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Abstract 

This paper develops an agent- and activity-based large-scale simulation model for Beijing, China 

(MATSim-Beijing) to explicitly simulate enroute travel, enroute refuelling and parking behaviours, as 

well as the associated vehicular energy consumption and emissions, based on MATSim (Multi-Agent 

Transport Simulation), which is a typical integrated activity-based model. In order to take into 

account heterogeneous parking and refuelling behaviours, the MATSim-Beijing model incorporates 

several Multinomial Logit (MNL) models to predict individual choices about the maximum 

acceptable times of walking from trip destination to parking lot, of diverting to a refuelling station and 
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of queuing at a station, using the data collected in a paper-based questionnaire survey in Beijing. A 

Sensitivity Analysis (SA) -based calibration method was used to estimate the model parameters by 

searching for an optimal parameter combination with the objective of minimize the gap between 

simulated and observed traffic flow data, exhibiting a relatively good performance of decreasing the 

Mean Absolute Percentage Error (MAPE) by around 23%. Further, the calibrated model was used to 

investigate whether and how the population scaling and network simplification, which were two 

commonly used approaches to speeding up large-scale traffic simulations, might influence model 

accuracy and computing time. The results indicated that both approaches could to some extent 

influence model outputs, though they could significantly reduce computing time. 

Keywords: agent-based modelling; activity-based model; model calibration, population scaling; 

network simplification; Beijing 

1 Introduction 

1.1 Activity-based Travel Demand Modelling  

Travel demand analysis and modelling is the fundamental research question in transport studies, as 

travel demand is associated with a large variety of decision-makings, for example, in policy making 

and infrastructure planning. Traditionally, the four-step method (or trip-based model), was used for 

the analysis and modelling of travel demand (Ahmed, 2012; McNally, 2008). However, this method is 

limited in behavioural inadequacy (Bhat and Koppelman, 1999). In response, many efforts have been 

made to develop activity-based travel demand models (Rasouli and Timmermans, 2014), which look 

at the travel demand of each individual at the micro level. The basic concept of activity-based model 

is that people need to travel in order to perform their daily activities (e.g., work and shopping). In 

other words, travel is considered as a demand derived from the need to perform activities (Pinjari and 

Bhat, 2011).  

Activity-based modelling is generally coupled with agent-based modelling (Macal and North, 

2010), which is another approach to simulating individual behaviours in complex dynamic system, 

such as transport systems (Bazzan and Klügl, 2014; Zhuge, 2019): agent-based modelling can 

simulate heterogenous behaviours (e.g., parking and refuelling behaviours), according to agents’ 

attributes (e.g., income); Furthermore, agents also interact with each other in their daily activities and 

travel, and the interactions can be either direct or indirect. For example, people from the same 

household may negotiation with each other in allocating maintenance activities (e.g., shopping) 

(Srinivasan and Bhat, 2005), and also household members may perform joint activities and travel (e.g., 

car sharing) (Bradley and Vovsha, 2005).  
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In many cases, activity-based model was also coupled with Dynamic Traffic Assignment (Peeta 

and Ziliaskopoulos, 2001), resulting in an integrated activity-based model able to simulate how people 

perform their daily activities and travel from one activity location to another through transport 

networks (e.g., road and public transport networks) (Zhuge et al., 2019c). The outputs of the 

integrated model include traffic/passenger flow and daily plans of each person which contain both 

activity and travel information. Among the integrated models, MATSim appears to be more 

favourable to transport modellers and planners, as evident from its numerous case studies across the 

global (Horni et al., 2016). Therefore, this paper chooses MATSim as the base to develop the Beijing 

activity-based travel demand model (or the MATSim-Beijing model). Although the model is 

particularly for Beijing, the approaches to be introduced below (including parking and refuelling 

models and calibration method) can also be applied into other large-scale scenarios.  

1.2 Parking Behaviour Modelling  

For a car trip, individual travel behaviour can be decomposed into three parts, namely enroute 

travel, (possible) enroute refuelling and parking behaviours. However, most of the activity-based 

simulations were focused on enroute travel, paying significantly less attention to parking and 

refuelling behaviours. Some attempts have been made to explicitly simulate parking behaviour within 

activity-based models (Benenson et al., 2008; Dieussaert et al., 2009; Horni et al., 2013; van der 

Waerden, 2012), resulting in the spatiotemporal distribution of parking demand and the usage of each 

parking lot. Such spatially and temporally explicit results would be particularly useful for the design 

of parking-related policies (e.g., parking fee) and optimizing the layout of parking lots.  

