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A B S T R A C T

Climate information is necessary for the energy sector. However, the use of climate projections has remained
limited so far for a number of reasons such us the lack of consistency among climate projections, the inadequate
temporal and spatial resolution, the climate model biases, the lack of guidance for users, and the size of data sets.
In this work, we develop and assess a consistent ensemble of high time and space resolution climate projections
that address these problems. First, a methodology for sub-ensemble selection is developed and proposed. Our
ensemble dataset includes eleven 12 km-resolution EURO-CORDEX simulations of temperature, precipitation,
wind speed and surface solar radiation on 3-hourly and daily time scales. These variables are bias-corrected for a
more effective use into impact studies. The assessment of bias-corrected model simulations against observational
data indicates reduced biases and increased coherence in projected changes among models compared to the raw
climate projections. We provide a well-documented dataset for energy practitioners and decision-makers to
facilitate the access and use of energy-relevant high-quality climate information in operation and planning. The
new dataset is freely available via the Earth System Grid Federation (ESGF) platform.

Practical implications

The energy sector is sensitive to weather and climate in various
ways (e.g. heating and cooling demand, extreme weather event-
related damages on energy infrastructures, cooling water needs
for thermo-electric power generation, renewable energy genera-
tion, etc.). This represents a challenge for energy generation-
supply balance at all time scales. Climate information is then
necessary for the energy sector to adapt efficiently to variability
and changes in climate.

However, the use of climate projections in the energy sector
has remained limited for several reasons: the wide variety of
available climate datasets characterized with heterogeneity in
terms of model ensembles and emission scenarios; unsuitability of
temporal and spatial resolution of climate models for impact
modelling; model biases; lack of guidance for users; no user-
friendly platforms to data access; special data formats (e.g.

NetCDF files) requiring certain software to be handled; among
others.

In order to bridge this gap four energy-relevant variables (2 m
temperature, 10 m wind speed, precipitation and surface solar
radiation) from 11 EURO-CORDEX regional climate models
(RCP4.6 and RCP 8.5) have been bias-adjusted at high spatial and
temporal resolution to provide energy practitioners and decision-
makers with a facilitated access and use of energy-relevant high-
quality climate information for operations and planning. The new
dataset is freely available via the Earth System Grid Federation
(ESGF) nodes (https://esgf.llnl.gov/nodes.html).

Such high-resolution multi-model climate dataset represents a
large amount of data, which can pose an obstacle for the climate
information uptake by some users (data storage issues, computing
time-consuming impact models, etc.). A sub-sampling metho-
dology has been developed, which aims at favouring skilled
models while preserving as much as possible the original spread
in climate sensitivity and climate future scenarios with regard to
variables of interest. This latter aspect is important for the energy
sector in order to anticipate a wide range of plausible futures.
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This dataset has been already used to derive energy-oriented
indicators: wind power potential, solar power potential, inflow
changes (the flow of water into reservoirs) for hydropower,
power demand, power generation-supply balance indicator,
frozen soil indicator.

Wind power- and photovoltaic capacity factor, which helps in
the planning process of the location of a new wind/solar park
project, could be an input for long-term trend analyses and effi-
ciency calculations to evaluate the profitability of a specific wind
park.

Inflow anomaly indicator enables effective preparation for the
change in future fluctuations of total and seasonal inflow.
Changes in inflow affect electricity prices and the optimisation of
the operation of the hydropower plants. E.g. higher inflow in
northern Europe most likely increases the potential for hydro-
power production in a region where hydropower production is
already high. However, climate predictions also indicate higher
winter temperatures and thus less need for energy for heating. In
combination, these two changes should allow to use more hy-
dropower generation, and limit water spillage in case the re-
servoirs capacity is not large enough to store the water in excess.

The impact of freezing rain on energy infrastructure can also
be investigated which gives better emergency planning in regions
identified as more exposed to the risk of the occurrence of
freezing rain events. A detailed assessment with statistics on the
duration of events, the prevailing wind conditions and trend
analyses can support decision-making processes regarding po-
tential adaptation measures.

On the climatological time scale, the indicator for bioenergy
production conditions is the length of the season suited for forest
harvesting operations. Forest harvester manufacturers can design
and develop a new generation of harvesters for future conditions.
Similarly, the information is useful for forestry factory investment
decisions for future raw material costs, which are affected by
costs of harvesting and logistics.

The energy demand indicator (estimated with heating degree-
days weighted by population) aims to help the energy sector to
anticipate the production needs and therefore the risk of im-
balance between a strong demand and a poor renewable energy
potential. For some countries, e.g. France, the electricity con-
sumption is highly correlated with this indicator, therefore in this
case a linear model can explain a lot regarding the electricity
consumption variation.

However, there are some limitations to the use of the dataset:
issues related to adequacy between model outputs and energy
needs (e.g. wind speed at 10 m vs 100 m), availability of high-
frequency outputs, adequacy between model spatial resolution
and energy needs, bias-adjustment limitations (remaining biases
over some areas, unavailability of observation at high resolution,
dependency of projected trends on the adjustment method),
manageable data volume, limited ensemble size and over-
weighted models.

1. Introduction

Energy is currently the largest greenhouse gases emitting sector
(35% of total emissions worldwide) (Bruckner et al., 2014), and am-
bitious climate change mitigation requires that, in addition to energy
efficiency measures to reduce consumption, low-carbon energies’ share
in generation to grow very fast in the coming decades. For instance, to
be aligned with a global warming reaching 2 °C or less at the end of the
21st century, the share of low-carbon energies should exceed 50% by
2050 for total energy supply and 80% for electricity supply (Bruckner
et al., 2014) globally. This rapid transition will involve an increasing
share of renewables, which will make the energy supply more and more
sensitive to weather and climate variability and changes. Energy
practitioners therefore need to anticipate renewable resources and de-
mand for planning infrastructures such as power plants and transmis-
sion systems. They also need to anticipate the change in risks of extreme

events such as heat or cold spells, or low flows in order to adapt
management of resources.

The climate impact research community has recently carried out
several studies focusing on the impact of climate change on renewable
energy supply (Tobin et al., 2015; Koletsis et al., 2016; Davy et al.,
2018; Soares et al., 2017; Carvalho et al., 2017; Jerez et al., 2015;
Chilkoti et al., 2017). On the other hand, changes in energy demand
due to climate change have been also quantified in several works
(Auffhammer et al., 2017; Cronin et al., 2018; van Ruijven et al., 2019).
In the energy sector, however, the systematic uptake of climate pro-
jections has remained limited so far. Since a large amount of high-
quality regional climate simulations is available, the time is ripe for
significant progress in the use of climate projections for adaptation. For
this reason we propose and assess a methodology to process regional
climate projections in order to provide consistent datasets dedicated to
the energy sector.

In general climate simulations are an approximation of the real
climate system with different physical and mathematical simplifications
resulting in biases of the simulated climate when compared to the ob-
served one. For this reason a subsequent adjustment (referred here as
“bias correction”) towards the observed climatology is necessary.
Furthermore, climate simulations are not supposed to represent ob-
served weather conditions at a specific date since after the initial con-
ditions they are not synchronised with the observed climate re-
presenting only the main climate characteristics for a given period.
Mean values, or frequency of a phenomenon computed over several
years (30 years for example) are therefore more representative. The
robustness of an analysis can be evaluated according to the con-
cordance of the results produced by different models. On the other hand
climate future evolution is uncertain, mainly because of the evolution of
greenhouse gases concentration in the atmosphere. For this reason,
climate projections are accounting for different concentration sce-
narios. The Representative Concentration Pathway (RCP) scenarios in-
troduced in the fifth Assessment Report (AR5) of IPCC are named after a
possible range of radiative forcing values in the year 2100 relative to
pre-industrial values. In the study two of them are considered: RCP 4.5
(median) and RCP 8.5 (pessimistic).

Indeed climate projections are often disregarded due to a lack of
comprehension on their nature and the assumptions they are based on.
They are often considered as forecasts, which leads to false inter-
pretations. Also the wide variety of available models and climate si-
mulations requires appropriate guidance in order to help users. In
particular, the lack of consistent multi-model datasets, at a resolution
that allows the assessment of impacts, with standardized outputs, hin-
ders the users to elaborate proper uncertainty assessments.

Many methodological progresses have recently been proposed that
partly address these issues, which, if properly assessed, should allow a
better use of ensemble of climate projections. Firstly, coping with model
biases can be done through the procedures of statistical bias-correction.
This statistical post-processing step adjusts selected statistics (mean,
variance, distribution) of the so-called “raw” model simulations to
better match observed time series over the reference period. Over the
last decades several bias-correction methods have been developed and
widely applied on model simulations before introducing them into
impact studies. A detailed presentation and evaluation of these methods
can be found in the works of Teutschbein and Seibert (2012, 2013) and
Maraun (2016). Under changed future conditions, however, distribu-
tion mapping methods have been considered to perform better com-
pared to simpler approaches of delta-change approach and linear
transformations (Teutschbein and Seibert, 2013). In this paper we use
the Cumulative Distribution Function-transform (CDF-t) method (Vrac
et al., 2012) which has the advantages of a quantile matching method
while accounting for the time evolution of the cumulative distribution
function (CDF) as provided by the climate model. The method described
in Vrac et al. (2012) was further developed in order to improve ad-
justment of rain frequency (Vrac et al., 2016).
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Secondly, a multi-criteria based methodology of ranking model si-
mulations has been developed in order to help users in reducing input
data considered in their analysis, when needed. In fact, it is often un-
clear whether all available projection models should be used, or whe-
ther a sub-sample provides sufficient information, also considering the
large amount of data processing involved for each of these models.
Several methodologies have been previously established to sub-sample
large simulation ensembles (Mendlik and Gobiet, 2016; McSweeney
et al., 2015). The methodology developed here is based on a set of
criteria established a priori that sub-ensembles are to meet. However,
the methodology allows for some flexibility in terms of metrics and
thresholds used in order to be tailored to specific needs (see Section 3).

