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Abstract 

This paper presents the modeling and optimization of quarter car suspension system using 

Macpherson strut. A mathematical model of quarter car is developed, simulated and 

optimized in Matlab/Simulink® environment. The results is validated using test rig. The 

suspension system parameters are optimized using a genetic algorithm for objective functions 

viz. vibration dose value (VDV), frequency weighted root mean square  acceleration 

(hereafter called as RMS acceleration), maximum transient vibration value (MTVV), root 

mean square suspension space and root mean square tyre deflection. ISO 2631-1 standard is 

adopted to assess ride and health criterion. Results shows that optimum parameters provide 

ride comfort and health criterions over classical design. The optimization results are 

experimentally validated using quarter car test setup.The genetic algorithm optimization 

results are further extended to the artificial neural network simulation and prediction model. 

Artificial neural network model is carried out in Matlab/Simulink® environment and Neuro 

Dimensions. Simulation, experimental and predicted results are in close correlation. The 

optimized system is reduced the values of VDV by 45 %. Also, RMS acceleration is reduced 

by 47%. Thus, the optimized system improved ride comfort by reducing RMS acceleration 

and improved health criterion by reducing the VDV. Finally ANN can be used for predict the 

optimum suspension parameters values with good agreement. 
 

Keywords: Macpherson strut; Genetic Algorithm; Multi-objective optimization; Artificial Neural 

Network; Quarter Car Suspension Test Rig. 

 

1. Introduction 

In an automobile, road-induced vibrations are undesirable as it causes discomfort, fatigue and 

health issues to the occupants. The main function of the suspension system is to isolate the 

vehicle body and the occupants from road irregularities, thus providing the ride comfort. 

Also, suspension system has to support the vehicle weight and to provide handling and to 

keep tyre and ground contact. Thus suspension system is having conflicting requirements 

with a trade-off between ride comfort and handling. Due to this, many researchers, to find 

optimal suspension parameters amongst the conflicting requirements [1], are investigating the 

suspension system. Verros and Natsivas [2] presented optimization of suspension parameters 

for a quarter car system traveling on a random road. Authors have showed a comparison of 

passive linear, semi-active sky-hook and dual rate dampers. Baumal et al. [3] presented 

optimization of half car suspension system with an aim to provide ride comfort by 

minimizing passenger seat’s accelerations. Genetic algorithm (GA) technique is used to 

search optimum parameters. Optimization of quarter car and half car model was carried by 

Ozcan et al. [4], considering root mean square (RMS) acceleration, body roll and tyre forces 

as objectives. Gobi and Mastinu [5] studied multi-objective optimization of 2 DoF quarter car 

traversing on the random road. Optimal parameters like spring and tyre stiffness and damping 

were derived to fulfill ride, suspension working space, and road holding. Molina-Cristobal et 

al. [6] carried multi-objective optimization of a passive quarter car. Multi-objective GA was 

implemented to optimize ride comfort and road holding. El-Gohary et al. [7] implemented 

GA technique to search optimum suspension parameters viz. spring stiffness and damping 

coefficient for front and rear suspensions of a 7 DoF passive suspension system. The GA 

technique is used to improve the performance of a passive suspension system at varying 

velocities. Further Proportional-Integral (PI) controller was implemented to study ride 

comfort of a 7 DoF suspension model. 



 Gohari, Roslan and el al. [8] had studied vibrations transmitted to the womb in case of 

pregnant mothers. An eleven DoF model of pregnant subject with womb was developed and 

studied for optimization. An ANN was implemented to optimize the bus set suspension so as 

to minimize the seat to womb vibrations. ANN is designed and optimized using seat mass, 

stiffness and damping with first two peaks of seat to womb transmissibility. It was observed 

that optimized seat suspension system minimizes 85% transmitted vibrations. 