MATSim has a parking extension (Bischoff and Nagel, 2017; Horni et al., 2016), which is able to 

explicitly simulate individual parking behaviour. A utility function is used to score and rank candidate 

parking lots for each driver when they approach trip destinations, and divers are assumed to always 

choose the parking lot with the highest utility. Agents may fail to park due to the limited parking 

capacity and they are assumed to keep searching for available parking spaces with the searching 

radius being increased gradually (Horni et al., 2016). However, this assumption is unrealistic, as 

agents may only try those parking lots within a specific radius around the trip destinations, 

considering the maximum acceptable walking time (or distance) from their trip destinations and 

parking lots. Therefore, the MATSim-Beijing model will incorporate a constraint on walking 

time/distance: those parking lots falling out of the range will not be listed as candidates. As a result, 

agents may fail to find a parking space and have to park illegally around their destinations, which 

tends to be more realistic. In order to take heterogeneous parking behaviours into account, the 

proposed MATSim-Beijing model will incorporate a Multinomial Logit (MNL) model to predict the 

maximum acceptable walking time for each driver according to their attributes (e.g., income), using 

the data collected in a questionnaire survey in Beijing (see Section 3.2 for more details).  
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1.3 Refuelling Behaviour Modelling  

Simulating enroute refuelling behaviour could be useful for quantifying the demand for refuelling 

stations, which can be further used to locate new refuelling stations or optimize the existing layout of 

refuelling stations (Zhuge and Shao, 2018). Compared with parking modelling, enroute refuelling 

modelling has received relatively scant attention, though the charging behaviour of electric vehicle 

drivers at trip destinations (e.g., at home or workplaces) have been explicitly modelled (Galus et al., 

2012; Gonzalez et al., 2014; Knapen et al., 2011; Knapen et al., 2012; Waraich, 2013; Waraich et al., 

2014). This is likely because electric vehicles have received increasing attention over the past few 

years across the global (IEA, 2019; Zhuge and Shao, 2019). However, refuelling/charging behaviours 

of conventional and electric vehicles can be significantly different: on one hand, individual behaviour 

can be influenced by vehicle types used, and the approaches to simulating charging behaviour cannot 

be straightforwardly applied into the modelling of refuelling behaviour; on the other hand, the 

destination-based charging behaviour of electric vehicle could differ from the enroute refuelling 

behaviour. Therefore, the proposed MATSim-Beijing model will simulate how drivers refuel their 

conventional vehicles (e.g., petrol car) on their journeys, with a focus on the behaviour of choosing 

refuelling stations. In order to take heterogeneous refuelling behaviours into account, the MATSim-

Beijing model will incorporate another two MNL models to predict the maximum acceptable 

diverting and queueing times for each driver, according to their attributes, again using the data 

collected in the same questionnaire survey mentioned above.  

1.4 Approaches to Speeding Up Large-Scale Simulations 

  This study will use Beijing as a case study, which had a population of around 20 million in 2010. It 

would be computationally expensive to explicitly simulate travel behaviour of all individuals. 

Essentially, the high computing time is largely attributed to the large number of agents involved, 

complex and detailed individual travel behaviour, and large and complex road network. Many 

approaches have been used to speed up such large-scale agent- and activity-based simulations, 

including parallel computing, efficient traffic simulators (Charypar et al., 2006; Charypar et al., 2007; 

Waraich et al., 2015) and fast shortest-path searching algorithms (Balmer, 2007; Lefebvre and Balmer, 

2007). Among them, population scaling and network simplification are two commonly used 

approaches. Specifically, population scaling is to scale down the population (using a small portion of 

the population) in the simulation and then to scale up the simulation results accordingly (Flötteröd et 

al., 2012; Horni et al., 2016). Network simplification is to simplify the road network by merging two 

or more adjacent links with some specific rules (or constraints), resulting in a simplified network with 

less nodes and links. As a result, the traffic simulator and shortest-path search algorithm in the 

integrated activity-based model will process less nodes and links and thus can speed up the 

simulations. However, the potential influences of these two approaches on the model results are not 
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well understood. In order to quantify the influence, the proposed MATSim-Beijing model will be 

tested with different population scaling rates and simplified networks.  

1.5 Calibration of Activity-based Models 

  Activity-based models were generally calibrated with the objective of minimizing the gap between 

the resulting and observed traffic flow data (Agarwal et al., 2017; Flötteröd et al., 2012; Gonzalez et 

al., 2014). Cadyts (Calibration of dynamic traffic simulations) appears to be one of the most-used 

calibration tools for such integrated activity-based models (Flötteröd et al., 2012; Gonzalez et al., 

2014; Horni et al., 2016), and has been applied into several MATSim-based scenarios (Flötteröd et al., 

2011; Flötteröd et al., 2012; Horni et al., 2016). Cadyts uses a Bayesian framework to select those 

optimal daily plans in each agent’ memory, with the objective of minimizing the gap between the 

simulated and observed traffic flow data (Flötteröd, 2009; Flötteröd et al., 2011; Flötteröd et al., 2012). 

