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Abstract 1 

Dispersal often covaries with other traits and this covariation was shown to have a genetic basis. 2 

Here, we wanted to explore to what extent genetic constraints and correlational selection can 3 

explain patterns of covariation between dispersal and key l ife-history traits – l ifespan and 4 

reproduction. A prediction from the fitness-associated dispersal hypothesis was that lower 5 

genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic 6 

mixing. We wanted to contrast it with a prediction from a different model that individuals 7 

putting more emphasis on current rather than future reproduction disperse more, as they are 8 

expected to be more risk-prone and exploratory. However, if dispersal has inherent costs this 9 

will also result in a negative genetic correlation between higher rates of dispersal and some 10 

aspects of performance. To explore this issue we used the dioecious nematode Caenorhabditis 11 

remanei and selected for increased and decreased dispersal propensity for 10 generations, 12 

followed by 5 generations of relaxed selection. Dispersal propensity responded to selection and 13 

females from high-dispersal lines dispersed more than females from low-dispersal lines. 14 

Females selected for increased dispersal propensity produced fewer offspring and were more 15 

l ikely to die from matricide, which is associated with a low physiological condition in 16 

Caenorhabditis nematodes. There was no evidence for differences in age-specific reproductive 17 

effort between high- and low-dispersal females. Rather, reproductive output of high-dispersal 18 

females was consistently reduced. We argue that our data provides support for the fitness-19 

associated dispersal hypothesis.  20 

Keywords: fitness-associated dispersal, dispersal syndromes, artificial selection, life-history 21 

theory, Caenorhabdtitis 22 
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Introduction 23 

Dispersal is defined as any movement that results in gene flow across space, regardless 24 

of the mechanisms underlying it (Clobert, Baguette, Benton, & Bullock, 2012, Ronce, 2007), and 25 

as  such is of a great evolutionary and ecological importance. The interest in the associations 26 

between dispersal and morphological, behavioural or l ife-history traits – also named dispersal 27 

syndromes, was spurred by studies which demonstrated that dispersing and philopatric 28 

individuals differ in suits of traits (Clobert, Baguette, Benton, & Bullock, 2012). The study of 29 

phenotypic associations between dispersal and other traits  (Bensch, Hasselquist, Nielsen, & 30 

Hansson, 1998; Forero, Donázar, & Hiraldo, 2002; García‐Navas, Ferrer, & Sanz, 2014; Germain, 31 

Pärt, & Gustafsson, 2017; Gienapp & Merilä, 2011; Hansson, Bensch, & Hasselquist, 2004; 32 

Maccoll & Hatchwell, 2004; Nevoux, Arlt, Nicoll, Jones, & Norris, 2013; Pasinelli, Schiegg, & 33 

Walters, 2004; Pärn, Jensen, & Ringsby, 2009; Robbins & Robbins, 2005; Serrano & Tella, 2012; 34 

Verhulst & Eck, 1996; Wauters, Matthysen, & Dhondt, 1994) revealed a high context-35 

dependency and plasticity of dispersal decisions. At the same time research on the genetic 36 

architecture of dispersal and dispersal syndromes revealed significant heritability of dispersal 37 

and genetic integration between dispersal and other traits  (Bal, Michel & Grewal, 2014; 38 

Duckworth & Kruuk, 2009; Edelsparre, Vesterberg, Lim & Anwari, 2014; Gu & Danthanarayana, 39 

1992; Korsten, van Overveld, Adriaensen, & Matthysen, 2013; Nachappa, Margolies & Nechols, 40 

2010; Roff & Gelinas, 2003; Roff, Tucker & Stirling, 1999; Tung et al., 2017; van Overveld, 41 

