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Article synopsis 

Expression of the metalloproteinase pappalysin 2 (PAPPA2) was inhibited in the stomach of 

patients with type-I gastric neuroendocrine tumors following treatment with the 

gastrin/CCK2 receptor antagonist, netazepide. Gastrin-induced PAPPA2 expression in CCK2R 

expressing gastric epithelial cells resulted in increased insulin-like growth factor (IGF) 

bioavailability, promotion of cell migration and tissue remodeling.  
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Abstract 

Background & Aims: In patients with autoimmune atrophic gastritis and achlorhydria, 

hypergastrinemia is associated with development of type-1 gastric neuroendocrine tumors (gNETs). 

Twelve months’ treatment with netazepide (YF476), an antagonist of the cholecystokinin B receptor 

(CCKBR or CCK2R), eradicated some type-1 gNETs in patients. We investigated the mechanisms by 

which netazepide induces gNET regression using gene expression profiling. 

 

Methods: We obtained serum samples and gastric corpus biopsies from 8 patients with 

hypergastrinemia and type-1 gNETs enrolled in a phase 2 trial of netazepide. Control samples were 

obtained from 10 patients without gastric cancer. We used amplified and biotinylated sense-strand 

DNA targets from total RNA and Affymetrix Human Gene 2.0 ST microarrays to identify differentially 

expressed genes in stomach tissues from patients with type-1 gNETs before, during, and after 

netazepide treatment. Findings were validated in a human AGSGR gastric adenocarcinoma cell line 

that stably expresses human CCK2R, primary mouse gastroids, transgenic hypergastrinemic INS-GAS 

mice, and patient samples. 

 

Results: Levels of pappalysin 2 (PAPPA2) mRNA were significantly reduced in gNET tissues from 

patients receiving netazepide therapy compared to tissues collected before therapy. PAPPA2 is a 

metalloproteinase that increases bioavailability of insulin-like growth factor (IGF) by cleaving IGF 

binding proteins (IGFBPs). PAPPA2 expression was increased in the gastric corpus of patients with 

type-1 gNETs and immunohistochemistry showed localization in the same vicinity as CCK2R-

expressing enterochromaffin-like cells. Upregulation of PAPPA2 was also found in stomachs of INS-

GAS mice. Gastrin increased PAPPA2 expression with time and in a dose-dependent manner, in 

gastric AGSGR cells and mouse gastroids by activating CCK2R. Knockdown of PAPPA2 in AGSGR cells 

with small interfering RNAs significantly decreased their migratory response and tissue remodeling 

in response to gastrin. Gastrin altered the expression and cleavage of IGFBP3 and IGFBP5. 
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Conclusions: In an analysis of human gNETS and mice, we found that gastrin upregulates expression 

of gastric PAPPA2. Increased PAPPA2 alters IGF bioavailability, cell migration, and tissue remodeling, 

which are involved in type-1 gNET development. These effects are inhibited by netazepide. 

 

KEY WORDS:  tumorigenesis, carcinogenesis, mouse model, hormone, signal transduction 
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Introduction 

Gastric neuroendocrine (carcinoid) tumors (gNETs) are relatively rare and originate from 

enterochromaffin-like (ECL) cells in the oxyntic mucosa of the stomach. They are classified as three 

types (with an extremely rare fourth type) on the basis of pathological and morphological 

characteristics[1, 2]. Type-1 gNETs develop as a consequence of the hypergastrinemia that is 

associated with autoimmune atrophic gastritis, achlorhydria and frequently pernicious anemia. 

Although type-1 gNETs are usually grade 1 (Ki67 proliferative index <2%) and frequently have an 

indolent clinical course, 1-20% of patients develop metastases[3, 4] .  

The physiological functions of the hormone gastrin have been largely investigated within the 

stomach, focussing primarily on acid secretion following cholecystokinin type-2 receptor (CCK2R) 

activation[5]. However, gastrin also plays a central role in regulating gastric tissue remodelling and 

cell migration[5-10]. These changes are thought to play a role in type-1 gNET development.  

Previous studies have suggested that matrix metalloproteinases (MMPs) and insulin-like growth 

factors (IGFs) play important roles in regulating cellular pathways and thus tumor development in 

the stomach. Infection with Helicobacter pylori (H. pylori) increases the production and secretion of 

MMP7 from gastric epithelial cells[11-13]. Secreted MMP7 liberates insulin like growth factor (IGF)-II 

from IGFBP-5 (which is released from sub-epithelial cells) and stimulates the expansion and 

migration of cells in the surrounding gastric microenvironment[14, 15]. Hypergastrinemia also 

increases gastric MMP7 expression (as well as that of MMP1[7] and MMP9[9]), and this is thought to 

promote type-1 gNET development via a similar mechanism[10, 14, 15].  

Small localised type-1 gNETs can often be successfully removed endoscopically[2]. However in many 

cases, complete endoscopic resection is not possible due to polyp multiplicity. Therefore, other 

methods of treatment sometimes need to be considered. Antrectomy can be effective by removing 

gastrin-secreting G-cells [16], but this involves invasive surgery. Small case series have also reported 
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benefits from using long-acting somatostatin analogues[17, 18]. However, most recent attention has 

been given to the potential role of a gastrin/CCK2R antagonist. 

Netazepide (YF476) at a concentration of 500μmol/kg has been shown to inhibit ECL cell hyper-

proliferation and spontaneous type-1 gNET development in African cotton rats (Sigmodon 

hispidus)[19] and Mastomys rodents (Praomys natalensis)[20]. Recent clinical trials have also 

demonstrated that patients with type-1 gNETs who received a single daily dose of netazepide orally 

showed significant reductions in gNET size and number at both 12 weeks and 12 months[21-23]. 

Biomarkers of gastric pathology such as chromogranin A (CGA; a biomarker of ECL-cell activity), 

MMP-7 and histidine decarboxylase (HDC) were also suppressed during therapy, while serum gastrin 

concentrations remained unaffected.  

The mechanisms by which netazepide induces these effects in type-1 gNET patients however are 

currently unknown. We therefore performed a transcriptomic study using gastric biopsy samples 

obtained from patients before, during and after netazepide treatment to investigate the molecular 

pathways that were altered during therapy with this drug. One of the mRNAs that showed significant 

changes in expression was PAPPA2. As this protein is known to promote IGF bioavailability in other 

tissues[24], and as IGFs have a proven involvement in gastric tumorigenesis[14, 15], we 

concentrated our subsequent analyses on this protein.  
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Results 

Netazepide alters the expression of several genes in hypergastrinemic patients with type-

1 gNETs 

Microarray analysis identified several clusters of genes that were differentially expressed in the 

gastric corpus of hypergastrinemic patients with type-1 gNETs taken before, during (6 and 12 weeks) 

and 12 weeks after a 50mg oral daily dose of netazepide (Figures 1A and 1B). Of these, clusters 1 and 

7 increased after withdrawal of netazepide (Figure 1C) and clusters 10, 13 and 14 showed a 

significant decrease in expression whilst patients were taking netazepide (weeks 6 and 12), which 

returned to pre-treatment levels after treatment withdrawal (Figure 1D). Netazepide-inhibited genes 

within this group included: glycoprotein hormones alpha polypeptide (GHAP), endoplasmic 

reticulum protein 27 (ERP27), claudin-10 (CLDN10), miRNA-487b (MIR487B), Charcot-Leyden crystal 

galectin (CLC), secretogranin II (SCG2), peptidyl-glycine alpha-amidating mono-oxygenase (PAM), 

monoamine oxidase B (MAOB), pappalysin-2 (PAPPA2), tryptophan hydroxylase 1 (TPH1), 

chromogranin A (CHGA) and histidine decarboxylase (HDC). A list of the most upregulated and 

downregulated genes after 12 weeks of netazepide relative to baseline is shown in supplementary 

table 1. We have previously reported significant decreases in the gastric mRNA expression of CHGA 

and HDC during netazepide treatment[22]. Of the other genes, the highest fold changes were 

observed with GHAP and PAPPA2. As PAPPA2 is a metalloproteinase that regulates the IGF 

pathway[24] which is known to be involved in gNET development, this gene/protein was chosen for 

further investigation.  

PAPPA2 expression increases in the stomach but not the serum of hypergastrinemic 

patients with type-1 gNETs 

In gastric corpus biopsies taken from 8 patients with hypergastrinemia and type-1 gNETs, PAPPA2 

mRNA abundance was significantly higher at baseline compared to biopsies from 10 healthy 

normogastrinemic control subjects. Gastric PAPPA2 mRNA expression decreased whilst patients 

were taking 50mg oral daily netazepide, both in the short-term 12 week (Figure 2A) and long-term 
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12 month studies (Figure 2B). These data supported the previous microarray findings and also 

confirmed sustained inhibition of gastric PAPPA2 mRNA expression by netazepide in the longer 12 

month trial. 

Immunohistochemical analysis of serial sections indicated localization of PAPPA2 in areas of the 

tissue which also expressed chromogranin A thus representing areas of micronodular ECL cell 

hyperplasia (Figure 2C) and type-1 gNET (Figure 2D) in human gastric biopsies, suggesting that this 

protein is specifically upregulated in CCK2R expressing gNET cells. However, circulating PAPPA2 

concentrations showed no significant differences between hypergastrinemic type-1 gNET patients 

and healthy controls (Figures 2E and 2F). Immunohistochemical PAPPA2 expression was not 

detected in gastric corpus biopsies taken from the same patient while taking netazepide (Figure 3). 

These data therefore suggest that gastrin increases the expression of PAPPA2 locally in the gastric 

mucosa, but the increased expression appears not to be significantly reflected in the circulation.  

Gastrin increases PAPPA2 mRNA and protein expression in AGSGR cells via the CCK2 

receptor 

To investigate whether gastrin directly affects PAPPA2 expression in CCK2R expressing gastric 

epithelial cells, we used human gastric adenocarcinoma cells that have been stably transfected with 

the human CCK2 receptor (AGSGR).  

