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As the Internet of Things (IoT) proliferates, the potential for its opportunistic interaction with traditional mobile apps becomes
apparent. We argue that to fully take advantage of this potential, mobile apps must become things themselves, and interact in
a smart space like their hardware counterparts. We present an extension to our Atlas thing architecture on smartphones,
allowing mobile apps to behave as things and provide powerful services and functionalities. To this end, we also consider the
role of the mobile app developer, and introduce actionable keywords (AKWs)—a dynamically programmable description—to
enable potential thing to thing interactions. The AKWs empower the mobile app to dynamically react to services provided by
other things, without being known a priori by the original app developer. In this paper, we present the mobile-apps-as-things
(MAAT) concept along with its AKW concept and programming construct. For MAAT to be adopted by developers, changes
to the existing development environments (IDE) should remain minimal to stay acceptable and practically usable, thus we
also propose an IDE plugin to simplify the addition of this dynamic behavior. We present details of MAAT, along with
the implementation of the IDE plugin, and give a detailed benchmarking evaluation to assess the responsiveness of our
implementation to impromptu interactions and dynamic app behavioral changes. We also investigate another study, targeting
Android developers, which evaluates the acceptability and usability of the MAAT IDE plugin.
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1 INTRODUCTION
The success of the Internet of Things (IoT)will largely depend on how the things are architected to opportunistically
engage with each other. This is especially the case in personal IoT where the smart cooperation between the
services offered by the things could expand the ways for smart space users to interact with their smart homes
and workplaces. However, such smart engagement cannot be achieved through simple connections between the
offered services, but through the dynamic creation of IoT applications and scenarios opportunistically by the
things themselves.
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At the same time, the opportunistic dynamic development of domain-related applications and scenarios should
not only be based on the services offered by the things but also on the relationships that could logically and
functionally tie these services together. The social networking concepts started to converge with IoT technologies
forming a new paradigm named Social Internet of Things (SIoT) [6, 7]. SIoT is about creating a social network of
things through a set of social relationships and interactions. The recently proposed ideas on social IoT [11] are to
logically link the things according to their identification attributes (e.g., things from same vendor), not on the
services offered by these things. However, the exploitation of service-level relationships in the context of social
IoT adds an effective programming perspective to such a new evolving paradigm. The inter-thing relationships
programming framework [17, 18] broadens the social IoT thing-level relationships and utilizes a set of concrete
relationships between the offered services to empower a much wider class of meaningful IoT applications.

On the other hand, the typical models of the things in smart space are things with sensors that sense and collect
environment parameters and things with actuators that perform actions and change the state of the environment.
However, smart spaces are not only full of hardware models of things that offer hardware-based services, but also
software models [25]. A software model—a mobile app—is a new type of thing that represents a different model,
offers software-based services and functions, and is able to engage with its mates in the ecosystem in different
IoT applications and scenarios.

Consider two things that have a potential for interaction—a digital video recorder (DVR) device and a mobile
phone "TV guide" app that lists upcoming television programs—but have not been explicitly programmed for
each other. The DVR could offer to record the program the user has selected on their phone; however, the
developer of the app did not see this as a possibility and did not implement such a feature. This does not stop the
things, however: they have already exchanged capabilities and created a meaningful interaction based around
the concept of TV programs and recording. The user is given the choice (driven by the DVR and displayed by
the app) to record the program whose listing they are currently viewing, and to "integrate" such behavior into
the app, permanently creating a relationship between the DVR and mobile app. Although the developer did not
implement this functionality, such an interaction was able to take place, thanks to the underlying features of
the thing architecture and the app’s descriptive metadata: the developer instead defined keywords—capabilities
and interests—that allowed the architecture to suggest new relationships with other things in the smart space.
Once accepted by the user, the app can adjust its behavior and interface to accommodate new elements for the
deduced interaction. In this paper, we utilize the inter-thing relationships programming framework [17, 18] and
present an extension, Mobile Apps As Things (MAAT), to our Atlas thing architecture [19] targeting mobile
app developers and attempting to pave the way for the mobile apps to engage in smart spaces as things in the
ecosystem. The extension introduces actionable keywords (AKWs) as programmable and dynamic descriptions
that enable potential thing to thing interactions. The AKWs empower the mobile app to opportunistically and
dynamically react to functionalities and services provided by other things in the ecosystem, without being a priori
configured or statically wired by the mobile app developer. For MAAT to be smoothly adopted by developers,
we developed an IDE plugin for a common mobile app development environment (Android Studio) to ensure
minimal, acceptable, and practically usable experience.

The paper is organized as follows. Section 2 highlights related work and presents a brief summary of the Atlas
thing architecture on which we base our ideas in this paper. Section 3 presents the framework by which we propose
mobile apps to be redesigned as things in an IoT. Section 4 presents the AWK idea as an enabling mechanism for
mobile apps to become things. Section 5 gives details of our implementation including programming time support
in the form of an Android Studio Plugin. Section 6 presents a performance evaluation to test the feasibility of our
approach in terms of acceptable responsiveness of mobile apps when they are modified to also be things. Section
7 presents an acceptability study with end users (mobile app developers). Finally, a discussion and future work
are presented in section 8, and a conclusion is presented in section 9.
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2 PRIOR WORK AND REQUISITE BACKGROUND
In this section, we limit our coverage of prior work to research/products that relate most to our idea of a mobile
apps as a thing (MAAT). As no prior work exists that attempts to directly affect mobile apps to be things, as with
MAAT, we cover mainly ingredients and referential related work.

If This Then That (IFTTT) [13, 29] is a web-based service that allows user in smart space to manually connect
the various Internet-based services and features (e.g., Twitter) to develop an application called an applet. IFTTT
binds such services and features through a single rule: if a certain event occurs (e.g., received a message) then
perform some action (e.g., vibrate the smartphone). Users can give IFTTT permission to utilize various cloud APIs
offered by service vendors (e.g., Instagram) to operate on their data through predefined applets, or custom ones
they create. IFTTT has also added support for smart products (e.g., Belkin WeMo home automation and Philips
Hue lights bulbs), as well as Android system functionality (e.g., Bluetooth, messaging, and notifications). While
these features move towards providing thing-like behavior on mobile devices, they focus more on cloud-based
services and events, and require applications to provide REST-based endpoints for integration. This makes local
interactions difficult and requires users to manually specify applets, either custom or community provided.

