
1 | P a g e  
 

An agent-based model about the effects of fake news on a norovirus outbreak 1 
 2 
Abstract 3 
 4 
Background. - Concern about health misinformation is longstanding, especially on the Internet.  5 
Methods. - Using agent-based models, we considered the effects of such misinformation on a 6 
norovirus outbreak, and some methods for countering the possible impacts of ‘good’ and ‘bad’ 7 
health advice.  The work explicitly models spread of physical disease and information (both online 8 
and offline) as two separate but interacting processes.  The models have multiple stochastic 9 
elements; repeat model runs were made to identify parameter values that most consistently 10 
produced the desired target baseline scenario.   Next, parameters were found that most consistently 11 
led to a scenario when outbreak severity was clearly made worse by circulating poor quality disease 12 
prevention advice.  Strategies to counter ‘fake’ health news were tested.  Results. - Reducing bad 13 
advice to 30% of total information or making at least 30% of people fully resistant to believing in and 14 
sharing bad health advice were effective thresholds to counteract the negative impacts of bad 15 
advice during a norovirus outbreak.  Conclusion. - How feasible it is to achieve these targets within 16 
communication networks (online and offline) should be explored. 17 
 18 
 19 
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 22 

Un modèle basé sur les agents sur les effets de information fallacieuse 23 
sur une épidémie de norovirus 24 

 25 
Position du problème. - La désinformation sur la santé est une préoccupation de longue date, en 26 
particulier sur Internet. Méthodes. - À l’aide de modèles à base d’agents, nous avons examiné les 27 
effets de telles informations erronées sur une épidémie de norovirus, ainsi que certaines méthodes 28 
permettant de contrer les effets possibles de «bons» et de «mauvais» conseils en matière de santé. 29 
Le travail modélise explicitement la propagation de la maladie physique et des informations (en ligne 30 
et hors ligne) comme deux processus distincts mais en interaction. Les modèles comportent 31 
plusieurs éléments stochastiques; Des répétitions de modèles ont été effectuées pour identifier les 32 
valeurs de paramètre qui produisaient le plus systématiquement le scénario de base cible souhaité. 33 
Ensuite, il a été trouvé des paramètres qui conduisaient systématiquement à un scénario dans lequel 34 
la gravité des épidémies était clairement aggravée par la diffusion de conseils de prévention de 35 
maladies de qualité médiocre. Des stratégies pour contrer les «fausses» nouvelles sur la santé ont 36 
été testées.  Résultats.- Réduire les mauvais conseils à 30% du total des informations ou rendre au 37 
moins 30% des personnes totalement réticentes à croire en des mauvais conseils sur la santé et à les 38 
partager est un seuil efficace pour contrecarrer les effets négatifs d'un mauvais conseil lors d'une 39 
éclosion de norovirus. Conclusion. - La possibilité d'atteindre ces objectifs dans les réseaux de 40 
communication (en ligne et hors ligne) doit être explorée. 41 

  42 
Mots Clés : Modèles à base d'agents, épidémie, norovirus, infox, bulles de filtres 43 

 44 
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1. INTRODUCTION 46 
Political campaigns in 2016 sparked interest in ‘fake news’, a term with no fixed definition 47 

[1]. At its most pernicious, it can mean mostly or entirely false information, often deliberately false 48 

or at least created with no regard for truth, yet purporting to be entirely truthful, and therefore 49 

indisputably unhelpful when trying to make informed decisions [2, 3].  Worry that fake news might 50 

be used to distort political processes or manipulate financial markets is well-established [3-6]. 51 

Less studied is the possibility that misinformation spread could harm human health, 52 

especially during a disease outbreak.  Accurate information spreading during epidemics that 53 

generates more protective behaviour, as well as other potential behaviour responses (usually 54 

beneficial) following increased awareness of disease prevalence have been widely modelled, 55 

reporting typically on how disease dynamics might change as a result (usually resulting in 56 

improvements to human health outcomes).  But fewer if any studies have tried to model behaviour 57 

response that might affect human health during an outbreak that is linked to dangerously wrong 58 

information [7]. 59 

We built models that capture the impacts in response to spread of dangerously misleading 60 

information, which we simply call bad advice.  The premise of the modelling is that some types of 61 

information about a disease or outbreak (“bad advice”), if truly believed, would lead to people 62 

taking fewer or less effective protective measures.  Examples of riskier behaviour would be 63 

increased physical contact, less hand-washing, less disinfection, or more indirect physical contact 64 

such as sharing food or with contaminated fomites.  We were interested in gastro-intestinal 65 

illnesses, which are rarely considered in individual-based models for infectious disease [8].  66 