PAPPA2 mRNA abundance dose-dependently (Figure 4A) and time-dependently (Figure 4B) 

increased with gastrin treatment (N=3, n=4) and was maximal after 10nM gastrin for 24h. 

Immunocytochemistry (representative images are shown in Figure 4C) also demonstrated that 

PAPPA2 protein expression increased significantly in AGSGR cells in a dose and time dependent 

manner following gastrin treatment (Figure 4D and 4E). Western blotting confirmed this increase 

(Figure 4F). Pre-treatment with the CCK2 receptor antagonist YM022 or netazepide (both at 100nM) 

completely reversed the increased expression of PAPPA2 caused by 10nM gastrin for 24h (Figure 

4G).  
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Gastrin stimulates cell growth and increases PAPPA2 expression in mouse gastric 

organoids via the CCK2 receptor 

In order to investigate the effect of gastrin on PAPPA2 expression in the context of the mixed cell 

population of the gastric epithelium, primary mouse gastric organoid cultures were used[25]. Gastrin 

treatment increased average gastric organoid area in a dose and time-dependent manner. This was 

significant after 1nM gastrin for 24h and maximal after 10nM gastrin for 24h (Figure 5A). Gastrin 

treatment also dose- and time-dependently increased PAPPA2 mRNA expression and this was 

significant after 10nM gastrin for 24h (Figure 5B) (N=3, n=4). A similar increase in 

immunofluorescent PAPPA2 expression was also observed following gastrin treatment (Figure 6). 

Both gastrin-stimulated gastric organoid growth and increased PAPPA2 expression were completely 

reversed by pre-treatment with CCK2R antagonist drugs YM022 or netazepide (both at 100nM) 

(Figures 5C and 5D) (N=3, n=4). Representative bright-field images are shown of mouse gastric 

organoids with and without pre-treatment with CCK2R antagonists drugs YM022 or netazepide (both 

at 100nM) and with and without 10nM gastrin treatment for 24h (Figure 5E). Similar observations in 

response to gastrin and CCK2R antagonists were also made in gastroids derived from INS-GAS mice 

(Figure 5F). 

PAPPA2 gene expression is significantly increased in the stomach of hypergastrinemic 

INS-GAS mice  

Gastrin radioimmunoassay showed no significant differences in serum gastrin concentrations 

between 15 week old transgenic INS-GAS mice, and age and sex-matched FVB/N controls (Figure 

7A). However, circulating gastrin concentrations increased with age in the INS-GAS mice and were 

significantly increased compared with age-matched wild type FVB/N mice at 33 weeks of age (Figure 

7B). 

Histological analysis confirmed minimal hyperplasia, but no other significant structural differences in 

the corpus of INS-GAS mice compared with age-matched FVB/N controls at 15 weeks of age (Figure 
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7C). However, as expected and previously described[26], remodelling of the gastric corpus mucosa 

with hyperplasia, atrophy and loss of parietal cells was observed in 33 week old hypergastrinemic 

INS-GAS mice compared with normogastrinemic age-matched FVB/N wild type controls (Figure 7D). 

Quantitative PCR analysis of gastric mucosal scrapes showed no significant differences in PAPPA2 

mRNA between 15 week INS-GAS mice and wild-type FVB/N controls (Figure 7E). However, PAPPA2 

mRNA expression was significantly increased in 33 week INS-GAS mice relative to age matched wild-

type FVB/N mice, in keeping with the observed hypergastrinemia and altered gastric corpus 

histology at this age (Figure 7F).  

Gastrin-stimulated PAPPA2 expression significantly increases cell structural remodelling 

and migration  

Immunofluorescence and qPCR were initially used to confirm the optimal experimental conditions 

for the successful knockdown of PAPPA2 mRNA and protein in AGSGR cells. Quantification of PAPPA2 

expression by immunofluorescence (Figures 8A and 8B) and qPCR (Figure 8C) showed that PAPPA2 

siRNA (25nM, 48h) successfully reduced gastrin-induced PAPPA2 mRNA and protein expression in 

AGSGR cells by >80% and >90%, respectively (N=3, n=4). Scrambled siRNAs had no such effect. 

We chose not to test the effects of PAPPA2 inhibition on cell proliferation as gastrin is known to 

directly inhibit rather than promote the proliferation of AGSGR cells[27]. Instead we decided to 

investigate two other gastrin-induced cellular phenomena that are associated with tumor 

development. 

Gastrin has previously been shown to induce the remodelling of the actin cytoskeleton via the 

extension of long processes in AGSGR cells[6]. Gastrin (10nM for 6h) induced the extension of long 

processes in AGSGR cells. AGSGR cells transfected with 25nM PAPPA2 siRNA for 48h showed a 

significant decrease in the proportion of cells demonstrating the extension of long processes 

following treatment with 10nM gastrin for 6h (P<0.0001). PAPPA2 siRNA (25nM) alone did not have 

any significant effect on cell morphology (N=3, n=3). Representative images are shown of AGSGR cells 
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transfected with PAPPA2 25nM siRNA with and without 10nM gastrin treatment for 6h to allow 

visual comparisons of cell morphology (Figure 8D). 

Gastrin has also previously been shown to promote the migration of AGSGR cells[8]. Gastrin alone 

(10nM) stimulated AGSGR cell migration after 8h. Transfection with PAPPA2 siRNA 25nM for 48h had 

no effect on AGSGR cell migration. However, PAPPA2 siRNA at a concentration of 25nM for 48h 

significantly reduced the migratory response of AGSGR cells following addition of 10nM gastrin 

treatment for 8h (P<0.0001, N=3, n=3). Representative images are shown of the migration of AGSGR 

cells transfected with PAPPA2 25nM siRNA with and without 10nM gastrin treatment for 8h (Figure 

8E). 

Conditioned media from PAPPA2 secreting cells also increased the migration of AGSGR cells, but at 

the concentration tested the response was of a lower magnitude than that induced by gastrin 

(Figure 8F). 

Gastrin increases AGSGR cell migration and cellular remodelling in an IGF-dependent 

manner 

As PAPPA2 is known to promote the cleavage of IGFBPs, thus altering the bioavailability of IGFs, we 

investigated components of this signalling pathway using Western blotting and the insulin-like 

growth factor-1 receptor (IGF-1R) inhibitor, AG1024.  

10nM gastrin for 24h stimulated increased expression of intact IGFBP-5 (P<0.05) and cleaved IGFBP-

3 (P<0.01) (Figure 9A and B) in the media of AGSGR cells (n=3). In order to investigate whether the 

increased cleavage of IGFBP-3 resulted in increased IGF bioavailability and to what extent this 

influenced gastrin-induced cellular migration and structural remodelling, we employed the IGF-1R 

inhibitor AG1024. In the presence of scrambled siRNA, pre-treatment with 3-20μM AG1024 for 

20min followed by 10nM gastrin treatment for 6h resulted in significant decreases in the percentage 

of cells expressing long processes (P<0.0001) (Figure 9C, D). Similarly the cellular migration induced 

by 10nM gastrin for 8h was significantly inhibited by 1-20µM AG1024 (P<0.0001) (Figure 9E, F). 
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Transfection with PAPPA2 siRNA (25nM) for 48h resulted in significant partial (approximately 50%) 

decreases in gastrin-induced AGSGR cell remodelling and migration and both these parameters were 

further and completely decreased by 10-20μM AG1024 pre-treatment (P<0.001 and P<0.0001 

respectively) (Figure 9C-F). These findings suggest that the actions of gastrin are wholly dependent 

on IGF-R but that PAPPA2 mediated IGFBP cleavage may be partially responsible for this. For an 

unknown reason AG1024 appeared to result in a small increase in the percentage of cells expressing 

long processes following transfection with PAPP-As siRNA, but in the absence of gastrin (Figure 9C).  
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Discussion  

We have demonstrated that several genes showed reduced abundance in the stomach of 

hypergastrinemic type-1 gNET patients during treatment with the gastrin/CCK2R antagonist 

netazepide. Among these were two ECL-cell specific genes, chromogranin A (CHGA) and histidine 

decarboxylase (HDC), which we had previously demonstrated by qPCR to be reduced in abundance 

in the gastric corpus during netazepide therapy[22, 23]. Of the other ten genes that also showed 

significant reductions in abundance during netazepide therapy, several (such as secretogranin II 

(SCG2) and peptidyl-glycine alpha-amidating mono-oxygenase (PAM)) are already known to be 

associated with the gastrin signalling pathway. Further investigation all these netazepide regulated 

genes will eventually be required to investigate the extent to which they individually contribute 

towards regulating a patient’s response to this drug. 

We were however intrigued to find that the abundance of the metalloproteinase PAPPA2 was 

significantly reduced in the stomach during netazepide treatment. PAPPA2 is known to promote IGF 

signalling, a critical pathway involved in gastric tumor development. However, PAPPA2 has not 

previously been associated with gastrointestinal disease, gastrin signalling or neuroendocrine tumor 

development. We therefore focussed the remainder of this current study on this protein. 

We showed that PAPPA2 expression is increased in the gastric mucosa of hypergastrinemic human 

subjects (Figure 2) and transgenic mice (Figure 7) and that PAPPA2 is expressed in areas which show 

a high density of CCK2R expressing ECL cells in patients with type-1 gNETs (Figure 2C,D). Gastrin also 

directly increased PAPPA2 expression in a human gastric epithelial cell line (Figure 4) and in primary 

mouse gastroid cultures (Figure 5,6), again in a CCK2R-dependent manner. One limitation of our 

experimental approach however is that unlike patients with autoimmune atrophic gastritis, normal 

mouse gastroids that have been cultured in the absence of immortalized stomach mesenchymal cells 

are enriched for the stem cell niche and contain very few differentiated cells such as ECL cells[28]. 
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Thus other CCK2R expressing cells may also be involved in regulating PAPPA2 expression in this 

mouse gastroid model system. Moreover, inhibition of PAPPA2 expression partly reversed gastrin-

induced changes in cell migration and cellular remodelling in AGSGR cells (Figure 8). These effects 

appear to occur due to increased IGF bioavailability and altered IGFBP-3 cleavage appears to 

contribute (Figure 9). Thus, gastrin directly increases PAPPA2 expression in CCK2R-expressing cells in 

the stomach and this phenomenon appears to be functionally important. 

