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Methods for random-effects meta-analysis require an estimate of the
between-study variance, 𝜏2. The performance of estimators of 𝜏2 (measured
by bias and coverage) affects their usefulness in assessing heterogeneity of
study-level effects and also the performance of related estimators of the overall
effect. However, as we show, the performance of the methods varies widely
among effect measures. For the effect measures mean difference (MD) and
standardized MD (SMD), we use improved effect-measure-specific approxi-
mations to the expected value of Q for both MD and SMD to introduce two
new methods of point estimation of 𝜏2 for MD (Welch-type and corrected
DerSimonian-Laird) and one WT interval method. We also introduce one point
estimator and one interval estimator for 𝜏2 in SMD. Extensive simulations
compare our methods with four point estimators of 𝜏2 (the popular methods
of DerSimonian-Laird, restricted maximum likelihood, and Mandel and Paule,
and the less-familiar method of Jackson) and four interval estimators for 𝜏2 (pro-
file likelihood, Q-profile, Biggerstaff and Jackson, and Jackson). We also study
related point and interval estimators of the overall effect, including an estimator
whose weights use only study-level sample sizes. We provide measure-specific
recommendations from our comprehensive simulation study and discuss an
example.
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1 INTRODUCTION

Meta-analysis is a statistical methodology for combining estimated effects from several studies in order to assess their het-
erogeneity and obtain an overall estimate. In this paper, we focus on meta-analysis of continuous outcomes. The data and,
often, existing tradition determine the choice of outcome measure. In a comparative study with continuous subject-level
data for a treatment arm (T) and a control arm (C), the customary outcome measures are the mean difference (MD) and
the standardized MD (SMD). Part 2, Chapter 9, of the Cochrane Handbook1 pointed out that the choice between MD and
SMD depends on whether “outcome measurements in all studies are made on the same scale.” However, fields of applica-
tion have established preferences: MD in medicine and SMD in social sciences. In ecology, almost half of all meta-analyses
use another outcome measure, the log-transformed ratio of means (RoM), also called the response ratio.2,3 We plan to
discuss RoM in a separate paper.
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If the studies can be assumed to have the same true effect, a meta-analysis uses a fixed-effect (FE) model (common-effect
model) to combine the estimates. Otherwise, the studies' true effects can depart from homogeneity in a variety of ways.
Most commonly, a random-effects (RE) model regards those effects as a sample from a distribution and summarizes their
heterogeneity via its variance, usually denoted by 𝜏2. (Another approach, which we do not discuss further, allows the stud-
ies' true effects to differ without following a distribution.4) The between-studies variance, 𝜏2, has a key role in estimates of
the mean of the distribution of random effects; but it is also important as a quantitative indication of heterogeneity,5 espe-
cially because the interpretation of the popular I2 measure6 is problematic.7,8 In studying estimation for meta-analysis of
MD and SMD, we focus first on 𝜏2 and then proceed to the overall effect.

Veroniki et al9 provide a comprehensive overview and recommendations on general-purpose methods (which can
be used with any measure of effect) of estimating 𝜏2 and its uncertainty. Such a review, however, does not take
into account the important evidence that the performance of those methods varies widely among effect measures.
Veroniki et al9(Section 6.1) mention this variation only in passing, as a hypothetical possibility. To address this important
issue, we introduce new methods, specific to MD and SMD, that could perform better than the general-purpose ones.

Veroniki et al9 recommend four methods of estimating 𝜏2: the well-established methods of DerSimonian and Laird,10

Mandel and Paule,11 and restricted maximum likelihood, and the less-familiar method of Jackson.12 Three of these four
methods match moments to the asymptotic distribution of Cochran's Q statistic, and the fourth ignores the randomness
of the inverse-variance weights. However, they all may be applicable only for large sample sizes.

As an alternative, we use improved effect-measure-specific approximations to the expected value of Q for both
MD13 and SMD14 to introduce two new moment-based point estimators of 𝜏2 for MD (Welch-type [WT] and corrected
DerSimonian-Laird [CDL]) and one WT interval estimator. We also introduce one moment-based point estimator and
one interval estimator for 𝜏2 in SMD.

Any review on comparative performance of the existing methods, such as Veroniki et al,9 currently can draw on limited
empirical information, which we summarize in Appendix A in the Supplementary Materials. Existing gaps in evidence for
MD include a complete lack of simulations using unpooled estimators of the study-level variance; instead, some studies
have used the pooled estimator, and others, equivalently, have generated one normally distributed effect measure and
an independent chi-squared estimate of the variance. The pooled estimator is equivalent to the unpooled estimator only
when the sample sizes are equal within the study. So far, the only two studies12,15 of coverage investigated a very limited
number of interval estimators of 𝜏2. In addition, studies have not examined the effect of estimation of 𝜏2 on coverage of
the overall mean (Petropoulou and Mavridis16 consider only inverse-variance-weighted estimators). For SMD, no studies
have investigated coverage of 𝜏2. Only one study17 investigated coverage of the overall SMD, 𝛿, but only for 𝛿 = 0.5.

Therefore, we undertook an extensive simulation study to evaluate our new methods of estimating heterogeneity
variance for MD and SMD and to compare them with existing methods, aiming also to address the gaps in evidence.
We also study coverage of confidence intervals for 𝜏2 achieved by five methods, comparing our Q-profile methods
based on improved approximations to the distribution of Cochran's Q with the Q-profile method of Viechtbauer,18

profile-likelihood-based intervals, and methods by Biggerstaff and Jackson19 and Jackson.12

For each estimator of 𝜏2, we also study bias of the corresponding inverse-variance-weighted estimator of the overall
effect. As our work progressed, it became clear that those inverse-variance-weighted estimators generally had unaccept-
able bias for SMD. Therefore, we added an estimator (SSW) whose weights depend only on the sample sizes of the treat-
ment and control arms. We study the coverage of the confidence intervals associated with the inverse-variance-weighted
estimators, and also the HKSJ interval, the HKSJ interval using the improved estimator of 𝜏2, and the interval centered
at SSW and using the improved 𝜏2 in estimating its variance.

The structure of this paper is as follows. In Section 2, we briefly review the continuous effect measures MD and SMD.
Section 3 describes the standard random-effects model. Section 4 lists the methods for point estimation and interval
estimation of a between-study variance. Section 5 lists the methods for point and interval estimation of the overall effect.
Section 6 reports on our extensive simulation study. Section 7 discusses an example for SMD. Section 8 concludes with
a discussion of practical implications for meta-analysis of MD and SMD, including recommendations on the choice of
methods.

2 MD AND SMD

We assume that each of the K studies in the meta-analysis consists of two arms, treatment(T) and control (C), with sample
sizes niT and niC. The total sample size in study i is ni = niT + niC. We denote the ratio of the control sample size to the
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total by qi = niC∕ni. The subject-level data in each arm are assumed to be normally distributed with means 𝜇iT and 𝜇iC
and variances 𝜎2

iT and 𝜎2
iC. The sample means are x̄i 𝑗 , and the sample variances are s2

i 𝑗 , for i = 1, … ,K and j = C or T.

