Page 1 of 21

Mechanisms driving phenological and range change in migratory species

Author-supplied statements

Relevant information will appear here if provided.

Ethics

Does your article include research that required ethical approval or permits?: This article does not present research with ethical considerations

Statement (if applicable): CUST_IF_YES_ETHICS :No data available.

Data

It is a condition of publication that data, code and materials supporting your paper are made publicly available. Does your paper present new data?: Yes

Statement (if applicable):

All data are presented and accessible in the figures

Conflict of interest

I/We declare we have no competing interests

Statement (if applicable): CUST_STATE_CONFLICT :No data available.

Authors' contributions

This paper has multiple authors and our individual contributions were as below

Statement (if applicable):

All three authors conceived and designed the study and generated the data. JAG conducted the analyses and all three authors contributed to the writing of the manuscript.

1 2		
- 3 4	1	Mechanisms driving phenological and range change in migratory species
5	2	
6 7	3	Jennifer A. Gill ^{1*} , José A. Alves ² & Tómas G. Gunnarsson ³
8 9	4	
10 11 12	5 6	¹ School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
13 14 15 16	7 8	² Dep. Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
16 17 18 19	9 10	³ University of Iceland, South Iceland Research Centre, Lindarbraut 4, IS-840 Laugarvatn, Iceland.
20 21	11	*Authorforcorrespondence:j.gill@uea.ac.uk(https://orcid.org/0000-0003-0167-6857)
22 23	12	
23 24 25	13	Summary
26 27 28	14 15 16	Many migratory systems are changing rapidly in space and time, and these changes present challenges for conservation. Changes in local abundance and site occupancy across species' ranges have raised concerns over the efficacy of existing protected area networks, while
30 31	17 18 19	changes in phenology can potentially create mismatches in the timing of annual events with the availability of key resources. These changes could arise either through individuals shifting in space and time or through generational shifts in the frequency of individuals
32 34 35 39 38 39 40	20 21 22	using different locations or on differing migratory schedules. Using a long-term study of a migratory shorebird in which individuals have been tracked through a period of range expansion and phenological change, we show that these changes occur through
	23 24 25	generational shifts in spatial and phenological distributions, and that individuals are highly consistent in space and time. Predictions of future rates of changes in range size and phenology, and their implications for species conservation, will require an understanding of
41 42 43 44	26 27 28	the processes that can drive generational shifts. We therefore explore the developmental, demographic and environmental processes that could influence generational shifts in phenology and distribution, and the studies that will be needed to distinguish among these
45 47	29	mechanisms of change.
47 48	30	
49 50	31	Keywords: avian, climate change, migration, mismatch
51 52	32	
52 53 54	33	Introduction
55 56	34	Migratory populations throughout the world are changing rapidly, with declines in
57 58	35 36	abundance being reported on all major flyways [1-3] and driving international calls for action [4]. Identifying the causes of population changes in migratory species is inherently
5 0	37	complex because of the range of sites and conditions experienced by individuals on their

annual journeys. Changing conditions in any or all parts of migratory ranges could drive changes in abundance and distribution. For example, changes in local conditions could influence local demography and thus alter relative abundances and site occupancy anywhere within a migratory range. However, the effects of local changes in one part of a range can also cascade through to influence abundance and distribution across a range [5,6]. This potential for interactions between local environmental conditions, demography, individual development and range-wide distribution and phenology make migratory systems complex, and designing conservation actions to halt and reverse declines in migratory species is therefore a major challenge. Recent changes in abundance of migratory species have been linked to their distribution and phenology. For example, phenological change is most commonly observed as shifts in the timing of migration to breeding grounds, and the magnitude of these shifts can varv greatly among species. Among European breeding birds, declines have been more frequent in species for which advances in spring arrival dates have not occurred [7], and species with non-overlapping breeding and wintering ranges are both more likely to be declining and less $\frac{22}{23}$ likely to have shown advances in spring arrival [2]. A lack of advance in spring arrival dates can potentially increase the impact of any trophic mismatch resulting from climate-driven changes in the timing of availability of key food resources for breeding [8,9]. Declining species with little or no phenological change are often assumed to be constrained from responding to changing climatic conditions in breeding areas (for example because they migrate to more distant non-breeding locations), but the nature of any such constraint is unknown. Identifying the mechanisms through which phenological change occurs, and thus the factors constraining or facilitating these changes, may therefore be key to designing and targetting conservation actions to mitigate the effects of trophic mismatch. 35 36 Changes in the distribution of breeding and non-breeding ranges have also occurred in many migratory species, with polewards range shifts being particularly prevalent [10,11]. Concerns have consequently arisen over the efficacy of existing protected area networks [5,12]. Range change is often interpreted as a response to changes in the suitability of environmental conditions (eg colonisation of areas that were previously unsuitable and/or contraction from areas of declining suitability). However, the mechanisms driving changes in the distribution of individuals across a range are rarely known. Both range change and phenological change could arise through individual plasticity in use of space and time. For example, range change may occur through individual movement to locate suitable conditions, while changes in timing of migration could arise through individual decisions on departure timings or time spent on migratory journeys varying between years. By contrast, these changes could also result from generational shifts in the frequency of individuals that use different locations or migrate at specific times. Generational shifts would not require individual plasticity but would require changes in the conditions determining the frequency of individuals within a population with different phenologies or probabilities of occupying different parts of a range, such that the spatial and temporal distribution of recruits to the population would differ from their predecessors. For example, changes in distribution could arise through shifts in the conditions influencing 60

