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Enhanced optical activity using the orbital angular momentum of structured light
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Recent molecular photonics studies have highlighted the significant role that phase-structured light possessing
orbital angular momentum (OAM) can have when interacting with matter. These studies discovered chiroptical
effects sensitive to both the magnitude and sign of the optical OAM in both the absorption and scattering
of twisted photons by molecules and nanoparticles. Specifically, it has been shown how a structured beam
engaging with electric-quadrupole transitions in the material allows a unique sensitivity to the helical-phase
structure of twisted light. In this paper we highlight experimental methodologies and systems suitable to
observe and quantify the chiroptical processes of Rayleigh and Raman optical activity, and the newly discovered
circular-vortex differential scattering effect with structured light—including the importance of off-axis beam
alignment, input beam intensity structure, multipolar moments, and scattering-angle dependencies. It is shown
that with a judicious choice of experimental setup, chiroptical effects that scale with the topological charge �

or OAM of the input beam enable optical activity signals to be enhanced and significantly exceed those based
solely on circularly polarized, unstructured light. The new technique thus offers a highly useful and important
spectroscopic application of structured light. The more detailed role that perfect optical vortices with high
OAM will play in such optical activity effects is now highlighted, to show where there is substantial scope
for experimental application, specifically in vibrational optical activity and chiral spectroscopy.
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I. INTRODUCTION

Optical activity is the intrinsic potential of chiral materials
to exhibit discriminatory interactions with polarized light,
according to their handedness [1,2]. For example, a right-
handed molecule interacts differently with a right-handed
circularly polarized beam than with a left-handed one. The
most well-known examples include circular dichroism and
optical rotation: the former signifies a differential absorption
of left- and right-handed circularly polarized light, while the
latter is a form of circular birefringence which (although
it involves plane polarizations) is commonly interpreted in
terms of differing refractive indices for superimposed left
and right polarizations. The overriding principle of these
chiroptical interactions is simple enough: both light and suit-
ably structured matter may come in two different forms of
handedness. Material handedness in this context stems from
a chiral particle having no improper (rotation-reflection) axis
of symmetry, while the helical structure that the electromag-
netic field vectors trace out when propagating give circularly
polarized light its own chirality (see Fig. 1). The interplay
between these two forms of handedness in a light-matter
interaction produces “natural” chiroptical effects [3]. It is im-
portant to make this distinction of natural chiroptical effects,
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predominantly studied in the realm of chemical physics with
molecular matter, from other areas such as metamaterials,
quantum optics, and plasmonics [4–6], which seek to utilize
achiral or exotic materials and optical systems in the pursuit
of “mimicking” [7] chiral-optical phenomena. Of course, it
has long been understood that achiral molecules can exhibit
chiroptical behavior under suitable circumstances [8], such as
in magnetic [9,10] and induced circular dichroism [11].

Circularly polarized photons convey a spin angular mo-
mentum (SAM) of ±h̄, where the ± designates the direction
that the electric field vector helically traces out in space [either
clockwise (left-handed) or anticlockwise (right-handed)], and
it is this helicity that gives circularly polarized light its hand-
edness. In the early 1990s it was discovered that laser beams
produced in the laboratory could also convey an additional
optical orbital angular momentum (OAM) of ±|�|h̄, where
� is known as the topological charge or winding number,
being able to take on any integer value [12]. These light
beams propagate with a helical or twisted structure in their
wave front, producing an optical vortex due to their azimuthal
phase e±i�φ . Therefore these structured beams also possess
a handedness, twisting either to the right or to the left (see
Fig. 1), irrespective of polarization. Studies on these optical
vortices are flourishing, due to wide applicability including
optical nanomanipulation, viscometry, free-space communi-
cations and information transfer, imaging, and microscopy;
the reader is referred to a dedicated set of texts and articles
on this large and ever-expanding field [13–18].

Studies of whether the handedness of an optical vortex—
through its OAM and topological charge ±|�|—could pro-
duce chiroptical interactions with chiral molecules in a sim-
ilar manner to that of circularly polarized light were first
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FIG. 1. Different forms of handedness of light. Upper: Depictions of the electric (or magnetic) field vector in circularly polarized light.
Lower: Wave front of twisted beams with their transverse phase distributions.

published nearly two decades ago [19] (though Padgett and
Allen had already done experiments in 1993 with negative
results that went unpublished, looking at this very question
[20]). The published work proved that dipole transitions [en-
gaging both electric-dipole (E1) and magnetic-dipole (M1)
forms of coupling] could not produce discriminatory single-
photon absorption with twisted light. This conclusion was
subsequently verified by experiments [21–23]. The theoret-
ical studies were restrictive in that they did not allow for
electric-quadrupole (E2) transition moments, which in their
interaction with the radiation field are in general of a similar
magnitude to the magnetic-dipole couplings. Despite the fact
that E2 couplings deliver vanishing contributions to conven-
tional circular dichroism and optical rotation in media with
an isotropic distribution of local orientations, as in most
fluids, their effect can become significant when coupled to
structured light [24,25]. Recent studies [26,27] have identified
that electric-quadrupole E2 interactions are in fact requisite in
order to observe natural chiroptical interactions that depend
on the handedness of a paraxial propagating optical vortex.
Using quantum electrodynamical (QED) methodology, it was
shown how the rate of single-photon absorption by a chiral
molecule from a freely propagating and paraxial Laguerre-
Gaussian beam (a specific type of structured OAM-carrying
beam) can be discriminatory when the process takes place
in anisotropic molecular systems. The effect, which engages
interferences between electric dipole and quadrupole transi-
tions, was termed circular-vortex dichroism (CVD) due to its
similar and well-known relative circular dichroism (CD) [26].
Follow-up studies [27,28] first revealed how discriminatory
absorption can take place in achiral media, a supplementary
analysis highlighting unique forms of Rayleigh and Raman
optical activity using twisted photons.

Beyond these molecular QED studies looking at optical
activity, a substantial amount of work on discriminatory inter-
actions using the handedness of a twisted light beam has been
carried out very recently. These studies, distinctly different
from the “natural” QED ones highlighted above, have been

able to induce chiroptical effects with OAM by utilizing the
helicity-dependent intensity distributions that arise through
the spin-orbit coupling of focused or scattered nonparaxial
light with circular polarization [29]. Broadening the definition
of “circular dichroism,” fundamentally related effects have
been identified in nonchiral nanostructures [30]; effects of
a similar kind have also been discovered in achiral atomic
matter [31] and chiral mesostructures [32], and they have been
utilized in the characterization of material chirality [33] and
spectroscopic probes of magnetism [34]. Other studies have
investigated the exploitation of plasmonic coupling in material
interactions with twisted light to engineer chiroptical effects
[35–40], and recent theoretical work has predicted an x-ray
analog to the CVD effect [41].