Furthermore, since impact studies are focusing on climate change
signals acting at the regional scale, another question is the appropriate
spatial resolution of the climate data. Nested regional climate models
bridge the gap between large scale and regional-to-local scale processes
by dynamical downscaling of coupled atmosphere-ocean Global
Climate Models (GCM). Since numerous regional climate simulations
are available, several initiatives have been set up in order to provide a
coordination of research and modelling activities including also
common interface to the applicants. The “Coordinated Regional
Climate Downscaling Experiment” (CORDEX) (Giorgi et al., 2009) fra-
mework aims to compare, improve and standardize regional climate
modelling at the individual modelling centers worldwide, thus har-
monizing the new generation of regional climate projections applying
the most recent versions of RCM ensembles, driven by the latest GCM
projections, with unprecedented high resolution (e.g. for Europe si-
mulations with 0.11° degrees resolutions are available which means
about 12x12 km grid size). Therefore, in this work we consider the
EURO-CORDEX framework. It provides regional climate projections for
the European CORDEX domain (Jacob et al., 2014), thereby com-
plementing the previous PRUDENCE (Christensen et al., 2007) and
ENSEMBLES (Hewitt, 2005) experiments.

The paper is organized as follows. Section 2 describes the regional
climate models and observational data used in the study. Section 3
presents the sub-ensemble selection methodology for ranking climate
simulations. In Section 4 the bias-correction process is described.
Section 5 includes the verification and quality control of the bias-cor-
rected climate projections tailored for use in the energy sector. Section
6 gives remarks regarding data standardization and access, and finally
Section 7 contains the conclusions.

2. Observations and climate projections

2.1. Climate variables

In this study we consider a limited set of climate variables selected
on the basis of the following considerations. Firstly, we chose them
taking into account the discussion with several energy practitioners for
their use after processing these variables. Secondly, the availability of
appropriate variable features in the regional climate projection data-
base. As a consequence we describe the processing of four variables:
near-surface (2 m) temperature (tas), precipitation (pr), near-surface
(10 m) winds (sfcWind), and surface solar radiation (rsds).

Near-surface air temperature is used in several applications: to
model energy demand for heating or cooling, to estimate evapo-
transpiration in hydrological models estimating inflow for hydropower,
to modulate the photovoltaic (PV) solar energy production as solar
panels have efficiencies which are sensitive to temperature.
Precipitation is crucial for modelling inflow for hydropower production
or thermal and thermonuclear cooling system efficiency and avail-
ability. Near-surface winds allow estimation of the wind energy pro-
duction and eventually for solar production, as wind influences the
solar PV panel temperature. For wind energy, however, hub-height
winds are required, but often not available from climate model outputs,
hence they are usually recalculated from an empirical formula (Tobin

et al., 2015). Solar surface radiation, also called downwelling solar
radiation at the surface, is required to estimate PV energy production.

Several other variables are potentially useful in the energy sector,
such as sea-level pressure, often used as a diagnostic to calculate and
understand weather patterns. Snow depth has also several applications,
such as estimating hydropower inflow potential storage, or even for
practicability of forest management for bioenergy in high latitude peat-
land areas. It is also an important variable for the PV sector since the
solar power generation is reduced to zero when snow covers the panel.
Ocean variables (waves, sea level, currents) are important in particular
for offshore assets, or air humidity for heating/cooling demand. In this
article we however restrict our selection to the four main variables
mentioned above, where abundant observations exist for comparison,
reanalysis were available at the 3-hourly time scale from WFDEI, and
which allow to cover most of the energy sector needs, based on dis-
cussions with stakeholders.

2.2. Climate projections: the original EURO-CORDEX ensemble

The EURO-CORDEX project is a coordinated initiative to produce a
multi-scenario and multi-model ensemble of regional climate projec-
tions over Europe. Detailed information on simulations achieved in the
framework of this project can be found in (Jacob et al., 2014, Vautard
et al., 2013, Kotlarski et al., 2014).

Most of the completed simulations from the EURO-CORDEX project
are published and freely available on the Earth System Grid Federation
(ESGF) portals (https://esgf.llnl.gov/nodes.html). However, the daily
output frequency is the highest available on this server for most models
and variables. In order to address wind energy, PV power production
and supply-demand balance issues respectively, a sub-daily frequency
(ideally hourly) is required for tas, rsds, and sfcWind. In EURO-CORDEX,
modelling groups have generally saved 3-hourly outputs but these data
are available only on request. These 3-hourly data under both RCP4.5
and RCP8.5 had therefore to be retrieved directly from the producers
(see Table 1) for conducting the present work. The initial set of simu-
lations does not capture the low emission scenarios because at the time
of the study only very models had RCP2.6 scenario simulations and we
preferred to have homogeneity in the information provided. Contacting
producers and transferring between institutes such a big amount of data
that represent sets of 150-year 3-hourly 12 km data over a large domain
is a heavy process, which conducted us to start with a limited sized
initial EURO-CORDEX ensemble. Table 1 summarizes information re-
lated to the 11 EURO-CORDEX simulations considered in the study. It
should be mention than not all the available EURO-CORDEX regional
climate models are included in the study. The selection of the models
was based on the availability of 3-hours simulations provided by the
producers at the time of study (In Table 1 models are written in red if
the data source is the producers and in blue if the data source is ESGF).

Data files were provided in netcdf format. A first initial quality check
has been performed, and a number of errors were corrected. Quality
checking guarantees consistency for metadata across models, com-
pleteness of all time steps, data format since some row data set could
contain such small errors.

The quality check consisted in:

• verification of the length of the time series
• verification of the initial date
• verification of the times of the date and the calendar
• verification of the variable names

Corrections that were brought were numerous:

• filling small gaps (typically a few time steps) by repeating previous
values or time linear interpolation

• correcting variable names
• correcting times
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• correcting grid metadata and variable names
• correcting radiation data which is integrated and was given as in-

stantaneous
• correcting normalization factors
• truncating data to full years

2.3. Reference data

Observation-based reference datasets are needed for bias-correcting
the collected climate simulations. Several constraints have guided the
choice of the dataset(s), such as time resolution, spatial coverage (e.g.
for winds in case of Integrated Surface Database (ISD) stations coverage
is very limited over some parts of Europe like Portugal, Germany,
Sweden). Finally we chose the WATCH Forcing Data for ERA-Interim
(WFDEI) dataset (Weedon et al., 2014) as reference data, which is
provided at a 3-hourly time scale and consists of ERA-Interim re-ana-
lyses corrected by elevation plus monthly bias correction from gridded
observations.

Additionally, in case of surface solar radiation, an other reference
data has been used which consists in fact in a correction of WFDEI data,
namely a daily scaling of WFDEI by the satellite-derived HelioClim-3v5
data, data prepared for the Copernicus Climate Change Service (C3S)

European Climate Energy Mixes project (http://ecem.climate.
copernicus.eu) (Jones et al., 2017).

This additional correction was found interesting as it is done at daily
time scale while WFDEI correction is only at monthly time scale, and
starting from WFDEI data was found technically easier and consistent
with other variables.

WFDEI dataset consists of a combination of the European Centre for
Medium Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee
et al., 2011) and observation-based datasets. This dataset has the ad-
vantage to include the variables required at the appropriate temporal
resolution, namely temperature at 2 m, wind speed at 10 m, surface
solar radiation, and precipitation available at the 3-hourly and daily
resolution (Table 1). WFDEI has a global coverage at the 0.5° × 0.5°
resolution (although it is available over land only) and covers the
1979–2014 period. WFDEI data is generated using the same metho-
dology as for the widely used WATCH Forcing Data (WFD) (Weedon
et al., 2010; Weedon et al., 2011) with slight differences in the basic
data, processing and formatting. ERA-Interim at 0.75° is first inter-
polated to the WFDEI grid using the natural-neighbour methodology.
Temperature at 2 m includes a bias-correction using the Climate Re-
search Unit (CRU) TS3.1/TS3.21 (Harris et al., 2013) temperature
monthly averages and averaged diurnal ranges along with an elevation

Table 1
List of the 11 EURO-CORDEX simulations and the institutes that provided the data. The output frequency for each variable retrieved is written in red if the data
source is the producers and in blue if the data sources is ESGF.