Pappalysin-2 (Pregnancy-associated plasma protein-A2/PAPPA2) is an insulin-like growth factor-

binding protein (IGFBP) proteinase[24]. It is highly expressed in the placenta and in other tissues 

such as the gall bladder, kidney and stomach at much lower levels [29]. PAPPA2 and its homologue, 

PAPPA[30] are the only two members of the pappalysin family within the metzincin superfamily of 

metalloproteinases[31], which also includes the MMPs (matrix metalloproteinases) and ADAMs (a 

disintegrin and metalloproteinase family of enzymes). All metzincins share the elongated zinc-

binding motif (HEXXHXXGXXH), but PAPPA and PAPPA2 are relatively large proteins and contain 

modules not present in other metzincins, such as the Lin-Notch repeat (LNR) module, which 

determines PAPPA substrate specificity[32]. The pappalysins are also distinct from other proteases 

such as the matrix metalloproteinases in that they do not cleave matrix proteins. The only known 

substrates of PAPPA and PAPPA2 are subsets of the IGFBPs[30]. Proteolysis of IGFBPs increases the 

availability of bioactive IGF to activate the IGF-I receptor. Aberrant IGF signalling has been shown to 

be associated with cancer development at several sites[33].  

H. pylori infection and hypergastrinemia have previously been shown to alter gastric IGF signalling 

and promote gastric tumor development via a related mechanism. Both factors have been shown to 

stimulate MMP7 secretion by gastric epithelial cells. This MMP7 in turn cleaves IGFBP-5, leading to 

increased IGF2 bioavailability from subepithelial myofibroblasts. IGF2 acts upon both gastric 

epithelial and stromal cells to alter the gastric microenvironment and promote tumor 

development[10-15]. IGFBP-5 upregulation has also been observed in ~50% of gastric cancers[34]. 
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Tissue inhibitors of metalloproteinases (TIMPs) specifically TIMP1, -3 and -4 have been shown to 

inhibit this process[35]. However, TIMPs do not inhibit the effects of pappalysins. 

Our data suggest that in addition to this previously described MMP-7-associated mechanism, 

hypergastrinemia also stimulates the secretion of PAPPA2 by gastric epithelial cells. The cells 

involved express CCK2R and in the setting of autoimmune atrophic gastritis these are most likely to 

be ECL cells. However paracrine signalling mechanisms involving non-CCK2R expressing cells may 

also be involved. Secreted PAPPA2 selectively cleaves IGFBPs in the stomach, resulting in altered IGF 

signalling and consequent alterations to important tumor associated parameters such as cell 

migration. The mechanism is however crucially different to that induced by MMP-7, because the 

IGFBP family member that is predominantly cleaved by PAPPA2 appears to be IGFBP-3. It is 

therefore likely that both MMP7 and PAPPA2 lead to contribute to gastrin-induced increased IGF 

bioavailability in the stomach, particularly as the responses to gastrin shown in Figure 9 were 

completely inhibited by the IGF-1 antagonist AG1024, but only partially inhibited by PAPPA2 siRNA. 

In conclusion our findings suggest the presence of a novel gastrin-regulated signalling pathway that 

appears to be important during type-I gNET development. Moreover, inhibition of this pathway by 

netazepide appears to be one mechanism by which this drug results in gNET tumor regression. It will 

therefore be interesting to investigate whether single nucleotide polymorphisms in the PAPPA2 gene 

influence gNET pathogenesis or netazepide response. In addition it will also be important to 

investigate whether this pathway also plays an important role in H. pylori associated gastric 

carcinogenesis, particularly as the premalignant condition of atrophic gastritis is also associated with 

hypergastrinemia. 
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Methods 

Materials  

Amidated unsulphated heptadecapeptide gastrin (G17) was from Bachem, YM022 was from Tocris 

Bioscience and Netazepide was a gift from Trio Medicines Ltd. All other routine supplies were from 

Sigma unless otherwise stated.  

Human samples 

Serum and gastric corpus biopsies were taken with informed consent and ethical approval at several 

time points from 8 hypergastrinemic patients with type-1 gNETs who were enrolled on studies 1 and 

2 of a phase-2 clinical trial involving treatment with netazepide, as previously described[22, 23]. 

Control samples were obtained with ethical approval from 10 patients who had a normal upper GI 

endoscopy, normal gastric histology, no histological or serological evidence of H. pylori infection, 

were not taking proton pump inhibitor drugs and who had fasting serum gastrin concentrations 

<40pM, as previously described[36].  

Mouse samples 

All mouse experiments were carried out under UK Home Office project licence approval. Animals 

were housed in a specific pathogen free facility at the University of Liverpool with access to food and 

water ad libitum. Gastric mucosal scrapes were taken from 15 or 33 week old transgenic 

hypergastrinemic INS-GAS mice on the FVB/N genetic background[26, 37] and from wild–type FVB/N 

mice and stored in RNA later® solution for gene expression analysis. Additionally, whole stomachs 

were formalin fixed and paraffin embedded for histology. 

Cell culture 

The human AGSGR gastric adenocarcinoma cell line that stably expresses human CCK2R[27] was 

cultured in nutrient mixture F-12 Ham’s medium supplemented with 10% Fetal Bovine Serum 

(Gibco), 2mM L-Glutamine and 1% combined antibiotics streptomycin and penicillin. AGSGR cells 
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expressed chromogranin A and VMAT2 proteins and the abundance of both proteins increased 

following gastrin treatment (Figure 10). The L-WRN cell line that secretes Noggin, R-spondin-3 and 

Wnt-3a into the medium was purchased from American Type Culture Collection (ATCC® CRL-3276™) 

and was cultivated in phenol-red free Dulbecco’s modified Eagle media (DMEM) supplemented with 

10% Fetal Bovine Serum (Gibco), 2mM L-Glutamine, 0.5mg/ml genetecin (Gibco) and 0.5mg/ml 

hygromycin B (Invitrogen). L-WRN cells were used to generate growth factor containing conditioned 

media for gastroid culture. All cells were maintained in a humidified atmosphere of 5% CO2/95% O2 

in Galaxy R (Wolf Laboratories) incubators at 37°C and AGSGR cells underwent antibiotic selection 

with 2µg/ml puromycin for 7 days before experimentation.  

Small interfering RNA (siRNA) transfection 

AGSGR cells were transfected with SMARTpool ON-TARGETplus™ human PAPPA2 siRNA or 

SMARTpool ON-TARGETplus™ Non-targeting Pool siRNA (Table 1) for 48h according to the 

manufacturer’s instructions and using DharmaFECT 1 transfection reagent (GE Dharmacon, 

Lafayette, USA). Cell culture medium was then changed to serum-free medium when 10nM gastrin 

treatment was applied. 

Gastric organoid (gastroid) culture 

The stomachs of 12 week old C57BL/6 or INS-GAS mice were removed and washed in ice cold PBS. 

After removing the forestomach the remaining tissue was cut into 2x1cm sections and placed into 

ice-cold chelation buffer (5mM EDTA in PBS) for 2h at 4°C with constant agitation. Glands were 

released in shaking buffer (43.3mM sucrose, 59.4mM sorbitol in PBS) and ~5000 glands were 

resuspended in 500µl phenol-red free Matrigel (Scientific Laboratory Supplies) containing 50ng/ml 

epidermal growth factor (EGF), 100ng/ml fibroblast growth factor 10 (FGF10) (from R&D systems) 

and 10nM G17. Matrigel (50µl) was plated out, using frozen pipette tips, per well of a pre-warmed 

24 well plate. Glands were incubated for 20min at 37°C before application of 500µl basal medium 

containing 50% L-WRN conditioned medium and 50% DMEM/F12 medium containing 2% L-
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glutamine, 20mM HEPES, 2% N2 and 4% B27 supplements with 2% primocin and maintained at 5% 

CO2/ 95% O2 in Galaxy R incubators at 37°C. Medium was replaced every 4 days with fresh growth 

medium, which is basal medium plus growth factors EGF (50ng/ml), FGF10 (100ng/ml) and G17 

(10nM). Gastroids were passaged every 5-7 days. Experiments involving INS-GAS mice utilised 

gastroids that had previously been cryopreserved. 

Treatment of gastric organoids  

Organoids were split after 5-7 days’ growth in 50µl Matrigel containing growth factors and left to 

grow in basal media. Gastrin was removed 3 days post-passage for 24h prior to treatment. Gastroids 

retained viability following withdrawal of gastrin from the culture media for up to 48h (Figure 11). 

Organoids were initially treated with 0-10nM gastrin for 6-24h to determine a dose response. Then 

organoids were pre-treated for 20 min with or without YM022 or netazepide (100nM) followed by 

10nM G17 for 6-24h. Untreated organoids and treatments of DMSO (1%) or 10nM G17 alone were 

used as negative, vehicle and positive controls respectively. After treatment, 5 images per well were 

taken using a Zeiss Axiovert 25 microscope (Carl Zeiss Microscopy) at x10 magnification and organoid 

area was calculated using ImageJ. Organoids were then washed with ice-cold PBS and harvested 

using 400µl cell dissociation solution for 1h on ice with constant agitation. Whole organoids were 

pelleted and stored at -80°C prior to RNA extraction.  