Similarly, Yun et al. [32] created a prototype named TTEO (Things Talk to Each Other) that can be programmed
by user-defined if-then rules, in the same vein as IFTTT but focusing specifically on smart things. The architecture
consists of two platforms; Mobius, a connectivity platform that resides as an IoT server, and &Cube, is a smart
service server that acts as the interaction domain. Mobius communicates with devices, maintains virtual entities
for each, and sends this information to &Cube, which allows developers to create and execute new services with
registered devices through predefined control statements. This functionality is exposed through a mobile app that
allows users to specify these rules on the fly. While the project better handles local thing-to-thing interactions, it
still requires users to think up their own interactions, and does not consider the potential for integration with
software features like those in a mobile app.
MOSDEN [26] is an IoT middleware targeting mobile devices, allowing users to collect and analyze sensor

data through a service model. Users can connect with new sensor types without the need to directly program
such an interaction. The middleware uses a plugin architecture to achieve this; individual plugins (developed
by third parties) can be added and removed on the fly to support a specific sensor type or brand, and can be
downloaded through the smartphone’s application store. The mobile app allows users to view detected sensors
and their collected data. While this explores augmenting a mobile app with behavior not explicitly considered by
the original developer, it only considers information transmitted to the mobile device, not data or actions that
may come from the mobile app to be used by other things.
Coulson et al. [10] proposed a programming method to facilitate the composition of self-contained systems

without relying on their functionality. These systems, such as wireless sensor networks, interact and compose
opportunistically, allowing them to create new integrations with potential partner systems. These systems interact
through a set of contact-action rules that allow the developer to react to neighboring systems based on their
properties or functionality. When a neighbor satisfying these rules is found, the system is notified and can react
to the new potential integration. While this approach allows systems to cooperate based on the properties of
other systems, it focuses on systems reacting internally, rather than providing behavior to use on another system.
Atzori et al. [7] proposed a paradigm of a social network of smart objects named Social Internet of Things

(SIoT) to mimic human behavior. The authors analyzed the types of social relationships between things to be:
parental (things built by the same vendor), co-location and co-work (things reside in the same place or cooperate
to provide applications), and owner (things owned by the same user). The authors of the same project, in [11],
also presented an architecture to address network navigability along with service discovery and composition. The
architecture is made up of server and objects (the physical devices) as the network elements. The server holds
the relationship management module where the selection and setting of the relationships is based on human
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control settings along with appropriate interfaces to objects, humans and third-party services. The object side
holds an abstraction layer for the device and the social management module for the communication between the
device and the server. While our work utilizes inter-thing relationships similar to Atzori’s work, it goes beyond
enabling general communication and links one or more thing services to a mobile app, affecting the dynamic
behavior of that app based on user interactions.

Lee [21] tackled feature interoperability aspect in the dynamic development of software applications. A feature
(a software entity that is visible to users of a system) can collaborate with other features that are not conceived in
the application’s original design or when it is deployed. The authors proposed a model-driven approach called
Dynamic Feature Deployment (DFD) to support the seamless integration of new features and changes to an
application’s configuration at runtime. DFD is an encoded feature configuration knowledge embedded into the
deployed features so that they know their composability. As a new feature model with a changed configuration
can be deployed at runtime, features can recognize new features after deployment and can manage configurations
depending on a currently bound feature model. The authors also introduced a software model that controls the
interactions between the different available features. Our work is different from DFD in that no configuration
management is used or needed; rather, it is a dynamic IoT formation involving an app and things in a smart space.
Additionally, the developer of the mobile app as a thing, and the app itself during runtime, does not know specific
instances of the thing services (that would correspond to DFD features) a priori.

In the apps-as-things demo paper [12], the authors presented a soccer match demo scenario involving media
appliances and mobile app things (the World Cup Scenario). In this demo, the things and app tweet out keywords
about their identity, capabilities, and interests. At the same time, they receive these tweets from the other devices,
which are parsed to learn about the APIs and services available to the smart space. When these keyword tweets
are received, they are compared semantically to the thing’s own capabilities/interests to identify the potential
for new meaningful interactions. In the case of the DVR and mobile app, once a correlation is formed between
the "TV" and "recording" capabilities of the two things, the DVR passes its recording API to the app. The app
then uses this information to adjust its UI layout (adding buttons, notifications, etc.) to allow the user to trigger
the new functionality. Such UI presents itself in the form of a "Chromeless" [5] web view, received from the
DVR, allowing the user to control it directly from the app. Receiving all capabilities and services provided by
thing mates provides a thing with all the information it needs to form new meaningful interactions. However, in
the case of a mobile app thing, this also adds much effort for the app developer to manually decide out how to
integrate such received capabilities and services into the app logic and interface. In this paper, we present an
extension to the Atlas thing architecture [19] targeting mobile app developers, allowing a mobile app to react to
opportunities in the smart space without specific intervention or foresight from the app developer.

2.1 Atlas Thing Architecture
As noted earlier, we base our framework on our Atlas thing architecture [19]. The architecture takes advantage
of a thing’s OS services to provide new capabilities a thing needs in order to engage in ad hoc interactions and
interconnections. The architecture utilizes the specifications of the IoT Device Description Language (IoT-DDL)
[9, 16], which is a machine- and human-readable digital description and metadata that is loaded to the thing
and describes it in terms of its inner components, attachments, resources and the services it offers. The thing
then discovers its own identity and capabilities, generates services, and formulates APIs to these services to be
announced to other space entities. A thing in a smart space engages with thing mates through a set of information-
and action-based interactions. Information-based interactions (referred to as tweets) enable a thing to announce
its identity, capabilities, and APIs to thing mates. Action-based interactions include management commands,
lifetime updates, and configurations from authorized parties as well as applications that target the thing.
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Fig. 1. Atlas Thing Architecture.

The inter-thing relationship programming framework proposed in [17] broadens the social IoT thing-level
relationships proposed in [7] with service-level relationships that logically and functionally show how the things’
services may tie to build applications. Such service-level relationships extend this limited and restricted set
of relationships with a new set of concrete relationships for a wider class of applications. In this paper, the
things dynamically detect the opportunistic relationship with their mates’ services and utilizes the framework to
describe such application in terms of the different primitives and operators. The created application is governed
by a set of semantic rules that evaluate correctness and guide execution. Through the mounted architecture
and the uploaded IoT-DDL, the thing dynamically builds runtime programmable representations for the offered
services and relationships and generates services along with the appropriate APIs to them.