However, Cadyts does not search for an optimal set of model parameters, and thus is not 

behaviourally sound. In response, this paper will try another Sensitivity Analysis (SA)-based 

calibration method, which is capable of searching for an optimal parameter combination in an 

efficient way, based on the results of parameter SA (Saltelli et al., 2008; Zhuge et al., 2019c).  

1.6 Research Gaps and Aims 

  Activity-based model has become a promising approach to investigating travel demand at the 

individual level. In general, activity-based models were focused on enroute travel behaviour, but some 

of them were extended to incorporate refuelling and parking behaviours. This paper will develop an 

agent- and activity-based model to simulate enroute travel, refuelling and parking behaviours, as well 

as the associated vehicular energy consumptions and emissions in Beijing, based on MATSim, 

resulting in an MATSim-Beijing model. The model can output rich fine-grained results, which would 

be useful for policy analysis (e.g., parking fee) and infrastructure planning (e.g., layouts of refuelling 

stations and parking lots).  

  The contributions of this paper are twofold: First, the MATSim-Beijing model will integrate several 

Multinomial Logit (MNL) models to simulate the decision-making of drivers on parking and 

refuelling, in order to be more behaviourally realistic and thus more accurate. Second, this paper will 

also evaluate the performance of some methods (in terms of model accuracy and efficiency), which 

aim to make large-scale simulations computationally feasible, including the Sensitivity Analysis 

(SA)-based calibration method, population scaling method and network simplification. In brief, both 

contributions would make integrated activity-based large-scale simulations more behaviourally sound, 

computationally feasible and accurate.  
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2 Methodology 

2.1 Framework of MATSim-Beijing 

Originally, MATSim is composed of three core modules (see Figure 1), namely Execution, Scoring 

and Replanning, which are used to optimize daily plans through iterations, considering the influence 

of dynamic traffic flow on activity scheduling (Horni et al., 2016). Each module is introduced in detail 

in the official MATSim book by Horni et al. (2016). The original MATSim was updated to the 

MATSim-Beijing model by incorporating parking and refuelling extensions, as well as vehicular 

energy consumption and emission modules. To be behaviourally realistic, three MNL models were 

developed and integrated into the MATSim-Beijing model. The MNL models were used to predict 

parking- and refuelling- related choices of drivers, including the maximum acceptable time of walking 

from parking lot to trip destination, of diverting to a refuelling station and of queueing at a station 

(Zhuge et al., 2019a; Zhuge et al., 2019b).  

  In particular, the Scoring module, which contains a  utility function (see Equation (1)), is used to 

evaluate the performance of each daily plan in terms of travelling and performing activities (Horni et 

al., 2016).  

  , ,

0 0

J J

DailyPlan Activity j Travel j

j j

U U U
 

                                               (1) 

  Where, DailyPlanU  denotes the utility of a daily plan; ,Activity jU denotes the utility of performing j th 

activity; ,Travel jU denotes the utility of j th trip between two activity locations (Zhuge et al., 2019c).  

In order to simulate parking and refuelling behaviours, the original travel utility (equivalent to the 

utility of enroute travel here, ,EnrouteTravel jU ) needs to be extended by incorporating the utilities of 

parking and enroute refuelling ( ,Parking jU and ,EnrouteRefuelling jU ), resulting in a new travel utility 

function, as presented by Equation (2). ,Parking jU  and ,EnrouteRefuelling jU  will be introduced in Sections 

2.2 and 2.3, respectively. More detailed introductions to ,Activity jU  and ,EnrouteTravel jU  can be found in 

the MATSim book (Horni et al., 2016). 

, , , ,Travel j EnrouteTravel j Parking j EnrouteRefuelling jU U U U                                 (2) 

2.2 Agent-based Modelling of Parking Behaviour in Beijing 

  The new parking model in MATSim-Beijing was developed based on the parking extension of 

MATSim (Horni et al., 2016; Waraich, 2013; Waraich et al., 2012), as well the empirical findings and 

conceptual model by (Zhuge et al., 2019b). Essentially, the parking model is used to simulate how 
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agents choose parking lots at their trip destinations. The new parking model mainly differs from the 

parking extension of MATSim in considering 1) the initial target parking lots, 2) failing to park and 3) 

the constraint on the maximum acceptable time of walking from parking lot to trip destination (Zhuge 

and Shao, 2018).  