2.1 Mean difference
The MD effect measure is

𝜇i = 𝜇iT − 𝜇iC, estimated by 𝑦i = x̄iT − x̄iC,

with variance 𝜎2
i = 𝜎2

iT∕niT + 𝜎2
iC∕niC, estimated by

v2
i = �̂�2

i = s2
iT∕niT + s2

iC∕niC. (1)

s2
iT and s2

iC do not depend on 𝜇iT and 𝜇iC, so �̂�2
i does not involve 𝜇i. In the best-case scenario for traditional

meta-analysis methods, for normal data, the sample means are independent of the sample variances (and therefore of
inverse-variance-based weights). However, the relation of the between-study variance 𝜏2 and the within-study variances
𝜎2

i may affect quality of estimation. Sometimes the pooled sample variance, given by Equation (2), is used instead of v2
i .

Then, however, unequal variances in the treatment and control arms can adversely affect estimation.13

2.2 Standardized mean difference
The SMD effect measure is

𝛿i =
𝜇iT − 𝜇iC

𝜎i
.

The variances in the treatment and control arms are usually assumed to be equal. Therefore, 𝜎i is estimated by the square
root of the pooled sample variance

s2
i =

(niT − 1)s2
iT + (niC − 1)s2

iC

niT + niC − 2
. (2)

The plug-in estimator di = (x̄iT − x̄iC)∕si, known as Cohen's d, is biased in small samples, and we do not consider it further.
Instead, we study the unbiased estimator

gi = J(mi)
x̄iT − x̄iC

si
,

where mi = niT + niC − 2, and the factor

J(m) =
Γ
(

m
2

)
√

m
2
Γ
(

m−1
2

) ,
often approximated by 1 − 3∕(4 m − 1), corrects for bias.20 This estimator of 𝛿 is sometimes called Hedges's g. For the
variance of gi, we use the unbiased estimator

v2
i = niT + niC

niTniC
+
(

1 − (mi − 2)
miJ(mi)2

)
g2

i , (3)

derived by Hedges.20 The sample SMD gi has a scaled noncentral t-distribution with noncentrality parameter
[niqi(1 − qi)]1/2𝛿i: √

niqi(1 − qi)
J(mi)

gi ∼ tmi

(
[niqi(1 − qi)]1∕2𝛿i

)
. (4)

Cohen21 categorized values of 𝛿 = 0.2, 0.5, 0.8 as small, medium, and large effect sizes. However, these definitions of
“small,” “medium,” and “large” may not be appropriate outside the behavioral sciences. Ferguson22 proposed the values
0.41, 1.15, 2.70 as benchmarks in the social sciences. In an empirical study of 21 ecological meta-analyses by Møller and
Jennions,23 136 observed values of SMD varied in magnitude from 0.005 to 3.416, with mean 0.721 and 95% confidence
interval (0.622-0.820). Unfortunately, little is known about the range of 𝜏2 for SMD in various applications.
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3 STANDARD RANDOM-EFFECTS MODEL

In meta-analysis, the standard random-effects model assumes that within- and between-study variabilities are accounted
for by approximately normal distributions of within- and between-study effects. For a generic measure of effect,

�̂�i ∼ N
(
𝜃i, 𝜎

2
i
)

and 𝜃i ∼ N(𝜃, 𝜏2), (5)

resulting in the marginal distribution �̂�i ∼ N(𝜃, 𝜎2
i + 𝜏2). �̂�i is the estimate of the effect in Study i, and its within-study

variance is 𝜎2
i , estimated by �̂�2

i , i = 1, … ,K. 𝜏2 is the between-study variance, which is estimated by 𝜏2. The overall effect
𝜃 can be estimated by the weighted mean

�̂�RE =

K∑
i=1

ŵi(𝜏2)�̂�i

K∑
i=1

ŵi(𝜏2)

, (6)

where the ŵi(𝜏2) = (�̂�2
i + 𝜏2)−1 are inverse-variance weights. The FE estimate �̂� uses weights ŵi = ŵi(0).

If wi = 1∕Var(�̂�i), the variance of the weighted mean of the �̂�i is 1∕
∑

wi. Thus, many authors estimate the variance of
�̂�RE by [

∑K
i=1 ŵi(𝜏2)]−1. In practice, however, this estimate may not be satisfactory.24-26

4 METHODS OF ESTIMATING BETWEEN-STUDY VARIANCE

4.1 Point estimators
Our study includes the four methods recommended by Veroniki et al9: DerSimonian-Laird (DL), restricted
maximum-likelihood (REML), Mandel-Paule (MP), and Jackson (J). In the interest of transparency and reproducibility,
we review the details of these methods in Web Appendix B1. In Sections 4.1.1 and 4.1.2, we introduce two new methods
for MD and one new method for SMD.

4.1.1 Point estimation of 𝝉2 for MD by the WT and CDL methods
Because the ŵi(𝜏2) in (6) involve the �̂�2

i , K−1 is an adequate approximation for the expected value of Cochran's Q statistic
only for very large sample sizes. However, this approximation is used in all moment methods for estimating 𝜏2. As an
alternative one can use an improved, effect-measure-specific approximation to the expected value of Q. Corrected MP-type
moment-based methods for estimating 𝜏2 equate the Q statistic, with weights ŵi(𝜏2), to the first moment of an improved
approximate null distribution of Q. Corrected DerSimonian-Laird–type methods equate the Q statistic, with weights ŵ(0),
to the first nonnull moment of Q.

More-realistic approximations to the null distribution of Q are available for several effect measures. These approxima-
tions do not treat the estimates �̂�2

i as equal to 𝜎2
i . For MD, Kulinskaya et al13 proposed an approximation based on the

method of Welch.27 This method calculates corrected first two moments of Q, 𝜅1 = E[Q] and 𝜅2 = Var[Q], under the null
hypothesis of homogeneity and then approximates the null distribution of Q by an F distribution: ĉFK−1,𝑓2

with matched
moments. The estimated degrees of freedom 𝑓2 and the scale factor ĉ are functions of K, the niT and niC, and the �̂�2

iT
and �̂�2

iC.
To simplify notation, with wi = 1∕Var(�̂�i), let W =

∑
wi, W(k) =

∑
wi

k, and pi = 1 − wi∕W, and let

𝛾i =

(
𝜎4

iT

n2
iT𝑓iT

+
𝜎4

iC

n2
iC𝑓iC

)
, (7)

where fi j = ni j − 1 is the number of degrees of freedom for group j of study i, j = T,C. Then, the null moments of Q for
MD13 are

𝜅1 ≈ K − 1 + 2
∑

i
w2

i 𝛾i p2
i ; 𝜅2 ≈ 2(K − 1) + 14

∑
i

w2
i 𝛾i p2

i . (8)
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We propose a new moment-based estimator of 𝜏2 for MD based on this improved approximation. Let EWT(Q) = 𝜅1
denote the corrected expected value of Q. Then, one obtains the WT estimator of 𝜏2 in the spirit of Mandel and Paule11 by
substituting �̂�2

i for 𝜎2
i where Var(�̂�i) appears in 𝜅1 to obtain ÊWT(Q) and iteratively solving

