alternative explanations, including abnormalities (both high and low) in the rate of 

bone turnover leading to high release of calcium and phosphate from bone or reduced 

uptake of these minerals. The known increase in bone remodeling during pregnancy is 

highly variable between women and may determine the disposition for gestational 

abnormalities in calcium metabolism (4).  

In conclusion, the population prevalence of gestational hypercalcemia was 1.7% in the third 

trimester among women residing in the South-West of Sweden. Primary 
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hyperparathyroidism, vitamin D toxicity were excluded as main causes of gestational 

hypercalcemia. Serum 24,25(OH)2D concentrations suggestive of mutations in the CYP24A1 

gene were not found. Although hypercalcemic women had a suppressed PTH, their serum 

1,25(OH)2D concentrations were relatively high, suggestive of abnormal gestational 

adaptions. Causes of hypercalcemia and increased 1,25(OH)2D concentrations were unclear 

and primary causes other than those found in the general population should be 

investigated.  
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Figure Legend 

Figure 1: Serum concentrations albumin adjusted calcium concentration, parathyroid 

hormone and vitamin D metabolites in pregnant women with hypercalcemia and controls.   

HCa: hypercalcemic cases, CTRL: controls, T1 and T3: trimester 1 and 3, respectively, CaAlb: 

albumin (Alb) adjusted calcium (Ca) concentration, PTH: parathyroid hormone, 25(OH)D: 25 

hydroxy vitamin D, 24,25(OH)2D: 24, 25 di-hydroxy vitamin D, 1,25(OH)2D: 1, 25 di-hydroxy 

vitamin D. *:P<0.05; **:P<0.005; ***:P<0.0005. 
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Table 1: Characteristics of the GRAVID cohort and hypercalcemic cases and controls.  

 

  

 

Maternal characteristics Full Cohort 

(n=2046) 

Cases 

 (n=30) 

Controls 

(n=30) 

Age (years) 31.3 (4.9) 33.2 (6.0) 30.4 (4.2) 

Ethnicity-North EU (%) 74 81 81 

Nulliparous (%) 41 44 37 

BMI (kg/m
2
) 23.6 (4.7)  27.0 (5.3) G 24.7 (3.5) C 

Height (cm) 166.8 (6.3) 166.7 (7.1) 166.9 (5.2) 

Gestational Hypertension (%) 8  29 G 13 

Pre-eclampsia (%) 4 7 7 

Vitamin D intake (µg/d) 

 Trimester 1 

 Trimester 3 

 

2.4 (1.6) 

4.2 (2.2) 

 

2.2 (1.6) 

4.8 (3.0) 

 

2.4 (1.7) 

4.4 (2.7) 

Infant characteristics    

Birth weight (g) 3560 (513) 3590 (739) 3351 (571) 

SGA (%) 5  14 G 3 

Premature <37 wks (%) 4  7 3 

Data are given as mean (SD), unless given otherwise. Cases were matched to controls on 

maternal age (±10 years) and BMI (±10 kg/m2) at trimester 1, parity (± 1), single or multifetal 

pregnancy, maternal origin, gestational age at  trimester 3 (±14 days), gestational age at birth 

(±14 days). C indicates significantly differences between cases and controls and G between cases 

and the full cohort.  
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 Table 2: Maternal serum concentrations of phosphate, magnesium and eGFR and Vitamin D 

metabolite ratio’s in hypercalcemic cases and controls in trimester 1 and 3. 

 

 

  

Maternal biochemistry Cases (N=30) Controls (N=30) 

 T1 T3 T1 T3 

Phosphate (mmol/L) 1.12 (0.18) 1.18 (0.17) 1.12 (0.16) 1.07 (0.18)c 

Albumin (g/L) 36.5 (2.6) 27.3 (2.2)T1 36.3 (2.7) 27.0 (1.9)T1 

Magnesium (mmol/L) 0.79 (0.05) 0.72 (0.05)T1 0.78 (0.04) 0.74 (0.06)T1 

eGFR (ml/min) 121 (20) 133 (24)T1 122 (116-137) 131 (128-154)T1 

3-epi 25(OH)D (nmol/L) 2.50 (2.14-3.03) 3.10 (2.43-5.03) 2.65 (2.35-3.31) 2.30 (2.14-3.71) 

25(OH)D:1,25(OH)2D (M:M) 365 (349-564) 265(247-403)T1 384 (140) 312 (127) 