  Specifically, an initial target parking lot will be selected for each driver agent when the model is 

initialised, given a set of candiate parking lots that fall into the maximum acceptable walking time of 

the agent (TWalking) (Zhuge and Shao, 2018). As illustrated in Figure 2, Parking Lots A, B and D fall 

into the range and thus will become candidate parking lots to this agent. The maximum acceptable 

walking time (TWalking) may vary from one agent to another. In order to take heterogeneity into 

account, a Multinomial Logit (MNL) Model will be developed to predict the walking time for each 

driver agent, according to their attributes (e.g., sex and income), based on the empirical findings in 

(Zhuge et al., 2019b). Among the candiate parking lots, the one with the highest utility, which can be 

calcualted by Equation (3), will be selected as the initial target parking lot. In this example, Parking 

Lot A will be selected as the initial target parking lot. 

  In the simulation, agents will first drive directly to their initial target parking lots, and they may fail 

to park when all parking spaces are occupied. Then they will try other candiate parking lots (Parking 

Lots B and D in the example above) to see if there are any parking spaces avaialble. If so, then the 

agents will choose the new parking lot instead; Otherwise, they may have to park illegally at their trip 

destinations, which will introduce a big negative utility into the utility of parking ( parkingU ). parkingU  

is composed of the utilities for walking ( WalkingU ), diverting ( ,Diverting ParkingU ) and parking fee 

( Parking feeU ), as presented by Equation (3) (Horni et al., 2016; Waraich, 2013; Zhuge et al., 2019b). 

,parking Walking Diverting Parking Parking fee

Walking Walking Time EnrouteTravel Parking fee Parking fee

U U U U

t V U m 

  

     
                       (3) 

  Where, WalkingU  is the utility of walking from parking lot to trip destination, which is a function of 

walking time ( Walkingt ) and individual time value ( TimeV ); ,Diverting ParkingU denotes the negative utility 

for diverting when an agent fails to park at its target parking lot. ,Diverting ParkingU  is assumed to be 

equivalent to the utility of enroute travel ( EnrouteTravelU ); Parking feeU  is the utility of parking fee 

( Parking feem ). Walking , Parking fee  and Chargingposts  are the parameters to be estimated. 

2.3 Agent-based Modelling of Refuelling Behaviour in Beijing 

  The refuelling model in the MATSim-Beijing is used to simulate the refuelling behaviour of a driver 

agent when it becomes aware of the low states of fuel, based on the empirical findings by Zhuge et al. 
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(2019a), involving in the behaviours of choosing a refuelling station and queueing at a station. The 

assumption here is that only those refuelling stations, which fall into the maximum acceptable time of 

diverting to a station (TDiverting) and the maximum acceptable time of queueing at a station (TWaiting), 

can become its candidate stations. In other words, those stations which either are far away or have 

many vehicles queueing, will not be considered. As illustrated in Figure 3, only Refuelling Stations A, 

B and C fall into the driver’s maximum acceptable diverting time (TDiverting). However, Station B does 

not fall into its maximum acceptable waiting time (TWaiting) due to too many vehicles queueing. In 

addition, both TDiverting and TWaiting may vary from one agent to another. In order to take heterogeneity 

into account, two MNL models will be developed to predict TDiverting and TWaiting, for each driver agent 

according to their attributes, using the empirical findings in (Zhuge et al., 2019a). Furthermore, 

among the candidate stations, the driver agent is assumed to always choose the one with the highest 

utility. The utility function (see Equation (4)) comprises a utility of diverting to a refuelling station 

( ,Diverting RefuellingU , equivalent to ,EnrouteTravel jU ), utility of queueing at a refuelling station ( WaitingU ) and 

utility for the duration of refuelling a vehicle ( RefuellingU ). Here, individual time value ( TimeV ) will also 

be considered.  

,EnrouteReplenishing Diverting Refuelling Waiting Refuelling

EnrouteTravel Waiting Waiting Time Refuelling Refuelling Time

U U U U

U t V t V 

  

      
                   (4) 

2.4 Energy Consumption and Emission Models for Vehicles in Beijing 

  The MATSim-Beijing model also incorporates an energy consumption factor ( FC , kg/km) and 

emission factor ( EF , g/km), which are used to simulate the energy consumptions and vehicular 

emissions, respectively, as presented by Equations (5) and (6) (Zhuge et al., 2019d). We employed the 

factors developed by Yao and Song (2013) and Yao et al. (2013) for Beijing. The energy consumption 

model is linked to refuelling behaviour model, as drivers need to decide when to refuel based on the 

state of energy. The information on vehicular emissions can be further used for both global and local 

environmental impact assessments. In a simulation, the energy consumptions and vehicular emissions 

can be calculated when a vehicle leaves a link. Therefore, the disaggregate results by vehicle can be 

further aggregated into link-based statistics. Both FC  and EF are functions of average speed, and 

the model parameters can be estimated based on real driving experiments, as detailed in Yao and Song 

(2013) and Yao et al. (2013). 

