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Effect of base-state curvature on self-excited high-frequency oscillations
in flow through an elastic-walled channel
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We investigate the development of flow-induced small-amplitude high-frequency os-
cillations occurring in a rigid fluid-conveying channel with a section of the upper wall
replaced by a taut elastic sheet. We consider an axially nonuniform base state, caused
by a negative transmural pressure (internal minus external), which results in the sheet
bending inward, and then examine the evolution of oscillatory perturbations about this
state. Due to the curvature of the base state, any normal displacement of the sheet will
lead to a change in the axial stretching of the sheet, which is an order of magnitude higher
than would be the case for perturbations to a uniform sheet. This stretching provides an
additional restoring force that can be dominant. We derive a modified tube law to describe
the wall mechanics with this additional effect and combine it with an existing fluid model to
obtain a complete description of the system. At leading order, we obtain a one-dimensional
eigenvalue problem for the frequencies and mode shapes of the oscillatory perturbations.
The nonlinear interaction between the perturbations and the base-state curvature manifests
itself as an additional integral term in the eigenvalue problem, corresponding to the total
axial stretching in the wall. The normal modes are neutrally stable at leading order, and
their slow growth or decay is determined by considering the global energy budget of the
system. The stability of the system can be expressed in terms of a critical Reynolds number
of the mean flow through the channel. We explain the behavior of the system as two key
dimensionless parameters F and K are varied. These quantify the dimensionless axial
tension and base-state curvature effects, respectively. Numerical simulations are used to
identify distinct flow regimes in parameter space, which we explore further in detail using
asymptotic analysis. This reveals that at large K, i.e., strong base-state curvature effects,
the leading-order axial profiles of the modes are forced to adjust in order to eliminate
the need for significant stretching in the wall. This has the effect of stabilizing both the
fundamental and, to a lesser extent, the first harmonic modes, which results in the first
harmonic becoming the most unstable mode.

DOI: 10.1103/PhysRevFluids.4.113901

I. INTRODUCTION

The study of flows in elastic-walled tubes is of considerable interest in many biomechanical and
biomedical applications [1,2]. One particular focus lies in the study of self-excited flow-induced
oscillations of fluid-conveying elastic-walled conduits. Examples of such instabilities include
Korotkoff sounds during blood pressure measurement [1,3,4], respiratory wheezes during forced
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(a) (b)

FIG. 1. (a) Starling resistor, comprising a section of elastic-walled tube mounted between two rigid pipes
and placed inside a pressure chamber. (b) Related collapsible-channel model considered here, comprising a 2D
channel in which a section of one wall has been replaced by an elastic membrane.

exhalation [5,6], and speech production involving the controlled flow-induced vibrations of the vocal
cords [7].

Experimental studies of such systems are usually conducted using a Starling resistor setup. This
consists of a length of elastic tubing connected between two rigid pipes placed within a pressure
chamber. A flow is driven though the pipes and tubing by either applying a pressure difference
between the two ends or using a volumetric pump at one end. When the transmural pressure (internal
minus external pressure) across the tube wall becomes sufficiently negative the wall buckles and
becomes susceptible to large changes in shape in response to small changes in pressure. A closely
related physical model consists of a rigid two-dimensional (2D) channel with a segment of one wall
replaced by an elastic membrane under axial tension [8] (see Fig. 1). This system has attracted
considerable theoretical attention due to its relative simplicity in comparison with the Starling
resistors while still experiencing phenomena such as self-excited oscillations.

Experiments demonstrate the strong interaction between the elastic tube and the fluid it contains.
A wide variety of behaviors have been observed ranging from high-frequency “flutter” to low-
frequency “milking” [9]. The different types of oscillation form in response to different boundary
conditions, mean flows, external pressures, tube-wall properties, and fluid properties [10,11].
Much experimental work has focused on the onset and saturation of self-excited large-amplitude
oscillations in the Starling resistor. In this case, the cross-sectional area of the tube remains near its
maximal value for the majority of the period and oscillations are shown to develop when the flow
rate exceeds a critical value [10–12].

Simplified theoretical analyses of such flows have been based on spatially one-dimensional
models [13] and require an ad hoc description of flow dissipation and tube-wall mechanics [14].
Despite their relative simplicity, such models do incorporate the basic elements required to describe
self-excited oscillations and are able to capture many of the qualitative behaviors observed in
experiments. Numerical simulations of the two-dimensional channel analogy reveal a wide variety
of behavior [15]. This has assisted in the development of more rational theoretical models.

When the axial tension in the elastic wall is relatively low, the transmural pressure causes
the (unstable) steady solution to have a highly deformed wall shape. Theoretical analysis is
complicated by the nonuniform base state and complex flow structures in the large-amplitude
oscillations, however the underlying mechanisms behind such instabilities are now beginning to
be fully understood through recent work by Stewart et al. [14,16] and Xu et al. [17,18].

Alternatively, when the wall stiffness and/or tension is larger, instabilities can occur about less
deformed static states, with higher-frequency oscillations. Jensen and Heil [13] introduced a model
that could describe such an instability in a 2D channel in which one wall is replaced by an elastic
membrane. In this parameter regime, the oscillatory fluid flow induced by the wall motion typically
has a two-region structure comprising an inviscid flow in the core, bounded by thin viscous Stokes
layers near the channel walls. Conservation of volume implies that, during phases when the wall
moves inward, some of the fluid in the collapsible section must be displaced into the upstream and
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downstream rigid channels. The oscillatory motion of the wall therefore generates axial sloshing
flows that increase (decrease) the volume flux in the downstream rigid section while decreasing
(increasing) the volume flux in the upstream rigid section when the wall moves inward (outward).

The energy fluxes into and out of the system are the kinetic energy flux through the tube ends,
the work done by pressure and viscous forces at the tube ends and at the wall, and the losses due to
dissipation. If an instability is to grow, the total energy of the system, on average, needs to increase
over time.

The mechanism of sloshing instabilities identified by [13] for 2D channel flow relies on an
increase in kinetic energy into the system and involves interactions between the high-frequency
axial sloshing flow and the boundary conditions at the tube ends. This provides a means for energy
transfer from the mean flow to a growing oscillatory perturbation. The boundary conditions at the
upstream and downstream ends determine how this axial oscillatory flow is partitioned into upstream
and downstream components. Any oscillatory perturbation to the steady flow at either end will
increase the kinetic energy flux there. If the upstream and downstream conditions are such that the
oscillatory perturbation to the axial flow is greater at the upstream end than the downstream end,
then there will be a net increase of kinetic energy into the system.

The essential elements of this sloshing instability mechanism are also present in three-
dimensional tube flow [19,20]. In a sufficiently long tube, the cross-sectional flows are in general
relatively unimportant and the axial sloshing flows can still dominate the dynamics. The sloshing
mechanism relies on changes in the cross-sectional area. The efficient extraction of energy from
the mean flow is then promoted when tube oscillations are performed about a nonaxisymmetric
mean state. (Small-amplitude deformations of a circular cross section result in area changes that are
quadratic in displacement amplitude. The induced sloshing flows are then an order of magnitude
smaller, resulting in a smaller influx of kinetic energy and a weaker instability.) Hence instabilities
are more likely to occur in tubes with noncircular cross sections. Such arrangements are also
more representative of the buckled configuration about which oscillations typically develop in
experiments [21]. However, it is noted that the high-tension sloshing mechanism requires larger-
amplitude oscillations at the upstream end of the flexible tube. Most experimental studies to date
have observed larger oscillations at the downstream end. The sloshing mechanism is therefore
probably not relevant to the lower-tension regimes that have been explored experimentally, but this
does not preclude it being important at higher axial tensions.

Previous work on high-frequency oscillations in a 3D tube, occurring about a relatively
undeformed base state, focused on the effect of axial tension relative to azimuthal bending in the
tube wall [22]. As a function of the axial coordinate z ∈ [0, 1], the amplitude of the nth axial
mode of the transverse wall perturbations was found to resemble the graph of sin[(n + 1/2)πz],
with the n = 1 (axial-mode-1) perturbation always being the most unstable. Intuitively it might be
thought that the sloshing instability described above would always operate most efficiently with an
axial-mode-1 oscillation since all of the displaced fluid is forced out of the ends of the tube after
each contraction. For n > 1, some fluid will oscillate entirely within the elastic-walled section of the
tube rather than helping to force an oscillatory flow at the ends, thus making no contribution to the
kinetic energy flux at the ends. However, if the tube wall oscillates about a more deformed initial
configuration, the axial-mode-1 oscillations require significantly more axial stretching relative to
the mode-2 oscillations. In the latter case, axial displacements of the wall can eliminate the need
for such stretching (see Fig. 2). Since stretching is much harder than bending in thin walls, the
restoring forces in a mode involving significant stretching will be expected to be larger than for
those that do not. We therefore anticipate that either the axial-mode-1 modes oscillate at a higher
frequency in response to these larger forces or the axial profile of the mode alters to compensate for
the nonuniform base state. For sufficiently buckled and thin elastic walls, either change may provide
sufficient stabilization to the fundamental mode for the first harmonic to become the most unstable.

In this paper we examine the effect of nonuniform initial wall configurations on the onset
of high-frequency small-amplitude self-excited oscillations in a rectangular channel. This work
represents a proof-of-concept theoretical consideration of this additional physical effect. The
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FIG. 2. Schematic illustrating (a) the axial-mode-1 and (b) the axial-mode-2 oscillations of a finite length
of tube wall about an axially nonuniform buckled base state. The solid and dashed curves show, respectively,
the base state and extrema of the oscillations. The oscillations in (a) necessarily involve significant changes in
the length of the wall. With the right mode shape and axial motion, the oscillations in (b) can occur with no
axial stretching or compression.

simplified geometry and linearized model allow analytical progress to be made while still retaining
the essential physics. The aim is to provide insights into and understanding of the effect of base-state
curvature on the stability of the system, which can then inform the development of more realistic
models.

We extend the theoretical work of Whittaker et al. [22] to investigate the interaction between
the curvature of the initial configuration and axial tension in the wall, and the effects this has on
the stability of perturbations of the wall. In Sec. II we define the problem and derive a model that
describes the motion of the elastic wall in response to pressure in the fluid. We combine this with the
description of the fluid presented by Whittaker et al. [19,20] to obtain a model that determines the
profile and frequency of perturbations. We then consider the energy budget of the system to obtain
a stability criterion that determines the slow growth or decay of the oscillating disturbances over
time. In Sec. III we outline the numerical methods used to solve the model system. The results of
these calculations, evaluated in different regions of parameter space, are presented in Sec. IV and
compared to asymptotic approximations and reduced models derived in Appendixes A–C. The key
results are summarized and discussed in Sec. V. Concluding remarks can be found in Sec. VI.

II. MODEL

We consider the flow of a fluid through a rigid, rectangular channel of width b, height a, and
length L, aligned with the coordinate axes (x∗, y∗, z∗), respectively, as shown in Fig. 3(a). A section

FIG. 3. (a) Schematic of the rigid channel with a section of wall replaced with an elastic surface showing
the dimensional lengths and coordinate orientation. The restoring force from the springs is a surrogate for
azimuthal bending in the full three-dimensional tube system. (b) Horizontal and vertical displacements of a
section of wall (ii) from its undeformed configuration (i).

