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Abstract 
Recovery of the vital metals from spent batteries using bioleaching is one of the commonly used method for 

recycling of spent batteries. In this study, a Statistical based Automated Neural Network approach is proposed 

for determination of optimum input parameters values in bioleaching of zinc-manganese batteries. Experiments 

are performed to measure the recovery of zinc and manganese based on the input parameters such as energy 

substrates concentration, pH control of bioleaching media, incubating temperature and pulp density. It was 

found that the proposed model based metal extraction models precisely estimated the yields of zinc and 

manganese with higher values of coefficient of determination of 0.94. Based on global sensitivity analysis, it 

was found that for the extraction of zinc, the most contributing parameters are pulp density and pH while for 

extraction of Mn the most contributing parameters are pulp density and incubating temperature. The optimum 

parameter values for maximum recovery of zinc and maximum recovery of manganese are determined using 

optimization method of simulated annealing. The optimum parameter values obtained for maximum recovery 

of Zn metal are as substrates concentration 32 g/L, pH 1.9-2.0, incubating temperature 30 ℃, pulp density 10% 

and substrates concentration 32 g/L, pH 2.0, incubating temperature 35 ℃, pulp density 8% for maximum 

recovery of Mn. 

Keywords: Recycling; bioleaching process; Optimization; metals recovery; Statistical based Automated Neural 

Network; 

This article is protected by copyright. All rights reserved.

http://dx.doi.org/10.1002/est2.111
http://dx.doi.org/10.1002/est2.111
http://dx.doi.org/10.1002/est2.111


Novel optimization method for recycling batteries 

  / 20 
 

Email*: ybhalerao@maepune.ac.in; 

 

 

1. Introduction 

Electric vehicle (EV) related consumer economy is increasing tremendously worldwide. For instance, it is 

expected that the global battery market will cross US $100 billion mark by 2025 [1]. Further, growth in EV 

market is fueled by governmental measures [2]. The major producers of batteries like Lithium-ion batteries 

(LIBs) are centred in east Asia. As of 2015, 88% of total global LIBs cell manufacturing units and 79% of 

automotive LIBs manufacturing units were located in China, Japan and Korea [3]. There is a drop of 73% in 

price of LIBs from 2010 to 2016, these price drop is making it more consumer friendly [4]. In 2016 new Electric 

Vehicles (EVs) sales consumed over 20 GWh, which is one fifth of installed capacity size [4]. The primary 

power technology in EVs is battery packs. The Battery pack is made up of identical batteries or individual 

battery units connected in a pattern to give desired voltage and power density. The use of battery pack in EVs 

has become norm because of its compact design and it can be dismantled for recycling efficiently once it’s out 

of use [5]. The battery pack is made up of Li-ion, Ni-Cd or Zn-Mn cells, after the battery pack is dismantled 

this all cells are treated individually and are grouped categorically for recycling or re-purposing [5]. 

There are two basic type of household batteries:- primary cells(one time use) and secondary cells(rechargeable 

cells). In first category, the major contributors are the zinc-carbon(Zn-C) and the alkaline -manganese batteries 

[6]. While in second category major contributors are Nickel-Cadmium (Ni-Cd) and Lithium-ion batteries (LIBs) 

[6]. This large consumption of portable batteries in last 30 years for the versatility, low cost and its requirement 

in electronics industry is amounting to hazardous waste [7]. Disposal of spent batteries has become an 

environmental issue of concern, which is needed to be improved because of the high cost of safe and 

environmental friendly disposal [8]. This toxic waste of spent batteries pose threat to environment. There is 

need of efficient and cheap recycling process for this toxic waste. The increasing concern about environmental 

This article is protected by copyright. All rights reserved.

mailto:ybhalerao@maepune.ac.in;


Novel optimization method for recycling batteries 

  / 20 
 

issues in last decade has lead to the stricter regulations worldwide on hazardous residues containing heavy metal 

spent batteries [8]. The Ni-Cd system is considered to be one of the most hazardous in terms of disposal [9]. 

Nickel- metal hydride batteries (NiMH) are regarded as a suitable substitute for Ni-Cd batteries due to its 

environmental friendliness in many applications. However, it cannot be commercial used owing to a higher cost 

of manufacture compared to Ni-Cd [10]. It is reported that huge quantities of waste batteries are generated every 

year in China and of that great deal of waste batteries were discarded directly while great part of these spent 

batteries can be reused [11]. The proper disposal and extraction of the valuable metals from spent batteries is 

important for sustainable development [12]. 