the probability of occupancy of different locations by new recruits, and/or by shifts in the survival rates achieved within different locations. Similarly, shifts in timing of migration could occur through changes in the conditions influencing adoption of migration schedules by new recruits (or survival rates associated with different schedules) altering the frequency of individuals on different schedules within a population [13]. Individual plasticity in spatial distribution and migratory timings would facilitate relatively rapid responses to changing environmental conditions. However, generational shifts would likely result in slower responses to environmental changes, particularly in long-lived species, as the direction and magnitude of the changes would depend on the proportion of annual recruits within a population and the proportion of those recruits experiencing changing drivers of use of space and time. If individual variation in migratory destination or timing has a genetic component, then generational shifts could drive microevolutionary change. However, genetic change is not an inevitable consequence of generational shifts, as individual destinations or timings could also be determined by environmental or social cues. Changes in range size or migration phenology of populations as a result of individual 25 plasticity in use of space and time has not been demonstrated, and a growing number of individual tracking studies are reporting high levels of repeatability in individual migratory destinations and timings [13-20]. If generational shifts are the more likely driver of population changes in space and time, then our focus should be on understanding drivers of settlement and phenology of recruits, as well as their subsequent survival and recruitment. Identifying the relative contributions of generational shifts and individual plasticity requires model systems in which individuals can be tracked across space and time, through periods of shifts in range and phenology. Such large-scale, long-term tracking data are rare but one system that provides all of these elements is the Icelandic black-tailed godwit, Limosa *limosa islandica*, which has been the subject of intensive individual and population studies since the mid-1990s [21-23]. In common with many migratory bird species at temperate and subarctic latitudes, advances in the phenology of spring migration have occurred in the Icelandic godwit population in recent decades [24]. Iceland supports very large breeding populations of several shorebird populations which migrate south to locations ranging from temperate Europe to sub-Saharan Africa [25]. The first recorded arrival dates of these species into south Iceland in spring have advanced over the last three decades, with godwits showing one of the most rapid advances (~2 weeks earlier now than in the 1990s; [24]). In addition, this godwit population has shown sustained increases in number for over a century, likely as a consequence of warming conditions in Iceland facilitating earlier and more successful breeding and recruitment [6,26,27]. This population growth has been accompanied by range expansion in both the breeding and non-breeding ranges; in Iceland, godwits have expanded from a breeding range that was confined to the south-west corner of the country around 1900, to occupy progressively more northerly and easterly locations [27]. In the non-breeding range, which spans coastal areas of north-west Europe from Britain and Ireland to Iberia and northern Morocco, colonisation and population increases have primarily occurred in the northern part of the range (east and north-west England, Scotland and east Ireland) since the 1970s, when surveys began [21,28]. 60

1		
2 3	122	In the mid-1990s, a programme of population-wide and life-long tracking of individual
4 5	123	godwits was initiated [21,29]. Across the breeding and non-breeding ranges, godwits have
6	124	been caught and marked with unique combinations of coloured leg-rings, and ~1-2% of the
8	125	population (which numbers ~50,000 individuals; [30]) is marked. A citizen science network
9	126 127	of >2000 observers across Europe regularly report marked individuals, allowing the locations of individuals to be repeatedly tracked within and across years [31]. Here, we use this range-
10 11	128	wide tracking of an expanding (in space) and advancing (in time) migratory shorebird, to
13	129	explore whether individual plasticity or generational shifts are likely to have caused these
14	130	changes in space and time, and to consider the evidence for potential developmental,
15 16	131	environmental and demographic drivers of such changes.
17 18	132	
19 20	133	Methods
21 22	134	Phenological change: repeated measures of individual spring arrival dates
	135	Black-tailed godwits return to Iceland between mid-April and mid-May and, on arrival, flocks
23 24	136	congregate on a small number of arrival sites [32]. Since 1999, standardised surveys of
25 26	137	arrival sites in south and west Iceland have taken place from mid-April to early May, with
27 28	138	the identities of all individually-marked birds at all study locations being recorded every 1-3
20	139	days[13,32]. Between 1999 and 2018, arrival dates were recorded in at least three years for
30 31	140 141	85 individuals (Fig. 1). In order to quantify (a) the trends in arrival dates of individuals, we constructed a GLM with each individual arrival date (in Julian days) as the dependent
31 32 33	142	variable, and year and individual as fixed effects (an extension of the model reported in Gill
33 34	143	et al. 2014 for a smaller sample). In order to then quantify (b) whether individual trends in
35	144 145	arrival dates have changed in magnitude or (c) whether the frequency of individuals with differing arrival dates has changed over the 16-year survey period, we then constructed two
3 6	146	further GLMs with the (b) trend in arrival date and (c) mean arrival date for each individual
38 39	147	as the dependent variable, and the year of first spring arrival (ie the first year in which each
40 41	148	individual was observed on arrival in Iceland) observation as a fixed effect.
42	149	
43 44	150	Range change: non-breeding locations of marked individuals
45 46		
47 48	151 152	Locations of individually-marked godwits across the migratory range have been recorded by a network of citizen scientists since the mid-1990s. Here we use all recorded non-breeding
48 49	153	locations (ie excluding records within Iceland) of 631 individuals marked at the main post-
50	154	breeding moult location in east England during the autumns of 1995-2014, and the winter
<u></u> 51 52	155	(mid-Oct to mid-Feb) records of the 419 of these individuals observed during that period. To the the test of tes
53	156 157	assess the role of individual movement in driving the northward range expansion, we use
54 55	157 158	these sightings to quantify the total number of non-breeding locations (individual estuaries and wetlands), regions and countries (Table 1) used by individuals tracked for differing
55 57	159	numbers of years. To quantify the contribution of generational shifts in the frequency of
57 58	160	individuals using different locations to the northwards range expansion, we then use these
59 60	161	sightings to assess whether individuals marked in more recent years (which will be younger,
00		