113901-4



EFFECT OF BASE-STATE CURVATURE ON SELF- …

of the upper wall at y∗ = a, between z∗ = z∗
1 and z∗ = z∗

2, is replaced by an elastic sheet with density
σ and wall thickness h that is allowed to move freely. At z∗ = z∗

1 and z∗ = z∗
2 the elastic section of

the wall is clamped to the rigid sections fixing the position and axial slope of the elastic sheet.
We assume that the sheet, in its undeformed state, is subject to a uniform in-plane stress of

magnitude T0/b in the axial direction, where T0 is the extensional force applied at the ends of the
undeformed sheet. The material of the sheet is assumed to be linearly elastic for small-amplitude
deformations, with Young’s modulus E and Poisson’s ratio ν. We define the bending stiffness K and
extensional stiffness D as

K = Eh3

12(1 − ν2)
, D = Eh

1 − ν2
. (1)

We also assume that the elastic wall is connected to external springs, each with spring constant
κ , that are uniformly distributed with number density n per unit area and aligned perpendicular to
the surface of the undeformed sheet [see Fig. 3(a)]. Choosing nκ = O(K/a4) allows us to consider
this setup as a two-dimensional analog of flow though an elliptical or partially collapsed circular
cylindrical elastic tube [8], where the restoring force created by the springs is analogous to the
restoring force from azimuthal bending in the three-dimensional case. (As shown in [23], in a 3D
system with an initially elliptical cross section, a single azimuthal mode dominates deformations of
the wall, resulting in a restoring force per unit area from azimuthal bending that scales as εK/a3,
i.e., K/a4 times the magnitude εa of the deformation.)

The fluid inside the channel has density ρ and viscosity μ. We impose a steady axial volume
flux Q at the downstream end of the channel and a fixed fluid pressure p∗ = p∗

up at the upstream
end. We apply no-slip boundary conditions on the upper (moving) and lower channel walls and
periodic boundary conditions on the sidewalls. An external pressure p∗

ext acts on the top of the sheet.
Deformations to the undeformed state are then caused by the transmural pressure p∗ − p∗

ext.
We consider the case where p∗

ext is steady and causes an initial steady deformation of maximum
amplitude d = δa to the elastic portion of the wall. We term this steady deformed configuration the
base state and then consider oscillatory perturbations of typical amplitude e = εa about this state.
The amplitudes e and ε can be time dependent if the oscillations are growing or decaying.

The timescale of the oscillations turns out to be

τ =
(

ρa3L2

K

)1/2

, (2)

which arises from a balance between oscillatory components of the axial fluid inertia (with the
inertial pressure scale ρL2ε/τ 2; see Sec. II C) and the force from the compression and extension
of the springs (a surrogate for azimuthal bending, with pressure scale εanκ ∼ εK/a3). We assume
that any growth or decay of the oscillations, i.e., variation in ε, takes place over a timescale that is
much longer than τ . Thus time derivatives of ε may be neglected relative to those of the oscillatory
functions. The formal asymptotics of this approach were considered in [24], where it was found to
be appropriate for this system.

A. Dimensionless groups and parameter regime

There are a number of dimensionless groups in the problem, the most important of which are as
follows. First we have several geometric parameters


 = L

a
, zi = z∗

i

L
, ϑ = h

a
, δ = d

a
, ε = e

a
, (3)

which describe the aspect ratio, positions of the flexible wall ends, wall thickness, base-state
deformation amplitude, and oscillatory perturbation amplitude, respectively.
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Then there are three parameters related to the wall mechanics:

F = a3T0

KL2
= aT0

K
2
, M = σha

ρL2
= σϑ

ρ
2
, (4a)

K = a5d2D

L3(z∗
2 − z∗

1 )K
= 12δ2

ϑ2
4(z2 − z1)
. (4b)

The parameter F gives the ratio of restoring forces from axial tension to those from the springs,
while M gives the ratio of wall inertia to fluid inertia; K turns out to be the appropriate measure
of the strength of the nonlinear effect from the initial wall curvature. [The factor of (z∗

2 − z∗
1 ) is

included in K to simplify later calculations.]
Finally, there are two parameters related to the fluid mechanics:

α2 = ρa2

μτ
=

(
ρK

a
2μ2

)1/2

, (5a)

St = a

Uτ
=

(
K

ρa3
2U2

)1/2

, (5b)

where τ is the timescale defined in (2) above. The Womersley number α gives the relative
importance of unsteady inertia to viscous effects. The Strouhal number St gives the relative
importance of unsteady to convective inertia.

For this initial study, we consider a regime in which


 � 1, z1, z2 = O(1), ϑ � 1, M � 1 (6a)

and

ε � δ � 1, α2 � 1, 
 St � 1. (6b)

This means we have a long thin-walled tube with negligible wall inertia, which has a slightly
deformed base state. The tube wall then undergoes high-frequency oscillations with an amplitude
much smaller than that of the base-state deformation. The small amplitude of the base state is a
largely a mathematical convenience, but is acceptable for a proof-of-concept exploration of the
effects of base-state curvature. At least near the onset of instability, the oscillations will be small in
amplitude, so ε � δ is justified here.

B. Model for the wall mechanics

Changes in the transmural pressure result in the wall being displaced from its undeformed
position. The deformation is resisted by the wall’s elasticity, by the wall’s inertia, and by the force
from the springs. In a two-dimensional deformation, the wall elasticity acts through axial bending
and axial stretching. In the long-wavelength limit considered here, the resistance to axial bending
is small compared with the other forces [22]. Therefore, we will neglect axial bending effects. Wall
inertia is included in the derivation below, but will later be neglected, following our assumption
M � 1 above.

We describe the deformation by its components η∗ = η∗(z∗) in the vertical direction and ζ ∗ =
ζ ∗(z∗) in the axial direction [see Fig. 3(b)]. Under the deformation, a short element of wall, of
undeformed length dz∗, is stretched to a length

dz∗ + dl∗ = {(
[η∗]z∗+dz∗

z∗
)2 + (

dz∗ + [ζ ]z∗+dz∗
z∗

)2}1/2

= dz∗[1 + ζ ∗
z∗ + 1

2

(
η∗2

z∗ + ζ ∗2
z∗

)] + O
(
η∗4

z∗ , ζ ∗4
z∗

)
, (7)

implying an increase in length of

dl∗ = dz∗[ζ ∗
z∗ + 1

2

(
η∗2

z∗ + ζ ∗2
z∗

)] + O
(
η∗4

z∗ , ζ ∗4
z∗

)
. (8)
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Since δ � 1 and 
 � 1, we have that η∗ and ζ ∗ are small relative to the axial length of the channel. It
is then also reasonable to assume that the wall material behaves linearly elastically over the range of
deformations considered. Hence, via Hooke’s law, the axial force per unit width in the wall increases
from T0/b in the undeformed state to

T ∗ = T0

b
+ D

(
ζ ∗

z∗ + 1

2

(
η∗2

z∗ + ζ ∗2
z∗

)) + O
(
η∗4

z∗ , ζ ∗4
z∗

)
. (9)

Equation (9) gives the axial tension in the material element, originally at z∗ in its undeformed
configuration, but now at z∗ + ζ ∗(z∗). Similarly, η∗ and ζ ∗ are the displacements of the element
originally at z∗. The force exerted by the transmural pressure P∗ = p∗ − p∗

ext acting on this element
in its deformed position is therefore proportional to P̌∗ = P∗[z∗ + ζ ∗(z∗)]. The force from the
springs is proportional to the spring constant times the total vertical displacement η∗ from the
undeformed configuration. Resolving forces acting vertically on an element of the wall, we find
the resultant vertical force dF ∗

v acting on the element dz∗ originally at z∗ is given by

dF ∗
v = [T ∗ sin(θ )]z∗+dz∗

z∗ − nκη∗dz∗ + P̌∗
(

1 + dl∗

dz∗

)
cos(θ )dz∗, (10)

where θ is the angle that the perturbed line element makes with the z∗ axis, as shown in Fig. 3(b). The
three terms on the right-hand side of (10) represent, respectively, the force from the axial tension,
the force from the springs, and the force from the transmural pressure (internal minus external)
across the channel wall.

Since the deformations from the undeformed state are small relative to the length of the wall and
result in a small angle of deflection θ , the first term in (10) is approximated by

[T ∗ sin(θ )]z∗+dz∗
z∗ ≈ [T ∗θ ]z∗+dz∗

z∗ ≈ [T ∗η∗
z∗ ]z∗+dz∗

z∗ , (11)

and therefore

[T ∗ sin(θ )]z∗+dz∗
z∗ = dz∗(T ∗η∗

z∗ )z∗ + O
(
η∗3

z∗
)
. (12)

Applying Newton’s second law and taking the limit dz∗ → 0, Eqs. (10) and (12) become

σhη∗
t∗t∗ = (T ∗η∗

z∗ )z∗ − nκη∗ + P̌∗
(

1 + dl∗

dz∗

)
+ O

(
η∗2

z∗
)
. (13)

Similarly, resolving forces acting horizontally on an element of the elastic wall, the resultant
horizontal force dF ∗

h acting on the element dz∗ is given by

dF ∗
h = [T ∗ cos(θ )]z∗+dz∗

z∗ − P̌∗
(

1 + dl∗

dz∗

)
sin(θ )dz∗, (14)

which balances the effects of axial tension with the force induced by the transmural pressure
difference across the wall. For small deformations relative to the channel length L, the horizontal
component of the axial tension is approximated by

[T ∗ cos(θ )]z∗+dz∗
z∗ ≈ [T ∗]z∗+dz∗

z∗ ≈ dz∗T ∗
z∗ + O

(
η∗2

z∗
)
. (15)

Applying Newton’s second law and taking the limit dz∗ → 0, Eqs. (14) and (15) become

σhζ ∗
t∗t∗ = T ∗

z∗ − P̌∗η∗
z∗ + O

(
η∗2

z∗
)
. (16)

1. Nondimensionalization

We nondimensionalize axial lengths on the channel length L, transverse lengths on the channel
depth a, and time on the timescale τ from (2). Dimensionless coordinates are therefore defined by

(x, y, z) = (x∗/a, y∗/a, z∗/L), t = t∗/τ. (17)
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The wall displacements are written in terms of their base-state and oscillatory perturbation
components (denoted by overbars and tildes, respectively):

η∗ = δaη̄ + εaη̃, (18a)

ζ ∗ = δ2a2

L
ζ̄ + εδa2

L
ζ̃ . (18b)

Recall that the parameters ε � δ � 1 give the relative sizes of the base state and oscillatory
perturbations, so η̄ and η̃ are expected to be O(1). Moreover, we must have max |η̄| = 1 so that
the deformation amplitude in the base state is precisely d = δa. The scales in the expressions for ζ ∗
follow from geometrical considerations and to obtain a leading-order balance between ζ ∗

z∗ and η∗2
z∗

in (9).
The nondimensional cross-sectional area of the channel is

A = 1

a2
{ab + b[η∗ − ζ ∗ tan(θ )]} ≈ b

a
(1 + δη̄ + εη̃) + O(δ3); (19)

the O(δ3) correction term in the cross-sectional area arises due to the horizontal displacement of the
wall. The transmural pressure, written as

P̌∗(z∗) = P∗[z∗ + ζ ∗(z∗)] = P∗(z∗) + ζ ∗P∗
z∗ + O(ζ ∗2), (20)

is decomposed into steady and oscillatory components and nondimensionalized using the scale K/a3

associated with bending of the elastic wall

P̌∗ ≈ P∗ = K

a3
(δP̄ + εP̃) + O(δ3, δ2ε). (21)

