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Abstract

HIRA is a histone chaperone known to modulate gene expression through the deposition of H3.3. Conditional knockout
of Hira in embryonic mouse hearts leads to cardiac septal defects. Loss of function mutation in HIRA, together with other
chromatin modifiers, was found in patients with congenital heart diseases. However, the effects of HIRA on gene expression
at earlier stages of cardiogenic mesoderm differentiation have not yet been studied. Differentiation of mouse embryonic stem
cells (mESCs) towards cardiomyocytes mimics some of these early events and is an accepted model of these early stages.
We performed RNA-Seq and H3.3-HA ChIP-seq on both WT and Hira-null mESCs and early cardiomyocyte progenitors
of both genotypes. Analysis of RNA-seq data showed differential down regulation of cardiovascular development-related
genes in Hira-null cardiomyocytes compared to WT cardiomyocytes. We found HIRA-dependent H3.3 deposition at these
genes. In particular, we observed that HIRA influenced directly the expression of the transcription factors Gata6, Meisl and
Tbx2, essential for cardiac septation, through H3.3 deposition. We therefore identified new direct targets of HIRA during

cardiac differentiation.
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Introduction

Heart development is a complex process involving cardio-
genic mesodermal differentiation into endocardium and
myocardium. The myocardium is generated sequentially
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from cardiac precursors, primitive cardiomyocytes and
definitive cardiomyocytes [1]. It requires a tightly controlled
temporal gene expression pattern, which if disturbed can
lead to the development of congenital heart diseases [2].
For example, mutations in Gata4 or Thx2, important cardiac
transcription factors, are associated with endocardial cushion
and cardiac septal defects [3, 4]. Chromatin modifications
and histone variants are essential for lineage commitment
and cell fate [5, 6]. A distinct chromatin pattern specific for
each stage of stem cell differentiation into cardiomyocytes
was reported [7]. The histone variant H3.3 plays a role in
early embryonic development [8] and lineage commitment
of stem cells [9—11]. HIRA is required for genome wide
enrichment of the histone variant H3.3 at active and bivalent
genes in mouse embryonic stem cells (mESCs) [11].

HIRA is part of one of the two complexes that depos-
its H3.3 in a replication independent manner [12, 13]. The
HIRA complex includes UBN1, CABIN1 and ASF1 [14]. It
deposits H3.3 at the gene bodies of developmentally regu-
lated genes [11], highly active genes [10] and some active
enhancers and regulatory elements [15]. It has also been
shown that there is HIRA-independent H3.3 enrichment
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at certain transcription factor binding sites (TFBS) and at
telomeres in undifferentiated mESCs in a ATRX/DAXX
dependent manner [10].

Absence of HIRA in mice [16] and Xenopus laevis [17]
leads to gastrulation defects and embryonic lethality. Attenu-
ation of Hira expression in chick cardiac neural crest results
in common arterial trunk, suggesting a role for HIRA in out-
flow tract (OFT) septation [18]. Hira-null mouse embryos
showed abnormal heart looping and pericardial oedema at
embryonic day (E)10.5 [16]. Recently, HIRA was found to
be one of 46 chromatin modifiers that had a significant loss
of function mutation (p value=0.03) in a large congenital
heart disease cohort study [19]. We previously published
that conditional knockout of Hira in the cardiogenic meso-
derm resulted in embryonic lethality with atrial and ven-
tricular septal defects at E15.5. Following genome-wide
analysis of the transcriptome of these conditional knockout
mouse hearts at E12.5, we identified a dysregulation of cer-
tain cardiac genes such as Tnni2, Tnnt3 and Epha3 [20]. We
showed HIRA-dependent H3.3 deposition at the enhancer
Tte that regulates the expression of Tnni2 and Tnnt3 during
cardiac development.