The Recovery of valuable and toxic metals such as Li, Co, Zn, Ni, Cd and Mn from spent batteries is enormous 

area of interest for solid waste treatment [11-15]. Spent zinc-manganese batteries (ZMB) occupy the great 

proportion of the total spent batteries owing to its low cost and short life. Content of Zn and Mn in spent batteries 

is 12-28% and 26-45% respectively [16]. The physical-chemical processes such as pyrometallurgy and 

hydrometallurgy, which are commercially used, are already applied to remove and recover of valuable metals 

from spent batteries. [1,2]. But, all these physical-chemical processes are energy intensive, heavy polluting and 

have high security risk associated with it. Whereas, bioleaching technology comparatively has less energy 

consumption, and more environmental friendly [17-19]. However, it cannot be applied commercially until it is 

proved that using this process costs less than the application of already extensively commercial used pyro and 

hydrometallurgy processes. In the bioleaching process the yield of metal was strongly affected by operating 

environment such as energy substrates type and dose(SC), initial pH, temperature(T), and pulp density(PD) 

[20]. Optimization of these parameters is necessary to obtain required yield of metal from spent batteries and a 

proper economical setup for bioleaching which can compete with the commercial physical-chemical processes. 

In direct bioleaching process on spent batteries the leaching period is shortened compared to indirect process 

[17,19,21]. But operational pulp density was equal or less than 1% due to the toxicity of he spent batteries. 

When The pulp density grew from 1% to 10%, the size of leaching reactor dropped to 10%, this results in huge 

reduction in leaching cost [20]. In a hydrometallurgical method based on strong acid when utilized on a spent 
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battery, the pulp density was 10% or higher [1,2,16]. Comparing to these commercial process, 10% of pulp 

density is required in bioleaching process on spent batteries in order to compete with physical-chemical 

processes. One-factor-at-a-time methodology is a basic method of the identification of the optimum settings of 

operating parameters  [17,19,20,21]. This methodology is inefficient as it doesn’t give information about 

interactions between parameters in process [22]. In the perspective of development of multi-variable model 

development, the past studies use response surface methodology (RSM) for optimizing the process conditions 

for extraction of metals from spent batteries[21, 23]. The assumption of model structure is the basis for the 

utilization of RSM in estimating the coefficients of the model. Thus, information about the process behaviour 

is necessary for an efficient employment of RSM. These method is very efficient if and only if the information 

about the system behaviour is available [23]. However, actual engineering and design problems are not that 

straight-forward, they are often complex and have partial information on process behaviour. For such cases 

RSM is not a viable tool for process modelling [24]. To address such problems a robust and efficient method is 

required, predictive modelling methods based on artificial intelligence are promising to address such problems 

with high accuracy [24-25]. Recently, some literature have reported use of evolutionary methods such as genetic 

algorithms (GA) for metal extraction from spent Li-ion batteries [25], these method have proved to be efficient 

compared to conventional modelling approach. While some literature have also reported about use of Artificial 

Neural Network (ANN) and Generalized Neural Network (GNN) for modelling process conditions of metal 

extraction from waste electronics devices[26-27]. It was reported that of all the above mentioned process GNN 

performed the best [27]. But, GNN is a complex network to implement, leaving it with more room for error 

while implementing. A more easy, generic and efficient method is needed which would give high accuracy with 

ease. The method implemented for modelling should not be prone to large variations in output due to small 

perturbations. One such method is Statistical based Automated Neural Network (SANN) [27-28]. Its ability to 

effectively model and improve the productivity of bioleaching process can be explored.  

In the present work, a comprehensive Experimental Combined Automated Neural Network approach is 

proposed as shown in figure 1. Experiments are performed to measure the recovery of Zn and Mn based on the 
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input parameters such as energy substrates concentration (SC), incubating temperature (T), pulp density (PD) 

and pH control of bioleaching media (pH). Statistical based Automated Neural Network (SANN) methodology 

is then used to optimize the bioleaching process for extraction of metals from ZMBs spent batteries by a 

multivariate study of parameters at higher pulp density of 8-12% to compete with already extensively used 

physical-chemical process. Four input parameters were evaluated to confirm their sensitivity and interactions 

on extraction efficiency of Zn and Mn; The resulting efficiencies are then compared with linear Analysis of 

Variance (ANOVA) and regression models to check the efficacy of using a SANN model. Though here ANOVA 

is used for the comparative analysis, but future work of authors shall be to apply sophisticated algorithms based 

on support vector regression, genetic programming, deep learning neural networks, probability and integrated 

learning [29-33].   

 

2. Research problem statement 

This section discusses the research problem on optimization of operational parameters in bioleaching process 

for removal of metal from spent batteries. For the competition with physical-chemical processes,  the 

bioleaching process must be optimized in such a way that it gives desired yield considering the commercial 

setup. To achieve this, the study of interaction between parameters and that of parameters with yield of metals 

is necessary. A model has to be formulated and optimized to generate the appropriate set of input parameters 

values that results in maximum recovery of Zn and Mn. The lower pulp density is reason for huge quantity of 

media for bioleaching and it is not commercially viable so, the pulp density has to be such that the process is 

economical. Since, bioleaching is a natural process, which includes the utilization of the microorganisms to 

catalyse the oxidation.. Considering this into account, the level of pH should be such that the bio-culture is in 

best condition. For obtaining the optimum set of input parameters, a model has to be established which considers 

interaction between parameters and accurately predict the recovery of Zn and Mn. In the following, the brief 

details about the experiment for the measurement of data is provided. 
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Experiments are performed to measure the extraction of Zn and Mn based on the input parameters such as 