Q(𝜏2) =
K∑

i=1

(𝜃i − �̂�RE)2

�̂�2
i + 𝜏2

= ÊWT(Q). (9)

We denote the resulting estimator of 𝜏2 by 𝜏2
WT . This proposal assumes that using the true 𝜏2 in the denominator in Q(𝜏2)

would achieve the null value of E(Q). However, this assumption is motivated by the standard assumption of a chi-squared
distribution and, as we show in Section 6.1.2, is disproved by simulations. This is not surprising, as the null distribution
of Q is better approximated by an F distribution.13

We also propose another new moment-based estimator of 𝜏2 for MD based on the improved first moment of Q and the
same term in 𝜏2 as in DerSimonian-Laird.10 With

E(Q) ≈ K − 1 + 2
∑

i
w2

i 𝛾ip2
i + 𝜏2(W − W(2)∕W),

and substituting �̂�2
i for 𝜎2

i in E(Q) (as above) and Q for E(Q), the CDL estimator is given by

𝜏2
CDL = max

(
Q − (K − 1) − 2

∑
i ŵ2

i �̂�ip̂2
i

Ŵ − Ŵ(2)∕Ŵ
, 0

)
.

The difference from the WT estimator is that CDL uses the improved nonnull first moment of Q.

4.1.2 Point estimation of 𝝉2 for SMD by the Kulinskaya-Dollinger-Bjørkestøl method
For SMD, Kulinskaya et al14 derived O(1∕n) corrections to moments of Q and suggested using the chi-squared distribu-
tion with degrees of freedom equal to the estimate of the corrected first moment to approximate the distribution of Q.
Kulinskaya et al14 give expressions from which it can be calculated, along with a computer program in R.

We propose a new moment-based estimator of 𝜏2 for SMD in the spirit of Mandel and Paule11 based on this improved
approximation. Let EKDB(Q) denote the corrected expected value of Q. Then, one obtains the KDB estimate of 𝜏2 by
iteratively solving Equation (9) with EKDB(Q) instead of EWT(Q) in the right-hand side.

We denote the resulting estimator of 𝜏2 by 𝜏2
KDB.

4.2 Interval estimators
Among the confidence-interval methods reviewed by Veroniki et al,9 our study includes four: profile-likelihood (PL),
Q-profile (QP), Biggerstaff and Jackson (BJ), and Jackson (J). (Veroniki et al consider combinations of a point estimator
and an interval estimator, and they point out that some combinations are not appropriate, because the interval estimator
may yield CIs that do not contain the particular point estimate of the between-studies variance.) We review the details
of these methods in Web Appendix B2. In Section 4.2.1, we introduce two new interval estimators, one for MD and the
other for SMD.

4.2.1 WT interval and Kulinskaya-Dollinger-Bjørkestøl interval
We propose a new WT confidence interval for the between-study variance for MD. This interval for 𝜏2 combines the
Q-profile approach and the improved approximation by Kulinskaya et al13 based on the method of Welch27 (ie, the scaled
F distribution with K − 1 and 𝑓2 degrees of freedom based on the corrected first two moments of Q).

This corrected Q-profile confidence interval can be estimated from the lower and upper quantiles of FQ, the cumulative
distribution function for the improved approximation to the distribution of Q:

Q(𝜏2
L) = FQ;0.975 Q(𝜏2

U) = FQ;0.025 (10)

The upper and lower confidence limits for 𝜏2 can be calculated iteratively.
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Similarly, when the effect measure is SMD, the Kulinskaya-Dollinger-Bjørkestøl (KDB) confidence interval for 𝜏2 is
based on the chi-squared distribution with the corrected first moment developed by Kulinskaya et al.14

5 METHODS OF ESTIMATING OVERALL EFFECT

Most of the point estimators of the overall effect have corresponding interval estimators, but some do not. Therefore, we
describe point estimators and interval estimators in separate sections.

5.1 Point estimators
A random-effects method that estimates 𝜃 by a weighted mean with inverse-variance weights, as in Equation (6), is deter-
mined by the particular 𝜏2 that it uses in ŵi(𝜏2). The best-known and most widely used estimator, �̂�DL, was introduced by
DerSimonian and Laird10; it uses 𝜏2

DL. Its shortcomings, in particular bias and below-nominal coverage of the companion
confidence interval, have led numerous authors to propose alternative estimators of 𝜏2. Some of those shortcomings arose
from the derivation underlying 𝜏2

DL, which uses the 𝜎2
i and 𝜏2 and then substitutes the �̂�2

i and 𝜏2. Unfortunately, the alter-
native methods REML, J, and MP generally rely on that same unsupported substitution; for MD, CDL attempts to reduce
its impact.

In an attempt to reduce the bias in estimating the overall SMD that we encountered in the inverse-variance-weighted
estimators, we included a point estimator whose weights depend only on the studies' sample sizes.28,29 For this estimator
(SSW), wi = ñi = niTniC∕(niT +niC); that is, wi omits the term in g2

i in Equation (3); ñi is the effective sample size in Study i.

5.2 Interval estimators
The point estimators DL, REML, J, MP, WT, CDL, and KDB have companion interval estimators of 𝜃. The customary
approach estimates the variance of �̂�RE by [

∑K
i=1 ŵi(𝜏2)]−1 and bases the half-width of the interval on the normal dis-

tribution. That expression for the variance of �̂�RE would be correct if it were based on wi = (𝜎2
i + 𝜏2)−1. In practice,

however, using ŵi(𝜏2) may not yield a satisfactory approximation. In addition, we have not seen empirical evidence that
the sampling distributions of �̂�RE for the various choices of estimator for 𝜏2 are adequately approximated by a normal
distribution.

Hartung and Knapp30 and, independently, Sidik and Jonkman31 developed an estimator for the variance of �̂�RE that
takes into account the variability of the �̂�2

i and 𝜏2. The Hartung-Knapp-Sidik-Jonkman (HKSJ) confidence interval uses
the estimator

V̂arHKSJ(�̂�DL) =
K∑

i=1
ŵi

(
𝜏2

DL
)
(�̂�i − �̂�DL)2∕

[
(K − 1)

K∑
i=1

ŵi
(
𝜏2

DL
)]

, (11)

together with critical values from the t distribution on K−1 degrees of freedom. A potential weakness is that the derivation
of the variance estimator and the t distribution uses the 𝜎2

i and 𝜏2 and then substitutes the �̂�2
i and 𝜏2

DL. In addition, the
HKSJ interval uses �̂�DL as its midpoint, so it will have any bias that is present in �̂�DL. We study a modification of HKSJ
that uses the WT estimator or KDB estimator of 𝜏2 and uses �̂�WT or �̂�KDB, respectively, as the midpoint.

The interval estimators corresponding to SSW (SSW WT, SSW CDL, and SSW KDB) use the SSW point estimator as the
midpoint, and the half-width equals the estimated standard deviation of SSW under the random-effects model times the
critical value from the t distribution on K − 1 degrees of freedom. The estimator of the variance of SSW is

̂Var(�̂�SSW) =
∑

ñ2
i
(

v2
i + 𝜏2)

(
∑

ñi)2
, (12)

in which v2
i comes from Equation (1) or (3) and 𝜏2 = 𝜏2

WT, 𝜏2 = 𝜏2
CDL, and 𝜏2 = 𝜏2

KDB, respectively.