25(OH)D:24,25(OH)2D (M:M) 15.0 (14.4-16.8) 15.8 ( 15.5-18.1) 15.0 (13.3-16.6) 15.3 (14.2-17.5) 

1,25(OH)2D: 24,25(OH)2D (M:M) 0.04 (0.03-0.07) 0.06 (0.06-0.010) T1 0.04 (0.03-0.07) 0.05 (0.05-0.08) T1 

25(OH)D:free 25(OH)D (M:M*103) 5.98 (4.53-7.33) 7.08 (6.26-9.36) 5.11 (4.53-5.84)c 6.96 (6.10-7.81)T1 

T1 and T3: trimester 1 and 3, respectively. Data are given as mean (SD) or median and 95% CI. C:Different between 

cases and controls at the same time point; T1: Different between trimester 1 and  3 within group. 
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Table 3: Multiple regression analyses of interrelationships between vitamin D metabolites 

and parathyroid hormone.  

  

Dependent variablesA 25(OH)DA (nmol/L) Free 25(OH)DA (pmol/L) 

Trimester 1 R2 β-coefficient (SE) P value R2 β-coefficient (SE) P value 

Free 25(OH)D (pmol/L) 0.235 0.082 (0.026) 0.03 - - - 

3-epi25(OH)D (nmol/L) 0.360 0.034 (0.10) 0.01 0.137 0.059 (0.067) 0.381 

24,25(OH)2D (nmol/L) 0.775 0.087 (0.010) 0.000 0.235 0.309 (0.106) 0.005 

1,25(OH)2D (pmol/L) 0.045 0.401 (0.581) 0.493 0.046 -1.259 (3.474) 0.718 

Trimester 3 R2 β-coefficient (SE) P value R2 β-coefficient (SE) P value 

Free 25(OH)D (pmol/L) 0.401 0.059 (0.021) 0.006    

3-epi 25(OH)D (nmol/L) 0.500 0.036 (0.015) 0.024 0.385 0.275 (0.159) 0.090 

24,25(OH)2D (nmol/L) 0.883 0.081  (0.007) 0.000 0.446 0.419  (0.141) 0.004 

1,25(OH)2D (pmol/L) 0.066 -0.078 (0.529) 0.883 0.050 1.918 (4.937) 0.699 

PTH (pmol/L)B 0.241 -0.006 (0.003) 0.054 0.201 -0.092 (0.031)G 0.004 

Multiple regression analyses of interrelationships between vitamin D metabolites and parathyroid hormone (PTH). 
ADependent variables are given in the left hand column, independent variables were total 25 hydroxy (25(OH)D) or 

free 25(OH)D. Group (hypercalcemic/control) and an interaction term (group*independent variable) were included 

as co-variates to assess differences between groups in the relationships. Group and the group interaction term 

were not significant unless indicted by G; GSignificant between- group difference. Explained variance (R2) of the full 

model and the β- coefficient (SE) and P-value of the slope is given for independent variables listed. BLog 

transformed variable. For log transformed variables, the coefficient represents a 100% change in the predicted 

value for a unit change in the predictor value.  
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Table 4: Multiple regression analyses of interrelationships between vitamin D metabolites and 

parathyroid hormone and between parathyroid hormone and vitamin D metabolites.  

 

Dependent variablesA 24,25(OH)2D A (nmol/L) lnPTH A (pmol/L) 

Trimester 1 R2 β-coefficient (SE) P value R2 β-coefficient (SE) P value 

1,25(OH)2D (pmol/L) 0.036 0.767 (5.475) 0.889 0.046 -1.259 (3.474) 0.718 

Trimester 3 R2 β-coefficient (SE) P value R2 β-coefficient (SE) P value 

24,25(OH)2D (nmol/L)    0.171 2.015 (1.109) 0.075 

1,25(OH)2D (pmol/L) 0.051 0.412 (5.831) 0.944 0.108 -8.968 (30.819) 0.772 

Multiple regression analyses of interrelationships between vitamin D metabolites and PTH. ADependent variables 

are given in the left hand column, independent variables were total 24,25 dihydroxy (24,25(OH)2D  or the natural 

log of parathyroid hormone (lnPTH). Group (hypercalcemic/control) and an interaction term (group*independent 

variable) were included as co-variates to assess differences between groups in the relationships. Group and the 

group interaction term were not significant for any variable. Explained variance (R2) of the full model and the β- 

coefficient (SE) and P-value of the slope is given for independent variables listed.  
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