In this thesis author [9] had optimized the vehicle suspension system using reinforcement 

learning technique. The learning automata introduced active control for full active and semi-

active system with an introduction of moderator which prevents excessive deviation. Author 

had introduced Continuous Action-set Reinforcement Learning Automaton (CARLA) which 

enables to control in non-stationary environment and gives complete coverage to the action space 

due to its learning ability. Thus CARLA outperforms the discrete automata. CARLA was also 

successfully implemented for roll-control. 

Artificial neural network (ANN) technique is implemented to predict the optimum 

parameters. ANN systems are the systems which are developed from the data and knowledge 

acquired from experience and can be used further for predicting. ANNs learns from 

experimental data to from network to predict. 

Author [10] had implemented active force control (AFC) technique to actively control the 

seat suspension of heavy duty vehicles. AFC is integrated with ANN to estimate the mass of 

driver and seat. An ANN with multi-layer feed forward is trained using Levenberg-Marquardt 

algorithm. A 2 DoF lumped mass driver model is used along with a quarter car model. AFC 

technique is simulated and compared with passive suspension system and classical PID 

controller. Various road profiles are used to check the performance. It was observed that AFC 

performs better than PID and passive system in minimizing vibrations to driver’s seat. M. 

Gohari and Tahmasebi [11] had described optimization of seat suspension parameters using a 

Katakazi model of spinal column to reduce transmitted vibrations at spine. An ANN is 

formulated using seat mass, stiffness, damping and first two peaks of seat to head 

transmissibility. An ANN was trained and simulated to predict the mass and seat suspension 

parameters namely stiffness and damping. The results so obtained were in good agreement. 

Author [12] determined the seat suspension parameters like mass, stiffness and damping 

using ANN model along with a driver lumped mass model. Author incorporated a 4 DoF 

Wan-Schimmel biodynamic model in the study. The seat parameters were optimized by 

ANN, which found in good agreement. 

This article [13] studied a half car model with two-point wheelbase SMC (sliding mode 

controller). A preview strategy was implemented using semi-active stepper motor drive gas-

filled suspension system. Utilizing structural relationship between front and rear wheels, the 

road information was obtained. Vehicle body acceleration; pitch acceleration; front and rear 

suspension deflections, front and rear tire deformation, were observed for performance. It 

was observed that two point semi-active SMC outperformed the single point semi-active 

SMC, H-inf active and passive suspension system. Zhao, Ge and et al. [14] had developed an 

adaptive NN based control for 2 DoF nonlinear quarter car suspension system. A state 

feedback NN control was developed considering parameter uncertainties, road disturbances 

and actuator saturation. A NN observer was designed for state estimation based on input and 

output data. The state observer based feedback controller was developed by PSO algorithm. 

The objective function includes RMS body displacement, tyre deflection, suspension 

deflection and sprung mass acceleration. The performance of the controller was numerically 

validated and the results are presented in time domain. Qin, Zhao and et al. [15] had analysed 

five semi-active suspension control strategies viz. sky hook, hybrid, clipped optimal, model 

reference SMC and integrated error neuro control. A commercially available inverse 

continuous damper control was studied on MTS load frame. A quarter car model was 



implemented for the analysis. Ride comfort characterised by RMS sprung mass acceleration, 

road holding and rattle space were the performance criterions studied for the control 

strategies. Simulation result shows that control weight can change the system from ride 

oriented to road handling oriented. Also, delay time plays an important role where increase in 

it affects the comfort more than handling. 

To solve design optimization problems in mechanical engineering, Dhingra and Rao [16] 

implemented neural network (NN) by implementing nonlinear neurons. To enhance ride 

comfort, Kalaivani et al. [17] implemented NN trained PID controller to control active 

suspension system. To improve ride using NN trained PID controller, RMS sprung mass 

acceleration was used as a performance index. It was observed that proposed NN controller 

reduces body displacement, acceleration and rattle space thus improves ride performance. A 

mathematical model of mid-sized passenger car was developed by El-Gohary et al [18] by 

implementing inverse dynamics NN having 1.1% error between simulated and experimental 

responses. Optimization of low-speed centrifugal impeller was studied by Marconicini et al. 