RNA isolation and reverse transcription 

RNA was extracted from human biopsies using Tri-Reagent as previously described [22]. Total RNA 

was isolated from cells and mouse tissues using the RNeasy Mini Kit (Qiagen). Eluted RNA was 

reverse transcribed into cDNA using the miScript RT II Kit (Qiagen) according to the manufacturer’s 

handbook and stored as undiluted cDNA at -20°C prior to real-time PCR. 
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Microarray 

Samples were hybridised onto the Affymetrix Human Gene 2.0 ST arrays, which provided coverage 

of >30,000 coding transcripts and >11,000 long intergenic non-coding transcripts according to 

manufacturer’s instructions. Briefly, 200ng RNA was prepared using the Affymetrix GeneChip WT 

Plus reagent kit and 3.5ug of fragmented and labelled ss-DNA was loaded onto the array. Arrays 

were hybridised for 16h at 45°C at 60rpm in the Affymetrix hybridization oven 640, then washed and 

stained on the GeneChip Fluidics station 450 using fluidics script FS450_0002. Arrays were scanned 

using the Affymetrix GeneChip scanner 3000 7G and analyses were obtained using the Affymetrix 

GeneChip Command Control and Expression Console software.   

The detection of significant KEGG pathways was conducted using R package ‘gage’[38]. The log2 FC 

from W0/W6 (baseline vs week 6) contrast was inputted into gage for significance testing. The 

default settings were used, except that “same.dir=FALSE” was selected to consider both up and 

down-regulation together. Significant pathways were detected using the criterion of false discovery 

rates (FDR) <5%. Data from the microarray analysis can be found at ArrayExpress using accession 

number E-MTAB-6473. 

Quantitative polymerase chain reaction (qPCR) 

Human PAPPA2 forward and GAPDH qPCR primer pair sequences were purchased from Eurogentec 

(Table 1). Gene expression was assessed using Quantitect primer assays with SYBR green. GAPDH 

was used for normalization, according to the Quantitect Primer Assay Handbook (Qiagen), and 

samples were run in a real-time LightCycler 480 (Roche). Each sample was run in quadruplicate and 

analysis used the ΔΔCT method for relative quantification.  

Cell migration assays 

Transfected or untransfected AGSGR cells were grown as confluent monolayers in 24 well plates 

before a cell-free region was created using a 2μl pipette tip. Cells were washed twice in PBS, then 
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washed twice in serum-free media before the treatment was applied. Whole cells that had migrated 

into the denuded region were counted and scratch wound width was measured using a graticule at 0 

and 8h post-treatment. Representative images were taken at these times using a Zeiss Axiovert 25 

microscope (Carl Zeiss Microscopy).  

Cell morphology assays 

Transfected or untransfected AGSGR cells (1x10
4
/well) were treated with or without 10nM gastrin for 

6h. After treatment, cells were fixed using 3:1 methanol: acetic acid and stained with 0.3% crystal 

violet. The number of cells that presented long processes were counted as a percentage of total cells 

in 3 reference fields (>100 cells) per treatment and representative images were taken using the Zeiss 

Axiovert 25 microscope (Carl Zeiss Microscopy).  

Immunofluorescence 

Transfected or untransfected AGSGR cells were seeded onto 13mm diameter coverslips (VWR 

International Ltd) in 24 well plates and left to adhere for 24h. Mechanically disrupted gastroids were 

also seeded onto coverslips in 24 well plates and left to adhere for 3 days. Cells and 2D gastroid 

monolayers were pre-treated with or without CCK2R inhibitors and with or without 10nM gastrin for 

24h.  

After treatment, samples were washed with PBS, fixed with 4% paraformaldehyde for 30mins and 

permeabilised with 0.2% PBT (0.03g BSA, 10ml PBS and 20μl Triton-X 100) for 30mins.  

For immunofluorescence, samples were blocked in 10% swine serum (Dako) for 45min at room 

temperature before overnight incubation with rabbit polyclonal anti-Plac3 (PAPPA2) primary 

antibody (Thermo Fisher Scientific) diluted 1:500 in PBS in a humidified chamber at 4°C. Salt washes 

were applied before incubation with swine anti-rabbit FITC conjugated secondary antibody (Dako) 

diluted 1:500 in 1% BSA in PBS for 1h, protected from light. Samples were washed before mounting 

with Vectashield® mounting media with DAPI (Vectorlabs) onto glass slides for visualization. Images 
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were captured using the Olympus BX51 fluorescence microscope (Olympus) at 6 reference fields 

(>100 cells) per treatment, and relative intensities of nuclear and cytoplasmic staining were analysed 

using AxioVision Rel. 4.8 software. Samples stained with secondary antibody alone were used as 

non-specific binding controls.  

Immunohistochemistry 

Immunohistochemistry was performed on 4μm thick formalin-fixed, paraffin-embedded human 

gastric biopsy sections. Subsequent to deparaffinization, antigen retrieval was performed by 

microwaving in 10mM citric acid buffer (pH 6) for 20mins for chromogranin A immunohistochemistry 

only. Endogenous peroxidase activity and nonspecific binding were blocked at 22°C using peroxidase 

block (Dako) for 5min and protein block (Dako) for 30min, respectively. Tissue sections were 

incubated with monoclonal mouse primary PAPPA2 antibody (mAb PA257 [39]) or polyclonal rabbit 

primary CGA antibody (Santa Cruz) diluted in 50mM Tris, 100mM NaCl, 1mM CaCl2, 1% BSA, pH 7.4 

for 1h at 22°C, followed by horseradish peroxidase (HRP)-conjugated goat anti-mouse or anti-rabbit 

immunoglobulins (Dako) for 30min at 22°C, and finally developed by incubation with DAB. 

Immunostained tissues were counterstained with Mayer’s hematoxylin (VWR). Separate mouse 

tissue sections were stained with hematoxylin-eosin (HE) (VWR) and scored for quantitative 

histological assessment as previously described[40]. 

ELISAs 

PAPPA2 concentrations in serum samples were determined essentially as previously reported using 

an assay based on two monoclonal antibodies and calibration of the assay with recombinant human 

PAPPA2[39]. 
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Gastrin radioimmunoassay (RIA) 

Serum gastrin concentration was measured by radioimmunoassay (RIA) using antiserum L2 directed 

against the C-terminus of all amidated gastrins as previously described [41]
,
 [42]. Normal fasting 

circulating gastrin concentrations are <40pM.  

Western blotting 

Media samples from AGSGR cells were concentrated using StrataClean resin (Agilent Technologies) 

and processed as previously described[7]. To assess proteolytic activity, proteins were separated on 

15% SDS-polyacrylamide gels and probed using either polyclonal goat IGFBP-3 or IGFBP-5 primary 

antibodies (R&D systems) at 1:500 followed by rabbit anti-goat horseradish peroxidase (HRP)-

conjugated secondary antibody at 1:5000 (R&D systems). Membranes were developed using 

Supersignal (Thermofisher) and chemiluminescence was detected using a Bio-Rad ChemiDoc XRS+ 

(Bio-Rad). Densitometry was performed using ImageLab software (V 3.0). 

Statistics 

Data are presented as means or percentage of control ±SEM. Either one or two-way ANOVA, as 

appropriate, with Sidak post-hoc test were used to establish statistical significance. P<0.05 was 

considered significant. A Mann Whitney-U test was used to assess statistical differences between 

healthy and gNET patient samples. A Wilcoxon signed ranked test with Bonferroni correction was 

used to determine significant differences between repeated samples from the same patients and 

P<0.0125 was considered significant after correction.  
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Figure legends 

Figure 1. Correlation heatmap of expression levels amongst all samples (A) and heatmap of the 

clustered log2 fold change (FC) for differentially expressed genes (B). The 15 clusters are indicated by 

the red and blue bars. A gene’s FC in expression level relative to time point W0 is indicated by 

heatmap colours. Each row represents a gene and regulation profile plot of significant clusters is 

expressed as FC. The expression of clusters 1 and 7 continued to increase after withdrawal of 

netazepide (C) and the expression of clusters 10, 13 and 14 decreased whilst the patients were 

taking netazepide but returned to pre-treatment levels after cessation of the drug. W0 = week 

0/baseline, W6 = 6 weeks on netazepide, W12 = 12 weeks on netazepide and W24 = 12 weeks after 

cessation of netazepide treatment. Abbreviations are explained in Results section. 

Figure 2. PAPPA2 mRNA expression was confirmed using qPCR in 8 patients with type-1 gNETs and 

10 healthy control subjects. PAPPA2 mRNA expression significantly decreased whilst the gNET 

patients were taking 50mg oral daily dose of netazepide and returned to baseline after cessation of 

the treatment, in 12 week (A) and 12 month (B) studies. Statistical significance was determined using 

a Mann Whitney U test between independent healthy controls and baseline samples and a Wilcoxon 

signed rank test between repeated samples with Bonferroni correction for multiple comparisons, as 

not all the samples were normally distributed. P<0.0125 was considered significant after Bonferroni 

correction. *P<0.0125 and ***P<0.001. Immunohistochemical staining showed increased PAPPA2 

and chromogranin A (ChgA) protein expression in serial histological sections of human micronodular 

ECL cell hyperplasia (C) and type-1 gNET tumor tissues (D). However, no significant differences in 

circulating PAPPA2 protein concentrations were observed between patients with hypergastrinemia 

and type-1 gNETs (n=8) (E) compared with healthy controls (n=10) (F).  

Figure 3. Representative immunohistochemical staining for PAPPA2 in human gastric corpus biopsies 

from a patient who was taking netazepide for 12 weeks with a 12 week follow-up, then the same 
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patient on netazepide for a further 12 months. Increased PAPPA2 staining was observed only in 

samples when the patient was not taking netazepide. 

Figure 4. PAPPA2 mRNA (A, B) and protein expression (C, D, E) were assessed using qPCR and 

immunofluorescence respectively and showed increases in expression in dose and time dependent 

manners following gastrin treatment. Maximal increases were observed after 10nM gastrin for 24h. 