on average, than previously marked individuals) are more likely to use recently colonised locations. We constructed generalised linear models with a binomial structure and a logit link, with the number of individuals marked in consecutive 5-year time periods since 1995 that winter in sites (a) colonised before or after the 1960s and (b) north and south of 52°N (most of the recently colonised sites are north of 52°N; [31,33]) as the dependent variable, and time period as a fixed effect. Results Mechanisms driving phenological change: individual plasticity or generational shifts Although first spring observations of godwits in South Iceland have advanced by more than two weeks in the last two decades [24], trends in arrival dates of 85 marked individuals over the last 16 years vary significantly among individuals but show no consistent advances in <u> 2</u>9 individual arrival date (Table 2a), and no change in individual arrival trends over the survey 74 period (Fig. 2a, Table 2b). However, the distribution of arrival dates of marked individuals has changed over time, with individuals first observed in more recent years tending to arrive earlier than individuals first recorded in the late 1990s/early 2000s (Fig. 2b, Table 2c). Thus, 28 while the arrival dates of individuals have not advanced, the frequency of early-arriving individuals has increased over this time period. 30 32 Mechanisms driving range change: individual plasticity or generational shifts Repeated tracking of individual godwits across the migratory range for up to 23 years 36 indicates a remarkably low level of individual plasticity in site use throughout their lives. On average, individuals are recorded on a total of only ~4 (±2.5 SE) non-breeding locations, regardless of the number of years for which they have been tracked (Fig. 3). In addition, these few locations are spread across, on average, $2.5(\pm 1.5)$ regions in $1.5(\pm 0.8)$ countries. Individuals are therefore highly restricted and consistent in their use of a small number of passage and winter locations, and these can be spread across the migratory range. However, over the two decades of continuous marking and tracking, with newly marked individuals being added to the population each year, the relative frequency of individuals using 'new' (colonised since the 1960s, Table 1) winter sites has increased (Fig. 4a), and this is primarily through increased numbers of individuals using more northerly sites (Fig. 4b, Table 1). 52 Discussion The spring arrival dates of godwits in Iceland has advanced [24] and the breeding population has expanded northwards in recent decades, with rapid population increases in more northerly non-breeding locations [21]. Repeated tracking of individuals in space and time over this period has shown that these expansions and advances are driven by generational shifts in the frequency of individuals occupying different locations and migrating at different

times, and not by individual plasticity. Individuals show life-long consistency in use of a small number of non-breeding locations but the proportion of individuals occupying recently colonised sites is greater for more recently-ringed birds. As recently colonised sites are primarily (but not exclusively) in the north of the range, and as the network of observers recording individual locations has been in operation throughout the 20 year survey period. the recorded shift in distribution is unlikely to be influenced by changes in reporting rates across the range. The widely reported changes in phenology and distribution of many migratory species in 15 recent decades may therefore be likely to result from generational shifts in the frequency of individuals with differing phenologies and using different locations. Generational shifts have been shown to drive shifts in distribution in other migratory systems. For example, a shift in use of spring passage sites by a migratory wader population (continental black-tailed godwits, *Limosa limosa limosa*) was driven by new recruits to the population, while adults in 22 the population continued to use the site they had always previously occupied [33]. Quantifying the role of generational shifts requires long-term tracking of individuals, and relatively few studies have this information during periods of change. However, tracking studies are increasingly being conducted, and studies tracking individuals over multiple years are typically reporting high levels of repeatability of individual timings and destinations [13-20], suggesting that the benefits of philopatry in use of space and time are very strong [34,35]. Thus generational shifts may be the primary mechanism through which phenological shifts and range change occur. 31 32 Identifying the environmental and demographic processes that drive generational shifts in space and time is therefore likely to be a critical step in understanding population-level responses to environmental change and the associated implications for conservation. Generational shifts in distribution or phenology could potentially arise through processes occurring at the following points in early life: 39 1. Developmental drivers of generational shifts Conditions experienced at the natal stage, such as timing of hatching and/or conditions for growth and development, could influence the probability of those individuals undertaking different subsequent migratory routes and timings. For example, individuals hatched late in the season and/or with insufficient resources to fuel rapid growth are likely to migrate later, on average, and may thus have less time to locate more distant non-breeding locations. In such a case, an increase in the number of later-fledging individuals could drive recruitment into non-breeding locations that are closer to the breeding grounds. Similarly, natal conditions could potentially influence subsequent migration phenology, either directly through impacts on individual condition, or indirectly through impacts on the conditions and potential flockmates encountered during the non-breeding season. An important aspect of natal conditions that could potentially influence juvenile distribution and migratory timings is the changes in breeding phenology that are widely reported in many migratory populations [9,36]. Advances in nesting dates have been reported in many species and individual plasticity in nesting dates is common [37,38]. Thus, current evidence 60