[19] by implementing NN. Authors had selected two types of impellers having 3 blades and 5 

blades configuration. The geometry of the blades was parameterized and optimized using NN 

tool and performance prediction was studied using CFD and correlated by implementing 1D 

prediction tool. Suction head and efficiency criterion were used to check and compare the 

performance of both blade configurations. It was observed that NN results were in good 

agreement with experimental results. Using manufacturer’s data M.F. Khalil et al. [21] 

modelled a artificial neural network (ANN) to predict the trimmed impeller size of a 

centrifugal pump. Authors had used 90 points to implement and predict ANN.  It was 

observed that the ANN predicted model had less than 0.005% RMS error as compared to the 

manufacturer’s data. Sahu [20] implemented NN to model and optimize process parameters 

of material removal rate and tool wear rate by using optimal process parameters. The NN was 

further optimized using multi-objective optimization using GA. 

From above literature it is observed that optimization of passive suspension system was 

carried out by for ride comfort whereas multi-objective optimization was carried out using 

objectives such as RMS acceleration, road holding and suspension space. Gundogdu [22] 

carried out multi-objective optimization where multi-objective problem is converted into uni-

objective problem using normalization of each objective function and weighting parameters. 

Whereas Zhao, Ge and et al. [14] converted a multi-objective fitness function into a uni-

objective one using weights. ANNs have applications in the vast fields, from mechanical 

engineerings in vibration and control, to chemical, pharma drug formulation to centrifugal 

pumps and in manufacturing processes like EDM. ANNs are successfully implemented to 

active and/or semi-active control of suspension system. This paper tries to implement ANN to 

predict the suspension parameters and experimental validation using quarter car test rig.  A 

Macpherson strut quarter-car model is developed and is optimized in Matlab environment 

using Non-dominated Sort GA (NSGA-II) algorithm. The optimization problem consists of 

health criterion (including VDV, RMS acceleration, MTVV) and stability criterion (including 

RMS suspension space and RMS tyre deflection) as an objective functions. For health 

criterion, ISO 2631-1 is implemented successfully. The optimization data is used to formulate 

ANN. Matlab and Neuro Dimensions (ND) are used to formulate ANN. ANNs are 

implemented to predict optimum suspension system parameters for ride comfort and health 

criterion along with stability criterion. The optimization simulation results, experimental 

results, and ANN prediction results are represented in the tabular and graphical form. 
 

 

 

 



2. Methodology 

 

2.1 Macpherson Strut Quarter Car Model  

To study and optimize the dynamic bahviour a of the Macpherson strut suspension system a  

mathematical model is developed Matlab® enviroment for ride application. Macpherson strut 

was developed by Earl Macpherson in 1949 for Ford company. Due to simple design, 

compactness and light weight it is widely used in vehicles. 

Macpherson strut model developed by Hong et al. [23] is implemented in this paper for ride 

preformance study, multi-objective optimization and ANN prediction. Schematic of 

Macpherson strutquarter car model is depicted in Fig. 1. 

 

Equation of Motion for Macpherson Strut Model [23] is – 
 

(ms +mus)ẍs +muslc cos(θ − θ0) θ̈ −muslc sin(θ − θ0) θ̇
2
+ kt(xs + lc(sin(θ − θ0) − sin(−θ0) −

xr)) = 0 

muslc
2θ̈ +muslc cos(θ − θ0) ẍs +

cpb1
2 sin(α′−θ0)θ̇

4(a1−b1 cos(α
′−θ))

+ ktlc cos(θ − θ0) (xs + lc sin(θ − θ0) −

sin(−θ0)) − xr −
1

2
ks sin(α

′ − θ) [b1 +
d1

(c1−d1cos⁡(α
′−θ)

1
2)
] = 0 

(1) 

 

 
Fig. 1:Quarter car model with Macpherson strut suspension [23] 

        

Where, 

α′ = ⁡α + θ0,   a1 =⁡ lA
2 + lB

2 , b1 = 2lAlB, c1 = a1
2 − a1b1 cos(α − θ0) , d1 = a1b1 − b1

2 cos(α − θ0) 
Here, 

ms = 72.21,  mus = 23.56,  kt = 101134,  lA = 0.70, 

 lB = 0.35,  lC = 0.40,  θo= -5   α = 60. 