Western blot for PAPPA2 in AGSGR cells treated with and without 10nM gastrin for 24h (F). Gastrin-

stimulated PAPPA2 mRNA expression was completely reversed following pre-treatment with 

CCK2R antagonists YM022 (100nM) or netazepide (100nM) (G). Statistical significance was 

determined using either one-way ANOVA or two-way ANOVA where appropriate with Sidak post 

hoc test and P<0.05 was considered significant. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001 

vs untreated control at the same time point. Densitometry was performed using AxioVision Rel. 4.8 

with the mean number of cells analysed 132±13 per treatment.    

Figure 5. Gastrin treatment increased mouse gastric organoid area (μm
2
) (A) and PAPPA2 mRNA 

expression (B) and was maximal after 10nM gastrin for 24h. The increased organoid area and 

PAPPA2 mRNA expression caused by 10nM gastrin were completely reversed by pre-treatment with 

CCK2R antagonist drugs YM022 or netazepide (both 100nM) (C, D). Representative bright-field 

images were taken following 10nM gastrin treatment for 24hs with and without YM022 or 

netazepide pre-treatment (E). . Gastrin treatment also increased transgenic INS-GAS mouse derived 

gastric organoid area (μm
2
) and PAPPA2 mRNA expression after 10nM G17 for 24h. The increased 

organoid area and PAPPA2 mRNA expression caused by 10nM G17 was completely reversed by pre-

treatment with CCK2R antagonist drugs YM022 or netazepide (both 100nM). Statistical significance 

was determined using two-way ANOVA with Sidak post hoc test and P<0.05 was considered 

significant. (***P<0.001 and ****P<0.0001 vs 10nM gastrin positive control, ### P<0.001 and #### 

P<0.0001 vs untreated control). 
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Figure 6. Pre-treatment with either YM022 or netazepide at 100nM significantly reduced gastrin-

induced PAPPA2 protein expression in 2D primary cell cultures derived from wild-type mouse gastric 

organoids. Densitometry was performed using AxioVision Rel. 4.8 on 3 reference fields per 

treatment (A). Representative images were taken per treatment (B). Statistical significance was 

determined using two-way ANOVA with Sidak post hoc test and P<0.05 was considered significant. 

**P<0.01 vs vehicle only control (DMSO 1%).    

Figure 7. Circulating serum gastrin concentrations increased with age in transgenic INS-GAS mice and 

were significantly increased at 33 weeks of age compared with age-matched FVB/N control mice (A, 

B). Corpus histology showed no significant morphological changes in 15 week INS-GAS mice 

compared with age-matched FVB/N controls (C). However, extensive gastric tissue remodelling was 

observed in the corpus of 33 week old INS-GAS mice compared with age-matched wild-type mice 

(D). PAPPA2 mRNA expression was significantly increased in INS-GAS mice at 33 weeks, but not 15 

weeks of age compared with age-matched FVB/N controls (E, F). Statistical significance was 

determined using student t-tests and P<0.05 was considered significant (n=10 mice per group), 

**P<0.01 and ***P<0.001.   

Figure 8. Immunofluorescence and qPCR confirmed PAPPA2 (25nM) siRNA knockdown in AGSGR cells 

after 48h transfection, with a >80% reduction in protein expression (A, B) and >90% reduction in 

PAPPA2 mRNA (C). Densitometry was performed using AxioVision Rel. 4.8 with the mean number of 

cells analysed 147±22 per treatment. PAPPA2 siRNA knockdown significantly reduced the extension 

of long processes at 6h (D) and cell migration at 8h (E) induced by 10nM gastrin treatment. 

Representative images show changes in cell morphology (D) and migration (E) assays. Statistical 

significance was determined using either one-way ANOVA or two-way ANOVA where appropriate 

with Sidak post hoc test and P<0.05 was considered significant. *P<0.05, and ****P<0.0001 vs 

scrambled (25nM) control at the same time point. Recombinant PAPPA2 conditioned media (4μg/ml) 

increased AGSGR cell migration compared with untreated controls but was significantly less than 
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10nM G17 14h positive control (F). Statistical significance was determined using one-way ANOVA 

with Sidak post hoc test and P<0.05 was considered significant. **P<0.01 and ****P<0.0001 vs 

vehicle control, 
# 

P<0.05 and 
####

P<0.0001.     

Figure 9. Gastrin treatment (10nM, 24h) increased the expression of IGFBP-5 and cleavage of IGFBP-

3 (A, B) in the media of AGSGR cells. Experiments were performed in triplicate and statistical 

significance was determined using two-way ANOVA with Sidak post hoc test. *P<0.05 and **P<0.01. 

Pre-treatment (20mins) with the IGF inhibitor, AG1024, further suppressed gastrin-induced 

migration (C, D) and extension of long processes (E, F) in AGSGR cells that have been transfected with 

25nM PAPPA2 siRNA for 48h. Experiments were completed three times and statistical significance 

was determined using two-way ANOVA with Sidak post hoc test. P<0.05 was considered significant, 

****P<0.0001 scrambled 25nM siRNA+ 10nM gastrin vs no inhibitor. 
###

P<0.001 and 
####

P<0.0001 

PAPPA2 25nM siRNA vs no inhibitor and 
+++

P<0.001 and 
++++

P<0.0001 PAPPA2 25nM siRNA +10nM 

gastrin vs no inhibitor.  

Figure 10. Western blots for (A) VMAT2 and (B) chromogranin A in AGSGR cells treated with and 

without 10nM gastrin for 24h. 

Figure 11. Organoids retain cell viability after removal of G17 for 48h, once G17 is reapplied. 

Organoids increased in area until the removal of 10nM G17 at day 3, when growth was inhibited. 

When 10nM G17 was then reapplied at day 5, gastric murine organoid area increased, time-

dependently (A). Representative images are shown in (B).   
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Table 1. Primer and small interfering RNA (siRNA) sequences 

Target gene Type Sequence 

PAPP-A2 Forward primer GCATCTCAGCTGTGGCTCTA 

PAPP-A2 Reverse primer AGTTACTGGGAGCCGAAAGAC 

GAPDH Forward primer CAGCAAGAGCACAAGAGGAA 

GAPDH Reverse primer GTGGTGGGGACTGAGTGT 

PAPP-A2 siRNA pool CAUCAUCGCAGGUGUGUUU 

GCCCAAGCAUUCCCUUAAA 

GGGCUCCGUUCACCAACUA 

CAAGAGGGCAUACAUGAGU 

Non-targeting (scrambled) siRNA pool UGGUUUACAUGUCGACUAA 

UGGUUUACAUGUUGUGUGA 

UGGUUUACAUGUUUUCUGA 

UGGUUUACAUGUUUUCCUA 

 

 

























ID gene_assignment logFC.W06vW0 logFC.W12vW0 logFC.W24vW0 PV.W06vW0 PV.W12vW0PV.W24vW0FDR.W06vW0FDR.W12vW0FDR.W24vW0

17021437 NM_001252383 // CGA // glycoprotein hormones, alpha polypeptide // 6q12-q21 // 1081 /// NM_000735 // CGA // glycoprotein hormones, alpha polypeptide // 6q12-q21 // 1081 /// ENST00000369582 // CGA // glycoprotein hormones, alpha polypeptide // 6q12-q21 // 1081 /// BC010957 // CGA // glycoprotein hormones, alpha polypeptide // 6q12-q21 // 1081-4.065 -4.1275 0.42875 1.40E-11 1.02E-11 0.221224 7.50E-07 5.47E-07 0.648238

16787650 ENST00000216492 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113 /// NM_001275 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113 /// BC006459 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113 /// ENST00000553866 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113 /// ENST00000556076 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113 /// ENST00000556876 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113-1.34125 -1.29125 -0.0775 1.52E-09 3.13E-09 0.591458 4.08E-05 5.60E-05 0.86733

16674151 ENST00000367662 // PAPPA2 // pappalysin 2 // 1q23-q25 // 60676 /// NM_020318 // PAPPA2 // pappalysin 2 // 1q23-q25 // 60676 /// NM_021936 // PAPPA2 // pappalysin 2 // 1q23-q25 // 60676 /// ENST00000367661 // PAPPA2 // pappalysin 2 // 1q23-q25 // 60676 /// BC152552 // PAPPA2 // pappalysin 2 // 1q23-q25 // 60676-2.1375 -2.1825 0.02875 3.13E-09 2.11E-09 0.90398 5.59E-05 5.60E-05 0.975284

16809075 ENST00000267845 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// NM_002112 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// M60445 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// BC130527 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// BC144173 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// ENST00000559816 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// AK027221 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// ENST00000558679 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// AK308833 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// AK310479 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// ENST00000558761 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// ENST00000559190 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// ENST00000543581 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// OTTHUMT00000254540 // HDC // NULL // --- // --- /// OTTHUMT00000418288 // HDC // NULL // --- // ----1.57125 -1.38625 -0.01 8.38E-09 7.81E-08 0.956818 0.0001123 0.000838 0.989862

16888554 ENST00000304698 // FAM171B // family with sequence similarity 171, member B // 2q32.1 // 165215 /// NM_177454 // FAM171B // family with sequence similarity 171, member B // 2q32.1 // 165215 /// AK289737 // FAM171B // family with sequence similarity 171, member B // 2q32.1 // 165215-0.63625 -0.385 0.03625 6.88E-07 0.000491 0.707995 0.0073796 0.1966 0.912656

17110289 NM_000898 // MAOB // monoamine oxidase B // Xp11.23 // 4129 /// ENST00000378069 // MAOB // monoamine oxidase B // Xp11.23 // 4129 /// BC022494 // MAOB // monoamine oxidase B // Xp11.23 // 4129 /// ENST00000536181 // MAOB // monoamine oxidase B // Xp11.23 // 4129 /// ENST00000538942 // MAOB // monoamine oxidase B // Xp11.23 // 4129 /// ENST00000487544 // MAOB // monoamine oxidase B // Xp11.23 // 4129 /// ENST00000468431 // MAOB // monoamine oxidase B // Xp11.23 // 4129-0.665 -0.64125 -0.1 8.27E-07 1.46E-06 0.332583 0.007392 0.006516 0.734164