The two particularly important manifestations of optical
activity that this paper is concerned with are the chiroptical
processes of Rayleigh and Raman optical activity [42]: the
differential scattering of circularly polarized light by chiral
molecules. Raman optical activity (confusingly given the
acronym “ROA” in the literature) [43] is almost exclusively
involved with vibrational transitions. Alongside vibrational
circular dichroism (VCD) in the infrared, ROA represents
the key methodology for studying the structure of chiral
molecules through vibrational optical activity (VOA). The
virtues of ROA include proportionately stronger signals than
VCD; the opportunity to observe, using visible wavelengths,
structural features of chirality directly associated with the nu-
clear framework of chiral species; also the possibility of using
resonance enhancement, tuning toward the absorption bands
of specific functional groups in order to deduce the chirality
of their immediate intramolecular environment. Exhaustive
reviews of the application of ROA and VOA can be found
elsewhere [44–53], but it is worth noting in particular their
extremely proficient application in determining the molecular
structures and motions of important biomolecules, such as
viruses, carbohydrates, and proteins, even as large as insulin
[54]. Optical activity effects and the signals produced in
experiments are inherently much weaker than the usually
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dominant electric-dipole couplings due to the fact they stem
from interferences between electric-dipole and the higher-
order electric-quadrupole and magnetic-dipole interactions
with the field. As such, a great deal of research effort has
gone into enhancing optical activity effects and signals in
spectroscopic applications [55–61].

The aim of this paper is to significantly build on
the recently discovered circular-vortex differential scattering
(CVDS) Rayleigh and Raman optical activity effect [28] by
highlighting how, using high-OAM beams, the ensuing optical
activity and rate of differential scattering (both Raman and
Rayleigh) can be significantly enhanced in comparison to
the currently utilized zero-OAM unstructured light. Further
insights are provided by studying the distinct scattering-angle
dependence of CVDS, particularly in comparison to standard
circular-differential scattering, and which in consequence lead
to insights in potential experimental methodologies to observe
and quantify the effect. Moreover, we explicitly develop the
underlying theory to elicit the conditions under which these
interactions may be observed in general, and highlight the im-
portant role that perfect optical vortices and beams with large
values of optical OAM will play in spectroscopic applications
of structured light.

In Sec. II we introduce the circular-vortex differential
scattering (CVDS) effect in a general form, and highlight its
applicability to both Rayleigh and Raman optical activity;
Sec. III looks at the dependence of CVDS on the input beam
OAM and the scattering angle of the output light, specifically
highlighting the different angle dependencies of structured
and nonstructured light; Sec. IV highlights and discusses the
intricacies of experimental observation of CVDS; we end with
a discussion and summary in Sec. V.

II. RAYLEIGH AND RAMAN OPTICAL ACTIVITY
WITH STRUCTURED LIGHT

A. General formalism

In standard Rayleigh and Raman optical activity the scat-
tering rate of circularly polarized light (and hence the in-
tensity of scattered light) depends on the relative helicity of
the incident light and the handedness of the optically active
molecule: a right-handed molecule will scatter right-handed
circularly polarized light at a different rate from left-handed,
for example. The mechanism for this circular-differential
scattering (CDS) stems from the interferences of the well-
known frequency-dependent electric-dipole molecular polar-
izability tensor αi j (ω,−ω′) with both the mixed electric-
dipole magnetic-dipole gyration Gi j (ω,−ω′) and electric-
dipole electric-quadrupole polarizability Ai jk (ω,−ω′) ten-
sors, i.e., “αG” and “αA” coupling [1,2] (the input optical
frequency denoted by ω and the scattered light frequency
ω′). For all molecules, αi j (ω,−ω′) has nonvanishing ten-
sor components, whereas only chiral molecules can support
the corresponding interferences between Gi j (ω,−ω′) and
Ai jk (ω,−ω′) polarizabilities with αi j (ω,−ω′). These polar-
izabilities take on the following forms, where μm0 and mm0

are the transition electric- and magnetic-dipole moments,
respectively, between the initial |0〉 and final |m〉 material

states—and it is important to note that only Ai jk (ω,−ω′)
involves electric-quadrupole transition moments Qm0

jk :

αm0
i j (ω,−ω′) =

∑
r

[
μmr

i μr0
j

Er0 − h̄ω
+ μmr

j μr0
i

Er0 + h̄ω′

]
, (2.1)

Gm0
i j (ω,−ω′) =

∑
r

[
μmr

i mr0
j

Er0 − h̄ω
+ mmr

j μr0
i

Er0 + h̄ω′

]
, (2.2)

Am0
i jk (ω,−ω′) =

∑
r

[
μmr

i Qr0
jk

Er0 − h̄ω
+ Qmr

jk μr0
i

Er0 + h̄ω′

]
. (2.3)

As is evident on inspection, these three tensors involve cou-
pling of E12, E1M1, and E1E2 form, respectively. The su-
perscripts in the polarizabilities (2.1)–(2.3) denote transitions
occurring from the ground state |0〉 to the final state |m〉,
through a virtual intermediate state |r〉; Er0 = Er − E0 rep-
resents the difference between the intermediate energy state
and the initial energy state of the material; the Latin subscript
indices denote standard suffix notation for vector components,
where summation over repeated indices is assumed implicit in
rate expressions throughout the paper.

The rate of differential Rayleigh and Raman scattering of
OAM-conveying Laguerre-Gaussian light [28] has recently
been derived using the multipolar Power-Zienau-Woolley
Hamiltonian formalism [2,62]. In this work it was found that
the well-known CDS for both Rayleigh and Raman optical
activity is supplemented by a further chiroptical effect, if
the incident light possesses OAM. This mechanism has been
termed circular-vortex differential scattering (CVDS) as it
depends on material chirality and the sign of � (as well as
the circular polarization), and importantly it only contributes
through αA coupling.

Consider an initial system state consisting of a molecule
|E0(ξ)〉, and optical mode occupancy |n(k, η, �, p)〉 of n
LG photons in the mode (k, η, �, p), where k is the mag-
nitude of the optical wave vector, η is the beam polariza-
tion, � the winding number (topological charge), and p a
radial distribution index, the secondary index of the La-
guerre polynomial of order �. In the course of the funda-
mental CVDS interaction, the system progresses to a final
state |{n − 1}(k, η, �, p)〉|1(k′, η′)〉|Em(ξ)〉, where the scat-
tered photon is in some mode (k′, η′). The full derivation for
the scattered radiant intensity for CVDS in isotropic systems
(such as a liquid) is given in the Appendix. After much
manipulation, the intensity elements that arise specifically
through αA coupling and the beam structure can be recast in
the following form:

IαA(k′) = βik
{
(k̂

′ · c) + (ẑ · ē′)(c · e′) + (b̄′ · ē)(e · e′)

− (b · e′)(ē · ē′) − ik−1[ f −1
|�|,p(r)∂r f|�|,p(r) − r−1]

× [(r̂ · ē′)(c · e′) − (r̂ × e · e′)(ē · ē′)]

+ �k−1r−1(φ̂ · ē′)(c · e′)

− �k−1r−1(φ̂ × e · e′)(ē · ē′)
}
αm0

λμA′m0
λμ , (2.4)

where β = I0(r)k4/240ε2
0π

2 and I0(r) = nh̄c2k f 2
|�|,p(r)/V is

the input irradiance; e′ and e are unit electric polarization
vectors for the scattered (indicated by a prime) and incident
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photon, respectively (b relates to the magnetic field), and
c = e × ē (where the overbar denotes the complex conjugate);
αm0

λμ is the orientationally averaged [63] form of the molecular
polarizability (2.1), and similarly the averaged form of (2.3)
is A′m0

λμ = ελαβAm0
αβμ; φ̂ and r̂ are the azimuthal and radial

unit vectors, respectively, with r the radial distance of the
scattering molecule from the beam axis. In the definition of
the input irradiance, V is an arbitrary quantization volume and
f|�|,p(r) is a radial distribution function.