2a
FC b v c v d

v
                                                            (5) 

2e
EF f v g v h

v
                                                            (6) 
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2.5 Sensitivity Analysis (SA)-based Calibration Method 

As reviewed in Section 1.5, Cadyts is one of the most-used calibration tools for MATSim 

(Flötteröd, 2009; Flötteröd et al., 2011; Flötteröd et al., 2012). Due to its behavioural inadequacy, this 

paper will use a Sensitivity Analysis (SA)-based method instead. The method tries to search for an 

optimal parameter combination which can minimize the gap between the simulated and observed data 

(Zhuge and Shao, 2018; Zhuge et al., 2019b; Zhuge et al., 2019c), so as to be behaviourally sound. 

Specifically, the SA-based calibration here will only four influential model parameters to generate the 

candidate parameter combinations, including the probability of performing reroute when agents adjust 

their daily plans, the time step used in the traffic simulation (or the Execution module), the number of 

iterations and the scaling factor for the flow capacity, which were identified through both global and 

local SAs (Saltelli et al., 2008) within a smaller scale Chinese city, Baoding.  

3   Case Study: Beijing, China 

3.1 Scenario Description 

Beijing, China was used as a case study. The MATSim-Beijing model was applied to simulate the 

enroute travel, enroute refuelling and parking behaviours in 2010. An agent- and GIS-based virtual 

creator by (Zhuge et al., 2018) was used to generate input data and initialize the model, primarily 

using the 2010 Household Travel Survey Data. The resulting virtual Beijing contains a synthetic 

population, physical environment, and linkages between agents and between agents and facilities. The 

synthetic population contains persons and households, as well as their characteristics (e.g., gender, 

age and come); Each person has a daily plan which contains detailed travel and activity information 

(e.g., activity location, type and duration). The physical environment is composed of a road transport 

network, activity facilities (e.g., residential buildings and leisure activities) and transport facilities 

(e.g., parking lots and refuelling stations). Note that the private parking lot generator was updated here 

to additionally consider those parking demand which is associated with the first car-based trips of 

each driver but is not based at their homes. More detailed introduction to the 2010 virtual Beijing can 

be found in the work of (Zhuge et al., 2018). It should be noted that a population scaling factor of 4% 

was used. This means that all the associated elements in the simulation, including the population and 

physical environment, need to be scaled down. Post-simulation the results need to be scaled up 

accordingly (Zhuge et al., 2019d). The potential impacts of population scaling on the model results 

will be assessed later in Section 3.5. 
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3.2 Survey-based Calibration of Refuelling and Parking Modules 

Prior to calibrating the Beijing-MATSim model against the traffic flow data (see Section 3.3), the 

data on parking and refuelling behaviours, which was collected from a paper-based questionnaire 

survey in Beijing  from September, 2015 to March, 2016, was firstly used to calibrate the Multinomial 

Logit (MNL) models (see Sections 2.2 and 2.3), as detailed in (Zhuge et al., 2019a) and (Zhuge et al., 

2019b). Note the survey was on the parking and refuelling behaviour of both conventional and electric 

vehicles, but only the results about conventional vehicles were used here for parameter estimations. 

The calibrated MNL models were further used to predict individual choices about the maximum 

acceptable times of walking from parking lot to trip destination (TWalking), of diverting to a refuelling 

station (TDiverting) and of queueing at a station (TWaiting).  

  The hitting ratio, which is the ratio of the number of accurately predicted cases to the total number, 

is a commonly used indicator to describe the accuracy of an MNL model. However, the MNL model 

generally has relatively low prediction accuracy (or small hitting ratio), especially in those cases 

where the number of alternatives is large. This paper therefore proposes another indicator of Hitting 

Degree ( HD ), which can be viewed as a variant of hitting ratio but is looser. HD  indicates the 

degree to which the predicted choice is different from the observed one, which is mathematically 

formulated as Equation (7). If the model makes an exact prediction, then HD  will be zero. 

| |Perdicted Observed

Max Min

A A
HD

A A





                                                  (7) 

  Where, PerdictedA , ObservedA , MaxA  and MinA  denote the predicted, observed, maximum and 

minimum choices, respectively.  