Due to space considerations, we do not describe the full scope of the project but focus on the layers that support
our framework. The Atlas IoT platform layer of the architecture, illustrated in figure 1, focuses on the descriptive
and semantic aspects of things to better enable thing engagement and programmability. The DDL sublayer
configures the architecture according to the IoT-DDL for just-in-time API-ing, identity and device management,
own- and learnt-knowledge management. A significant requirement we address is to allow things to understand
and prepare for new meaningful interactions introduced by a smart space, with minimal intervention required
by the user. Such an ability empowers a thing to discover new social relationships with the smart space and
assist the user in discovering new possible relationships. In the tweeting sublayer, the thing builds its own tweets
to describe what it is, what it does, and what it knows to the other mates. The thing then analyzes the tweets
announced by its mates. The discovery of social relationships through ad-hoc social interactions (tweets) which
enables the discovery of semantic similarity and affinity between thing mates is accomplished in the tweeting
sublayer with the help of WordNet [23, 30]. WordNet is a lexical database that groups the English words into sets
of synonyms words; measures the semantic similarity between them; and records relations between such sets.
Our architecture also utilizes the Inverse Document Frequency measure (IDF) [27], which is a numerical statistic
intended to reflect how unique and important a word is in a corpus.
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3 REDESIGNING MOBILE APPS TO BE THINGS
Image a user with a mobile app entering a smart space full of smart things. For example, a soccer fan with a sports
mobile app approaching his media center in his living room (the World Cup Scenario described in section 2), or
a travelling businessman with productivity apps arriving at an airport lounge. In this age of IoT, shouldn’t he
expect new kinds of interactions and suggestions for future or new engagement opportunities? And shouldn’t he
expect that his mobile app UI update itself to catch and bring awareness to these opportunities? Further, if these
scenarios are possible, how long would it take him to notice these new opportunities reflected in his mobile apps?

For the above situation to be realizable, a mobile app as a thing must react to the capabilities of a smart space,
and change within the context of its own interface and functionality. This calls back to introspective programs
[8], or programs that "self-reference" their own information. However, instead of performing tasks like copying
itself or print out its source code, a mobile app must use this information for far more practical purposes, such as
adjusting their services, appearance and functionality on the fly to take advantage of and utilize the services of
another smart thing. Before such modifications can occur, two pieces of information must be known: the target
functionality (from the smart thing), and the input data or control to give it (from the mobile app). Once both of
these are known by one of the devices, the interaction can occur.
Receiving potential functionalities from the thing through the transmission of its APIs, as was done in the

apps-as-things demo [12], provides an app with all the information it needs to form new meaningful interactions.
However, this method also leaves a lot of work for the app developer, in terms of determining how to integrate
this new behavior and display it to the user. If the developer does not know exactly which smart things to support,
it becomes impossible to determine what context (when and where in the app) an interaction should be available
in. In this manner, the app developer may want to leave some "placeholder" space for a new interaction’s UI
elements; however, anticipating the extent of the requirements (mainly where to place this placeholder and how
to link it logically with the created new behavior) would prove difficult. Instead, a UI in this manner would
likely find most use in pop-ups (such as a toast notification [4]), or a new interface in its entirety, such as the
Chromeless web browser view mentioned above, where the context of the interaction can be entirely contained.
This moves the information requirement to the smart thing, which can now receive input data through its own
interface, using the mobile app only as a display. Unfortunately, in these cases, this context is disjointed from
the rest of the interface: the UI exists "on top" of the app, and cannot easily interact with or extend the app’s
developer-created elements.

True integration of a thing’s functionality into a mobile app, therefore, becomes difficult. Continuing with the
DVR scenario described in section 2, the app knows what program the user wants to record, but it still needs to
know where and how to send that contextual data—a difficult situation when the developer lacks prior knowledge
of the received DVR API. Many of the interface decisions would have to be made/provided by the thing (i.e., the
Chromeless web view), although its knowledge about the app is limited in a similar manner (e.g., it must ask
again what program to record). If the developer only knows about what information his application can provide
to potential things, how can the features of these things be more closely integrated?
We argue there is more information that can be used by the developer. In a general sense, the developer also

knows where the data comes from (such as a specific UI element), and, by extension, how this data could be used
in a new relationship with an interested thing. In a situation targeting a specific smart thing, an app developer
would indirectly identify this "interaction-capable" information to pass to the known API. For example, the
developer of the TV app knows that each row in the list of TV programs—as shown in figure 1—offers a unique
set of values (e.g., the channel number and air time) that is needed to control the DVR’s functionality. When the
target functionality is unknown, the developer can still identify this information, effectively saying, "the user
is interested in a specific TV channel," compared to "the user is interested in TV channels in general," as in the
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Germany v. Brazil
Tonight @ 8PM
On Sky Sports

England v. France
Tomorrow @ 4PM
On Sky Sports

{
“program_id”:23908,
“channel_id”:34

}

{
“program_id”:59230,
“channel_id”:34

}

Fig. 2. Independent groups of information available from different elements of a mobile app.

system described in section 2. The mobile app provides the smart thing with the input data it needs, without
requiring the thing to collect the data itself, or know when the data should be used to invoke its service.
As mentioned above, the thing does not know when to use this data; it needs the context of the interaction,

or where in the app’s logical flow this data will enter and be made available. In the case of a mobile app with
many views and functionalities, such context is critical in enabling meaningful interactions; at times, a piece of
data may not always be relevant or even accessible, depending on the state of the app and the actions of the user.
Conveniently, knowing where the data comes from provides the contextual information: the source UI element is
tied to a specific point in the app’s logical flow. For example, each list row in the TV app provides a complete set
of information, and implies that the data is only available when the list view is active (browsed over by the user);
the context of an interaction is contained within each specific row. This is illustrated in figure 2: each row is
backed by data (a channel and program "ID") needed to trigger an interaction with a smart thing (the DVR). More
TV programs may exist in the list, but are contextually unavailable; they are not visible to the user and therefore
cannot be used to invoke thing functionality.
Collecting and presenting this per-component information, however, poses a significant challenge to the

developers of both thing devices and mobile apps. Making such fine-grained interaction a reality will require
mobile app developers to truly consider the role of their app in an IoT system, and thing developers to support a
wide range of potential interactions. Through a new programming construct introduced in the next section, we
aim to limit this apparent complexity by reducing the requirements placed on the mobile app developer, where a
mastery of IoT should not be required to create an app with thing capabilities. We also remain mindful that a
solution should impose only minimal changes to the app development process; even with IoT knowledge, app
developers should not need to go out of their way to make their apps things. Rather, the capabilities introduced
should exist as a first-class citizen within the standard development ecosystem.

4 ACTIONABLE KEYWORDS
For a mobile app to realize its functionality as a thing, we utilize the information described above and reverse the
roles of a mobile app and normal thing devices. Rather than search for potential interactions through service/API
information broadcast from things, the mobile app advertises its available input data back to the smart space. A
thing can then match this input against its available services, discovering new potential interactions that can
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be shared with the mobile app. In addition to allowing the mobile app developer to create an interface for the
broadcast inputs, this also allows thing devices to determine the actual matches, which we believe is a more
flexible and realistic alternative to requiring the app developer to account for all potential thing interactions.
To represent this input information and facilitate the link between the logic of a potential interaction and

the mobile user interface, we introduce the actionable keyword (AKW) concept and programming construct. An
AKW—as shown in figure 3—is a structure present within a mobile app that contains a description of some input
data, a set of keywords to represent the purpose/source of that data, and information on the UI elements that
data is tied to (the context of the potential interaction). Information on these AKWs is then broadcast to the
smart space, where thing devices compare keywords and data types against their available services. If a match is
found, that service’s API is sent back to the app to be invoked by the user. Note that a single AKW may represent
multiple instances of such a UI context (like the rows of a list view); the actionable keyword represents the type
of information available, not a specific piece of data—all instances of that data are valid inputs to a thing service
that matches with the AKW.

