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Abstract
Retinex is a colour vision model introduced by Land more

than 40 years ago. Since then, it has also been widely and suc-
cessfully used for image enhancement. However, Retinex often
introduces colour and halo artefacts. Artefacts are a necessary
consequence of the per channel color processing and the lack of
any strong control for controlling the locality of the processing
(halos are very local errors).

In this paper we relate an input to the corresponding output
processed retinex image by using a single shading term which is
both spatially varying and smooth and a global colour shift. This
coupling dramatically reduces common Retinex artefacts. Cou-
pled Retinex is strongly preferred in preference tests.

1. Introduction
Retinex -a portmanteau word from Retina and Cortex- is a

colour vision model that was defined by Land more than 40 years
ago [1, 2]. In Retinex theory it is proposed that colour sensation
is not related to the radiance values that reach the eye, but to the
integrated reflectance. This integrated reflectance is, loosely, de-
fined as the ratio at each waveband between the value of the object
and the value of a white object under the same illuminant. We say
‘loosely’ because the Retinex processing operates iteratively and
locally and so white may refer to a white patch or to some local
per color channel maximum. The locality of the processing al-
lows Retinex to account for slowly varying illumination. See [1]
for a review of the Retinex theory.

Assuming that the Retinex processing works (a colour re-
sponse is divided by the response for a local white patch) then
it can be shown that Retinex ‘solves’ the colour constancy prob-
lem. The same scene viewed under different coloured lights, post
retinex processing has the same integrated reflectance value. We
remark that this ‘dividing by white’ is implemented in many real
camera processing pipelines.

The Retinex computational framework - which was designed
to account for how we see colours - can be repurposed to solve
other visual tasks. If one part of the image is bright and the other
dark then post Retinex processing the colours in both regions are
more similar. As such Retinex can be used to tackle the dynamic
range compression problem. Moreover, the Retinex processed im-
age also looks enhanced in terms of contrast. Retinex has also
been used in algorithms for shadow removal, dehazing and gamut
mapping [3, 4, 5, 6, 7, 8]. For the rest paper we will extend the
basic Retinex approach for image enhancement (though we note
that the modifications we propose might also prove useful for the
other applications listed).

The computational structure of the foundational Frankle-
McCann - the original computational algorithm and the one we

review here - is particular. There are three important concepts
(which we will recapitulate in detail in the next section), the path,
the threshold and the reset. The algorithm works iteratively. Val-
ues in one image region are propagated to another along a random
path. As the path is swept out we remove any small variations
(threshold out small differences) and we make sure any path pre-
dicted values are physically plausible (below the maximum value
for the image). Retinex processing happens in all three, R, G and
B channels separately. And there are many paths which iteratively
contribute to the final calculated image.

The particular computational structure of Retinex leads to
particular artefacts. In Figure 1 we show in the left the origi-
nal image, and in the right the output from the Frankle-McCann
Retinex method [9]. In this example, note the halos appearing
around the fishes in the aquarium, and the unrealistic faces in the
audience.

In this paper, we present an approach to remove or reduce
the appearance of artefacts introduced by Retinex algorithms (in-
cluding the Frankle-Mcann approach and the large number of al-
gorithms that have evolved from it). Our approach is, in effect,
a simple post-processing step that relates the input and Retinex
processed images to produce a second output that is more or less
equally enhanced but has fewer artefacts. In detail we propose
that the Retinex output can be approximated as a local shad-
ing and global colour change from the original. Additionally, in
our framework we can easily add constraints such as the shading
change could have bounded smoothness. By controlling both how
colour is changed and the degree of locality in our processing we
can often remove and always mitigate the typical Retinex image
artefacts.

In section 2, we review Retinex (as we use the term in this
paper). Section 3 presents our new method. Experiments are re-
ported in section 4. The paper finished in section 5.

2. Background

Retinex was first introduced by Land to model certain as-
pects of human colour vision. Its main aim was to account for the
color constancy phenomenon where we see objects under differ-
ent coloured lights as being the same colour, i.e. the capability
we have to perceive the colour of the objects stable regardless of
the illumination. Formally, Retinex attempts to decouple surface
reflectance from illumination [2]. Land and McCann hypothe-
sised that we see object colours independent of the colour of the
light because the Retinex process recovers the object surface re-
flectance (actually the per channel albedo).

Let us now give a brief overview of the original Retinex al-
gorithm. Suppose we have a single channel intensity image I



Figure 1: Example of a Retinex artefact. Left: Original Image. Right: Image corrected by using Frankle-McCann Retinex.

