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Abstract 15 

Electric Vehicles (EVs) are estimated as the most sustainable solutions for future transportation 16 

requirements. However, there are various problems related to the battery pack module and one 17 
of such problem is invariable high-temperature differences across the battery pack module due 18 
to the discharging and charging of batteries under operating conditions of EVs. High-19 
temperature differences across the battery module contribute to degradation of maximum 20 

charge storage and capacity of Li-ion batteries which ultimately affects the performance of 21 
EVs. To address this problem, a Finite Element Modelling (FEM) based Automated Neural 22 

Network Search (ANS) approach is proposed. The research methodology constitutes of the 23 
four stages: Design of air-cooled battery pack module, setup of the FEM constraints and 24 
thermal equations, formulating the predictive model on generated data using ANS and lastly 25 

performing multi-objective response optimization of the best fit predictive model to formulate 26 

optimum design constraints for the air-cooled battery module. For efficient thermal 27 
management of the battery module, an empirical model is formulated using the mentioned 28 
methodology for minimizing the maximum temperature differences, standard deviation of 29 

temperature across the battery pack module and battery pack volume. The results obtained are 30 
as follows: (1) The battery pack module volume is reduced from 0.003279m3 to 0.002321m3 31 

by 29.21%, (2) The maximum temperature differences across the eight cells of battery pack 32 
module declines from 6.81K to 4.38K by 35.66%, and (3) The standard deviation of 33 

temperature across battery pack decreases from 4.38K to 0.93K by 78.69%. Thus, the 34 
predictive empirical model enhances the thermal management and safety factor of battery 35 
module.      36 
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1 Introduction 43 

The EVs operated on battery packs has become popular due to there less carbon footprints 44 

compared to conventional vehicles and is being highly incentivized by major consumer 45 

countries around the world [1-2]. The threat of climate change and increasing dependency on 46 

fossil fuels in a long term scenario have started a movement in automotive industry to develop 47 

sustainable technologies [3]. EVs are also been seen as a new power sources for electric utilities 48 

[4-5]. It cannot be said that EVs are 100% environment friendly, because the electricity needed 49 

for charging is still majorly produced from fossil fuels which has large carbon footprints also 50 

the metals used in batteries are harmful and rare [6]. However if Well to Wheel (WTW) 51 

analysis of EVs and conventional vehicles are compared it can be said that EVs are less 52 

polluting if electricity required for charging is generated from renewable energy sources[7]. 53 

The lithium-ion batteries (LIBs) are preferred as power source of EVs over other types of 54 

batteries, because of power requirements of EVs which can be satisfied by LIBs [8-11]. High 55 

energy density and long cycling life make LIBs the preferred option for use in EVs [12-13]. 56 

Set of hundreds of Lithium-ion cells are connected in certain pattern to form a battery pack 57 

module such that it provides enough power to maintain driving conditions of EVs [13]. These 58 

lithium-ion cells of EVs work at a higher value of discharge rate of current producing enormous 59 

heat, which gets confined in battery pack module leading to thermal runaway of Energy Storage 60 

System(ESS). This results in temperature rise in the battery pack module and accelerated aging 61 

of lithium-ion cells in the pack. Due to these reasons, charge acceptance, energy capability, 62 

power capability and reliability of batteries are reduced[14]. However, LIBs have high 63 

performance at an upper bound temperature of 45℃ and it is observed battery performance 64 

increases as the temperature is increased from room temperature to considerably high 65 

temperatures(around 45℃)[15]. Also, very low temperature are found to affect the 66 

performance of LIBs, at sub-zero temperature LIBs discharge capacity is reduced due to the 67 
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impedance effect [16] and when charging at high rate while temperature is low, the 68 

phenomenon of lithium plating occurs leading to reduced battery life [17]. Its been observed 69 

battery pack should have a maximum temperature below 45℃ and difference in temperatures 70 

between cells in battery pack should be below 5℃ to avoid thermal imbalance for a long 71 

working life of a battery[15, 18, 19]. Therefore, a thermal management system is required for 72 

battery packs to reduce the heat and maintain an optimum favourable temperature inside a 73 

battery pack for better performance of LIBs[19-20]. 74 

Battery pack thermal management is mainly classified into three categories. First, is a natural 75 

cooling system where the air is the fluid, heat generated by LIBs is exchanged by natural 76 

convection process inside the case[21]. Second, is forced cooling system where fluid can be 77 

liquid or air, here forced convection occurs inside battery pack when coolant(liquid or air) is 78 

introduced in gaps of cells by an external force, such as fan or blower[21-22]. The forced 79 

cooling system has better performance than natural cooling system but natural cooling is more 80 

economical than forced cooling, there is a trade-off between factors such as weight, power 81 

consumption and economical factor[21]. Third is the Phase Change Material (PCM) cooling 82 

system, the PCM system can be a good choice because the latent heat related with melting and 83 

freezing are capable of storing more heat than sensible thermal storage[23-24]. When Li-ion 84 

cells are under working conditions, the PCM will maintain the Li-ion cells at a certain 85 

temperature while passively storing the heat. Once the heat generating components (Li-ion 86 