1 2		
3	243	suggests that individual timings of arrival of migrants on breeding grounds tend to be
4 5	244	consistent, but subsequent timings of breeding can vary greatly, and often vary in response
6	245	to local weather conditions [6,39,40]. This changing phenology of natal conditions could
8	246 247	potentially drive changes in subsequent phenology and distribution of new recruits to the population, if timing of fledging influences subsequent migratory routes and timings. A key
9 10	247	mechanism that could drive such links is the potential for timing of fledging to influence the
11	249	likely flockmates on migratory journeys, and the destinations to which they are travelling.
13	250	For example, tracking of adult and juvenile Lesser Spotted Eagles, Clanga pomarina, on their
14 15	251 252	migratory journeys has shown that juveniles that departed at the same time as adults were significantly more likely to take the same routes as adults, and to have higher subsequent
19	253	survival rates, than juveniles who departed without adults [41]. Timing-driven access to
17	254	social cues in migratory flocks could therefore be an important driver of the migratory
19	255	routes and destinations located by juveniles, and changes in timing of fledging could
20 21	256 257	therefore drive changes in the non-breeding distribution of migratory species.
22 23	257 258	2. Environmental effects on generational shifts
24 25	259	Changing environmental conditions could directly influence the probability of recruits
25 26	260	migrating at specific times or locating specific non-breeding locations. For example,
27	261	changing weather conditions (e.g. windspeeds or directions) could alter the proportions of
28	262 263	recruits migrating at different time or taking different routes. However, while wind conditions can have important effects on migrating birds [42], individual consistency in
30 31	263	migratory destinations and timings would mean that such effects could only operate in early
33	265	life (ie during settlement/recruitment).
34	266	
35 36	267 268	3. Demographic effects on generational shifts Disproportionate changes in survival rates of recruits that differ in distribution or timing
36 37	269	could lead to generational shifts. For example, while the numbers of individuals recruiting
38 39	270	into more northerly winter locations or arriving early on the breeding grounds may not be
40	271	changing, those individuals could be increasingly likely to survive, for example as a
41 43	272 273	consequence of ameliorating weather conditions in northerly areas or on arrival in the breeding areas. Changing patterns of survival may be particularly relevant in systems with
43 44	274	range expansion into areas in which weather conditions are changing as a consequence of
48	275	climatic change [43], and these effects could operate alongside developmental or
47	276	environmental effects.
48 49	277 279	Drivers of generational shifts in Icelandic godwits
50	278 270	In Icelandic black-tailed godwits, rapid warming has occurred on the breeding grounds in
51 52	279 280	recent decades, and nesting dates are earlier [6] and productivity is higher [26] in warmer
53 54	281	years. This warming-driven increase in productivity is likely to have fuelled the colonisation
55	282	of colder breeding areas in the north, where nest-laying and hatching dates are, on average,
56 57	283 284	later than in more southerly breeding areas [6]. Individuals from these colder and more recently colonised breeding areas are more likely to also winter in the more recently
58 59	285	colonised non-breeding areas [31], and these seasonal links could thus result from regional-
60		
Î.		

1		
2 3	286	scale differences in timing of fledging and subsequent social cues available to juveniles
4 5	287	undertaking their first migration.
6	288	
7 8	289	Warming-driven advances in nesting dates could also have driven the advancing spring
9	290 291	arrival of godwits in Iceland, as previous analyses have shown that (a) individuals wintering in more southerly areas of Europe [29] and breeding in the warmer areas of south and west
10 11	292	Iceland [32] arrive first, and (b) more recently hatched individuals tend to have earlier spring
13	293	$arrival dates than individual shatched in the 1990 s \cite{13}. This suggests that the generational the standard stand$
14 15	294 295	shifts driving the phenological advance in this system (Fig. 2) could potentially result from increased numbers of early-hatched individuals from the traditionally occupied areas of
19	296	Iceland that, because of their early fledging, are also more likely to have the time, condition
18 19	297 298	and social cues to both locate traditionally occupied winter areas and return early in spring. Increased survival rates of early-arrivers and northerly winterers could also be contributing
20 21	299	to these changes in space and time.
22	300	
23 24	301 202	Climate change and generational shifts in space and time
25	302	If climate-driven shifts in breeding phenology can alter the frequency of juveniles
26 27	303 304	undertaking different migratory routes, destinations and timings, this could be an important route through which climate-associated shifts in range and phenology are manifest. A
28	305	common pattern among migratory species at present is those migrating longer distances are
30	306	less likely to show shifts in migration phenology [44,45]. As longer-distance migrants
31 32 33	307 308	typically arrive later on the breeding grounds and have a smaller gap between arrival and laying than shorter-distance migrants [13], they may have a more limited capacity to alter
33 34	309	breeding phenology (and thus generational shifts resulting from shifts in breeding
35	310	phenology are less likely to occur). The effects of climate warming on breeding phenology
39	311 312	can thus have potentially far-reaching consequences for migratory populations.
38 39	313	Future research
40	314	Identifying the contribution of developmental, environmental and demographic change to
41	315	generational shifts, and the conditions in which each might be most relevant, will require
43 44	316 317	studies in which the effects of natal conditions, environmental conditions experienced by juvenile individuals undertaking different migratory routes and timings, and the
45	318	demographic consequences of conditions experienced at destinations can be measured.
46 47	319	Tracking individuals from fledging to recruitment into adulthood is difficult because survival
48	320	rates at this life stage are typically low, and retrieval of tags can be challenging because the
4 8	321	subsequent breeding locations of these individuals is typically unknown, but technological
51 52	322 323	advances will hopefully make these issues more tractable in the near future. Long-term studies of seasonal patterns of nest loss, timing of replacement clutches and juvenile
52 53 54	324	fledging will also be particularly valuable in identifying the potential role of breeding
55	325	phenology in driving change in migratory systems. Quantifying the developmental,
56	326 327	environmental and demographic processes that influence individual migratory routes, destinations and timings will be key to understanding future rates and directions of spatial
58	328	and phenological change in migratory species, and the associated implications for designing
59 60	329	effective protected area networks and conservation actions for these species.