The terms dependent on r̂ will be present for any non-
plane-wave laser beam, simply signaling a dependence on ra-
dial intensity gradients. In this case it is expedient to note that
they are either nondiscriminatory with regard to the circular-
polarization state (i.e., they do not engage in optical activity)
or unobservable imaginary quantities (see Appendix). Fur-
thermore, they are also independent of �—although it is worth
pointing out that the term in r̂/r does originate from the helical
phase, and would therefore be absent in non-OAM-carrying
beams. In light of this we may neglect the r̂-dependent terms
from now on.

The corresponding scattered intensity contribution from
αG coupling for structured light is similarly

IαG(k′) = −β

c

[{4(ē′ · e)(e′ · b̄) + 4(e′ · ē)(b̄
′ · e) − (e · b̄)

− (e′ · b̄
′
) − (ē′ · b̄)(e · e′) − (ē · b̄

′
)(e · e′)}αm0

λλ Gm0
μμ

+{−2(ē′ · e)(e′ · b̄) − 2(e′ · ē)(b̄
′ · e)

+ 3(e · b̄) + 3(e′ · b̄
′
) + 3(ē′ · b̄)(e · e′)

+ 3(ē · b̄
′
)(e · e′)}αm0

λμGm0
λμ

]
, (2.5)

where Gm0
λμ is the averaged version of the electric-magnetic

dipole mixed polarizability tensor (2.2). Here we reiterate
that as both αm0

λμ and Gm0
λμ only involve dipole interactions

(namely E1 and M1, lacking any E2 interactions), (2.5) does
not involve any dependence on the OAM of the beam through
an � dependence, unlike the contribution from αA (2.4). It is
to be understood that the total optical activity for Rayleigh
and Raman optical activity is a sum of the two distinct
contributions (2.4) and (2.5).

In comparing the form of the result previously given for
CVDS in [28], the new result (2.4) is of a general form and
therefore more amenable to manipulation in order to extract
the physics of CVDS. If the beam were to possess no OAM,
such that � = 0, our results (2.4) and (2.5) would reduce to the
well-known results of Rayleigh and Raman optical activity for
a Gaussian beam. The new result (2.4) also includes the terms
dependent on the radial gradient of the beam, which as shown
has no direct connection to the optical OAM nor possesses
optical activity behavior.

Experiments are usually concerned with the particular
cases where e′, the polarization of the scattered photon, is
resolved for components either in the k̂k̂

′
plane e′

(‖) or normal
e′

(⊥) to it (Fig. 2).
The scattered intensities (2.4) and (2.5) can then be taken

one step further by introducing the dimensionless circu-
lar intensity difference (CID) first proposed by Barron and

FIG. 2. Schematic scattering geometry for the scattering of an
input twisted LG mode photon, by a molecule or nanoparticle, at an
arbitrary angle θ . For the input light k̂ = ẑ; for the scattered light
k̂

′ = ẑ′.

Buckingham,


μ(θ ) = Iθ (R → μ) − Iθ (L → μ)

Iθ (R → μ) + Iθ (L → μ)
(μ = ⊥, ‖), (2.6)

where R and L represent the right-handed and left-handed
circular-polarization state of the incident light, respectively,
and ⊥ corresponds to scattered light that is polarized trans-
verse to the scattering k̂k̂

′
plane, while ‖ corresponds to

scattered light polarized in the k̂k̂
′

plane. The quantity in
the numerator of (2.6) simply represents the polarization-
dependent differences in the circular differential scattering
contributions (2.4) and (2.5), because the scattering rate of
circularly polarized photons for standard, non-optically-active
α2 scattering is the same for left- and right-handed polariza-
tions; the quantity in the denominator is, by the same logic,
dominated by the standard Rayleigh and Raman scattering
effect for nonresonant light:

Iα2
(k′) = β

[{4(e · ē′)(ē · e′) − (e · e′)(ē · ē′) − 1}αm0
λλ αm0

μμ

+{3 − 2(e · ē′)(ē · e′) + 3(e · e′)(ē · ē′)}αm0
λμαm0

λμ

]
.

(2.7)

It has previously been discovered how both Raman and
Rayleigh optical activity have an important sensitivity to the
scattering angle θ [64]. By studying this angle dependence, it
has been shown how it is possible to experimentally verify
the different contributions to circular-differential scattering
(the scattering of nonvortex light) associated with the E2
and M1 couplings (i.e., the A and G tensors, respectively)
and their relative contributions. It is evident that a similar
analysis for the CVDS effect will be of special interest due
to the distinct role that E2 interactions play for twisted light.
By evaluating the polarization scalar products in the above
intensity expressions we derive the CVDS effect for both
scattering scenarios and for an arbitrary scattering angle θ

(often in scattering theories the angle is restricted to either
forward 180◦, backward 0◦, or at 90◦ [1]).

Using rigorous quantum electrodynamical methods (de-
tailed in the Appendix) we thus derive a set of parameters
from (2.4), (2.5), and (2.7) that are expressed in terms of
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the molecular response tensors, αλμ, G′
λμ = iGλμ, and Aλμ

′ =
ελαβAαβμ:

a = 4

c
(−ωαλμA′

λμ − αλλG′
μμ + 3αλμG′

λμ), (2.8)

b = 2

c
(−3ωαλμA′

λμ + 5αλλG′
μμ − 5αλμG′

λμ), (2.9)

c = 2

c
(3ωαλμA′

λμ + 3αλλG′
μμ + αλμG′

λμ), (2.10)

d = �

r
αλμA′

λμ cos φ, (2.11)

f = 6αλμαλμ − 2αλλαμμ, (2.12)

g = αλμαλμ + 3αλλαμμ. (2.13)

In deriving these parameters we have made use of the

following relations: cL/R = ∓ik̂, eL/R = √
2

−1
(e(‖) ± ie(⊥) ),

b(L/R) = ∓ie(L/R), and the well-known coordinate transforma-
tion for cylindrical to Cartesian unit vectors. The CID rate
(2.6) that includes the distinct CVDS contribution (2.11) can
be secured for radiation with polarization components in the
k̂k̂