Norovirus is the most common GI bug worldwide [9] including in the UK [10].  It can overwhelm 67 

health services [11-15].  For modelling purposes, norovirus is convenient because of short duration, 68 

familiarity unlikely to cause flight response, and very rare death.  This modelling suited the 69 

environment of an agent-based model (ABM) that simulated physical contact that could transmit 70 

disease alongside information sharing that did not require physical contact.   71 

 72 
 73 
2. METHODS 74 
 75 
2.1 Overview 76 
 77 

The model imagined a strain of norovirus for which there was no prior immunity.  We 78 

incorporated observed parameters where possible, and for UK if required to be very specific.  79 

Otherwise, parameters and assumptions were adjusted empirically to yield desirable performance 80 

metrics, as described below.  The key behaviour response was taking effective precautions (TP).  TP 81 
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does not mean a specific single behaviour (such as reducing contact, not sharing food, washing 82 

hands, disinfection, etc.).  Rather, TP is meant to be an umbrella term (expressed numerically as a 83 

percentage) that includes all behaviours that could effectively prevent disease acquisition or 84 

transmission.  TP describes behaviour when contact could be made with someone with active known 85 

disease; we don’t consider precautionary behaviour in absence of circulating disease. 86 

The modelling stages are shown in Fig. 1. First, we designed a stage 1 scenario for a disease 87 

outbreak, where disease acquisition was partly dependent on individual precautionary behaviour 88 

that was static and unchanging in stage 1.  A mean TP value was found that reliably yielded our 89 

target r0 after many iterations (required due to the random-probabilistic design of models).  The 90 

next stage (2) model had multiple social network and information sharing attributes parameterised 91 

by real world observations and established theories.  In stage 2, a 40% increase in the r0 value was 92 

achieved (compared to stage 1), creating a scenario where circulating bad information led to greater 93 

person to person spread.  Stage 3 considers two intervention strategies to counter the impacts of 94 

‘fake news’ on health protection behaviour.  Additional items S1 and S2 provide further details about 95 

model construction.   At least 100 simulations ran to test parameter values in each stage model.  The 96 

key outbreak measures reported were: r0, overall attack rate, peak prevalence and outbreak 97 

duration.   98 

 99 
2.2 Stage 1: SEIR Model without information spread that changes behaviour 100 
 101 

We wrote a susceptible-exposed-infected-recovered (SEIR) model in Netlogo [16]. The world 102 

shape was a torus (eg. going off the bottom means re-entry at the top), with visible area measuring 103 

88x90 patches that agents can move around on.  Initial agent location on the grid was quasi-random.  104 

The model has universal 8-hour duration night-time periods when all movement stops and new 105 

contacts do not occur. Night-time was explicitly modelled because norovirus has a relatively short 106 

incubation period and duration of illness; both about 36 hours [9, 17-19].   107 

Disease incubation periods and recovery-times were assigned individually to each agent 108 

from a random-normal distribution.  Both attributes had target mean = 36 hours but with additional 109 

desired features for the distribution of their values, as shown in Table 1, to conform with data 110 

reported in relevant literature.  Agents were assumed to only be infectious to others during active 111 

illness.  The model was initialised with many agent-own attributes (Table 1).   112 

Agents were spatially distributed in small clusters with a like-minded attitude (the reject-est 113 

attitudinal trait, as described below).  These clusters often spatially overlapped.  Empirically, we 114 

found that 1600 agents achieved the target mean contact rate expected for the UK (11.74/day [20]) 115 

in non-outbreak conditions.  Time steps were hours; the model starts at 7am on the first morning.  A 116 
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start-time was important to set sleep periods (when new contacts paused but infection and 117 

incubation would continue).  Agents return ‘home’ every evening at 11pm.  Each well agent moved 118 

in a random direction one step in the agent-world each hour; ill agents moved 0.2 steps.  The agent 119 

world space is not to scale with the real world.  Rather, each movement represents time-space; 120 

opportunities for potential new contacts due to travel (by any means).  2% of (randomly selected 121 

and located) agents were infected at the start of each simulation. 122 

The baseline mode had a mean basic target reproduction number from community 123 

outbreaks (r0) =1.9; [21].  In real life, whether disease is contracted can depend on three factors: 124 

separate probabilities of either susceptible or infectious person taking adequate precautions, as well 125 

as the amount of shed virus.  In reality, these components are hard to observe or separate.  Model 126 

infection risk could be captured in a single global infection-chance parameter, but in our model, risk-127 

taking behaviour of susceptible and infectious persons had to be distinct, so that the likelihood of 128 

unsafe behaviour could vary individually and over time.  Each agent needed a  “take precautions” 129 