16736405 ENST00000250018 // TPH1 // tryptophan hydroxylase 1 // 11p15.3-p14 // 7166 /// NM_004179 // TPH1 // tryptophan hydroxylase 1 // 11p15.3-p14 // 7166 /// BC106739 // TPH1 // tryptophan hydroxylase 1 // 11p15.3-p14 // 7166 /// ENST00000341556 // TPH1 // tryptophan hydroxylase 1 // 11p15.3-p14 // 7166 /// ENST00000417164 // TPH1 // tryptophan hydroxylase 1 // 11p15.3-p14 // 7166-1.355 -1.29125 -0.11625 1.81E-06 3.73E-06 0.596678 0.0139006 0.009935 0.869293

16872248 NM_001828 // CLC // Charcot-Leyden crystal galectin // 19q13.1 // 1178 /// ENST00000221804 // CLC // Charcot-Leyden crystal galectin // 19q13.1 // 1178 /// L01664 // CLC // Charcot-Leyden crystal galectin // 19q13.1 // 1178-0.97625 -0.90625 0.04375 2.47E-06 7.33E-06 0.786072 0.0148801 0.01511 0.941824

16908977 NM_003469 // SCG2 // secretogranin II // 2q35-q36 // 7857 /// ENST00000305409 // SCG2 // secretogranin II // 2q35-q36 // 7857 /// BC022509 // SCG2 // secretogranin II // 2q35-q36 // 7857 /// ENST00000421386 // SCG2 // secretogranin II // 2q35-q36 // 7857 /// ENST00000433889 // SCG2 // secretogranin II // 2q35-q36 // 7857-0.865 -0.83 -0.04 2.50E-06 4.60E-06 0.77958 0.0148801 0.01072 0.939356

16761830 ENST00000266397 // ERP27 // endoplasmic reticulum protein 27 // 12p12.3 // 121506 /// NM_152321 // ERP27 // endoplasmic reticulum protein 27 // 12p12.3 // 121506 /// BC030218 // ERP27 // endoplasmic reticulum protein 27 // 12p12.3 // 121506-1.2275 -1.0325 -0.4825 3.07E-06 3.38E-05 0.025982 0.0164602 0.040303 0.323822

16775844 NM_182848 // CLDN10 // claudin 10 // 13q31-q34 // 9071 /// ENST00000376873 // CLDN10 // claudin 10 // 13q31-q34 // 9071 /// NM_001160100 // CLDN10 // claudin 10 // 13q31-q34 // 9071 /// NM_006984 // CLDN10 // claudin 10 // 13q31-q34 // 9071 /// ENST00000299339 // CLDN10 // claudin 10 // 13q31-q34 // 9071 /// BC010920 // CLDN10 // claudin 10 // 13q31-q34 // 9071 /// ENST00000376855 // CLDN10 // claudin 10 // 13q31-q34 // 9071-0.69375 -0.58625 -0.09875 4.45E-06 4.40E-05 0.410404 0.0200888 0.048178 0.780982

16987673 NM_000919 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// NM_138766 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// NM_138821 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// NM_001177306 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// ENST00000438793 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// NM_138822 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// NR_033440 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// ENST00000348126 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// ENST00000346918 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// BC018127 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// AB095007 // PAM // peptidylglycine alpha-amidating monooxygenase // 5q14-q21 // 5066 /// BT007419 // PAM-0.58625 -0.61125 0.0025 4.50E-06 2.42E-06 0.980196 0.0200888 0.008122 0.995195

17118854 --- -0.35625 0.1225 -0.03375 5.02E-06 0.056086 0.585374 0.0207183 0.611378 0.865218

16972299 --- -0.4 -0.38375 -0.48 6.16E-06 1.10E-05 3.77E-07 0.0220298 0.018503 0.001262

16654237 --- 0.54375 0.30125 0.17375 6.16E-06 0.00394 0.078298 0.0220298 0.379884 0.469535

16859821 --- 0.3375 0.32875 0.2275 9.21E-06 1.32E-05 0.000935 0.0308645 0.020296 0.103899

16801108 NM_013243 // SCG3 // secretogranin III // 15q21 // 29106 /// ENST00000220478 // SCG3 // secretogranin III // 15q21 // 29106 /// NM_001165257 // SCG3 // secretogranin III // 15q21 // 29106 /// ENST00000542355 // SCG3 // secretogranin III // 15q21 // 29106 /// AF453583 // SCG3 // secretogranin III // 15q21 // 29106 /// ENST00000558709 // SCG3 // secretogranin III // 15q21 // 29106-0.83 -0.7425 0.05625 1.70E-05 7.10E-05 0.720104 0.0536092 0.069821 0.916975

16788758 NR_030267 // MIR487B // microRNA 487b // 14q32.31 // 664616 -0.78625 -0.77 -0.3775 1.84E-05 2.43E-05 0.017406 0.0547337 0.031408 0.282208

16651791 --- 0.535 0.5275 0.2325 2.08E-05 2.51E-05 0.0311 0.0588309 0.031408 0.345804

16811762 NM_006715 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// NM_001256494 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// ENST00000267978 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// ENST00000565683 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// NM_001256495 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// ENST00000569482 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// NM_001256496 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// ENST00000563622 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// BC050550 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// AF044414 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// BC080191 // MAN2C1 // mannosidase, alpha, class 2C, member 1 // 15q11-q13 // 4123 /// U37248 // MAN2C1 // mannosidase, alph0.2525 0.0825 -0.005 2.33E-05 0.100691 0.918461 0.0625128 0.680755 0.979086

16970185 OTTHUMT00000365381 // OTTHUMG00000161575 // NULL // --- // --- /// OTTHUMT00000365381 // RP11-33B1.3 // NULL // --- // ----0.46625 -0.18 0.02125 2.66E-05 0.057298 0.815657 0.0680353 0.613402 0.950894

16817713 NR_015396 // CDIPT-AS1 // CDIPT antisense RNA 1 (head to head) // 16p11.2 // 440356 /// NR_024370 // CDIPT-AS1 // CDIPT antisense RNA 1 (head to head) // 16p11.2 // 440356 /// ENST00000398859 // CDIPT-AS1 // CDIPT antisense RNA 1 (head to head) // 16p11.2 // 440356 /// ENST00000565014 // CDIPT-AS1 // CDIPT antisense RNA 1 (head to head) // 16p11.2 // 4403560.41375 0.1375 -0.01125 2.80E-05 0.099676 0.889744 0.0681265 0.68046 0.971463

16875683 ENST00000412770 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 // 22870 /// NM_014931 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 // 22870 /// BC094753 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 // 22870 /// AK297152 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 // 22870 /// AB029038 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 // 22870 /// BC111980 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 // 22870 /// ENST00000587283 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 // 22870 /// ENST00000591323 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 // 22870 /// AK126810 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 // 22870 /// ENST00000587457 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 // 22870 /// ENST00000586690 // PPP6R1 // protein phosphatase 6, regulatory subunit 1 // 19q13.42 0.27625 0.22125 0.04875 3.00E-05 0.000402 0.374727 0.0698789 0.177814 0.757836

16701119 NM_152666 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// NM_001195811 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// NM_001195812 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// ENST00000442594 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// ENST00000427495 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// AK295421 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// AY461578 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// BC101373 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// BC101374 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// BC101375 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// ENST00000366545 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// ENST00000536534 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// ENST00000314833 // PLD5 // phospholipase D family, member 5 // 1q43 // 200150 /// ENST0-0.625 -0.3875 -0.17 3.80E-05 0.004653 0.183796 0.0825287 0.385021 0.613293

16781268 NM_000705 // ATP4B // ATPase, H+/K+ exchanging, beta polypeptide // 13q34 // 496 /// ENST00000335288 // ATP4B // ATPase, H+/K+ exchanging, beta polypeptide // 13q34 // 496 /// BC029059 // ATP4B // ATPase, H+/K+ exchanging, beta polypeptide // 13q34 // 496-1.7 -0.66375 0.065 4.07E-05 0.062404 0.849851 0.0825287 0.625753 0.959991

16940161 NM_001837 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// ENST00000541018 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// NM_178328 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// NM_001164680 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// ENST00000545097 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// NM_178329 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// ENST00000395940 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// ENST00000357422 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// AF262304 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// ENST00000484025 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// ENST00000452454 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// ENST00000475150 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.3 // 1232 /// ENST00000457243 // CCR3 // chemokine (C-C motif) receptor 3 // 3p21.-0.545 -0.36875 -0.19875 4.11E-05 0.002445 0.08062 0.0825287 0.333783 0.47444

16713971 --- -0.7275 -0.62625 -0.69125 4.23E-05 0.000248 7.96E-05 0.0825287 0.141412 0.040241

16911201 NM_001819 // CHGB // chromogranin B (secretogranin 1) // 20pter-p12 // 1114 /// ENST00000378961 // CHGB // chromogranin B (secretogranin 1) // 20pter-p12 // 1114 /// BC000375 // CHGB // chromogranin B (secretogranin 1) // 20pter-p12 // 1114 /// AK293536 // CHGB // chromogranin B (secretogranin 1) // 20pter-p12 // 1114 /// CR456726 // CHGB // chromogranin B (secretogranin 1) // 20pter-p12 // 1114 /// AK289386 // CHGB // chromogranin B (secretogranin 1) // 20pter-p12 // 1114 /// ENST00000455042 // CHGB // chromogranin B (secretogranin 1) // 20pter-p12 // 1114 /// ENST00000488832 // CHGB // chromogranin B (secretogranin 1) // 20pter-p12 // 1114 /// AK054871 // CHGB // chromogranin B (secretogranin 1) // 20pter-p12 // 1114 /// OTTHUMT00000077897 // CHGB // NULL // --- // --- /// OTTHUMT00000077898 // CHGB // NULL // --- // --- /// OTTHUMT00000077899 // CHGB // NULL // --- // ----0.69 -0.45625 -0.0025 4.52E-05 0.003137 0.9858 0.0825287 0.353565 0.996542