Adriaensen & Matthysen, 2015). The challenge is therefore to understand the forces behind the 42 

evolution of  genetically integrated dispersal strategies.  43 
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In this study we were specifically interested in the evolution of genetic integration 44 

between dispersal and life-history traits – l ifespan and reproduction. Correlational selection – 45 

selection for optimal trait combination, can be one force behind the evolution of such 46 

integration. For instance, the trade-off between current and future reproduction is predicted to 47 

lead to the evolution of polymorphic populations where some individuals put more emphasis on 48 

current reproduction while others on future reproduction. Individuals that put more emphasis 49 

on current reproduction have lower expected future reproduction and are selected to be more 50 

risk-prone than individuals that put more emphasis on future reproduction (Clark, 1994; Roff, 51 

2002; Wolf, Doorn, Leimar, & Weissing, 2007). Dispersal poses considerable risks (Bonte et al., 52 

2012), and, following the outlined logic individuals with lower expected future reproduction 53 

should be selected to disperse more readily than individuals with higher expected future 54 

reproduction. Fitness-associated dispersal hypothesis, an extension of fitness-associated 55 

recombination framework (Hadany & Beker, 2003), offers another explanation of how a 56 

correlation between life-history traits and dispersal could have arisen. According to this 57 

hypothesis the evolution of higher dispersal rates for bad quality genotypes, associated with 58 

lower fitness, is driven by the benefits of genetic mixing and underlain by a regulatory gene that 59 

allows for conditional dispersal (Gueijman, Ayali, Ram, & Hadany, 2013; Hadany, Eshel, & 60 

Motro, 2004). Theoretical models show that fitness-associated dispersal can evolve even in the 61 

absence of kin competition and in homogenous environments (Gueijman, Ayali, Ram, & Hadany, 62 

2013). While long-term correlational selection can lead to genetic integration of dispersal and 63 

l i fe-history traits, such integration can be a direct result of an inherent cost of dispersal 64 

underlain by, for instance, resource/energy allocation trade-offs. This cost can be constitutive - 65 
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paid by all individuals with higher dispersal propensity, regardless of actual dispersal decisions 66 

or induced - paid only by individuals that disperse.  67 

In this paper we took advantage of the experimental tractability of the dioecious 68 

nematode Caenorhabditis remanei and selected bidirectionally for increased (HD – high-69 

dispersal) and decreased (LD – low-dispersal) dispersal propensity. Caenorhabditis nematodes 70 

inhabit ephemeral substrates and disperse in both adult and larval stages. Closely related C. 71 

elegans has been previously employed to s tudy aspects of dispersal (Bono & Bargmann, 1998; 72 

Friedenberg, 2003a; 2003b; Harvey, 2009). In our s tudy, we used C. remanei because this 73 

dioecious species harbours much higher levels of standing genetic variation than 74 

hermaphroditic C. elegans (Graustein, Gaspar, Walters, & Palopoli, 2002; Jovelin, Ajie, & Phillips, 75 

2003), allowing for fast responses to artificial selection. The selection lasted for 10 generations, 76 

followed by five generations of relaxed selection. After selection we measured age-specific 77 

reproductive performance and lifespan of females from our experimental lines.  78 

Using our experimental lines we tested predictions derived from life-history theory and 79 

two theoretical models discussed above. The predictions were as follows: 1) if the relationship 80 

between dispersal propensity and age-specific reproductive effort reflects the current versus 81 

future reproduction trade-off (Clark, 1994; Roff, 2002; Wolf, Doorn, Leimar, & Weissing, 2007), 82 

then the HD selection regime should consists of individuals selected at their reproductive peak. 83 

Reproductive peak of individuals from the LD regime should be observed at a different age, but 84 

their overall reproductive output should not be depressed; 2) if lower genetic quality is reflected 85 

in higher dispersal rates (Gueijman, Ayali, Ram, & Hadany, 2013; Hadany, Eshel, & Motro, 2004) 86 

then the HD selection regime should consist of individuals of lower overall quality, and their 87 
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lower performance should be observed across different contexts. Finally, 3) if inherent, intrinsic 88 

costs of dispersal shape its relationship with life-history traits then the HD regime would be 89 

expected pay such costs in terms of reproduction and/or lifespan. Nonetheless, rather than 90 

being the best of a bad situation as in scenario 2), one would expect that under circumstances in 91 

which fitness benefits of dispersal can be acquired HD individuals would perform as good or 92 

better than LD individuals.   93 

Materials and Methods 94 

(a) General maintenance 95 

The s train C. remanei SP8, a genetically diverse strain created by crossing three wild-type 96 

isolates (Fritzsche, Timmermeyer, Wolter, & Michiels, 2014), was used for all experiments. The 97 

strain was provided by N. Timmermeyer from the Department of Biology, Tuebingen  University, 98 