The steady external pressure is then defined as

p∗
ext − p∗

up = δK

a3
p̄ext. (22)

The leading-order tension in (9) is nondimensionalized using (17) and (18) to obtain

T ∗ = k2
T0

a
+ 12δ2K

ϑ2
2a2

(
ζ̄z + 1

2
η̄2

z + δ−1ε(ζ̃z + η̄zη̃z )

)
+ O(δ3, δ2ε). (23)

For later use, energy and energy fluxes are nondimensionalized on

ρU2abL, ρU3ab, (24)

respectively, based on the kinetic energy and kinetic energy fluxes in the steady flow.
Now, using (17)–(23), Eq. (13) for the normal displacements is nondimensionalized, yielding,

when ε = 0 and to O(ε), respectively,

0 = (z2 − z1)K
[(

ζ̄z + 1
2 η̄2

z

)
η̄z

]
z
+ k2F η̄zz − k0η̄ + P̄ + O(δ2) (25)

and

Mη̃tt = (z2 − z1)K[(ζ̃z + η̄zη̃z )η̄z]z + (z2 − z1)K
[(

ζ̄z + 1
2 η̄2

z

)
η̃z

]
z
+ k2F η̃zz − k0η̃ + P̃ + O(δ2),

(26)

where k0 = a4nκ/K = O(1) and k2 = a/b = O(1) represent the strength of the springs relative
to azimuthal bending and the aspect ratio of the channel; k0 and k2 are analogous to the O(1)
constants employed by Whittaker et al. [22] for flow through an elastic cylindrical tube that depend
on the geometry of its undeformed state. Similarly, nondimensionalizing Eq. (16) for the axial
displacements, we find, when ε = 0 and to O(ε), respectively,

0 = (z2 − z1)K
(
ζ̄z + 1

2 η̄2
z

)
z
+ O(δ2) (27)
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and

δ2


2
Mζ̃tt = (z2 − z1)K(ζ̃z + η̄zη̃z )z + O(δ2), (28)

where the dimensionless parameters M and K are as defined in Sec. II A.

2. Fixing the axial tension in the base state

Deforming the elastic wall into its base-state configuration while keeping the end points fixed
would increase the axial tension in the wall. To concentrate on the effect that base-state curvature
has on the dynamics of the wall, we allow a small movement of an end point in order to leave the
axial tension in the deformed base state unchanged from the initial value of T0/b. Any increase
(decrease) in the axial tension is then as a result of the lengthening (contracting) of the wall as
it oscillates. This allows comparison of perturbations about different base states to be considered
independently of changes in the axial tension. To achieve this, we assume that when the wall is
deformed into its base-state configuration, the edge at (y, z) = (1, z2) is moved horizontally closer
to (y, z) = (1, z1) so that

T ∗ = T0

b
at z = z1, z2, (29)

when ε = 0.
With a small-amplitude base-state deformation (δ � 1), Eq. (27) can be integrated to give

ζ̄z + 1
2 η̄2

z = c (30)

for some constant c. Then, from (23), we must have c = 0 to ensure that (29) holds. Hence

ζ̄z = − 1
2 η̄2

z . (31)

Integrating (31) and applying ζ̄ = 0 at z = z1, we obtain

ζ̄ |z=z2 = −1

2

∫ z2

z1

η̄2
z dz, (32)

which sets the required horizontal displacement at (y, z) = (1, z2).

3. Tube law for the wall displacements

The oscillatory components of the horizontal and vertical displacements are fixed at the
boundaries, i.e., ζ̃ = 0 and η̃ = 0 at z = z1 and z = z2. Integrating (28) assuming M � 1 and
δ � 1, we obtain

ζ̃z = −η̄zη̃z − (z2 − z1)−1
∫ z2

z1

η̄zzη̃ dz, (33)

where the constant of integration has been found by integrating again by parts and applying the
boundary conditions on ζ̃ and η̃ given above.

Using (31) and (33) to eliminate ζ̄z and ζ̃z from (25) and (26) and assuming M � 1, we obtain

k2F η̄zz − k0η̄ + P̄ = 0, (34a)

k2F η̃zz − Kη̄zz

∫ z2

z1

η̄zzη̃ dz − k0η̃ + P̃ = 0. (34b)

These equations govern how the base state η̄ and oscillations η̃ are forced by the transmural
pressures P̄ and P̃. The perturbations are subject to the boundary conditions η̄ = η̃ = 0 at z = z1

and z = z2. Recall also the normalization max |η̄| = 1 of the base-state deformation.
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Equation (34a) for the initial steady deformation takes the form of a standard tube law, with the
transmural pressure P̄ balanced by the restoring forces k2F η̄zz from the axial tension and k0η̄ from
the springs. Equation (34b) for the subsequent perturbations also contains an additional term arising
due to the nonlinear interaction between the perturbations and the base-state curvature. Physically,
the integral corresponds to the total axial stretching (increase in length) of the wall, and the overall
term is the product of resulting axial tension perturbations and the base-state curvature.

C. Model for the fluid

The fluid velocity u∗ and pressure p∗ within the channel are described by the Navier–Stokes
equations for an incompressible Newtonian fluid:

ρ[u∗
t∗ + (u∗ · ∇∗)u∗] = −∇∗ p∗ + μ∇∗2u∗. (35)

Integrating the continuity equation ∇∗ · u∗ = 0 over a cross section of the channel, we have

A∗
t∗ +

(∫∫
A

u∗ · ẑ dA∗
)

z∗
= 0, (36)

where ẑ is the unit vector in the axial (z∗) direction and A(z∗) is the cross-sectional area of the
channel. A mean flow is driven along the channel by imposing a steady axial volume flux at the
downstream end and fixing the pressure at the upstream end, i.e.,

p∗ = p∗
up at z∗ = 0, (37a)∫∫

A
u∗ · ẑ dA∗ = Q at z∗ = L, (37b)

where Q is the prescribed fluid flux. [Other boundary conditions may be used instead, e.g., a flux
condition or a pressure condition at the upstream and downstream ends of the channel. However, in
the analysis below we focus on the boundary conditions imposed by (37) as these ensure that the
instability mechanism described in the Introduction is at its most powerful. Prescribing the flow rate
at the downstream end ensures that no kinetic energy is lost there.]

Nondimensionalization

Following Whittaker et al. [19], the fluid velocity is decomposed as u∗ ≡ u∗
⊥ + w∗ẑ into axial

and transverse components. Then u∗
⊥, w∗, and p∗ are each nondimensionalized and decomposed

into a steady, oscillatory, and nonlinear component. Here we focus on the steady and oscillatory
components (denoted by overbars and tildes) and write

u∗
⊥ = aU

L
ū⊥ + aε

τ
ũ⊥ + · · · , (38a)

w∗ = Uw̄ + εL

τ
w̃ + · · · , (38b)

p∗ − p∗
up = μLU

a2
p̄ + ερL2

τ 2
p̃ + · · · . (38c)

Due to the slender geometry of the channel, the axial and transverse components of the velocity are
nondimensionalized on different scales. The leading-order axial velocity w̄ is nondimensionalized
using the velocity scale U = Q/ab of the background flow, while the leading-order transverse
oscillatory flow is nondimensionalized using the velocity scale of the wall oscillations. The scales
for other two velocity components follow from the continuity equation. The steady and oscillatory
components of the pressure are nondimensionalized by viscous and inertial scales, respectively,
relative to the appropriate velocities.
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Equations (35)–(37) are nondimensionalized using (17) and (38). The O(1) components of (35)
and (37) govern the steady component of the fluid flow. These are simply the steady Navier–Stokes
equations, written in a dimensionless form. The solution of a steady high-Reynolds-number flow
problem is not straightforward; however, the exact details of the steady flow are unnecessary for
evaluating the leading-order oscillatory flow and associated energy transfer. All the information
that is required is contained in the (nondimensional) time-averaged volume flux [19], which is Q
from (37b). The oscillatory component of the flow is determined by considering (35) at O(ε). In
particular, the axial component of this yields

w̃t + 1


 St

[(
ū · ∇⊥ + w̄

∂

∂z

)
w̃ +

(
ũ · ∇⊥ + w̃

∂

∂z

)
w̄

]
= −p̃z + 1

α2

(
∇2

⊥ + 1


2

∂2

∂z2

)
w̃. (39)

The dynamics of the fluid are parameterized by the Womersley number α, the Strouhal number St,
and the aspect ratio 
, as defined in Sec. II A. The (steady) Reynolds number is given by

Re = ρUa

μ
= α2

St
. (40)

For our model, we need a description of the fluid flow in response to periodic oscillations of the
elastic wall, valid in the long-wavelength (
 � 1) high-frequency (α, 
 St � 1) small-amplitude
(δ, ε � 1) regime specified in (6). In this parameter regime the O(ε) axial component of the the
Navier–Stokes equation (39) reduces to

w̃t = −p̃z. (41)

Because of the high frequency of the oscillations (α � 1), the oscillatory axial velocity has a plug
flow profile in the core, with passive Stokes layers adjacent to the elastic wall. The magnitude of
the plug flow is determined by conservation of mass, given by (36). An axial pressure gradient
is required to accelerate the oscillating fluid. The transverse component of (35) gives ∇⊥ p̃ = 0 to
O(ε), implying that transverse components of the pressure and axial velocity are uniform in the
cross section in this parameter regime. Combining (19) and (36), to O(ε) we find

η̃t + w̃z = 0. (42)

We seek solutions for the oscillatory plug flow component of the form

w̃(x, y, z, t ) = Re[ŵ(z) exp(iωt )] + · · · , (43a)

p̃(x, y, z, t ) = Re[ p̂(z) exp(iωt )] + · · · , (43b)

η̃(x, y, z, t ) = Re[η̂(z) exp(iωt )] + · · · , (43c)

where ω is oscillation frequency, and the circumflexed variables (ŵ, p̂, η̂) are the (possibly complex)
amplitudes of the leading-order oscillations as functions of axial position. Equations (41) and (42)
then become

iωŵ = −p̂z, (44a)

iωη̂ + ŵz = 0, (44b)

which then combine to give

p̂zz = −ω2η̂, (45)

providing a relationship between oscillatory axial pressure and the vertical displacement of the wall.

113901-11



THOMAS J. WARD AND ROBERT J. WHITTAKER

Substituting the ansatz (43) into the boundary conditions (37) and making use of (44), we find
the following boundary conditions on the oscillatory amplitude p̂ of pressure perturbation:

p̂(0) = 0, p̂z(1) = 0. (46)

Physically, the fixed pressure at the upstream end (z = 0) means there must be no oscillatory
pressure perturbation there. The fixed flux at the downstream end (z = 1) means that there must
be no oscillatory flux perturbation there, which translates to no oscillatory component to the axial
pressure gradient.

D. Combining the solid and fluid models via the transmural pressure

To combine the solid mechanics model of Sec. II B and the fluid mechanics model of Sec. II C we
need to relate the dimensionless transmural pressures P̄ and P̃ to the dimensionless fluid pressures
p̄ and p̃. Starting from P∗ = p∗ − p∗

ext and substituting from (21), (22), and (38c), we have

δP̄ + εP̃ =
(

aμLU
K

p̄ + ερa3L2

Kτ 2
p̃ + · · ·

)
− δ p̄ext. (47)

Equating the leading-order steady and oscillatory terms and using (5) and (2), we find

P̄ = 1

δα2
St
p̄ − p̄ext, P̃ = p̃. (48)

1. Base-state deformation

To simplify the calculations, we now make the additional assumption δα2
St � 1. From (48),
this then means that the steady transmural pressure P̄ is dominated by the applied external pressure
p̄ext, and we can neglect the contribution from the steady viscous pressure drop p̄. Hence we have

P̄ = −p̄ext. (49)

(This assumption is just a mathematical convenience to allow solutions for η̄ to be written down
explicitly. It should not have any significant qualitative effect on the results.)