   Table 1 shows the prediction accuracies of the three different MNL models for the maximum 

acceptable walking time (when parking), diverting time (when refuelling) and waiting time (when 

refuelling). The predictive ability of each MNL model was quantified through cross- validation using 

the two indicators, namely hitting ratio and hitting degree. Specifically, in order for cross-validation, 

the sample was divided into training and validation datasets, which accounted for 80% and 20%, 

respectively. Taking walking time for example, the hitting ratio is 49.1%, meaning that 49.1% of the 

predictions could exactly find the right parking choice about walking time. Furthermore, the hitting 

degree is 14.8%, meaning that the predicted alternative on average is less than one-alternative bias, 

which is 33.3% in this four-alternative case, suggesting that the predictive ability of the MNL model 

is relatively acceptable. The hitting ratios for the diverting and waiting times are 38.2% and 38.0%, 

respectively, which are relatively low, but their hitting degrees are acceptable (17.3% and 16.3%, 

respectively). Overall, the predictive ability of the MNL models is not very strong (in part because of 

the relatively high number of alternatives), but is satisfactory (in terms of hitting degrees). Therefore, 
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the MNL models could be used to predict the parking and refuelling choices in the MATSim-Beijing 

simulation. 

3.3 Sensitivity Analysis (SA)-based Model Calibration 

  The Sensitivity Analysis (SA)-based calibration here is to search for an optimal parameter 

combination that can minimize the gap between simulated and observed traffic flow data, given 100 

parameter combinations generated by only varying the four most influential parameters that were 

identified in SAs, as introduced in Section 2.5. The observed traffic flow data for the calibration was 

collected on 144 links at the peak hour (9AM) in 2010.  

  The calibration results of MATSim-Beijing are shown by Figure 4. Specifically, Figure 4-(a) 

presents the first, best and last Mean Absolute Percentage Errors (MAPEs) of each parameter 

combination. Figure 4-(b) shows the corresponding total computing time and the best iteration 

numbers with lowest MAPEs. Here, MAPE and computing time are used to quantify the model 

accuracy and efficiency, respectively. In some cases, a trade-off between model accuracy and 

efficiency needs to be made.  It can be found from Figure 4-(a) that the best MAPEs range widely 

from around 40% to 62%, suggesting that the SA-based calibration method works effectively and is 

able to find the optimal parameter combination minimizing the gap between the simulated and 

observed data. In addition, there appears to be no significant relationship between the calibration 

performance and iteration number, as clearly evident from the parameter combinations indexed from 

50 to 59 that have relatively small MAPEs, but have different best iteration numbers ranging from 

around 10 to 40. The best parameter combination indexed as 51 has the smallest MAPE of 39.9%. 

  As aforementioned, Cadyts is a typical calibration tool for dynamic traffic simulator, especially for 

MATSim. In the case study of the city of Zurich (Horni et al., 2016), Cadyts was able to decrease the 

MAPEs from around 30% to 15% for the period from 8AM to 7PM. The SA-based calibration method 

here has comparatively good performance. Specifically, the difference between the smallest and first 

MAPEs of the best parameter combination is around 23%, compared with the decrement of 15% in 

the case study of Zurich. In addition, the SA-based calibration method has some other advantages 

(e.g., more behaviourally sound) over Cadyts, as discussed in Section 2.5.  

3.4 Simulation Results 

  As the MATSim-Beijing simulation is able to trace the moving trajectories of each agent, as well as 

the usage of transport facilities, such as parking lots and refuelling stations, lots of useful information 

can be extracted from the simulation results through aggregation and can be further used, for example, 

to optimize the layout of transport facilities (e.g., refuelling stations). In this case study, the hourly 

link states, hourly link-based vehicular emissions, and usage of parking lots and refuelling stations 

were aggregated and mapped. Figure 5 and Figure 6 respectively show the link states and link-based 

Jo
ur

na
l P

re
-p

ro
of



12 

 

vehicular emissions at a morning peak hour (8-9AM) and an afternoon off-peak hour (3-4PM). The 

detailed link states and vehicular emissions throughout the whole day are shown in the Supplementary 

Materials. It can be clearly seen that the differences between peak and off-peak hours in traffic flow 

and vehicular emissions are very significant. Figure 7 spatially presents the average occupied time and 

average number of vehicles served at both private and public parking lots. Note that those parking lots 

with no vehicles served were not mapped here. By comparing Figure 7-(a) and -(c), it can be found 

that the majority of parking lots are occupied for a long time, but the public parking lots appear to be 

occupied longer than the private ones, as evident from more dark green dots in Figure 7-(a). For the 

average numbers of vehicles served at public and private parking lots (see Figure 7-(b) and -(d), 

respectively), those parking lots with more vehicles served tend to be located at the central districts, 

and the public parking lots appear to serve more vehicles than the private ones. Figure 8 maps the 

usage of refuelling stations in terms of average waiting time and average numbers of vehicles served 

at refuelling stations. It can be found from Figure 8-(a) that the average waiting times are relatively 

long for most of the refuelling stations, and those refuelling stations with less waiting time are mostly 

located at the outer districts. According to Figure 8-(b), the refuelling stations at the central districts, 

on average, appear to serve more vehicles than those located at the outer districts.  