Germany and was maintained in our laboratory for 15 generations before being frozen to create 99 

stock populations. In the beginning of our experiments these C. remanei SP8 s tock populations 100 

were recovered from freezing and propagated for two to three generations. Standard 101 

cultivation conditions were employed; worms were kept on 92 mm Petri  plates poured with 102 

Nematode Growth Medium (NGM) agar and seeded with 1-1.5 ml of food source Escherichia 103 

coli (Stiernagle, 2006). Because antibiotics – streptomycin, kanamycin and nystatin were added 104 

to agar (and to LB bacterial medium) (Lionaki & Tavernarakis, 2013) antibiotic resistant E. coli 105 

OP50-1 (pUC4K) (provided by J. Ewbank from Centre d’Immunologie de Marseille-Luminy) was 106 

used as nematode food. Worms were kept in climate chambers at 20°C, 60% humidity and in 107 
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darkness. Hypochlorite treatment (bleaching), which leaves eggs, killing all other stages, was 108 

used to obtain age-synchronized populations (Stiernagle, 2006). 109 

(b) Selection 110 

The experiment employed a bidirectional selection for increased and decreased dispersal 111 

propensity for 10 generations. The population density was kept roughly at 300-700 of worms 112 

per generation making inbreeding during the selection experiment unlikely. Four replicate lines 113 

for high (HD) and low (LD) dispersal were established. However, due to problems with 114 

cryopreservation of experimental lines, one line from each of the selection regimes was 115 

eventually lost, such that three replicate lines from each selection regime were used for 116 

experimental assays. For the first five rounds of selection, two replicate assay plates for each 117 

replicate line were established and after that only one assay plate for each replicate line was 118 

established. The assays were conducted on 150 mm Petri  plates poured with NGM agar. Each 119 

assay plate had two patches of food (200 µl of E. coli) – one on each side of a plate. The distance 120 

between the centres of the two patches was 10 cm. Dispersal was operationally defined as a 121 

movement from one half of the plate to another half.  While the scope of such movement was 122 

not big, in natural settings this should be enough to move between different 123 

microenvironmental patches allowing for gene flow. Before the beginning of the assays, worms 124 

(day 2 adults) were collected from 92 mm population plates by pipetting them in M9 buffer to 125 

10 ml plastic tubes. After they settled at the bottom of a plastic tube, supernatant was 126 

removed, and worms were placed around one of the two food patches, which marked the 127 

beginning of the assay. During the assay, worms were free to move on the plates, which were 128 

monitored regularly to check if any worms reached the second food patch. Worms that reached 129 
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the second bacterial patch were transferred onto a new 92 mm plate with food, until 50 males 130 

and 50 females were collected for each replicate line in HD regime. After that, 50 males and 50 131 

females remaining around the first patch were picked haphazardly to establish LD replicate 132 

l ines. The duration of the assays ranged from 7 to 10 hours . After selection worms that were 133 

collected mated overnight, and plates with eggs were bleached the following day. Once 10 134 

generations of selection were completed worms were propagated for two more generations 135 

before being cryopreserved at -80 ⁰C. 136 

(c)  Dispersal assays 137 

Selected populations were recovered from freezing and propagated for three generations to 138 

obtain sufficient numbers of worms for assays. The duration of post-selection dispersal assays 139 

was about 7 hours. After this time assays were terminated by cooling plates in the fridge. The 140 

worms were later killed by inverting plates over chloroform, and then hand-counted. The 141 

number of worms (males and females) on each half of a plate, as well as on each patch was 142 

hand-counted. The number of worms per plate ranged from 239 to 954 (mean = 494.30, median 143 