17101392 NM_015691 // WWC3 // WWC family member 3 // Xp22.32 // 55841 /// ENST00000380861 // WWC3 // WWC family member 3 // Xp22.32 // 55841 /// BC098455 // WWC3 // WWC family member 3 // Xp22.32 // 55841 /// ENST00000454666 // WWC3 // WWC family member 3 // Xp22.32 // 558410.29125 0.16125 0.16125 4.58E-05 0.011262 0.011262 0.0825287 0.457512 0.242495

16938654 OTTHUMT00000342017 // KRT18P15 // NULL // --- // --- /// ENST00000458108 // KRT18P15 // keratin 18 pseudogene 15 // --- // ---0.26 0.315 -0.01875 4.62E-05 3.33E-06 0.723968 0.0825287 0.009658 0.918571

17127643 --- -0.52375 -0.875 -1.04375 0.000682977 9.75E-07 5.23E-08 0.1717959 0.006516 0.000458

17127399 --- -0.32 -0.52625 -0.67375 0.001389214 3.89E-06 7.46E-08 0.1923949 0.009935 0.000458

17118177 AK293868 // LOC100506276 // uncharacterized LOC100506276 // --- // 1005062760.32125 0.3975 0.56875 0.001489452 0.000174 1.44E-06 0.1970613 0.116327 0.003515

17127243 --- -0.33 -0.5825 -0.6725 0.001556865 1.63E-06 1.62E-07 0.2006597 0.006637 0.000671

17127615 --- -0.275 -0.50125 -0.57 0.001892035 1.40E-06 1.77E-07 0.2134814 0.006516 0.000677

17127245 --- -0.295 -0.57125 -0.71875 0.002063564 6.35E-07 1.25E-08 0.2160046 0.005678 0.000223

17127357 --- -0.30875 -0.54625 -0.67875 0.002197378 2.87E-06 8.77E-08 0.2193981 0.009059 0.00047

17127259 --- -0.31375 -0.54 -0.70375 0.002438917 5.17E-06 7.68E-08 0.2249837 0.011544 0.000458

17127653 --- -0.31875 -0.61375 -0.69875 0.00289944 1.32E-06 1.63E-07 0.2409295 0.006516 0.000671



17127623 --- -0.31 -0.59375 -0.62125 0.00338513 1.93E-06 9.58E-07 0.2530747 0.006889 0.002568

17127639 --- -0.46125 -1.19 -1.245 0.003678373 1.59E-08 6.98E-09 0.2564588 0.000214 0.000223

17127641 --- -0.275 -0.50625 -0.60125 0.005194594 7.84E-06 5.86E-07 0.2747662 0.015333 0.001848

17127241 --- -0.24375 -0.50875 -0.645 0.005337581 1.29E-06 2.45E-08 0.2755703 0.006516 0.000263

17127665 --- -0.29875 -0.52625 -0.62 0.006010807 1.90E-05 1.81E-06 0.2812287 0.027472 0.003958

17127631 --- -0.33375 -0.50875 -0.85 0.006426881 0.00013 7.54E-08 0.2823899 0.103829 0.000458

17127649 --- -0.30625 -0.54 -0.65125 0.007043481 2.52E-05 1.76E-06 0.2845896 0.031408 0.003958

16740406 AF001542 // MALAT1 // metastasis associated lung adenocarcinoma transcript 1 (non-protein coding) // 11q13.1 // 378938-0.17375 -0.365 -0.53375 0.01081025 5.46E-06 1.06E-08 0.3163827 0.011717 0.000223

17127619 --- -0.2575 -0.56125 -0.77375 0.011147064 3.42E-06 1.73E-08 0.3180741 0.009658 0.000232

16968312 --- 0.2925 0.6025 0.45 0.011313769 8.01E-06 0.0003 0.3192686 0.015333 0.073221

17127621 --- -0.2425 -0.485 -0.56625 0.015049327 2.26E-05 2.54E-06 0.3414726 0.031111 0.004865

17127661 --- -0.31 -0.68125 -0.9075 0.032278069 4.18E-05 6.89E-07 0.4254762 0.046739 0.002052

17127627 --- -0.23625 -0.415 -0.66375 0.03589421 0.000668 1.85E-06 0.4380495 0.205219 0.003958

17127683 --- -0.23375 -0.58 -0.775 0.036790449 1.21E-05 1.40E-07 0.439291 0.019616 0.000671

17109121 --- -0.13875 -0.3225 -0.415 0.048243835 6.23E-05 1.94E-06 0.46729 0.063069 0.003976

16651369 --- 0.3875 1.07625 1.435 0.120192905 0.000157 3.65E-06 0.5899671 0.114164 0.006556

17117798 --- -0.11875 -0.41 -0.485 0.157136587 3.70E-05 3.67E-06 0.6380305 0.042236 0.006556

16816171 --- 0.09375 -0.11625 -0.46 0.217706599 0.129567 2.00E-06 0.6928285 0.710531 0.003976

17002871 --- -0.09 -0.52 -0.5425 0.288588014 1.73E-06 8.99E-07 0.7457694 0.006637 0.002536

17117542 --- -0.08625 -0.325 -0.52625 0.299733533 0.000533 1.08E-06 0.7517997 0.198494 0.002747

17127659 --- -0.13625 -0.9225 -0.43375 0.354740078 1.30E-06 0.006132 0.7845256 0.006516 0.203327

17118171 ENST00000331523 // EEF1A1 // eukaryotic translation elongation factor 1 alpha 1 // 6q14.1 // 1915-0.07125 -0.31375 -0.6175 0.420092156 0.001389 2.34E-07 0.8203002 0.278114 0.000835



FDR.W24vW0



Down regulated known genes

ID gene_assignment logFC.W06vW0 logFC.W12vW0 logFC.W24vW0 PV.W06vW0 PV.W12vW0 PV.W24vW0

17021437 NM_001252383 // CGA // glycoprotein hormones, alpha polypeptide // 6q12-q21 // 1081 /// NM_000735 // CGA // glycoprotein hormones, alpha polypeptide // 6q12-q21 // 1081 /// ENST00000369582 // CGA // glycoprotein hormones, alpha polypeptide // 6q12-q21 // 1081 /// BC010957 // CGA // glycoprotein hormones, alpha polypeptide // 6q12-q21 // 1081-4.065 -4.1275 0.42875 1.3997E-11 1.01961E-11 0.221223612

16674151 ENST00000367662 // PAPPA2 // pappalysin 2 // 1q23-q25 // 60676 /// NM_020318 // PAPPA2 // pappalysin 2 // 1q23-q25 // 60676 /// NM_021936 // PAPPA2 // pappalysin 2 // 1q23-q25 // 60676 /// ENST00000367661 // PAPPA2 // pappalysin 2 // 1q23-q25 // 60676 /// BC152552 // PAPPA2 // pappalysin 2 // 1q23-q25 // 60676-2.1375 -2.1825 0.02875 3.12894E-09 2.10983E-09 0.903979753

17018525 NM_001832 // CLPS // colipase, pancreatic // 6p21.31 // 1208 /// NM_001252597 // CLPS // colipase, pancreatic // 6p21.31 // 1208 /// ENST00000259938 // CLPS // colipase, pancreatic // 6p21.31 // 1208 /// NM_001252598 // CLPS // colipase, pancreatic // 6p21.31 // 1208 /// BC025693 // CLPS // colipase, pancreatic // 6p21.31 // 1208-2.2025 -1.64125 -1.61125 5.81766E-05 0.001346981 0.001588516

16809075 ENST00000267845 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// NM_002112 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// M60445 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// BC130527 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// BC144173 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// ENST00000559816 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// AK027221 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// ENST00000558679 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// AK308833 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// AK310479 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// ENST00000558761 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// ENST00000559190 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// ENST00000543581 // HDC // histidine decarboxylase // 15q21-q22 // 3067 /// OTTHUMT00000254540 // HDC // NULL // --- // --- /// OTTHUMT00000418288 // HDC // NULL // --- // ----1.57125 -1.38625 -0.01 8.37669E-09 7.81498E-08 0.956818186

17090713 NM_001807 // CEL // carboxyl ester lipase // 9q34.3 // 1056 /// ENST00000372080 // CEL // carboxyl ester lipase // 9q34.3 // 1056 /// M85201 // CEL // carboxyl ester lipase // 9q34.3 // 1056 /// ENST00000351304 // CEL // carboxyl ester lipase // 9q34.3 // 1056 -1.71875 -1.3025 -1.5825 0.000753364 0.007441033 0.001619128

16659637 NM_015849 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 /// ENST00000375910 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 /// BC069455 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 /// BC113540 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 /// BC113542 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 /// BC069412 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 /// M16653 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 /// BC171735 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 /// ENST00000488764 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 /// ENST00000494280 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 /// ENST00000422901 // CELA2B // chymotrypsin-like elastase family, member 2B // 1p36.21 // 51032 -2.09 -1.3 -2.75125 0.001436378 0.034698326 8.03072E-05

16787650 ENST00000216492 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113 /// NM_001275 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113 /// BC006459 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113 /// ENST00000553866 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113 /// ENST00000556076 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113 /// ENST00000556876 // CHGA // chromogranin A (parathyroid secretory protein 1) // 14q32 // 1113-1.34125 -1.29125 -0.0775 1.523E-09 3.13267E-09 0.591457748