1 2 3	330						
	331	Ackn	nowledgements				
	332	Weth	nank Peter Potts, Graham Appleton, Boðvar Þórisson, Ruth Croger, Verónica Méndez,				
9 10	331Acknowle332We thank II333Lilja Jóhan334made thes335associated336helpful cor337(SFRH/BI338Competin339We have340Ethics341All require342Author cor343All three and344The analys345.346Referencor3471.348R.D349caus3503513512.355Gos356pop357stop358A. (236112583623633645.3645.Mén	Jóhannesdóttir and the thousands of observers of colour-ringed godwits who have e these analyses possible. We also thank the organisers of this special issue and the ciated conference, and Judy-Shamoun-Baranes and an anonymous reviewer for very					
13 14		-	ul comments. Funding support was provided by NERC (NE/M012549/1) and FCT RH/BPD/91527/2012).				
16	338	Com	peting interests				
18	339	Weł	We have no competing interests				
20	340	Ethics					
22	341	All re	quired approval and licenses were obtained				
24	342	Auth	or contributions				
25 26 27 28		All three authors conceived and designed the study and generated the data. JAG conducted the analyses and all three authors contributed to the writing of the manuscript.					
29 30	345						
2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 9 20 21 22 23 24 5 26 27 28	346	References					
		1.	$\label{eq:Vickery, J. A., Ewing, S. R., Smith, K. W., Pain, D. J., Bairlein, F., \\ \ref{Skorpilov} a, J. \\ \& Gregory, R. D. (2014) \\ The decline of A fro-Palae arctic migrants and an assessment of potential and the statement of the statement o$				
36			causes. <i>Ibis</i> , <i>156</i> ,1-22.				
38		2.	Gilroy, J. J., Gill, J. A., Butchart, S. H., Jones, V. R. & Franco, A. M. (2016) Migratory				
40			diversity predicts population declines in birds. <i>Ecology letters</i> , 19, 308-317.				
42		3.	Studds, C. E., Kendall, B. E., Murray, N. J., Wilson, H. B., Rogers, D. I., Clemens, R. S.,				
44 45	356		Gosbell, K., Hassell, C.J., Jessop, R., Melville, D.S. & Milton, D.A. (2017) Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. <i>Nature Communications</i> , <i>8</i> , 14895.				
	358						
49 50	360	4.	Runge, C. A., Watson, J. E., Butchart, S. H., Hanson, J. O., Possingham, H. P. & Fuller, R. A. (2015) Protected areas and global conservation of migratory birds. <i>Science</i> , <i>350</i> ,				
52			1255-1258.				
54	363	5.	Méndez, V., Gill, J. A., Alves, J. A., Burton, N. H. & Davies, R. G. (2018) Consequences of population change for local abundance and site occupancy of wintering waterbirds.				
	365 366		Diversity and Distributions, 24, 24-35.				