(in the case of a colour image we will follow the same proce-
dure on each the three individual colour channels). Let us de-
note the ith pixel location as ρi. Now, consider the path ρ = [y =
ρ0,ρ1, · · · ,ρn−1,ρn = x] that ends in a particular pixel of interest
x. Formally, we define the lightness value for this path ρ as the
sequential product of ratios along the path

lρ (I(x)) =
I(x)
I(y)

=
I(ρ1)

I(y)
· I(ρ2)

I(ρ1)
· · · I(ρn−1)

I(ρn−2)
· I(x)

I(ρn−1)
. (1)

Given a set of N paths (ρ1, · · · ,ρN ) finishing at our pixel of interest
x, the lightness estimator is computed as the mean for all these
paths:

l(I(x)) =
1
n

N

∑
i=1

lρi(I(x)). (2)

The actual computation is actually slightly (and necessar-
ily) more complicated than the above explained due to two extra
mechanisms: threshold and reset. Ratios close to one are thresh-
olded out (mapped to one). Amongst other effects this means
that the ratios calculated in the path computation are invariant to
slowly varying illumination. As we compute values along a path
we are in effect predicting the value at a location given the value
at the start of the path and the intervening ratios. The maximum
value in an image is 1. Which means if the value calculated along
a path is larger to 1 it is reset to 1. In this case, all the sequential
product up to that pixel is reset to 1. With respect to the reset only,
the actual computed ratio is not lρ (I(x)) = I(x)

I(y) but can be shown

to be equal to lρ (I(x)) = I(x)
maxy∈ρ (I(y))

.
Finally, we make two remarks. First, that there is an art to

choosing how many paths are averaged and how far paths are from
one another. Second, the input image is first mapped into a log-
arithmic space in order to simplify computations (ratios become
difference and multiplications become additions). Retinex oper-
ating in log space can be implemented to run much quicker com-
pared with the original ratio based formalism.

3. Coupled Retinex
Although Retinex was designed to model human perception

perhaps its largest application domain has been image enhance-
ment. Indeed, the algorithm described in the last section is not

fully defined. How many paths are averaged and how do the paths
relate pairs of pixels (see [10] for a discussion)? If a threshold is
used what is the threshold? By tuning these parameters the result-
ing processed image can appear quite different. In turn, dependent
on these parameters there are many image enhancements. How-
ever, in general. irrespective of how these parameters are defined
the resulting enhanced images have artefacts.

There are several typical artefacts visible in Retinex pro-
cessed images. First, because the Retinex computation is carried
out per channel the local colour balance in the image can look
wrong (compared to the original unprocessed image). One of the
ideas we pursue in this paper is coupling the channels together in
the computation (thereby removing this kind of problem). Sec-
ond, the local contrast enhancement can introduce halo artefacts
at edges. Third, there can be large scale bending effects (e.g. a
uniform sky may become slowly darker or brighter across an im-
age).

In this paper, we aim at removing or reducing the artefacts
introduced by Retinex. Our first idea is to couple the compu-
tation (all channel outputs are calculated together). We do this
in a post-processing sense. Specifically, we assume that the in-
put to our algorithm is an image pair: the original image and the
output image calculated by Retinex. Then we derive a mapping
from the original to the output. Our mapping has two compo-
nent parts: a global colour change and the local processing that
is implemented as a local shading adjustment. The global colour
change is, technically, implemented as a homography [11]. The
shading manipulation is a per pixel multiplicative factor. Advan-
tageously, in terms of how we formulate the problem we can con-
trol the smoothness (or locality) of the shading adjustment. Our
new coupled Retinex either has no visible artefacts or they are
significantly reduced.

Mathematically, let us represent the original image Ior, and
the output of Retinex as Iret as N× 3 matrices. That is, for now,
we remove the spatial structure from the images (we will have
to retrofit the spatial structure later). With respect to this matrix
representation, we can implement our idea of coupling (global
colour transform) and shading. The coupling term will be a 3x3
matrix H post-multiplying Ior and the shading term is a per row
scaling factor. In our optimisation we find the N ×N diagonal
matrix D - in linear algebra this implements per row scaling, and



Algorithm 1 ALS algorithm
• Input: The original image Ior and the Retinex output Iret .
• Define I0 = Ior, i = 0
• repeat over i

1. minH i ||Iret − IiH i||
2. minDi ||Iret −DiIiH i||
3. Update I. Ii+1 = DiIi

4. Update i. i = i+1

• Until ||Ii+1 − Ii|| < ε , where ε is a predefined tolerance
value.