16736405 ENST00000250018 // TPH1 // tryptophan hydroxylase 1 // 11p15.3-p14 // 7166 /// NM_004179 // TPH1 // tryptophan hydroxylase 1 // 11p15.3-p14 // 7166 /// BC106739 // TPH1 // tryptophan hydroxylase 1 // 11p15.3-p14 // 7166 /// ENST00000341556 // TPH1 // tryptophan hydroxylase 1 // 11p15.3-p14 // 7166 /// ENST00000417164 // TPH1 // tryptophan hydroxylase 1 // 11p15.3-p14 // 7166-1.355 -1.29125 -0.11625 1.8148E-06 3.73431E-06 0.596677652

16667850 NM_000699 // AMY2A // amylase, alpha 2A (pancreatic) // 1p21 // 279 /// ENST00000414303 // AMY2A // amylase, alpha 2A (pancreatic) // 1p21 // 279 /// BC007060 // AMY2A // amylase, alpha 2A (pancreatic) // 1p21 // 279 /// ENST00000497748 // AMY2A // amylase, alpha 2A (pancreatic) // 1p21 // 279 -1.855 -1.135 -1.76125 0.002356345 0.048376443 0.003586394

16761830 ENST00000266397 // ERP27 // endoplasmic reticulum protein 27 // 12p12.3 // 121506 /// NM_152321 // ERP27 // endoplasmic reticulum protein 27 // 12p12.3 // 121506 /// BC030218 // ERP27 // endoplasmic reticulum protein 27 // 12p12.3 // 121506 -1.2275 -1.0325 -0.4825 3.06996E-06 3.3826E-05 0.02598214

17051601 NM_001868 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// ENST00000011292 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// AK291493 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// BC005279 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// BT007313 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// AK293366 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// ENST00000579597 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// ENST00000491460 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// ENST00000578731 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// ENST00000479106 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// ENST00000579026 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// AK124421 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// ENST00000470838 // CPA1 // carboxypeptidase A1 (pancreatic) // 7q32 // 1357 /// ENST00000478096 // CPA1 /-1.43375 -1.01625 -1.67625 0.004095333 0.033960519 0.001091011

16872248 NM_001828 // CLC // Charcot-Leyden crystal galectin // 19q13.1 // 1178 /// ENST00000221804 // CLC // Charcot-Leyden crystal galectin // 19q13.1 // 1178 /// L01664 // CLC // Charcot-Leyden crystal galectin // 19q13.1 // 1178 -0.97625 -0.90625 0.04375 2.47305E-06 7.32724E-06 0.786072294

17051536 ENST00000222481 // CPA2 // carboxypeptidase A2 (pancreatic) // 7q32 // 1358 /// NM_001869 // CPA2 // carboxypeptidase A2 (pancreatic) // 7q32 // 1358 /// BC007009 // CPA2 // carboxypeptidase A2 (pancreatic) // 7q32 // 1358 /// ENST00000416698 // CPA2 // carboxypeptidase A2 (pancreatic) // 7q32 // 1358 /// ENST00000487259 // CPA2 // carboxypeptidase A2 (pancreatic) // 7q32 // 1358 /// ENST00000480781 // CPA2 // carboxypeptidase A2 (pancreatic) // 7q32 // 1358-1.27875 -0.85625 -1.74 0.004747405 0.048026347 0.000290041

16976561 ENST00000446444 // UGT2B11 // UDP glucuronosyltransferase 2 family, polypeptide B11 // 4q13.2 // 10720 /// ENST00000513315 // UGT2B11 // UDP glucuronosyltransferase 2 family, polypeptide B11 // 4q13.2 // 10720 -0.75875 -0.83625 -0.54 0.001629372 0.00065719 0.018556787

16961487 NM_000340 // SLC2A2 // solute carrier family 2 (facilitated glucose transporter), member 2 // 3q26.1-q26.2 // 6514 /// ENST00000314251 // SLC2A2 // solute carrier family 2 (facilitated glucose transporter), member 2 // 3q26.1-q26.2 // 6514 /// J03810 // SLC2A2 // solute carrier family 2 (facilitated glucose transporter), member 2 // 3q26.1-q26.2 // 6514 /// BC060041 // SLC2A2 // solute carrier family 2 (facilitated glucose transporter), member 2 // 3q26.1-q26.2 // 6514 /// AK290846 // SLC2A2 // solute carrier family 2 (facilitated glucose transporter), member 2 // 3q26.1-q26.2 // 6514 /// AK298418 // SLC2A2 // solute carrier family 2 (facilitated glucose transporter), member 2 // 3q26.1-q26.2 // 6514 /// AK292741 // SLC2A2 // solute carrier family 2 (facilitated glucose transporter), member 2 // 3q26.1-q26.2 // 6514 /// ENST00000497642 // SLC2A2 // solute carrier family 2 (facilitated glucose transporter), member 2 // 3q26.1-q26.2 // 6514 /// ENST00000469787 // SLC2A2 // solute carrier family 2 (facilitated g-0.85875 -0.83375 -0.49 0.009762915 0.011795195 0.122340854

16908977 NM_003469 // SCG2 // secretogranin II // 2q35-q36 // 7857 /// ENST00000305409 // SCG2 // secretogranin II // 2q35-q36 // 7857 /// BC022509 // SCG2 // secretogranin II // 2q35-q36 // 7857 /// ENST00000421386 // SCG2 // secretogranin II // 2q35-q36 // 7857 /// ENST00000433889 // SCG2 // secretogranin II // 2q35-q36 // 7857-0.865 -0.83 -0.04 2.49773E-06 4.59846E-06 0.779579803

16788739 NR_030266 // MIR376A2 // microRNA 376a-2 // 14q32.31 // 664615 -0.64125 -0.825 -0.83 0.010319451 0.001505251 0.001426106

Upregulated known genes

17051370 NR_002187 // TPI1P2 // triosephosphate isomerase 1 pseudogene 2 // 7q32.1 // 286016 /// AK094894 // TPI1P2 // triosephosphate isomerase 1 pseudogene 2 // 7q32.1 // 286016 0.22875 0.50375 0.18125 0.151881985 0.003319196 0.252447791

16916531 OTTHUMT00000077567 // OTTHUMG00000031681 // NULL // --- // --- /// OTTHUMT00000077567 // RP5-968J1.1 // NULL // --- // --- 0.41375 0.51125 0.2925 0.019365432 0.004915074 0.089112053

16797583 AF067420 // IGHA1 // immunoglobulin heavy constant alpha 1 // 14q32.33 // 3493 /// BC073782 // IGHG1 // immunoglobulin heavy constant gamma 1 (G1m marker) // 14q32.33 // 3500 /// ENST00000454421 // IGHV3-64 // immunoglobulin heavy variable 3-64 // --- // --- 0.2725 0.51125 0.38875 0.019432172 8.85906E-05 0.001531694

16797667 NR_040094 // CT60 // cancer/testis antigen 60 (non-protein coding) // 15q11.2 // 348120 /// ENST00000553416 // CT60 // cancer/testis antigen 60 (non-protein coding) // 15q11.2 // 348120 0.43125 0.515 0.1375 0.018437252 0.005917762 0.42811545

16882790 ENST00000390278 // IGKV1D-42 // immunoglobulin kappa variable 1D-42 (non-functional) // --- // --- 0.19625 0.52375 -0.0675 0.197583535 0.001677309 0.65264907

16807761 NR_036195 // MIR4310 // microRNA 4310 // --- // 100423013 0.50625 0.525 0.35375 0.003100161 0.002300195 0.030629913

16964831 NR_039961 // MIR4798 // microRNA 4798 // --- // 100616471 0.17 0.53875 0.67125 0.493111945 0.037197857 0.011177123

17012140 ENST00000363440 // RNA5SP215 // RNA, 5S ribosomal pseudogene 215 // --- // --- 0.2275 0.5475 0.3475 0.365951503 0.036268042 0.172055254

16703603 ENST00000494304 // LYZL1 // lysozyme-like 1 // 10p12.1 // 84569 0.38375 0.555 0.3225 0.049521893 0.006322471 0.094965568

16927752 ENST00000390298 // IGLV7-43 // immunoglobulin lambda variable 7-43 // --- // --- 0.26 0.5575 0.4475 0.182573316 0.007089367 0.026586454

16782028 ENST00000390489 // TRAJ48 // T cell receptor alpha joining 48 // --- // --- 0.3025 0.59625 0.5475 0.054601134 0.000548071 0.001242973

16921823 ENST00000410986 // RNA5SP489 // RNA, 5S ribosomal pseudogene 489 // --- // --- 0.02125 0.6275 -0.3725 0.935706483 0.024102246 0.165874348

16724715 NM_024114 // TRIM48 // tripartite motif containing 48 // 11q11 // 79097 /// ENST00000417545 // TRIM48 // tripartite motif containing 48 // 11q11 // 79097 /// AF521869 // TRIM48 // tripartite motif containing 48 // 11q11 // 79097 0.445 0.65 0.20375 0.123355486 0.028364121 0.47176867

16797542 BC009851 // IGHM // immunoglobulin heavy constant mu // 14q32.33 // 3507 /// ENST00000390621 // IGHV1-45 // immunoglobulin heavy variable 1-45 // --- // --- 0.7675 0.705 0.3125 0.009325925 0.015824426 0.26116192

16750595 NM_012404 // ANP32D // acidic (leucine-rich) nuclear phosphoprotein 32 family, member D // 12q13.11 // 23519 /// ENST00000266594 // ANP32D // acidic (leucine-rich) nuclear phosphoprotein 32 family, member D // 12q13.11 // 23519 /// BC069122 // ANP32D // acidic (leucine-rich) nuclear phosphoprotein 32 family, member D // 12q13.11 // 235190.29625 0.745 0.62375 0.180244313 0.001974177 0.007738289

16781997 ENST00000390474 // TRDJ4 // T cell receptor delta joining 4 // --- // --- 0.715 0.78875 0.74375 0.022915305 0.013048713 0.018446538

16948835 NR_030410 // MIR1224 // microRNA 1224 // 3q27.1 // 100187716 0.75375 0.895 0.41125 0.039320846 0.016123459 0.246025243
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