1			
3	367	6.	Alves, J.A., Gunnarsson, T.G., Sutherland, W.J., Potts, P.M. & Gill, J.A. (2019) Linking
2 3 4 5 6 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 2 7 8 9 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17 10 11 12 13 14 15 16 17 11 12 13 14 15 16 17 11 12 13 11 12 13 11 12 12 12 12 12 12 12 12 12 12 12 12	368 369		warming effects on phenology and demography with range expansion in a migratory bird population. <i>Ecology and Evolution.</i>
	370	_	
10	371 372 373	7.	Møller, A. P., Rubolini, D. & Lehikoinen, E. (2008) Populations of migratory bird species that did not show a phenological response to climate change are declining. <i>Proceedings of the National Academy of Sciences</i> . 105, 16195–16200.
	374		
14 15 16	375 376 377 378	8.	Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. & Post, E. (2010) The effects of phenological mismatches on demography. <i>Philosophical Transactions of the Royal Society of London B: Biological Sciences</i> , 365, 3177-3186.
19 20 21	378 379 380 381 382	9.	Knudsen, E., Lindén, A., Both, C., Jonzén, N., Pulido, F., Saino, N., Sutherland, W.J., Bach, L.A., Coppack, T., Ergon, T., Gienapp, P., Gill, J.A., Gordo, O., Hedenström, A., Lehikoinen, E., Marra, P.P., Møller, A.P., Nilsson, A.L.K., Péron, G., Ranta, E., Rubolini, D., Sparks, T.H., Spina, F., Studds, C.E., Sæther, S.A., Tryjanowski, P. & Stenseth, N.C.
24	383 384 385		(2011) Challenging claims in the study of migratory birds and climate change. <i>Biological Reviews</i> , 86,928-946
27	386	10.	La Sorte, F.A. & Thompson, F.R. (2007) Poleward shifts in winter ranges of North
28 29	387		American birds. <i>Ecology</i> , <i>88</i> , 1803-1812.
29 30	388		
31 32 33	389 390	11.	Virkkala, R. & Lehikoinen, A. (2014) Patterns of climate-induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds. <i>Global</i>
34	391		Change Biology, 20,2995-3003.
35 36	392	40	
37	393	12.	Sanderson, F. J., Pople, R. G., Ieronymidou, C., Burfield, I. J., Gregory, R. D., Willis, S. G.,
38 39	394 395 396		Howard, C., Stephens, P.A., Beresford, A. E & Donald, P. F. (2016) Assessing the performance of EU nature legislation in protecting target bird species in an era of climate change. <i>Conservation Letters</i> , <i>9</i> , 172-180.
49	397		
42 43	398	13.	Gill, J. A., Alves, J. A., Sutherland, W. J., Appleton, G. F., Potts, P. M. & Gunnarsson, T.
44	399		G. (2014) Why is timing of bird migration advancing when individuals are not?
4 5	400		Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132161.
47	401		
48	402	14.	Vardanis, Y., Klaassen, R. H., Strandberg, R. & Alerstam, T. (2011) Individuality in bird
49 50	403		migration: routes and timing. <i>Biology Letters</i> , rsbl20101180.
51	404		
52 52	405	15.	Stanley, C. Q., MacPherson, M., Fraser, K. C., McKinnon, E. A. & Stutchbury, B. J. (2012)
53 54	406		Repeat tracking of individual songbirds reveals consistent migration timing but
55 56	407 408		flexibility in route. <i>PloS one</i> , 7, e40688.
57	408 409	16.	Conklin, J. R., Battley, P. F. & Potter, M. A. (2013) Absolute consistency: individual
58 50	410		versus population variation in annual-cycle schedules of a long-distance migrant bird.
59 60	411		PLoS One, 8,e54535.
	-		

1 2 3			
	412		
4 5	413	17.	
6	414		and spatial flexibility of migration routes of trans-Saharan migratory raptors. Current
7 8	415 416		Zoology, 60, 642-652.
9	417	18.	Lourenço, P.M., Alves, J.A., Reneerkens, J., Loonstra, J., Potts, P.M., Granadeiro, J.P.&
10 11	418		Catry, T. (2016) Influence of age and sex on winter site fidelity of sanderlings Calidris
12	419		alba. PeerJ, 4:e2517.
13 14	420	10	Lisses and D. Marsteine Janan T. Tardes, M. Stillers and D. (2047) is dividual
15	421	19.	
16	422 423		consistency of long-distance migration in a songbird: significant repeatability of autumn route, stopovers and wintering sites but not in timing of migration. <i>Journal of</i>
18	424		Avian Biology, 48,91-102.
19 20	425		
20	426	20.	Pedersen, L., Jackson, K., Thorup, K. & Tøttrup, A. P. (2018) Full-year tracking suggests
22	427		endogenous control of migration timing in a long-distance migratory songbird.
<u>23</u>	428		Behavioral Ecology and Sociobiology, 72, 139.
25 26	429	04	
	430	21.	
27 28	431 432		(2001) The buffer effect and large-scale population regulation in migratory birds. <i>Nature</i> , <i>412</i> , 436.
29 30	432 433		Nature, 472,430.
31	434	22.	Gunnarsson, T. G., Gill, J. A., Sigurbjörnsson, T. & Sutherland, W. J. (2004) Pair bonds:
32 33	435		arrival synchrony in migratory birds. <i>Nature</i> , 431, 646.
34 35	436		
36	437	23.	Alves, J. A., Gunnarsson, T. G., Hayhow, D. B., Appleton, G. F., Potts, P. M., Sutherland,
37	438		W. J. & Gill, J. A. (2013) Costs, benefits, and fitness consequences of different
38	439 440		migratory strategies. <i>Ecology</i> , 94, 11-17.
40		24	Cupperson T. C. & Témpeson C. (2011) Flovibility in opting artival of migratory birds
41 ⊿2	441 442	24.	Gunnarsson, T. G. & Tómasson, G. (2011) Flexibility in spring arrival of migratory birds at northern latitudes under rapid temperature changes. Bird Study, 58, 1-12.
42 43	443		······································
44 45	444	25.	Gunnarsson, T. G., Gill, J. A., Appleton, G. F., Gíslason, H., Gardarsson, A., Watkinson,
46	445		A.R.&Sutherland,W.J.(2006a)Large-scale habitat associations of birds in lowland
48	446		Iceland: implications for conservation. Biological Conservation, 128, 265-275.
49	447		
50 51	448	26.	Gunnarsson, T. G., Jóhannesdóttir, L., Alves, J. A., Þórisson, B. & Gill, J. A. (2017) Effects
51 52	449 450		of spring temperature and volcanic eruptions on wader productivity. <i>Ibis</i> , 159, 467-
53 54	450 451		471.
55	452	27.	Gunnarsson, T. G., Gill, J. A., Petersen, A., Appleton, G. F. & Sutherland, W. J. (2005b) A
56 57	453		double buffer effect in a migratory shorebird population. <i>Journal of Animal Ecology</i> ,
58	454		74, 965-971.
59 60	455		
00			