energy substrates concentration (SC), incubating temperature (T), pulp density (PD) and pH control of 

bioleaching media (pH). Dismantling of the spent ZMBs was done manually. Dismantled products such as 

carbon rod, zinc rolled tins, copper caps, paper pieces and ferrous scraps were removed. The powder contains 

of battery experienced a mixed procedure consisted of mixing, drying, grinding by milling and sieving to obtain 

a mesh size of less than 200µm for bioleaching  [20]. Sulfur-oxidizing bacteria (SOB) and iron-oxidizing 

bacteria (IOB) were used for bioleaching in the form of mixed culture. The energy substrates used were 

elemental sulfur and FeSO4 to raise the SOB and IOB for maintenance and inoculums, respectively. The 

bioleaching media preparation was done by adding elemental sulfur and pyrite (1:1 in weight) into the basic 

medium containing (NH4)2SO4, 2.0gL−1; KH2PO4, 1.0gL−1; MgSO4 ·7H2O, 1.0gL−1; CaCl2, 0.25gL−1; distilled 

water, 1000mL; natural pH 5.5. The input parameters such as SC (gL-1) , pH, T (Celsius) , and PD % were 

varied between 24 to 40 gL-1 , 1.6 to 2.4, 30 to 40 Celsius, and 8 to 12% respectively. More details about the 

experiment can be found in [22]. Fig. 2 represents schematic of research problem statement. 

 

 

3. Predictive modelling using Statistical based automated neural networks 

Statistical based Automated Neural Network (SANN) is an artificial intelligence (AI) method in modelling of 

complex systems. A SANN model can optimize its response by adjusting its according to the feedback it 

receives. An industrial software named “STATISTICA 12” was used as operating environment for modelling 

SANN. When the network is executed, the input variable values are placed in the input units, and then the hidden 

and output layer units are executed progressively in their sequential order. The input layer comprises of the 

input parameters such as energy substrates concentration (SC), incubating temperature (T), pulp density (PD) 

and pH control of bioleaching media (pH). The output layer comprises of the two response variables (yield (%) 

of Zn and Mn). 
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Compared to RSM, the SANN is an automated modelling process. This implies that any assumption of structure 

of model is not needed. Total of two sets of 29 data samples for Zn and Mn yield are used for modelling in 

present work. Sampling of data is done using random sampling algorithm where randomly 70% of data is 

considered as training set, 15% of data is for testing and remaining 15% for model validation. Trial-and-error 

method is applied to network settings determination. For extraction of Zn metal, Multilayer Perceptron (MLP) 

is set to minimum hidden units: 4 and maximum hidden units: 6, Networks to train is 2000 while networks to 

retain is 5, MLP activation functions used are for hidden layer is tanh and for output layer is logistic, Weight 

decay for hidden layer is set to .0001 for minimum and .001 for maximum, and fixed seed for network 

initialization is set to 2000. For extraction of Mn metal, Radial Basis Function (RBF) generally represented by 

Equation 1 is set to minimum hidden units: 4 and maximum hidden units: 16, Networks to train is 2000 while 

networks to retain is 5, and fixed seed for network initialization is set to 2000. The best model is selected based 

on the maximum training performance.. Reason for considering MLP as network type for analyzing extraction 

of Zn and RBF for Mn is because it was observed prediction of results were more accurate with the network 

type MLP compared to RBF for analyzing extraction of Zn, while for Mn better accuracy of prediction of result 

was given by RBF network type compared to other models.       

𝜑𝜑(𝒙𝒙) = 𝒆𝒆−𝜷𝜷||𝒙𝒙−µ||𝟐𝟐                                                                   …Eqn.1   

Where,  

ϕ  is the output scalar function, x is the input data vector, µ refers to mean of the distribution, and β  is 
reciprocal of standard deviation which controls the width of distribution. 

                                                                     

4. Results and Discussion  
4.1 SANN based Zn and Mn models 

In this section, the performance of the SANN models including the statistical fit, two dimensional (parametric 

analysis) and three dimensional (interaction analysis) is discussed comprehensively. The input parameters and 

observed response is listed is Table 1 and the predicted values are listed in Table 2. The predicted value of Zn 

concentration is ranging from 4.7 g/L to 10.0 g/L and for Mn it is ranging from 9.20 g/L and 12.50 g/L. As been 
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seen in table 2, the predicted and actual values for both Zn and Mn are close to each other. The best fit SANN 

model obtained for extraction of Zn is MLP 4-5-1 and for the extraction of Mn is RBF 4-16-1 (Table.3). 

 

 

Figure 3(a) and Figure 4(a) shows the goodness-of-fit of the SANN model for Zn and Mn extraction 

respectively. It can be observed from the Figure 3(a) and Figure 4(a) that most data points lie near the regression 

line y=x, which indicates the estimated values calculated using the SANN model is close to the actual values 

with higher value of coefficient of determination (R2). The smaller variation between the calculated values and 

the experimental values  reveals that the SANN based Zn and Mn models are accurate. Which can be observed 

from figure 3(b) and 4(b) for there corresponding best fit model MLP 4-5-1 and RBF 4-15-1 respectively. 