We now take the steady transmural pressure P̄ to be negative and uniform in z and then solve
(34a) for the base-state deformation η̄, subject to η̄(z1) = η̄(z1) = 0 and min{η̄} = −1. We find

η̄(z) = cosh
[

1
2γ (2z − z2 − z1)

] − cosh
[

1
2γ (z2 − z1)

]
cosh

[
1
2γ (z2 − z1)

] − 1
, (50)

where γ 2 = k0/k2F , with the dimensionless steady transmural pressure taking the value

P̄ = − k0 cosh
[

1
2γ (z2 − z1)

]
cosh

[
1
2γ (z2 − z1)

] − 1
. (51)

Using (49) and (22) to relate to P̄ to p∗
ext, we then have that the dimensionless amplitude of the

base-state deformation is given by

δ = a3( p̄∗
ext − p̄∗

up)

K

(
cosh

[
1
2γ (z2 − z1)

] − 1

k0 cosh
[

1
2γ (z2 − z1)

]
)

. (52)

When the axial tension is small relative to the spring restoring force, i.e., F � 1, or equivalently
γ � 1, the base-state displacement profile and amplitude are approximated by

η̄ ≈ exp[−γ (z − z1)] + exp[−γ (z2 − z)] − 1, (53)

δ ≈ a3( p̄∗
ext − p̄∗

up)

k0K
. (54)
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Conversely, when the axial tension is large relative to the restoring force from the springs, i.e.,
F � 1 or γ � 1, the base-state displacement profile and amplitude are approximated by

η̄ ≈ −4(z2 − z)(z − z1)

(z2 − z1)2
, (55)

δ ≈ a3( p̄∗
ext − p̄∗

up)

K

(z2 − z1)2

8k2F
. (56)

2. Oscillatory perturbation

Combining (34b), (45), and (48), we obtain a single equation for p̂(z), valid for z1 < z < z2,

k2F p̂zzzz − Kη̄zzI[ p̂] − k0 p̂zz − ω2 p̂ = 0, (57a)

where

I[ p̂] =
∫ z2

z1

η̄zz p̂zzdz (57b)

is a measure of the total nonlinear stretching, and hence the increase in axial tension, due to the
oscillatory perturbation in the elastic portion of the wall. As we will see below, the size of I relative
to the other terms in (57a) and relative to p̂zz in (57b) will be important in determining the character
of the solutions to the system.

In the rigid sections of the wall (0 < z < z1 and z2 < z < 1) (57) is replaced with the constraint
η̃ = 0; combining with (45), this then implies

p̂zz = 0. (58)

We apply the boundary conditions (46) at z = 0, 1 to obtain

p̂ = Gz in 0 < z < z1, (59a)

p̂ = H in z2 < z < 1. (59b)

Matching between the different regions at z = z1 and z2 requires the continuity of pressure and axial
volume flux, i.e., p̂ and p̂z are continuous. Equation (57) is then subject to the boundary conditions

z1 p̂z − p̂ = 0, p̂zz = 0 at z = z1, (60a)

p̂z = 0, p̂zz = 0 at z = z2. (60b)

The system of (57) and (60) defines an eigenvalue problem for p̂(z) and ω given a base state η̄(z)
and parameters F and K. We expect to find a countably infinite set of normal modes. These modes
are purely oscillatory at leading order, with any growth or decay being a first-order effect.

E. Stability criterion and growth rate

Following Whittaker et al. [22], we now determine the slow growth or decay of the normal modes
by considering the energy budget of the system. Multiplying (35) by u∗, integrating over the volume
of the channel, and averaging over one period of wall oscillations, the energy budget of the fluid,
nondimensionalized on the scales (24), is partitioned as [22]

E = T − S − D − 
 St
dE f

dt
, (61)

where E is the mean rate of working by the fluid on the wall, T is the mean flux of kinetic energy
through the tube ends, S is the mean rate of working by pressure forces at the tube ends due to the
oscillatory flow, and D is the mean rate of dissipation by the oscillatory flow. The final term in (61)
accounts for the amplitude of oscillations varying slowly over time and involves the period-averaged
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kinetic energy E f of the oscillatory flow. The energy fluxes may then be decomposed into two
components: the energy flux arising from the mean flow alone and energy flux arising through
interactions of the mean flow with the oscillatory flow. Averaging over one oscillation of the wall,
the former are shown to cancel out from (61). The latter contribution is expressed as [22]

T = 3

4
ε2
2St2|ŵ(0)|2, (62a)

S = 1

4
ε2
2St2|ŵ(0)|2, (62b)

D = 1

2

ε2
3St3

α
(2ω)1/2

∫ 1

0
|ŵ(z)|2dz. (62c)

The mean kinetic energy of the oscillatory flow is dominated by the axial plug flow ŵ and is given
by

E f = 1

4
ε2
2St2

∫ 1

0
|ŵ(z)|2dz. (63)

We now consider the energy budget of the elastic wall, integrated over the whole wall and averaged
over one period of oscillation. The only source of energy is the work done E by the fluid on the
wall and the only store of energy is elastic energy Es. (There is no kinetic energy since inertia is
neglected in the wall, M � 1.) Using the scalings (24), we therefore have

E = 
 St
dEs

dt
, (64)

where the flux E is obtained from the energy budget of the fluid (61) and the mean elastic energy is
[22]

Es = 1

4
ε2
2St2

∫ 1

0
η̂ p̂†dz, (65)

where p̂† denotes the complex conjugate. Eliminating E between (61) and (65), we find

d

dt
(E f + Es) = 1


 St
(T − S − D). (66)

Writing (62), (63), and (65) in terms of p̂ using (44a) and (45), we find that

T − S − D = ε2
2St2

2ω2

(
| p̂z(0)|2 − 
 St

α
(2ω)1/2

∫ 1

0
| p̂z(z)|2dz

)
(67)

and

E f = Es = ε2
2St2

4ω2

∫ 1

0
| p̂z(z)|2dz. (68)

The latter implies that the time-averaged energy of the mode is partitioned equally between the
kinetic energy in the fluid and the elastic energy of the wall. Both (67) and (68) are proportional to
ε2. We therefore have

dε

dt
=

( T − S − D
2
 St(E f + Es)

)
ε = �ε, (69)

which suggests that the amplitude of the oscillations grows or decays exponentially, with the growth
rate � being given by

� = 1

2

(
| p̂z(0)|2


 St
∫ 1

0 | p̂z(z)|2dz
− (2ω)1/2

α

)
. (70)
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The point of neutral stability, i.e., � = 0, can be described by a critical Reynolds number Rec;
substituting (40) into (70) we find

Rec = α
(2ω)1/2

| p̂z(0)|2
∫ 1

0
| p̂z(z)|2dz, (71)

allowing (70) to be written in the form � = �0(Re − Rec), where

�0 = | p̂z(0)|2
2α2


∫ 1
0 | p̂z(z)|2dz

.

III. NUMERICAL METHOD

The eigenvalue problem defined by (57) and (60) was solved numerically using a spectral
method. The function p̂(z) was approximated as a sum of N Chebyshev polynomials and the
governing equations were evaluated at the Chebyshev collocation points k j = cos[(2 j − 1)π/2N]
for j = 1, . . . , N , yielding an eigenvalue problem of the form

−ω2Bp̂ = A p̂ (72)

for some N × N matrices A and B. This was then solved using the eig in-built MATLAB eigenvalue
problem solver. The integral I in (57) was obtained by evaluating the sum of the product of η̄zz p̂zz

and the Clenshaw-Curtis weights at each of the N collocation points [25]. The spectral accuracy
of the approximation was verified by comparison with solutions obtained when k2 = K = 0. The
accuracy of solutions is not bounded by the numerical scheme but by the number N of Chebyshev
polynomials discretizing the domain; increasing N reduces the error in the solution. When N > 11
the error in the frequency remains smaller than 10−8. Solutions to (57) and (60) with K = 0 were
also compared with previously published results by Whittaker et al. [22]. Once solutions for p̂
had been obtained, the growth rates � and critical Reynolds numbers Rec were evaluated using
(70) and (71).

IV. RESULTS

The numerical simulations presented below were conducted with z1 = 0.1, z2 = 0.9, k0 =
11.074 87, and k2 = 1.704 41 for consistency with results presented by Whittaker et al. [22]. Unless
stated otherwise, solutions are normalized such that the pressure perturbation p̂ satisfies∫ 1

0
| p̂z(z)|2dz = 1. (73)

The dynamics of the wall is governed by the eigenvalue problem defined by (57) and (60) and
is dependent on the shape of the base state (50) (examples of which are illustrated in Fig. 4 for
different F). The system is parametrized by two key parameters: F , the strength of axial tension
relative to azimuthal bending, and K, a measure of the nonlinear stretching effects as a result of the
base-state curvature in the wall. For each point in (F ,K) parameter space we find a set of normal-
mode solutions and oscillation frequencies. We define the primary and secondary modes as the
solutions to (57) and (60) resulting in the smallest and subsequent smallest oscillation frequencies
ω, respectively, for a given base state and parameter values.

Previous work in high-frequency oscillations about an undeformed base state found that the
primary and secondary modes adopt axial-mode-1 and axial-mode-2 shapes, respectively, and that
the primary mode is always the most unstable. Our key result is that in some (large K) regions of
parameter space, each mode increases its axial wave number to add an extra turning point. As a
result of this, the secondary mode can become the most unstable. This is discussed in more detail in
the following sections.
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FIG. 4. Solutions (50) illustrating the base-state deformation under a uniform steady transmural pressure,
showing the transition from small to large F . The curves show the solutions for F = 0.001, 0.01, 0.1, 1, and
1000, with the arrow on the graph indicating the direction of increasing F . The normalization min{η̄} = −1
results from the definition of d = δa as the maximum deformation in the base state. In dimensional terms, the
base-state deformation is δaη̄ � a, where a is the channel height. The dependence of δ on F and the other
problem parameters can be seen in Eq. (52), with small-F and large-F approximations in (54) and (56).

Figure 5(a) illustrates the oscillation frequency of the primary and secondary modes for varying
F and K. We observe that increasing K results in an increased frequency of oscillations. The
frequency of the primary mode increases the most, but it remains strictly below that of the secondary
mode. Figure 5(a) also allows us to identify three distinct parameter regimes: F � 1, F = O(1),
and F � 1. When F � 1, ω appears to be independent of K to leading order. As F becomes O(1)
we observe that increasing K results in faster oscillations. When F is large, collapse of the scaled
oscillations [illustrated in Fig. 5(b)] suggests that the dynamics of the wall become dependent on a
single parameter F ′ = F/K.