Driving Global Climate Model
(realization)

Regional Climate Model Institute Variables (output frequency and
sources)

1 MPI-ESM-LR
(r1i1p1)

REMO2009.v1 Helmholtz-Zentrum Geesthacht, Climate Service Center, Max Planck
Institute for Meteorology

Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)

2 MPI-ESM-LR
(r1i1p1)

RCA4.v1 Swedish Meteorological and Hydrological Institute (SMHI) Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)

3 HadGEM2-ES
(r1i1p1)

RCA4.v1 Swedish Meteorological and Hydrological Institute (SMHI) Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)

4 HadGEM2-ES
(r1i1p1)

RACMO22-E.v1 Royal Netherlands National Meteorological Institute (KNMI) Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)

5 CNRM-CM5
(r1i1p1)

ARPEGE51.v1 Centre National de Recherches Météorologiques (CNRM) Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)

6 CNRM-CM5
(r1i1p1)

RCA4.v1 Swedish Meteorological and Hydrological Institute (SMHI) Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)

7 EC-EARTH
(r3i1p1)

HIRHAM5.v1 Danish Meteorological Institute (DMI) Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)

8 EC-EARTH
(r1i1p1)

RACMO22-E.v1 Royal Netherlands National Meteorological Institute (KNMI) Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)

9 EC-EARTH
(r12i1p1)

RCA4.v1 Swedish Meteorological and Hydrological Institute (SMHI) Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)

10 IPSL-CM5A-MR
(r1i1p1)

WRF331F.v1 Institute Pierre Simon Laplace (IPSL) Institute National pour
l'Environnement et les RISques industriels (INERIS)

Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)

11 IPSL-CM5A-MR
(r1i1p1)

RCA4.v1 Swedish Meteorological and Hydrological Institute (SMHI) Tas (3-hourly, daily)
Rsds (3-hourly)
Sfcwind (3-hourly)
Pr (daily)
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correction. Rainfall and snowfall rates are bias-corrected at the monthly
scale using CRU number of wet days, Global Precipitation Climatology
Center (GPCCv5/v6) (Schneider et al., 2013) precipitation totals, ERA-
Interim ratio of rainfall-precipitation and rainfall gauge correction.
Note that two WFDEI precipitation datasets are available using either
CRU only or CRU and GPCC data. We have used the CRU-GPCC product
as GPCC includes a higher density of stations than CRU. Surface solar
radiation takes into account CRU monthly average cloud cover and
interannual changes in atmospheric aerosol loading. Wind speed at
10 m does not include any bias-correction or elevation correction.

Over Europe, average WFDEI temperatures are well constrained by
the observations. Precipitation over mountainous areas is more pro-
blematic as these regions are poorly covered. Lizumi et al. (2014)
showed that means and distributions of WFDEI temperature, solar
surface radiation, wind speed and total precipitation were overall si-
milar to near-global daily observations. Weedon et al. (2014) carried
out an evaluation of WFDEI products against flux tower field observa-
tions (FLUXNET) at 4 sites in Europe (Finland, Germany, Belgium,
Italy) arguing that daily temperature, surface solar radiation and pre-
cipitation rates are in good agreement with observed fluxes. At the sub-
daily scale also, temperature agrees well with observations. However,
they highlight some reasonable biases and correlations but also sig-
nificant discrepancies at the various sites. Comparing grid box averages
with local tower measurements presents limitations, and further eva-
luation of WFDEI products would be necessary.

Because the WFDEI wind product does not include bias-correction
with observations, we have carried out an evaluation using an in-house
10 m wind gridded dataset (Tobin et al., 2015) built from the station-
based Integrated Surface Database (ISD-Lite) dataset (Smith et al.
2011). This dataset was made by averaging wind speed values over the
nearest neighbour stations from each grid cell centre, when not ex-
ceeding a 75 km distance. Fig. 1 highlights that WFDEI compares well
with ISD-Lite station-based data (mean differences between the 2 da-
tasets are within ± 1 m/s for most of the grid points). In most cases
biases are small on continental areas but can be significant in a few
coastal areas, and in some cases where wind farms are located such as
Southern France, around the Baltic sea or in Southern Italy. The Root
Mean Squared Error (RMSE) and spatial correlation calculated at the
annual and seasonal time-scales (Table 2) indicate a reasonable

agreement between the datasets on average, especially when focusing
on grid points for which the ISD-Lite-base wind speed climatology has
been assessed from more than one station within 75 km from the grid
point centre. These grid points are expected to be characterized by a
more representative climatology than a grid point associated with a
unique station, which consists in a local measurement.

Another way of comparing WFDEI data with observations is a direct
comparison between station and the nearest grid point. Using this
procedure, we expect however significant biases in coastal and moun-
tainous regions. In particular, several stations are located at mountain
tops in the Alps, and we do not expect a correspondence with 0.5°
average winds. In order to evaluate the WFDEI data over areas where
winds are expected to correspond to observed winds, we removed, out
of 417 station anemometers, those located at an elevation higher than
1000 m and those located closer then 0.2° to the sea in 4 directions (N,
S, E, W). This approach results in selecting 222 stations. The “spatial”
correlation between WFDEI nearest grid point and the 222 stations
taken from ISD-Lite data set for the winter and summer averages and
95th percentiles as a function of the hour of the day is shown in Fig. 2.
The figure clearly indicates that (i) wintertime winds are more reliably
represented by WFDEI than summertime winds, the correlation reaches
about 0.8 for the mean winds indicating a fairly good representation of
wind variations across Europe, (ii) in summer, correlations are weaker,
probably because mesoscale processes (breezes) and planetary
boundary layer (PBL) structure are not well represented in gridded
data, hence the weaker skill of WFDEI, and (iii) the variability of WFDEI
winter winds is however well represented as the 95th percentile ex-
hibits a fairly good correlation. In summer, again, the variability is
probably less well represented.

In conclusion, the reference data used for bias-correction are based
on WFDEI data, however, some post-processing procedure was needed.
As the result, we used 2 m temperature, precipitation and wind speed
directly from WFDEI. In case of solar radiation, we used daily re-scaled
WFDEI data.

2.4. Observations: station data

In order to validate the bias-corrected model simulations several
station data have been used. The daily temperature and precipitation
products are compared with the station data coming from the European
Climate Assessment & Dataset project (ECA&D) (Klein Tank et al.,
2002). The simulated monthly wind fields are validated against the ISD-
Lite product which is a subset of the larger Integrated Surface Data
consisting of global hourly and synoptic observations (Smith et al.,
2011). The validation of bias-corrected monthly surface solar radiation
has been performed by comparing them with observations coming from
the Global Energy Balance Archive (GEBA) (Gilgen et al., 1998, Wild
et al., 2017). In the latter case, the missing monthly observations has
been filled using the MASH homogenization method (Szentimrey,
2003).

Fig. 1. Difference between 1981 and 2000 averages of 10 m wind speed from
WFDEI data and ISD-Lite-based dataset (2). Only the grid points having ISD-Lite
stations within 75 km of the grid point centre are kept in order to ensure a
certain level of quality for the ISD-Lite-based dataset.

Table 2
RMSE and spatial correlation are calculated for 1981–2000 annual and seasonal
averages of 10 m wind speed from WFDEI and ISD-Lite-based datasets over two
ensembles of grid points. The first ensemble is made up of grid points associated
with at least one station within 75 km of the grid point centre and the second
ensemble is made up of grid points with at least 2 stations within 75 km of the
grid point centre.

First ensemble of grid points
(2851)

Second ensemble of grid points
(1533)

RMSE (m/s) Correlation RMSE (m/s) Correlation

Annual 0.81 0.63 0.70 0.73
Winter (DJF) 0.96 0.69 0.81 0.78
Summer (JJA) 0.78 0.49 0.70 0.60
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3. Sub-ensemble selection

This section explains the method that can be used in order to sub-
sample the ensemble of projections. The method offers a subset for a
given number of simulations, and metrics to evaluate the subset. The
reduction of the initial ensemble to a smaller number of simulations is
necessary to alleviate the computation work of some impact modelers.
Here we develop the method and provide an example for subsets of 3, 5
and 7-member ensembles.

3.1. Model selection methodology

The method was developed in collaboration with energy stake-
holders in the framework of the Copernicus C3S funded Clim4Energy
project. Three main criteria have been considered important and re-
levant for climate change-related energy issues. These are related to i)
model performance, ii) climate sensitivity and iii) type of climatic
variables in future scenarios.

A fourth criterion related to model structural diversity is used ad-
ditionally when needed to complete the sub-sampling process. The
GCMs in the selected sub-ensemble would be ideally as different as
possible in terms of model formulation (Masson and Knutti, 2011) in
order to avoid undue weight to some model behaviours. Indeed, several
GCMs share common code parts or even some GCMs are used to drive
several RCMs. This genealogy criterion would also apply to RCMs.

3.1.1. Model performance criterion
The selected simulations must realistically represent the main cli-

mate features. Regional Climate Models (GCM-driven) are evaluated
with regard to their ability to simulate variables of interest for the
energy sector (tas, scfWind, rsds, pr). One essential question is if large
scale dynamics are well represented, so for this reason the Global
Circulation Models (GCMs), that drive the Regional Climate Models
(RCMs), are evaluated with regard to dynamical aspects, i.e. their
ability to simulate weather regimes over Europe. Weather regimes have
been used in several studies to assess climate models dynamics
(Cattiaux et al., 2013; Vautard et al., 2019). Unrealistic simulations
should not be included. This will concern simulations exhibiting ob-
vious abnormal features, suggesting bugs or more profound issues of a
model.