 

 

The coefficient of determination values for Zn and Mn are 0.941 and 0.964 respectively. While the regression 

line equation for Zn and Mn extraction is as follows, 

𝒑𝒑𝒑𝒑𝒆𝒆𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒆𝒆𝒑𝒑 𝒁𝒁𝒁𝒁 = 𝟎𝟎.𝟗𝟗𝟗𝟗𝟗𝟗(𝑶𝑶𝑶𝑶𝑶𝑶𝒆𝒆𝒑𝒑𝑶𝑶𝒆𝒆𝒑𝒑 𝒁𝒁𝒁𝒁) + 𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒𝟗𝟗                                         …(2) 

𝒑𝒑𝒑𝒑𝒆𝒆𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒆𝒆𝒑𝒑 𝑴𝑴𝒁𝒁 = 𝟎𝟎.𝟗𝟗𝟒𝟒𝟗𝟗(𝑶𝑶𝑶𝑶𝑶𝑶𝒆𝒆𝒑𝒑𝑶𝑶𝒆𝒆𝒑𝒑 𝑴𝑴𝒁𝒁) + 𝟎𝟎.𝟗𝟗𝟐𝟐𝟗𝟗𝟗𝟗                                         …(3) 

Parametric analysis is then performed on the model to investigate the effects of each input parameters on 

extraction of Zn and Mn from spent ZMBs. In this analysis, one input is changing while the others are kept 

constant at their average values. Figure 5 shows the effects of each independent variable on the extraction of Zn 

and Mn. From Figure 5 (a), it can be concluded that that there’s a converse interrelation  between SC and Zn 

extraction, The values of Zn extraction is decreasing for whole range of SC. In Figure 5 (b) for the pH range 

1.6-1.9, the value of Zn extraction is increasing and from 1.9-2.4 the values of Zn extraction is found to be 

decreasing, The peak value of Zn extraction is found around 1.9 pH . In Figure 5 (c) for the entire range there 

is negative correlation between T and Zn extraction. In Figure 5 (d) the peak value of Zn extraction is obtained 
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in range of 9.5-10% PD. It’s dome like graph, for initial range from 8% to peak value, the value of Zn extraction 

is increasing with increasing PD, but, after that there is negative correlation between Zn extraction and PD 

limiting at 12%. For Mn extraction, In Figure 5 (e) the value of Mn extraction is constant for range 24-25 g/L 

of SC and from 24 to 40 g/L it’s found to be decreasing. In Figure 5 (f), for the pH range 1.6-1.8, the value of 

Mn extraction is increasing and for range 1.8-2.4 it’s decreasing linearly. The peak value of Mn extraction is 

obtained at 1.8 pH . In Figure 5 (g) the peak value of Mn extraction is obtained around 36                  oC. From 

30 ̊C to 36oC, the value of Mn extraction is increasing linearly and from 36 ̊C to 40 ̊C it’s found to be decreasing. 

In Figure 5 (h), the value of Mn extraction is decreasing for range 8-11.5% of PD. The slope is more negative 

in 8-10.5% range compared to 11.0-12% range. For 11.5-12% range of PD, the values of Mn extraction is 

constant. 

 

Global sensitivity analysis gives the percentage effect (%) contribution of input parameters on the two response 

variables. The global sensitivity analysis result for the extraction of Zn and Mn is shown in table 4. 

 

From Table 4, we can found that that for extraction of Zn, the most contributing parameters are PD and pH 

while for extraction of Mn the most contributing parameters are PD and T. The effects of input parameters on 

the extraction of Zn and Mn are studied through the interaction analysis (3-D), In which two of the inputs are 

varied while others are kept constant average values. These results are in good accordance with that of the 

parametric analysis. Considering the global sensitivity analysis, interaction analysis is obtained only between 

those parameters which affect the response variable most. In Figure 6 (a) the dome structure is obtained which 

signifies that for pH around 1.9 and PD in range of 9.5-10% gives maximum extraction of Zn. Figure 6 (b) is 

corresponding contour plot of Figure 6 (a). In Figure 6 (c), curved ramp structure is obtained. For the given 

range of 36 C̊ to 38 ̊C and PD in range of 7.5-8%, gives maximum extraction of Mn. Figure 6 (d) is 

corresponding contour plot of Figure 6 (c). In Figure 6 (e), the curved ramp structure is obtained which signifies 
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that for T at 30 ̊C and PD at 10% gives maximum extraction of Zn. Figure 6 (f) is corresponding contour plot 

of Figure 6 (e). In Figure 6 (g), the plot signifies that for PD in range 7.5-8% and for pH 2.0 the maximum 

extraction of Mn is obtained. Figure 6 (h) is corresponding contour plot of Figure 6 (g). It can be formulated 

that optimum values of input parameters for bioleaching process are SC=32 g/L, pH=1.9-2.0, T=30 ̊C, PD=10% 

for Zn and SC=32 g/L, pH=2.0, T=35 C̊, PD=8% for Mn. Considering the initial concentration of Zn and Mn 

in spent ZMBs, the maximum extraction efficiencies for Zn and Mn are 50%and 50.5% respectively for the 

obtained SANN models.  