(TP) property, to represent the probability of taking effective precautions to avoid transmission, 130 

given unobserved and not parameterised amount of viral shedding.  Thus, TP was individually 131 

assigned to agents according to a probabilistic distribution, constrained to range 1-100%, with a pre-132 

specified population mean and assumption of normality around the mean.  TP values are highly 133 

influential in the model and easily alter the basic reproduction number (r0).  Stage 1 is the phase of 134 

our modelling where we use multiple iterations to establish the mean population TP value that most 135 

reliably led to the target r0 (1.9).  The stage 1 model tests candidate mean TP values from 70-90% (in 136 

increments of 0.1-1%; standard deviation = mean/4.  Potential changes in take-precautions (TP), due 137 

to circulating advice, is the key behaviour response in our stage 2-3 models, as described in 138 

subsequent sections where individual TP values vary in response to circulating advice. 139 

Infection was transmitted when infectious agents encounter susceptible agents and neither 140 

took adequate precautions to avoid transmission (tested stochastically and hourly).  Incubation and 141 

illness durations were determined stochastically (with mean = 36 hours). Recovered individuals were 142 

immune.  Many features that could more ideally replicate norovirus outbreaks were not included, 143 

such as shedding of virus post-illness, increased transmission due to closer night-time contact, 144 

environmental and foodborne transmission.  These were omitted to reduce model complexity and 145 

instead focus on the impacts of information spread. 146 

Any TP value ever set to < 0 was reset to 0 while values > 1 became 1.  The model ran until 147 

no one was incubating or infectious. 148 

 149 
 150 
  151 



5 | P a g e  
 

2.3 Stage 2. Incorporating Information spread and how that could change behaviour during an 152 
epidemic 153 

Advice is information that may be true or false by objective standards.  Good advice, if 154 

believed, encourages taking precautions that will be effective.  Bad advice in our models is 155 

information that promotes not taking effective precautions or other behaviour that increases risk of 156 

transmission.  Misinformation online is typically much more exciting than true information [22]  157 

False stories are observed to be more surprising and novel than true stories, and more likely to have 158 

counter-hegemonic framing [23].  We therefore assume that bad advice elicits stronger emotions, 159 

and often challenges orthodox or ‘mainstream’ sources.  These attributes make bad advice attractive 160 

and thus often shared with others.  Believing bad advice could mean increased physical contact, 161 

more intimate types of contact, less hand-washing, less disinfection, sharing food or touching 162 

contaminated fomites: effectively, taking fewer precautions to avoid disease.  163 

Our stage 2-3 models assume that taking-precautions (TP) changed in response to each 164 

exposure to bad or good advice.  No existing data suggested the magnitude of change after each 165 

information exposure.  It was most useful to find a TP change that consistently led to a worse 166 

outbreak (we defined “worse” = 40% increase in r0, from 1.9 to 2.66).  Therefore, we repeatedly 167 

tested many change values to find one that most consistently led to r0 = 2.66 (see “Finishing stage 2” 168 

below). 169 

How the take-precautions attribute changed in response to advice depended on trust in 170 

information sources. 171 

 172 

 173 

2.4 (Dis)Trust in The Establishment 174 

Distrust in conventional authorities is closely linked to tendency to believe in conspiracy 175 

theories (CTs) [24].  The best predictor of belief in a specific CT or domain of CTs is pre-existing belief 176 

in a CT [25, 26]. CTs are relevant to believing bad advice, because fake news stories often use 177 

conspiracy theories to allege that conventional advice or conflicting information should be 178 

disregarded.   CTs are also incorporated into fake news to increase circulation [23, 27, 28]. 179 

Predisposition to distrust establishment sources exists within our model as a stochastic 180 

property assigned individually to each agent called reject-est (“reject establishment”).  Reject-est 181 

ranges from 0 to 1.  Reject-est affects likelihood of sharing information as well as predisposition to 182 

change behaviour in response to bad advice (assumed to be both more emotionally framed and 183 

contextualised with counter-hegemonic bias, making the information more attractive to those with a 184 

high reject-est bias).185 
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 186 
Table 1.  Key agent-own parameters  187 

Variable or feature Purpose Where used in model(s) Allowed range Plausible or likely 
values 

Other info or 
assumptions 

members-my-bubble List of agents that 
comprise each 
person’s information 
“filter bubble” [26] 

 
Who advice is shared with chosen from this 
bubble. 
 

