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Abstract 

In reporting and explaining the interactions of light with atoms and molecules, a photon-
based description is not only appropriate but clearly essential when electronic or other 
kinds of quantum transition ensue. However, textbook treatments frequently go no 
further than the Planck relation, in representing the quantum nature of the light itself – 
often resorting to classical principles when discussing mechanism.  Complete consistency 
and rigour can be achieved by treating both the matter and the radiation in a fully 
quantised form, which requires the electromagnetic fields to be cast in a quantum field 
representation.  It proves possible to develop a rigorous approach to this theory that is 
simple to convey and apply, and which lends itself to a significantly enhanced level of 
appreciation of mechanism.  This paper lays a concise foundation and exemplifies the 
application in three specific cases: absorption, emission and scattering.  It is also shown 
how this formulation affords a basis for applications in higher-order, multiphoton and 
nonlinear optical processes. 

 

1. Introduction 
 

To describe the physics behind the simplest kinds of optical interaction, which involves 
light with atoms and molecules, the use of the photon concept is clearly essential and it is 
especially important for processes that directly involve transitions between quantum 
energy levels. Nonetheless, to go beyond use of the Planck relation E = h – whose 
origins lie in the quantum theory that pre-dated fully fledged quantum mechanics – it is 
surprisingly common to find the quantum nature of the radiation itself underplayed in 
favour of an essentially classical wave representation. To cultivate a proper 
understanding of the mechanisms for photon absorption, emission and scattering 
requires the introduction of simple principles from the field theory engaged in quantum 
optics and electrodynamics. This framework not only affords answers to many of the 
most obvious questions of mechanism; it also directly paves the way to comprehend 
higher-order processes, such as those in the sphere of nonlinear optics [1-3].  

 

Customarily, and perfectly correctly, the introduction to a quantum representation of 
electrodynamics is formally developed from a starting point exhibiting its basis in 
Maxwell’s equations – whose operator implementation has exactly the same form as its 
original, classical counterpart [4-7]. Given the incontrovertible status of these equations, 
and secure in the knowledge that all the major constructs of QED (quantum 
electrodynamics) are fully consistent with them, it is expedient from an applications 
perspective to more directly approach the subject from a higher, and in a sense simpler, 
level. A true and physically comprehensible representation of the key interaction 

Page 1 of 18 AUTHOR SUBMITTED MANUSCRIPT - EJP-105032.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 2 

mechanisms can, therefore, begin by considering engagement between the electro-
magnetic fields of optical radiation, and the fundamental nuclear and electronic charges 
of which all material particles are made. In fact, although the magnetic field of light may 
also come into play in a range of subtle effects – especially those where chiral properties 
rise to the fore – its direct effects are generally much weaker, and much more 
experimentally challenging to measure, than the corresponding electric field [8]. 
Accordingly, all of the most prominent features in optical interactions with atoms and 
molecules trace their origin to the electric field of radiation.   

 

The following account develops theory from a starting point beyond the well-trodden 
descriptions that work up from Maxwell’s equations and the intricacies of gauge theory 
[1, 2, 5, 9, 10].  We begin (Section 2) with a generic depiction of a quantised light-plus-
matter system, moving on through identification of the standard time-dependent 
perturbation method for dealing with interactions. We then introduce a physically 
intuitive operator framework, laying a simple but complete foundation for detailed 
description of simple optical interactions. The account that follows then exemplifies 
applications in three specific cases: photon absorption and emission (Section 3), and 
Rayleigh scattering (Section 4). These are the three forms of optical interaction 
responsible for almost every feature in our visual world; they also operate at the heart of 
most kinds of spectroscopy, illumination and imaging science. Section 5 summarises and 
indicates how the approach may readily be extended to higher-order processes. 

 

2. Key QED equations 

 

For optical systems, it is appropriate to use the molecular representation of quantum 
electrodynamics. This differs from the full relativistic form of QED only in recognition that 
the charges comprising matter generally move at significantly sub-luminal speeds in 
almost all optics and photonics applications.  In a molecular QED analysis of light-matter 
interactions, the matter and the light are treated as twin components of a fully quantised 
system [11-14], and the theory is developed from the formulation of a Hamiltonian H, the 
energy operator of the system.  The system Hamiltonian comprises operators for: (i) the 
matter, for which the state wavefunctions are secured as eigenstates of a material 
Hamiltonian Hmol; (ii) the quantised radiation with Hamiltonian Hrad, which introduces 
the quantity known as a photon that is absent from any semiclassical description (where 
light is presumed to be a classical wave); (iii) the interaction between the matter and 
radiation, with energy operator Hint.  