 

2.2 Quarter Car Test Setup 

A test rig representing quarter car with Macpherson strut is developed and available at 

Department of Mechanical Engineering, SCSMCoE, Ahmednagar. The test rig is having 

sprung mass (ms) represented by a plate and unsprung mass (mus) consisting of strut, tie rod, 

tyre with rim and lower control arm etc. Two vertical guide shafts are attached to the fixed 

support frame and four linear bearings are mounted on the sprung mass plate to achieve the 

vertical motion of the frame. The quarter car test setup is shown in Fig.1. SVAN 958A, a 



Class 1 four channel sound and vibration analyzer, is used to record the acceleration of 

sprung mass and unsprung mass. Mounting of the accelerometers is shown in Fig. 3 and Fig. 

4. 

 
Fig 2: Quarter Car Test Rig 

 



 
Fig 3: Position of Accelerometers – Sprung Mass   Fig 4: Position of Accelerometer – Unsprung Mass 

 

2.3 Multi-Objective Optimization 

Gohari and Tahmasebi [24] had presented optimization of seat suspension of off-road vehicle 

using three algorithm namely genetic algorithm, particle swam optimization and harmony 

search algorithm. An ANN bionic model based on experimental data is used in this study. 

The aim was to minimize the vibrations transmitted to the driver’s spine thus to reduce the 

lower back pain. The results obtained through three algorithms were checked by simulating 

Kitazaki model. 

The optimization problem is formulated using objective such as - VDV, RMS sprung mass 

acceleration, MTVV, suspension space deflection and dynamic tyre force. Thus the 

optimization problem becomes a multi-objective optimization with conflicting objectives. 

GA, invented by J. H. Holland [25], meta-heuristic algorithm uses the principle of genetics 

and natural selection to search optimum solution. GA is based on stochastic operators such as 

reproduction, cross-over and mutation. In this study, for multi-objective optimization a non-

dominated sort genetic algorithm-II (NSGA-II) is implemented [26, 27, 28].  

NSGA-II compares each individual solution with the remaining solutions in the population to 

sort the dominance. It then identifies all non-dominated solutions and non-dominated fronts 

and are ranked. Fitness value 1 is assigned to rank 1 individuals, for rank 2 fitness 2 is 

assigned and so on. NSGA-II has introduced a new operator called as crowding distance 

(CD) which represents diversity on individuals in the non-dominated population. Thus more 

CD value indicates more diversity. CD is assigned to each individual, front-wise. The 

individuals on the boundary have infinite CD, hence they are always selected. Tournament 

selection method is used to select parents by comparing CD. Crossover and mutation 

operators are used to create new off-springs. New off-springs and the parents i.e. current 

population are combined to generate new population. Selection is carried out for next 

generation individuals. NSGA-II uses binary tournament method to handle constraints and to 



decide feasible solutions. Fig. 5 shows a flowchart for GA to implement multi-objective 

optimization. 

 
Fig. 5: Flow Chart – GA [29] 

2.3.1 Objective Functions 
 

The solution of optimization problem involves proper choice of objective functions. In this 

study, the suspension system is aimed to optimize ride comfort and health by considering 

responses such as RMS acceleration, VDV and MTVV [24, 30].  Along with these objective 

functions, suspension space deflection and dynamic tyre force are included as objective 

functions. Thus it forms a multi-objective optimization problem [29]. 

 



RMS Acceleration: The frequency weighted RMS acceleration is obtained as defined by  ISO 

2631-1 [31]. It is given by 

⁡Aws = {
1

T
∫ [aw(t)]

2dt
T

0
}

1

2
         (2) 

Whole-body vibrations (WBV) which are characterized by vertical vibrations transmitted 

along the vertebral axis through the buttocks and back of the occupant via the base [30].  The 

WBV mostly affects the human body. With increase in exposure time to vibrations, the health 

risk also increases. VDV is one of the measures to assess WBV. VDV is the dose of 

vibrations thus assesses the cumulative effect. VDV is the fourth power of the vibration dose. 

