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Controlled creation of a singular spinor vortex
by circumventing the Dirac belt trick

L.S. Weiss"/, M.O. Borgh 2 A. Blinova'3, T. Ollikainen® 4, M. Métténen® #°, J. Ruostekoski® & D.S. Hall@® ™

Persistent topological defects and textures are particularly dramatic consequences of
superfluidity. Among the most fascinating examples are the singular vortices arising from the
rotational symmetry group SO(3), with surprising topological properties illustrated by Dirac’s
famous belt trick. Despite considerable interest, controlled preparation and detailed study of
vortex lines with complex internal structure in fully three-dimensional spinor systems
remains an outstanding experimental challenge. Here, we propose and implement a repro-
ducible and controllable method for creating and detecting a singular SO(3) line vortex from
the decay of a non-singular spin texture in a ferromagnetic spin-1 Bose-Einstein condensate.
Our experiment explicitly demonstrates the SO(3) character and the unique spinor properties
of the defect. Although the vortex is singular, its core fills with atoms in the topologically
distinct polar magnetic phase. The resulting stable, coherent topological interface has ana-
logues in systems ranging from condensed matter to cosmology and string theory.
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uantised vortices are topological defects with universal

properties that span seemingly disparate areas of science,

such as high-energy physics, superconductivity, liquid
crystals, and superfluids!. Superfluids with internal degrees of
freedom such as liquid 3He (ref. ?) and dilute-gas spinor
Bose-Einstein condensates®* (BECs) may exist in diverse stable
phases, characterised by different broken symmetries of the full
interaction Hamiltonian. Distinct states within a given phase of
matter transform into one another in several ways, such as
through rotations of spin and condensate phase. As a result, a rich
phenomenology emerges consisting of topological defects and
textures that resemble those predicted to exist in quantum field
theories and cosmology!.

In ordinary scalar superfluids, such as superfluid liquid *He
and dilute BECs with frozen internal degrees of freedom, quan-
tised vortices are characterised by the winding of the phase of the
macroscopic wave function about any closed loop encircling the
vortex line>®. The whole spectrum of phase values converges to
the singular vortex line, at which the superfluid density vanishes.

In contrast, spin-1 condensates are described by a three-
component spinor, which admits both polar (P) and ferromag-
netic (FM) ground-state magnetic phases. For atoms in the FM
phase, the magnitude of the spin assumes its maximum value of
one>4, and all of the different physical states are related to each
other by spatial rotations of the spinor. The distinguishable states
of the system are fully represented by the orientation of a local,
orthonormal vector triad defined by the orientation of the atomic
spin and rotations about it, corresponding to the elements of the
group SO(3) of three-dimensional (3D) spatial rotations. Math-
ematical analysis” of this symmetry group indicates that vorticity
must be carried either by coreless, non-singular spin textures, or
by quantised, singular vortices.

Quantised singular SO(3) vortices with even winding num-
bers have the unusual property that they are topologically
equivalent to the defect-free state. When the local orientation of
the vector triad describing the SO(3) vortex undergoes an even
number of 27 rotations about an axis passing through the
system, the triads can be locally and continuously reoriented,
smoothly returning the system to a uniform configuration.
Equivalently, joining two vortices with 27 winding each can
cancel their net vorticity, either when they circulate oppositely
or—less obviously—when they wind in the same sense. This
essential property has been attributed to Dirac as his epon-
ymous belt trick, a demonstration in which two 27 twists of a
belt in the same direction may return it to its original config-
uration®; but the concept also makes an appearance in diverse
artistic contexts such as the Balinese candle dance. The sig-
nificance of the belt trick to our work is that vortices with an
odd number of 27 rotations of the vector triad are all equivalent
to one another but not to the defect-free state.

In light of their peculiar properties, which have no corre-
spondence in scalar quantum fluids, singular SO(3) vortices have
attracted considerable attention in several different contexts.
They have previously been described and indirectly detected in
the superfluid liquid 3He-A phase2%10, where their direct
visualisation is challenging. In spin-1 BECs, they have been
studied theoretically as the unique class of singular vortices in the
FM phasell-14 Of particular significance is the fact that,
although the superfluid density in the FM phase must vanish
along the line where the triad orientation is ill-defined, the sin-
gular vortex can lower its energy by developing a superfluid core
consisting of atoms in the spinless P phase that are excited out of
the FM ground-state manifold!>!415, This phenomenon has
been observed experimentally in the spontaneous vorticity of
randomly appearing singular SO(3) defects in quasi-two-
dimensional (2D) condensates during a rapid non-equilibrium