 

Before launching into the detail, it is worth flagging up one of the signal advantages of a 
full quantum field treatment of light-matter interactions. If we focus on the optical 
processes exhibited by individual molecules then – although thermodynamic concepts 
are inapplicable to systems at this level – the light and matter together constitute the core 
of a technically closed system.  Furthermore, this system is in fact an isolated system during 
the course of any distinct interaction; the Hamiltonian is, therefore, Hermitian and it 
ensures time-reversal invariance. The implications of any energy exchange or losses to 
other components of a more physically extended system can be dealt with by developing 
the following expression [9, 15, 16]; 
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   rad mol int

 

    H H H H   ,   (1) 

 

where  designates each electronically distinct component – such as an atom, molecule, 
quantum dot, chromophore etc. It is immediately worth emphasising that the expression 
is exact: there are no cross-terms to signify coupling between different components, since 
every such electrodynamic coupling is now properly cast as engaging the electromagnetic 
field – including the vacuum field. Therefore, the system Hamiltonian differs from a 
semiclassical one, in three respects: the presence of Hrad, the formulation of Hint as an 
operator on both material and radiation states, and the absence of any inter-component 
coupling terms [16-18]. 

 

For application to a wide range of simple optical processes, the Hamiltonian (1) can be 
regarded as encapsulating the core elements of a closed system of interaction for each 
representative molecule , through; 

 

       rad mol int mol int

A A
closed system

A A
 

 
 

     H H H H H H   ,   (2) 

 

where the latter two summations represent surroundings, sometimes called the ‘bath’, 
that can as a first approximation be excluded from the closed system under consideration. 
For example, the extraneous matter may be responsible for a local electronic 
environment that shifts peak absorption or emission wavelengths [19, 20], but which do 
not remove a clear correlation to states and energies of the isolated components.  Equally, 
in the course of any optical process, the closed sub-system may behave as an isolated 
system until the interaction is over – at which point energy may exchange with other 
parts of the full system. For example, such an exchange may occur through resonance 
energy transfer, following photon absorption [21, 22]; a QED description, presented at a 
similar level to the present work, is to be found in a previous article [17]. The closed 
system Hamiltonian is decomposed into these three simple parts (supressing the 
dependence on molecule A for convenience), i.e.; 

 

mol rad int  H H H H   .   (3) 

 

In most situations, the energies associated with the operator Hint are much smaller than 
those represented by Hmol and Hrad. Hence, light-matter interactions only perturb the 
system represented by H0 = Hmol + Hrad [23]. (This presumes a typically weak coupling 
between the matter and the light; at ultra-high laser intensities above 1021 W cm–2, for 
example, non-perturbative methods should be employed.) Based on the perturbation, the 
general expression for the matrix element, MFI – for progression from an initial system 
state ∣I〉 to a final state ∣F〉 – is then developed. This is a formulation where a matrix 
describes all the couplings between a full set of initial and final states, which is 
determined from the following general expression [2, 3, 24]; 

Page 3 of 18 AUTHOR SUBMITTED MANUSCRIPT - EJP-105032.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 4 

  
int int int int int

int

,
1 light-matter interaction

2 light-matter interactions 3 light-matter interactions

int int int int

  
  




 FI

R R SI R I R I S

I

F H R R H I F H S S H R R H I
M F H I

E E E E E E

F H T T H S S H R R H I

E E   , ,

4 light-matter interactions

... ,
 


R S T R I S I TE E E E

 

 (4) 

 

where ∣R〉, ∣S〉, ∣T〉 and so on are virtual intermediate states, and ER, ES and ET are the 
energies of these states. Determining the matrix element for a given process usually 
requires only a single term of this expression – the leading non-zero term, which depends 
on the number of light-matter interactions of the examined process. As we shall see, the 
form of Hint and the nature of its field operator determines that for each term in equation 
(4), the number of times Hint appears essentially represents the number of light-matter 
interactions. Therefore, for example, the second term in equation (4) is used to describe 
both two-photon absorption and light scattering, which involves an input and an output 
photon. The latter is examined in detail in Section 4. 