However, the role of HIRA at the early stages of cardio-
genic mesoderm differentiation has not been studied. Dif-
ferentiation of mESCs towards cardiomyocytes mimics the
early stages of cardiogenic mesodermal differentiation [7,
21]. Here, we used in vitro mESC differentiation to study
the role of HIRA during this process and focused on day 15,
when the cardiogenic mesoderm genes are expressed [22].
High-throughput RNA sequencing (RNA-seq) and H3.3-HA
chromatin immunoprecipitation followed by massive parallel
sequencing (ChIP-seq) were then performed on both WT
and Hira-null undifferentiated and mESC-derived cardio-
myocytes at day 15 of differentiation. We report here that
HIRA is required for the expression of cardiac transcrip-
tion factors involved in septation during cardiac develop-
ment. These transcription factors displayed diminished H3.3
enrichments in their gene bodies or near their Transcription
Start Site (TSS) in the absence of HIRA. This reflects the
requirement for HIRA in the expression of important cardiac
transcription factors through H3.3 deposition.

Methods
Cell culture and differentiation

H3.3-HA tagged wild type (W9.5) and Hira-null (Clone
104) mESCs have been cultured and maintained as described
previously [22]. These cells were maintained in an undif-
ferentiated state at 37 °C and 5% CO, on 0.1% gelatin
coated flasks in Knockout™ D-MEM (GIBCO, 10829),
supplemented with 15% ES-FCS (Millipore ES-009B), 1x
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Glutamax (GIBCO 35050-038), 1x Penicillin/Streptomy-
cin (GIBCO 15140), 1x MEM NEAA (GIBCO 11140-035),
0.1 mM 2-B-mercaptoethanol (SIGMA M-7522) and 10°
Units/ml LIF (Millipore, ESG-1106).

Differentiation was adapted from the previously
described hanging drop method, with some modifications
[22, 23]. Briefly, cells were cultured in a medium made
of DMEM (GIBCO 61965-026), with 15% ES-FCS (Mil-
lipore ES-009B), 1x Penicillin/Streptomycin (GIBCO
15140), 1x MEM NEAA (GIBCO 11140-035) and 0.1 mM
B-mercaptoethanol (SIGMA M-7522). Embryoid bod-
ies (EBs) were formed by hanging the cells in the form of
drops on the lids of petri dishes at a concentration of 25
cell/ul. After 2 days, these EBs were dropped into non-TC
treated petri dishes and were grown in suspension culture for
another 2 days. At day 4, the EBs were plated in 0.1% gelatin
coated tissue culture dishes and the medium was changed
every day till day 15.

RNA extraction and sequencing

RNA was extracted from two different biological samples
of both WT and Hira-null cells at day 0 and day 15 using
TRIzol reagent (Life technologies 15596-018) following
the manufacturer’s instructions. The quality and quantity
of RNA were determined using Nanodrop spectrophotom-
eter ND-1000 (Lab tech) and using High Sensitivity RNA
screenTape®, samples with RIN of seven or more were
used for subsequent library preparation. Library prepara-
tion was done using KAPA stranded mRNA-seq kit (KAPA-
BIOSYSTEMS KK8421) and KAPA mRNA capture kit
(KAPABIOSYSTEMS KK8441). RNA sequencing was
performed by Illumina NextSeq 500, with the production
of paired-end reads. Reads were aligned to mouse genome
mm9 using bowtie [24] and differential expression was pro-
cessed using Deseq package version 1.6.3. The produced
gene lists were sorted using an adjusted p value <0.05 and
an absolute fold change of +2. Gene Ontology analysis was
done using DAVID bioinformatics functional annotation
tool [25]. Enrichment analysis was performed using gene
set enrichment analysis (GSEA) software and the candidate
genes were selected using the GSEA lead Edge tool [26].
Functional enrichment was visualized using Cytoscape to
produce enrichment maps [27].

Reverse transcription and quantitative real time
PCR

The High-Capacity RNA-to-cDNA™ Kit (Thermo fisher
4387406) was used to obtain cDNA and was used accord-
ing to the manufacturer’s instructions. Primers for qRT-
PCR were designed using the primer-blast tool of NCBI.
The amplicon size was set between 70 and 200 bp (bp).
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Quantitative real time PCR (qQRT-PCR) was performed on
the CFX96 Touch™ Real-Time PCR Detection System
using SYBR green (BIO-RAD 1708882) on three biologi-
cal replicates and analysis was done using the standard
curve method. Results were normalized to Gapdh.