6 SIMULATION STUDY

As mentioned in Section 1, other studies have used simulation to examine estimators of 𝜏2 or of the overall effect for
MD or SMD, but gaps in evidence remain. Appendix A in the Supplementary Materials contains a detailed summary of
previous simulation studies and provides our rationale for choosing the ranges of values for 𝜇, 𝛿, and 𝜏2 that we consider
realistic for a range of applications.
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The following paragraphs describe mainly features that are common to our simulations for MD and SMD. Sections 6.1.1
and 6.2.1 describe other features that are specific to those measures.

All simulations use the same numbers of studies K = 5, 10, 30 and, for each combination of parameters, the same vector
of total sample sizes n = (n1, … ,nK) and the same proportions of observations in the control arm qi = .5, .75 for all i.
The sample sizes in the treatment and control arms are niT = ⌈(1 − qi)ni⌉ and niC = ni − niT, i = 1, … ,K. The values of q
reflect two situations for the two arms of each study: approximately equal (1:1) and quite unbalanced (1:3).

We study equal and unequal study sizes. For equal study sizes, ni is as small as 20, and for unequal study sizes, ni is as
small as 12, in order to examine how the methods perform for the extremely small sample sizes that arise in some areas
of application.

In choosing unequal study sizes, we follow a suggestion of Sánchez-Meca and Marín-Martínez,32 who selected study
sizes having skewness of 1.464, which they considered typical in behavioral and health sciences. Tables 1 and 2 give the
details.

The patterns of sample sizes are illustrative; they do not attempt to represent all patterns seen in practice. By using the
same patterns of sample sizes for each combination of the other parameters, we avoid the additional variability in the
results that would arise from choosing sample sizes at random (eg, uniformly between 20 and 200).

We use a total of 10 000 repetitions for each combination of parameters. Thus, the simulation standard error for
estimated coverage of 𝜏2, 𝜇, or 𝛿 at the 95% confidence level is roughly

√
0.95 × 0.05∕10, 000 = 0.00218.

The simulations were programmed in R version 3.3.2 using the University of East Anglia 140-computer-node High
Performance Computing (HPC) Cluster, providing a total of 2560 CPU cores, including parallel processing and large
memory resources. For each configuration, we divided the 10 000 replications into 10 parallel sets of 1000 replications.

The structure of the simulations invites an analysis of the results along the lines of a designed experiment, in which the
variables are 𝜏2, n, K, q, 𝜎2

C, and 𝜎2
T . Most of the variables are crossed, but two have additional structure. Within the two

TABLE 1 Data patterns in the simulations for mean difference (MD)

MD Equal study sizes Unequal study sizes Full results in
Bakbergenuly et al33

Appendices:
K (number of studies) 5, 10, 30 5, 10, 30
n or n̄ (average (individual) study size—total of the two arms) 20, 40, 100, 250 30 (12, 16, 18, 20, 84),
For K = 10 and K = 30, the same set of unequal study sizes 60 (24, 32, 36, 40, 168),
is used twice or six times, respectively 100 (64, 72, 76, 80, 208),

160 (124, 132, 136, 140, 268)
q (proportion of each study in the control arm) 1/2, 3/4 1/2, 3/4

First series of within-study variances:
𝜇 0 0 B1, B2; B3, B4
𝜎2

C, 𝜎
2
T(within-study variances) (1,1), (1,2) (1,1), (1,2)

𝜏2 (variance of random effect) 0(0.01)0.1(0.1)1 0(0.01)0.1(0.1)1 A1, A2; A3, A4

Second series of within-study variances:
𝜇 0 0 B5, B6
𝜎2

C, 𝜎
2
T (within-study variances) (10,10), (10,20) (10,10), (10,20)

𝜏2 (variance of random effect) 0(0.1)1 0(0.1)1 A5, A6

TABLE 2 Data patterns in the simulations for standardized mean difference (SMD)

SMD Equal study sizes Unequal study sizes Full results in
Bakbergenuly et al34

Appendices:
K (number of studies) 5, 10, 30 5, 10, 30
n or n̄ (average (individual) study size—total of the two arms) 20, 40, 100, 250 30 (12, 16, 18, 20, 84),

30, 50, 60, 70 60 (24, 32, 36, 40, 168),

For K = 10 and K = 30, the same set of unequal study sizes 100 (64, 72, 76, 80, 208),
is used twice or six times, respectively 160 (124, 132, 136, 140, 268)
q (proportion of each study in the control arm) 1/2, 3/4 1/2, 3/4
𝛿 (true value of the SMD) 0, 0.2, 0.5, 1, 2 0, 0.2, 0.5, 1, 2 B1, B2
𝜏2 (variance of random effect) 0(0.5)2.5 0(0.5)2.5 A1, A2
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levels of n, equal and unequal, the values are nested: n = 20, 40, 100, 250 and n̄ = 30, 60, 100, 160. The values of 𝜎2
C and

𝜎2
T consist of a cross of two factors, equal/unequal and small/large (𝜎2

C = 1 and 𝜎2
T = 1, 𝜎2

C = 10 and 𝜎2
T = 10, 𝜎2

C = 1 and
𝜎2

T = 2, and 𝜎2
C = 10 and 𝜎2

T = 20). We approach the analysis of the data from the simulations qualitatively, to identify
the variables that substantially affect (or do not affect) the performance of the estimators as a whole and the variables
that reveal important differences in performance. We might hope to describe the estimators' performance one variable at
a time, but such “main effects” often do not provide an adequate summary: important differences are related to certain
combinations of two or more variables.

We use this approach to examine bias and coverage in estimation of 𝜏2 and bias and coverage in estimation of 𝜇 and
𝛿. Our summaries of results include illustrative figures and are based on examination of the figures in the corresponding
arXiv e-prints.33,34 Sections 6.1.2 and 6.2.2 give brief summaries, and Appendices D and E in the Supplementary Materials
contain more details.

A reviewer inquired about the values of I2 underlying our simulations. Figures C1 and C2 in Appendix C plot I2 =
100𝜏2∕(𝜏2+ s2) versus 𝜏2 ∈ [0, 1] for MD and versus 𝛿 for SMD when 𝜏2 = 0.5(0.5)2, with traces for n = 20, 40, 100, 250. As
indicated by the definition, I2 increases as 𝜏2 increases. The value of n also has a substantial impact (larger n yields higher
I2); Higgins and Thompson6 did not construct I2 to be independent of the precisions of estimates observed in the studies.
Importantly, for SMD, I2 decreases as 𝛿 increases, especially for the smaller n, contrary to the scale-invariance criterion
of Higgins and Thompson. We emphasize that we discourage use of I2, for the reasons mentioned here and in Section 1.

6.1 Mean difference
6.1.1 Design
For the MD, we vary six parameters: the between-study variance (𝜏2) and the within-study variances (𝜎2

T and 𝜎2
C), in

addition to the number of studies (K), the total sample size (n and n̄), and the proportion of observations in the control
arm (q). Table 1 lists the values of each parameter. We set the overall true MD 𝜇 = 0 because the estimators of 𝜏2 do not
involve 𝜇 and the estimators of 𝜇 are equivariant.