 

Proceeding further, we now identify an explicit expression for Hint. Although an 
alternative ‘minimal coupling’ formulation exists, we employ the widely used multipolar 
form of coupling here: this is an issue we return to below.  As observed in the 
Introduction, the electric field of radiation is the strongest form of coupling with discrete 
atoms and molecules in the optical region. The electric field of light engages with the 
charges of these atoms and molecules, enabling quantum transitions to occur when 
resonant conditions are met, so that Planck’s relation is satisfied. However, for such 
processes to occur a secondary issue must also be satisfied, relating to the associated 
selection rules. The spherical symmetry of atoms and some molecules (and the lower but 
still significant symmetry of many small molecules) has a strong bearing on which 
electronic transitions may occur – not only in the ultraviolet and visible region, but also 
in the infrared and microwave regions where nuclear states of motion are involved. In 
nearly all major optical phenomena, it is accurate and customary to express light-matter 
interactions in terms of an electric dipolar coupling with the electric field of the radiation, 
i.e.;  

 

int

matter radiation
operator operator

  H E  .    (5) 

 

Here, both  and E are operators – the former acting on matter states and the latter on 
radiation states. Throughout this article, standard subscript notation will be employed – 
i.e. Einstein summation over indices is implied [25] – meaning that equation (5) has 
invoked: 

 

Page 4 of 18AUTHOR SUBMITTED MANUSCRIPT - EJP-105032.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 5 

, ,

  


     x x y y z zi i
i x y z

EE E E  E   .  (6) 

 

For the interested reader it is worth highlighting that there exists a whole class of 
equivalent interaction Hamiltonians that may be deployed in QED.  Two of the most 
frequently implemented are a multipolar expansion (the interaction Hamiltonian (5) is 
this type) and a ‘minimal coupling’ representation.  The former describes light-matter 
interactions in terms of direct coupling between the electromagnetic field and transition 
multipole moments of the matter (e.g. the electric dipole).  The latter deals in the less 
physically intuitive conjugate momentum of the material particles and, to represent the 
field, a vector potential A (whose nature depends on a choice of electromagnetic gauge – 
as opposed to the experimentally identifiable electric field E).  Of key importance to us 
here is that, although these different interaction Hamiltonians provide equivalent results 
in non-relativistic QED, the multipolar form (5) is not only more direct; it also furnishes 
results that are immediately interpretable in relation to molecular symmetry.  This 
simplicity is especially pertinent when studying higher-order photon interactions such 
as light scattering [3, 16, 26-28].   

 

Continuing, for each optical mode – with a given wave-vector k and specific polarisation 
 – the electric field of the light can be rewritten in a Fourier expansion, in terms of a 
Hermitian operator, which is given by:   

 

 

1

2
i † i

0 photon creationphoton anhhilation

i e e
2

 
    

    
    

ck
a a

V

r rE e e k k
r    , (7) 

 

where ck  and e are the photon energy and polarisation, respectively, and the 
overbar denotes a complex conjugate; the phase factors are given by e±ik·r, in this section 
(and the next) dealing with single-component processes, an expedient simplification is to 
assume they occur at the origin of an arbitrary spatial frame, r = 0. Moreover, for each 
mode, the corresponding photon annihilation a and creation a† (lowering and raising) 

operators act on the radiation states through; 

 

1
2 1a n n n     ,      (8)   

 
1

21 1†a n n n     ,             (9)

  

respectively, in which n is the number of photons. Analogous to equation (4), only one 
term of equation (7) is required per Hint – thus, either equation (8) or (9) is used – because 
a single dipolar light-matter interaction cannot involve both photon creation and 

annihilation. In consequence, each action of Hint either creates or destroys a photon. For 
this reason, the first term in equation (4) is the significant term for describing single-
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 6 

photon absorption or emission (the subject of the next section). In passing, we note the 
single-mode operator commutator relationship; 

 

1† † †,a a aa a a          ,                   (10)  

 

whose form is consistent with the integer spin of photons, signifying that the theory 
deeply embeds the fact that they are bosons. It is the fact that photons carry unit spin 
that leads to the selection rules mentioned earlier: as standard textbooks make clear, all 
the key selection rules for electronic spectroscopy owe their origin to the photon spin, 
and cannot be readily understood on any other basis – see, for example, ref. [29]. 