Actionable Keyword

Identifier

Input Type

List of Keywords

UI Context (parent view)

Input Control/Widget

AKW Message

AKW Identifier
Input Type
Keywords

AKW Response

AKW Identifier
Thing Identifier
Target Service API
Widget Label

Smart Thing

Identifier

List of Services (APIs)

Metadata

Mobile-App-As-Thing Hardware Thing

Fig. 3. The actionable keyword programming construct, along with the messages passed between app and thing.

The above situation highlights a pressing issue: once a relationship is formed through an AKW, what data
should be used, and when, to invoke the thing device’s functionality? To solve this, an actionable keyword also
represents an input control (widget [1]) within its context that allows the user to trigger the formed relationship.
The developer defines a "placeholder" button that is initially blank and hidden—it is not known what service, if
any, will respond to the AKW. Once a relationship is established, the button pops into view with a thing-specified
label. At this point, tapping the button invokes the received thing functionality with the data from the relevant
UI context as input.

To illustrate this entire process (as shown in figure 3 and 4), consider the TV guide scenario from section 3. The
app developer decides to expose upcoming TV programs to the smart space. The developer decides to transmit
the program ID and channel ID of each (see figure 2), describing this data with the keywords "TV", "channel", and
"program". The developer then specifies the list’s row layout as the UI context, and adds a placeholder button
within it. This information completes the definition of the actionable keyword, which can be broadcast to the
smart space during runtime. Within the Atlas architecture, this information is sent out as a message called a
tweet, along with existing tweets describing the app’s identity and general capabilities [18]. These AKW tweets
can then be evaluated by other things in the smart space, searching for potential matches against their available
services.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 143. Publication date: December 2019.



MAAT: Mobile Apps As Things in the IoT • 143:9

Germany v. Brazil
Tonight @ 8PM
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{
“keywords”:[“TV”, “Program”],
“type”: “button”,
“value”: “ProgramID”, • • •

}

HIDDEN RECORD

{
“service”:“RecordProgram”,
“owner”: “DVR”,
“inputs”: [“ProgramID”], • • •

}

Germany v. Brazil
Tonight @ 8PM
On Sky Sports

New Extend
Relationship

DVR

Actionable
Keyword

Fig. 4. The interaction between a button’s actionable keyword and the DVR service.

The DVR thing finds a match and responds to this AKW to create a new relationship, providing information
about itself, its recording service, and a new label for the placeholder button within the app. Using the Atlas
architecture, the mobile app concatenates its ability to provide information with the functionality offered by the
DVR (recording a TV channel) through an extend relationship [17]. Once this relationship is established, the
app enables the placeholder button in each row of the list view, changing their labels to "RECORD". When a
record button is tapped, the service provided by the DVR is invoked with the channel and program info from
the button’s context. Note that multiple services may vie for an AKW, but only one may attach and create a
relationship—this, however, is not permanent; the bound service may be removed or disabled, allowing another
to match.
In the given scenario, all information needed by the DVR service is available from the app immediately, and

the user can complete the interaction with the single tap of a button. The interaction involves a thing requiring a
specific input type, receiving the relevant AKW, and instructing the mobile app to integrate its service. However,
this kind of back-and-forth may not always be able to satisfy a thing service’s requirements, especially with
more complicated services, such as those requiring multi-stage interactions or user confirmation. Handling
such interactions is likely to drastically increase the complexity of the solution, therefore, the proposed systems
in this paper will focus only on "simple" interactions utilizing a single button, to lay groundwork for future
improvements supporting these complexities, as described in section 8.

5 IMPLEMENTATION
The initial design and implementation of our Atlas architecture extension and actionable keyword programming
construct targets Android mobile applications. This includes a custom UI component to represent an AKW, an
Android service process to manage active keywords and communicate with the smart space, and a superclass
of the Android Application class to handle data exchange between these parts. These components allow the
actionable keywords to perform their functionality (broadcasting, listening, and updating the UI) independently;
the runtime behavior of individual layouts or keywords within an Activity does not need to be managed.

The custom UI component, called an ActionableLayout, is a subclass of the Android ViewGroup class (similar to
the standard layout types like LinearLayout [2]) intended to wrap around an existing layout or view component.
This component represents the context of an actionable keyword—the elements within the ActionableLayout
represent the data that can be offered to the smart space. Each ActionableLayout requires the following elements:
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1) a list of keywords, 2) a representation of the data it provides, 3) an associated button component, and 4) a data
formatting listener function. An example Android layout XML tag for an ActionableLayout is shown in figure 5.
The given keyword list and data representation are used as provided to broadcast the actionable keyword to

other things, while the button and data formatter are used internally to facilitate the app’s dynamic behavior in
reaction to a thing responding to the AKW. The button component, as described in section 4, is a child component
of the ActionableLayout that is initially hidden, but becomes visible and enabled once a thing responds to the
actionable keyword, as shown in figure 6. The responding thing is given some control over this component
through its label (the thing service may specify the text that should appear within the button). This allows the new
functionality to be presented to the user without requiring specific knowledge from the original app developer.
The data formatting function, the final requisite part of an AKW definition, replaces the concept of the onClick
listener for the ActionableLayout’s button; while button clicks are handled internally, they collect the data to be
sent to the appropriate thing service by referencing this developer-defined data formatting function (see figure
5). This allows the developer to pull the data from their application logic and format it as they specified in the
ActionableLayout parameters, without needing to manage the AKW display logic.

<ActionableLayout
android:id=“@+id/myAKW”
app:button=“@+id/abutton”
app:data_format=“[ProgramID,	ChannelID]”
app:keywords=“TV,	Show,	Program”
app:onFormat=“onFormatProgram”>
…
<Button	android:id=“@+id/abutton”	/>
…

</ActionableLayout>

public	JSONObject onFormatProgram(View	v)	{
Program	p	=	(Program)v.getTag();

JSONObject o	=	new	JSONObject();
o.put(“ProgramID”,	p.id);
o.put(“ChannelID”,	p.channel);

return	o;
}

Fig. 5. An ActionableLayout XML definition, and its companion formatter function.