= 485, s tandard deviation = 134.07). 40 dispersal assays for LD lines and 41 dispersal assays for 144 

HD lines were run, with the number of replicate assays per replicate line ranging from 8 to 17 145 

(due to problems with cryopreservation for some lines only a limited number of worms was 146 

available for assays). 147 

(d) Fecundity and lifespan 148 

To measure fecundity and lifespan of mated females (as males did not show response to 149 

selection, see Results) 34 females were isolated from each replicate line (giving 102 females per 150 
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selection regime) on 35 mm Petri  plates seeded with 100 µl of bacteria. The isolation was done 151 

at last (L4) larval stage and each female was subsequently paired with two standard males fro m 152 

the base SP8 population. Females and two accompanying males were transferred to new plates 153 

every day. Males that died were replaced. The number of progeny (larvae) was counted over 154 

the firs t seven days of adulthood. Previous findings indicate that in lab conditions C. remanei 155 

females lay about 93% of eggs during the first week of adulthood (Lind, Zwoinska, Meurling, 156 

Carlsson, & Maklakov, 2015; Zwoinska, Kolm, & Maklakov, 2013). Given this and that age-157 

specific reproduction followed similar trajectories in both selection regimes (see Results and 158 

Supp. Fig. 1) we assumed that our measure accurately represents lifetime reproductive success 159 

for both selection regimes. After the first week of adulthood, females were transferred to the 160 

new plates every second day (because they largely s topped laying eggs) but deaths were scored 161 

daily. This continued until the last female died. In Caenorhabditis nematodes, 162 

females/hermaphrodites (genus consists of dioecious and androdioecious species) have two 163 

distinct causes of death. Mothers in poor condition often die by matricide when eggs hatch 164 

internally as triggered by s tress, low nutrient availability or age-related degeneration of the egg-165 

laying system (Pickett & Kornfeld, 2013). Mothers that do not commit matricide survive for 166 

longer and die in late ages from other age-related causes. We scored these two types of deaths 167 

separately. 168 

(e) Statistical analysis 169 

All analyses were conducted in R software v. 3.2.2. To analyse dispersal beta-binomial models 170 

with a logit link function available in the package glmmadmb (Skaug, Fournier, Bolker, 171 

Magnusson, & Nielsen, 2015) were used, because our data were over-dispersed. Our response 172 
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variable was a number of “successes” – worms that dispersed and “failures” – worms that did 173 

not disperse and remained on the same half of a plate they were placed on. Selection regime, 174 

total number of worms on plate, sex and their interactions were fitted as fixed  predictors. The 175 

total number of worms on a plate refers to worms of both sexes. For our analysis, we decided to 176 

remove 2 assays with the highest number of worms (836 and 954 worms) because they both 177 

belonged to the HD treatment, and this number was well above the maximum number of 178 

worms observed in the LD treatment assays (maximum 707 worms). The conclusion about the 179 

s ignificantly higher dispersal rates of HD females holds regardless of the treatment of these 180 

outliers. Replicate line (nested within selection regime) and day of assay were fitted as random 181 

factors . Males and females were also analysed in separate models.  182 

Negative binomial models with the log link function from the package glmmadmb were 183 

used to analyse the fecundity data as our count data were over-dispersed. Selection regime was 184 

fitted as a fixed factor and replicate line nested within selection regime as a random factor. The 185 

response variable was the total number of offspring (measured as larvae). We also analysed 186 

age-specific reproduction to test for the interaction between selection regime and age, i.e. the 187 

evidence for differences in age-specific reproductive effort between the selection regimes. 188 

Cox proportional hazards model with Gaussian random effects available in the package 189 

coxme (Therneau, 2015) was employed to analyse our survival data. Selection regime was fitted 190 

as  a fixed factor and replicate line nested within selection regime as a random factor. We run 191 

models in which matricidal and non-matricidal deaths were analysed separately.  192 