Size = approx. 
80-230, to 
conform with 
Dunbar# 
expectations, 
mean ~150 

See Dunbar# 
research [29]  

Item S2  explains in 
more how bubble 
membership was 
constructed.  

recovery-time: 
 

Indicate duration of 
infectiousness and 
illness (assumed to 
perfectly coincide) 

 
To decide transition from infectious to recovered 
status. 

1 to 2x mean = 
36 hrs; 1 hr min.  

24-72h [9] 
 

36h treated as 
population mean  

reject-est: 
 
tendency to believe fake 
news and reject 
“establishment” 
(conventional) messages 

(%/100) how much 
they tend to believe 
bad advice.  

Used for likelihood of sharing types of 
information and predisposition to changing 
behaviour, always considered in comparison to 
mean group reject-est value.  Relates to 
var=take-precautions, and how much agents are 
influenced by types of advice.   

0-1; higher 
means accept BA 
more easily 

38.88% is 
supported by the 
literature. 

Does not change during 
outbreak 

take-precautions              
(TP) 
 
 

Likelihood of taking 
precautions to prevent 
getting disease 

Set at start from distribution with mean = 79.6%, 
SD = 19.23%; which consistently yielded target r0 
= 1.9.  TP indicates the % of contact moments 
when agents take effective precautions  

0-1 
 

Scaled 0-100% TP changes during 
outbreak, in response 
to advice exposed to 
(stages 2-3) 

time-to-incubate To indicate when agent 
changes from 
incubating to 
infectious 

Allows for lag between exposure and illness; 
when agents can travel further so potentially be 
nearer more naïve population when infectious 
period starts. 

1+ Median and mean 
both around 36 
hrs 

Random-normal 
distribution around 
population mean (36 h) 

 188 
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  An estimated 50% of Americans [30] endorse at least one health-linked conspiracy theory  189 

Up to 44% of populace in diverse countries believe the demonstrable falsehood that vaccines cause 190 

autism [31].  Such beliefs have exacerbated real life disease outbreaks and risk-taking behaviour [32, 191 

33].  Reported prevalence of beliefs in specific health myths (with health protection implications) 192 

linked to specific conspiracy theories among British and Americans ranges from 9% to 37% [30, 34].  193 

The tendencies to believe CTs or poor quality information are distinct personal qualities [35], but 194 

empirical [23, 33, 36-38] and theoretical [38-41] evidence suggests extremely similar ideological and 195 

psychological processes underpin tendencies to believe both CTs and fake news.  For model 196 

purposes, we assumed that predisposition to believe in CTs could serve as proxy for our posited 197 

reject-est attribute.  Each individual’s reject-est attribute did not change during the outbreak. 198 

Published data [25] suggest that on average, British adults believed in 38.88% of CTs (SD 199 

0.15, normal distribution around the mean).  Therefore, reject-est values were assigned to agents 200 

such that the population mean = 38.88% (SD= 15%), constrained to range from 0 to 100% inclusive.  201 

Importantly, small groups (n=25) agents were distributed semi-randomly in the agent world such 202 

that they were physically clustered near others with similar reject-est values, and those individuals 203 

were also mutual members of each agent’s information bubble (see below and additional item S2).  204 

 205 

2.5 Information Bubbles 206 

The phenomena that people choose how and from whom they receive information has been 207 

termed “filter bubbles” [26].  These bubbles work to discourage alternative viewpoints.    For each 208 

agent, we generated a unique list of contacts in their bubble. The contact list included all agents 209 

within six spatial steps; because of deliberate placement earlier, many of these near-by individuals 210 

had similar reject-est values (assigned within the same octile of reject-est values).  To this bubble 211 

were added approximately 120 agents anywhere in the agent-world, in a ratio about 2:1 similar:not 212 

similar reject-est octiles..  The target was to achieve final bubbles with a mean 150 members (range 213 