 

4.2 ANOVA model for Zn and Mn extraction and comparison with SANN models 

In this section, the result of ANOVA model is being discussed when applied on the data set shown in Table 1. 

Table 5 gives the predicted value of response from ANOVA model. Table 6 shows the Linear regression 

statistics. It can be observed from Table 5, the maximum output for Zn and Mn is obtained at run no. 1 and run 

no. 25 respectively. It can be seen from Table 6 that coefficient of determination for Zn response is lower than 

0.90. This shows that linear ANOVA model is not able to approximately accurate when compared with SANN 

models where coefficient of determination values is found to be higher than 0.94 (Table 3). Please refer 

Appendix 1 for tables A1 and A2 on analysis of variance and computation of coefficient of input parameters. 

 

Finally, the optimum parameter values for maximum recovery of Zn determined are SC=32 g/L, pH=1.9-2.0, 

T=30 ̊ C, PD=10% and SC=32 g/L, pH=2.0, T=35 ̊ C, PD=8% for maximum extraction of Mn. Considering the 

initial concentration of Zn and Mn in spent ZMBs, the maximum extraction efficiencies for Zn and Mn are 

50%and 50.5% respectively for the obtained SANN models. Though it is less than the previously reported work 

where maximum extraction efficiencies for Zn and Mn are 52.5%and 52.4% respectively [20]. But, it should be 

noted that the method implemented in previous work [20] is more complex and doesn’t effectively represent 
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the process behaviour compared to SANN model. Xin et. al [18], reported 60% maximum extraction of Mn, but 

these process is very length as it takes 7 days to attain the maximum extraction of Mn.  

5.Conclusions 

The present study emphasizes the research issue on the evaluation and determination of optimum values of 

energy substrates concentration (SC), incubating temperature (T), pulp density (PD) and pH control of 

bioleaching media (pH) for maximum extraction of Zn and Mn from the spend ZMBs batteries. In this 

perspective, the paper proposes the statistical based Automated Neural Network for optimizing the settings of 

bioleaching process for Zn and Mn removal from spent ZMBs. Experiments were performed to validate the 

SANN models with 18% of the total samples used for testing and validation. It was found that the proposed 

SANN based metal extraction models exactly calculated the production of Zn and Mn with higher values of 

coefficient of determination (0.94). A comparative analysis of SANN with ANOVA shows that the latter is not 

able to approximately accurate with coefficient of determination values achieved as only 0.66. Based on global 

sensitivity analysis, it was found that for the extraction of Zn, the most contributing parameters are PD and pH 

while for extraction of Mn the most contributing parameters are PD and T. The optimum parameter values for 

maximum recovery of Zn determined are SC=32 g/L, pH=1.9-2.0, T=30 ̊ C, PD=10% and SC=32 g/L, pH=2.0, 

T=35 ̊ C, PD=8% for maximum extraction of Mn. 

 

References 

 [1] Zhang, X., Li, L., Fan, E., Xue, Q., Bian, Y., Wu, F., and Chen, R., 2018, “Toward sustainable and 

systematic recycling of spent rechargeable batteries,” Chemical Society Reviews, 47(19), pp.7239-7302. 

 [2] Eftekhari, A., 2019, “Lithium Batteries for Electric Vehicles: From Economy to Research Strategy,” 

ACS Sustainable Chemistry & Engineering, 7(6), pp.5602-5613. 

This article is protected by copyright. All rights reserved.



Novel optimization method for recycling batteries 

  / 20 
 

 [3] Chung, D., Elgqvist, E., and Santhanagopalan, S., 2016, “Automotive lithium-ion cell manufacturing: 

Regional cost structures and supply chain considerations (No. NREL/TP-6A20-66086),” National 

Renewable Energy Lab.(NREL), Golden, CO (United States). 

 [4] Curry, C., 2017, “Lithium-ion battery costs and market,” Bloomberg New Energy Finance, 5.  

 [5] Huang, B., Pan, Z., Su, X., and An, L., 2018, “Recycling of lithium-ion batteries: Recent advances and 

perspectives,” Journal of Power Sources, 399, pp.274-286. 

 [6] Viswanathan, B., 2016, “Energy sources: fundamentals of chemical conversion processes and 

applications,” Newnes, chapter-12, pp.263-315. 

 [7] Winslow, K.M., Laux, S.J., and Townsend, T.G., 2018, “A review on the growing concern and potential 

management strategies of waste lithium-ion batteries,” Resources, Conservation and Recycling, 129, 

pp.263-277. 

 [8] Dehghani-Sanij, A.R., Tharumalingam, E., Dusseault, M.B., and Fraser, R., 2019, “Study of energy 

storage systems and environmental challenges of batteries,” Renewable and Sustainable Energy 

Reviews, 104, pp.192-208. 