′
plane in terms of (2.8)–(2.13) and succinctly expressed as


‖(�, θ ) = a + b cos θ + ccos2θ + d sin 2θ

f + g cos2θ
, (2.14)

while the corresponding form for scattered light whose polar-
ization component is completely transverse to the k̂k̂

′
plane is


⊥(θ ) = a + b cos θ + c

f + g
. (2.15)

From the two results (2.14) and (2.15), before any analysis
of the angle dependence, we immediately discover that the
CVDS effect (2.11) can only be observed for scattered light
with polarization components in the k̂k̂

′
plane: regardless of

the scattering angle, if the scattered light is analyzed for a
component polarized in the transverse plane there is no CVDS
effect. This follows from the fact that CVDS depends on the
topological charge and hence the orbital angular momentum
of the input beam, which has no components in the transverse
plane. The result therefore offers an extremely simple way to
experimentally verify and quantify the CVDS effect. With a
polarization analyzer positioned so as to measure transverse
components, the CID result will not change upon changing the
incident light’s OAM; with a polarization analyzer set up to
measure the k̂k̂

′
-plane components, the CID will change upon

changing the OAM of the input beam, including departures
from the case of when � = 0, where the standard CDS effect
will be observed. In conducting such experiments, it will of
course be necessary to take into account variations in the
radial intensity distributions of the input, according to the
forms of the associated Laguerre polynomials—for which
exact analytical expressions are well known.

B. Vibrational dependence

Up until this point, the given results apply specifically to
Rayleigh (elastic) scattering. For Raman scattering, the same
CID expressions apply, but with molecular property tensors

replaced by vibrational Raman transition tensors between
vibrational states. These changes are well known and estab-
lished in the literature [1,2], but it is worth outlining them
here, particularly as the Raman form of optical activity is
much more important than the Rayleigh form.

For chiral molecules, each allowed Raman transition will
generate nonzero components of transition polarizabilities of
not only E12 form but also E1M1 and E1E2. Each correspond-
ing Raman polarizability tensor describes transitions between
an initial vibrational state |ν〉 and final vibrational state |ν ′〉;
so, for example, αm0

λμ is replaced by 〈ν ′|αi j (Q)|ν〉, where
αi j (Q) is the electronic polarizability whose components de-
pend parametrically on the normal vibrational coordinates Q.
This effective polarizability αi j (Q) may be expanded in a
Taylor series about the equilibrium position Qe, where the
leading term is

αm0
λμ (ω,−ω′) = ∂αλμ(Q)

∂Q

∣∣∣∣
Qe

〈ν ′|Q − Qe|ν〉. (2.16)

The Raman intensity is therefore determined by the vari-
ation of the polarizability tensor with a normal coordinate
of vibration; an analogous treatment leads to similar forms
of Gm0

λμ = 〈ν ′|Gλμ(Q)|ν〉 and A′m0
λμ = 〈ν ′|Aλμ(Q)|ν〉. When the

appropriate substitutions are made in Eqs. (2.14) and (2.15),
the vibrational part 〈ν ′|Q − Qe|ν〉 in each numerator cancels
with the same factor in the denominator, so that the given
equations can legitimately be applied with the coefficients
a − f directly reinterpreted in terms of the transition ten-
sors αm0

λμ , Gm0
λμ, and A′m0

λμ . All the ensuing results in this
article are therefore readily applicable to both Rayleigh and
Raman forms of optical activity by following these simple
modifications.

On application to the results of ROA spectroscopy, circular
difference spectra can be recorded and the variation with
scattering angle determined for each vibrational band. Here,
distinctive differences will arise in the degrees of sensitivity
of the results, through their dependence on A′m0

λμ , to regis-
tration of the phase structure of the structured light. With
increasing topological charge �, each active vibration will
respond differently to the tighter phase gradient through its
engagement with their E2 transition moments. For example, in
a chiral polysubstituted benzene, it may be anticipated that the
asymmetric in-plane deformation mode of the aromatic center
will be more sensitive, and so give a larger CVDS signal, than
vibrations of the peripheral groups. Worth mentioning here is
a theoretical study that highlighted how, because of the optical
OAM, new selection rules for standard Raman scattering with
vortex light lead to activation of silent phonon modes in cubic
crystals [65].

III. SCATTERING-ANGLE AND OAM DEPENDENCE

The CIDs (2.14) and (2.15) have both been derived in a
form that allows for an arbitrary scattering-angle θ analysis,
and include all contributions to the optical activity scatter-
ing from both αG and αA coupling normalized against the
dominate α2 scattering. In this analysis we are primarily con-
cerned with the role of structured light in optical activity and
specifically the CVDS effect. We now restrict consideration to
the optical activity effects solely due to αA interactions (2.4),
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discarding the αG and α2 contributions, as neither of these
engage the helical-phase structure and OAM of the structured
beam. Although these would be important for an empirical
analysis, we are concerned with extracting the novel physics
of this new form of optical activity that has been discovered
for structured light.

Using (2.14) and (2.15), along with the parameters (2.8)–
(2.15), we produce the following differences in scattered
intensity:


IαA(k′, ‖)=βk

[
3cos2θ − 3 cos θ − 2 + �

2kr
sin 2θ cos φ

]

×αm0
λμA′m0

λμ (3.1)

and


IαA(k′,⊥) = βk[1 − 3 cos θ ]αm0
λμA′m0

λμ . (3.2)

As already highlighted in the previous section, scattered light
with a purely transverse polarization with respect to k′ (3.2)
exhibits no CVDS effect, and therefore we concentrate now
on (3.1).

In (3.1), the final term in square brackets represents the
CVDS term, and for beams without OAM � = 0 it vanishes;
the other three terms correspond to the standard and well-
known CDS effect, and the total scattered intensity difference
is a sum of both CDS and CVDS. There are five distinct
and important differences that are worth highlighting between
the CVDS effect and standard CDS that exist in the former,
arising from the OAM dependence:

(a) The CVDS effect has a different scattering-angle de-
pendence from the CDS term. The CVDS effect is at a
maximum when θ = π

4 , 3π
4 , while the maximum for CDS

occurs at θ = π (and at θ = π the CVDS effect is zero).
(b) CVDS importantly depends linearly on �, and so a

beam with a vortex charge of unity and that twists to the
left � = +1 gives the opposite result for the same vortex that
twists to the right � = −1. This is therefore a chiroptical effect
that is dependent on the sign of the optical OAM.

(c) Further to point (b) and crucially, CVDS also de-
pends on the magnitude of �. As � increases in magnitude
the correspondingly more heavily weighted contribution of
CVDS will begin to dominate the standard CDS contribu-
tion to the scattered intensity difference. It is important to
recall that � is an unbounded integer, with experimentally
realized vortex beams having already achieved values over
5000 [66], and so the mechanism of CVDS represents a
way to significantly enhance the optical activity signals in
experiment.