Figure 6(a) shows the corresponding values of Rec illustrating the Reynolds number above which
the wall oscillations grow exponentially. We observe that for K above some critical value, there is a
finite window in F where Rec is smaller for the secondary mode than the primary mode. This means
that within this window the system can be unstable to the secondary mode while the primary-mode
oscillations decay over time. Figure 6(b) illustrates this region of (F ,K) parameter space. We see
that for sufficiently large F there exists a critical value of K above which the secondary-mode
perturbations lose stability before the primary mode. We define Kc(F ) as the value of K at which

FIG. 5. Numerical simulations of (57) and (60) for the primary (P) and secondary (S) modes, illustrating
(a) the oscillation frequency ω and (b) the scaled oscillation frequency ω/K1/2 (plotted against the F � 1
parameter F ′ = F/K) corresponding to the primary and secondary modes. Solutions are evaluated with
K = 0.01 (green), 1.5 (blue), 100 (red), and 1000 (black) for varying F .
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FIG. 6. Numerical solutions of (57) and (60) for the primary (P) and secondary (S) modes. (a) Rec for
K = 0.01 (green), 1.5 (blue), 100 (red), and 1000 (black) for varying F . (b) Critical curve on which the primary
and secondary modes lose stability at the same value of Rec. For points above this curve, the secondary mode
is more unstable than the primary mode. The dashed line is the asymptote Kc = F/F ′

c = 2.70F .

Rec corresponding to the primary and secondary modes are equal; this is minimized by F ≈ 0.29
where Kc ≈ 1.50. Figure 6(b) also illustrates that in the large F limit the stability curve asymptotes
to F ′

c ≈ 0.37.
Figure 7 shows how the total nonlinear axial stretching I varies as a function of F and K for the

primary mode. The magnitude of I will be important in determining the character of the solutions
in different regions of parameter space. We see that I → 0 as F → 0, and there is collapse for I as
a function of K/F when this ratio is large.

We now look at the pressure profiles and the shape of the elastic wall in each of the parameter
regimes identified above. We begin by addressing the limit of F � 1 before considering F = O(1)
and F ∼ K � 1. Simulations will be compared to analytic approximations and to solutions of
reduced models (illustrated by dashed or dotted curves in Figs. 8–11) in Appendixes A–C.

A. Small axial tension: F � 1 and K � F 3/2

Small F represents the case where the axial tension in the undeformed wall is weak relative
to the spring restoring force. Figure 4 shows that for F � 1 the base state in the interior of the
domain is approximately uniform with regions of large curvature near z = z1 and z = z2 of length

FIG. 7. Total nonlinear axial stretching I , obtained using numerical solutions to (57) and (60) for the
primary mode (solid curves), plotted against (a) F and (b) γ 2K = k0K/k2F for K = 0, 0.000 01, 0.001, 0.1,
1, and 10. The dashed curves are the values of I obtained using the asymptotic approximation (77).
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FIG. 8. Amplitudes p̂ and η̂ of the oscillatory perturbations to the pressure and wall displacement as a
function of the axial coordinate z for the primary mode when F is small. The solid curves were obtained by
solving (57) and (60) numerically and have been normalized such that p̂z(z1) = 1, for K = 1, and F = 0.000 05
(magenta), 0.0001 (cyan), 0.0005 (green), 0.001 (red), and 0.005 (blue). The arrows indicate the direction of
increasing F . For comparison, the case K = 0, F = 0.000 05 is shown by the black curve. The circular points
illustrate the approximate solution (A34) for F � 1. In all cases they are almost indistinguishable from the
corresponding solid curves. (Figure 4 illustrates the base state at F = 0.001 and provides an example of the
form of the base state in the F � 1 parameter regime about which these oscillations occur.) (a) Pressure
perturbation amplitude p̂, which shows little variation across the range of parameters shown. The inset shows a
magnified view of the upstream end to show the direction of the (small) changes. (b) Corresponding amplitudes
of the oscillatory wall perturbation η̂, evaluated using (45). Also shown is η̂ plotted against the boundary-
layer coordinates (c) η̂ plotted against the boundary-layer coordinate z̃ = γ (z − z1). (d) η̂ plotted against the
boundary-layer coordinate z̄ = −γ (z − z2).

O(γ −1), where γ 2 = k0/Fk2. The oscillatory component η̂ of the wall displacement shares a similar
three-region structure [see Fig. 8(b)]; however, this feature is not observed in p̂ [Fig. 8(a)].

In line with the standard nomenclature within the theory of matched asymptotic expansions, we
will refer to the two small regions near z = z1 and z = z2 as boundary layers. This terminology
should not be confused with any “boundary layers” (such as viscous Stokes layers or Womersley
layers) that may occur in the fluid close to the channel walls.

The dynamics of the elastic wall are dominated by the interior of the domain where there is
little curvature η̄zz (Fig. 4). As a result, the nonlinear axial stretching I [as defined in (57b)] is
dominated by contributions from the boundary layers near z = z1 and z = z2. The term in I is found
to make a negligible contribution to (57a), which explains the lack of K dependence in η̂ in the bulk
region connecting the boundary layers (see Fig. 8) and in the oscillation frequency ω of the wall for
sufficiently small F [Fig. 5(a)]. Figure 7 illustrates how the magnitude of I varies with respect to
F and K. The collapse of the curves in Fig. 7(b) suggests that for sufficiently large γ 2K, we have
I = O((γ 2K)−1). This observation will be exploited in the analysis below.
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Figures 8(c) and 8(d) suggest that, in the boundary layers near z = z1 and z = z2, η̂ varies over a
length scale of O(γ −1). The black curves in Figs. 8(a)–8(d) show the case of F = 10−4 and K = 0
for reference, to illustrate the effect curvature in the base state has on the structure of η̂. We see that
in the boundary layers, the curvature in the base state results in a change in sign of the oscillatory
component of the wall displacement: η̂ decreases to a local minimum before increasing with a large
gradient. As F increases, the length scale of the boundary layers becomes comparable to that of the
interior of the domain, the linear scaling of I with γ −2 breaks down, and we enter the F = O(1)
regime.

Motivated by the numerical results, we use a matched asymptotic expansion to further explore
this parameter regime. Recalling γ 2 = k0/k2F , we introduce a scaled oscillation frequency ω̃2 =
ω2/k0 and a scaled nonlinear stretching λ = (Kγ 2/k0)I = O(1). The governing equation (57) then
becomes

γ −2 p̂zzzz − p̂zz − ω̃2 p̂ = λ
{
exp[−γ (z − z1)] + exp[−γ (z2 − z)]

}
, (74)

where

λ = Kγ 4

k0

∫ z2

z1

p̂zz exp[−γ (z − z1)]dz + Kγ 4

k0

∫ z2

z1

p̂zz exp[−γ (z2 − z)]dz. (75)

We consider expansions in inverse powers of γ :

ω̃2 = ω̃2
0 + γ −1ω̃2

1 + · · · , (76a)

λ = λ0 + γ −1λ1 + · · · . (76b)

In Appendix A we find a matched asymptotic solution (A34) that satisfies (74) to O(γ −1) and gives
values for the composite functions and constants that form the solution. The solution is obtained
by considering O(γ −1) boundary layers near z = z1 and z = z2 that are connected by an O(1) bulk
interior region away from the boundaries. We obtain a composite solution of the form

p̂(z) = p̂II
0 (z) + γ −1 p̂II

1 (z) + O(γ −2) − 1
2λ0γ

−1(z − z1) exp[−γ (z − z1)]

− 1
2λ0γ

−1(z2 − z) exp[−γ (z2 − z)], (77)

where p̂II
0 (z) and p̂II

1 (z) are, respectively, the leading-order and first-order correction pressure profiles
obtained from the bulk interior region and are given by (A18).

We see that the leading-order pressure profile in (77) is determined by the dynamics of the wall
in the bulk of the domain and is independent of the axial tension F , and the base-state curvature
effects K, which appear only in the terms γ −2 = Fk2/k0 and λ = (K/k0)γ 2I = O(1). Decreasing
γ (increasing F) then has little effect on the amplitude of the oscillations in the bulk region, but
instead shortens the width of the bulk region. The base-state curvature effects contribute to the
pressure profile at O(γ −1) and have an effect in the boundary layers close to z = z1 and z = z2 only
[entering (77) in the second and third lines].

The composite solution (77) satisfies (74), but is dependent on the constants λi, i � 0. To
determine these constants (77) must be combined with (76b) and (75). The leading-order term on
the left-hand side of (75) must balance with the highest-order nonzero term on the right-hand side.
To obtain the numerically observed scaling I = O((Kγ 2)−1), we find that (77) is constrained by
the conditions that K � F3/2 and that the leading-order normal-mode solution in the two boundary
layers must make no combined contribution to the integrals on the right-hand side of (75). This
implies that when K � F3/2, the base-state curvature effects in the boundary layers are strong
enough to force η̂ to be orthogonal to η̄zz there. This makes (77) independent of K to leading order.
Full details can be found in Appendix A.
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FIG. 9. (a) Oscillation frequency of the primary (blue solid curve) and secondary modes (red solid
curve) plotted against K obtained by numerically solving (57) and (60) for F = 1. Dashed curves labeled
I and II illustrate, respectively, the K � 1 and K � 1 approximate solutions derived in Appendixes B 1
and B 2. Crosses indicate the parameter values used to obtain the profile plots in Fig. 10. Also shown
are the corresponding. (b) The corresponding critical Reynolds number Rec, evaluated using (71). (c) The
corresponding nonlinear stretching I .

B. Moderate axial tension: F = O(1)

When F = O(1), base-state curvature effects become more observable in the dynamics of the
wall. Figure 9(a) illustrates the oscillation frequency for the primary and secondary modes. It
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FIG. 10. Amplitude profiles of the oscillatory perturbations p̂ and η̂ to the pressure and wall displacement
for the primary (blue) and secondary modes (red) obtained by numerically solving (57) and (60) for F = 1
and K = 10−0.5 (dashed curves) and K = 102.5 (solid curves); these parameter values are marked by crosses
in Fig. 9. Solutions are normalized using (73). The red and blue circular points illustrate the corresponding
K � 1 and K � 1 approximate solutions derived in Appendix B.

suggests the existence of K � 1 and K � 1 regimes, characterized by I = O(1) and I = O(K−1),
respectively [see Fig. 9(c)]. These regimes are explored asymptotically in Appendix B.

When F = O(1) and K � 1, the base-state curvature effects are weak. For sufficiently small K,
Eqs. (57) and (60) are satisfied by solutions of the form

p̂(z) = p̂′
0(z) + K p̂′

1(z) + · · · , (78a)

ω = ω′
0 + Kω′

1 + · · · . (78b)

The leading-order solution is the solution to the full eigenvalue problem with K = 0. Corrections
are found sequentially by computing I from the solution at the previous order with (57b) and then
using it as a forcing term in (57a). The full details can be found in Appendix B.

When F = O(1) and K � 1, the base-state curvature effects dominate over the restoring force
from the springs. For sufficiently large K, Eqs. (57) and (60) are satisfied by solutions of the form

p̂(z) = p̂0(z) + K−1 p̂1(z) + · · · , (79a)

ω = ω̃0 + K−1ω̃1 + · · · . (79b)

The leading-order solution is the solution of an eigenvalue problem in which KI appears as an
unknown O(1) constant. Since this means I must be smaller than an order-of magnitude estimate
using (57b) would suggest, we must have∫ z2

z1

η̄zz p̂0zzdz = 0, (80)

i.e., the solution for η̂0 = −p̂0zz/ω is forced to be orthogonal to the base-state curvature. The
constant KI is chosen to achieve this. At the next order, there is a similar eigenvalue problem with
another constant that must be set to satisfy an integral constraint on the solution. The full details can
be found in Appendix B.