Results 193 
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(a) Dispersal 194 

We found a significant interaction between selection regime and sex (selection regime x sex: z = 195 

2.76, P = 0.0057, Table 1) - only females responded to selection on dispersal (Fig. 1). The total 196 

number of worms on a plate was also significant (z = 4.04, P < 0.001), as  dispersal increased with 197 

increasing density (Fig. 1(a) and (b)). A model in which only females were included confirmed a 198 

s ignificant effect of selection regime on dispersal (selection regime: z = -1.74, P = 0.031). Indeed, 199 

HD females dispersed more than LD females (Fig. 1(a)). In males the only significant effect was 200 

the total number of worms on a plate reflecting increasing dispersal with increasing density (z = 201 

2.59, P = 0.010) (Fig. 1(b)).  202 

(b) Reproduction 203 

We analysed lifetime reproductive success of females and found a significant effect of selection 204 

regime (z = 2.43, P = 0.015), where LD lines had higher lifetime reproductive success than HD 205 

l ines (Fig. 2). We also tested if reproduction followed similar trajectories in both treatments in a 206 

model of with age (including 2nd and 3rd degree polynomials of age) and an interaction between 207 

selection regime and all age terms. None of the interactions was significant (Table 1). In general, 208 

we only found evidence for differences in total reproduction between the treatments.  209 

(c) Survival 210 

Approximately 39 % of females died from matricide (71 out of 182). Females from LD regime 211 

had a lower risk of death from matricide than females from HD regime (z = - 2.26, P = 0.024) 212 
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(Fig. 3(a)). We did not observe survival differences between females that died of causes other 213 

than matricide (z = -0.54, P = 0.59) (Fig. 3(b)). 214 

Discussion 215 

In this study we investigated the patterns of reproduction and survival in C. remanei 216 

l ines selected for high (HD) and low (LD) dispersal propensity.  We found heritable variation in 217 

dispersal as females from HD lines evolved higher dispersal compared to females from LD lines. 218 

Differences in dispersal propensity evolved within short evolutionary time, after only 10 219 

generations of artificial selection. Dispersal was genetically integrated with life-history traits as 220 

HD females selected for higher dispersal propensity had lower lifetime reproductive success 221 

compared with LD females. While some previous studies demonstrated a negative correlation 222 

between dispersal-related traits and aspects of reproductive performance (e.g. Bal, Michel & 223 

Grewal 2014; Gu & Danthanarayana 1992a; Roff, Tucker & Stirling 1999; Roff & Gelinas 2003), 224 

here we were able to link dispersal propensity to reproductive performance across the lifespan 225 

and contrast observed patterns with predictions derived from theory. In our experiments HD 226 

females also had a higher risk of dying from matricide, which is one of the major contributors to 227 

death in female nematodes. Females in low nutritional condition are more likely to undergo 228 

matricide, which also increases with female reproductive ageing (Pickett & Kornfeld, 2013). 229 

Overall, these results suggest that HD females were of poorer condition than their LD 230 

counterparts. This is inconsistent with our prediction 1), where dispersal decisions reflect life-231 

history s trategies rooted in the trade-off between current and future reproduction (Wolf, 232 

Doorn, Leimar, & Weissing, 2007). In this scenario we would expect differences in age-specific 233 

reproductive effort (linked to differences in dispersal propensity) but not consistently lower 234 
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reproductive output. According to l ife-history theory we could also expect individuals with 235 

higher reproductive output (our LD lines) to die younger as a result of the survival-reproduction 236 

trade-off, while the opposite was true.  237 

Both of our two remaining predictions outlined in the introduction assume that aspects 238 

of performance are reduced, at least in some contexts, in highly dispersive individuals. In the 239 

fitness-associated dispersal framework, dispersal is a way to make the best of a bad situation for 240 

lower quality individuals due to benefits of genetic mixing (Gueijman, Ayali, Ram, & Hadany, 241 

2013; Hadany, Eshel, & Motro, 2004). The fitness-associated dispersal framework appears 242 

therefore to provide a good fit to our data, where HD females are the “bad quality” ones.  243 