80-230) to conform with Dunbar numbers, which estimate the number of persons with whom we 214 

each have significant (to us) relationships [29].  To reflect real world filter bubbles and social 215 

networks, ours should have variable reciprocity [42-45]  and homophily levels [46], but veering 216 

towards demonstrating more rather than less reciprocity and homophily.  Homophily is important in 217 

real health behaviour; individuals respond more to health promotion interventions when they come 218 

from a person or network of similar-to-recipient persons [47, 48]  219 

Distributions of reject-est values, homophily and reciprocity were checked to confirm that 220 

the bubbles achieved desired attributes.   221 
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Membership of one’s information bubble did not change during the simulated outbreak.  222 

Information sharing was independently decided from opportunities for physical contact.  Real world 223 

sharing equivalents are telephone calls, sharing on social media, sending texts or emails, 224 

conversations, etc. 225 

 226 

2.6 Advice spread 227 

Two simultaneous processes happen during each model time-step.  Agents move in a 228 

random direction, potentially transmit disease, incubate, are ill or recover.  At the same time, pieces 229 

of advice are introduced (or “injected”) into the community.  Each injected piece of advice is 230 

exposed to just one agent.  Injected advice has a 50:50 chance of being good/bad in the (no-231 

intervention) stage 2 modelling.  This individual responds to the information, as well as chooses 232 

whether to share it (decided stochastically).   If advice was shared, the exposed individual made a 233 

separate and independent decision whether to share it again to others, creating an information 234 

cascade that continued until exhausted.  Each sequence of information sharing started and 235 

completed within a single time step (one hour).   236 

 237 

2.7 Predisposition to share advice 238 

Our model rules for advice–sharing were designed to make the rumour distribution patterns 239 

resemble observations in Vosoughi et al [22] (about Twitter cascades).   A cascade is a series of 240 

tweets with a single origin; cascade length is the maximum number of retweets passing thru only 241 

unique tweeters.   The default likelihood of sharing good advice was set to 3%, because only about 242 

3% of cascades were both >1 tweet long and demonstrably true stories.  Vosoughi et al. reported 243 

several other cascade properties that were used as model targets: that the maximum depth for any 244 

true story was 9; (vs. 19 for false stories); 85% of cascades had depth = 1 (only tweeted once and not 245 

retweeted at all); 2% had depth > 5.  Bots retweeted equal numbers of true and false stories, but 246 

humans overwhelmingly favoured retweeting false stories.  Other research had similar observations 247 

as Vosoughi et al. about cascade depths and likelihood of sharing on Twitter [49-52]. 248 

Only about 15% of Twitter stories were shared.  Of the information shared on Twitter, 80% 249 

was untrue stories (false rumours were four times more likely to be shared than true stories).  We 250 

assumed that sharing of false stories is more likely among those with a counter hegemonic bias = 251 

agents with a high reject-est value.  The likelihood of sharing bad advice (“willshare” variable) was 252 

calculated in stage 2-3 models for individual agents using Eq.1 which was found empirically to yield 253 

desirable cascade properties: 254 

 255 
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(Eq1)                willshare  =  (3% * 4) * ( reject-est / (mean [global reject-est of all agents] )  256 

 257 

Eq.1 causes the likelihood of sharing bad advice to be inflated from (default when good advice) 3% 258 

to 12%, and then further adjusted by the agent’s reject-est value relative to the population mean 259 

reject-est. The net effect was a model assumption that agents with relatively higher reject-est values 260 

(more likely to believe in conspiracy theories) were more likely to share bad advice stories.   Most 261 

real people don’t repeatedly share the same information (good or bad).  We applied the next 262 

formula to reset the willshare propensity after each share: 263 

 264 

(Eq2)           willshare = willshare / ( 4 ^ [number of times already-shared this advice] ) 265 

 266 

Equations 1-2 are not meant to be definitive for social network behaviour.  We determined these 267 

equations empirically and use them because they consistently led to cascade sharing patterns that 268 

agreed reasonably well with real observations in Vosoughi, Roy [22] 269 

The model represents sharing by any means, including spoken conversation, phone calls, 270 

texts, social media, online forum postings, etc.  When an agent shares advice, they only reach a very 271 

small fraction of people in their bubble (2.5%), which percentage made the cascade patterns behave 272 

reasonably well with regard to our targets for depth and onward sharing.  Sharing behaviour was 273 

also simplified such that all shares for each cascade finished within each model time step (1 unit = 1 274 

hour).  Most real Twitter cascades stop growing within 2 hours of initiation  [51]. 275 