 

To determine an experimentally verifiable quantity from equation (4), the time-averaged 
rate of any specific process involves taking the modulus squared of the matrix element 
MFI so that, via the Fermi Rule, we have; 

 

22
FIM


    ,             (11)  

 

where  represents the density of states – a much misunderstood quantity signifying the 
number of quantum states per unit energy interval. In principle – in both QED and 
semiclassical formulations – this should be taken as a convolution over the minimum 
measurable linewidth, of four state densities: those for the initial and final states of the 
matter, and of the radiation field, i.e.;    

 

         mol mol mol mol rad rad rad rad mol rad mol rad mol mol rad rad

I I F F I I F F I I F F I F I FE E E E E E E E dE dE dE dE           
            

           (12) 

 

Generally, as will be evident, the result effectively simplifies to the single, significantly 
highest of the four densities of states – most obviously, in a limiting case where each of 
the other three reduces to a delta function. For example, in the absorption of a photon 
from essentially monochromatic laser light of frequency , by a molecule in its ground 
state mol

IE , where        0
mol mol mol mol rad rad rad,       I I I I I IE E E E E  and    rad rad rad F F FE E  

then implementing energy conservation, 0
mol mol
  E E , leads to  mol

  E  – which 
we can denote in shorthand as  , where  signifies the molecular excitation state. More 
generally, in common with the classical take on the subject, it nonetheless remains the 
case that for zero, or extremely small linewidth transitions, it is impossible to secure a 
time-independent rate of the Fermi Rule form and Rabi oscillations arise. However, such 

effects are usually limited to the discrete energy level interactions of cold atoms with 
laser light. 
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3. Light absorption and emission 

 

The easiest way to exhibit utilisation of the above equations is via examples, and the very 
simplest are one-photon absorption and emission. These can be visualised by energy 
level diagrams, in which one quantum of energy is transferred between the radiation and 
matter states; they are depicted in Figure 1(a) and Figure 2(a), respectively. These two 
figures are identical except the directions of the arrows are interchanged.  In terms of 
QED, a more robust graphical aid is known as a Feynman diagram.  

 

 

 

 

Figure 1. (a) Energy-level scheme depicting one-photon absorption: a quantum of light released 

from the radiation state excites the molecule (or atom), concurrently. (b) Feynman diagram for 

one-photon absorption. Vertical and wavy lines denote the matter and radiation, respectively, 0 

is the ground state (blue line) and  is the excited state (red line); time, t, traverses up the 

graph, Hint denotes the light-molecule interaction and (k, ) is the photon mode. 

 

 

 

Figure 2. (a) Energy-level scheme for one-photon emission: the relaxation of an excited 

molecule (or atom) releases a quantum of light into the radiation state, simultaneously. (b) 

Feynman diagram for one-photon emission. These are the time-inverse of Figure 1. 
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Using one-photon absorption as an example – as shown in Figure 1(b) – the vertical line 
represents the atom or molecule, which changes electronic state when the light is 
absorbed, and the wavy line is the photon. At the lower part of the diagram, matter is in 
its ground state and a photon is present in the system. After the annihilation of the photon 
(the upper part, in red), the matter is in an excited state and no light exists. With this in 
mind, and presuming an input of n photons, the initial and final states of this process can 
be decomposed into the following products of matter and radiation states; 

 

0 0

matter radiation
state state

A A ;I n n     , (13) 

1 1A A ;F n n        , (14)   

 

where A represents the matter in either its ground state, 0, or excited state, , as denoted 
by the superscript, and the right-hand side of the expression depicts a change in notation 
for simplicity. Since one-photon absorption involves one light-matter interaction, its 
matrix element is determined from the first term of equation (4), and the Hint within it 
arises from the first term of equation (7), so that; 

  

0 0

0

1 1

2 2
0 0

0 0

1 1

1
2 2

abs
int A ; A ; A A

i i . .