cells) are shut-off the PCM will begin to solidify. The PCM based cooling system is efficient 87 

in decreasing temperature but there are also challenges for PCMs poor thermal conductivity 88 

which decides the thermal transport efficiency, which limits PCMs application where instant 89 

response is required to thermal surge [25].   90 

Major studies have been carried out using multi-dimensional numerical analysis and thermal 91 

resistance models. Certain design configurations of air-cooled battery pack system are 92 
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numerically modeled and theoretically investigated by Park et al.[26] to get the required 93 

thermal specifications. The investigation was conducted on the cooling effect of five different 94 

air-flow configuration of a battery system with 36 cells battery pack. It was concluded that the 95 

desired cooling performance is attained by using the pressure relief ventilation and tampered 96 

manifold without disturbing the design of the existing battery system. Using numerical and 97 

analytical modelling the flat-plate battery stacks and cylindrical battery stacks were compared 98 

by Xun et al.[27] for getting required air cooling conditions. Two dimensionless parameters, 99 

cooling energy efficiency and compactness of battery stacks were varied and, it was concluded 100 

that the cylindrical battery stacks were less compact and more efficient under air cooling 101 

conditions. Yang et al.[28] concluded that considering design requirement and air cooling 102 

conditions, a battery pack in aligned arrangement generates lower temperature compared to a 103 

staggered arrangement, but the only drawback is it requires more space comparatively. It is 104 

concluded by Wang et al.[29] that when the fan is located on top of the battery pack module, 105 

best cooling performance is obtained. Also 5×5 cubic arrangement is proposed for a battery 106 

pack with 24/25 arrangement for Li-ion 18650 cells. This occupies lesser space and better 107 

cooling is obtained compared to 1×24 and 3×8 arrangements of cells in a battery pack.  108 

Previous work of authors has utilized genetic algorithms, support vector machine, response 109 

surface method, and surrogate modeling combined with Computational Fluid Dynamics (CFD) 110 

tools to address the issue of temperature optimization of battery packs. Li et al.[30] reported 111 

simultaneous system volume and cooling performance optimization using CFD based surrogate 112 

modelling and found 34% decrease of system volume and 51.9% decrease of maximum 113 

temperature differences. Liao et al.[31] presented optimization of temperature differences for 114 

better thermal performance of battery pack using Central Composite Design (CCD) and 115 

Response Surface Methods (RSM). Yun et al. [32] designed a framework for simultaneous 116 

minimization of battery pack volume and temperature differences using Support Vector 117 
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Regression (SVR) combined Genetic algorithm approach and the model was optimized using 118 

Simulated Annealing (SA). It was found a decrease of 29% in volume and 42% in temperature 119 

difference was reported. In brief, these researches focused on the metaheuristics algorithms 120 

whose performance is sensitive to choice of settings and often has to be combined with other 121 

complex optimization algorithm to optimize it. However, this work illustrates a simpler Finite 122 

Element Modelling (FEM) based Automated Neural Network Search (ANS) approach for 123 

minimization of temperature related effects and volume of the pack. Settings in ANS approach 124 

is selected automatically based on effective search mechanisms. 125 

Current study focused more on optimization of design and configuration of battery pack to 126 

reduce volume and maximum temperature differences simultaneously. Considering the 127 

working conditions of EVs, temperature differences and distribution are important factor which 128 

are difficult to optimize [33-35]. Moreover, considering air cooling factors simultaneous 129 

optimization of battery pack volume is important to save space in EVs[36]. However, the past 130 

literature's hardly considered all these aspects simultaneously for comprehensive optimization 131 

of battery pack module. In this context, a comprehensive FEM based ANS approach is 132 

proposed. In this proposed approach, firstly the data generated from Finite Element Analysis 133 

(FEA) on battery pack module is fed into ANS architecture for generation of models. The five 134 

geometric parameters and volume of battery module are considered for model and the output 135 

parameters to be optimized are Maximum temperature differences (TD), Standard deviation of 136 

temperature (TSD) and battery pack volume (V). Therefore, motivation of study undertaken is 137 

to design an efficient battery pack air cooling system, which optimizes the system volume and 138 

cooling performance simultaneously. This paper is structured as follows. Section 2 presents 139 

detailed description of the research problem. Section 3 proposes the comprehensive design 140 

optimization methodology along with the numerical model. Section 4 provides with results and 141 

discussions. In section 5, conclusion is presented. 142 
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2 Research problem statement  143 

This section describes the research problem on optimization of operational parameters in air 144 

cooling system of battery pack module for obtaining optimal working conditions for EVs 145 

shown in Fig.1. A battery pack module containing eight cells is charged and discharged under 146 

normal driving conditions as defined in National Renewable Energy Laboratory [37]. Some 147 

innovatory ideas were undertaken by assuming the uneven spacing between cells. An uneven 148 

gap spacing did not significantly influence the maximum temperature rise of the battery pack 149 

module but, it affects the temperature distribution of module. For rigorous investigation, a 150 

similar battery module is designed and parameterized, as shown in Fig. 2. The operational 151 

parameters are defined as follows:                                                                     152 