Native ChiP followed by qPCR

Native ChIP was performed on 1 x 10 cells as previously
described [10, 11]. Briefly, the cell pellets were lysed and
chromatin was digested using MNase (Sigma N5386)
at 37 °C with an ideal fragmentation between 200 and
1000 bp. The reaction was stopped using 5 mM EDTA.
HA antibody was collected with dynabeads (Invitrogen,
112.03D, 112.01D) from 12ACS5 hybridoma supernatants
and then incubated with the lysates overnight at 4 °C. After
several washes, the samples were treated with proteinase K
and RNAse. DNA was purified using the PCR-purification
Qiagen kit (28104). Quantitative real time PCR following
ChIP (g-ChIP) or ChIP-seq were performed.

Primers for validation of ChIP-seq by q-ChIP were
designed as follow; H3.3 significant peaks were uploaded
in Integrative Genome browser (IGV). H3.3 enriched and
depleted regions were identified. The corresponding nucle-
otide sequences were then extracted and used for primer
design using NCBI primer design tool (https://www.ncbi.
nlm.nih.gov/tools/primer-blast/).

ChiPseq and data analysis

The eluted DNA from both Input and ChIP was processed
through library preparation using the NEB DNA Ultra kit
and selecting fragment sizes of around 200 bp. Samples
were sequenced using [llumina NextSeq 500, with the pro-
duction of paired-end reads. Reads were aligned to mouse
genome mm9 using BOWTIE 1.1.2 allowing no more than
three mismatches [28]. Samtools 1.3.1 was used to gener-
ate BAM files, remove duplicates, sort and index [29].
MACS 1.4.2 was used for peak calling using the default
parameters (p value < 10‘5) [30]. BEDTOOLS intersect
with (—v) option was used to generate the HIRA-depend-
ent H3.3 peaks, after excluding the peaks in the Hira-null
sample [31]. Gene lists were generated within + 10 kb of
the TSS, in the gene body and 200 bp dowstream TES
using the PAPST (Peak Assignment and Profile Search
Tool) tool [32]. Genome-wide distribution of the H3.3
ChIP-seq peaks was analyzed from both bed and wig files
using the cis regulatory element annotation tools (CEAS)
software [33]. The HIRA-dependent H3.3 peaks resulted
from the subtraction of the Hira-null peaks from the WT
peaks using bedtools.

Results

Cardiac markers are dysregulated in the absence
of HIRA during early cardiomyocyte differentiation

WT and Hira-null mESCs were differentiated towards a
cardiac mesodermal lineage using an adapted hanging
drop protocol to increase the cardiomyocyte yield [22,
23]. Beating foci were present from day 8 of differentia-
tion in both WT and Hira-null cells. These foci increased
gradually in size during differentiation until reaching
60-70% confluence at day 15. These beating areas arose
concomitantly with the expression of the cardiac transcrip-
tion factor Nkx2.5 at day 8 [20]. We confirmed the expres-
sion of Gata4, Mef2c, Myh6 and Myh?7, as cardiac specific
marker at day 15 in both WT and Hira-null cells, and the
expression of the pluripotency markers Nanog and Pou5f1
at day 0, by qRT-PCR (Fig. 1a). We then sequenced the
total RNA in undifferentiated and in differentiated WT
and Hira-null cells at day 15. We compared the expressed
genes observed in our experiment at day 15 with the data-
set previously published by Wamstad et al. at the cardio-
myocyte (CM) stage. We found that 68.6% and 67.4% of
the expressed genes in WT and Hira-null dataset respec-
tively overlap with the reported CM stage datasets, indicat-
ing that loss of HIRA does not prevent general cardiogenic
differentiation.

Gene ontology (GO) biological process analysis was
performed on the genes expressed in WT and Hira-null
differentiated cardiomyocytes. Genes related to heart
development and morphogenesis were expressed in both
cell types, indicating successful differentiation into car-
diac lineage in both cells (Fig. 1b). However, GO anal-
ysis of the differentially expressed genes (DEGs) show
that genes related to cardiovascular development were
relatively depleted in Hira-null compared to WT mESCs-
differentiated cardiomyocytes (p value=4.1x1072!). On
the contrary genes related to the nervous system develop-
ment were upregulated in the absence of HIRA. We found
1680 DEGs of which 1641 encode known genes includ-
ing 108 cardiac genes and 39 were non-coding RNAs (p
value <0.05 and FC =+2) (Fig. lc¢).