FIM F H I n n n n

ck n ck
n a n

V V

 



 

 

      

   
        

   

 



 

E E

ee

    

(15)  

 

  

Here, the photon energy ck  is equal to the energy required for electronic transition   
0   (conventionally written in this way, i.e. backwards). Moving from left-to-right 

in this expression: (i) equations (5), (13) and (14) are inserted into the first term of 
equation (4); (ii) the matter operator acts on the matter states, to produce the transition 
dipole moment 

0, and the radiation operator acts on the radiation states; (iii) the first 
term of equation (7) is inserted into the radiation portion of the expression; (iv) the 
annihilation operator a acts on the radiation state following equation (8), which produces 
the result (noting that 1 1 1n n   , since quantum states with are orthonormal). 

 

Substituting abs
FIM  into the Fermi Rule of equation (11) obtains: 

 

2
0 2

0

 




 
   

 
cos

ck n

V
 ,            (16)  
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where   is the angle between the transition dipole, 

0, and the electric polarisation 
vector, e, of the incident light;  is a density of states ascribed to the excited state, as 
discussed earlier. In this latter respect, we note a difference from textbook derivations of 
the Einstein B-coefficient, designed to exhibit a form originally conceived for application 
to blackbody radiation. Most of today’s applications, especially in the sphere of 
spectroscopy, deploy narrow-linewidth laser sources whose spectral breadth is far 
exceeded by any quantum states of the material: this is an aspect that should be common 
to both classical and quantum formulations. Next, by using the relationship between the 
‘photon density’ n/V and the irradiance (power per unit area) I = (n/V)ħc , the final 
outcome is secured as follows: 

 

2
0 2

0





  cosI

c
  .             (17) 

 

Finally, for a fluid medium, a three-dimensional orientational average of the cos2  factor 
simply reduces to 1/3. It is noteworthy that the square of the transition dipole moment 
is the fundamental quantity that determines the photometric oscillator strength (see for 
example ref. [30], p. 432). 

 

Moving to the case of emission, which is depicted by the Feynman diagram of Figure 2(b), 
it is supposed that the expressions are similar because emission is the time-inverse of 
absorption. For stimulated emission, this is indeed true. In this case, there is an initial 
radiation state (the input beam) containing n photons resonant with the decay transition 
0  , so that the emission increases their number by one. The quantum states of 

stimulated emission are given by; 

 

A ;I n    , (18) 

0 1A ;F n     . (19)   

 

Since one-photon emission again involves a single light-matter interaction, its matrix 
element is determined from the first term of equation (4), and the Hint within it arises 
from the second term of equation (7) – rather than the first term used in photon 
absorption – to produce; 

 

1

2
0 0

0

1

2
0

0

1 1
2

1

2

stim †
int A ; . A ; i

i . .

FI

ck
M F H I n n n a n

V

n ck

V

 







 
       

 

 
  
 

  



e

e

    

(20)  
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On the assumption of a sufficient number of photons in the absorbed beam so that
 1n V n V  , the rate of stimulated emission emerges as;  

 

2
0 2

0





  cosI

c
    .             (21) 

 

The minor difference in results for absorption, i.e. equation (17), and stimulated emission, 
equation (21), is in fact illusionary, since the modulus square of the transition moments 
for excitation and decay are identical. The equivalence of the two expressions (again cast 
in a slightly different guise, in terms of ‘B coefficients’) is a feature first identified by 
Einstein [31].  This is where engagement with the wider system can more obviously come 
into play: molecules promoted to an excited state can lose their energy by many other 
means than stimulated emission. (These other routes for decay may, for example, include 
transfer of energy through collisional deactivation, resonance energy transfer, 
intramolecular vibrational redistribution etc.) So absorption dominates over stimulated 
emission unless population inversion is present, as in laser configurations. Conversely, 
however, in systems under thermal equilibrium where excited states persist beyond the 
timescale for excitation, then the initial number of photons n is zero. Thus, with the (n+1) 
of equation (20) effectively replaced by unity, the result delivers a rate of spontaneous 
emission. Some further intricacies are necessary to secure a result accounting for the 
possibility of emission over 4 steradians; it suffices to say that the non-zero result 
relates in a similar way to Einstein’s ‘A coefficient’.   