To cover both small and large values of the ratio of within-study to between-studies variance, separately from the
value of 𝜏2, we use two series of within-study variances (𝜎2

C, 𝜎
2
T=(1,1), (1,2) and 𝜎2

C, 𝜎
2
T=(10,10), (10,20)). We generate the

within-study sample variances s2
i 𝑗 ( j = T,C) from chi-squared distributions as 𝜎2

i 𝑗𝜒
2
ni 𝑗−1∕(ni𝑗 − 1). We generate the esti-

mated MDs yi from a normal distribution with mean 𝜇 and variance 𝜎2
iT∕niT + 𝜎2

iC∕niC + 𝜏2. We obtain the estimated
within-study variances as v2

i = s2
iT∕niT + s2

iC∕niC.
The simulation standard error in the estimates of𝜇 is 0.01 (for n = 20) or less for the first series of within-study variances,

and 0.02 or less for the second series.
We study six point estimators of 𝜏2 (DL, REML, MP, J, WT, and CDL), five interval estimators of 𝜏2 (PL, QP, BJ, J, and

WT), and ten interval estimators of 𝜇 (DL, REML, MP, J, WT, CDL, HKSJ, HKSJ WT, SSW WT, and SSW CDL).

6.1.2 Results
Our full simulation results are available as an arXiv e-print (Bakbergenuly et al33). They comprise 108 figures, each pre-
senting a plot of bias, mean squared error (MSE) or coverage versus 𝜏2 for the four values of n or n̄ and the three values
of K. A short summary is given below and illustrated by Figures 1 to 3. A detailed description appears in Appendix D in
the Supplementary Materials. Table 3 summarizes our recommendations.

Bias in estimation of 𝝉2 (Figure 1)
In summary, except for CDL and WT, the estimators of 𝜏2 (DL, REML, J, and MP) have nonnegligible positive bias,

especially for small sample sizes (n ≤ 40) and small values of 𝜏2. Overall, CDL has the least bias, except for the most
extreme cases, and is recommended for use in practice. WT is increasingly negatively biased for moderate to large hetero-
geneity, even for large sample sizes, so it is not recommended. All other estimators become acceptable for larger sample
sizes (n ≥ 100).

Coverage in estimation of 𝝉2 (Figure 2)
In summary, none of the interval estimators of 𝜏2 (PL, QP, BJ, J, and WT) consistently achieve coverage close to .95 (ie,

between .94 and .96). All have difficulty at 𝜏2 = 0, usually overcoverage; the departures of PL extend to other small 𝜏2, and
its coverage is often greater than .96 but sometimes less than .94. Meta-analyses in which the studies have small sample
sizes are challenging for PL, QP, BJ, and J, which in some situations have coverage well below nominal for all 𝜏2 ∈ [0, 1],
especially when the number of studies is larger (K = 30 vs. K = 5 and K = 10). Overall, WT comes closest to providing
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0 , n 20 , K 5 0 , n 20 , K 10 0 , n 20 , K 30

0 , n 40 , K 5 0 , n 40 , K 10 0 , n 40 , K 30

0 , n 20 , K 5 0 , n 20 , K 10 0 , n 20 , K 30

0 , n 40 , K 5 0 , n 40 , K 10 0 , n 40 , K 30

FIGURE 1 Mean difference: Bias of estimators of between-studies variance 𝜏2 ∈ [0, 0.1] (top two rows) and 𝜏2 ∈ [0, 1] (bottom two rows)
for 𝜇 = 0, q = 0.75 when 𝜎2

C = 1, 𝜎2
T = 2, n = 20, 40, and K = 5, 10, 30. Light gray line at 0. CDL, corrected DL; DL, DerSimonian-Laird; J,

Jackson; MP, Mandel-Paule; REML, restricted maximum-likelihood; WT, Welch-type [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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0 , n 20 , K 5 0 , n 20 , K 10 0 , n 20 , K 30

0 , n 40 , K 5 0 , n 40 , K 10 0 , n 40 , K 30

0 , n 20 , K 5 0 , n 20 , K 10 0 , n 20 , K 30

0 , n 40 , K 5 0 , n 40 , K 10 0 , n 40 , K 30

FIGURE 2 Mean difference: Coverage at the nominal 95% level of interval estimators of between-studies variance 𝜏2 ∈ [0, 0.1] (top two
rows) and 𝜏2 ∈ [0, 1] (bottom two rows) for 𝜇 = 0, q = 0.75, when 𝜎2

C = 1, 𝜎2
T = 2, n = 20, 40, and K = 5, 10, 30. Light gray line at 0.95. BJ,

Biggerstaff and Jackson; J, Jackson; PL, profile-likelihood; QP, Q-profile; WT, Welch-type [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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n 20 , K 5 , q 0.5 , 1 , 1 n 20 , K 10 , q 0.5 , 1 , 1 n 20 , K 30 , q 0.5 , 1 , 1

n 40 , K 5 , q 0.5 , 1 , 1 n 40 , K 10 , q 0.5 , 1 , 1 n 40 , K 30 , q 0.5 , 1 , 1

n 20 , K 5 , q 0.75 , 2 , 1 n 20 , K 10 , q 0.75 , 2 , 1 n 20 , K 30 , q 0.75 , 2 , 1

n 40 , K 5 , q 0.75 , 2 , 1 n 40 , K 10 , q 0.75 , 2 , 1 n 40 , K 30 , q 0.75 , 2 , 1

FIGURE 3 Mean difference: Coverage of 95% confidence intervals for 𝜇. The between-studies variance 𝜏2∈ [0, 1]. In the top two rows,
q= .5, 𝜎2

C = 1, and 𝜎2
T = 1. In the bottom two rows, q = .75, 𝜎2

C = 1, and 𝜎2
T = 2. Light gray line at 0.95. CDL, corrected DL; DL,

DerSimonian-Laird; HKSJ, Hartung-Knapp-Sidik-Jonkman; J, Jackson; MP, Mandel-Paule; REML, restricted maximum-likelihood; WT,
Welch-type [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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TABLE 3 A summary of recommendations for meta-analysis of mean difference (MD) and standardized MD (SMD)

Meta-analysis of MD
Estimation n < 100 n ≥ 100
𝜏2 point All estimators are positively biased for small n any estimator

CDL is the least biased
𝜏2 interval WT any estimator other than PL
𝜇 point any estimator any estimator
𝜇 interval HKSJ for balanced studies with 𝜏2 < 0.1 and K ≤ 10, HKSJ

where SSW CDL provides conservative coverage.
SSW CDL for unbalanced studies, or when K ≥ 20 and 𝜏2 > 0.1.