 X1: Spacing of four cells near the closed end of battery pack module.                                               153 

 X2: Spacing of four cells near the outlet and inlet for air cooling of battery pack module.      154 

 X3: Spacing in alignment with inlet, between top of the battery cells to the upper board of  155 

battery pack module. 156 

X4: Spacing in alignment with outlet, between top of the battery cells to the lower board of  157 

battery pack module.                                                                                                                            158 

v: Mass flow rate of cooling air in battery pack module. 159 

The aim is to analyse the effects of the mentioned five input design parameters on the cooling 160 

performance. Based on optimization and subsequent analysis, the findings shall propose a new 161 

design of the battery module with better thermal management and minimum volume. For an 162 

efficient air cooling of battery module under normal driving conditions, three objectives are 163 

thus defined as follows: 164 

TD: Maximum temperature differences of eight cells (w.r.t the mean temperature). 165 
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TSD: Standard deviation of temperature.  166 

V: Volume of the battery pack module.     167 

 168 

Table. 1. Properties of the unit cells used in battery pack model. 169 

Heat generation rate 28, 000 (W m-3) (1.3 x US06) 

Tested drive cycle (aggressive) 600 sec 

Power profile 1.3 x US06 

Eight Li-ion cells rating 15 Ah 

Ambient temperature 27 OC 

Active area dimensions 6 x 145 x 255 mm 

Specific heat capacity 745 J kg-1 K-1 

Thermal conductivity 27 W m-1 K-1 

Density 2335 kg m-3 

 170 

𝑓𝑖𝑛𝑑  𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑣]  171 

minimize         V 172 

       minimize         TD                                               …(1.) 173 

    minimize         TSD 174 
Such that it follows the constraints of equation 4. 175 

                                                                                                                                                                                                                                                                                                                     176 

 177 

 178 
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 179 

Fig. 1 Illustration of research problem statement undertaken. 180 

 181 

 182 

 183 

 184 

Fig. 2 Schematic diagram of battery module with five design variables 185 

 186 

 187 

3 Finite Element Modelling based Automated Neural Network Search approach 188 

This section discusses the comprehensive FEM based ANS approach shown in Fig. 3. The 189 

approach is illustrated in two subsections 3.1 and 3.2 as follows. 190 

 191 
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 192 
 193 

Fig. 3 Finite Element Methodology based Automated Neural Network Search approach 194 

 195 

 196 

 197 

3.1 Finite Element Method (FEM) 198 

FEM numerical approach is used for modeling thermal behaviour of battery module in EVs. 199 

These analysis takes the total area of module and divides it into a finite number of sub-200 

domains/elements. It also uses variation methods to get the solution of the problem by 201 
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minimizing the error. ANSYS software is used to perform Finite Element Analysis (FEA), it 202 

is a widely accepted commercial software package. The knowledge on each of the materials 203 

used in the battery module is required for FEM approach to obtain the accurate results. 204 

The FEM was applied on battery pack module (Fig. 4) for thermal management. According to 205 

working conditions of battery pack, the heat generation of module is set to value of 28,000 206 

W/m3, which is 1.3 times normal heat generation conditions [37]. The spatial temperature 207 

distribution in each element of the battery pack module is governed by equation 2,   208 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
+

𝑞̇𝑡

𝑘
=

1

𝛼

𝜕𝑇

𝜕𝑡
     … (2) 209 

𝑞̇𝑡 =  𝑅𝑖𝑖
2 − 𝑇𝛥𝑆

𝑖

𝑛𝐹
                         … (3) 210 

where, x, y and z are spatial directions, k is thermal conductivity (W·m−1·K−1), α = thermal 211 

diffusivity (m2·s−1). 𝑞̇𝑡  is the rate of the internal heat generation per unit volume, Ri is the 212 

equivalent resistance of Li-ion cell, i is the discharge current of Li-ion cell per unit volume, F 213 

is the Faraday number and  S is the entropy change, parameters for 𝑞̇𝑡  are referred from 214 

equation 3.    215 

The results obtained are verified including considerations of fitness function accuracy and 216 

mesh independence for the thermal analysis and optimization algorithm. The study aims to 217 

demonstrate the effectiveness of non-gradient based optimization in searching for optimum cell 218 

arrangement and reveal design principles that can be applied for battery thermal management. 219 

After constructing the geometry, meshing, heat generation and governing equations are 220 

subsequently applied. In APDL, solid geometry are generally meshed automatically with 221 

restraints. For this case, the computational meshes are generated in quadrilateral elements with 222 

an edge length of 0.2 cm and maximum aspect ratio of 1.5 for reasonable computing time. As 223 
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the geometry is altering, the number of elements constructed varies from 5,000 to 10,000. 224 