The evaluation of regional simulations focuses on temperature at

2 m (tas), 10 m wind speed (sfcWind), precipitation (pr) and surface
solar radiation (rsds). These climate variables are evaluated against the
WFDEI data. Several features are considered, namely annual, winter
and summer means, and the 10th and 90th percentiles of the daily
values distribution over the reference period 1981–2010. It should be
mentioned that beside the mean extreme values such 10th and 90th
percentiles are critical in energy production. For this reason it is quite
important to check how the models are capable to represent the ex-
tremes. Note that as historical simulations end in 2005, 5 years of
RCP8.5 scenario were added to the 1981–2005 historical years. Each
feature is calculated at the grid point scale. Three evaluation metrics
are used: RMSE, Spatial correlation (Corr) and the 95th percentile of
the distribution of grid point absolute bias (Q95Bias), the latter being
an indicator of problematic limited areas that would not be captured by
RMSE. These evaluation metrics are calculated over the domain
(14.9 W; 40.9E; 34.1 N; 74.9 N) between simulations and WFDEI data.
Evaluation is carried out only over land since WFDEI is not available
over oceans. Near-surface wind speed would deserve such an evaluation
process over ocean also for offshore wind power purposes but this was
not possible here. Tables A1, A2, A3, A4 in Appendix show the values
for the 11 simulations, the 4 variables, the 5 features and the 3 metrics.
Those values will serve also for the identification of unrealistic simu-
lations.

The sorting of simulations is carried out per variable, feature and
metric, based on those values X. The rank d associated with each si-
mulation is calculated as described by Eq. (1) for metrics to maximize,
i.e. Corr, and Eq. (2) for metrics to minimize, i.e. RMSE and Q95Bias:

=d X X X X[ min( )]/[max( ) min( )] (1)

=d X X X X[max( ) ]/[max( ) min( )] (2)

where minimum and maximum are calculated over the 11 simulations.
The closer d is to 1 the better the simulation performs compared to the
others.

We also assessed the capability of the driving GCM to simulate the
main features of the large-scale atmospheric flow variability. For this,
an assessment of weather regimes representation in GCMs is made. It
focuses here on occurrence frequency of the four winter weather re-
gimes (Atlantic Ridge, Blocking, North Atlantic Oscillation + (NAO+)
and North Atlantic Oscillation − (NAO-)), and the four summer
weather regimes (Atlantic Ridge, NAO-, Blocking, Atlantic Low). NCEP

Fig. 2. Correlation between station observations and
WFDEI datasets for mean and 95th percentile values
of wind speed over the 222 low-elevation and inland
stations and the nearest WFDEI grid-point wind va-
lues. Winter is shown as black curves and summer as
red curves. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article.)
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reanalyses are used as reference data since the methodology to calcu-
late the weather regimes is the same as described in the work of
Alvarez-Castro et al. (2018). Absolute biases in occurrence frequency
are calculated for each regime and each GCM included in the initial
EURO-CORDEX ensemble (Table A5 in Appendix). Simulations are then
sorted based on their absolute weather regime frequency biases by
calculating their rank in the same way as for the regional climate fea-
tures (Eq. (2)).

The performance score (PS) of a sub-ensemble per variable, feature
and metric is then simply defined as the mean of all calculated ranks d
of the simulations making up the sub-ensemble. The mean PS (< PS >)
calculated as the average over all PS associated to each variable, fea-
ture, metrics will characterize a sub-ensemble with regard to this cri-
terion. Note that the different aspects to evaluate can be weighted
differently depending on their attributed importance.

3.1.2. Climate sensitivity criterion
EURO-CORDEX regional climate simulations are dowscaling 5

global climate models (GCMs) from the The Coupled Model
Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012), which
provides a state-of-art set of coordinated climate model experiments
involving 20 global climate modelling groups from around the world.
The selected sub-ensemble must span, to the largest possible extent, the
full CMIP5 ensemble climate sensitivity range, in order to account for
uncertainties in future global climate evolution. As indicator for climate
sensitivity, we use the Equilibrium Climate Sensitivity (ECS), which
corresponds to the total amount of global warming induced by a dou-
bling of carbon dioxide atmospheric concentration, once the system
reaches a new balanced energy state. The ECS spread (ECSS) of a sub-
ensemble is measured using the Eq. (3).

=
ECSS

ECS ECS ECS ECS[max( ) min( )]/[max( ) min( )]subens subens init init

(3)

where ECSsubens is the ECS array of the sub-ensemble and ECSinit the
ECS array of the initial 11-member EURO-CORDEX ensemble.

The ECS values of 27 CMIP5 GCMs are found in IPCC AR5 WG1
Chapter 9 (Flato et al., 2013; Sherwood et al., 2014; Hazeleger et al.,
2012) (personal communication from W. Hazeleger for EC-EARTH).
The range of this 27-member CMIP5 ensemble is (2.07; 4.7) °C. The ECS
range of the initial GCMs downscaled by EURO-CORDEX RCMs is
(3.25–4.55) °C, the models driven by CNRM-CM5 and HadGEM-ES
showing the lowest and highest sensitivity respectively. Fig. 3 shows
the ECS distribution of the 27 CMIP5 GCMs and also the ECS dis-
tribution of the initial EURO-CORDEX ensemble driven by 5 different
GCMs. This initial ensemble covers 51% of the CMIP5 ECS range at
maximum and is skewed toward medium to high ECS.

3.1.3. Climatic variables future scenarios criterion
The range of climatic variables responses to greenhouse gases for-

cing covered by the selected sub-ensemble with regard to variables of
interest (tas, scfWind, rsds, pr) has to span to the largest possible extent
of the initial ensemble response range. It is of high importance for in-
dustry in adaptation that the selected sub-ensemble accounts for the
diversity in climate variables change signals and includes in particular
the “high” and “low” scenarios. The variable responses (VR) are as-
sessed as the differences between averages over the 2035–2065 and
1981–2010 periods. They are calculated for five quantities, namely the
annual, winter and summer means, and the 10th and 90th percentiles of
the daily values distribution over the 30-year period, averaged over the
3 IPCC European domains (Fig. AI.39 and AI.40 upper part in
Oldenborgh et al., 2013, Annex 1 Atlas of Global and Regional Climate
Projections) over land for all variables and additionally over sea for
sfcWind for wind power purpose. The variable response spread (VRS) of
a sub-ensemble for a particular quantity and region is calculated using

Eq. (4).

=VRS VR VR VR VR[max( ) min( )]/[max( ) min( )]subens subens init init

(4)

where VRsubens is the variable responses array of a sub-ensemble and
VRinit the VR array of the initial ensemble.

Maximum and minimum are used here rather than percentiles be-
cause, as mentioned above, the upper and lower response scenarii are of
particular relevance for stakeholders. The mean VRS (< VRS >) is
calculated as the average of all VRS associated to each variable,
quantity and region and will characterize a sub-ensemble with regard to
this criterion.

3.2. Sub-ensemble selection algorithm

The sub-ensemble member selection is a multicriteria selection
process that we conduct iteratively by applying in a predefined order
the criteria introduced in the previous section.

The first step of the sub-ensemble selection procedure consists in
applying a first selection filter related to a model performance criterion
to the initial ensemble. Considering an initial ensemble made up of N
simulations and M simulations after applying the first filter. There are
then L combination of M (C(L,M)) possible L-member sub-ensembles to
choose among.

The second selection filter is related to the climate sensitivity cri-
terion, and consists in imposing a minimum threshold to the sub-en-
semble coverage of the initial ensemble climate sensitivity range.
Because the initial ensemble covers only half of the CMIP5 ECS range,
we impose to select only sub-ensembles having an ECSS equal to 1. Let
P be the number of sub-ensembles that meet this condition.

The third selection filter concerns the criterion on variable re-
sponses. As for the second filter, only sub-ensembles characterized by a
coverage of the initial variable response range above a certain threshold
are selected. Here we impose a < VRS > lying in the upper quartile of
the < VRS > distribution of the P-member sub-ensembles.

The fourth selection filter related to the performance score consists
in keeping only the most performant pool of sub-ensembles. Here we
impose a < PS > lying in the upper quartile of the < PS > distribution
of the P-member sub-ensembles.

Several sub-ensembles can meet these filter conditions. To choose
among the resulting possibilities the model genealogy criterion is used.
The sub-ensemble that maximizes the GCM and RCM diversity is se-
lected. If this last criterion is not sufficient to discriminate among
possibilities, then the sub-ensemble that is characterized by the
highest < VRS > is selected, thus less weight is given to
the < PS > filter.

3.3. Selected sub-ensembles

To propose a range of sub-ensemble sizes, the methodology has been
applied here to select 3, 5 and 7 simulations out of the 11 initial ones
(Table 1). The algorithm could produce sub-ensembles of other sizes if
needed. In this case no unrealistic simulations was found in the first
step and the full 11-member ensemble could be considered. The main
results for the sub-ensembles selection are presented in the following.

3.3.1. Selected 3-member sub-ensemble
There are 165 possibilities of selecting 3 simulations out of 11. Of

these, 32 sub-ensembles combinations meet the condition ECSS = 1.
Two sub-ensembles meet the third and fourth filter conditions (the 75th
percentile of the < VRS > distribution is 0.63; the 75th percentile of
the < PS > distribution is 0.61). One sub-ensemble only is composed of
GCM and RCM all different and is then selected:

1) CNRM-CM5_ARPEGE, 2) MPI-ESM-LR_REMO, and 3) HadGEM2-
ES_RACMO.

This sub-ensemble is characterized by a < VRS > of 0.64 and

B. Bartók, et al. Climate Services xxx (xxxx) xxxx

7



a < PS > of 0.66.