Gene Set Enrichment Analysis (GSEA) was per-
formed on the DEGs and we identified 52 gene sets nega-
tively enriched and 54 gene sets positively enriched in
the absence of HIRA (p value £0.01 and FDR <0.1).
Enrichment map was used to visualize and function-
ally categorize these different gene sets, and showed an
under representation of GO-terms related to cardiovas-
cular development, immune system development and
DNA repair, and over representation of GO terms related
to nervous system development and neurotransmission
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(Fig. 2a). Accordingly, the gene sets related to cardiac
septum development and cardiac chamber development
were both negatively enriched (Fig. 2b). We then examined
the genes that were common in the different cardiovascular
development gene sets using the lead edge analysis tool in
GSEA. We found that Gata4, Gata6, Handl, Hand?2, Isl1
and Tbx2, and other genes represented in Fig. 2c, were
common in several gene sets. We then validated a subset
of these genes by qRT-PCR from independently isolated
mRNA sample sets (Fig. 2d).

Altogether, the expression of cardiovascular develop-
ment-related genes, and more precisely cardiac chamber and
septal development associated genes was down regulated in
the absence of HIRA.

HIRA affects calcium signalling and vascular smooth
muscle contraction pathways

We then investigated the pathways affected by the absence of
HIRA. KEGG pathway analysis was done on the pre-ranked
list of DEGs using GSEA (p value <0.05 and FC=+2).
Interestingly, calcium signalling pathway was the most posi-
tively enriched (normalized enrichment score (NES)=1.82,
p value=0.019 and FDR =0.19). In addition, axon guid-
ance and neuroactive ligand-receptor interaction pathways,
two pathways related to the nervous system, were positively
enriched. Conversely, the vascular smooth muscle contrac-
tion pathway was negatively enriched (NES=-1.63, p
value=0.026 and FDR =0.17). Considering the studies that
link HIRA to interferon-stimulated genes [34], it is inter-
esting to mention that leukocyte transendothelial migration
pathways, which is related to the immune system is also
negatively enriched (Fig. 2e).

HIRA-dependent H3.3 deposition co-localizes
with active enhancer loci in WT cells and shifts
to distal intergenic regions in the absence of HIRA

We previously showed that H3.3 deposition at the cardiac
enhancer, Tte, is HIRA dependent [20]. However, there has
been no study investigating the genome-wide effect of HIRA
on the H3.3 deposition during the early stages of cardio-
vascular development. We therefore performed H3.3-HA
ChIP-seq on undifferentiated mESCs and differentiated car-
diomyocytes at day 15 that contained about 60% of beating
foci and 67% of transcriptome similarly to the previously
published CM stage [7].

In WT-differentiated cardiomyocytes, H3.3 was deposited
most abundantly in the intronic (53.3%) region with lesser
deposition in the distal intergenic region (23.4%), and the
promotor region (9.2%). In the absence of HIRA, the pro-
portion of H3.3 deposition increased at the distal intergenic
region (42.2%) compared to the intronic region (29%) and
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the promotor region (3%) (Fig. 3a). We identified 14680
HIRA-dependent H3.3 enrichment peaks encompassing
+10 kb upstream of the TSS, the gene body or 200 bp down-
stream of the TES of 4703 annotated genes. GO analysis
showed enrichment of DNA-dependent regulation of tran-
scription processes. We then compared these with the DEG
list and found 319 in common.

Interestingly, 60 of the genes enriched for HIRA-depend-
ent H3.3 deposition were related to heart development by
GO analysis. We then compared our datasets with previ-
ously published datasets for the known enhancer marks
H3K4mel and H3K27ac in cardiomyocyte-differentiated
mESCs [7]. We identified that 31.6% (4642/14,680) of the
total HIRA-dependent H3.3 enrichment peaks overlapped
with both the active enhancer histone marks H3K4mel and
H3K27ac implicating that approximately one-third of the
HIRA-dependent H3.3 deposition is at active enhancer sites
(Fig. 3b).