(d) In comparison to standard CDS, CVDS is also depen-
dent on the factor of (kr)−1, that is, the inverse of the product
of the wave number of the incident light and the radial position
of chiral particle in the transverse profile of the beam. As
a result of the Laguerre polynomial structure imposed on a
Gaussian profile, an LG beam typically comprises a set of
concentric rings of intensity, centered on the beam axis. Often,
attention focuses on beams with p = 0, where for � � 1 a
single “donut” beam forms. In such a case the general result is
easy to see: particles positioned closer to the inside ring of the
intensity donut (where r is small and the gradient of the fields

FIG. 3. Plot of differential scattered intensity of light with k̂k̂
′
-

plane polarization components against scattering angle (in degrees).
Solid line (purple) represents the combined CDS and CVDS effect
for an � = 1 incident beam and kr = 1; the dashed curve (green)
represents the CVDS effect alone for � = 1; and the dotted curve
(red) is solely the CDS contribution (i.e., � = 0).

is larger) will produce a CVDS effect that can contribute more
significantly than the CDS term.

(e) Finally, the CVDS term is dependent on the cosine of
the azimuthal angle φ, connected to the structure of the input
laser; this dependence will be discussed further in Sec. IV.

The angle dependence of the scattered intensity difference
for CDS, CVDS, and their sum is illustrated in Fig. 3 for
the indicative case of �/kr = 1. Evidently, for the low value
of �/kr = 1, the CVDS contribution is seen to perturb the
well-known CDS effect only slightly; note a shift of about 10
degrees in the angular minimum.

To investigate the effect of increasing the OAM of the inci-
dent laser beam, we may fix kr = 1 and study the scattering-
angle dependence of the scattered intensity difference for
values of � = 1, 5, 10, and 20, as exhibited in Fig. 4. Clearly
evident is the substantial increase in magnitude of the scat-
tered intensity difference for high values of �, and also

FIG. 4. Plot of differential scattered intensity of light with k̂k̂
′
-

plane polarization components against scattering angle (kr = 1).
Varying the topological charge values highlights the scattered inten-
sity difference enhancement for high values of �, and also shows how
this changes for any given scattering angle. The shift in maximum
scattering differences stems from a simple increase in the weighted
contribution of the CVDS effect as � increases.
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FIG. 5. Plot of differential scattered intensity of light with k̂k̂
′
-

plane polarization components against scattering angle. Varying the
sign of topological charge values highlights the chiroptical effect due
to the sign of �.

the corresponding shift in maximum scattering angle as the
CVDS contribution becomes more heavily weighted at high
� compared to the standard CDS. As such, for high values of
� and a judiciously placed polarization analyzer, the optical
activity signal can be significantly enhanced compared to
that of CDS experiments where the laser beam possesses
no optical OAM (i.e., the currently used form of light used
in experiments). This is an important consequence, and a
beneficial aspect of using structured light to enhance signals
in chiral spectroscopy applications, as conventional optical
activity effects are inherently weak due to their dependence
on M1 and E2 interactions with the field.

Another important result from using twisted light beams
is that they add a further chiroptical effect (or influence) to
Rayleigh and Raman optical activity. The CVDS effect is de-
pendent not only on the magnitude of �, but also its sign. The
plot in Fig. 5 exhibits this chiroptical effect by highlighting
how for the given positive values of � = 1, 5, 10, and 20, the
corresponding negative values give a different (or discrimina-
tory) differential scattering intensity (the negative to be more
specific). This is therefore a vortex analog to how standard
CDS works with circular polarizations: in standard CDS, the
differential scattering rate arises due to a difference in the scat-
tering of right- and left-handed circularly polarized photons;
in CVDS this is also the case, alongside the fact that the signal
also differs for a right-handed vortex versus a left-handed
vortex. If we denote the helicity of light as σ = ±1 for circular
polarizations, we can see that this effect follows the sim-
ple relationships that it is invariant under the transformation
(σ, �) → (−σ,−�), but not (σ, �) → (−σ, �) or (σ, �) →
(σ,−�), or alternatively denoting right-handedness as “R”
and left-handedness as “L,” then LL = RR �= LR = RL. This
mirrors a symmetry principle first established for circular
vortex dichroism [26,27].

Experimentally, CDS is often observed by using circular
polarization modulation, switching rapidly between σ and −σ

(i.e., the handedness of the polarization) [67]. Very recently a
device that can modulate the OAM of a laser continuously
from � to −� at high speed has been produced [68]. By
fixing the incident circular polarization of light, using such
a device would therefore allow for the topological charge

modulation analog of circular polarization used in standard
CDS experiments for the CVDS effect.

IV. OBSERVING CVDS

In Sec. III we looked at how the scattering angle and the
OAM of the input beam influence the CVDS effect. We now
develop a more detailed appraisal of point (e) from the list
in Sec. III, specifically focusing on the fact that the CVDS
effect has a cos φ dependence, which the standard CDS does
not. It is well known that in both Cartesian and cylindrical
coordinate systems, the coordinate z has an equivalent role
in both; as such, any property that depends on ẑ through an
axial gradient (via an E2 interaction with the field) takes on
a form for vortex light similar to the form it would take for
a standard laser beam without OAM, both in the paraxial
and nonparaxial regime (though in the latter there are subtle
differences). This is why, alongside the novel CVDS effect
due to the helical-phase structure, our methodology always
permits recovery of the corresponding results for standard,
well-known CDS. However, as we have seen, quadrupole tran-
sitions can also be driven by gradients in the transverse plane
(specifically, helical-phase gradients that do not exist in light
without OAM); for cylindrical coordinates these gradients
depend on r̂ and φ̂. Significantly, these do not follow such a
simple coordinate transformation into Cartesian coordinates:
r̂ = x̂ cos φ + ŷ sin φ; φ̂ = −x̂ sin φ + ŷ cos φ. The cylindrical
symmetry of OAM modes therefore dictates that any optical
interaction dependent linearly on either r̂ or φ̂ should vanish
upon a total integration over the transverse beam profile.
Indeed, this is what is observed with the CVDS effect,
simply stemming from 〈φ̂〉 = ∫ 2π

0 cos φ dφ = [sin φ]2π
0 = 0.

Trivially, this tells us then that when Rayleigh or Raman
scattering is detected from the whole volume of the sample
irradiated by the input beam, then the CVDS result vanishes,
leaving only the standard CDS effect. This therefore means
that in order to observe CVDS we require a simple off-axis
beam alignment, where the maximum effect would occur for
half of the beam being incident on the sample, or alternatively
focusing elements in the detection arm are aligned to intercept
local sections of the laser beam [69].