Meta-analysis of SMD
𝜏2 point MP (somewhat underestimates) for K ≤ 10, MP, KDB, or REML

KDB (somewhat overestimates) for K > 10
𝜏2 interval QP QP, PL, KDB
𝛿 point SSW, all other estimators have negative bias any estimator
𝛿 interval HKSJ or HKSJ KDB for 𝛿 < 0.5, SSW KDB for 𝛿 ≥ 0.5 HKSJ or HKSJ KDB or SSW KDB

Abbreviations: CDL, corrected DerSimonian-Laird; HKSJ, Hartung-Knapp-Sidik-Jonkman; KDB, Kulinskaya-Dollinger-Bjørkestøl; MP,
Mandel-Paule; PL, profile-likelihood; QP, Q-profile; REML, restricted maximum-likelihood; WT, Welch-type.

nominal coverage of 𝜏2. (The contrast in behavior between the WT interval and point estimators is surprising, but the
former uses the appropriate F approximation to the distribution of Q, whereas the latter does not.)

Bias in estimation of 𝝁
Because the estimated MD and its estimated variance are independent, all the estimators of 𝜇 are practically unbiased

in all situations.
Coverage in estimation of 𝝁 (Figure 3)
When within-study sample sizes are balanced, HKSJ and HKSJ WT generally (but not uniformly) have the best coverage

for small 𝜏2 and K. Their coverage is not always within ±.01 of .95; it may be considerably below nominal for 𝜏2 < 0.1
when sample sizes are small, whereas SSW CDL provides conservative coverage; in situations where clear differences
separate the interval estimators, HKSJ and HKSJ WT are much closer to .95. DL, WT, MP, REML, and J exhibit very serious
undercoverage when K = 5 and nontrivial undercoverage when K = 10. For small and/or unbalanced sample sizes, SSW
CDL is the only estimator achieving nominal coverage for larger values of 𝜏2 or K.

6.2 Standardized mean difference
6.2.1 Design
For the SMD, we vary five parameters: the overall true SMD (𝛿) and the between-studies variance (𝜏2), in addition to the
number of studies (K), the studies' total sample size (n and n̄), and the proportion of observations in the control arm (q).
Table 2 lists the values of each parameter.

We generate the true effect sizes 𝛿i from a normal distribution: 𝛿i ∼ N(𝛿, 𝜏2). We generate the values of Hedges's estima-
tor gi directly from the appropriately scaled noncentral t-distribution, given by Equation (4), and obtain their estimated
within-study variances from Equation (3).

We study five point estimators of 𝜏2 (DL, REML, MP, J, and KDB), five interval estimators of 𝜏2 (PL, QP, BJ, J, and KDB),
six point estimators of 𝛿 (DL, REML, MP, J, KDB, and SSW), and eight interval estimators of 𝛿 (DL, REML, MP, J, KDB,
HKSJ, HKSJ KDB, and SSW KDB).

6.2.2 Results
Our full simulation results are available as an arXiv e-print (Bakbergenuly et al34). They comprise 130 figures, each pre-
senting a plot of bias, MSE or coverage versus 𝜏2 for the four values of n or n̄ and the three values of K. A short summary
is given below and illustrated by Figures 4 to 6. In addition, Appendix H in Supplementary Materials has plots for K = 20,
n = 20 and 40, and 𝛿 = 0, 0.5, 1, and 2. A detailed description appears in Appendix E in the Supplementary Materials,
and Table 3 summarizes our recommendations.

Bias in estimation of 𝝉2 (Figure 4)
As Figure 4 (top) illustrates, the patterns of bias indicate a choice among the five estimators of 𝜏2 (DL, REML, J, MP, and

KDB). When n ≤ 40, MP is closer to unbiased than KDB when K = 5, the magnitudes of their biases are roughly equal
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0.5 , n 20 , K 5 0.5 , n 20 , K 10 0.5 , n 20 , K 30

0.5 , n 40 , K 5 0.5 , n 40 , K 10 0.5 , n 40 , K 30

0.5 , n 20 , K 5 0.5 , n 20 , K 10 0.5 , n 20 , K 30

0.5 , n 40 , K 5 0.5 , n 40 , K 10 0.5 , n 40 , K 30

FIGURE 4 Standardized mean difference: Bias and coverage at nominal 95% level in estimation of between-studies variance 𝜏2 for 𝛿 = 0.5,
q = .5, n = 20, 40, and K = 5, 10, 30. Light gray line at 0 for bias and at 0.95 for coverage. BJ, Biggerstaff and Jackson; DL, DerSimonian-Laird;
KDB, Kulinskaya-Dollinger-Bjørkestøl; J, Jackson; MP, Mandel-Paule; PL, profile-likelihood; QP, Q-profile; REML, restricted
maximum-likelihood [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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1 , n 20 , K 5 1 , n 20 , K 10 1 , n 20 , K 30

1 , n 40 , K 5 1 , n 40 , K 10 1 , n 40 , K 30

1 , n 20 , K 5 1 , n 20 , K 10 1 , n 20 , K 30

1 , n 40 , K 5 1 , n 40 , K 10 1 , n 40 , K 30

FIGURE 5 Standardized mean difference: Bias of the estimators of 𝛿 and ratio of mean squared errors (MSEs) of SSW to
inverse-variance-weighted estimators when 𝛿 = 1, q = .5, n = 20, 40, and K = 5, 10, 30. Light gray line at 0 for bias and at 1 for the ratio of
MSEs. DL, DerSimonian-Laird; KDB, Kulinskaya-Dollinger-Bjørkestøl; J, Jackson; MP, Mandel-Paule; REML, restricted maximum-likelihood
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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0 , n 20 , K 5 0 , n 20 , K 10 0 , n 20 , K 30

0 , n 40 , K 5 0 , n 40 , K 10 0 , n 40 , K 30

2 , n 20 , K 5 2 , n 20 , K 10 2 , n 20 , K 30

2 , n 40 , K 5 2 , n 40 , K 10 2 , n 40 , K 30

FIGURE 6 Standardized mean difference: Coverage of 95% confidence intervals for 𝛿 when 𝛿 = 0 (top two rows) and 2 (bottom two rows),
q = .5, n = 20, 40, and K = 5, 10, 30. Light gray line at 0.95. DL, DerSimonian-Laird; HKSJ, Hartung-Knapp-Sidik-Jonkman; J, Jackson; KDB,
Kulinskaya-Dollinger-Bjørkestøl; MP, Mandel-Paule; REML, restricted maximum-likelihood [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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when K = 10, and KDB is closer to unbiased when K = 30 (and also when K = 20; see Appendix H). When n ≥ 100, MP,
KDB, and REML are nearly unbiased. DL and J seriously underestimate 𝜏2. The average of MP and KDB should be close
to unbiased.

Coverage in estimation of 𝝉2 (Figure 4)
As Figure 4 (bottom) illustrates, all five interval estimators of 𝜏2 (PL, QP, BJ, J, and KDB) have coverage substantially

above .95 when 𝜏2 = 0. When 𝜏2 ≥ 0.5, QP is generally closest to .95, whereas KDB is somewhat too liberal when n = 20.
The unusual behavior of BJ (and, to a lesser extent, J) when K = 30 (and also when K = 20; see Appendix H) adds to the
evidence against it.