Meshes in the core are refined by increasing the mesh density to achieve higher accuracy in 225 

simulating the thermal response.  226 

 227 

Authors have done trial-and-error analysis for investigating mesh influence on performance of 228 

model. In order to improve the accuracy in FEM modelling, the number and shape of elements 229 

generated are increased and tuned for this particular design. Even the meshes in APDL are 230 

created automatically, the size level of elements is further altered to the smallest value by 231 

instructing stricter restraints. Ideally, there is not much change in the temperature difference as 232 

well as its standard deviation. 233 

The air cooling battery module (Fig. 4) is analyzed in ANSYS by incorporating the basic 234 

required information as mentioned in [37-38]. The input parameters X1, X2, X3, X4 and v are 235 

varied in battery pack module for the evaluation of maximum temperature difference (TD) of 236 

eight cells (w.r.t the mean temperature), Standard deviation of Temperature (TSD) and volume 237 

of battery pack module (V). In the present work, the heat generation rate is fixed. All three 238 

outputs are dependent on all five input parameters and the input parameters are varied as shown 239 

in equation 4. 50 data samples (Table 2) were generated from this process which is then fed 240 

into architect of ANS approach for formulation of models for three objective parameters (TD, 241 

TSD, V) with respect to the five design variables (X1, X2, X3, X4, v). The following section 242 

discusses about ANS approach.  243 

mmxmmmm,xmmmm,xmmmm,xmm 41414141 4321   244 

                sKgvsKg /02.0/002.0                    …(4) 245 
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 246 
Fig. 4 Computational region of battery module for air cooling. 247 

 248 

 249 

 Table 2. Data generated from thermal modelling of battery pack using FEM 250 

 Input parameters Output parameters 

Run 

no. 

X1 (mm) X2  (mm) X3 (mm) X4 (mm) v (kg/s) V (m3) TD (K) TSD (K) 