The φ̂ terms are only present in beams with a helical-phase
structure, and this phase structure rotates uniformly about
the beam axis (rather than at individual points in space; see
Fig. 6). Thus it is to always be anticipated that any chiroptical
effect stemming from the gradients of transverse phase struc-
ture that depend linearly on � vanish upon integration over
the total beam profile—though axial phase gradient effects
will still persist and relate to well-known optical activity
phenomena, in this particular case CDS. Physically this can
be seen to be a consequence of the fact that the OAM is a
global (or spatial) property of the beam, whereas SAM (and
circular polarization) is a local property. Interestingly, it is
well known that the total angular momentum of light can man-
ifest disparate characteristics stemming from its constituent
SAM and OAM contributions. For example, the difference
of rotation characteristics of light’s SAM and OAM are most
beautifully revealed in their mechanical effects on a particle:
SAM causes the particle to spin around its own center of
mass, while OAM causes the particle to orbit around the
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FIG. 6. Rotational transformations of the electromagnetic fields:
left is a local rotation where the electric field vector (red arrow) at
every position is rotated (SAM); right is a global rotation of the
whole complex-amplitude structure of a twisted beam (OAM) around
a given axis (z in our case). The SAM rotates around every point in
the beam; the OAM rotates around the beam axis. Both correspond
to left-handed forms of circularly polarized light and twisted light,
respectively (figure adapted from [74,75]).

beam axis [70–72] (though a circularly polarized beam with
an inhomogeneous intensity can itself cause an orbital motion
of particles [73]). Here we have described disparate charac-
teristics of light’s total angular momentum in a spectroscopic
application.

We now finally comment on a remaining issue with re-
gard to practical strategies for observing CVDS. There is no
doubt that the intricate dependence of the intensity profile
[through the radial distribution function f|�|,p(r)] and radius
R� = w0

√|�|/2 of a Laguerre-Gaussian beam on � suggests
that quantitative analysis in spectroscopic applications may
be complicated. First, for any given value of �, the (kr)−1

dependence requires further thought in the pursuit of such
quantitative predictions. Evidently, chiral particles positioned
closer to the beam axis will contribute more significantly to
the CVDS effect, but will equally experience a smaller inten-
sity of light. However, as already discussed, this is to be ex-
pected as quadrupole transitions are driven by gradients, both
axial and transverse. Experimentally, to offset the effects of
a weaker intensity, we may increase the input beam intensity,
use shorter-wavelength light, or utilize a more focused beam
with a smaller beam waist. Of course, in order to observe the
pure OAM effects described in this work, the beam should not
be so focused as to cause appreciable spin-orbit interactions
of light [29]. At high values of � individual molecules close
to the beam center (and therefore close to the axial phase
singularity) might receive a negligible input intensity. This
is a factor that might impinge negatively on securing CVDS
signals from isolated regions of a heterogeneous sample, for
example. To this end, in order to compensate for the broader
beam spread, and corresponding reduction in power per unit
area, it would be possible to apply appropriately higher levels
of overall input intensity without the risk of competition from
optically nonlinear effects that might normally intervene with
a focused beam.

The �-dependent intensity distributions and beam profile
width therefore make the CVDS effect and CID difficult to
compare between any two different values of OAM of the

incident beam. However, the recent development of so-called
“perfect” optical vortices [76–80] could play an extremely
important role in experimentally quantifying CVDS, and
potentially any twisted light-matter spectroscopic technique.
These perfect vortices possess an intensity profile and radius
that are independent of �, but importantly their helical-phase
structure still depends on �. This therefore enables the study
of the twisted beam coupling to matter for varying values of
� without having to account for a varying intensity structure.
Such an input should most readily allow for the utilization and
exploitation of the linear scaling of CVDS with �, yielding
significantly enhanced chiroptical spectroscopic signals as
discussed in Sec. III. Indeed, perfect optical vortices have
been experimentally produced that exhibit values of � = 90
[81]. Evidently, the number and variety of experimentally
controllable parameters that influence the observable CVDS
and scattered intensities offer a rich scope of interplay in
potential experiments pursuing the enhancement of optical
activity signals with structured light.

V. DISCUSSION AND SUMMARY

In this paper we have derived and secured tractable results
for the newly discovered circular-vortex differential scattering
effect. Our formalism has allowed us to elicit many novel
aspects of the effect (a list can be found in Sec. III). In partic-
ular, we have seen its unique scattering-angle dependence in
comparison to the well-known circular differential scattering
Rayleigh and Raman optical activity. Also, the analysis has
shown how a dependence on the sign and magnitude of the
OAM conveyed by the incident structured light beam offers
the ability to significantly enhance the optical activity signals,
appreciably beyond those possible with the current techniques
based on laser beams with zero OAM. We would also like to
draw attention to the fact the recently discovered CVD effect
[26,27] will also exhibit some of the important properties
of the CVDS discussed in this paper, such as producing
enhanced optical activity signals with an increase in input
laser OAM. Furthermore, we have highlighted the distinct
role that perfect optical vortices will have in the pursuit of
observing and quantifying these enhanced optical activity
signals.

To date, there have been few studies of the spectroscopic
application of twisted light, with work in the nascent area
generally concerned with answering fundamental questions
such as whether optical OAM could be involved in atomic
electronic transitions [82,83]. Interestingly, a few exploratory
studies on spectroscopic applications of structured light pos-
sessing OAM and optical activity have indicated that such
a chiroptical effect is possible [84,85], and the same group
has recently published work where recognizable chiroptical
effects occur in the transmission of vortex beams though
mouse brain tissue [86]. From the analysis undertaken in
this paper, it is clear that the application of twisted light in
spectroscopy, particularly chiral spectroscopy, offers much
additional scope for potentially unique applications in molec-
ular systems, exploiting the more complicated and intricate
structures of the OAM-bearing laser beam. Chiroptical spec-
troscopic techniques are becoming increasingly more impor-
tant as the level of analysis is improving due to rapid advances
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in computational chemistry [49,87,88], and the CVDS effect
clearly has an important role to play in these spectroscopies,
and especially vibrational optical activity. Future work will
aim to develop the theory for ROA with structured light,
beyond incident circular polarizations as described here, to ad-
dress the potential novelties of resolving circular components

of the Raman signal, and also dual circular polarization
experiments [89].
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APPENDIX

First we highlight the derivation of Eq. (2.4) from the main article, taking the matrix element for the process derived in
Ref. [28] (the factor of 1/2 difference stems from a different definition of the normalization constant):

M f i = −
(

h̄c

2ε0V

)√
kk′n f|�|,p(r)ē′

iek

{
αm0

ik +
(

i�φ̂l

r
+ ikẑl + r̂l

[
f −1
|�|,p(r)∂r f|�|,p(r) − r−1

])
Am0

ikl − ik′
lA

m0
kil

}
e−ik′·reikzei�φ. (A1)

The scattered radiant intensity of light per molecule is given by [2]

I (k′) = k′3V
4π2h̄

|M f i|2. (A2)

Inserting (A1) into (A2) produces

I (k′) =
[

nh̄c2k

V
f 2
|�|,p(r)

]
k′4

8π2ε2
0

∣∣∣∣ē′
iek

{
αm0

ik +
(

i�φ̂l

r
+ ikẑl + r̂l

[
f −1
|�|,p(r)∂r f|�|,p(r) − r−1])Am0

ikl − ik′
lA

m0
kil

}∣∣∣∣
2

, (A3)

where the first term in square brackets on the right-hand side is the irradiance of the input light, i.e., the incident power per unit
area I0(r) = nh̄c2k f 2

|�|,p(r)/V . We now look to carry out the modulus square term in (A3) and retaining only the αA terms, which
yields