Bias and MSE in estimation of 𝜹 (Figure 5)
The bias of SSW is close to 0, and the other five estimators (DL, REML, J, MP, and KDB), which use inverse-variance

weights, have greater (and negative) bias, amounting to 5% to 10% when sample sizes are small and 𝛿 ≥ 1. This bias
increases as 𝜏2 and/or 𝛿 increases (see also Appendix H). SSW usually has slightly greater mean squared error than KDB
and MP when n is small, but its MSE can be substantially smaller, especially for small 𝜏2.

Coverage in estimation of 𝜹 (Figure 6)
Except when 𝛿 ≥ 1 and K ≥ 20 (see also Appendix H), HKSJ and HKSJ KDB have coverage closest to .95, though

somewhat liberal; they differ little, and departures from .95 (toward lower coverage) are seldom serious. SSW KDB is rather
conservative when K = 5 and for other K when 𝜏2 = 0. Otherwise it provides reliable albeit slightly conservative coverage.
When 𝛿 = 2 and K = 20 or 30, SSW KDB is substantially the best choice. All the estimators that use inverse-variance
weights and critical values from the normal distribution often have coverage substantially below .95.

7 EXAMPLE

As an example, we use data previously considered by Sánchez-Meca and Marín-Martínez,35 on the efficacy of psycho-
logical treatments for obsessive-compulsive disorder (OCD). These data, Table 4, consist of 24 trials with mostly small
sample sizes, ranging from 12 to 121 patients. Studies 5, 15, 16, and 23 are rather unbalanced; study 5 has 23 patients in
the treatment arm and 11 in the control arm. The effect measure is SMD, and positive values correspond to lower levels
of obsessions and compulsions in the treatment group. Figure 7 shows a forest plot, and Table 5 gives the results from
various methods of estimation; recommended choices are in bold.

TABLE 4 Data for the meta-analysis on the efficacy of psychological
treatments for obsessive-compulsive disorder. Design of study: 1,
quasi-experimental; 2, experimental

Study Year Design niT niC gi v𝟐i
1 1998 1 10 8 1.425 0.2814
2 2003 2 22 23 1.068 0.1016
3 1993 2 29 32 0.924 0.0727
4 1993 2 29 32 0.909 0.0725
5 2005 1 23 11 0.281 0.1355
6 2005 2 21 20 1.646 0.1307
7 1997 2 15 14 1.007 0.1556
8 2002 2 55 66 0.996 0.0374
9 2002 2 55 66 0.731 0.0355

10 1998 2 11 10 1.882 0.2752
11 2000 2 13 16 1.082 0.1596
12 1997 2 9 9 2.326 0.3725
13 1994 2 6 6 −0.229 0.3355
14 1980 2 10 10 0.191 0.2009
15 2001 2 18 33 0.980 0.0953
16 2001 2 16 33 1.620 0.1196
17 2005 2 10 8 2.997 0.4745
18 1999 1 6 6 0.860 0.3642
19 2006 2 10 10 1.494 0.2558
20 2003 1 11 15 0.597 0.1644
21 1998 2 19 16 0.674 0.1216
22 1998 2 19 16 0.490 0.1186
23 2004 2 6 9 3.780 0.7541
24 2004 2 10 9 1.590 0.2776
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FIGURE 7 Forest plot of Hedges's g for the efficacy of psychological treatments for obsessive-compulsive disorder [Colour figure can be
viewed at wileyonlinelibrary.com]

Model Method �̂�𝟐 L U �̂� L U Length
of CI

FE 0.9926 0.8516 1.1336 0.2820
RE DL&IV 0.1697 0.0991 1.1002 1.0748 0.8431 1.3065 0.4634
RE BJ&IV 0.0494 0.5128
RE J&IV 0.3275 0.1315 0.8214 1.1059 0.8215 1.3903 0.5688
RE REML&IV 0.1622 0 0.6028 1.0728 0.8440 1.3016 0.4576
RE MP&IV 0.3722 0.0991 1.1002 1.1122 0.8149 1.4095 0.5946
RE KDB&IV 0.4539 0.2162 0.9052 1.1221 0.8027 1.4414 0.6387
RE HKSJ (DL) 1.0748 0.7850 1.3646 0.5796
RE HKSJ KDB 1.1221 0.8023 1.4418 0.6395
RE SSW&KDB 1.0950 0.7002 1.4898 0.7896

Abbreviations: BJ, Biggerstaff and Jackson; DL, DerSimonian-Laird; HKSJ, Hartung-Knapp-Sidik-Jonkman;
J, Jackson; KDB, Kulinskaya-Dollinger-Bjørkestøl; MP, Mandel-Paule; REML, restricted maximum-likelihood.

TABLE 5 Point and
confidence-interval estimates for
𝜏2 and 𝛿 in the example of efficacy of
psychological treatments for
obsessive-compulsive disorder;
FE is fixed-effect model and RE is
random-effects model. The
heterogeneity parameter in RE is 𝜏2. L
and U denote the lower and upper limits
of the 95% confidence intervals.
Recommended estimators in bold

The estimated values of 𝜏2 have almost a threefold range, from 0.16 for REML to 0.45 for KDB. The methods differ much
less in estimation of SMD. To a large degree, this is due to the relatively large number of studies (24). For instance, the
variance of the overall effect for SSW given by (12) includes the multiplier of

∑
ñ2

i ∕(
∑

ñi)2 for 𝜏2, and it is clearly of the
order 1∕K (equal to 1∕K for equal sample sizes ñ). This is also true for other estimators, so the differences between point
estimators of 𝛿 almost disappear.

The results of our simulations for small sample sizes and 𝛿 near 1, Figures H1 and H2 in Supplementary Materials, indi-
cate that 𝜏2 may be somewhat overestimated by KDB, somewhat underestimated by MP, and even more underestimated
by REML, J, and especially DL. Combining this information with the results in Table 5, we expect 𝜏2 ≥ 0.4, much higher
than the value of 𝜏2

DL(= 0.1697). On the other hand, the Q-profile method is expected to provide the best confidence inter-
val for 𝜏2, here (0.099, 1.100), whereas the KDB interval may be too narrow at (0.216, 0.905). Both confidence intervals
include a sizable range of values of 𝜏2.

For 𝛿, we expect all standard methods to yield negatively biased point estimates, including the KDB-based IV-weighted
estimate at 1.122, so the SSW estimate of 1.095 seems somewhat low. From our simulations, the two best confidence
intervals for 𝛿 are HKSJ KDB, here (0.802, 1.442), and the DL-based HKSJ, here (0.785, 1.365), but both may be too narrow.
The SSW KDB interval, centered at the SSW point estimator, with 𝜏2

KDB in its estimated variance and t critical values, is

http://wileyonlinelibrary.com
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0.8 1.1 1.4

0.8 1.1 1.4

0.8 1.1 1.4

0.8 1.1 1.4

FIGURE 8 Quality of meta-analysis methods for bias of 𝜏2, coverage of 𝜏2, bias of 𝛿 and coverage of 𝛿 with typical values of 𝜏2 and 𝛿 from
the obsessive-compulsive disorder example (𝛿 = 0.8, 1.1, 1.4 and 𝜏2 ∈ [0.2, 0.9]) and sample sizes niT and niC shown in Table 4. DL,
DerSimonian-Laird; HKSJ, Hartung-Knapp-Sidik-Jonkman; J, Jackson; KDB, Kulinskaya-Dollinger-Bjørkestøl; MP, Mandel-Paule; REML,
restricted maximum-likelihood [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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widest, at (0.700, 1.490); it may be too conservative, because it is 1.235 times as wide as HKSJ KDB and 1.362 times as
wide as HKSJ.