1 2.11 1.81 3.73 1.21 0.00974 0.002518 8.57999 4.93789 

2 1.39 3.55 1.45 2.89 0.01478 0.002636 5.02078 1.11791 

3 2.23 1.09 1.27 2.11 0.0119 0.002405 5.09854 1.71818 

4 1.33 2.29 2.11 1.03 0.01262 0.002412 9.9375 5.1425 

5 1.93 2.65 1.33 1.87 0.0191 0.002581 4.45999 0.954862 

6 3.49 3.85 2.35 3.43 0.0101 0.003112 7.56027 2.06045 

7 1.87 2.11 3.97 3.37 0.01442 0.002559 5.32123 2.1044 

8 3.61 3.31 3.49 2.77 0.00578 0.003062 9.5433 5.13151 

9 3.43 2.35 1.21 1.63 0.01622 0.002812 5.95364 3.40527 

10 2.71 3.67 3.43 2.53 0.01802 0.002938 8.49246 4.27937 

11 1.45 3.25 1.39 1.57 0.00758 0.002577 7.05188 2.90261 

12 3.25 3.43 1.99 2.23 0.00218 0.002969 9.9736 3.73074 

13 1.63 3.73 3.01 3.61 0.01082 0.002751 6.89923 2.86642 

14 2.89 2.77 2.05 3.85 0.00362 0.002832 8.20624 2.39122 

15 3.07 1.39 2.59 3.91 0.01334 0.002665 5.30655 1.25034 

16 1.81 3.37 3.13 3.07 0.0029 0.002723 9.8786 4.67427 

17 1.51 1.45 2.17 1.69 0.00434 0.002331 8.08087 3.81214 

18 2.35 2.53 1.15 3.79 0.01118 0.002674 6.44733 2.0034 



13 
 

19 2.77 1.63 3.25 2.17 0.00254 0.002625 9.44736 4.16184 

20 3.31 1.51 3.91 2.35 0.01154 0.002726 7.00259 4.73956 

21 2.65 1.57 1.63 3.25 0.01874 0.002583 4.67157 0.943342 

22 3.67 2.95 1.09 2.95 0.01226 0.002972 8.47672 2.42016 

23 2.29 3.91 1.51 2.83 0.00722 0.002862 6.71506 2.24993 

24 2.05 3.01 2.83 1.27 0.00326 0.002675 10.5788 5.3401 

25 2.95 3.49 1.81 2.65 0.01982 0.002926 5.33734 0.989422 

26 3.37 3.07 1.75 1.15 0.00902 0.00291 8.75858 4.42346 

27 1.15 3.61 2.95 1.81 0.01046 0.002607 9.96359 5.38074 

28 3.55 2.59 3.37 1.39 0.00686 0.002909 9.69901 5.06779 

29 1.69 2.47 2.47 3.97 0.01586 0.002565 4.52307 0.975731 

30 1.75 1.27 2.71 1.75 0.01694 0.002359 5.04529 3.43288 

31 3.85 1.33 2.41 2.41 0.01514 0.002775 4.99002 1.77981 

32 3.79 2.71 2.53 3.49 0.01766 0.002999 5.35361 0.823158 

33 2.83 1.21 1.69 3.31 0.00614 0.002565 7.46188 3.24942 

34 2.17 1.93 3.61 3.67 0.00506 0.002589 7.10147 2.54214 

35 3.73 1.75 3.19 3.55 0.0065 0.002853 6.66385 2.38894 

36 2.47 3.79 3.85 2.05 0.00866 0.002909 9.95065 5.23092 

37 2.53 3.97 2.29 1.45 0.01406 0.002905 9.64435 4.64936 

38 1.57 1.03 2.77 3.13 0.00938 0.002311 5.05328 1.41773 

39 1.03 2.17 3.55 2.29 0.00794 0.002381 8.4606 4.81907 

40 2.59 1.69 3.31 2.71 0.01946 0.002611 4.97839 3.19006 

41 3.01 3.13 3.67 3.73 0.01298 0.002941 6.77084 3.98288 

42 3.19 1.15 2.23 1.33 0.0083 0.002599 7.51358 4.89955 

43 2.41 2.23 1.03 1.99 0.0047 0.002605 7.53839 2.22204 

44 1.99 2.83 3.79 1.51 0.01658 0.002658 8.63937 4.70958 

45 1.09 1.87 1.57 3.01 0.0137 0.002326 4.16092 1.22898 

46 1.21 2.89 2.89 2.59 0.01838 0.00252 6.7894 3.75226 

47 3.13 2.05 2.65 1.09 0.0173 0.002727 9.17682 5.27326 

48 3.97 3.19 3.07 1.93 0.0155 0.003086 7.11981 3.5573 

49 3.91 1.99 1.87 2.47 0.00542 0.002878 7.23776 2.36477 

50 1.27 2.41 1.93 3.19 0.00398 0.002452 8.16791 3.25939 

 251 

 252 

 253 

3.2 Automated Neural Network Search approach 254 

ANS is an machine learning method used for predictive modelling of complex systems. The 255 

principle of ANS is same as Artificial Neural Network (ANN), except the activation function 256 

and training algorithm selection is automated. The ANS model can optimize its response by 257 
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adjusting it according to the feedback it receives. The network/architecture of such model is 258 

shown in Fig. 5. When the network is implemented, the input variable values are placed in the 259 

input units, the hidden and output layer units are gradually executed in their serial order 260 

triggered by activation functions and trained on the basis of errors. Random weight 261 

initialization is preferred option for this particular analysis as the activation function and 262 

training algorithm is automated. It is found that generally, the two layer neural network with 263 

tan-sigmoid activation/threshold functions at hidden layer and pure linear activation function 264 

at output layer can train for any set of non-linear data [39]. Output parameters are affected by 265 

a great variety of interaction between input parameters. It is very difficult to illustrate their 266 

relationship by the use of conventional methods. Therefore, ANS is preferred tool in this 267 

perspective. The ANS facility is used for formulating the neural networks with various 268 

configurations and settings while requiring nominal specifications. It forms number of 269 

networks models with algorithmic combinations. The network which achieve the highest 270 

correlation coefficient value between targets and outputs of the network is chosen. In ANS, 271 

there are mainly two types of networks, Multilayer Perceptron (MLP) network type and Radial 272 

Basis Function (RBF) network. In present work, we choose MLP as network type because the 273 

problem is multi-dimensional and multi-objective in nature [39]. The STATISTICA 12 274 

software package is used to implement this MLP network. 275 
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 276 

Fig. 5 Illustration of Artificial Neural Network Search (ANS) 277 

 278 

The data generated from FEM is divided into three different sets comprising of training, testing 279 

and validation. The training data is set to 75%, test data to 15% and validation data to 10%. 280 

The sampling of data is done randomly. Networks to train is set to 2000 and 10 best 281 

performance coefficient networks are retained. The ANS models are selected on basis of there 282 

performance coefficient values (Table 5). The ANS models with high performance coefficient 283 

and simultaneously having low error values, are accurate and stable for optimization. The value 284 

of seed for sampling is 1000. After training, we retain 8 networks which are best suited for 285 

predictive modelling for 3 outputs. Two models were formulated for 3 output variables. 286 

Settings used for V(m3), and TSD (K) is shown in table 3 and settings used for TD (K) is shown 287 

in table 4. The networks are trained and tested on FEM generated data for thermal management 288 

of battery pack module. Fig. 3 shows the flowchart illustration of methodology undertaken. 289 

The main objective for network generation is to formulate a robust and an accurate predictive 290 
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model. Further, optimization of these model results in optimum values of five design variables 291 

(X1, X2, X3, X4, v) that simultaneously optimizes the three outputs (TD, TSD, V). 292 

 293 
 294 

Table 3. Settings of the Automated neural network search for V and TSD outputs. 295 

 296 

 297 

Table 4. Settings of the Automated neural network search for TD output. 298 

Settings Values 

Multilayer Perceptron (MLP) Min hidden units =4, 

Maximum hidden units = 4 

Radial Basis Function (RBF) Min hidden units =0, 

Maximum hidden units = 0 

Networks to train 2000 

Networks to retain 10 

Type of activation functions used for 

hidden and output neurons 

Identity, logistic, Tanh, Exponential, Sine 

 299 

 300 

4 Results and Discussion 301 

4.1 Statistical fit of Automated Neural Network Search models  302 

Table 5 shows the 50 runs for the network generated, the performance (correlation coefficient) 303 

of the given networks on the training, testing, and validation data, training algorithm and the 304 

activation function for the hidden and output neurons. Only the fewer ANS models (highlighted 305 

in Table 5) with the training correlation coefficient higher than 0.955 are chosen as the best 306 

networks (Table 6). The model chosen for analysis are model no. 23 and 47 (highlighted red in 307 