When an application utilizing actionable keywords is running, a supporting Android service becomes active in
the background. This service performs most of the traditional Atlas architecture functionality, such as listening
for and responding to tweets. In the context of actionable keywords, this includes sending keyword info, handling
interested things, and invoking thing services. ActionableLayouts register their AKW with the service if needed
(multiple instances of an individual layout refer to the same AKW and only register once), and are notified by the
service to enable their button upon receiving a response.

5.1 Responsiveness
Even after an actionable keyword is matched and the mobile app’s interface updates, nothing can occur until the
user sees the change and interacts with the new UI elements. User understanding is an important part of the
actionable keyword concept, especially when the signs of an AKW are mostly "invisible" before it is matched; a
user will likely only notice a new interaction after it has formed and the UI elements appear. Between the required
communication and keyword matching time, any modifications to the app’s UI will occur with some level of
delay from the time the AKW is broadcast. Depending on the amount of delay, the user may miss interaction
opportunities by navigating throughout the app to quickly, or become confused when a UI element has changed
since the last time it was viewed.
App responsiveness and user awareness, therefore, are critical to the functioning of actionable keyword

interactions. The presentation of an AKW before and after it is matched must be carefully considered to ensure
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using such an app does not confuse the user or feel clunky or sluggish. Mainly, this involves handling what
happens when an AKW’s button becomes visible during a match, in terms of latency and user perception. For
example, the sudden appearance of a UI element might confuse the user: where did such a button come from
and why? One possible solution would be to use a progress bar or other element to gradually replace the hidden
button (see figure 6), raising awareness to the use of an ongoing search for AKWs. This would hint to the user
that something may occur in that area of the UI. However, this may also cause confusion if the delay before
a match is too short and the progress bar appears only briefly, unless a limit is set on how fast the bar may
progress. Optimizing the behavior of a progress bar in the MAAT UI design is important; however, in the current
implementation iteration, we have adopted a simple "pop-in" design.

Fig. 6. The different states (before: left, during: middle, after: right) of the app UI as an actionable keyword is broadcast and
tied to a service. "Game 1" and "Game 2" show a simple "pop-in" button, while "Game 3" shows a "search" progress bar.

For the initial implementation of the actionable keywords programming concept, we chose to focus on the
latency between an AKW broadcast and match, to minimize the user’s perceived delay. With a small enough
latency, the button will appear during navigation transitions or within reasonable human reaction time, giving
the illusion that the button is seamlessly integrated with the original app. We explore this responsiveness and
latency between apps and things further in section 6, with a set of experiments that record these metrics under
varying conditions.

5.2 IDE Plugin
Using actionable keywords does require developers to somewhat modify the way they advertise and search for
services. The thing developer (the DVR manufacturer, continuing on our example), must look not only for the
type of app/thing ("TV-related") their service can utilize, but also for the specific data their service requires ("TV
Program ID" or similar). On the app side, the developer (or their IDE) must consider which elements of the app
they desire to make available to a smart space, and then adequately describe what the element is offering such
that a thing can recognize a potential for interaction when it is there.
Both requirements may be overlooked by a developer who is not engrossed in IoT. In the original case (see

section 2), the developer provides keywords and capabilities for the app as a whole, probably with little need to
update. Now, however, AKWs can be specified in many components across the app and may be added or removed
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as features change or the UI is altered. This increases the burden on the developer, who must add these actionable
keywords (both descriptively and as part of the UI), based partly on their imagination of what information might
be useful to a smart space.
To facilitate the creation of actionable keywords, and reduce this burden, we implemented an AKW plugin

targeting the Android Studio IDE [15]. The plugin consists of a series of dialog windows guiding the developer
through the creation of AKWs, as illustrated in figure 7. The plugin provides support in: 1) creating the Action-
ableLayout with the appropriate fields, 2) choosing the keywords and data format, and 3) implementing the data
formatter. The developer starts by selecting a layout component that should be wrapped by an ActionableLayout,
and initiating an Android Studio intention action [14] provided by the plugin. An intention action (or "lightbulb")
is an IDE feature that provides localized warnings or suggestions within an active source file. This is commonly
used by developers to fix errors or import dependencies.

Fig. 7. The AKW IDE plugin interface.

Invoking the AKW intention creates a dialog with fields for the required data. The fields for keywords and
data format may create an additional dialog, allowing the developer to search a repository of existing keywords
(described in the next section) within the plugin and directly select from this information. Accepting the dialog
wraps the selected layout element in an ActionableLayout, sets up any needed references, and creates a skeleton
function for the data formatter within the relevant activity class. This skeleton function creates a JSON object
with the appropriate key names for the chosen data format, only requiring the developer to fill in the values (see
figure 5).

5.3 Sourcing Actionable Keywords
As mentioned above, the developer not only has to describe the information being offered, but also must provide
the information in a form usable by the thing service. For example, the app developer may provide program
information in a tuple of channel number and air time, while the DVR developer expects this as a vendor-
specific "program ID" number. Due to this mismatch, the app and thing would not be able to directly form a new
relationship—the thing service does not expect the data in the format given by the app. In addition to providing
accurate keywords, a mobile app acting as a thing must also cooperate with the behavior of potential thing
interactions. To increase the likelihood of finding a compatible interaction, presentation of data from the app can
be facilitated with a mixture of IDE intervention and a repository of existing standards and thing descriptions.
One way to reduce potential compatibility issues could be the suggestion and use of standardized object

representations: within the actionable keyword, the developer may specify the schema of their data, allowing
things to better identify the format of the data they are interested in. For example, the app developer may want
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to specify the encoding of their TV channel listings as XMLTV [31]—a standard object format for describing
TV programs. The DVR developer can then use this information (available from the AKW) to know the app is
providing TV information, rather than just seeing a tuple of plain integers. Specification of an existing object
representation also reduces the effort needed by the app developer to determine what data their app may broadcast
and encourages thing developers to support these common formats—increasing the chances of new interactions
being formed.
However, an object format may not always be sufficient for all types of thing services; an interaction’s data

may have many standardized representations, or not fit well into what is available. To cover these situations,
keywords are instead supported by a central repository of information obtained from existing IoT-DDLs: the
human-readable manufacturer descriptions that exist on Atlas thing devices. Because these descriptions already
contain the keywords and inputs of existing thing services, they can easily be connected and indexed as a database
of potential thing interactions that will work directly with a MAAT application. This repository (a web-accessible
database that indexes vendor, service, and input descriptions) then allows for developers to search (directly in
the IDE plugin) through existing services with their own terms, but choose keywords and data formats that are
guaranteed to work with their app. This interface can be seen in the second image of figure 7. The availability of
this information can help influence the developer in their choice of keywords, their structuring of the app for
unknown interactions, and their providing of data to best support a wide range of IoT devices. Note that the
repository does not need to inform the developer exactly which things should be supported in their app, but
instead offers insight on the potential for thing interactions.