In conclusion, the absence of HIRA leads to a decrease in
the deposition of H3.3 in the intronic and promoter regions.
We also show that about third of HIRA-dependent H3.3
peaks co localize with active enhancers loci.

HIRA-dependent H3.3 deposition directly influences
the transcription of Meis1, Gata6 and Tbx2

We next investigated the co-localization of HIRA-dependent
H3.3 deposition with some previously published ChIPseq
datasets of cardiac transcription factors (NKX2.5, GATA4,
TBXS [35] and SRF [36]). We found that 1607 of the HIRA-
dependent H3.3 peaks (10.93%) overlapped with NKX2.5
peaks, 1420 peaks (9.67%) overlapped with SRF peaks,
937 peaks (6.38%) overlapped with GATA4 peaks and 450
peaks (3.06%) overlapped with TBXS peaks. Since we previ-
ously showed that HIRA and NKX2.5 bind to the common
enhancer Tte [20], we focussed on identifying the colocali-
zation of HIRA dependent H3.3 deposition and NKX2.5 at
the enhancer loci and/or at the promotor site of three cardiac
transcription factors Meisl, Gata6 and Thx2, which were
downregulated in the absence of HIRA (Fig. 2d). These are
known to be associated with cardiac septal defects, as we
observed in our cardiac mesoderm Hira-conditional mice.

MEISI is a homeobox protein found to influence heart
development. Mouse embryos lacking MEIS1 showed
VSDs and overriding of aorta [37]. We found several HIRA-
dependent H3.3 enrichment sites in the gene body of Meis!
(Fig. 4a). One of the most H3.3-enriched loci co-localizes
with NKX2.5 at an enhancer locus marked by H3K4mel and
H3K27ac. We validated this enrichment by ChIP followed
by gPCR using primers designed for this locus.

TBX2 is a member of the T-box transcription factor gene
family. Absence of TBX2 leads to outflow tract septation
defects [4]. We found HIRA dependent H3.3 enrichment in
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entiated cardiomyocytes and motif analysis of the significant peaks.
a Pie chart showing the distribution of H3.3 over different genomic
regions in WT and Hira-null differentiated cardiomyocytes as indi-

the promoter region, 1.1 kb from the TSS. This enrichment
peak overlaps with H3K4me3 enrichment [7] and NKX2.5
(Fig. 4a). We validated this result by ChIP followed by gPCR
using primers designed specifically for this locus (Fig. 4b).

GATAG is a zinc finger transcription factor that plays a
role in heart development. Lack of GATAG6 has been asso-
ciated with septal and outflow tract defects [38]. HIRA-
dependent H3.3 enrichment was detected at approximately
5.5 kb from the TSS (Fig. 4a). This enrichment, that we vali-
dated by ChIP followed by qPCR (Fig. 4b), co-localizes with
NKX2.5 and H3K4mel suggesting an active role of HIRA
in the transcription of Gata6. Interestingly, this locus has
been reported previously to be an enhancer for Gata6 [39].

Altogether, HIRA-dependent H3.3 is enriched at previ-
ously identified enhancer loci, essential for the expression of
the cardiac transcription factors MEIS1, TBX2 and GATA6
at the early cardiomyocyte stage.

Discussion

Heart development is a complex tightly regulated process
requiring strict control of temporal gene expression [40—42]
and involving epigenetic regulation [43]. We examined the

cated. b Venn diagram showing the overlap between HIRA-depend-
ent H3.3 peaks and the common peaks of H3K4mel and H3K27ac.
(Color figure online)

role of the H3.3 histone chaperone HIRA in the early stages
of heart development using an in vitro mESC differentiation
model. We successfully differentiated both WT and Hira-
null mESCs into cardiomyocytes. This was evidenced by
the enrichment of heart development and morphogenesis
GO terms.