 [9] Hung, Y.Y., Yin, L.T., Wang, J.W., Wang, C.T., Tsai, C.H., and Kuo, Y.M., 2018, “Recycling of spent 

nickel–cadmium battery using a thermal separation process,” Environmental Progress & Sustainable 

Energy, 37(2), pp.645-654. 

 [10] Qazi, S., 2016, “Standalone Photovoltaic (PV) Systems for Disaster Relief and Remote Areas,” 

Elsevier, chapter-2, pp.31-79. 

 [11] Lv, W., Wang, Z., Cao, H., Sun, Y., Zhang, Y., and Sun, Z., 2018, “A critical review and analysis on 

the recycling of spent lithium-ion batteries,” ACS Sustainable Chemistry & Engineering, 6(2), pp.1504-

1521. 

 [12] Huang, K., Li, J., and Xu, Z., 2010, “Characterization and recycling of cadmium from waste nickel–

cadmium batteries,” Waste management, 30(11), pp.2292-2298. 

This article is protected by copyright. All rights reserved.



Novel optimization method for recycling batteries 

  / 20 
 

 [13] Kim, T.H., Senanayake, G., Kang, J.G., Sohn, J.S., Rhee, K.I., Lee, S.W. and Shin, S.M., 2009, 

“Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn–Zn ferrite 

nanoparticles,” Hydrometallurgy, 96(1-2), pp.154-158. 

 [14] Chen, L., Tang, X., Zhang, Y., Li, L., Zeng, Z., and Zhang, Y., 2011, “Process for the recovery of cobalt 

oxalate from spent lithium-ion batteries,” Hydrometallurgy, 108(1-2), pp.80-86. 

 [15] Barashev, A.R., Bazhenov, O.V., and Tarasova, Y.O., 2018, “Alternative Technology of Nickel-

Cadmium Batteries Recycling,” Solid State Phenomena, 284, pp.822-827. 

 [16] Sayilgan, E., Kukrer, T., Civelekoglu, G., Ferella, F., Akcil, A., Veglio, F., and Kitis, M., 2009, “A 

review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries,” 

Hydrometallurgy, 97(3-4), pp.158-166. 

 [17] Zeng, G., Deng, X., Luo, S., Luo, X., and Zou, J., 2012, “A copper-catalyzed bioleaching process for 

enhancement of cobalt dissolution from spent lithium-ion batteries,” Journal of hazardous materials, 

199, pp.164-169. 

 [18] Xin, B., Jiang, W., Aslam, H., Zhang, K., Liu, C., Wang, R., and Wang, Y., 2012, “Bioleaching of zinc 

and manganese from spent Zn–Mn batteries and mechanism exploration,” Bioresource technology, 106, 

pp.147-153. 

 [19] Velgosová, O., Kaduková, J., Marcinčáková, R., Palfy, P., and Trpčevská, J., 2013, “Influence of 

H2SO4 and ferric iron on Cd bioleaching from spent Ni–Cd batteries,” Waste management, 33(2), 

pp.456-461. 

 [20] Niu, Z., Huang, Q., Xin, B., Qi, C., Hu, J., Chen, S., and Li, Y., 2016, “Optimization of bioleaching 

conditions for metal removal from spent zinc‐manganese batteries using response surface 

methodology,” Journal of Chemical Technology & Biotechnology, 91(3), pp.608-617. 

 [21] Mishra, D., Kim, D.J., Ralph, D.E., Ahn, J.G., and Rhee, Y.H., 2008, “Bioleaching of metals from spent 

lithium ion secondary batteries using Acidithiobacillus ferrooxidans,” Waste management, 28(2), 

pp.333-338. 

This article is protected by copyright. All rights reserved.



Novel optimization method for recycling batteries 

  / 20 
 

 [22] Haghshenas, D.F., Bonakdarpour, B., Alamdari, E.K., and Nasernejad, B., 2012, Optimization of 

physicochemical parameters for bioleaching of sphalerite by Acidithiobacillus ferrooxidans using 

shaking bioreactors,” Hydrometallurgy, 111, pp.22-28. 

 [23] Tanong, K., Coudert, L., Chartier, M., Mercier, G., and Blais, J.F., 2017, “Study of the factors 

influencing the metals solubilisation from a mixture of waste batteries by response surface 

methodology,” Environmental technology, 38(24), pp.3167-3179. 

 [24] Desai, K.M., Survase, S.A., Saudagar, P.S., Lele, S.S., and Singhal, R.S., 2008, “Comparison of 

artificial neural network (ANN) and response surface methodology (RSM) in fermentation media 

optimization: case study of fermentative production of scleroglucan,” Biochemical Engineering 

Journal, 41(3), pp.266-273. 

 [25] Ebrahimzade, H., Khayati, G.R., and Schaffie, M., 2018, “A novel predictive model for estimation of 

cobalt leaching from waste Li-ion batteries: Application of genetic programming for design,” Journal 

of environmental chemical engineering, 6(4), pp.3999-4007. 

 [26] Ebrahimzade, H., Khayati, G.R., and Schaffie, M., 2019, “PSO–ANN-based prediction of cobalt 

leaching rate from waste lithium-ion batteries,” Journal of Material Cycles and Waste Management, 

pp.1-12. 