 

Vibration Dose Value (VDV): VDV is the measure of vibration dose and is characterized by 

the fourth power of acceleration [31]. VDV is defined as -  

VDVs = {∫ [aw(t)]
4dt

T

0
}

1

4
         (3) 

 

Maximum Transient Vibration Value (MTVV): It is the highest maximum vibration level 

during a measurement period [22]. 

𝑀𝑇𝑉𝑉 = max⁡(𝑎𝑤)          (4) 

 

Suspension Travel: Suspension travel is relative displacement between the sprung mass and 

unsprung mass. It is expressed as -  

Suspension⁡Travel = xs − xus        (5) 

In this paper RMS suspension travel is introduced as one of the objective functions [3, 22]. 

RMS⁡Suspension⁡Travel = {
1

T
∫ [(xs(t) − xus(t))]

2dt
T

0
}

1

2
     (6) 

 

Dynamic Tyre deflection: The tyre deflection is the measure of dynamic tyre force. The tyre 

deflection is expressed as -  

Tyre⁡Deflection = ⁡ xus − xr         (7) 

 

RMS of tyre deflection is next objective function. 

RMS⁡Tyre⁡Deflection = {
1

T
∫ [(xus(t) − xr(t))]

2dt
T

0
}

1

2
     (8) 

 

According to Baumal and et al. [3], at least, 125 mm of suspension travel is required and 

maximum seat acceleration should not increase 4.5 m/s2 to avoid hitting the suspension stops. 

For minimum dynamic tyre forces, the maximum tyre deflection should not exceed 0.058m. 

These parameters are included as constraints in the optimization problem.  

 

The formulation of optimization problem is as follows – 

fobj1 = Minimize (VDV) 

fobj2 = Minimize (Aw) 

fobj3 = Minimize (MTVV) 

fobj4 = Minimize (RMS Suspension Travel) 

fobj5 = Minimize (RMS Tyre Deflection) 

 

Subject to constraints – 

amax_seat ≤ 4.5m/s2 , Max. (xs − xus) ≤ 0.125m,  Max. (xus − xr) ≤ 0.058⁡m,  

 

 



Search Space –  

 

During optimization, the design parameters are suspension spring stiffness and suspension 

damping. The search space is give as – 

 

𝑘𝑠 ∈ ±⁡50%⁡𝑘𝑠, 𝑐𝑠 ∈ ±⁡50%⁡𝑐𝑠, [22, 29]  Hence, 𝑘𝑠 ∈ [7675, 23027] , 𝑐𝑠 ∈ [230, 692] 
 

2.3.2 Population – GA 

 

The population for GA algorithm is calculated based on the range of design variables. The range of 

ks is (230227-7675=) 15352. This indicates that ks need to be divided into 15352 equal range 

of size. Hence 213 = 8192 < 13000 <214 = 16384 i.e. 14 bits are required to store value of 

design variable ks in the chromosome. Similarly, for other design variable, cs, the bit required 

is tabulated in Table 1. 
 

Table 1: Design Variables Range 

Design Variable Range Size 

ks (N/m) 23027-7675 = 15352 213 = 8192< 13000 <214 = 16384 14 bits 

cs (N.s/m) 692-230 = 462 28 = 256 < 140<29 = 512 09 bits 

 

Hence the total length of chromosome or gene is (14+09 =) 23 bits,  where first 14 bits are 

needed for ks,and next 09 bits are for cs. Population size is then selected such that –  

 

Ns< population size < 2Ns, where Ns = string length (32) 

 

Thus, selecting population size of 100 (29, 33, 34) and algorithm is stopped after 100 

generations. 
 