 

Before moving on, one further observation should be highlighted. As noted earlier, the 

fact that quantum transitions result from discrete photon interactions is not simply a 

matter of demonstrating energy conservation – for once the Planck relation is deployed, 

semiclassical arguments can be made to support that principle.  It needs emphasising that 

the engagement of photon spin is also a crucial element, as it accounts for the well-known 

angular momentum selection rules of conventional electronic spectroscopy.  Moreover, 

the same principles extend to the significantly more intricate rules that apply to 
multiphoton transitions and multipole interactions [28, 32]. 

 

4. Rayleigh scattering 

 

The single-photon absorption and emission processes discussed so far involve single 
light-matter interactions – they are, therefore, termed first-order interactions. In this 
section, we will deal with an important second-order interaction known as linear 
scattering. The principles and expressions employed in the previous sections are applied 
here but a number of additional complexities need to be considered for this higher order 
interaction. 

 

In linear scattering, a single photon transfers its energy to a molecule – which excites it 
to a virtual intermediate state r  – that almost simultaneously releases the energy via the 
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 11 

emission of a photon, often into a different radiation mode (Figure 3). Thus, the radiation 
undergoes an overall transition   1 2 1 21 1 0 n n , i.e. it loses a photon from the input 
mode 1 and generates one in an output mode 2. When the input and output radiation 
modes are identical, which is known as forward-Rayleigh scattering, the energy and 
direction of the photons are also identical. Non-forward Rayleigh scattering is when 
photons have identical energies but travel in different directions. The lifetime of the 
virtual intermediate states are of the order  




1

0
, which allows us to invoke the time-

energy uncertainty relation   E t  to rationalise that energy conservation does not 
measurably apply to these virtual states, over their ultrashort lifetimes.  

 

 

 

 

Figure 3. Energy-level scheme depicting non-forward Rayleigh (elastic) scattering: a photon is 

absorbed from one radiation mode, and another is emitted into a different mode, at a molecule 

(or atom) that travels to and from a virtual intermediate state r . 

 

In Rayleigh scattering, no net energy is transferred from the photon to the molecule; the 

scattered photon emerges with the same energy as the initial photon, that is k k . It is 

for this reason that Rayleigh scattering is known as elastic scattering. In inelastic 

scattering, some energy is transferred from the input photon to the material, or 

alternatively the molecule can transfer energy to the scattered photon: k k . Both of 

these inelastic phenomena leaves the scatterer in a final state that differs from the initial 

state, being manifestations of the Raman effect. More precisely the former results in the 

radiation being Stokes shifted, whilst the latter results in the radiation being anti-Stokes 

shifted. To give an indicative QED calculation of a second-order optical process, we will 

now derive the rate of Rayleigh scattering (understanding that Raman scattering can be 

developed along very similar lines).  

 

To begin, we consider a molecule in the ground state 0E  that absorbs a photon of energy 

ck  from a radiation field containing n photons of mode  ,k , leading to an 

intermediate state for the total system R , which then emits a photon of mode   ,k  and 

energy   (remembering that for elastic scattering that k k ) that returns the molecule 

to 0E . The initial I  and final F  system (matter and radiation) states are, respectively; 
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   0 0A ; , , ,I n    k k    ,             (22) 

 

   0 1 1A ; , , ,F n     k k    .             (23) 

 

Because Rayleigh scattering involves the annihilation of a photon and creation of another, 

and thus the two light-matter interactions correspond to two operations of Hint, we 

require second-order perturbation theory to calculate the matrix element of the process; 

namely, the second term of equation (4). A significant difference from the earlier first-

order calculations is that a summation over all possible virtual intermediate states, along 

with the computation of energy denominators, is required.  

 

 

 

Figure 4: The two representative Feynman time-ordered diagrams required for the second-

order perturbation theory calculation of the Rayleigh scattering of a photon of mode  ,k  into 

mode   ,k . Light-matter system states are represented by the kets, whilst the energy of each 

state (molecule plus radiation) for elastic scattering is highlighted in red.  