We performed a small simulation (1000 replications per configuration), using values of 𝜏2 and 𝛿 within the confidence
limits in Table 5. The results, plotted in Figure 8, show that the KDB method yields the least-biased estimates of 𝜏2 and has
coverage of 𝜏2 comparable to or better than other methods. However, for these data, we prefer the more conservative QP
interval. The HKSJ KDB interval for 𝛿 provides the best, though still somewhat liberal, coverage of 𝛿 among all intervals
centered at an IV-weighted estimate. As expected, the sample-size-weighted estimator of 𝛿 is the only unbiased estimator,
and the SSW KDB interval provides the most reliable though sometimes conservative coverage of 𝛿. These methods are
our recommended choices for estimation of 𝛿.

8 DISCUSSION: PRACTICAL IMPLICATIONS FOR META-ANALYSIS

Methods for random-effects meta-analysis require an estimate of the between-study variance, 𝜏2. We show that the perfor-
mance of the popular estimators of 𝜏2 and related estimators of the overall effect varies widely among effect measures, and
the existing evidence is scarce. For the effect measures MD and SMD, we use improved effect-measure-specific approxi-
mations to the expected value and distribution of Q to introduce two new methods of point estimation of 𝜏2 for MD (WT
and CDL) and one WT interval method. We introduce one point estimator and one interval estimator for 𝜏2 in SMD. We
also provide the first comprehensive simulation study for both MD and SMD.

The results of our simulations give a rather disappointing picture of the current state of meta-analysis for most common
measures of effect. In brief, small sample sizes are rather problematic for many methods of meta-analysis, even for such a
well-behaved effect measure as the MD, and meta-analyses that involve numerous small studies are especially challenging.

For MD, the between-study variance, 𝜏2, is usually overestimated near zero. When n = 20, DL has a constant positive
bias of about 0.07 regardless of 𝜏2. REML is better for larger 𝜏2, but it is about the same for 𝜏2 ≤ 0.2 when K = 30. These
are the main methods used in the vast majority of meta-analyses. MP is the best at 0.03 to 0.06 bias (Figure 1). We do
not recommend the WT point estimator of 𝜏2. The CDL point estimator of 𝜏2 is essentially unbiased when n = 40, and
it is the most reliable overall, across all values of 𝜏2, n, and K; and our WT method provides reliable interval estimation.
The estimators of 𝜇 are unbiased. Widespread complacency about the quality of meta-analysis methods is due to the use
of MD as the outcome measure in many simulations. HKSJ intervals provide good but too liberal coverage of MD when
studies are small and/or unbalanced. Our SSW CDL intervals are more reliable in this case, especially for larger K.

Arendacká36 and Liu et al.37 propose new confidence intervals for 𝜏2 in the one-way heteroscedastic random-effects
model. These intervals can be used directly in meta-analysis of means in noncomparative studies. Both publications
include extensive simulations and compare their intervals with those of Knapp et al.15 Both proposals seem to do very well
for normal distributions and very small sample sizes. It should be possible to extend these methods to MD in comparative
two-arm designs; we plan to pursue this extension elsewhere.

For other effect measures, the picture is much more concerning. Because the study-level effects and their variances are
related (as in Equation (3) for SMD), the performance of all statistical methods depends on the effect measures, estimates
of overall effects are biased, and coverage of confidence intervals is too low, especially for small sample sizes. We see this for
SMD. Bias of all inverse-variance methods for SMD when n = 20 is about 7% (Figure 4). Coverage of SMD is considerably
worse when SMD is large and 𝜏2 < 0.5, at about 85% for HKSJ (Figure 6). This may easily lead to misinterpretation of
clinical findings.

The conventional wisdom is that these deficiencies do not matter, as meta-analysis usually deals with studies that
are “large,” so all these little problems are automatically resolved. Unfortunately, this is not true, even in medical
meta-analyses; in Issue 4 of the Cochrane Database 2004, the maximum study size was 50 or less in 25% of meta-analyses
that used MD as an effect measure, and less than 110 in 50% of them.38 We have not surveyed typical study sizes in psy-
chology, but Sánchez-Meca and Marín-Martínez,35 promoting MA in psychological research, use an example with 24
studies in which the smallest study size is 12 and the largest is 121. We considered this example in Section 7. In ecology,
typical sample sizes are between 4 and 25.39 An effect-measure-specific estimator of 𝜏2, such as KDB for SMD, can reduce
inherent biases.

Arguably, the main purpose of a meta-analysis is to provide point and interval estimates of an overall effect. Usually,
after estimating the between-study variance 𝜏2, inverse-variance weights are used in estimating the overall effect (and,
often, its variance). This approach relies on the theoretical result that, for known variances, and given unbiased estimates
�̂�i, it yields a uniformly minimum-variance unbiased estimate (UMVUE) of 𝜃. In practice, however, the true within-study
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variances are unknown, and use of the estimated variances makes the inverse-variance-weighted estimator of the overall
effect biased. Consumers routinely expect point estimates to have no (or small) bias and CIs to have (close to) nominal
coverage. Thus, the IV-weighted approach is unsatisfactory because, in general, it cannot produce an unbiased estimate
of an overall effect.

We agree with Rukhin40: “A meta-analyst must be willing to use different estimates of the between-study variance 𝜎2 for
different purposes: one to minimize the variance of the treatment effect statistic; another to construct a reliable confidence
interval for this parameter; yet another to estimate 𝜎2 itself!” Our recommendations for meta-analysis of MD and SMD
appear in Table 3.

A pragmatic approach to unbiased estimation of 𝛿 uses weights that do not involve estimated variances of study-level
estimates, for example, weights proportional to the study sizes ni. Hunter and Schmidt29 and Shuster,41 among others,
have proposed such weights, and Marín-Martínez and Sánchez-Meca42 and Hamman et al39 have studied the method's
performance by simulation for SMD. We prefer to use weights proportional to an effective sample size, ñi = niTniC∕ni;
these are the optimal inverse-variance weights for SMD when 𝛿 = 0 and 𝜏2 = 0. Thus, the overall effect is estimated by
�̂�SSW =

∑
ñi�̂�i∕

∑
ñi, and its variance is estimated by Equation (12). Hamman et al39 use weights proposed by Hedges,43

which differ slightly from ñ for very small sample sizes. A good estimator of 𝜏2, such as MP or KDB (for SMD), can be
used as 𝜏2. Furthermore, confidence intervals for 𝜃 centered at �̂�SSW with 𝜏2

KDB in Equation (12) can be used.
This approach based on SSW requires further study. For example, in the confidence intervals, we have used critical

values from the t-distribution on K−1 degrees of freedom, but we have not yet examined the actual sampling distribution
of SSW. The raw material for such an examination is readily available: For each situation in our simulations, each of the
10 000 replications yields an observation on the sampling distribution of SSW.
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