Settings Values 

Multilayer Perceptron (MLP) Min hidden units =10, 

Maximum hidden units = 10 

Radial Basis Function (RBF) Min hidden units =0, 

Maximum hidden units = 0 

Networks to train 2000 

Networks to retain 10 

Type of activation functions used for 

hidden and output neurons 

Identity, logistic 
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Table 6), where model no. 23 (MLP 5-10-3) is used for analysis of V and TSD, and model no. 308 

47 (MLP 5-4-1) is used for analysis of TD. Fig. 6 describes the fitting of models for all output 309 

parameters. The coefficient of determination values are found to be 0.99, 0.94 and 0.86 for V, 310 

TD and TSD respectively.  Fig. 6 (a), (b) and (c) illustrates line fit plot for three outputs V, TD 311 

and TSD respectively. Fig. 7, explains that the input parameters X4 and X3 are the most 312 

dominant ones for influencing outputs (V and TSD) for model no.23, whereas for model no. 313 

47, X4 and v are the most dominant input parameters for influencing (TD). Overall, the main 314 

influencing input parameters are X4, v and X3 for three response variables V, TD and TSD.  315 

Table 5. 50 generated models of Automated Neural Network Search 316 

Index Network 

name 

Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

algorithm 

Hidden 

activation 

Output 

activation 

1 
MLP 5-

8-3 
0.950015 0.884071 0.990848 BFGS 38 Logistic Identity 

2 
MLP 5-

8-3 
0.947831 0.881299 0.990640 BFGS 31 Logistic Identity 

3 
MLP 5-

8-3 
0.948579 0.881561 0.993897 BFGS 29 Logistic Identity 

4 
MLP 5-

8-3 
0.953264 0.883503 0.997169 BFGS 36 Logistic Identity 

5 
MLP 5-

8-3 
0.948555 0.852924 0.990801 BFGS 25 Logistic Identity 

6 
MLP 5-

8-3 
0.949140 0.887160 0.990776 BFGS 37 Logistic Identity 

7 
MLP 5-

8-3 
0.949538 0.880357 0.992928 BFGS 29 Logistic Identity 

8 
MLP 5-

8-3 
0.949767 0.870302 0.992069 BFGS 33 Logistic Identity 

9 
MLP 5-

8-3 
0.948773 0.876464 0.991214 BFGS 30 Logistic Identity 

10 
MLP 5-

8-3 
0.956261 0.872637 0.992882 BFGS 40 Logistic Identity 

11 
MLP 5-

9-3 
0.950602 0.898850 0.991570 BFGS 27 Logistic Identity 

12 
MLP 5-

9-3 
0.954556 0.887046 0.991808 BFGS 37 Logistic Identity 

13 
MLP 5-

9-3 
0.952105 0.876715 0.994322 BFGS 36 Logistic Identity 

14 
MLP 5-

9-3 
0.953413 0.880951 0.991649 BFGS 33 Logistic Identity 

15 
MLP 5-

9-3 
0.952844 0.885069 0.993374 BFGS 39 Logistic Identity 

16 
MLP 5-

9-3 
0.951527 0.891649 0.992997 BFGS 40 Logistic Identity 

17 
MLP 5-

9-3 
0.950306 0.873274 0.992540 BFGS 35 Logistic Identity 
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18 
MLP 5-