The leading-order terms in (78) and (79) describe the dynamics of the wall when K is sufficiently
small or large, respectively, and provide useful bounds on the oscillation frequency ω and critical
Reynolds number Rec for intermediate K [see Figs. 9(a) and 9(b)]. In both limits, the leading-order
solutions are independent of K.

Figure 10 illustrates the pressure-perturbation and wall-displacement profiles for the primary
and secondary modes, for the case F = 1, with K = 10−0.5 and K = 102.5 (red and blue curves,
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respectively). These parameter values are marked by crosses in Fig. 9 and show typical behaviors in
the K � 1 and K � 1 regimes.

As K increases from the K � 1 regime to the K � 1 regime the local maximum in η̂ shifts
downstream. Additionally, as a consequence of η̂ being forced to be orthogonal to η̄zz at leading
order, each mode gains an additional half oscillation in z. The primary mode therefore resembles an
axial-mode-2 mode, the secondary resembles an axial-mode-3 mode, etc.

The sloshing mechanism responsible for driving instabilities to grow works most efficiently with
odd axial modes rather than even axial modes, since less of the displaced fluid is trapped between
pairs of opposing extrema. This has the effect, as K increases, of increasing the stability of the
primary mode resulting in the secondary mode becoming the most unstable. Figure 9(b) shows that
the switching of the order in which the primary and secondary modes become unstable occurs in the
intermediate regime where K = O(1). However, considering the transition of the system from the
K � 1 to the K � 1 asymptotics provides insight into the dynamics of the system at this critical
point.

C. Large axial tension: F � 1 and F/K � O(1)

When F � 1 the axial tension in the undeformed wall is large relative to the spring restoring
force. The base state is approximated by (55) and has uniform curvature along the axis of the

FIG. 11. Amplitude profiles of the oscillatory perturbations p̂ and η̂ to the pressure and wall displacement
obtained by numerically solving (57) and (60) for F = 100 and F ′ = F/K = 0.01 (solid blue curves), 0.37
(red), and 10 (black). The critical value F ′ = F ′

c ≈ 0.37 signifies the value at which there is a switch in the
order the primary and secondary modes lose stability. Solutions are shown for (a) and (b) the primary mode and
(c) and (d) the secondary mode. Solutions are normalized using (73). The circular points illustrate solutions to
the reduced problem (C4) derived in Appendix C.

113901-22



EFFECT OF BASE-STATE CURVATURE ON SELF- …

channel. Figure 5(b) suggests that for sufficiently large F and K it may be possible to describe the
system in terms of a single parameter F ′ = F/K, with the oscillation frequency ω scaling as K1/2.

We therefore write ω′ = ω/K1/2 = O(1) and find in Appendix C that the dynamics of the system
can be approximated by (C4) and (C3b). These equations define a leading-order eigenvalue problem
for ω′ = ω′(F ′), valid when F � 1 and F/K � O(1).

The system is solved numerically, and some example solutions for the pressure and wall
displacement amplitudes can be found in Fig. 11. The region F � 1 and F/K � O(1) includes
part of the boundary in (F ,K) space on which the order in which primary- and secondary-mode
solutions lose stability switches. As K varies, we see a transition similar to that shown in Fig. 10
(and discussed above in Sec. IV B) for F = O(1).

The solutions to the reduced system (C4) and (C3b) for F � 1 allow us to identify the asymptotic
critical value F ′

c of F ′ = F/K at which the order of stability loss switches between the primary
and secondary modes. We find that F ′

c ≈ 0.37. This is shown by the dashed line in Fig. 6(b). The
critical solutions for the primary and secondary modes that have the same Rec are illustrated by the
red curves in Fig. 11. At this critical point, the wall displacements corresponding to the primary and
secondary modes resemble the graphs of − sin(5πz/2 − π/4) and sin(5πz/2 − π/4), respectively.

V. DISCUSSION

We explain the behavior of the system as the two key dimensionless parameters K and F are
varied. A schematic of the parameter space is shown in Fig. 12. The parameter F measures the
strength of the axial tension in the wall relative to the restoring force from the springs (which is a
surrogate for the azimuthal bending effects that would be present in a 3D tube). By considering the
origins of the terms in (57), the parameter K can be interpreted as measuring the strength of the base-
state curvature effects relative to the restoring force from the springs. When K is sufficiently small,
the base-state curvature effects are then a small perturbation to the K = 0 solution. For sufficiently
large K, the base-state curvature effects dominate. These two regimes are separated by a transition
region occupying K = O(F3/2) when F � 1 and K = O(F ) when F � 1.

Inspecting (57), we would anticipate that for large enough K, either the K term dominates and the
eigenfrequencies ω become O(K) or we have I = O(K−1) to prevent the K term from becoming too
large. Our numerical results show that the latter option occurs. This may be explained on theoretical
grounds (at least for lower-axial-order modes) as follows. With a balance between the K and ω2

terms in (57), p̂ would be forced to be proportional to the base-state curvature η̄zz. Boundary layers
would then be required to satisfy the boundary conditions on p̂. However, in all parameter regimes,
the possible boundary-layer solutions lack sufficient modes that decay into the interior and would
result in the forcing of short-wavelength oscillatory behavior throughout the domain. Thus lower-
axial-order modes cannot have I = O(1) for K � F .

To consider the behavior in more detail it is useful to split the cases F � O(1) and F � 1, as
the latter will involve boundary layers.

First we will consider F � O(1). In this case, the dominant balance in (57) when K = 0 involves
terms of O(F ). So for K � F the K term is a small perturbation to that system. At leading order,
we still have the K = 0 solution, which can be used to compute I from (57b). This in turn can be
reinserted into (57a) to induce the first-order correction.

As K increases to O(F ), the size of the perturbation grows to become as large as the leading-order
solution, and we enter the transition region. For K � F , we must have I = O(F/K) � 1, so from
(57b) the shape of the wall oscillations (η̂, which is proportional to p̂zz) must be almost orthogonal to
the base-state curvature η̄zz. Writing the solution as an asymptotic expansion in K, the leading-order
solution p̂0 must satisfy

∫ z2

z1
η̄zz p̂0zzdz = 0. Then I must be chosen in (57a) to ensure that this is the

case. In effect, the value of KI in (57a) is a Lagrange multiplier for the constraint of (almost) no
axial stretching.

As K increases from O(F ) and leaves the transition region, each of the modes must adjust
to become more orthogonal to the base-state curvature. This results in each mode gaining an
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FIG. 12. Schematic of the (F,K) parameter space. The dotted line signifies the boundary between the
F � 1 and F = O(1) regions. To the left of the line the wall displacement presents a three-region structure
[illustrated, for example, in Figs. 8(b)–8(d)]. Numerical solutions and asymptotic approximations of the
solutions when F � 1,K � F3/2 (dark gray region), K � F � 1 and K � F (light gray regions), and
O(K) = O(F ) � 1 (top right white region) are discussed in Sec. IV and derived in Appendixes A–C. The
curve in the top right quadrant illustrates the stability curve above which the secondary mode loses stability
before the primary mode (hatched region).

additional half-wave oscillation in z. So the fundamental (primary) mode becomes axial-mode 2,
the first harmonic (secondary mode) becomes axial-mode 3, etc. This has the effect of reducing
the instability of the fundamental mode relative to the first harmonic, as axial-mode-2 modes give
less sloshing flow at the upstream end, as more displaced fluid can be transferred between the two
opposing extrema. When K exceeds a critical value Kc(F ) the most unstable mode switches from
the fundamental to the first harmonic. The region where the stabilities are switched is sketched in
Fig. 12 and shown quantitatively in Fig. 6(b).

When F � 1, the situation is complicated due to the presence of boundary layers of width
O(F1/2) in both the base state and the oscillatory perturbations. In this case the base-state curvature
is negligible outside the boundary layers, and hence the base-state curvature effects do not directly
affect the bulk oscillatory solution in the interior (although there is some influence through the
matching conditions from the boundary layers). Effects similar to those described for F � O(1)
occur in the boundary layers, with the solution being a perturbation to the K = 0 solution for
K � F3/2, and I appearing in (57a) as a Lagrange multiplier for K � F3/2. However, because there
is no significant K effect on the mode shapes, the stability switching does not occur for F � 1.
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VI. CONCLUSION AND FUTURE WORK

This study of flow through a channel with one surface replaced by an elastic sheet has demon-
strated the importance of base-state curvature on the dynamics of the wall in subsequent self-excited
oscillations. Building on the results of Whittaker et al. [22], which considered perturbations about
a uniform initial state in a 3D tube, we derived a system that governs the base-state and oscillatory
components of the wall displacement valid for long-wavelength high-frequency small-amplitude
displacements. To simplify matters in this initial study, we considered flow in a 2D channel, as a
surrogate for the full 3D system.

The base-state deformation is modeled by (50) when a uniform external pressure is applied.
Subsequent small-amplitude oscillations about this configuration are governed by the eigenvalue
problem (57) and (60), which is solved numerically to find a countable set of normal modes with
different frequencies. Considering the energy budget of the system predicts that these modes grow
or decay with a rate � given by (70). The stability criterion (71), expressed in the form of a critical
mean-flow Reynolds number, determines when each mode is stable.

The model system depends on two key nondimensional parameters: F , a measure of the axial
tension, and K, a measure of the base-state deformation. The main finding of this work is that for
sufficiently large F and K (see Fig. 12), the effect of the base-state curvature causes the mode with
the second-lowest frequency to be the most unstable, ahead of the fundamental mode.

The model has limitations, for example, the 2D setup, neglecting the effects of wall inertia
relative to inertia in the fluid, neglecting bending in the elastic wall relative to tension effects, and
neglecting the contribution to the transmural pressure from the steady viscous pressure drop along
the channel. However, we anticipate that the key physical processes described here will be applicable
to flows in more realistic practical applications. Care also needs to be taken when applying
these results, noting that they are only applicable to an elastic wall undergoing small-amplitude
long-wavelength high-frequency oscillations.

In this paper we restricted our attention to a channel with fixed cross-sectional aspect ratio
k2 = 1.704 41 and fixed strength of springs relative to azimuthal bending k0 = 11.074 87, but chose
to survey the full (F ,K) parameter space. Typically, experimental realizations of self-excited
oscillations utilize a Starling resistor, consisting of an axisymmetric elastic tube, that buckles
nonaxisymmetrically under a sufficiently negative transmural pressure. To fully understand the
mechanisms of such phenomena, the analysis presented may need be extended to consider the full
3D system. This includes consideration of full Shell equations for the wall and nonlinear effects
in the fluid. There may also be a need to improve the fluid model to incorporate the effects of
flow past a nonuniform base state. A further area of interest would be to investigate oscillations
about a larger-amplitude initial base-state configuration, i.e., δ = O(1). In the derivation of the
wall equations (25)–(28), terms that are quadratic and higher order in the horizontal and vertical
deformations will be significant at leading order. This will lead to increased complexity in the
governing equations; however, it may provide important insight into the dynamics of the system
at later times when the amplitude of instabilities has grown to become comparable to the radius of
the tube.
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APPENDIX A: APPROXIMATE SOLUTION FOR SMALL AXIAL TENSION
F � 1 AND K � O(F 3/2 )

When the axial tension in the elastic sheet is small (F � 1), the base state η̄ is approximated by
(53), an example of which is illustrated in Fig. 4. The system (57) is then approximated by

γ −2 p̂zzzz−p̂zz − ω̃2 p̂ = λ
{
exp[−γ (z − z1)] + exp[−γ (z2 − z)]

}
, (A1)
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where ω̃2 = ω2/k0 and λ = (Kγ 2/k0)I = O(1), with

I = γ 2
∫ z2

z1

p̂zz exp[−γ (z − z1)]dz + γ 2
∫ z2

z1

p̂zz exp[−γ (z2 − z)]dz. (A2)

Below we derive a matched asymptotic solution to (A1), subject to the boundary conditions (60), for
γ � 1, i.e., F � 1. This matches solutions obtained in the boundary layers near z = z1 (region I)
and z = z2 (region III) over a length O(γ −1) [see Figs. 8(c) and 8(d)], together with the bulk interior
region (region II) of length O(1) [see Fig. 8(b)]. (Superscripts denote solutions in each of the three
regions.) The only contributions to I come from the two boundary layers. It is convenient to write
I = I I + I III, where I I and I III are the contributions from regions I and III, respectively.