However, we cannot rule out the possibility that the HD females would have an advantage 244 

under different environmental settings, if allowed to acquire fitness through dispersal and this 245 

issue requires further s tudy. Interestingly, a study on mountain goats, which used genetic and 246 

population-monitoring data also found evidence for fitness-associated dispersal. In this study 247 

dispersing goats had lower levels of heterozygosity than non-dispersers. The study also found 248 

that as density increased, more higher rank individuals dispersed (Shaffer et al. 2011). We also 249 

found that a higher proportion of individuals dispersed with increasing densities and this was 250 

true for both sexes. However, the difference between dispersal rates between LD and HD lines 251 

remained constant across different population densities. In the future it would be worth testing 252 

whether under more stressful conditions than the ones used in our assays the proportion of 253 

higher quality individuals among dispersers increases. This issue is worth further study because 254 

higher quality individuals are more likely to survive dispersal and settle successfully in a new 255 
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environment. This can lead to a situation in which the majority of emigrants are of a higher 256 

quality despite lower baseline dispersal propensity.  257 

Interestingly, we found no differences in dispersal propensity between males from HD 258 

and LD lines. The way we applied selection on dispersal propensity could have weakened 259 

selection on males; specifically, although equal numbers of males and females were collected at 260 

the end of an assay for each treatment, females were mating freely through the duration of 261 

assays. Consequently, in the HD treatment in each generation we would exclusively select for 262 

dispersive mothers but their progeny would be sired to a large degree by less dispersive males, 263 

rather than by co-selected dispersive males. Still, male dispersal propensity could also have 264 

evolved by intersexual genetic correlation. For example, in another study where we specifically 265 

selected for female learning performance, male learning performance evolved as a correlated 266 

response to selection (Zwoinska, Lind, Cortazar-Chinarro, Ramsden, & Maklakov, 2016). The 267 

results of this study therefore suggest that dispersal propensity in C. remanei harbours 268 

substantial sex-specific genetic variation. Differences between the sexes can also exist in the 269 

amount of genetic variation available. There is currently an increased interest in the sex-biased 270 

dispersal (eg Li & Kokko 2018; Trochet et al. 2016). It would be insightful to use Caenorhabditis 271 

nematodes to select separately on male and female dispersal propensity and investigate 272 

whether the strength and direction of genetic correlations between dispersal and other traits 273 

are the same in males and females.  274 

At this  stage it is important to note that not all studies found a genetic correlation 275 

between dispersal and life-history traits. For example, a selection experiment on increased 276 

dispersal in Drosophila melanogaster (Tung et al., 2017) found increased aggression, exploratory 277 
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tendency and locomotory activity in lines selected for dispersal but no relationship with life-278 

history traits. While both in our experiment and in the Drosophila s tudy life-history traits were 279 

measured in ad libitum conditions, the Drosophila s tudy used a dispersal assay in which no food 280 

was provided in order to encourage dispersal. It would be interesting to investigate whether 281 

food conditions during the selection for dispersal can lead to different associations between life-282 

history traits. Dispersal is a plastic trait and some individuals may disperse under one set of 283 

conditions but not under another set of conditions (e.g. density-dependent effects found in 284 

Shaffer et al. 2011). The absence of food can mobilize a higher proportion of individuals, with 285 

more diverse genetic backgrounds, to disperse.  286 

To summarize, we showed that dispersal propensity, reproduction and survival have 287 

shared genetic basis and high dispersal is associated with reduced reproduction and higher 288 

mortality from matricide in C. remanei females. We argue that our findings are largely 289 

cons istent with the fitness-associated dispersal model, in which lower quality individuals are 290 

predicted to disperse more as driven by the benefits of genetic mixing.   291 

  292 
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Figure 1. Dispersal propensity of worms selected for increased (HD) or decreased (LD) dispersal 435 

expressed as the number of males/females on a new “dispersal” half of a plate divided by the 436 

total number of males/females on a plate. (a) females and (b) males.  437 

Figure 2. Lifetime reproductive success of females coming from HD and LD regimes expressed as 438 

a mean of each replicate line ± SEM.  439 

Figure 3. Survival of females from HD and LD regimes that died of matricide (a) and when 440 

matricidal worms were excluded (b). 441 

Supplementary Figure 1. Age-specific reproductive effort in high-dispersal (HD) and low-442 

dispersal (LD) lines. 443 
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Dispersal assays 