9-3 
0.951601 0.864137 0.991732 BFGS 36 Logistic Identity 

19 
MLP 5-

9-3 
0.947856 0.885238 0.991718 BFGS 35 Logistic Identity 

20 
MLP 5-

9-3 
0.952937 0.880276 0.994892 BFGS 42 Logistic Identity 

21 
MLP 5-

10-3 
0.948406 0.858631 0.991307 BFGS 27 Logistic Identity 

22 
MLP 5-

10-3 
0.951390 0.881621 0.990769 BFGS 33 Logistic Identity 

23 
MLP 5-

10-3 
0.968015 0.872972 0.992018 BFGS 43 Logistic Identity 

24 MLP 5-

10-3 

0.949296 0.877779 0.991130 BFGS 26 Logistic Identity 

25 MLP 5-

10-3 

0.955552 0.863405 0.992462 BFGS 37 Logistic Identity 

26 MLP 5-

10-3 

0.947882 0.893928 0.991056 BFGS 27 Logistic Identity 

27 MLP 5-

10-3 

0.954687 0.867890 0.992050 BFGS 23 Logistic Identity 

28 MLP 5-

10-3 

0.947397 0.871344 0.992350 BFGS 25 Logistic Identity 

29 MLP 5-

10-3 

0.951077 0.867050 0.993351 BFGS 33 Logistic Identity 

30 MLP 5-

10-3 

0.949470 0.874669 0.990985 BFGS 26 Logistic Identity 

31 MLP 5-

7-1 

0.882770 0.775362 0.923379 BFGS 3 Identity Logistic 

32 MLP 5-

7-1 

0.954002 0.918905 0.924436 BFGS 19 Logistic Exponential 

33 MLP 5-

11-1 

0.848846 0.832199 0.925970 BFGS 4 Identity Tanh 

34 MLP 5-

4-1 

0.963519 0.906612 0.965862 BFGS 39 Logistic Tanh 

35 MLP 5-

10-1 

0.894180 0.752153 0.935306 BFGS 9 Tanh Exponential 

36 MLP 5-

4-1 

0.943157 0.893595 0.994154 BFGS 24 Logistic Tanh 

37 MLP 5-

4-1 

0.925115 0.795487 0.989075 BFGS 18 Exponential Identity 

38 MLP 5-

4-1 

0.945285 0.804359 0.988869 BFGS 24 Logistic Logistic 

39 MLP 5-

4-1 

0.969057 0.921703 0.994828 BFGS 41 Logistic Identity 

40 MLP 5-

4-1 

0.971912 0.891941 0.992240 BFGS 31 Tanh Logistic 

41 MLP 5-

4-1 

0.951497 0.828912 0.994789 BFGS 25 Logistic Identity 

42 MLP 5-

4-1 

0.935016 0.817722 0.991961 BFGS 23 Logistic Identity 

43 MLP 5-

4-1 

0.939505 0.850236 0.990311 BFGS 22 Logistic Identity 

44 MLP 5-

4-1 

0.937383 0.792258 0.991671 BFGS 20 Logistic Identity 

45 MLP 5-

4-1 

0.931978 0.835205 0.988943 BFGS 24 Logistic Identity 

46 MLP 5-

4-1 

0.933245 0.761554 0.997105 BFGS 19 Logistic Identity 
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47 MLP 5-

4-1 

0.985318 0.833880 0.993047 BFGS 26 Tanh Exponential 

48 MLP 5-

5-1 

0.975114 0.819712 0.997844 BFGS 23 Tanh Exponential 

49 MLP 5-

4-1 

0.962713 0.853720 0.998900 BFGS 16 Logistic Tanh 

50 MLP 5-

5-1 

0.970930 0.923706 0.995444 BFGS 33 Tanh Logistic 

 317 
 318 
 319 

Table 6. Best fit ANS models networks 320 

 321 
Index Network 

name 

Training 

Perf. 

Test 

Perf. 

Validation 

Perf. 

Training 

algorithm 

Hidden 

activation 

Output 

activation 

10 
MLP 5-

8-3 
0.956261 0.872637 0.992882 BFGS 40 Logistic Identity 

23 
MLP 5-

10-3 
0.968015 0.872972 0.992018 BFGS 43 Logistic Identity 

25 MLP 5-

10-3 

0.955552 0.863405 0.992462 BFGS 37 Logistic Identity 

27 MLP 5-

10-3 

0.954687 0.867890 0.992050 BFGS 23 Logistic Identity 

47 MLP 5-

4-1 

0.985318 0.833880 0.993047 BFGS 26 Tanh Exponential 

48 MLP 5-

5-1 

0.975114 0.819712 0.997844 BFGS 23 Tanh Exponential 

49 MLP 5-

4-1 

0.962713 0.853720 0.998900 BFGS 16 Logistic Tanh 

50 MLP 5-

5-1 

0.970930 0.923706 0.995444 BFGS 33 Tanh Logistic 

 322 

 323 
 324 
 325 

 326 
(a.) 327 
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 328 
(b) 329 

 330 
(c) 331 

Fig. 6 Line fit plot of Actual and ANS models for the three outputs 332 

 333 

 334 
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 335 

 336 
Fig. 7 Global sensitivity analysis for the selected models showing the importance of 337 

individual input parameters on the three outputs 338 

 339 

 340 

 341 

 342 

4.2 Response optimization of selected Automated Neural Network Search models  343 

Response optimization is performed on selected ANS models 23 and 47 for simultaneously 344 

minimizing volume of battery module, Temperature difference and Temperature standard 345 

deviation. Non-dominated sorting genetic algorithm II (NSGA II ANSYS software package) 346 

combined with simplex and grid search is used for optimization. Number of iterations was set 347 

to 1000 and number of initial samples was set to 100. The selected models were evaluated to 348 

obtain the minimum volume of battery module, Temperature difference and standard deviation 349 

of temperature. The initial values of gap spacing X1, X2, X3, and X4 are set to 4 mm and v is set 350 

to 0.012 kg/s. The value of v is fixed, it is not varied only the values of geometric parameters 351 

are varied. Step size is set to 0.0874 and 0.00052 for (X1, X2, X3, X4) and v respectively, and 352 

the operating range of design variables were set from 1 mm to 4 mm and 0.002Kg/s to 0.02Kg/s 353 

for (X1, X2, X3, X4) and v respectively. Given these set of input values, the initial values 354 
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obtained from ANS models for V, TD and TSD are 0.003279m3, 6.813K and 4.37K 355 

respectively. The multi-objective optimized result is given in Table 7. The volume of the 356 

battery pack module reduces from 0.0033m3 to 0.0023m3 by 29.21%, the maximum 357 

temperature difference of the eight cells reduces from 6.81K to 4.38K by 35.66%, and the 358 