IαA(k′) = − I0(r)k′4

8π2ε2
0

ē′
ie

′
jek ēm

[(
i�φ̂l

r
+ ikẑl + r̂l

[
f −1
|�|,p(r)∂r f|�|,p(r) − r−1

])
αm0

ik Am0
jml − ik′

lα
m0
ik Am0

m jl

]
. (A4)

As it stands (A4) is applicable to systems with oriented molecules—a solid, for example. By accounting for molecular tumbling
through a fully three-dimensional rotational average of the molecular factors in (A4), we may derive a formula applicable to
the more pertinent case in optical activity studies of an isotropic sample, such as a liquid. Using standard techniques [63], the
fifth-rank full rotational tensor average required for (A4) is calculated via

I (k′) = − I0(r)k′4

8π2ε2
0

〈
ē′

ie
′
jek ēm

[(
i�φ̂l

r
+ ikẑl + r̂l

[
f −1
|�|,p(r)∂r f|�|,p(r) − r−1])〈RiλRkμRjνRmoRlπ 〉

− ik′
l〈RiλRkμRmνRjoRlπ 〉

]
αm0

λμAm0
νoπ

〉
, (A5)

where angular brackets denote the average, Latin indices are related to space-fixed frames, and Greek to molecule-fixes frames,
and

〈RiλRkμRjνRmoRlπ 〉 = 1
30 (εi jmδklελνoδμπ + εi jlδkmελνπδμo + εk jmδilεμνoδλπ + εk jlδimεμνπδλo). (A6)

The average (A6) is a shorter version than usually quoted for fifth-rank tensor averaging because in this case we may utilize
the fact that the pairs of indices l , k and m, l are index-symmetric along with the fact that the quadrupole moment is traceless,
i.e., Ai j j = 0. Furthermore, Eq. (A6) specifically relates to the first average in angular brackets on the right-hand side of (A5),
but the simple transformation of m ↔ j gives the correct form necessary to carry out the other average in (A5). There are
twelve individual tensor contractions and contributions to the total scattered intensity (A5) to undertake in the total average; an
indicative one I ′(k′) is

I ′(k′) = − I0(r)k′4

8π2ε2
0

ik
1

30
ē′

ie
′
jek ēmẑlεk jmδilεμνoδλπαm0

λμAm0
νoπ

= − I0(r)k′4

8π2ε2
0

ik
1

30
(ẑ · ē′)(ē × e) · e′αm0

λπ A′m0
μπ

= I0(r)k′4

240π2ε2
0

ik(ẑ · ē′)(c · e′)αm0
λπ A′m0

μπ , (A7)
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where c = e × ē. Carrying out all the tensor contractions, noting the orthogonal nature of (k̂ · e) = 0, (k̂
′ · e′) = 0, and that for

scattered in-plane c′(‖) = 0 and transverse polarizations c′(⊥) = 0, gives the result (2.4) from the main article:

IαA(k′) = βik
{

(k̂
′ · c) + (ẑ · ē′)(c · e′) + (b̄′ · ē)(e · e′) − (b · e′)(ē · ē′) − ik−1[ f −1

|�|,p(r)∂r f|�|,p(r) − r−1]
× [(r̂ · ē′)(c · e′) − (r̂ × e · e′)(ē · ē′)] + �k−1r−1(φ̂ · ē′)(c · e′) − �k−1r−1(φ̂ × e · e′)(ē · ē′)

}
αm0

λμA′m0
λμ , (A8)

where we have used A′ m0
λμ = ελαβAm0

αβμ and β = I0(r)k4/240ε2
0π

2. We have also used k = k′ which is correct for Rayleigh
scattering, and an approximation for Raman scattering, justified because vibrational energy differences are usually very small
compared to the electronic energies featured in the molecular response tensors.

Analogous results follow similar lines of derivation for α2 scattering if only the first term dependent on αm0
ik is retained in

(A1), while the necessary matrix element to derive αG contributions to scattering is

M f i = −
(

h̄

4ε0V

)√
kk′n f|�|,p(r)

(
cē′

iekα
m0
ik + ē′

ibkGm0
ik +b̄′

iekḠm0
ki

)
e−ik′·reikzei�φ. (A9)

The ensuing orientational averages are of fourth rank, in comparison to the fifth-rank average (A6).
In order to develop our scattered intensities into a circular intensity differential ratio, where the scattered radiation has either

in-plane or transverse polarization, for an arbitrary scattering angle involves numerous calculations. To exhibit the methods we
will explicitly highlight the calculations for the αA case of key interest, and simply report the other results.

We first calculate the scattered intensity of input right-handed circularly polarized (R) into in-plane polarized scattered light
I (αA)(R →‖). Carrying out the vector products for each term in (A8) and using the scattering geometry exhibited in Fig. 2 of the
main article,

i(k̂
′ · cR) = i(k̂

′ · iẑ) = − cos θ, (A10)

i(ẑ · ē′
(‖) )(c

R · e′
(‖) ) = i2(ẑ · ē′

(‖) )(ẑ · e′
(‖) ) = −sin2θ = cos2θ − 1, (A11)

where we have used eL/R = 1√
2
(e(‖) ± ie(⊥) ) and thus cL/R = eL/R × ēL/R = ∓ik̂ = ∓ iẑ.

i(b̄′
(‖) · ēR)(eR · e′

(‖) ) = i

{
ē′

(⊥) ·
[

1√
2

(e(‖) + ie(⊥) )

]}{[
1√
2

(e(‖) − ie(⊥) )

]
· e′

(‖)

}

= i

2
[(ē′

(⊥) · e(‖) + ie(⊥) · ē′
(⊥) )(e′

(‖) · e(‖) − ie(⊥) · e′
(‖) )]

= −1

2
e′

(‖) · e(‖) = −1

2
cos θ, (A12)

exploiting the fact that k̂ × ê = b̂.

−i(bR · e′
(‖) )(ēR · ē′

(‖) ) = −i(ieR · e′
(‖) )(ēR · ē′

(‖) )

= −i2

({[
1√
2

(e(‖) − ie(⊥) )

]
· e′

(‖)

}{[
1√
2

(e(‖) + ie(⊥) )

]
· ē′

(‖)

})

= 1

2
(e′

(‖) · e(‖) )(ē′
(‖) · e(‖) ) = 1

2
cos2θ, (A13)

given the identity b̂
(L/R) = ∓iê(L/R).

i�

kr
(φ̂ · ē′

(‖) )(c
R · e′

(‖) ) = i�

kr
[(−x̂ sin φ + ŷ cos φ) · ē′

(‖/ŷ′ )](iẑ · e′
(‖/ŷ′ ) )

= − �

kr
(ē′

(‖/ŷ′ ) · ŷ cos φ)(ẑ · e′
(‖/ŷ′ ) )

= �

kr
sin θ cos θ cos φ = �

2kr
sin 2θ cos φ, (A14)

utilizing the well-known coordinate transformation φ̂ = −x̂ sin φ + ŷ cos φ, and well-known trigonometric identities.