Generalised beta-binomial models (logit link function) 

Response: Proportion dispersing (both sexes) 

 Estimate Std. Error z value P 

Intercept [HD regime, Female sex] -2.43 0.34 -7.04 < 0.001 

Selection regime -1.33 0.62 -2.15 0.032 

Sex  -0.70 0.14 -4.79 < 0.001 

Total number of worms 0.0022 0.00054 4.04 < 0.001 

Selection × Sex 0.61 0.22 2.76 0.0057 

Selection × Total number of worms 0.0014 0.0012 1.21 0.23 

     

Random effects: 

 Variance Std. Dev 

Replicate line 0.076 0.28 

Day of assay 0.0079 0.089 

 

Response: Proportion dispersing (females) 

 Estimate Std. Error z value P 

Intercept [HD regime] -2.46 0.42 -5.85 < 0.001 

Selection regime -1.74 0.81 -2.16 0.031 

Total number of worms 0.0022 0.00069 3.24 0.0012 

Selection × Total number of worms 0.0023 0.0016 1.47 0.14 

     

Random effects: 

 Variance Std. Dev 

Replicate line 0.10 0.32 

Day of assay 0.0076 0.087 

 

Response: Proportion dispersing (males) 

 Estimate Std. Error z value P 

Intercept [HD regime] -2.99 0.47 -6.39 < 0.001 

Selection regime -0.49 0.78 -0.64 0.52 

Total number of worms 0.0022 0.00084 2.59 0.010 

Selection × Total number of worms 0.00080 0.0015 0.52 0.60 

    

Random effects: 

 Variance Std. Dev 

Replicate line 0.014 0.12 

Day of assay 0.042 0.205 
 

 



Female lifetime reproductive success 

Generalised negative binomial model 

Response: Number of larvae 

 Estimate Std. Error z value  P 

Intercept [HD regime] 4.13 0.054 77.25 < 0.001 

Selection regime 0.17 0.070 2.43 0.015 

     

Random effects: 

 Variance Std. Dev 

Replicate line 0.0038 0.062 

   

Female age-specific reproduction 

Generalised negative binomial model 

Response: Number of larvae 

 Estimate Std. Error z value P 

Intercept [HD regime] 0.78 0.24 3.20 < 0.001 

Selection regime 0.59 0.33 1.80 0.072 

Age 3.38 0.23 14.72 < 0.001 

Age2 -0.86 0.066 -13.13 < 0.001 

Age3 0.060 0.0056 10.93 < 0.001 

Selection × Age -0.37 0.31 -1.17 0.24 

Selection × Age2 0.084 0.90 0.95 0.34 

Selection × Age3 -0.0054 0.0080 -0.71 0.48 

     

Random effects: 

 Variance Std. Dev 

 0.0063 0.079 

 
Female survival 

Cox proportional hazards models with Gaussian random effects 

Response: Age at death (all causes) 

 Estimate Std. Error z value P 

Selection regime -0.29 0.15 -1.94 0.052 

     

Random effects: 

 Variance Std. Dev 

Replicate line 0.00040 0.020 

 
Response: Age at matricide 

 Estimate Std. Error z value P 

Selection regime -0.58 0.26 -2.26 0.024 

     



 

Random effects: 

 Variance Std. Dev 

Replicate line 0.0084 0.092 

 
Response: Age at death (matricide censored) 
 Estimate Std. Error z value P 

Selection regime -0.10 0.19 -0.54 0.59 

     

Random effects: 

 Variance Std. Dev 

Replicate line 0.000083 0.0091 
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