Such a repository may also benefit thing vendors: the capabilities of their devices become easily known, and the
information available may influence their service definitions, helping to achieve greater potential for interaction
with mobile apps. Continuing the above example, an app developer would likely choose a data format that is
supported by multiple TV-related devices in the repository for maximum compatibility. The common usage of a
single format may influence a vendor when creating a similar device; by utilizing this interface, the thing vendor
increases their capability for interaction with various TV-related mobile applications.

6 PERFORMANCE EVALUATION
In this section, we adopt two main metrics for evaluating our implementation of the MAAT idea. The first is
the latency of discovering new engagement opportunities between a mobile app and other IoT things in a smart
space. The second is the responsiveness of the behaviorally-altered mobile app’s UI in reaction to these changes.

While metrics such as battery usage and processing power are important in all mobile applications, the main
factors for a true evaluation of feasibility and usability in an app-as-a-thing scenario are different. We describe a
set of experiments to benchmark the time elapsed in the different phases of an actionable keyword’s lifecycle. We
believe minimizing this elapsed time is critical to user experience: because AKWs are tied to specific interface
elements (and therefore an Activity), relationships may be formed on the fly as the user navigates through the app.
A delayed change happening after the user has been looking at the UI could be confusing or annoying; therefore,
the time required to process a keyword and form the relationship/changes should be as small as possible. There is
no specific duration that constitutes "too long" in waiting for a response (the appearance of an AKW), especially
when the user’s attention is likely on the core features of the app. In these experiments, we consider durations up
to one second to be an acceptable response time. Within this range, responses occurring within 100 milliseconds
are perceived to be instantaneous, while 1 second is a noticeable but well within tolerable times [20, 24]. It is also
important to note that the default activity transition time in Android is defined as 220 milliseconds [3]. Therefore,
any interaction occurring within this time (before the transition completes) will not require any additional delay
to display a new capability to the user.
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The experiments detailed below break the total response time into three separate measurements: 1) the
opportunity discovery latency, or the transmission time for sending a tweet to a thing device plus that for sending
the response to the app, 2) the keyword match time, or the time required by a thing to compare an AKW’s
keywords with its own, and 3) the UI update time, or the time required by the Android app to redraw the AKW
interface elements. To measure these durations, benchmark programs are deployed on two representative thing
devices. The first is the app-as-a-thing running on Nexus 9 with Android version 6.0.1 and 2 GB RAM, and the
second is an Intel Edison development board with 500 MHz CPU and 1GB RAM. These things are connected to
the same private wireless network. The first thing used in the experiment is obviously the real target device
which is the platform hosting the mobile apps, whereas the second thing used is a real hardware platform that
adequately resembles and represents "real-life" target things such as consumer electronics (e.g., the DVR used in
our running example). Therefore, it should be feasible to transfer our approach to these real-life target things in
the future.

6.1 Experiment I – AKW Activation Time
This experiment benchmarks the activation time of an actionable keyword; that is, the time between the broadcast
of the AKW tweet and the appearance of the interface element after an appropriate match is received. This time
is equivalent to the perceived delay experienced by the user as new relationships are discovered between the app
and the smart space, as well as the sum of the three measurements defined above. Each of the three components of
activation time (see above) were measured using the Intel Edison thing device with a single advertised actionable
keyword.
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Fig. 8. Segmented activation time for an Intel Edison thing interacting with an actionable keyword.

As illustrated in figure 8, the network activity of the opportunity discovery consumes the majority of the time
as it depends on the current traffic on the network as well as the network module in use (e.g., WiFi or Ethernet).
Both the keyword match and UI update times are minimal in comparison; together, the activation time on an Intel
Edison devices would result in an in-app delay of about 150 milliseconds after the activity transitions into view.

6.2 Experiment II – UI Update Time for Multiple AKW Instances
This experiment benchmarks the time needed to redraw the Android user interface as the number of active AKW
elements increases. Multiple instances of the same ActionableLayout are used, such that they are all activated at
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the same time when the appropriate AKW response is received. This case reflects a situation like the TV guide
app from section 1, where an AKW is embedded into a list view, and each row represents an instance of the same
AKW information. This UI update time is critical to a user’s experience, as it directly affects the performance of
the app. Too long a delay could cause the app to appear unresponsive.
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Fig. 9. The UI update time for multiple instances of the same AKW.

As illustrated in figure 9, the update time increases as the number of keywords increases, but levels off at
around 8 keywords. This is because rows 8-10 reside off-screen, hidden by the list view layout; they are only
updated once they are visible to the user. If an element is active but not visible, the Android OS will update it at a
slower interval. Overall, the total update duration is low, taking approximately 2 frames (about 33 milliseconds at
60 frames per second) to display the new capabilities. Note that this is not active rendering time; it is simply the
time from when a redraw is requested to when it actually occurs.

6.3 Experiment III – Activation Time for Multiple AKWs
This experiment benchmarks the effect on total activation time when multiple AKWs are being activated across
multiple things. First, we consider the effect the number of "background" tweets has on activation time; that
is, actionable keyword messages (from this app or others) that will not be matched with a thing in the current
smart space. To do this, an Intel Edison was configured to match a single AKW with the app. At the same time, as
illustrated in figure 10, up to 19 other AKWs are broadcast—these simulate "unrelated" keywords that are not
compatible with the thing. The thing device must receive and compare these keywords before rejecting them:
they do not affect the app, as it will not configure a new relationship with them.

The additional network load has a reasonable effect on the thing device, increasing networking time as well as
the time needed to compare keywords for a match. The thing is able to multithread the receiving and comparing
of AKWs, to help limit the effect a large number of active AKWs has on the device.
Next, as illustrated in figure 11, we consider a situation to test the limits of our actionable keyword concept

and programming construct. An app with up to 20 active AKWs, all on-screen and visible in a single Activity,
was configured to match these keywords evenly across four Edison thing devices. Because these keywords are
received and processed independently, we consider only the total activation time of the entire set; that is, the
time between sending the first AKW tweet and updating the final UI element.
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Fig. 10. Processing multiple AKWs when only one will match, on an Intel Edison device.

The total activation time increases steadily as the number of active AKWs increase, but even at 20 elements
(completely filling the screen of our Android tablet device), the time remains manageable at about half of a second.
We believe that this represents a high number of AKWs for a single interface; although more may exist across an
entire application, off-screen instances may not be actively broadcast and update at a slower rate as mentioned
above. The overall activation time stays reasonable across a wide range of AKW loads.
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Fig. 11. Enabling a set of AKWs across multiple thing devices.