− i�

kr
[(φ̂ × eR) · e′

(‖)](ēR · ē′
(‖) ) = i�

kr

{
(x̂ sin φ + ŷ cos φ) ×

[
1√
2

(e(‖) − ie(⊥) )

]
· e′

(‖/ŷ′)

}
(ēR · ē′

(‖/ŷ′))

= i�√
2kr

[(−ẑ sin φ − iẑ cos φ) · e′
(‖/ŷ′)]

[
1√
2

(e(‖) + ie(⊥) ) · ē′
(‖/ŷ′)

]
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= Re
i�

2kr
(sin θ sin φ + i sin θ cos φ) cos θ

= − �

4kr
sin 2θ cos φ. (A15)

Using the fact that I (αA)(R →‖) = −I (αA)(L →‖) now allows us to write


IαA(k′, ‖) = βk

[
3cos2θ − 3 cos θ − 2 + �

2kr
sin 2θ cos φ

]
αm0

λμAm0
λμ. (A16)

We now calculate the scattered intensity of light with transverse polarization I (αA)(R → ⊥):

i(k̂
′ · cR) = i(k̂

′ · iẑ) = − cos θ, (A17)

i(ẑ · ē′
(⊥) )(c

R · e′
(⊥) ) = 0, (A18)

i(b̄′
(⊥) · ēR)(eR · e′

(⊥) ) = i

{
−ē′

(‖) ·
[

1√
2

(e(‖) + ie(⊥) )

]}{[
1√
2

(e(‖) − ie(⊥) )

]
· e′

(⊥)

}

= − i

2
[(ē′

(‖) · e(‖) + ie(⊥) · ē′
(‖) )(e(‖) · e′

(⊥) − ie(⊥) · e′
(⊥) )]

= −1

2
ē′

(‖) · e(‖) = −1

2
cos θ, (A19)

−i(bR · e′
(⊥) )(ēR · ē′

(⊥) ) = −i(ieR · e′
(⊥) )(ēR · ē′

(⊥) )

= −i2

({[
1√
2

(e(‖) − ie(⊥) )

]
· e′

(⊥)

}{[
1√
2

(e(‖) + ie(⊥) )

]
· ē′

(⊥)

})

= 1

2
(e′

(⊥) · e(⊥) )(ē′
(⊥) · e(⊥) ) = 1

2
, (A20)

i�

kr
(φ̂ · ē′

(⊥) )(c
R · e′

(⊥) ) = i�

kr
[(−x̂ sin φ + ŷ cos φ) · ē′

(⊥/x̂′ )](iẑ · e′
(⊥/x̂′ ) ) = 0, (A21)

where this contribution vanishes because of the final dot product on the right-hand side.

− i�

kr
[(φ̂ × eR) · e′

(⊥)](ēR · ē′
(⊥) ) = i�

kr

{
(x̂ sin φ + ŷ cos φ) ×

[
1√
2

(e(‖) − ie(⊥) )

]
· e′

(⊥/x̂′ )

}
(ēR · ē′

(⊥/x̂′ ) )

= i�√
2kr

[(−ẑ sin φ − iẑ cos φ) · e′
(⊥/x̂′ )]

[
1√
2

(e(‖) + ie(⊥) ) · e′
(⊥/x̂′ )

]
= 0. (A22)

This contribution vanishes because of the terms in the first pair of square brackets on the right-hand side. Understanding that
I (αA)(R → ⊥) = −I (αA)(L → ⊥), we obtain


IαA(k′,⊥) = βk[1 − 3 cos θ ]αm0
λμAm0

λμ. (A23)

The calculations for I (α2 )(R/L →‖), I (αG)(R →‖), and I (αG)(L →‖) follow along similar lines, and are given as

Iα2
(k′)(R/L →‖) = β

2

[
(3cos2θ − 2)αm0

λλ αm0
μμ + (cos2θ + 6)αm0

λμαm0
λμ

]
, (A24)

IαG(k′)(R →‖) = −IαG(k′)(L →‖)

= β

c

[
(3cos2θ − 5 cos θ − 2)αm0

λλ G′m0
μμ + (cos2θ + 5 cos θ + 6)αm0

λμG′m0
λμ

]
, (A25)

Iα2
(k′)(R/L → ⊥) = β

2

[
αm0

λλ αm0
μμ + 7αm0

λμαm0
λμ

]
, (A26)

and

IαG(k′)(R → ⊥) = −IαG(k′)(L → ⊥)

= β

c

[
(1 − 5 cos θ )αm0

λλ G′m0
μμ + (5 cos θ + 7)αm0

λμG′m0
λμ

]
. (A27)

From these scattered intensity contributions and using (2.3) from the main article, the CID ratios (2.11) and (2.12) are found.
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r̂-dependent terms. Although we neglected the r̂ in (A8) in the article for reasons detailed there, we now finally give their
contributions to the CID ratios as per above for completeness.

−C(r̂ × eR · e′
(‖) )(ēR · ē′

(‖) ) = −C

{
(x̂ cos φ + ŷ sin φ) ×

[
1√
2

(e(‖) − ie(⊥) )

]
· e′

(‖/ŷ′ )

}
(ēR · ē′

(‖/ŷ′ ) )

= −C[(−ẑ cos φ − iẑ sin φ) · e′
(‖/ŷ′ )]

[
1√
2

(e(‖) + ie(⊥) ) · ē′
(‖/ŷ′ )

]

= −CRe
1√
2

(sin θ cos φ + i sin θ sin φ) cos θ

= −C
1

2

1√
2

sin 2θ cos φ, (A28)

where C = [ f −1
|�|,p(r)∂r f|�|,p(r) − r−1]. In this case I (αA)(R →‖) = I (αA)(L →‖), and therefore the differential (but obviously not

the sum) is zero (as expected because these terms are not discriminatory). For the case of I (αA)(R → ⊥),

−C(r̂ × eR · e′
(⊥) )(ēR · ē′

(⊥) ) = −C

{
(x̂ sin φ + ŷ cos φ) ×

[
1√
2

(e(‖) − ie(⊥) )

]
· e′

(⊥/x̂′ )

}
(ēR · ē′

(⊥/x̂′ ) )

= −C
1√
2

[(−ẑ cos φ − iẑ sin φ) · e′
(⊥/x̂′ )]

[
1√
2

(e(‖) + ie(⊥) ) · e′
(⊥/x̂′ )

]
= 0, (A29)

where again I (αA)(R → ⊥) = I (αA)(L → ⊥). Finally we have the terms

C(r̂ · ē′)(cR/L · e′) = ±iC(r̂ · ē′)(k̂ · e′). (A30)

This contribution is imaginary and therefore taking the real part does not contribute to the observable rate of scattering.
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