• Output: Ii+1H i

the 3×3 matrix H - the coupling term- that minimises:

minD,H ||Iret −DIorH|| (3)

The coupled version of retinex is defined as Icoupled =DIorH
the result for our approach. We note that H is an homography
matrix (see [11]) (but the reader unfamiliar with this theory can
think of H as a simple linear transfrom, as indeed it operationally
is).

To solve Equation (3), we adopt an Alternative Least Squares
strategy (ALS) [12]. We iteratively solve for D and H until con-
vergence. See Algorithm 1 for a pseudo code implementation of
our approach. Note that the operations computed on the ALS min-
imization are Least-Squares based, and therefore they are not very
expensive in terms of computational cost.

We impose a further constraint for D specifically that it -
well, the per pixel multiplication implied by D - should be smooth.
We implement smoothness by enforcing the shading term to be
represented as a linear combination of the first few terms in a DCT
expansion. Our minimization becomes:

minDDCT ,H ||Iret −DDCT IorH|| (4)

The new smooth shading adjustment, DDCT , is calculated in 3
steps. First we map the IorH and Iret to images (with NxM pix-
els) Ior(x,y)H and Iret(x,y) (underscoring makes clear these are
RGB images, each pixel has 3 numbers) and (x,y) indexes pixel
location. Now we find the shading image that minimizes

minD(x,y) ||D(x,y)Ior(x,y)H− Iret(x,y)||

s.t. D(x,y) = ∑
k
i=1 αkDCTk(x,y)

(5)

where DCTk() represents the kth DCT basis image. Finally, we
map the recovered shading image back to the diagonal matrix rep-
resentation: D(x,y)→ DDCT .

3.1. More general colour transforms

Our default model of colour change is a 3× 3 linear trans-
form. As proposed earlier we call this a homography. This is be-
cause there is a scaling ambiguity between H and D (we multiply
one by a factor we can divide the other by the same factor without
changing the minimization). We can, however, test a more general

‘homography’ type transform. For example, a 4×3 homography
matrix (by just adding a fourth column of 1s to the input image).
The main interest of this matrix is the inclusion of an offset term.

4. Experiments
In all our experiments we use the implementation of the

Frankle-McCann Retinex model presented in [13].
Our method was run until a tolerance of 1e−8 (the ε param-

eter in Algorithm 1) was accomplished, and 10 DCT-basis have
been considered for the minimisation of DDCT .

4.1. Informal visual comparison

The two main problems of the Retinex approach are that it
can introduce a false global colour balance and halos at some
edges. Figure 2 shows examples of both these problems. In Figure
4, left to right we show 4 images: the input, the Retinex processed
output, the result of processing with a 3×3 and 4×3 homography
(see 3.1 in the last section). The first row of images shows two re-
sults. First, this is an example where Retinex makes an output
without visible artefacts. Second that our coupled retinex gives,
visually, a very similar result.

In the next two rows there are visible artefacts. See the ha-
los appearing around the fishes on the aquarium in the middle
Retinex processed image. And in the image at the bottom there
is an example of an incorrect white-balance -combined with an
enhancement of noise- produced by Retinex. In both cases either
couples (3×3 or 4×3) provide an output image that achieves the
desired enhancement without the artefact. The 4× 3 outputs ap-
pear slightly brighter (and numerically, are slightly closer to the
Retinex output).

4.2. Preference

We run a pairwise forced-choice experiment. Here, an ob-
server is presented with the original image in the center and two
different methods enhancements, left and right. The observers
were asked to select their preferred enhanced image. Three algo-
rithms are tested: the Frankle-McCann retinex and the 3×3, and
4× 3 homographies (see section 3.1 for description). The posi-
tion - left or right of the methods was randomly selected at each
comparison. Observers were sat at approximately 80 cm from the
monitor (an HP LP2480zx) in a dimly lit room (with uniform grey
walls). The total number of observers was seven.

Fifteen input images were randomly selected from the
databases [14, 15, 16]. Since there are 3 algorithms there are
3 pairs of algorithms. Thus, the preference experiment for one
observer involves 20 (images) multiplied by 3 (algorithm pairs).
That is, 60 pairwise comparisons. We convert the pairwise pref-
erences made (the observer is forced to prefer one output or the
other) using Thurstone Case 5 Law of Comparative Judgement.

Results of the experiment are presented in Figure 4. We can
see that our approach with 3×3 coupling matrix is the preferred,
closely followed by the 4× 3. Both of them are preferred, with
statistically significance -see error bars-, over the original Retinex
output.