 276 

2.8 Daily injections (introductions) of relevant discussions or stories 277 

We used data on real number of daily conversations [53], and search frequency about health 278 

matters [54, 55] to estimate how many relevant information injections should happen in the model 279 

(10.4 per hour); more details how this was estimated are in Additional Item S1.  We ran multiple 280 

simulations to find an injection rate (of advice) that led to the desired target of 10.4 cascades/hour 281 

(or 166 per day, based on 16 waking hours).   282 

 283 

2.9 Finishing Stage 2: Bad advice making an outbreak worse 284 

Changes in taking precautions we denote as ΔTP (absolute change in percentage of the time 285 

that precautions were taken, in response to each piece of advice an agent is exposed to).    One 286 

aspect of ΔTP is partly evidenced from prior studies, given an assumption that bad advice is usually 287 

framed more emotionally.  People change their statements about intended behaviour in response to 288 

exposure to information; they change behaviour more after frequent exposure [32, 56, 57].  289 
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However, at least in laboratory settings, the magnitude of change-in-intentions does not depend on 290 

whether material is emotively framed  [58-62].  Therefore, our model assumes that ΔTP is the same 291 

whether advice is good or bad.   292 

The final stage 2 model needed to achieve a net increase of 40% in the r0 in response to 293 

circulating information (from 1.9 to 2.66).  Although ΔTP was the same fixed value in stage 2 models 294 

(whether good or bad advice), because more bad than good advice circulates (4:1 ratio), any ΔTP 295 

above zero increases r0 and tends to change other metrics such as attack rate and peak prevalence. 296 

Therefore we tested multiple values of ΔTP over the range .01 to 0.22 (1-100 iterations) to find a 297 

value of ΔTP that consistently produced the target r0 (2.66).  We then compared the average 298 

outputs from the stage 2 model (50+ iterations) with results when intervention strategies were 299 

applied to try to reduce the impact of bad advice on the outbreak (stage 3). 300 

 301 

2.10 Stage 3: Intervention Strategies 302 

Proposed strategies to fight fake news include:  303 

 304 

1) Provide counter-information that is equally or better evidenced, or more persuasive [2, 26, 305 

63-66] 306 

2) Tax the advertising or tax the profits of products sold via misinformation [67] 307 

3) Drown bad info with good information [67] 308 

4) Regulate information [26], possibly impose civil or criminal liabilities [2] which could lead to 309 

explicit censorship [2, 26] 310 

5) Revise financial models available to fake news disseminators (incentives) to stop 311 

encouraging production and sharing of false (or even just very salaciously written) stories 312 

over truth and accuracy [3, 22, 28, 66] 313 

6) Labelling (reliability rating or counter-arguments provided) by news provider [2, 22, 26, 66]  314 

7) Encourage individuals to actively strive to make their own filter bubbles more diverse [26] 315 

8) ‘Immunise’, recipients to disregard fake news (education-based strategy) [68] 316 

 317 

We don’t model effects of intervention strategy 1 because the results are predictable; eg., good 318 

advice as contagious as bad advice is what happens in our stage 1 scenario (no net changes would 319 

result), and otherwise any changes will be linear responses if good advice increases without a 320 

reduction in bad advice.  Pragmatically, we reduced strategies 2-8 to two basic interventions in stage 321 

3 models, as described below.  One hundred runs were tried for each intervention (tested separately 322 
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rather than together), and the mean effects were reported and compared with each other and stage 323 

1-2 outcomes.  Stage 3 models were run under stage 2 conditions but with the below modifications: 324 

 325 

• Reduce bad advice injections from 50% to 30% or 10% of total information exposures, to 326 

simulate tax disincentives, regulation, labelling or “drowning” strategies 327 

• “Immunise” against bad information (but not against the virus, while able to react 328 

positively to good advice): a fixed percentage of randomly selected agents (30% or 90%) 329 

who never respond to or share bad advice, to simulate education-based or bubble-330 

diversity strategies. 331 

 332 

3. RESULTS 333 

3.1 Model performance and optimisation exercises 334 

With regard to information bubble construction, additional item S2 shows the spread of 335 

reject-est values, and that bubbles had high homophily and high reciprocity; bubble sizes also met 336 