3 Artificial Neural Networks (ANN): 

 

ANN is a reliable and robust predicting tool which is based on the data, variables and the 

training domain. ANN is a feed-forward network in which unidirectional information 

propagation takes place. This ensures steady state network. Fig. 6 represents general structure 

of ANN. ANN creates a network, trains it and simulate and validate a network based on 

input-output data sets. Generally in ANN data is divided into sets where one set is used to 

create the network one set is to train and one set is implement to validate the network. Once 

ANN is trained and validated then it is simulated for prediction purpose. As ANNs has 

prediction capabilities, it enhances the design process [11, 12, 16-21]. 



 
Fig. 6: ANN Structure 

 

 

 

3.1 Artificial Neural Network Fitting Tool (nftool). 

Nftool is used for static fitting problems with standard two layer feed forward neural network 

trained with Levenberg Marquardt (LM) algorithm. The training data set is the data obtained 

from last four generations out of 100 generations, i.e. 400 samples, of the optimization 

algorithm. The data supplied to the ANN is randomly subdivided as 70% for training, 15% 

for testing and 15% for validation. The training is automatic and the data is trained with 

scaled conjugate gradient. The performance of the network is evaluated by MSE and 

regression analysis. The training data is used to adjust network weights as per the error. To 

stop network training and to generalize the network validation data set is used. The network 

training is stopped when generalization stops improving. The testing data set provides a tool 

to analyze the performance of the network, during and after training. Thus test data has no 

effect on training. The training stops automatically when generalization stops improving as 

indicated by an increase in the mean square error of the validation data samples. Training 

multiple times generates different results due to different initialization of connection weights 

and different initial condition. The hidden layer neurons are increased when network is not 

performing well after training. The mean squared error is the average squared difference 

between normalized outputs and targets; zero means no error and over 0.6667 means higher 

error. 

The ANN has five inputs – VDV, RMS acceleration, MTVV, RMS suspension space and 

RMS tyre deflection whereas two outputs – spring stiffness and damping. ANN modeling by 

Matlab/Simulink environment consists of parameters shown in Table 2. 
 

 

 

 

 

 

 

 

 



Table 2: ANN Parameters – Matlab implementation 
Parameter Description 

Training Leverberg-Marquardt (trainlm) 

Performance Mean Square Error (MSE) 

Transfer Function Tansig 

Network Feed forward back propagation 

Learning Function Learngdm 

Hidden Layer 01 

No of neurons 25 

Maximum Epoch 1000 

 

Fig. 7 shows ANN topology utilized for modeling and simulation of the network using the 

parameters shown in Table 2. Fig. 8 shows MSE variation concerning epoch for training, 

validation,and testing. Performance after training is having MSE 1.30x10-6 at 44 epoch and 

best validation performance is 0.0030748 at 38 epochs. 

The validation error is minimum at 38th epoch, hence training was stopped at that point and 

weights and biases were used for further modeling. Correlation coefficients between targets 

(simulation values) and output (i.e. ANN output values) are shown Fig. 9. For training 

validation and testing.R-value is about 0.99999 for training, 0.99997 for validation and 

0.99998 for testing. 

 
Fig. 7: ANN Topology – Matlab implementation. 

 



 
Fig. 8: MSE Variation with respect to Epoch - Matlab 



 
Fig. 9: Correlation Coefficients – ANN by nftool. 

 

3.2. Neuro Dimension (ND)  

Using same input and output datasets, ANN is also formed using Neuro Dimension (ND) 

software package, to check the accuracy of nftool, using parameters shown in Table 3. Nero 

Dimension ANN has average MSE is 0.004306 after 1000 epoch. Fig. 10 shows the NN, 

output vs. desired plot and learning curve. 
 

Table 3: ANN Parameters – ND implementation 
Parameter Description 

Expert Wizard Generalized 

Data 75% Training, 15% Testing and 10% Validation 

Hidden Layer 01 

Transfer Function TanhAxon 

Training Laverberg-Marquardt 

Maximum Epoch 1000 

Termination Mean Square Error (MSE) 

 



 
Fig. 10: ANN Topology – ND implementation. 

 

Table 4 represents the suspension parameters obtained after optimization and prediction.  
 