1			
2 3 4 5 6	456 457 458	28.	Prater, A. J. (1975) The wintering population of the Black-tailed Godwit. <i>Bird Study, 22,</i> 169-176.
6 7 8 9 10 11	459 460 461	29.	Alves, J. A., Gunnarsson, T. G., Potts, P. M., Gélinaud, G., Sutherland, W. J. & Gill, J. A. (2012) Overtaking on migration: does longer distance migration always incur a penalty? <i>Oikos</i> , <i>121</i> , 464-470.
12 13 14 15 16	462 463 464 465	30.	Gunnarsson, T.G., Gill, J.A., Potts, P.M., Atkinson, P.W., Croger, R.E., Gélinaud, G., Gardarsson, A. & Sutherland, W.J. (2005c) Estimating population size in black-tailed godwits <i>Limosa limosa islandica</i> by colour-marking. <i>Bird Study</i> , <i>52</i> , 153-158.
17 18 19 20 21	400 467 468 469	31.	Gunnarsson, T. G., Gill, J. A., Newton, J., Potts, P. M. & Sutherland, W. J. (2005a) Seasonal matching of habitat quality and fitness in a migratory bird. <i>Proceedings of the</i> <i>Royal Society of London B: Biological Sciences</i> , <i>272</i> , 2319-2323.
22 23 24 25 26 27 28	470 471 472 473 474	32.	Gunnarsson, T.G., Gill, J.A., Atkinson, P.W., Gelinaud, G., Potts, P.M., Croger, R.E., Gudmundsson, G.A., Appleton, G.F. & Sutherland, W.J. (2006b) Population-scale drivers of individual arrival times in migratory birds. <i>Journal of Animal Ecology</i> , 75, 1119-1127.
29 30 31 32 33	475 476 477 478	33.	Verhoeven, M. A., Loonstra, A. J., Hooijmeijer, J. C., Masero, J. A., Piersma, T. & Senner, N. R. (2018) Generational shift in spring staging site use by a long-distance migratory bird. <i>Biology letters</i> , <i>14</i> , 20170663.
34 35 36 37 38	479 480 481 482	34.	Kokko, H. & Sutherland, W. J. (2001) Ecological traps in changing environments: ecological and evolutionary consequences of a behaviourally mediated Allee effect. <i>Evolutionary Ecology Research</i> , <i>3</i> , 603-610.
39 40 41 42 43	483 484 485 486	35.	Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. (2018). A long winter for the Red Queen: rethinking the evolution of seasonal migration. <i>Biological Reviews</i> . doi: 10.1111/brv.12476
44 45 46 47 48	487 488 489 490	36.	Dunn, P. O. & Møller, A. P. (2014) Changes in breeding phenology and population size of birds. <i>Journal of Animal Ecology</i> , 83, 729-739.
49 50 51	491 492 493	37.	Visser, M. E., te Marvelde, L. & Lof, M. E. (2012) Adaptive phenological mismatches of birds and their food in a warming world. <i>Journal of Ornithology</i> , 153, 75-84.
52 53 54 55	494 495 496	38.	Charmantier, A. & Gienapp, P. (2014) Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. <i>Evolutionary Applications</i> , 7, 15-28.
56 57 58 59 60	497 498	39.	Townsend, A. K., Sillett, T. S., Lany, N. K., Kaiser, S. A., Rodenhouse, N. L., Webster, M. S. & Holmes, R. T. (2013) Warm springs, early lay dates, and double brooding in a