Dunbar number targets.  More details about the following results are in additional item S3.  To 337 

achieve target r0 = 1.9, the optimal initialised mean take-precautions attribute for the models was 338 

76.9%.  At stage 2, we found that 138 advice injections per hour produced the target 166 339 

conversations/day.  This meant (over 20 iterations) that 70.7% of cascades had length = 1 (vs. target 340 

85%) and about 1.83% of cascades had length ≥ 5 (vs. target 1.96%).  We judged that the cascade 341 

results were acceptably close to targets.  The stage 2 optimised ΔTP value was 0.026 (see model 342 

iterations in Item S3), which made r0 consistently rise from 1.9 to 2.66 in response to advice 343 

exposure. 344 

 345 

 346 

3.2 Intervention strategies 347 

Table 2 shows key outbreak indicators for the stage 1 model (no change in TP due to 348 

information spread) the final stage 2 model (with rate of advice injections = 138/hour and ΔTP = 349 

0.026), and stage 3 models (what happens due to specific intervention strategies).   350 

In Table 2, stage 2 is effectively a baseline to describe an outbreak exacerbated by 351 

circulating bad advice.  Reducing the circulating bad advice from 50% to 30% of all introduced 352 

information, created a scenario that is much better than the stage 1 model, when circulating advice 353 

had no effect on average behaviour.  Even if bad advice was reduced to 10% of total circulating 354 

information, the model still suggested that > 40% of individuals would get ill before the outbreak 355 

was finished. 356 



12 | P a g e  
 

‘Immunising’ 30% or more individuals (chosen at random, from any community bubble) 357 

tended to create an outbreak profile similar to or no worse than stage 1 (no influence of circulating 358 

information).  This still meant almost 80% final attack rate and a peak prevalence near 24%.  An 359 

immunisation rate of 90% produced r0 values around 1.38, with final attack rates over 50% and peak 360 

prevalence around 18%. 361 

 362 

Additional item S3 shows a larger range of model assumptions and inputs than reported in Table 2, 363 

with respect to either altering the information balance or immunisation strategies. There was a clear 364 

trend towards more desirable outbreak measures (lower r0, lower final attack rate, lower peak 365 

prevalence) with less bad advice or higher immunisation rates.  366 

 367 
 368 

4. DISCUSSION 369 

With regard to reducing the amount of bad advice in circulation (whether by labelling poor 370 

quality info, drowning with better quality advice, regulation or financial disincentives), a reduction 371 

from 50% to 30% of total information exposures seems a large decrease but it may be feasible.  372 

Setting the ratio of good to bad advice to 70:30 more than negated the deleterious effects of 373 

circulating bad advice in our model. Even if 90% of the advice is good, however, some disease will 374 

still circulate (r0 stays above 1.0) because the baseline level of taking effective precautions is 375 

assumed to be imperfect (ie., well below 100%). 376 

We were also interested in the ‘herd immunity’ levels required to ‘immunise’ people against 377 

fake news, and thus negate the influence of circulating bad advice on a hypothetical outbreak.  The 378 

modelling suggests that any ‘immunity’ against bad advice reduces outbreak impacts.  Herd 379 

immunity of at least 30% returned the outbreak to no worse than the stage 1 model scenario (ie, 380 

when circulating information has no impact).   381 

Four previous studies used ABM to describe a norovirus outbreak [69-72], only one of which 382 

also incorporated information spread [69].  In other modelling, information spread led to increased 383 

awareness and greater protection against disease [73-82].   384 

Similar to our study, some models [81-83] had behaviour outcomes comprised of multiple 385 

precautionary behaviours.  Our clustering agent  locations with respect to attitude towards trusting 386 

authority sources was novel, however.  Considering how institutional distrust might change 387 

behaviour is also unusual in previous research [84].   388 

 389 

 390 
 391 
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Table 2. Stage 1 (no sharing), stage 2 (outbreak exacerbated by bad advice), and stage 3 (results using intervention strategies).  Mean values for given 
outbreak characteristics, with 5-95th percentiles to indicate range without the most extreme values. 
 

 
r0 Duration (days) Final Attack Rate 

Prevalence of 
illness at peak 

# of 
iterations 

Stage 1  
No circulating advice  1.90 20.1 78.9% 23.5% 

 
100 

5-95th percentile range 1.80-1.99 15.2-25.9 76.0-81.4% 18.6-28.8%  
      
Stage 2. Circulating advice makes outbreak worse, r0 increase by 40%    
Good:Bad advice ratio is 50:50 