3.3.2. Selected 5-member sub-ensemble
There are 462 possibilities of selecting 5 simulations out of 11. 231

sub-ensembles meet the condition ECSS = 1. Two sub-ensembles meet
the third and fourth filter conditions (the 75th percentile of
the < VRS > distribution is 0.80; the 75th percentile of
the < PS > distribution is 0.61). One sub-ensemble maximises the GCM
and RCM diversity being composed of 5 different GCMs and is then
selected:

1) EC-EARTH_RACMO, 2) IPSL-CM5A-MR_RCA, 3) CNRM-
CM5_ARPEGE, 4) MPI-ESM-LR_REMO, and 5) HadGEM2-ES_RACMO.

One RCM is repeated once, as it is the case in the other sub-en-
semble. This sub-ensemble is characterized by a < VRS > of 0.83 and
a < PS > of 0.64.

3.3.3. Selected 7-member sub-ensemble
There are 330 possibilities of selecting 7 simulations out of 11. 259

sub-ensembles meet the condition ECSS = 1. Two sub-ensembles meet
the third and fourth filter conditions (the 75th percentile of
the < VRS > distribution is 0.90; the 75th percentile of
the < PS > distribution is 0.60). Two sub-ensembles maximise equally
the GCM and RCM diversity. The one with the highest < VRS > is then
selected among those 2 sub-ensembles:

1) HadGEM2-ES_RCA, 2) EC-EARTH_HIRHAM, 3) EC-
EARTH_RACMO, 4) IPSL-CM5A-MR_WRF, 5) CNRM-CM5_ARPEGE, 6)
MPI-ESM-LR_REMO and 7) HadGEM2-ES_RACMO.

This sub-ensemble is characterized by a < VRS > of 0.93 and
a < PS > of 0.61.

Fig. 4. represents the sub-ensembles in the < VRS > – < PS > space
for the 3-, 5-, and 7-member cases, while Table 3 displays how the
ensemble-mean projected changes assessed from the selected sub-en-
sembles compare with those from the initial ensemble.

The sub-selection was performed before bias-correction of climate
projections because it is based largely on comparing models with ob-
servations, which must be done before bias-correction. On the other

hand for some specific impact studies, end users may need to have
access to the raw model outputs. The most widely used bias-correction
are not able to correctly handle the most extreme values for example,
and specifically designed methods are used in this case (Parey et al.,
2018). Furthermore, end users may need to bias adjust against their
own reference datasets. Therefore, because the chosen bias-correction
does not modify the climate change signal (for example this fact implies
that the bias-correction does not affect the variable response ranges
either) it has been decided to apply the sub-sampling before bias ad-
justing the climate model simulations.

4. Bias-correction method

Climate projections have biases that must be corrected or “ad-
justed”. In this paper we use the Cumulative Distribution Function-
transform (CFD-t) method, of which a detailed description can be found
in Vrac et al. (2012). This method is a non-parametric quantile map-
ping-based technique which accounts for climate change (or changes in
the underlying distribution). It corrects model values in a future period
given observations and model data in a reference period. In addition,
specific tuning was made, as described below. The training period used
here for CDF-t is 1979–2005; it is the intersection of all EURO-CORDEX
simulations historical periods and the WFDEI data period. It allows to
have a similar bias-correction for the two scenarios as they only diverge
after 2006. Bias-correction is performed by moving windows of
20 years, with 10-year advancement. For each 20-year period, bias-
correction is calculated using the training and the 20-year period, but
correction is saved only for the central 10-year period. The next 20-year
period is then considered, but it is only shifted by 10 years. The first and
last periods have more saved values at the end of the time series.

The bias-correction method is applied separately on the climate
variables: temperature at 2 m, precipitation, 10 m wind speed and
surface solar radiation. One of the main adaptations of the methodology
made here stems from the fact that the WFDEI observation-based da-
taset is provided on a grid (regular 0.5° × 0.5°) that has a resolution
coarser than the model grid (rotated EURO-CORDEX grid,

Fig. 3. Equilibrium Climate Sensitivity (ECS) values for the CMIP5 (top) and EURO-CORDEX (bottom) GCM ensembles.
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0.11° × 0.11°). The adaptation consists in attempting to keep high-
resolution spatial structures as provided by the model, while correcting
biases at the coarser observation resolution. An additional difficulty
comes from the fact that the two grids are not of the same type: WFDEI
grid is a regular latitude-longitude grid while EURO-CORDEX climate
projections use a rotated latitude-longitude grid.

The bias-correction procedure proceeds into several steps:

Separate model and observation-based data for each month, and
each hour for 3-hourly data. This allows bias-correction by month
and hour;
For each observational grid cell, calculate spatial averages of model
variables over the set of model grid points (typically about 20 model
grid points per observation grid cell). This leads to time series with
matching grids for model and observations;
Correct the resulting model series with observation data set (WFDEI)
over each observation grid cell using the CDF-t method;
Use the difference or ratios (see below) between corrected and un-
corrected model data on each observation grid cell to homo-
geneously correct each high-resolution model grid point value be-
longing to an observation cell (downscaling);
Merge all months and hours to create a bias-correction data set with
continuous time.

Due to the different nature of each variable, there are some differ-
ences in the method setting in each case:

for tas, the standard CDF-t method is used (Vrac et al., 2012). Ad-
ditive corrections are brought with identical adjustment added on
each model grid point belonging to the same observation 0.5°x0.5°
cell for the downscaling stage.
for pr the new adapted CDF-t method, correcting both precipitation
intensity and frequency (Vrac et al., 2016) is used. For the down-
scaling stage, a specific procedure is used: when the corrected value
is lower than the uncorrected value over the observation grid cell,

model values are multiplied by the ratio (< =1) between corrected
and uncorrected values, avoiding negative values. In the opposite
case, in order to avoid unrealistically large values due to small de-
nominator, an additive correction is brought: the (positive) differ-
ence between corrected and uncorrected values is homogeneously
added to all corresponding model grid point values.
for sfcWind a classical CDF-t method is used but the change in grid is
done using a fully multiplicative correction, as very small denomi-
nators (uncorrected very low wind speed values averaged over the
coarse resolution observation grid) leading to unrealistic corrected
wind values were not found.
for rsds a classical CDF-t method is used but a specific downscaling
procedure is applied because surface solar radiation has bounds. We
applied a multiplicative correction as for wind speed when the
corrected value is smaller than the initial value and a multiplicative
correction to the difference between the upper bound and the value
if not, so the final value does not exceed the upper possible bound.
We a posteriori bounded the correction to the range between 0 and
the observed maximum over the training period at each grid point.

Except for rsds, the posterior downscaling preserves within-cell
averages, so that when re-averaging high-resolution corrected model
data over each observation grid cell, the value obtained is identical to
the observation-grid initially corrected value. For rsds, we relied on the
posterior verification described below to assess the quality of the bias
corrected set.

5. Verification and quality control

After the bias-correction procedure, a number of verifications and
quality control tests were carried out on the bias-corrected output files.
In particular, we verified that bias-corrected model data averages over
the training period (1979–2005), which should be close (albeit not
exactly identical due to the difference between reference period and the
correction moving periods) to the mean observed values from the low-

Fig. 4. Representation of the sub-ensembles characterised with an ECSS equal to 1 in the VRS-PS space for the 3-, 5- and 7-member cases in a), b) and c) respectively.
The selected sub-ensembles are circled in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 3
Ensemble mean annual (yr) changes (differences between averages over the 2035–2065 and 1981–2010 periods) over the 3 IPCC European regions (R1, R2, R3) for
the variables of interest (tas, scfWind, rsds, pr).

tas yr R1 tas yr R2 tas yr R3 sw yr R1 sw yr R2 sw yr R3 rsds yr R1 rsds yr R2 rsds yr R3 pr yr R1 pr yr R2 pr yr R3

Initial ens 2.42 2.09 2.21 −0.02 −0.01 −0.02 −4.13 −1.71 1.11 0.23 0.17 −0.09
3-Member subens 2.36 2.26 2.34 0.02 0.01 −0.01 −2.19 1.5 2.19 0.21 0.17 −0.08
5-Member subens 2.35 2.12 2.3 0 −0.01 −0.01 −3.13 0.31 1.93 0.2 0.15 −0.08
7-Member subens 2.44 2.13 2.23 −0.01 −0.01 −0.02 −3.48 −0.74 1.56 0.21 0.17 −0.08
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resolution WFDEI observation. A comparison of the changes in original
and bias-corrected simulations was made. Changes between the future
and historical periods, calculated as simple differences of means over
30 years, are visually compared. Changes are expected not to differ
greatly (see Section 5.1). Large differences found in some data in fact
revealed problems in initial files that were corrected.

Finally we also tested the high-resolution bias-corrected data di-
rectly against station data, and assessed the improvement of the bias-
correction method and the improvement of the downscaling (see
Section 5.1).

5.1. Verification of temperature and precipitation

The differences between the bias-corrected simulations at 0.5°x0.5°
resolution and WFDEI data over the reference period were calculated
separately for winter and summer seasons for all variables and dis-
played for tas and pr, respectively as an example. Small differences are
found but they do not exceed a few tenths of mm for pr and tenths of °C
for tas (see pr at Fig. 5. and tas at Fig. 6. in case of the WRF331F re-
gional model forced by IPSL-CM5A-MR).

For daily pr and tas data we tested the high-resolution bias-corrected
data directly against ECA&D station data. We used 485 temperature
stations and 1055 rain gauges from the ECA&D database. Statistics
compare the absolute biases for (i) the final bias-corrected data at high

resolution, (ii) the intermediate corrected data at WFDEI low resolution
(0.5°x0.5°) and (iii) the original non-corrected data using a few metrics,
separately for winter (Tables 4 and 6) and summer (Tables 5 and 7).