 [27] Yun, L., Goyal, A., Singh, V.P., Gao, L., Peng, X., Niu, X., Wang, C.T., and Garg, A., 2019, 

“Experimental coupled predictive modelling based recycling of waste printed circuit boards for 

maximum extraction of copper,” Journal of cleaner production, 218, pp.763-771. 

 [28] Novák, D., and Lehký, D., 2006, “ANN inverse analysis based on stochastic small-sample training set 

simulation,” Engineering Applications of Artificial Intelligence, 19(7), pp.731-740. 

 [29] Ruhatiya, C., Singh, S., Goyal, A., Niu, X., Nguyen, H., Ngoc, T., Nguyen, V.H., Tran, V.M., Phung, 

L.E., Loan, M., and Garg, A., 2020, “Electrochemical performance enhancement of sodium-ion 

batteries fabricated with NaNi1/3Mn1/3Co1/3O2 cathodes using support vector regression-simplex 

This article is protected by copyright. All rights reserved.



Novel optimization method for recycling batteries 

  / 20 
 

algorithm approach,” Journal of Electrochemical Energy Conversion and Storage, 17(1), pp.011009, 

https://doi.org/10.1115/1.4044358 

 [30] Jiang, D., Wu, K., Chen, D., Tu, G., Zhou, T., Garg, A., and Gao, L., 2020, “A probability and integrated 

learning based classification algorithm for high-level human emotion recognition problems,” 

Measurement, 150, pp.107049, https://doi.org/10.1016/j.measurement.2019.107049 

 [31] Li, W., Peng, X., Xiao, M., Garg, A., and Gao, L., 2019, “Multi‐objective design optimization for 

mini‐channel cooling battery thermal management system in an electric vehicle , International Journal 

of Energy Research, 43, pp.3668-3680, https://doi.org/10.1002/er.4518 

 [32] Li, W., Chen, S., Peng, X., Xiao, M., Gao, L., Garg, A., and Bao, N., 2019, “A Comprehensive 

Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery 

Module for Electric Vehicles,” Engineering, 5(4), pp.795-802, 

https://doi.org/10.1016/j.eng.2019.07.005 

 [33] Goyal, A., Niu, X., Le, N.P.P., Le Huynh, N.T., Le, M.L.P., Gao, L., and Garg, A., 2019, “Precision 

Manufacturing of NaNi 1/3 Mn 1/3 Co 1/3 O 2 Cathodes: Study of Structure Evolution and Performance 

at Varied Calcination Temperatures,” Journal of Electronic Materials, 48(8), pp.5301-5309, 

https://doi.org/10.1007/s11664-019-07340-1 

 

 

Tables: 

 

Table 1. Input parameters and observed response for Zn and Mn recovery during bioleaching of spent. ZMBs. 

Run no. SC g/L pH T (oC) PD% Observed Zn 
g/L 

Observed Mn 
g/L 

1 28 1.8 32.5 9 9.4 11.4 
2 36 1.8 32.5 9 9.1 10.9 
3 28 2.2 32.5 9 7.9 10.7 
4 36 2.2 32.5 9 6.4 10.6 
5 28 1.8 37.5 9 8.2 11.6 
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6 36 1.8 37.5 9 7.8 11.5 
7 28 2.2 37.5 9 6.3 11 
8 36 2.2 37.5 9 5.4 11 
9 28 1.8 32.5 11 9.1 10 

10 36 1.8 32.5 11 8.7 9.7 
11 28 2.2 32.5 11 6.6 9.7 
12 36 2.2 32.5 11 6 9.3 
13 28 1.8 37.5 11 5.8 10.2 
14 36 1.8 37.5 11 5.5 10 
15 28 2.2 37.5 11 5.6 9.3 
16 36 2.2 37.5 11 5.3 9.1 
17 32 2 35 10 9.8 10.7 
18 32 2 35 10 9.8 10.5 
19 24 2 35 10 10.3 10.8 
20 40 2 35 10 7.2 10.1 
21 32 1.6 35 10 7.3 10.5 
22 32 2.4 35 10 4.8 9.8 
23 32 2 30 10 8.6 9.5 
24 32 2 40 10 6.4 9.7 
25 32 2 35 8 6.6 12.5 
26 32 2 35 12 4.6 9.7 
27 32 2 35 10 9.8 11 
28 32 2 35 10 9.8 10.5 
29 32 2 35 10 9.9 10.8 

 

 