1. Boundary layer near z = z1 (region I)

In the boundary layer close to z = z1 we define a scaled coordinate z̃ = γ (z − z1). We then
set p̂ = p̂I(z̃) and seek solutions that are normalized such that p̂I

z̃(0) = γ −1, i.e., p̂z(z1) = 1.
Equation (A1) then becomes

p̂I
z̃z̃z̃z̃ − p̂I

z̃z̃ − γ −2ω̃2 p̂I = γ −2λ exp(−z̃), (A3)

with

I I = γ 3
∫ ∞

0
p̂I

z̃z̃ exp(−z̃)dz̃, (A4)

and is subject to

p̂I
z̃z̃(0) = 0, p̂I

z̃(0) = γ −1, p̂I(0) = z1. (A5)

To match with region II we must also suppress the exponentially growing solutions to the
homogeneous equation. Together with (A5) this gives four boundary conditions on the solution
at each order. We seek solutions of the form

p̂I(z̃) = p̃I
0(z̃) + γ −1 p̃I

1(z̃) + γ −2 p̃I
2(z̃) + · · · , (A6a)

ω̃2 = ω̃2
0 + γ −1ω̃2

1 + γ −2ω̃2
2 + · · · , (A6b)

λ = λ0 + γ −1λ1 + γ −2λ2 + · · · . (A6c)

Substituting these into (A3), it follows that to leading order and O(γ −1), respectively,

p̃I
0z̃z̃z̃z̃ − p̃I

0z̃z̃ = 0, p̃I
1z̃z̃z̃z̃ − p̃I

1z̃z̃ = 0. (A7)

Enforcing (A5) and ensuring that p̃I
0 and p̃I

1 do not grow exponentially large as z̃ → ∞, we find

p̃I
0 = z1, p̃I

1 = z̃. (A8)

To O(γ −2) and O(γ −3), respectively, Eq. (A3) becomes

p̃I
2z̃z̃z̃z̃ − p̃I

2z̃z̃ = ω̃2
0 p̂I

0 + λ0 exp(−z̃), (A9a)

p̃I
3z̃z̃z̃z̃ − p̃I

3z̃z̃ = ω̃2
0 p̃I

1 + ω̃2
1 p̃I

0 + λ1 exp(−z̃), (A9b)

which, with (A5) and suppressing exponentially growing terms, are satisfied by

p̃I
2 = − 1

2 ω̃2
0z1z̃2 + (

ω̃2
0z1 − 1

2λ0
)
z̃ + (

λ0 − ω̃2
0z1

) + (
A2 − 1

2λ0z̃
)

exp(−z̃), (A10a)

p̃I
3 = − 1

6 ω̃2
0 z̃3 − 1

2 ω̃2
1z1z̃2 + (

ω̃2
1z1 − 1

2λ1
)
z̃ + (

λ1 − ω̃2
1z1

) + (
A3 − 1

2λ1z̃
)

exp(−z̃), (A10b)

where A2 = ω̃2
0z1 − λ0 and A3 = ω̃2

1z1 − λ1. The region I solution (A6a) may be substituted into
(A4) to obtain an expansion for I I of the form

I I = γ I I
0 + I I

1 + γ −1I I
2 + · · · , (A11)
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where

I I
0 = − 1

2 ω̃2
0z1 − 1

8λ0, (A12a)

I I
1 = − 1

2 ω̃2
1z1 − ω̃2

0 − 1
8λ1. (A12b)

Writing (A6a) in terms of the O(1) variable z, the pressure in the boundary layer near z = z1 is
approximated by

p̂I(z) = p̂I
0(z) + γ −1 p̂I

1(z) + O(γ −2) − 1
2 (λ0γ

−1 + λ1γ
−2)(z − z1) exp[−γ (z − z1)]

+ (A2γ
−2 + A3γ

−3) exp[−γ (z − z1)], (A13)

where

p̂I
0 = z1 + (z − z1) − 1

2 ω̃2
0z1(z − z1)2 − 1

6 ω̃2
0(z − z1)3 + O((z − z1)4), (A14a)

p̂I
1 = (

ω̃2
0z1 − 1

2λ0
)
(z − z1) − 1

2 ω̃2
1z1(z − z1)2 + O((z − z1)3). (A14b)

We note that we retain the exponentially decaying terms in (A13), despite them being O(γ −2),
since they contribute to the leading-order wall displacement, evaluated using (45). The unknown
constants ω̃0, ω̃1, λ0, and λ1 will be determined later through the matching of (A13) with solutions
obtained in the bulk of the domain (region II) and the outer boundary layer (region III).

2. Bulk region (region II)

In the region connecting the boundary layers near z = z1 and z = z2, we have z = O(1) and
p̂ = p̂II(z) and the dominant balance in (A1) is

p̂II
zz + ω̃2 p̂II = O(γ −2). (A15)

Assuming solutions of the form

p̂II(z) = p̂II
0 (z) + γ −1 p̂II

1 (z) + · · · , (A16a)

ω̃2 = ω̃2
0 + γ −1ω̃2

1 + · · · , (A16b)

to leading order and O(γ −1), respectively, Eq. (A15) becomes

p̂II
0zz + ω̃2

0 p̂II
0 = 0, p̂II

1zz + ω̃2
0 p̂II

1 = −ω̃2
1 p̂II

0 , (A17)

which are satisfied by

p̂II
0 = B0 cos[ω̃0(z − z1)] + C0 sin[ω̃0(z − z1)], (A18a)

p̂II
1 = [

B1 + 1
2 ω̃2

1ω̃
−1
0 C0(z − z1)

]
cos[ω̃0(z − z1)] + [

C1 − 1
2 ω̃2

1ω̃
−1
0 B0(z − z1)

]
sin[ω̃0(z − z1)].

(A18b)

In the limit |z − z1| � 1 Eq. (A18) is approximated by

p̂II
0 ≈ B0

[
1 − 1

2 ω̃0(z − z1)2
] + C0ω̃0(z − z1)

[
1 − 1

6 ω̃2
0(z − z1)2

]
, (A19a)

p̂II
1 ≈ [

B1 + 1
2 ω̃2

1ω̃
−1
0 C0(z − z1)

][
1 − 1

2 ω̃2
0(z − z1)2

] + C1ω̃0(z − z1)
[
1 − 1

6 ω̃2
0(z − z1)2

]
− 1

2 ω̃2
1B0(z − z1)2

[
1 − 1

6 ω̃2
0(z − z1)2

]
. (A19b)

This facilitates an easy comparison with (A14) and allows us to determine B0, B1, C0, and C1. When
F � 1, the base-state curvature in the interior of the region is exponentially small and is negligible.
We therefore take I II = ∫ z2

z1
η̄zz p̂II

zzdz ≈ 0 in region II.
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3. Boundary layer near z = z2 (region III)

In the boundary layer close to z = z2 we set z̄ = −γ (z − z2) and p̂ = p̂III(z̄). Substituting into
(A1) and (A2), we find

p̂III
z̄z̄z̄z̄ − p̂III

z̄z̄ − γ −2ω̃2 p̂III = γ −2λ exp(−z̄) (A20)

and

I III = γ 3
∫ ∞

0
p̂III

z̄z̄ exp(−z̄)dz̄. (A21)

Equation (A20) has the same general solution as (A3). The boundary conditions applied at z̄ = 0
are

p̂III
z̄z̄ (0) = 0, p̂III

z̄ (0) = 0. (A22)

Suppressing exponential growth as z̄ → ∞, Eqs. (A20) and (A22) are satisfied by

p̂III(z̄) = E0 + γ −1E1 + γ −2 p̄III
2 (z̄) + γ −3 p̄III

3 (z̄) + · · · , (A23)

where

p̄III
2 = − 1

2 E0ω̃
2
0 z̄2 + (

E0ω̃
2
0 − 1

2λ0
)
z̄ + E2 + (

D2 − 1
2λ0z̄

)
exp(−z̄), (A24a)

p̄III
3 = − 1

2

(
E0ω̃

2
1 + E1ω̃

2
0

)
z̄2 + (

E0ω̃
2
1 + E1ω̃

2
0 − 1

2λ1
)
z̄ + E3 + (

D3 − 1
2λ1z̄

)
exp(−z̄), (A24b)

and D2 = E0ω̃
2
0 − λ0 and D3 = E0ω̃

2
1 + E1ω̃

2
0 − λ1. Substituting (A23) into (A21), we find that I III

has an expansion of the form

I III = γ I III
0 + I III

1 + γ −1I III
2 + · · · , (A25)

where

I III
0 = − 1

2 E0ω̃
2
0 − 1

8λ0, (A26a)

I III
1 = − 1

2

(
E0ω̃

2
1 + E1ω̃

2
0

) − 1
8λ1. (A26b)

Expressing (A23) and (A24) in terms of the O(1) variable z, the pressure in the boundary layer
near z = z2 is thus approximated by

p̂III(z) = p̂III
0 (z) + γ −1 p̂III

1 (z) + O(γ −2) − 1
2 (λ0γ

−1 + λ1γ
−2)(z2 − z) exp[−γ (z2 − z)]

+ (D2γ
−2 + D3γ

−3) exp[−γ (z2 − z)], (A27)

where

p̂III
0 = E0 − 1

2 E0ω̃
2
0(z2 − z)2 + O((z2 − z)4), (A28a)

p̂III
1 = E1 + (

E0ω̃
2
0 − 1

2λ0
)
(z2 − z) − 1

2

(
E0ω̃

2
1 + E1ω̃

2
0

)
(z2 − z)2 + O((z2 − z)3). (A28b)

We again retain the exponentially decaying terms in (A27), despite them being O(γ −2), to obtain a
leading-order approximation of the wall displacement via (45).