For precipitation, there is clearly benefit associated to bias-correc-
tion, and the gain from higher resolution is only for the heavy pre-
cipitation (highest 99th percentile, Q99). The gain from bias-correction
is not obvious at low resolution in this case. This conclusion holds for
both winter and summer. However in summer, biases for Q99 remain
high, because such events are convective and of small scale and difficult
to capture even with a 0.11° resolution.

For temperature, there are clear improvements of the bias-corrected
simulations when compared to station data, and the high-resolution
correction provides improved results compared to low resolution cor-
rection. This holds both for mean biases and 95th and 5th percentiles.
Note the higher relative gain of high resolution for higher temperatures.

Fig. 7 shows the changes (2071–2100 vs 1971–2000) obtained for
precipitation at high resolution with and without bias-correction. Al-
though slightly less pronounced, BC changes show essentially similar
features. The slightly lower changes in amplitude may be due to an
overestimation of rain amount amplitudes in the current climate
(Vautard et al., 2013; Kotlarski et al., 2014). For temperature, the bias-
correction has resulted in negligible modifications (Fig. 8) as expected.

Fig. 5. Bias-corrected simulations (WRF331F forced by IPSL-CM5A-MR) minus WFDEI for pr, over the reference period (1971–2005) for winter (left) and summer
(right). Values in mm/day.

Fig. 6. Same as in Fig. 5 for tas (in °C).
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5.2. Verification of wind speed and surface solar radiation

To validate 10 m wind speed simulations we used measurements

from 356 ISD-Lite stations over Europe for the period 1973–2000. Fig. 9
shows the monthly biases before and after the bias-correction in the
case of the 11 regional climate models considered in the study

Table 4
Verification of bias-correction (BC) performance vs. station data for daily precipitation (pr, in mm/day) for winter, HR – high resolution, LR – low resolution, multi-
model mean.

Statistics HR BC simulation LR BC simulation HR original simulation

Mean absolute bias 0.52 0.52 1.22
Q95 absolute bias 2.16 1.98 3.25
Q99 absolute bias 3.55 9.22 9.43
Fraction of stations with mean absolute bias > 1 mm 0.14 0.14 0.44
Fraction of stations with Q95 absolute bias > 5 mm 0.10 0.09 0.18
Fraction of stations with Q99 absolute bias > 5 mm 0.18 0.79 0.73

Table 5
Same as Table 4 for summer.

Statistics HR BC simulation LR BC simulation HR original simulation

Mean absolute bias 0.27 0.22 0.85
Q95 absolute bias 1.93 2.16 3.72
Q99 absolute bias 5.13 6.56 6.67
Fraction of stations with mean absolute bias > 1 mm 0.05 0.03 0.27
Fraction of stations with Q95 absolute bias > 5 mm 0.05 0.06 0.23
Fraction of stations with Q99 absolute bias > 5 mm 0.40 0.65 0.40

Table 6
Verification of bias-correction (BC) performance vs. station data for daily mean temperature (tas, in °C) for winter, HR – high resolution, LR – low resolution, multi-
model mean.

Statistics HR BC simulation LR BC simulation HR original simulation

Mean absolute bias 1.05 1.13 2.33
Q05 absolute bias 1.51 1.55 3.51
Q95 absolute bias 1.04 1.37 1.80
Fraction of stations with mean absolute bias > 2 °C 0.14 0.19 0.36
Fraction of stations with Q05 absolute bias > 2 °C 0.24 0.23 0.57
Fraction of stations with Q95 absolute bias > 2 °C 0.14 0.23 0.33

Table 7
Same as Table 6 for summer.

Statistics HR BC simulation LR BC simulation HR original simulation

Mean absolute bias 0.86 0.98 1.67
Q05 absolute bias 1.03 1.11 2.21
Q95 absolute bias 0.94 1.04 1.72
Fraction of stations with mean absolute bias > 2 °C 0.10 0.12 0.28
Fraction of stations with Q05 absolute bias > 2 °C 0.12 0.14 0.44
Fraction of stations with Q95 absolute bias > 2 °C 0.11 0.13 0.34

Fig. 7. Changes (2071–2100 vs 1971–2000) with (left) and without (right) application of the BC method, for the annual precipitation (pr), in mm/day, multi-model
mean.
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highlighting the added-value of bias-correction. Except for CNRM
(BIAS = −0.84 m/s) the non-bias-corrected simulations overestimate
the 10 m wind speed by 0.77 m/s, while after bias-correction the biases
become smaller (-0.27) and more convergent. Further monthly statistics
(Table 8) show improvements in the lower edge of the distribution,
however the 95th percentile biases become larger after bias-correction.
In terms of extreme values, the corrected model data (multi-model
mean) give slightly higher values in case of low extremes and lower
values in case of high extremes compared to the observations. Fig. 10
shows the changes in 10 m wind speed between periods 2031–2060 and
1971–2000. The magnitude and the patterns of negative and positive
changes are similar before and after the bias-correction procedure,

which justifies the fact that the bias-correction procedure does not af-
fect the trends.

Surface solar radiation data have been validated against measure-
ments coming from 61 GEBA stations over Europe for the period
1971–2010. Fig. 11 shows the biases of the original high resolution
(0.11° × 0.11°) non-corrected rsds data, the high-resolution
(0.11° × 0.11°) data corrected with respect to WFDEI reference data,
the intermediate low-resolution (0.5° × 0.5°) data corrected with re-
spect to HelioClim data completed with WFDEI (where HelioClim data
are missing), and the final WFDEI-HelioClim bias-corrected data at high
resolution (0.11° × 0.11°). The results give an overestimation by
16.41 W/m2 in case of the raw modelled data, similar value has been
reported in (Bartok et al., 2017) including slightly different EURO-
CORDEX simulations. The biases have been reduced to 5.42 W/m2 by
applying bias-correction with WFDEI reference data. However using
HelioClim satellite data, the biases turn into negative sign, giving a bias
of −9.42 W/m2 in case of low resolution, and −8.55 W/m2 in case of
high resolution. A validation of the monthly raw HelioClim data against
the data from the 61 GEBA stations has been carried out showing an
underestimation of rsds by −6.85 W/m2 which explains the negative
sign in biases of model simulation bias-corrected by WFDEI and He-
lioClim reference data. The absolute difference in bias between data
using only WFDEI and WFDEI scaled with HelioClim data is 5 W/m2.

Fig. 8. Same as Fig. 7 for tas (in °C).

Fig. 9. 10 m wind speed model simulation minus ISD-Lite station data before (dotted lines) and after (continuous line) bias-correction over Europe for the period
1973–2000.

Table 8
Verification of bias-correction (BC) performance vs. station data for monthly
mean, Q05 and Q95 of 10 m wind speed in the 11 regional climate models (in
m/s).

Non BC wind speed BC wind speed

BIAS 0.62 −0.27
Absolute BIAS 1.44 1.23
Q05 absolute BIAS 1.17 0.62
Q95 absolute BIAS 0.59 1.58
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The biases after bias-correction are controlled by the reference data
used in the procedure. For this reason, we put huge effort to enhance
the quality of the reference data sets.

In terms of distribution the WFDEI bias-corrected data shows a small
bias in low extremes (5th percentile, Q05) and higher bias in high ex-
tremes (95th percentile, Q95). However, compared to the original si-
mulations the biases have been significantly reduced in both cases.
HelioClim-WFDEI bias-corrected model data gives slightly higher biases
in mean but the added value of bias-correction is also obvious in this
case, mainly in extremes. However, enhancement in resolution yields
lower biases in high extremes, since local processes as cloudiness di-
rectly influencing rsds is better captured in this case (Table 9).

Fig. 12 shows the changes in rsds between periods of 2031–2060
and 1971–2000. The magnitude and the patterns of negative and po-
sitive changes are similar before and after the bias-correction procedure
which justifies the fact that bias-correction procedure does not affect
the trends.

In general, impact studies should include bias-corrected data in
terms of absolute values, because many applications involve thresholds
or nonlinear processing of data. Such is the case for instance of wind
power which necessitates the conversion of wind to power with a
nonlinear power curve; however, these figures show that the procedure

should not affect the magnitude of long-term changes (during the
procedure both past and future values are corrected in line with ob-
servations).

6. Data standardization and access

The main goal of this work was to deliver and assess a number of
climate datasets of essential climate variables to be widely used in the
energy sector.

In the framework of CORDEX huge effort has been done by the data
providers in harmonizing the original regional climate simulations

Fig. 10. Changes in 10 m wind speed between periods 2031–2060 and 1971–2000, multi-model mean before (left) and after (right) bias-correction.

Fig. 11. Model simulation minus GEBA station data before bias-correction (rsds), bias-corrected with WFDEI reference data (wfdei), bias-corrected with HelioClim-
Wfdei data at 0.5x0.5 deg. resolution (wfdeihelioclim05) and bias-corrected with HelioClim-Wfdei data at 0.11 × 0.11 deg. resolution (wfdeihelioclim) in the period
1971–2010.