7 USABILITY EVALUATION
In addition to the performance of the MAAT framework and its interactions with things, we also placed emphasis
on the functionality and ease of use of the IDE support plugin. In this section, we describe a short study conducted
to gauge the usability of the MAAT plugin from an Android developer viewpoint. The study evaluated three
usability metrics: effectiveness, efficiency, and satisfaction. These metrics are derived from the ISO/IEC 9126-4
Usability Standard and are defined as follows [28].
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Effectiveness represents the accuracy and completeness with which the developers were able to achieve the
specified goals. This calculation is reflected in equation (1).

Effectiveness =
Number of tasks completed successfully

Total number of tasks undertaken
x 100 (1)

Efficiency represents the resources expended in relation to the accuracy and completeness with which the
developers were able to achieve the specified goals. Efficiency is measured in terms of task time (i.e., the time
in minutes a participant takes to complete a task successfully). This can be computed as time-based efficiency
or Overall Relative Efficiency (ORE), as shown in equations (2). ORE is the ratio of time taken by users who
successfully complete a task to total time taken by all users.
Satisfaction represents the comfort and acceptability of the plugin. This is measured through a standardized

satisfaction questionnaire that is administered at the end of the tasks.

Time Based Efficiency =

∑R
j=1

∑N
i=1

ni j
ti j

NR
and ORE =

∑R
j=1

∑N
i=1 ni jti j∑R

j=1
∑N

i=1 ti j
x 100 (2)

Where:
N = the total number of tasks (goals)
R = the total number of users
ni j = the result of task i by the user j; if the user completes the task successfully, then ni j = 1, else 0.
ti j = the time spent by user j to complete task i successfully, or until quitting.

7.1 Methodology
A laboratory approach was adopted for the usability study, which used eight participants with varying levels of
experience in Android development and Android Studio. At the start of the experiment the participant was given
a short explanation of the MAAT framework and some time to look over our plugin documentation. The study
was divided into two parts; in the first, to measure effectiveness and efficiency, the participants were asked to
complete three timed development tasks with increasing complexity (see table 1). The time taken to complete
each task, along with any questions asked or errors encountered, was recorded for each. The second part of the
study asked participants to complete a survey at the end, measuring satisfaction.

Table 1. Usability study tasks.

Task Description Expected Duration (minutes)

1 Create a simple actionable keyword 5
2 Create two independent AKWs in a single Activity 10
3 Use list data to make a multi-instance AKW 15
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7.2 Effectiveness and Efficiency Results
The results of the study’s first part, measuring effectiveness and efficiency, are shown in table 2. Apart from Task
1, each task was completed either within the allocated time or much sooner. The discrepancy with Task 1 can be
attributed to the initial unfamiliarity with the MAAT framework in general. While participants understood the
initial documentation, some hands-on guidance on the concepts was often needed initially. However, once the
developers gained this intuition, few issues were encountered in future use. This is especially prevalent in the
times of Task 2, in which the concepts of Task 1 could be directly applied. Task 3, the most complex, required
some traditional Android development in addition to direct use of the plugin, but was still usually achieved
within the expected time. The participants encountered a total of eight errors, for an average of one error per
three tasks. Most errors in Part 1 resulted from the unfamiliarity described above, which were recorded based
on the participant’s need for direct assistance. The errors from Part 3 usually occurred while "connecting" the
Android interface data to the AKW backend.

Table 2. Usability study task results.

Participant Task 1 Time (# Errors) Task 2 Time (# Errors) Task 3 Time (# Errors) Completed Tasks

1 8 minutes (1 error) 4 minutes (0 errors) 10 minutes (0 errors) 3
2 12 minutes (1 error) 7 minutes (0 errors) 14 minutes (1 error) 3
3 10 minutes (0 errors) 5 minutes (0 errors) 10 minutes (0 errors) 3
4 10 minutes (0 errors) 6 minutes (0 errors) 14 minutes (1 error) 3
5 5 minutes (0 errors) 4 minutes (0 errors) 12 minutes (1 error) 3
6 10 minutes (1 error) 6 minutes (0 errors) 16 minutes (0 errors) 3
7 6 minutes (0 errors) 5 minutes (0 errors) 15 minutes (1 error) 3
8 10 minutes (1 error) 4 minutes (0 errors) 11 minutes (0 errors) 3

All of the participants were able to complete their three tasks successfully; therefore, to calculate effectiveness
of the MAAT plugin we consider only the tasks that were completed without error as successful. The resultant
effectiveness across the tasks can be seen in table 3. The efficiency of the plugin was computed using the Overall
Relative Efficiency. Using the same success metric as effectiveness, the ORE for the MAAT plugin equals (119/214)
= 55.6%. This figure is relatively low due to treating tasks that generated errors as unsuccessful, especially
considering the need for familiarity as described above. If we discount the errors from Task 1, the ORE jumps to
74.2%. These results highlight the fact that even with the plugin, developers still need some level of knowledge in
IoT and the MAAT framework to fully utilize it.

Table 3. Effectiveness of the plugin across tasks.

Task Computation Effectiveness (%) Average Effectiveness (%)

1 4/8 50
2 8/8 100 70.8
3 5/8 62.5
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7.3 Satisfaction Survey Results
The second part of the survey, assessing developer satisfaction, asked each participant 14 questions ranging from
how simple it was to use the plugin, to how useful was the information provided in completing the tasks, to
whether workflow would have to be changed to accommodate the plugin (see figure 12). 87.5% of the participants
felt the plugin was easy to use, and a similar number felt they could complete their work effectively using the
plugin. Importantly, most participants noted that they did not have to alter the way they worked to use the plugin.
Only two aspects of the plugin received a weighted score of less than 4.75 out of 6; most participants felt that the
plugin did not provide clear error messages or facilitate quick recovery from mistakes. The initial version of our
plugin does provide detailed help for many of the situations encountered in the study; this information clearly
shows areas of improvement for the next version of the plugin. Overall, however, participants indicated they
were satisfied with their use of the plugin.

0 1 2 3 4 5 6

It	was	simple	to	use	this	plugin

I	can	effectively	complete	my	work	using	this	plugin

I	feel	comfortable	using	this	plugin

It	was	easy	to	learn	to	use	this	plugin

I	believe	I	became	productive	quickly	using	this	plugin

The	plugin	gives	error	messages	that	clearly	tell	me	how	to	fix	problems

Whenever	I	make	a	mistake	using	the	plugin,	I	recover	easily	and	quickly

It	is	easy	to	find	the	information	I	needed

The	information	provided	for	the	plugin	is	easy	to	understand

The	information	is	effective	in	helping	me	complete	the	tasks	and	scenarios

I	like	using	the	interface	of	this	plugin

This	plugin	has	all	the	features	and	capabilities	I	expect	it	to	have

I	do	not	have	to	alter	the	way	I	normally	work	in	order	to	use	this	plugin

Overall	I	am	satisfied	with	this	system

Weighted	Average	Satisfaction	Scores

Fig. 12. Satisfaction survey.