We remark that the more parameters there are in our approx-
imation the closer we replicate the Retinex original. It is from this



Figure 2: Results when considering the Frankle-McCann Retinex. From left to right: the original image, the output of the Frankle-
McCann Retinex, our approach with a 3×3 matrix, and our approach with a 4×3 homography matrix..

Figure 3: Original images used for the subjective experiment.

vantage point that we believed the 4×3 coupling matrix failed to
produce the best results.

Part of the problem with getting too close to the Retinex out-
put is that the images we are processing here are rendered Jpegs.
Consequently, the Retinex processed images enhance the Jpeg
quantisation artefacts and in making our approximation we too
can model these artefacts. Indeed the 4× 3 homography version
has the most quantisation problems, see Figure 5 for an example.
It is possible that a repeat of this experiment where quantisation
is not a problem would deliver results in which our higher order
model coupling matrix is preferred.

4.3. Image Metrics

Finally, we run two very well-known image quality metrics
-NIQE [17] and BRISQUE [18]- in the images of the previous
experiment. For both metrics, the smaller is the value the better
is the image. Results for these metrics -computed as the average

Figure 4: Results of our subjective experiment by using the Thur-
stone Case V Law. .

over all the images- are shown in Table 1. Both metrics prefer
our method with the 3× 3 coupling matrix, in accordance with
the subjective experiment. However, for the BRISQUE metric,
the Frankle-McCann Retinex obtains a better result than our 4×3
coupling matrix. This ranking is in contradiction with the results
of the subjective test, making us doubtful on the adequacy of using
image metrics to evaluate this type of approaches.

Other models of Retinex

In Figure 6 we show, from left to right, an original image, the
output of a particular Retinex model, our approach with a 3× 3



Figure 5: From left to right: Our result with a 3× 3 coupling matrix, and a 4× 3 coupling matrix. Please note that the quantisation
artefacts are more prominent for the 4×3 case. .

Figure 6: From left to right: the original image, the output of a particular Retinex model, our approach with a 3× 3 matrix, and our
approach with a 4×3 homography matrix. The Retinex models presented in each row are (from top to bottom): the McCann99 Retinex
[19], the MultiScale Retinex [20], the LIME model [14], and the SRIE Retinex..

Frankle- Ours Ours
McCann 3 x 3 4 x 3

NIQE 2.86 2.67 2.74
BRISQUE 27.13 23.95 28.18

Table 1: NIQE and BRISQUE values for the outputs obtained
using the 20 original images shown in Figure 3. Results are com-
puted as the average over the images.

matrix, and our approach with a 4×3 matrix. The Retinex models
presented in each row are (from top to bottom): the McCann99

Retinex [19], the MultiScale Retinex [20], the LIME model [14],
and the SRIE Retinex [21].

In the case of the McCann99 Retinex -first row of the figure-
the output of the Retinex model is unrealistic, both in the main
building and in the sky. Our coupled approximation attenuates
this problem. In the case of the MultiScale Retinex -second row
of the figure- we can clearly see the excessive enhancement pre-
sented in the Retinex solution, and how this problem is clearly
attenuated in our solutions. In this particular case, the result in
the hill region is better for the 4× 3 case, while the sky is better
in the 3×3 case.



In the case of the LIME model -third row of the figure-, we
can see how the result of the original model is both noisy and also
presents a yellowish tint. Again, both of our approaches are able
to reduce the noise presented -specially the 4× 3 case-, and to
remove the yellowish tint.

Similarly, in the case of the SRIE Retinex, the ceiling in the
image is very noisy, and the bulb presents an excessive red hue.
Our results reduce the noise in the ceiling and also slightly correct
the excessive red hue of the lamp. In this case, this red hue is
better corrected in the 3× 3 case, as this case is more restrictive
with respect to the colours of the image.

Let us finally note that the general appearance of our final
results is still biased by the colours presented in the Retinex solu-
tion, and for this reason we are -for example- not able to recover
a full blue sky in the first image of the last figure.

5. Conclusion
In this paper, we have presented a post-processing method

to reduce artefacts present in the results of Retinex models. Our
approach proposes that the Retinex output can be approximated as
a local shading and global colour change from the original input.
We propose to look for these terms using the Alternative Least
Squares (ALS) technique. Our results show that our method is
able to overcome the Retinex limitations qualitatively, but also
when considering subjective tests. Further work will consist on
running subjective tests for other Retinex models, and on studying
which further constraints can be placed to both the shading and
the colour change terms.
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