4. Matching and composite solution

We now asymptotically match the solutions obtained in regions I–III to find the unknown
constants given above. Matching the |z − z1| � 1 limit of the region II solution (A19) to the
boundary-layer solution near z = z1 (A13), we see

B0 = z1, C0 = ω̃−1
0 , (A29a)

B1 = 0, C1 = ω̃0z1 − 1
2 ω̃−1

0 λ0 − 1
2 ω̃2

1ω̃
−3
0 . (A29b)
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Similarly, we match the region II solution (A18) with the region III solution (A27) near z = z2. At
O(1) we find

E0 = z1 cos[ω̃0(z2 − z1)] + ω̃−1
0 sin[ω̃0(z2 − z1)] (A30)

and the constraint

ω̃0z1 tan[ω̃0(z2 − z1)] = 1, (A31)

from which the multiple solutions for ω̃0 for the different modes are determined. At O(γ −1) we find

E1 = C1 sin[ω̃0(z2 − z1)], (A32)

and

2ω̃2
0z1

(
2 + ω̃−2

0 z−2
1

) − λ0{1 + sec[ω̃0(z2 − z1)]} = [
z1(z2 − z1)

(
1 + ω̃−2

0 z−2
1

) + ω̃−2
0

]
ω̃2

1, (A33)

which determines ω̃1.
A composite solution may then be formed from (A13), (A18), and (A27),

p̂(z) = p̂II
0 (z) + γ −1 p̂II

1 (z) + O(γ −2) − 1
2 (λ0γ

−1 + λ1γ
−2)(z − z1) exp[−γ (z − z1)]

+ (A2γ
−2 + A3γ

−3) exp[−γ (z − z1)] − 1
2 (λ0γ

−1 + λ1γ
−2)(z2 − z) exp[−γ (z2 − z)]

+ (D2γ
−2 + D3γ

−3) exp[−γ (z2 − z)], (A34)

which gives the pressure profile to O(γ −2). The only undetermined constants in the expression are
λ0 and λ1. In order to find these and close the problem, we use the expression λ = (Kγ 2/k0)I linking
λ to the integral (A2) for I . Summing the contributions (A11) from region I and (A25) from III, we
find that

I = γ I0 + I1 + γ −1I2 + · · · , (A35)

where

I0 = I I
0 + I III

0 = − 1
4λ0 − 1

2

(
ω̃2

0z1 + ω̃2
0E0

)
(A36)

and

I1 = I I
1 + I III

1 = − 1
4λ1 − 1

2

(
ω̃2

1z1 + E0ω̃
2
1 + E1ω̃

2
0 + 2ω̃2

0

)
. (A37)

Substituting the series expansions for λ and I into λ = (Kγ 2/k0)I , we require

λ0 + γ −1λ1 + · · · = γ 3K
k0

(I0 + γ −1I1 + γ −2I2 + · · · ). (A38)

For the numerically observed scaling I = O((γ 2K)−1) to hold we need λ0 = O(1). The leading-
order term on the left-hand side of (A38) must balance with the largest nonzero term on the right-
hand side. Hence we must have γ 3K � O(1). If γ 3K � 1, i.e., K � F3/2, then to balance λ0 with
an O(1) term, we must equate it with a higher-order term on the right-hand side of (A38) and require
I0 = 0. The larger γ 3K is, the further along the series on the right-hand side of (A38) one must go
to match the λ0 term.

In the region of parameter space where γ 3K � 1, we must have I0 = I I
0 + I III

0 = 0. Writing this
in terms of the normal-mode solution, via (45) and (57b), we thus have∫ ∞

0
η̂I

2(z̃) exp(−z̃)dz̃ +
∫ ∞

0
η̂III

2 (z̄) exp(−z̄)dz̄ = 0. (A39)

Consequently, when γ 3K � 1, base-state curvature effects in the boundary layers are strong enough
to force the leading-order normal-mode displacements to be orthogonal to the base-state curvature,
hence making (A34) independent of K to leading order.
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Using (A36), we see that I0 = 0 implies

λ0 = −2
(
ω̃2

0z1 + ω̃2
0E0

)
,= −2ω̃2

0z1{1 + cos[ω̃0(z2 − z1)]} − 2ω̃0 sin[ω̃0(z2 − z1)]. (A40)

The solution to (A31) for ω̃0 allows us to determine λ0 via (A40). Similarly, if γ 2K � 1, i.e.,
K � F , λ0 must balance with the third term or beyond on the right-hand side of (A38). Then we
require both I0 and I1 to vanish. Using (A37), this also implies

λ1 = −2
(
ω̃2

1z1 + E0ω̃
2
1 + E1ω̃

2
0 + 2ω̃2

0

)
,= (

ω̃0λ0 − 2ω̃3
0z1 − ω̃2

1ω̃
−1
0

)
sin[ω̃0(z2 − z1)]

− 2ω̃2
1z1{1 + cos[ω̃0(z2 − z1)]} − 4ω̃2

0. (A41)

Alternatively, if γ 2K = O(1), then the λ0 and I1 terms balance in (A38). Setting λ0 = (γ 2K/k0)I1

and substituting for I1 from (A37) gives an equation for λ1. We have now determined all constants
and have a matched asymptotic approximation that is accurate to O(γ −1) when K � F3/2.

In the transition region of parameter space, K = O(F3/2) with F � 1, and we find numerically
that I = O(γ ) [see Fig. 7(a)]. In this case the leading-order term on the left-hand side of (A38) must
balance with the I0 term on the right-hand side. We therefore equate λ0 and λ1 with the right-hand
sides of (A36) and (A37), respectively, and replace (A40) and (A41) with

λ0 = − 2

1 + �

(
ω̃2

0z1 + ω̃2
0E0

)
, (A42a)

λ1 = − 2

1 + �

(
ω̃2

1z1 + E0ω̃
2
1 + E1ω̃

2
0 + 2ω̃2

0

)
, (A42b)

where � = 4k0/γ
3K = O(1).

APPENDIX B: REDUCED MODELS FOR MODERATE AXIAL TENSION F = O(1)

When the axial tension F is O(1), increasing K (the base-state curvature effect) results in a faster
frequency of wall oscillations. Figure 9 suggests the existence of K � 1 and K � 1 regimes, in
both of which the dynamics of the wall is described by a system independent of K. In Appendix B 1
and B 2, we formulate reduced models that capture the dynamics of wall when K � 1 and K � 1,
respectively.

1. Simplified model for F = O(1) and K � 1

When F = O(1) and K � 1 the amplitude of the base state is large relative to the other
parameters. For sufficiently large K, we seek solutions of the form

p̂(z) = p̂0(z) + K−1 p̂1(z) + · · · , (B1a)

ω = ω̃0 + K−1ω̃1 + · · · , (B1b)

I = K−1C̃1 + K−2C̃2 + · · · (B1c)

to match the observations from the numerical solutions in Fig. 9(c) that p̂ and ω become independent
of K, while I = O(K−1). To O(1) we find that (57) becomes

Fk2 p̂0zzzz − C̃1η̄zz − k0 p̂0zz − ω̃2
0 p̂0 = 0, (B2a)∫ z2

z1

p̂0zzη̄zzdz = 0, (B2b)

subject to

p̂0zz = 0, z1 p̂0z − p̂0 = 0 at z = z1, (B3a)

p̂0zz = 0, p̂0z = 0 at z = z2. (B3b)
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The constant C̃1 is set to ensure that (B2b) is satisfied as follows. We multiply (B2a) by η̄zz and
integrate between z1 and z2. Using integration by parts, together with (34a), (B2b), and the boundary
conditions η̄ = p̂0zz = 0 at z = z1, z2, we obtain

C̃1 = 1

E

[
−P̄ p̂0zzz − P̄

k0
ω̃2

0 p̂0z − ω̃2
0η̄z p̂0

]z2

z1

, (B4)

where E = ∫ z2

z1
(η̄zz )2dz. The result of substituting (B4) into (B2a) and imposing (B3) then defines

an eigenvalue problem for ω0 = ω0(F ). This may be solved numerically to obtain the leading-order
frequency ω0 and pressure profile p̂0.

To O(K−1) Eq. (57) yields

Fk2 p̂1zzzz − C̃2η̄zz − k0 p̂1zz − ω2
0 p̂1 − 2ω0ω1 p̂0 = 0, (B5a)∫ z2

z1

p̂1zzη̄zzdz = C̃1, (B5b)

subject to

p̂1zz = 0, z1 p̂1z − p̂1 = 0 at z = z1, (B6a)

p̂1zz = 0, p̂1z = 0 at z = z2. (B6b)

The free parameter C̃2 is determined numerically to ensure that the solution to (B5a) and (B6)
satisfies the constraint (B5b). Numerical solutions to the reduced models for the leading-order- and
first-order-correction components of the pressure profiles and oscillation frequency are illustrated
by the dashed curves in Fig. 9 and the circular points in Fig. 10, and are in good agreement with
numerical simulations.

2. Simplified model for F = O(1) and K � 1

Small K corresponds to a small-amplitude base-state deformation relative to the other parame-
ters. Similarly to the K � 1 case, we seek solutions of the form

p̂(z) = p̂′
0(z) + K p̂′

1(z) + · · · , (B7a)

ω = ω′
0 + Kω′

1 + · · · , (B7b)

I = C̃′
0 + KC̃′

1 + · · · . (B7c)

To leading order, Eq. (57) then becomes

k2F p̂′
0zzzz − k0 p̂′

0zz − ω′2
0 p̂′

0 = 0, (B8a)∫ z2

z1

p̂′
0zzη̄zzdz = C̃′

0, (B8b)

subject to

p̂′
0zz = 0, z1 p̂′

0z − p̂′
0 = 0 at z = z1, (B9a)

p̂′
0zz = 0, p̂′

0z = 0 at z = z2. (B9b)

The differential equation (B8a) and boundary conditions (B9) are precisely the eigenvalue problem
neglecting wall stretching presented by Whittaker et al. [22]. This system is solved for p̂′

0 and ω′
0

first. Then the constant C̃′
0 is obtained using (B8b).

To O(K), Eq. (57) becomes

Fk2 p̂′
1zzzz − C̃′

0η̄zz − k0 p̂′
1zz − ω′2

0 p̂′
1 − 2ω′

0ω
′
1 p̂′

0 = 0, (B10a)∫ z2

z1

p̂′
1zzη̄zzdz = C̃′

1, (B10b)
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subject to

p̂′
1zz = 0, z1 p̂′

1z − p̂′
0 = 0 at z = z1, (B11a)

p̂′
1zz = 0, p̂′

1z = 0 at z = z2. (B11b)

Equation (B10a) is solved first for p̂′
1, with ω′

1 chosen to allow all the boundary conditions (B11) to
be satisfied. Then (B10b) determines C̃′

1. Numerical solutions to the reduced models (B8) and (B9),
and (B10) and (B11), are illustrated by the dashed curves in Fig. 9 and the circular points in Fig. 10.

APPENDIX C: REDUCED MODEL FOR F/K � O(1) AND F � 1

Figure 5(b) suggests that when F and K are sufficiently large, the dynamics of the wall depends
only on the ratio F/K. In this Appendix we consider the limit where F/K � O(1), F � 1.

Since F � 1, the base state is approximated by (55), giving the uniform curvature

η̄zz = −8(z1 − z2)−2. (C1)

Setting F = KF ′ and ω = K1/2ω′, Eq. (57) becomes

k2F ′ p̂zzzz − ω′2 p̂ + C′ = k0K−1 p̂zz, (C2)

where C′ = 64(z2 − z1)−4 and we have chosen to normalize p̂ such that
∫ z2

z1
p̂zzdz = −1. This

normalization, together with (60), gives the boundary conditions

p̂zz = 0, p̂z = 1, p̂ = z1 at z = z1, (C3a)

p̂zz = 0, p̂z = 0 at z = z2. (C3b)

For F ′ � O(1) (to avoid the possibility of boundary layers), the left-hand side of (C2) scales as
max{1,F ′} = F ′. So provided K−1 � F ′, the right-hand side may be neglected at leading order.
This condition equates to F � 1. The leading-order problem is then

k2F ′ p̂zzzz − ω′2 p̂ + C′ = 0, (C4)

subject to (C3b). This defines an eigenvalue problem for ω′ = ω′(F ′), which is solved numerically.
Results are compared with the solution to the full problem in Fig. 11.
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