3.5 Impacts of Population Scaling and Network Simplification 

    As aforementioned, population scaling is generally expected to speed up a simulation and to reduce 

computing time. However, it has been found that the population scaling factor is an influential 

parameter, which can heavily influence the outputs of interest, in the SA of MATSim by Zhuge et al. 

(2019c). In addition to the population scaling, network simplification, which simplifies road network 

by merging short links, is another effective method to speed up these simulations, because running 

MATSim-Beijing with a simplified network can reduce the computing time for both shortest path 

searching and network loading (or simulating the movement of agents). These two common 

approaches can make simulations more efficiently and would be particularly useful for large-scale 

scenarios, such as the Beijing scenario here, though the extent to which they could influence the 

simulation outputs has not been well understood. Therefore, this paper attempts to quantify the 

influence by testing different population scaling factors and simplified networks within the following 

experiments: 

 Experiment-Pop: is to test the influence of population scaling within several sub-experiments 

using scaling factors ranging from 0.01 to 0.1 with an interval of 0.01, as well as factors of 0.15 

and 0.2.  

 Experiment-Net: is to test the influence of network simplification using six different network 

types. They differ from each other in the constraint on the maximum merging length used for 

simplification. Specifically, the simplifying method merges two or more adjacent links only if the 
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total length of these links does not exceed the maximum merging length. Figure 9 shows the 

simplified networks with maximum merging lengths of 100, 300, 500, 1000, 1500 and 2000 

meters (Figure 9(b)-(g), as well as the original one (Figure 9-(a)). 

  Figure 10 and Figure 11 show the impacts of population scaling and network simplification on the 

simulation results, respectively. The impact assessment uses two indicators, namely MAPE and 

computing time, to characterise the effectiveness and efficiency of each simulation, respectively.   

  (1) Impact of Population Scaling on Simulation Results 

  According to Figure 10-(a), it can be found that the population scaling could influence heavily the 

model accuracy if a too small scaling rate (below 1%) is used, but there are no significant differences 

in model accuracy for scaling rates from 2% to 20%. However, as shown in Figure 10-(b), the 

computing time is directly proportional to the scaling rate. In other words, using a small scaling rate 

can significantly decrease the computing time. For the number of iterations required to reach the 

smallest (or best) MAPE, it ranges widely from around 15 to 40, suggesting that there appears to be 

no significant direct relationship between the scaling rate and best iteration number, as the best 

iteration number fluctuates across the scaling rates from 1% to 20%. 

  (2) Impact of Network Simplification on Simulation Results 

  As shown by Figure 11-(a), using the original network (S0) or less simplified networks (such as 

S100 and S300) could increase MAPE. However, for the networks with longer maximum merging 

length (S500-S2000), they tend to have smaller MAPEs. There may be several possible reasons. One 

likely reason may be that the calibrated MATSim-Beijing may only work properly with simplified 

networks that are not significantly different from the one (S2000) used for the MATSim-Beijing 

calibration, as using those less simplified networks could heavily change the resulting traffic flow and 

thus cannot match the simulated and observed data. In addition, those networks with longer maximum 

merging lengths (S500-S2000) get significantly shorter computing time below 10,000 seconds, as 

shown by Figure 11-(b). There appears to be no direct relationship between the maximum merging 

length used for network simplification and the best iteration number.  

4 Conclusions 

  An agent- and activity-based car travel demand model was developed for Beijing, China with the 

explicit simulation of enroute travel, parking and enroute refuelling behaviours, primarily using the 

2010 Household Travel Survey Data and the data on parking and refuelling behaviours collected in a 

questionnaire survey in Beijing from September, 2015 to March, 2016. In order to consider the 

heterogeneous parking and refuelling behaviours, Multinomial Logit (MNL) models were developed 

to predict the individual choices about the maximum acceptable time of walking from parking lot to 
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trip destination, of diverting to a refuelling station and of queueing at a station. The simulation can 

obtain rich fine-grained outputs, including the usage of refuelling stations and parking lots and the 

spatial and temporal distributions of traffic flow and vehicular emissions. Therefore, the model would 

be useful for policy analysis and infrastructure planning. For example, the model can be used to 

evaluate how a parking policy (e.g., parking fee) may influence parking behaviour and further traffic 

flow, energy consumption and vehicular emissions at multiple resolutions (e.g., link-, zone- and 

district- levels). Such information can aid the relevant decision-makings.  