Table 4: Suspension Parameter – Un-optimized, Optimized, Predicted. 
Parameter Un-optimized Optimized - GA Predicted 

Nftool- Matlab ANN – ND 

Ks (N/m) 15351.08 11509.5131 11500.6428 11504.1174 

Cs (N.s/m) 461.30 318.3712 320.1467 325.9211 

 

4 -Results and Discussion 

Initially, the un-optimized strut is installed on the test rig and is excited by periodic motion at 

4 Hz frequency and maximum amplitude 0.01 m as shown in Fig. 11. The data is acquired 

using FFT analyzer and processed further. Table 5 represents simulated and experimental 

results. VDV, RMS acceleration, MTTV, RMS suspension space and RMS tyre deflection 

obtained in experimental result are in close agreement with that of the simulated results. 

Fig.12 shows frequency response plot for simulated and experimental results for un-

optimized strut. 
 

  Table 5: Test Rig Results – Simulate and Experimental 
Parameter Simulated Experimental 

VDV 2.5543 2.8648 

Aw 1.1707 1.0757 

MTVV 2.1649 3.9336 

RMS Suspension Space 0.0071 0.0062 

RMS Tyre Deflection 0.0068 0.0081 

Max Acceleration 4.9087 4.3136 

Max Suspension Space 0.0139 0.0137 

Max Tyre Deflection 0.0152 0.0163 



 
Fig. 11: Test Rig Results – Time Domain - Simulation and Experimental. 

 

 
Fig. 12: Frequency response plot for simulated and experimental results – Un-optimized strut. 

 



The mathematical model is then simulated in Matlab/Simulink® environment using NSGA-II 

algorithm to obtain optimum suspension parameters. Trade-off front of 100 different 

solutions satisfying the constraints is obtained after optimization and is shown in Fig. 13. For 

ride comfort and health, the minimum value of RMS acceleration and VDV are the selection 

criterion for optimum suspension parameter values. Thus from trade-off front, values of 

spring stiffness ks and damping cs corresponding to minimum values of RMS acceleration 

and VDV are selected and simulated further. Refer Table 4 for corresponding optimized 

parameters.  
 

 
Fig. 13: Trade-off front – NSGA-II Optimization. 

 

The test rig with optimized parameters is then simulated and time domain results are shown 

in Fig. 14. The optimized suspension system is having lower values of sprung mass 

accelerations as compared to the un-optimized one. Thus the optimized system is having 

minimum values of VDV and RMS sprung mass acceleration. VDV is reduced by 45 % in 

case of the optimized system. Also, RMS acceleration is reduced by 47%, and MTVV is 

reduced by 42 %. Thus the optimized system improved ride comfort by reducing RMS 

acceleration and also improved health criterion by reducing the VDV. The optimized 

suspension system also follows constraints. Refer Table 6. Fig.15 shows frequency response 

plot for simulated and experimental results for optimized strut. 



 
Fig. 14: Test Rig Experimental Results – Time Domain –Optimized and Un-optimized parameters. 

 

 
Fig. 15: Frequency response plot for simulated and experimental results – Optimized Strut. 



Table 6: Test Rig Results – Un-optimized and Optimized. 
Parameter Un-Optimized Optimized 

VDV 2.8648 1.5673 

Aw 1.0757 0.5695 

MTTV 3.9336 2.2782 

RMS Suspension Space 0.0062 0.0057 

RMS Tyre Deflection 0.0081 0.0052 

Max Acceleration 4.3163 2.6997 

Max Suspension Space 0.0137 0.0124 

Max Tyre Deflection 0.0163 0.0146 

 

 
Fig. 16: Time Domain Results – Simulation, Experimental and ANN by Matlab and ND. 