Table 9
Absolute biases of yearly mean, 5th percentile (Q05) and 95th percentile (Q95)
of surface solar radiation from 11 regional climate models against GEBA station
data for the period 1971–2010 (in W/m2).

rsds wfdei 05wfdeihelioclim wfdeihelioclim

BIAS 16.41 5.42 −9.43 −8.56
Mean absolute BIAS 27.15 18.32 21.14 20.96
Q05 absolute BIAS 7.61 0.40 2.77 2.85
Q95 absolute BIAS 24.88 5.33 8.61 5.43
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(setting up a common domain, common high resolution, harmonizing
output formats, variable names, and much more) (Giorgi et al., 2009).
However, before the delivery of the new bias-corrected model results, it
is important that files are also standardized in a robust way. Two tasks
should be done, namely (i) because of the diversity of the formats of
different model results, it is necessary to unify the naming conventions
and metadata as netcdf attributes for the facility of usage, and (ii) it is
also necessary to complete the information about the bias-correction to
clearly distinguish between the original simulation results and their
bias-corrected versions. These are the principal tasks of standardization
of the bias-corrected datasets. Both 3-hourly and daily datasets of the
11 selected models (Table 1) between the period 1971–2100 have been
standardized. The standard used is the Data Reference Syntax (DRS) for
bias-corrected CORDEX simulations (Nikulin and Legutke, 2016). In
addition, a check of input files and a verification of output files have
been done separately before and after the standardization.

In this way, first, for the netcdf files, the dimensions, variables, and
netcdf attributes have been set in accordance to the CORDEX tables. In
particular, the coordinates have been transformed to rotated polar co-
ordinate of which the North Pole is as defined in the parameters of the
CORDEX domain. The time unit has been unified to ‘days since 1949–12-
01 00:00:00’ and time values have been transformed accordingly. The
variable names have been appended by ‘Adjust’ and the attribute
«long_name» has also been modified by adding ‘Bias-Adjusted’ in front of
it. Several global attributes have been modified, such as «project_id» and
«product» have been modified separately to be ‘CORDEX-Adjust’ and
‘bias-adjusted-output’. Note that «contact», «institution» and «institute_id»
are the information about the Institut Pierre-Simon Laplace (IPSL) who
is responsible for bias-corrected data, while the information about
original data suppliers and original data files have been given in these
new global attributes: «input_institution», «input_institution_id» and «in-
put_tracking_id». In addition, more information about the bias-correction
have been shown by several new global attributes which have ‘bc’ in
front of the attribute names, such as «bc_method», «bc_observation_id»,
«bc_period» and so on.

Secondly, the output netcdf file names have been set according to
the naming rules of CORDEX DRS (42). One file name is composed of
several CORDEX DRS elements which are separated by underscores (‘_’)
and the order of elements is:

(VariableName)_(CORDEX_domain)_(driving_model_id)_(driving_exper-
iment_name)_(driving_model_ensemble_member)_(model_id)_
(BiasAdjustment)_(Frequency)_(StartTime-Endtime).nc

The files are currently freely accessible through the Earth System
Grid Federation (ESGF) portals (https://esgf.llnl.gov/nodes.html).

7. Conclusions

A climate projection dataset has been produced for use primarily by
the energy sector. It is characterized by state-of-the-art bias-corrected
simulations, high spatial and temporal resolution in line with energy

needs, multi-model and multi-scenario ensemble to account for un-
certainties in climate projections, standardized and quality-checked
data, a proposition of sub-ensembles of intermediate sizes. All these
data are freely accessible through the Earth System Grid Federation
(ESGF) nodes

(https://esgf.llnl.gov/nodes.html).
Since the data volume is huge (e.g. one model, one variable, one

scenario, 3-hourly data for 1971–2100 for Europe is about 260 Gb) sub-
ensemble are proposed to be used. The main criteria for sub-sampling
was set up in such a way that the selected sub-ensemble realistically
represents the main climate features, to span the largest possible extent
of climate sensitivity range, as well as to accounts for the diversity in
climate variables change signals and includes in particular the “high”
and “low” scenarios, an important feature for the end-users.

Bias-correction of climate model simulations is important for impact
studies, where absolute values and thresholds are taken into account.
The importance of bias-correction is obvious after validation of bias-
corrected simulations against observational data. In case of daily tem-
perature, there are clear improvements of the high-resolution bias-
corrected simulations (the mean absolute bias is reduced from 2.33 °C
to 1.05 °C in winter and from 1.67 °C to 0.86 °C in summer). This holds
both for mean biases and 95th and 5th percentiles. For precipitation,
there is also a clear benefit associated to bias-correction especially in
case of higher resolution (0.11°). The mean absolute bias is reduced
from 1.22 mm to 0.52 mm in winter and from 0.85 mm to 0.25 mm in
summer. The gain from higher resolution is especially for the heavy
precipitation (highest 99th percentile, Q99). However in summer,
biases for Q99 remain high, because such events are convective and of
small scale and difficult to capture.

In case of 10 m wind speed after bias-correction the biases become
smaller (−0.27 m/s) and more convergent. Further improvements are
detected in the lower edge of the distribution, however the 95th per-
centile biases become larger after bias-correction. In terms of extreme
values, the corrected model data (multi-model mean) give slightly
higher values in case of low extremes and lower values in case of high
extremes compared to the observations.

In case of surface solar radiation, the biases have been diminished to
5.42 W/m2 (raw simulations having a bias of 16.41 W/m2) by applying
bias-correction with WFDEI reference data. However using HelioClim
satellite data, the biases turn into negative sign giving −8.55 W/m2 in
case of high resolution.

In any case the bias-correction procedure does not affect the mag-
nitude of long-term changes.

However there are several limitations to be mentioned. In some
cases the adequacy between model outputs and energy needs is not
fulfilled, e.g. wind speed at 10 m instead of wind speed at ca. 100 m
required in case of wind energy projects. Furthermore, the time fre-
quency of the outputs, as well as the match between model spatial re-
solution and spatial resolutions required by the end users in some cases
probably need to be enhanced in the future. Regarding bias-correction

Fig. 12. Changes in rsds between periods 2031–2060 and 1971–2000, multi-model mean before (left) and after bias-correction with WFDEI reference data (middle),
and bias-corrected with HelioClim-Wfdei data (right) at 0.11 × 0.11 deg. resolution.
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limitations, remaining biases over some areas also have to be men-
tioned, as well as the unavailability of observations at high resolution.
However, bias-correction methods cannot fix fundamental problems of
climate models, the basic assumption in this case is that the chosen
climate model represents a plausible climate change.

Possible future work to improve the availability and quality of cli-
mate projections for the energy sector may include enlarging the
number of simulations in the initial ensemble, the use of improved
reference data for bias-correction, as well as an increased adequacy
between stored model outputs and energy needs (relevant variables, at
appropriate level and frequency) in future regional modelling experi-
ments.

The lessons learned from the user engagement in this work can be
expressed as follows. End users in the energy sector are used to handle
meteorological datasets, either observed or forecasted. For climate
change impact studies however, because climate model simulations
provide different approximations of the main climate characteristics for
a given period, ensembles have to be considered and bias adjustment is
needed to get closer to the observed climatology. Furthermore, different
scenarii for the future greenhouse gas and aerosols pathways lead to
different projected climates for a future period of interest. Therefore,
for this kind of impact studies, several scenarii and climate models have
to be considered as equally probable future evolutions. However, end
users are generally not able to handle a very large ensemble of possible
evolutions, either because of limited storage space or of time consuming
impact models. This is why an approach has been proposed here to sub
sample a large ensemble of climate simulations so that the main

uncertainty range can be covered with a smaller set of possible evolu-
tions.

All the work presented in this study has been elaborated in the
framework of the finalized proof-of-concept Clim4Energy project
(http://clim4energy.climate.copernicus.eu/) in collaboration with the
European Climatic Energy Mixes (ECEM) project (http://www.
wemcouncil.org/wp/european-climatic-energy-mixes/) (Troccoli
et al., 2018), both funded by the European Union's Copernicus Climate
Change Service (C3S) program. The main goal of Clim4Energy was to
bring together expertise of climate research and service centres and
energy practitioners to demonstrate, from case studies, the value chain
from essential climate variables to actionable information in the energy
sector. In continuation, based on the results of these projects, the Co-
pernicus Climate Change Service (C3S) Energy is now developing an
operational climate service for the energy sector (https://climate.
copernicus.eu/operational-service-energy-sector).
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Appendix

Tables A1–A5.

Table A1
Evaluation table for tas (Y = annual mean, W = winter mean, S = Summer mean, P1 = 10th percentile, P9 = 90th percentile, RMS = RMSE (in K), COR = Corr,
BQ95 = Q95Bias (in K)).