1			
3	499		North American migratory songbird, the black-throated blue warbler. PLoS One, 8,
2 3 4 5 6 7 8 9 11 1 3 14 15 17 18 9 21 22 3 4 5 6 7 8 9 10 12 3 14 15 17 18 9 21 22 3 24 5 26 7 8 9 3 3 3 4 5 3 6 7 8 9 4 12 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	500		e59467.
	501 502	40.	Visser, M.E., Gienapp, P., Husby, A., Morrisey, M., de la Hera, I., Pulido, F. & Both, C.
9	503 504 505		(2015) Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. <i>PLoS Biology</i> , <i>13</i> , e1002120.
13 14 15 16 18	506 507 508 509 510	41.	Meyburg, B. U., Bergmanis, U., Langgemach, T., Graszynski, K., Hinz, A., Börner, I., Meyburg, C. & Vansteelant, W. M. (2017) Orientation of native versus translocated juvenile lesser spotted eagles (<i>Clanga pomarina</i>) on the first autumn migration. <i>Journal of Experimental Biology</i> , 220, 2765-2776.
19 20 21 22 23 24	511 512 513 514 515	42.	Shamoun-Baranes, J., Leyrer, J., van Loon, E., Bocher, P., Robin, F., Meunier, F. & Piersma, T. (2010) Stochastic atmospheric assistance and the use of emergency staging sites by migrants. <i>Proceedings of the Royal Society of London B: Biological Sciences</i> , rspb20092112.
26 27 28 29	516 517 518 519	43.	McKechnie, A. E. & Wolf, B. O. (2010) Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. <i>Biology Letters</i> , 6, 253-256.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	520 521 522	44.	Butler C. J. (2003) The disproportionate effect of global warming on the arrival dates of short-distance migratory birds in North America. <i>Ibis</i> , 145, 484–495.
	523	45.	Rubolini, D, Møller, A. P., Rainio, K. & Lehikoinen, E. (2007) Intraspecific consistency
36 37 38	524 525 526 527		and geographic variability in temporal trends of spring migration phenology among European bird species. <i>Climate Research</i> , 35, 135–146.
41 42	528		
44			
45 46			
47 48			
49 50			
51 52			
53 54			
55 56			
57 58			
59 60			

6

529	Table 1. The 121 winter locations across 26 regions and nine countries used by	the
-----	--	-----

530 individual godwits shown in Figure 3. Regions in bold are colonised since the 1960s.

6					
7	531	Country	Region	Lat-Long	No. of locations
8 9		N Ireland	East	54°N, 05°W	1
, 10		Ireland	West	53°N, 08°W	1
11			Central	52°N, 08°W	2
12 13			East	53°N, 06°W	6
14			South	51°N, 08°W	11
15		Wales	North	53°N, 03°W	2
16 17			West	52°N, 04°W	1
18		England	North-west	53°N, 03°W	9
19			Central	52°N, 01°W	2
20 21			East	52°N, 01°E	27
22			South	50°N, 01°W	10
23			South-east	51°N, 01°E	3
24 25			South-west	50°N, 03°W	7
26		Netherlands	North	53°N, 06°E	1
27			Central	52°N, 06°E	2
28 29			West	52°N, 04°E	3
30		France	North	48°N, 01°W	3
31			North-west	47°N, 02°W	7
32 33			West	46°N, 01°W	10
34		Portugal	South	37°N, 08°W	4
35		Ū	West	38°N, 09°W	3
36 37		Spain	North	43°N, 03°W	1
38			North-west	42°N, 08°W	1
39			West	38°N, 06°W	1
40 41			South	37°N, 06°W	2
41		Morocco	West	30°N, 09°W	1
43				00 14, 00 44	·

Table 2. Results of GLMs of (a) annual and individual variation in arrival dates of 85 god wits(3-12 years between 1999 and 2018) and variation in (b) annual trends in arrival dates and (c) mean arrival dates, in relation to the year in which those 85 individuals were first

observed on arrival in Iceland.

	d.f.	F	р	Slope (±SE)
(a) Year Individual Error	1 84 300	0.99 2.06	0.32 0.001	0.062 ±0.06
(b) First observation year Error	1 83	0.02	0.89	0.004 ±0.03
(c) First observation year Error	1 83	8.83	0.004	-0.21 ± 0.07

3

544 Table 3. Results of binomial models of variation through consecutive time intervals in the

545 frequency of individually-marked godwits recorded in winter locations (a) occupied since 546 the 1960s (old, **0**) or colonised since then (new, 1), and (b) north (0) and south (1) of 52°N.

	Estimate	e SE	p	Odds ratio
(a)				
Intercept	0.4	0.25		
Year	-0.77	0.13	0.001	0.46
(b)				
Intercept	-0.008	0.23		
Year	-0.29	0.11	0.006	0.74

552	Figure Legends
553	
554	Figure 1. Number of years on which 85 individually-marked Icelandic godwits have been
555	recorded on spring arrival in Iceland, between 1999 and 2018.
556	
557 558 559	Figure 2. Changes in the mean (a) annual change in arrival date and (b) arrival date (days since 1 April) in Iceland of 85 individual godwits with the year in which they were first observed on arrival in Iceland (see Table 2c for model details).
560	
561	$\label{eq:Figure3} Figure 3. The total number of (a) countries, (b) regions and (c) locations on which individual$
562	godwits have ever been recorded in the total number of years over which each has been
563	tracked. The number of individuals tracked for each total number of years is shown above
564	the bars in (a), see Table 1 for numbers of locations, regions and countries.
565	
566	Figure 4. Changes through consecutive 5-year time intervals in the (a) proportion of
567	individual godwits wintering in locations that have been occupied since the 1960s (old) or
568 569	colonised since then (new), and (b) latitude of those winter locations. Numbers observed in each time period are shown in (a).
	553 554 555 556 557 558 559 560 561 562 563 564 563 564 565 566 566 567 568

- 52 53 54 55 56