 

In elastic scattering there are two distinct time-orderings, (a) and (b), as exhibited in 

Figure 4, where (as stated earlier) the virtual intermediate state is not subject to energy 

conservation, unlike the initial and final states. The intermediate states and their energies 

are provided in this Figure. The numerator of the matrix element, for the contribution 
from graph (a), is calculated from the following bra-kets; 
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     

1

2
0 0

0

1 0 0
2

int A ; , A ; , e
ir r

a j j

n ck
R H I n n i e

V



  



 
       

 


k R
E R    ,             (24) 

 

     

1

2
0 0

0

1 1 1 0
2

int A ; , A ; , e
ir r

a i i

ck
F H R n n i e

V



  



  
       

 


k R
E R    ,            (25) 

 

where the photon modes are suppressed for ease of use, and the energy denominator is 

given by; 

 

   0 0aI R r rE E E E E           ,             (26) 

 

with the shorthand notation  0 0r rE E E .  In equations (24) and (25) – for  reasons that 

will become apparent when we consider coherence issues – a representative molecule  

is specified, located at a position R, meaning that the phase factors of the field expansion 

(7) are now retained. Next, combining equations (24), (25) and (26) as dictated by 

second-order perturbation theory, gives; 

 

 

     
1

0 02

0 0

1

2

int int

-
e .

a

a aa
fi

I R

ir r
i j i j

r r

F H R R H I
M

E E

ck
n e e

V E


 


   
 

 




   
     

   


k k R

                

(27)

 

 

Here, to succinctly denote the paired dot products that give rise to the second rank tensor 

form, we adopt the Einstein implied summation convention for summing over repeated 

Cartesian indices, with subscripts i, j each denoting x, y, z.  Carrying out the analogous 

procedure for graph (b) provides; 

 

     

1

2
0 0

0

1 0
2

int A ; , A ; , e
ir r

b i i

ck
R H I n n i e

V



  



  
     

 


k R
E R    ,            (28) 

 

     

1

2
0 0

0

1 1 1
2

int A ; , A ; , e
ir r

b j j

n ck
F H R n n i e

V



  



 
       

 


k R
E R   ,          (29) 

Page 13 of 18 AUTHOR SUBMITTED MANUSCRIPT - EJP-105032.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 14 

noting that the intermediate state is the only difference between graphs (a) and (b) – this 

corresponds to the two dissimilar states of R  in the second term of equation (4) for 

Rayleigh scattering, which produces the two terms in the final result below – and the 

energy denominator is given by; 

 

     0 0
2

bI R r rE E E E E             .             (30) 

 

Thus, the matrix element contribution from graph (b) is; 

 

 

     
1

0 02

0 0

1

2

int int

-
e .

b

b bb
fi

I R

ir r
i j i j

r r

F H R R H I
M

E E

ck
n e e

V E


 


   
 

 




   
     

   


k k R

                

(31)

 

 

Since QED requires deployment of both time-ordered diagrams, summing the 
contributions (a) and (b) gives the matrix element for Rayleigh scattering as;  

 

     
         

0 0 0 01

2

0 0 0
2


       

  
  

 
  

      
     


-Rayleigh e

r r r r
ii j i ja b

fi fi fi i j
r r r

ck
M M M n e e

V E E

k k R
   ,             

(32) 

 

where the quantity in square brackets on the right-hand side of equation (32) is a second-

rank tensor known as the molecular polarisability  00 , ;ij    , i.e.;  

 

 
       0 0 0 0

00

0 0

, ;
r r r r

i j j i

ij
r r rE E

       
   

 

 
   

   
    .             (33) 

 

This important property, which is possessed by all forms of matter, plays a key role in 

many optical phenomena; for example, it determines the magnitude of the photon-

molecule interactions and the dispersion characteristics. It is also the basis for the two-

photon selection rules, rather than those for one-photon couplings related to , which is 

the origin of two-photon symmetry-allowed electronic transitions that may be forbidden 

by one-photon interactions. Furthermore, the tensorial nature of the polarisability means 
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that it has a distinct orientation dependence – a feature sometimes overlooked in the 

literature. 
 