GCM-RCM RMS
Y

COR
Y

BQ95Y RMS
W

COR
W

BQ95W RMS
S

COR
S

BQ95S RMS
P1

COR
P1

BQ95P1 RMS
P9

COR
P9

BQ95P9

MPI-RCA4 1.23 0.98 2.3 1.38 0.97 2.65 1.7 0.98 2.88 1.75 0.96 3.2 1.84 0.97 3.06
HadGEM-RCA4 1.21 0.98 2.38 1.4 0.97 2.69 1.68 0.96 3.16 1.65 0.97 3.22 1.76 0.96 3.32
CNRM-RCA4 2.17 0.97 3.77 2.43 0.98 4.52 1.89 0.95 3.64 3.28 0.97 6.87 1.91 0.96 3.54
EC-EARTH-HIRHAM 1.49 0.98 2.54 1.21 0.98 2.36 2.35 0.97 3.72 1.25 0.98 2.3 2.49 0.97 3.84
EC-EARTH-RACMO 2.69 0.97 4.35 2.11 0.96 4.73 3.05 0.96 4.73 2.47 0.97 5.21 3.2 0.96 4.96
EC-EARTH-RCA4 2.36 0.98 3.81 1.81 0.97 3.48 2.79 0.97 4.38 2.42 0.97 4.88 2.92 0.97 4.53
IPSL-WRF 2.18 0.97 4.31 3.33 0.97 7.62 1.83 0.89 3.89 4.52 0.97 10.2 1.86 0.89 3.92
IPSL-RCA4 2.07 0.98 4.2 2.01 0.96 4.21 2.23 0.97 4.1 2.86 0.95 6.57 2.31 0.97 4.05
CNRM-ARPEGE 2.82 0.96 5.08 3.52 0.95 7.16 2.44 0.89 5 3.71 0.95 7.41 2.46 0.89 5.08
MPI-REMO 1.09 0.98 2.16 1.58 0.97 3.05 1.53 0.95 3.01 1.63 0.97 3.13 1.66 0.95 3.23
HadGEM-RACMO 1.67 0.98 3.03 2.14 0.97 4.23 1.28 0.97 2.43 2.47 0.97 4.91 1.4 0.97 2.54

Table A2
Evaluation table for sfcwind (Y = annual mean, W = winter mean, S = Summer mean, P1 = 10th percentile, P9 = 90th percentile, RMS = RMSE (in m/s),
COR = Corr, BQ95 = Q95Bias (in m/s)).

GCM-RCM RMS
Y

COR
Y

BQ95Y RMS
W

COR
W

BQ95W RMS
S

COR
S

BQ95S RMS
P1

COR
P1

BQ95P1 RMS
P9

COR
P9

BQ95P9

MPI-RCA4 1.24 0.43 2.41 1.55 0.41 3.05 1.03 0.46 2 0.53 0.43 1.08 2.13 0.36 4.24
HadGEM-RCA4 1.2 0.42 2.4 1.6 0.47 3.06 0.91 0.38 1.9 0.51 0.38 1.05 2.12 0.39 4.23
CNRM-RCA4 1.17 0.38 2.34 1.47 0.42 2.97 0.91 0.35 1.83 0.51 0.37 1.04 2.03 0.31 4.17
EC-EARTH-HIRHAM 1.04 0.58 2.08 1.12 0.57 2.3 0.99 0.59 1.92 0.4 0.68 0.82 1.78 0.48 3.61
EC-EARTH-RACMO 0.81 0.79 1.56 0.97 0.81 1.94 0.77 0.77 1.47 0.38 0.78 0.74 1.39 0.77 2.68
EC-EARTH-RCA4 1.23 0.46 2.44 1.51 0.51 2.97 1.02 0.42 2.02 0.53 0.44 1.08 2.11 0.4 4.2
IPSL-WRF 1.8 0.42 3.25 2.4 0.42 4.13 1.28 0.38 2.56 0.69 0.49 1.3 3.22 0.35 5.73
IPSL-RCA4 1.28 0.44 2.5 1.76 0.45 3.37 0.89 0.35 1.84 0.54 0.41 1.06 2.27 0.38 4.46
CNRM-ARPEGE 0.96 0.77 1.61 1.14 0.78 1.97 0.82 0.74 1.41 0.75 0.77 1.07 1.32 0.73 2.39
MPI-REMO 0.71 0.73 1.4 0.93 0.64 1.82 0.56 0.79 1.12 0.27 0.75 0.54 1.27 0.68 2.5
HadGEM-RACMO 0.82 0.78 1.61 1.02 0.79 2.01 0.7 0.75 1.37 0.38 0.76 0.74 1.44 0.76 2.79
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Table A3
Evaluation table for rsds (Y = annual mean, W = winter mean, S = Summer mean, P1 = 10th percentile, P9 = 90th percentile, RMS = RMSE (in Wm−2),
COR = Corr, BQ95 = Q95Bias (in Wm−2)).

GCM-RCM RMS
Y

COR
Y

BQ95Y RMS
W

COR
W

BQ95W RMS
S

COR
S

BQ95S RMS
P1

COR
P1

BQ95P1 RMS
P9

COR
P9

BQ95P9

MPI-RCA4 18.44 0.96 32.2 14.15 0.98 23.08 24.38 0.92 46.01 17.14 0.95 30.99 24.87 0.89 44.34
HadGEM-RCA4 21.79 0.97 35.33 16.12 0.98 25.8 31.42 0.92 54.34 18.51 0.96 32.12 29.34 0.88 49.02
CNRM-RCA4 22.54 0.96 33.85 17.25 0.98 27.31 29.96 0.91 48.63 19.78 0.95 33.66 30.01 0.86 48.79
EC-EARTH-HIRHAM 16.08 0.98 27.67 11.41 0.99 23.39 20.89 0.97 37.12 12.21 0.97 27.5 11.47 0.94 20.35
EC-EARTH-RACMO 11.25 0.96 20.61 9.24 0.98 19.51 17.91 0.91 36.82 8.41 0.95 19.99 21.08 0.85 37.54
EC-EARTH-RCA4 22.25 0.97 35.2 17.03 0.98 27.29 28.11 0.92 49.06 20.38 0.96 34.86 28.97 0.88 48.11
IPSL-WRF 28.98 0.94 41.09 16.72 0.98 26.3 47.95 0.81 70 15.43 0.95 29.42 52.87 0.77 74.02
IPSL-RCA4 21.97 0.97 37.47 16.02 0.98 26.4 26.16 0.92 48.25 19.87 0.96 36.02 27.99 0.86 48.37
CNRM-ARPEGE 21.11 0.97 31.91 12.94 0.99 20.3 34.2 0.87 55.8 13.42 0.97 24.34 32.66 0.82 55.07
MPI-REMO 19.16 0.98 32.58 14.47 0.99 27 24.51 0.94 43.56 18.61 0.96 38.89 15.02 0.88 26.26
HadGEM-RACMO 11.4 0.96 20.81 8.66 0.99 17.1 16.24 0.93 31.37 8.13 0.96 18.76 21.83 0.87 37.63

Table A4
Evaluation table for pr (Y = annual mean, W = winter mean, S = Summer mean, P1 = 10th percentile, P9 = 90th percentile, RMS = RMSE (in mm/day),
COR = Corr, BQ95 = Q95Bias (in mm/day)).

GCM-RCM RMS
Y

COR
Y

BQ95Y RMS
W

COR
W

BQ95W RMS
S

COR
S

BQ95S RMS
P1

COR
P1

BQ95P1 RMS
P9

COR
P9

BQ95P9

MPI-RCA4 0.88 0.85 1.62 1.2 0.8 2.47 0.98 0.82 1.83 0.17 NA 0.27 2.19 0.85 4.09
HadGEM-RCA4 0.61 0.85 1.23 0.85 0.87 1.64 0.76 0.73 1.45 0.15 NA 0.25 1.54 0.85 3.18
CNRM-RCA4 0.76 0.81 1.54 0.97 0.78 2.09 0.81 0.8 1.6 0.16 NA 0.25 1.94 0.81 4.1
EC-EARTH-HIRHAM 0.9 0.82 1.85 1.22 0.84 2.57 0.79 0.85 1.4 0.16 NA 0.26 2.54 0.81 5.43
EC-EARTH-RACMO 0.41 0.91 0.81 0.65 0.9 1.26 0.46 0.89 0.95 0.12 NA 0.2 1.26 0.9 2.41
EC-EARTH-RCA4 0.57 0.88 1.13 0.74 0.88 1.44 0.67 0.86 1.23 0.14 NA 0.22 1.45 0.87 2.93
IPSL-WRF 0.99 0.74 2.1 1.28 0.71 2.68 1.77 0.2 4.07 0.15 NA 0.26 2.77 0.74 5.76
IPSL-RCA4 0.79 0.82 1.34 1.33 0.73 2.63 0.62 0.88 1.13 0.16 NA 0.26 1.96 0.82 3.62
CNRM-ARPEGE 0.72 0.7 1.52 0.82 0.78 1.57 1.44 0.31 2.83 0.14 NA 0.22 1.87 0.7 4.01
MPI-REMO 0.64 0.84 1.32 1.16 0.79 2.3 0.53 0.87 0.99 0.15 NA 0.24 1.9 0.82 3.7
HadGEM-RACMO 0.43 0.89 0.94 0.73 0.89 1.53 0.59 0.85 1.22 0.13 NA 0.22 1.29 0.89 2.6

Table A5
Evaluation table for the weather regimes (absolute bias in occurrence frequency in %).

“DJF_AR” “DJF_BLO” “DJF_NAO+” “DJF_NAO-” “JJA_AR” “JJA_NAO-” “JJA_BLO” “JJA_AL”

“CNRM_CM5” 2.2 −3.4 −0.7 1.9 0.9 0.2 −1.1 0
“HadGEM2_ES” −0.8 0.2 −0.9 1.5 5.3 2.2 −3.7 −3.7
“EC_EARTH” −0.4 −1.6 0.7 1.3 0.8 −0.3 1.4 −1.9
“IPSL_CM5A_MR” 1.7 −2.4 −0.9 1.7 0.7 1.8 −1.8 −0.7
“MPI_ESM_LR” −0.8 −1.1 0.7 1.1 1.1 1 −3.5 1.4
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