 

Here, Fig. 16 shows time response of simulated model, experimental results and ANN model 

by nftool in Matlab and ND. From Fig.16 and Table 7, it is observed that VDV, Aw, and 

MTVV for optimized suspension system are less as compared to un-optimized one thus 

improving ride comfort and health criterions. ANN approach validates same.Table 8 shows % 

correlation of optimized results with the ANN approach. From Table 8 shows that the ANN 

results by both approaches, i.e.,nftool in Matlab and ND are in close agreement having 

98.77% correlation with simulated results. Whereas in case of experimental and predicted 

results by ANN, it is observed that VDV has 85% correlation, AW has 95% correlation,and 

MTVV has 90% correlation. Thus ANN results are also in good correlation with the 

experimental results. Hence using ANN one can predict the optimized suspension parameters 

with accuracy. Refer Fig. 17 for comparative bar chart. 
 

Table 7: Time Domain Results – Un-optimized, Optimized and ANN Prediction. 

Parameter 
Un-optimized Optimized Predicted 

Simulation Experimental Simulation Experimental ANN-Matlab ANN-ND 

VDV 2.5543 2.8648 1.332288 1.5673 1.3331 1.334183 

Aw 1.1707 1.0757 0.54721 0.5695 0.542125 0.540511 

MTVV 2.1649 3.9336 2.047462 2.2782 2.056311 2.060154 

RMS Suspension Space 0.0071 0.0062 0.0075 0.0057 0.007338 0.007281 

RMS Tyre Deflection 0.0068 0.008 0.0177 0.0052 0.017366 0.017228 

Max Acceleration 4.9087 4.3136 2.8603 2.6997 2.84694 2.842026 

Max Suspension Space 0.0139 0.0137 0.020881 0.0124 0.020508 0.020362 

Max Tyre Deflection 0.0152 0.0163 0.046449 0.0146 0.045585 0.045247 

 

Table 8: Correlation of ANN results with Simulated and Experimental Results. 

Parameter 

% Correlation 

Simulated Experimental 

nftool-Matlab ANN-ND nftoolMatlab ANN-ND 

VDV 99.9390 99.8577 85.0571 85.1262 

Aw 99.0707 98.7758 95.1931 94.9098 

MTVV 99.5678 99.3801 90.2603 90.4290 

 



 
Fig. 17: Comparative Analysis – Un-optimized and Optimized and Predicted Results. 

 

5. Conclusions 

 Quarter car with Macpherson strut suspension system mathematical model is 

developed and validated experimental using test rig. 

 Optimum design problem consists of comfort and health criterion according to ISO 

2631-1 is adopted to assess the objective functions such as RMS acceleration, 

VDV, and MTVV to optimize the suspension parameters. 

 The results show that the optimum suspension parameters using NSGA-II 

algorithm is implemented successfully for multi-objective optimization. Minimum 

values of VDV, RMS acceleration, MTVV along with stability criterions thus 

improving ride comfort and health criterions over classical or un-optimized design 

can be obtained.VDV is reduced by 45%, RMS acceleration is reduced by 47%, 

and MTVV is reduced by 42 %. By using the optimum suspension parameters  

  A close correlation is observed between experimental and simulated results. 

 Further, ANN is implemented to predict the optimum suspension parameters using 

nftool in Matlab and ND. ANN results shows 98-99% correlation with the 

simulated results whereas 85-95% correlation with experimental results.  

 Thus, using ANN also can be predict the suspension parameters with high 

accuracy. 
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Abbreviations 

 

α   Angle made by link OA with horizontal (in º) 

θ   Rotation angle of control arm (in º) 

θo   Initial angular displacement of control arm (in º) 

Aws   Frequency weighted RMS Sprung Mass acceleration (m/s2)  

c   Damping coefficient (Ns/m) 

fobj   Objective function  

k   Stiffness (N/m) 

kt   Tyre stiffness (N/m) 

lA   Distance from O to A (m). 

lB   Distance from O to B (m). 

lC   Control arm length (m). 

m   Mass (kg) 

VDV  Vibration Dose Value (m/s1.75) 

xr   Road profile (m) 

x, ẋ, ẍ  Displacement (m), Velocity (m/s) and acceleration (m/s2) 
 

Subscripts (unless and otherwise stated) 

s: sprung, us: unsprung, 