As in the case of single-photon absorption and emission, the matrix element can be used 

to calculate the rate of the optical process by using the Fermi rule. In this case of 

scattering, given molecules that remain in their ground state, the most extensive density 

of states is for the emergent radiation. So, we use the same formula given by emission 

above, allowing the differential scattering rate for N identical molecules  to be written 

as; 

 

 
   

22
4

00

3

0

2

22

-d
d , ; e

N
i

i j ij

nk V c
e e

Vc






   



  
   

 


k k R
   .             (34) 

 

This rate can be converted into an infinitesimal cross section d  by diving by the photon 

flux number  nc V , from which the differential cross section  d d  immediately follows: 

this is the well-known Kramers-Heisenberg dispersion formula. Another important 

quantity is the radiant intensity  kI , the energy radiated in the direction k̂  with 

polarisation    per unit solid angle per unit time, given by;  

 

 

   

2
4

0

2 2

0
16

-

d

d

, ; e
N

if
i j ij

I ck

Ik
e e 



   
 

 


 



 
k k R

k

   

.             (35) 

 

At this juncture, the inclusion of phase factors in equation (35) rewards closer attention. 

Importantly, there is a need to distinguish between forward ˆ ˆk k  and non-forward 

scattering ˆ ˆk k . Clearly, in both forward and non-forward Rayleigh scattering k k , but 

in non-forward scattering the scattering amplitudes are acutely sensitive on the 

distribution of the positions of the molecules, and the amplitudes from different 

molecules interfere randomly and the scattering rate is simply a sum of N independent 

scattering rates. Non-forward scattering is incoherent. In forward scattering, the 

scattering amplitudes from the different molecules interfere constructively, being 

independent of molecular position and, therefore, forward scattering is a coherent 

process proportional to N2.  A more detailed analysis of the importance of coherence and 

wave-vector matching in scattering processes can be found in ref. [3]. In general, for a 
random distribution of molecular positions ξR , we observe that [33]; 
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 

2

2

-       
e

     

N
i N

N




 


 



k k R k k

k k
   .             (36) 

 

Carrying out the modulus square of equation (35), therefore, gives the scattered radiant 
intensity for non-forward scattering as; 

 

     
4

00 00

2 2

0
16

, ,i j k l ij kl

NIk
I e e e e     

 
    k    .             (37) 

 

It is noteworthy that the radiant intensity for Raman (inelastic) scattering has a similar 

expression; the main difference is that the initial or the final molecular state is not the 

ground state. So, unlike Rayleigh (elastic) scattering, the molecule states do not begin and 

end at the same lowest state: the process is therefore always incoherent, its measured, 

frequency-shifted scattering signal is linearly dependent on the number of molecules. 

Developing the theory to explain the selection rules, and how vibrational transitions 

depend on a change in polarisability during each vibration, requires a Born-Oppenheimer 

development – perfectly straightforward (see, for example, ref. [34]) – but separable from 
the present focus on photonic mechanism.     

 

5. Conclusion 

 

In this ‘Century of the Photon’ it is becoming clear that numerous technological 

innovations depend critically on the quantum nature of light. We have aimed to show that 

developing and applying the full quantum theory in the description of optical interactions 

is relatively straightforward – and perhaps it is simpler than is commonly supposed. 

Moreover, beyond the applications we have illustrated here, it affords a robust 

framework for conceiving, explaining and understanding many more intricate processes 

– including those that hinge on the photon for quantum informatics [35, 36]. 

 

In this paper, we have derived some of the simplest optical processes and provided some 

physical insights into what the theory show about them. The same principles can be 

applied to much more complex mechanisms as, for example, outlined in our recent review 

article [18]. An obvious but simple extension is the nonlinear, third-order interaction 

known as second-harmonic generation, in which two input laser photons with frequency 

  are converted into a single output photon of twice the incident frequency   2  (or 

 2k k ) through their interaction with matter. The QED theory follows similar lines to 

those discussed above; due to its three light-matter interactions, third-order 

perturbation theory is required – i.e. the third term of equation (4). A short cut to deriving 
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an expression for this, and other associated hyperpolarisabilities, may be found in 

another previous paper [37]. 
 

In conclusion, our account has aimed to illustrate and make a strong case for a more 

thorough and substantive account of photon-molecule interactions, and to show by 

illustration that the necessary quantum field methods are by no means beyond the reach 

of simple presentation.  
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