standard deviation of temperature reduces from 4.38K to 0.93K by 78.69%. Fig. 8 shows the 359 

iterations graph of simplex search for optimization of three response variables. The 360 

optimization objective is met w.r.t above optimization constraints and the results obtained on 361 

improvement are feasible. The decrease in the volume of battery module after optimization 362 

decreases the cost of manufacturing of battery pack. The reduction of TSD by 78.69% enables 363 

the uniformity of temperature in different parts of battery module. Due to reduction of 364 

maximum temperature differences by 35.66% the battery life is maintained in long run and 365 

working conditions.   366 

 367 

Table 7. Multi-objective optimization results for the battery module 368 

 Design variables Objective variables 

 X1(mm) X2(mm) X3(mm) X4(mm) v (Kg/s) V (m3) TD (K) TSD (K) 

Initial values 4 4 4 4 0.012 0.003279 6.813343 4.379044 

Range/ 

constraint [1, 4] [1, 4] [1, 4] [1, 4] 

[0.002, 

0.02] minimize minimize minimize 

Optimum values 1.422795 1.418067 1.698304 2.894863 0.019353 0.002321 4.383997 0.933274 

%Improvement 

in Objective      +29.21% +35.66% +78.69% 

 369 

 370 
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 371 
 372 
 373 
 374 

 375 
 376 
 377 
 378 

(a.) 

(b.) 
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 379 
 380 

 381 
 382 

Fig. 8 Optimization results for determination of minimum value of V, TD and TSD 383 
 384 
 385 

4.3 3-D surface plots and Simulation distribution for robustness validation  386 

3-D graphs are plotted between the response variable and the most influencing design variables 387 

determined by global sensitivity analysis. 3-D surface plots and sequential plots are used to 388 

study the variations of response variable due to interactions between the two or more-design 389 

variable. The nature or trend of variations in response variable is studied w.r.t variations in 390 

design variables. Fig. 9 shows the 3D surface plots of the V, TD and TSD w.r.t X4 and v design 391 

variables. 3-D sequential plots (Fig. 10), shows the plot of design variable and response 392 

variables, which describes the variation of all variables over whole range of run.   393 

 394 

(c.) 
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 395 

 396 

 397 

 398 

(a.) 
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 399 

 400 

 401 

(c.) 402 

Fig. 9 3-D surface plots showing variations of response variable w.r.t influencing design 403 

variables 404 

 405 

(b.) 
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 406 

 407 

 408 

 409 

(b.) 410 

Fig. 10 3D sequential plot showing variation of all variables over whole range of run 411 

(a.) 
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Profiling of the ANS model is done to understand the desirability of response variables (V, TD 412 

and TSD) for different levels of individual input variables in their individual specified range. 413 

Level of input variables which best fit with the desirability of the response variable is selected 414 

as the set of conditions for design. Profiling of predicted values for individual response 415 

variables (V, TD and TSD) are shown in Fig. 11. In Fig. 11 (a.) for response variable V it is 416 

observed that v(Kg/s) design variable is constant over range of V, while other variables are 417 

having linear variations and distribution is not reflecting any sudden changes. As shown in Fig. 418 

11 (b.), the response variable TD is also having normal distribution. The mean value of 419 

response variable TD is in range 4 K to 7.3099 K. Fig. 11 (c.) shows the skewness in 420 

distribution of TSD for region above 3.217 K. 421 

 422 

 423 

 424 

 425 

(a.) 
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 426 

 427 

 428 

(c.) 429 

Fig. 11 Profiling normal distribution of individual response variables on different levels 430 

of input variables. 431 

(b.) 
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5 Conclusions 432 

In the current study, the research problem on optimization of design variables of battery module 433 

to minimize response variables (Maximum temperature differences, standard deviation of 434 

temperature over region of battery pack module and volume of battery pack) for air-cooling 435 

thermal management of battery module is undertaken. To solve this problem, a comprehensive 436 

FEM based ANS approach is proposed. The methodology is applied on the battery module 437 

comprising of eight prismatic cells. The optimized air-cooled battery pack module have better 438 

thermal performance in normal working conditions of EVs compared to initial designed 439 

scheme. The main findings from the analysis and optimization performed are as follows: 440 

(1)  The volume of the battery pack module decreases from 0.003279 m3 to 0.002321 m3 by 441 

29.21% which addresses the space consumption in EVs and favors economical factors. 442 

The maximum temperature differences of the eight cells decreases from 6.81 K to 4.38 443 

K by 35.66% and the temperature standard deviation reduces from 4.38 K to 0.93 K by 444 

78.69%. 445 

(2) The optimized air-cooled battery pack module has lesser volume consumption. This 446 

implies, it exhibits lower maximum temperature differences in battery module and the 447 

uniformity in temperature distribution over battery module is attained.  448 

The present work provides an empirical and feasible model for design of battery thermal 449 

management system. This analysis can be scaled-up to battery packs comprising of 100 or more 450 

cells as in case of energy storage systems and commercial EVs.  451 
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