We report new direct targets of HIRA-mediated H3.3 dep-
osition, which are transcription factors known to be involved
in cardiac septum formation. We previously demonstrated
in vivo that mesodermal conditional Hira-null embryos pre-
sented with a fully penetrant phenotype of ventricular septal
defect [20]. In that same study, we focussed on the dysregu-
lation of expression of Tnni2 and Tnnt3, suggesting a mecha-
nism in which HIRA with NKX2.5 binds to their common
enhancer Tte to down regulate their expression. We herein
predict further targets of the same mechanism: co-occupancy
of HIRA and NKX2.5 at the enhancers of Meis! and Gata®,
and at the promoter of 7Hx2 to activate their expression.
Further studies will be needed to investigate the downstream
effect of HIRA on these new targets in vivo, and to explore
the interactions of HIRA and NKX2.5 at these loci.

Interestingly, knockout of Meis! is associated with
VSD and overriding aorta in mice [37], and an increased
cardiomyocyte proliferation in zebrafish, suggesting a
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role in the cell cycle [44]. In our differentiated cardio-
myocytes, MeisI was down regulated (FC=—2.5) in the
absence of HIRA. Notably, there was co-localization of
HIRA-dependent H3.3 deposition with NKX2.5 binding
sites at a previously identified enhancer site. A previ-
ous study showed that the sequential binding of MEIS1
then NKX2.5 to enhancers can influence cardiogenesis
[45]. Taken together with our previously published find-
ing, which showed diminished binding of NKX2.5 at the
enhancer site Tte in the absence of HIRA, we hypothesize
that the absence of HIRA leads to a diminished expression
of Meisl and then to a diminished binding of NKX2.5 to
the MEIS1-NKX2.5 target sites, thereby disrupting cardiac
septum morphogenesis.

Similarly, Gata6 expression was down regulated
(FC=-6.1) in the absence of HIRA at day 15 of differen-
tiation, and we identified HIRA-dependent H3.3, H3K4mel
and NKX2.5 enrichments co-localising at 5.5 kb upstream of
the TSS of Gata6 in WT cells at day 15 of differentiation. It
is interesting to note that the identical locus had been shown
previously to be an enhancer bound by NKX2.5 and regu-
lating Gata6 expression in developing murine hearts [39].

TBX2 plays an essential role in the atrioventricular canal
and OFT development [4]. We found HIRA-dependent H3.3
deposition at the promotor of Thx2 in WT cells differenti-
ated at day 15 and a down regulation of Thx2 expression
(FC=-4.6) in the absence of HIRA at day 15 of differentia-
tion. This locus coincides with known NKX2.5 binding sites
and a peak of the active transcription mark H3K4me3. This
result suggests that HIRA may play a role in the atrioventric-
ular canal and the OFT development by influencing the tran-
scription of Thx2 through H3.3 deposition at its promotor.

In addition, we found that calcium signalling pathway
was significantly upregulated in the absence of HIRA at
day 15 of differentiation. Calcium signalling controls sev-
eral physiological processes in the heart, including cardiac
contractility [46]. KEGG calcium signalling pathway is
normally required in ESC-derived cardiomyocytes [47]. We
previously reported two cardiac genes involved in contract-
ibility to be up regulated in the hearts of cardiac mesoderm
Hira-conditional mice. Further investigations on cardiac
contractility in Hira-mutant mice would be interesting.

Outside of heart development, it is of interest to note that
in our study, gene sets involved in DNA repair, the develop-
ment of the immune and nervous systems were significantly
dysregulated in the absence of HIRA. Of relevance, HIRA
has been shown to have an essential role in transcriptional
recovery after DNA damage [48, 49], and several studies
link HIRA-dependent H3.3 deposition with the induction
of stress responsive associated genes following interferons
and heat-shock stimulations [34, 50]. Absence of HIRA in
neural progenitors resulted in decreased proliferation and
increased neuronal differentiation [51]. Our study provides

new subsets of genes that could be investigated further in
these areas.

In conclusion, we show that cardiovascular development-
related genes are expressed in both WT and Hira-null differ-
entiated cardiomyocytes with a significant lower expression
in Hira-null cells. We show that 31.6% of HIRA-dependent
H3.3 peaks co-localize with active enhancers loci. We found
that HIRA directly influence the expression of the cardiac
transcription factors Meisi, Gata6 and Tbx2. We suggest that
HIRA influences their expression through the deposition of
H3.3 at their enhancers, supporting our previous published
model that HIRA acts at enhancers during cardiovascular
development, and potentially in concert with NKX2.5 [20].
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