A Sensitivity Analysis (SA)-based calibration method was applied to calibrate the model, 

exhibiting a satisfactory performance, compared to a typical calibration tool, Cadyts. Furthermore, the 

calibrated model was also applied to explore the influences of population scaling and network 

simplification on model outputs, which are two common approaches to speeding up large-scale 

simulations. The results indicated that both approaches could to some extent influence the model 

outputs, though the computing time could be significantly reduced. Therefore, these two approaches 

are suggested to be used with caution. As High Performance Computing (HPC) machines become 

more accessible, parallel computing, which divides a heavy computing task into several sub-tasks and 

allocates them to different nodes, may become a promising approach to speeding up such large-scale 

simulations, as an alternative to the two common approaches. Therefore, the model is planned to be 

run on HPC machines with a whole population and complete road network, which could help fully 

understand the impacts of population scaling and network simplification on model results.   

  The future work on the Beijing activity-based model is discussed as follows: First, the Beijing model 

will be further extended by considering more transport modes, such as public transit and freight 

transport, so as to capture the interactions between different transport modes on the transport network. 

This is expected to make the traffic simulation more realistic and accurate; Second, we used the fixed 

random seed for each simulation, so as to mitigate the impact of randomness across scenarios as far as 

possible. The potential impact of randomness on model results can be assessed by running the model 

with a specific number of random seeds and then comparing the model results. The assessment, 

however, could be computationally expensive, especially to large-scale scenarios. HPC machines 

could be particularly useful here for reducing the total computing time. Third, we calibrated the model 

using link-based traffic flow data. The calibration can be improved by using big data, such as GPS 

trajectory data on private car. For example, the model can be calibrated at the disaggregate level by 

matching the simulated and observed parking and refuelling behaviours. However, such big data is 

not always accessible due to privacy issues.  
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Figure 1 Framework of MATSim-Beijing (Source: Adapted from (Waraich, 2013) and (Zhuge and 

Shao, 2018)) 
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Figure 2 Illustration of Searching for a Parking Lot at Trip Destination 
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Figure 3 Illustration of Searching for a Refuelling Station on a Journey 

 

 

 

 

(a) First, Best and Last MAPEs of Each Parameter Combination 
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(b) Running Time and Best Iteration Numbers of Each Parameter Combination 

 

Figure 4 SA-based Calibration Results of the MATSim-Beijing Model 

 

 

 

  

(a) 8-9AM (b) 3-4PM 

Figure 5 Link States by Hour 
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(a) 8-9AM (b) 3-4PM 

Figure 6 Link-based Vehicular Emissions by Hour (Kilogram) 
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(a) Average Occupied Time of Public Parking 

Lots (seconds) 

(b) Average Numbers of Vehicles Served at 

Public Parking Lots 

  

(c) Average Occupied Time of Private Parking 

Lots (seconds) 

(d) Average Numbers of Vehicles Served at 

Private Parking Lots 

 

Figure 7 The Usage of Parking Lots 
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(a) Average Waiting Time at Refuelling Stations 

(seconds) 

(b) Average Numbers of Vehicles Served at 

Refuelling Stations 

 

Figure 8 The Usage of Refuelling Stations 

 

 

 

  

(a) Original Network with 443279 nodes and 

759396 links 

(b) Simplified Network with 201480 Nodes and 

352041 (Max length= 100 meters) 
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(c) Simplified Network with 90112 nodes and 

167207 links (Max length= 300 meters) 

(d) Simplified Network with 61419 nodes and 

120407 links (Max length= 500 meters) 

  

(e) Simplified Network with 42560 nodes and 

88616 links (Max length= 1000 meters) 

(f) Simplified Network with 37748 nodes and 

80164 links (Max length= 1500 meters) 
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(g) Simplified Network with 35899 nodes and 

76852 links (Max length= 2000 meters) 

 

Figure 9 Maps of Original and Simplified Road Networks in 2010 (Note that only road nodes were 

drawn in the maps) 

 

 

 

 

 

  

(a) Model Accuracy (b) Computing Time 

Figure 10 Impact of Population Scaling on Simulation Results 
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(a) Model Accuracy (b) Computing Time 

 

Figure 11 Impact of Network Simplification on Simulation Results 
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Table 1 Prediction Accuracies of MNL Models for Walking, Diverting and Waiting Times 

 
Hitting Ratio Hitting Degree 

Alternatives (or Choices) in the 

MNL Model 

Walking Time 

(Parking Module) 
49.1% 14.8% Choices 1-4: 5, 10, 15 and 20 min; 

Diverting Time 

(Refuelling Module) 
38.2% 17.3% 

Choices 1-5: 3, 5, 10, 15, and 20 

min 

Waiting Time 

(Refuelling Module) 
38.0% 16.3% Choices 1-5: 0, 3, 5, 10 and 15 min 
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