5-95th percentile range 
2.66 

2.50-2.89 
19.0 

15.1-25.1 
91.8% 

90.3-93.8% 
29.1% 

24.6-34.7% 
 

100 
    
Stage 3 models. strategies to reduce impacts of circulating bad advice in Stage 2 conditions  
Good:Bad advice ratio is 70:30 

5-95th percentile range 
1.67 

1.53-1.78 
19.7 

15.4-26.3 
70.4% 

63.6-75.5% 
21.2% 

14.8-27.1% 
100 

 
Good:Bad advice ratio is 90:10 
         5-95th percentile range 

 
1.22 

1.14-1.31 
14.1 

11.9-17.1 
41.5% 

31.8-50.2% 
14.9% 

10.1-19.8% 

 
100 

 
30% of agents are ‘immunised’ 

5-95th percentile range 
1.91 

1.82-2.01 
20.2 

14.1-31.2 
79.0% 

76.2-81.7% 
23.8% 

18.2-28.7% 

 
100 

 
90% of agents are ‘immunised’ 

5-95th percentile range 
1.38 

1.26-1.49 
17.1 

13.1-21.6 
53.8% 

43.5-62.5% 
17.6% 

11.0-23.3% 

 
100 

 
Note: ‘immunised’ means immunity against believing or sharing bad advice, rather than immunity against norovirus.
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4.1 Limitations 

Limitations that prevent our results being fully generalizable to the real world are too many 

to fully list, we only try to consider the most important and feasible areas for improvement.  The 

model was only tested for norovirus.  Better data about true precautionary behaviour and behaviour 

change are the parameters that would most improve the reliability of our model outputs.  Bayesian 

responses might also better reflect real world behaviour changes, too. 

This model inherently considers the case of Bad Advice, presumed to be bundled with 

counter-hegemonic bias in contrast to Good Advice that is delivered with implied authority of 

endorsement from conventional sources.   Bad advice that circulates for other reasons (well-

meaning or dully presented but still incorrect) or good advice presented to be as exciting and 

‘contagious’ as fake news [65] -- these are not included. Their omissions should only matter if the 

missing types of advice were thought to significantly modify the impacts of ‘good’ and ‘bad’ advice 

as described here. 

The model also assumes that advice cascades terminate within a single hour; real 

information may spread over much longer time periods [22].  No agent is treated as more influential 

than others; there is inconclusive evidence about the importance of “influencers” in social networks 

[49, 65].   

The model considers community, non-institutional settings (so not hospitals or parties or 

other high-density settings).    No physical travel by new agents or existing agents to outside the 

system is considered. No adjustment was made for secretor status or innate immunity [85].  The 

models have a simplistic perspective on aspects of message framing.  Framing and contextual 

presentation can be much more nuanced [86] in how they impact behaviour and beliefs.  The only 

transmission pathway considered is person-to-person.  In reality, many norovirus cases are 

contracted via fomites or food [87].  The model ignores the possibility of shedding before or after 

illness, which strongly raises r0 in norovirus outbreaks [85, 88].  There was no accounting for 

variations in immune response or age; infants and children are often more susceptible and have 

longer shedding periods. [85, 88].  We omitted foodborne, environmental or outside-illness shedding 

transmission pathways because they would have added extra complexity without adding extra 

clarity about how information sharing could affect outbreak development.  

Agents ‘immunised’ against bad advice were randomly placed among the population, 

regardless of their reject-est attribute or local community traits; this is too simplistic and not 

realistic.  Perhaps a ‘vaccination’ strategy analogous to ring vaccination or otherwise targeting 

demographic groups most likely to be susceptible to fake news would be more appropriate, when 

trying to ‘immunise’ people against fake news. 



15 | P a g e  
 

 

5. CONCLUSIONS 

In our modelling, changing the ratio of good to bad advice (from 50:50 to 70:30) or at least 

30% of people immunised to resist misinformation were both adequate thresholds to counteract 

negative impacts from fake news spreading during a norovirus outbreak.   Changing the ratio of 

good:bad advice to 90:10 or immunising 90% of the population against misinformation was still not 

adequate to completely resist the impacts of circulating bad advice.  How feasible it is to achieve 

these types of targets within communication networks or among community populations should be 

explored, with regard to cost-benefits and practical implementation. 
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