Establishing sequence and structural requirements for human Y5 RNA cleavage

Billmeier, Martina (2019) Establishing sequence and structural requirements for human Y5 RNA cleavage. Doctoral thesis, University of East Anglia.

Download (9MB) | Preview


Small non-coding RNAs (sRNAs) are important regulators of gene expression and play fundamental roles in many different organisms. During the last decade, next generation sequencing (NGS) has become a powerful tool for sRNA profiling and several classes of novel regulatory sRNAs with potential biological functions have been discovered. Among them, sRNAs derived from longer non-coding Y RNAs were identified.

Y RNAs are non-coding RNAs (~ 100 nt) that are evolutionarily conserved in vertebrates. Human Y RNAs bind to the autoimmune proteins Ro60 and La forming ribonucleoprotein complexes. Y RNAs are involved in the initiation of chromosomal DNA replication, regulation of RNA stability and cellular stress response. During apoptosis, Y RNAs produce smaller RNA fragments from the 3’ and 5’ ends. However, the biogenesis, processing and the biochemical functions of Y RNA derived sRNAs remain elusive.

In previous work a high throughput mutagenesis analysis on the 3’ end of hY5 RNA was performed. In this work, I confirmed that Y RNA cleavage on the 3’ end of hY5 RNA correlated with the secondary structure of the mutated hY5 RNA. Furthermore, I clearly showed that the nucleotide sequence in the loop was not important and a bulge of one nucleotide was sufficient for Y RNA cleavage to occur.

In this thesis I designed and performed a high throughput mutagenesis approach on the 5’ end of hY5 RNA. This revealed a nucleotide motif UUAU located in an internal loop at the position 22-25 which contributed to Y RNA cleavage at both the 3’ and 5’ end of hY5 RNA.

In order to identify ribonucleases involved in Y RNA cleavage, I confirmed that Ro60 was essential for YsRNA production in mouse embryonic stem cells. Interestingly, I could show that RNase L contributed to Y RNA cleavage in mouse embryonic fibroblast cells and human lung cancer cells.

Item Type: Thesis (Doctoral)
Faculty \ School: Faculty of Science > School of Biological Sciences
Depositing User: Gillian Aldus
Date Deposited: 22 Nov 2019 13:09
Last Modified: 17 Dec 2019 01:38

Actions (login required)

View Item View Item