8 DISCUSSION AND FUTURE WORK
As mentioned in section 3, we consider only a simple case where an actionable keyword interacts directly with a
thing service through a single button widget. However, this considers only straightforward situations where the
AKW’s action maps directly to the invocation of a thing API taking an input and giving an output. Introducing a
user interface and direct interaction into a thing service loop creates potential for more complex functionality to
be expressed, such as multiple inputs or "chained" service calls (such as asking for further information, providing
branching options, etc.) whose state can be reflected within the app—state which would normally be difficult to
convey through interface-less devices in a smart space. Additionally, the capability for user interaction could be
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expanded to include other input widgets [1]—such as a dropdown to enable multiple AKW bindings—expanding
on the current "invoke a service now" capability brought by a single button.
The evaluation of our work can also expand beyond opportunity discovery latency and app responsiveness

to include other performance metrics that may be investigated to further improve and evaluate our work. This
may include: 1) accuracy, in terms of how relevant the added widgets are to the interface, and 2) awareness, in
terms of how the user understands an impending change that will alter the app and its UI, along with the balance
between too much awareness (notifications for every change) and none at all (where the user is surprised by the
changes). In this section, we consider potential direct improvements to the current framework and IDE plugin
based on the results of our evaluations.

8.1 Minimizing App Developer Overhead
The IDE plugin assists the developer in choosing AKW attributes and in visualizing the smart space landscape.
Such functionality, however, moves away slightly from the goal of minimizing the app developer’s requisite
knowledge and eye for IoT. Choosing common standards and searching through an IoT-DDL repository still places
some burden on the app developer in supporting their application as a thing. Here, we consider the possibility
of deducing and presenting some of this information through the IDE plugin. The plugin, in such a case, could
consider the developer’s current code and suggest if it is an element that has IoT potential. For example, the
plugin may see an Android developer creating a ListView, and ask if the data in the ArrayAdapter (the data
structure providing display information to the ListView) could be broadcast to a potential smart space. The plugin
may provide a template for this new actionable keyword description (similar to the current functionality, but
with some parameters pre-filled) and make suggestions on how to send out the data or modify the user interface.
The plugin could, in some cases, deduce the type of interaction from the existing interface elements and the
data provider, only needing the desired keywords from the app developer to create this skeleton of an actionable
keyword. The chosen keywords may then be used to further refine the internals of the AKW.

At such a point, the app developer only needs to provide two decisions to create a thing-readymobile application:
the format of the broadcast data, and what keywords should describe it. This might allow the plugin to create
AKW skeletons for many interface elements; a portion would likely remain unused, but only one needs to be
recognized and used to create the potential for a meaningful reaction. This, however, creates some issues with the
keywords themselves; they must somehow be deduced from surrounding information (such as other interface
elements or the repository), or input with some form of developer intervention. Additionally, there are issues with
potential overhead depending on the size and complexity of the app interface and chosen AKWs; the number of
auto-generated actionable keywords could be large, saturating the smart space with unwanted tweets. The plugin
therefore might need some way to prune elements which are unlikely to form relationships before recommending
them to the developer.

8.2 Sourcing and Identifying Actionable Keywords
In this paper, we have opted for a design that does not require the use of pre-existing ontologies for actionable
keywords, while putting in place elements—using our solution—that promote the gradual development and
eventual convergence of a more grass-roots, community-driven ontology. The central repository utilized by the
Android Studio IDE plugin plays this role, where initial and future AKWs can be deposited, browsed and used by
the developers. As such "organic" development progresses, we envision that broadly available standards would
naturally be used in defining AKWs by the developer community (as is demonstrated through TV Program-related
AKWs in our running example). We believe our approach of not "putting the carriage before the horse" as we
first attempt to realize the mobile app-as-a-thing concept is important at this start phase of the research project.
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Although this keyword information will be readily available to developers through the IDE plugin and its
central repository (as explained above), actually identifying an AKW with the right level of abstraction can be
a challenging task. If a keyword is too abstract (e.g., "TV" or "Time"), it may include many services and this
makes it difficult to indicate which service to interact with. If an AKW relates to a low-level service (e.g., "Track
Search" or "Retrieve View History"), this might allow the user to control unexpected operations with possible
security/integrity issues. As a guideline to address this challenge, a solution such as feature modeling [22] could
be adapted for AKW identification.

Feature modeling is the activity of identifying externally visible characteristics of a family of similar products
(i.e., a product line or a product family) and organizing them into a model called a feature model. Figure 13 shows
part of the feature model for a DVR and a TV guide app. The primary goal of feature modeling is to identify the
core features of products and represent them in an exploitable form. We envision such a model could benefit our
framework by introducing a separation of two service characteristics: the AKW and Internal Operation layers.
Features in the AKW layer (see the right side of figure 13) are the candidate AKWs, where each of them is

composed of a set of operational features. This means that they hide the operational details of the services but
capture the visible services provided by a thing. A feature in the Internal Operation layer are for the fine-grained
operations required to provide the AKW services. As shown in figure 13, the visualization of the hierarchical
structure among features is one of the key benefits for adapting the feature modeling. The thing and app developers
may use this visualization to decide which features to target and expose with AKWs and which features to hide.

Fig x. AKWs Identification with Feature Models

Record

DVR

Play back

Track 
SearchRepeat

All
Repeat

Chapter
Repeat Selected

Section
Repeat

Search
Scheduled

Record Immediate
Record

Once Recurring
Episodes

TV Program App

Program
List

Name
TimeTiles

Icons

Program
Summary

DVR Feature Model TV Program App Feature Model

Actionable 
Keyword 

Layer

Internal 
Operations 

Layer

Show

Program
Recommend

Retrieve
Selected

Genre

Retrieve
View

History

Create
File

… …

Composed-of relationship
Legend

Runtime Interaction

Fig. 13. AKW identification with feature models.

9 CONCLUSION
There is a great potential for mutual opportunistic interactions between things of an IoT in a smart space and
traditional mobile apps. We provided examples to support this argument. To enable such an important possibility,
we propose a redesign of the structure of mobile apps along within our Atlas thing architecture to realize the
concept of Mobile Apps As Things (MAAT). We also propose actionable keywords—a dynamically programmable
description—to enable the dynamic and opportunistic thing to thing interactions. We presented an Android
based implementation of MAAT which included programming support for Android developers in the form of
Android Studio plugin. We conducted a performance evaluation study to test the responsiveness of our ideas and
implementation and have clearly demonstrated this feasibility. We also conducted a usability study of the plugin
with end users who are reasonably experienced Android developers and learned what seems to be working well
and what needs to be improved.
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