Table 2. Predicted response from SANN based Zn and Mn models 

Run no. Observed Zn g/L Predicted Zn g/L Observed Mn g/L Predicted Mn g/L 

1 9.4 9.1 11.4 10.9 
2 9.1 8.3 10.9 10.9 
3 7.9 7.5 10.7 10.7 
4 6.4 5.9 10.6 10.5 
5 8.2 8.1 11.6 11.5 
6 7.8 7.7 11.5 11.5 
7 6.3 6.2 11 11.0 
8 5.4 4.9 11 10.9 
9 9.1 8.5 10 9.9 
10 8.7 8.4 9.7 9.6 
11 6.6 7 9.7 9.6 
12 6 6 9.3 9.3 
13 5.8 5.5 10.2 10.2 
14 5.5 5.1 10 9.9 
15 5.6 5.9 9.3 9.3 
16 5.3 5.7 9.1 9.2 
17 9.8 9.5 10.7 10.6 
18 9.8 9.5 10.5 10.6 
19 10.3 10.0 10.8 10.8 
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20 7.2 7.4 10.1 10.1 
21 7.3 7.5 10.5 10.5 
22 4.8 4.7 9.8 9.8 
23 8.6 10.1 9.5 9.6 
24 6.4 6.8 9.7 9.7 
25 6.6 6.6 12.5 12.5 
26 4.6 4.9 9.7 9.7 
27 9.8 9.5 11 10.6 
28 9.8 9.5 10.5 10.6 
29 9.9 9.5 10.8 10.6 

 

 

Table 3. Best fit SANN model for extraction of Zn and Mn. 

 

 

 

Table 4. Global sensitivity analysis showing percentage contribution of inputs on the extraction of Zn and Mn 

Metal 
(Response) 

Network PD % T  ̊ C pH SC g/L 

Zn MLP 4-5-1 11.7 5.6 10.1 2.5 
Mn RBF 4-16-1 21.0 6.5 4.1 1.6 
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Table 5. Predicted response of linear ANOVA model and observed responses (Zn and Mn extraction) 

Run no. Observed Zn g/L Predicted Zn g/L Observed Mn g/L Predicted Mn g/L 

1 9.4 10.0 11.4 11.4 
2 9.1 9.10 10.9 11.2 
3 7.9 8.4 10.7 10.9 
4 6.4 7.5 10.6 10.7 
5 8.2 8.5 11.6 11.6 
6 7.8 7.6 11.5 11.3 
7 6.3 6.9 11 11.1 
8 5.4 6.0 11 10.8 
9 9.1 9.0 10 10.0 
10 8.7 8.1 9.7 9.7 
11 6.6 7.4 9.7 9.5 
12 6 6.5 9.3 9.3 
13 5.8 7.5 10.2 10.2 
14 5.5 6.6 10 9.9 
15 5.6 5.9 9.3 9.7 
16 5.3 5.0 9.1 9.4 
17 9.8 7.5 10.7 10.4 
18 9.8 7.5 10.5 10.4 
19 10.3 8.4 10.8 10.7 
20 7.2 6.6 10.1 10.2 
21 7.3 9.1 10.5 10.9 
22 4.8 5.9 9.8 9.9 
23 8.6 9.0 9.5 10.3 
24 6.4 6.0 9.7 10.6 
25 6.6 8.5 12.5 11.8 
26 4.6 6.5 9.7 9 
27 9.8 7.5 11 10.4 
28 9.8 7.5 10.5 10.4 
29 9.9 7.5 10.8 10.4 

 

Table 6. Regression statistics for ANOVA model for Zn and Mn extraction  

 Response Zn Response Mn 
Multiple R 0.64 0.89 
R square 0.42 0.80 

Adjusted R square 0.33 0.77 
Standard Error 1.45 0.38 
Observations 29 29 
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Figures uploaded as (tiff file): 

1. Figure 1. Bioleaching process and its optimization. 

2. Figure 2. Schematic of research problem statement. 

3. Figure 3(a). Coefficient of determination for SANN based Zn model 

4. Figure 3(b). Zn extraction vs Run no. for MLP 4-5-1 model. 

5. Figure 4(a). Coefficient of determination for SANN based Mn model. 

6. Figure 4(b). Mn extraction vs Run no. for RBF 4-16-1 model. 

7. Figure 5(a, b,c d, e, f, g, h). 2D plots showing the effects of one inputs on the extraction of Zn and Mn.  

8. Figure 6(a, b, c, d, e, f, g, h). 3D plots and corresponding contour plots showing the interaction effects of the inputs 
on the extraction of Zn and Mn. 
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APPENDIX 1 

Table A1. Analysis of Variance (ANOVA) for Zn and Mn extraction 

Response df SS MS F 
Zn Regression 4 39.37038333 9.842595833 4.616183808 

Residual 24 51.17263736 2.132193223 - 
Total 28 90.54302069 - - 

Mn Regression 4 14.18423333 3.546058333 24.11760483 
Residual 24 3.528766667 0.147031944 - 

Total 28 17.713 - - 
 

Table A2. Values of regression coefficients for Zn/Mn extraction   

Response  Coefficients Standard error 
Zn Intercept 34.52106322 6.398481123 

SC -0.1128125 0.07451568 
Ph -3.960416667 1.490313594 
T -0.298166667 0.119225087 

PD -0.50375 0.298062719 
Mn Intercept 20.10833333 1.680232822 

SC -0.033125 0.019567721 
Ph -1.245833333 0.391354412 
T 0.028 0.031308353 

PD -0.711666667 0.078270882 
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