-

Fig. 1 Numerical simulation of a singly quantised singular SO(3) vortex. The
symmetry of the local spinor order parameter is illustrated by a graphical
representation of the surface of |Z(6, ¢)|2, with the colour indicating
Arg(2), where Z(6,¢) = 11, Yim(0,¢)¢,, corresponds to an expansion
of the spinor in terms of spherical harmonics Y; ,,(6, ¢), such that (6, ¢)
define the local spinor orientation. Outside the vortex core the order
parameter reaches the SO(3) symmetric ferromagnetic phase. Inside the
core it continuously connects with the nematic order parameter of the polar
phase at the vortex line singularity, forming a coherent topological
interface. The interpolation of the order parameter across the interface is
readily apparent in the vanishing magnitude of the spin vector (ﬁ) (silver
arrows and background surface) at the vortex line where the polar phase is
determined by the d vector (gold arrows) and the phase of the macroscopic
condensate wave function. Source data are provided as a Source Data file

Arg(2) =0 o F=0 I

phase transition!®, where the filled vortex cores were detected
indirectly by their lack of longitudinal magnetisation. More
recently, atomic condensates subjected to momentum-dependent
artificial gauge potentials were shown to support filled-core
vortices!” closely related to those studied in our work. Related
but topologically different half-quantum vortices have also been
observed in the P phase in a quasi-2D BEC!8. Despite these
efforts, the controlled creation of singular SO(3) vortices remains
an experimental challenge.

Here, in a striking manifestation of the topological constraints
of the SO(3) order parameter, we transform a non-singular vortex
that is topologically equivalent to one with a 47 winding of the
FM order parameter into a pair of spatially-separated singular
SO(3) vortices with 27 winding each (Fig. 1). We thereby cir-
cumvent the smooth topological unwinding permitted by Dirac’s
belt trick, dividing the equivalent of a 47 rotation into two 27
rotations that, once separated, cannot individually unwind. We
find experimentally that the singular FM vortex cores are filled
and expanded by atoms in the P phase. This establishes the
existence of a coherent topological interface!%1%, where the order
parameter continuously interpolates between the two magnetic
phases within the vortex core. Such topological interfaces are
universal across many areas of physics, including superfluid
liquid 3He at the boundary between coexisting A and B
phases?0-21, early-universe cosmology and superstring theory as
domain walls??> and branes?3, and solid-state physics supporting
exotic superconductivity?*. Finally, we explicitly demonstrate the
SO(3) character of the vortices by enacting a change of basis,
which appears experimentally as a spatial separation of phase
singularities in the three spinor components. Our work directly
addresses the challenges of controlled creation and simple para-
meter tuning of a fully 3D, singular SO(3) vortex, marking the
path for a detailed study and direct imaging of the underlying
topological phenomena.
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Results

Theoretical background. The macroscopic wave function of a
spin-1 BEC can be written in terms of the atomic density » and
the three-component spinor { as ¥(r,t) = /n(r,t){(r,t). In the
FM phase, we have?

Ly V2e7 ™ cos? g
(™M = % sinf |, (1)
V26" sin? '/‘;

which can be obtained by applying a 3D spin rotation U(a, f, y)
to the representative FM spinor (1, 0, 0)T. Any FM spinor is thus
fully specified by the three Euler angles «, f3, and y, corresponding
to the group of rotations in three dimensions, SO(3). As a con-
sequence, any FM state can be represented by the orientation of a
vector triad defined by the condensate spin vector (F)

(F = |(F)| = 1) and an orthogonal vector d (Methods).

The topological stability of a singular SO(3) vortex is
characterised by the way closed contours encircling the defect
map into the order parameter space’. If the order parameter
space image of such a closed loop can be continuously contracted
to a point, the defect is not topologically stable against
transformations to the vortex-free state. The SO(3) parameter
space may be represented geometrically as a solid sphere of radius
m, where the direction of the radius vector of any point within the
sphere gives an axis of rotation and its length gives the rotation
angle (Fig. 2). However, 7 rotations about axes i and —n are
equivalent, and thus diametrically opposite points on the surface
must be identified. Therefore, only two topologically distinct
classes of singular vortex lines exist: those that trace between
identified, diametrically opposite points an even number of times,
including zero; and those that trace between them an odd number
of times. Mathematically, the vortex charges form the two-
element group Z,.

Since an even number of connections between identified points
always corresponds to a loop contractible to a point, the vortices in
the first (even) class can be continuously deformed into the defect-
free state, and those in the second (odd) class can be continuously
deformed to a singly quantised, singular vortex. The essence of
Dirac’s belt trick is that a 47 winding, with a path in parameter space
that goes about the sphere once, is equivalent to the defect-free state.

SO(3) vortex creation. Our primary result is a controlled creation
method of a pair of singular SO(3) spinor vortices with non-
trivial rotational topology from a non-singular texture. In the
initial non-singular vortex—also known as a coreless vortex, baby
skyrmion, or Anderson-Toulouse-Chechetkin/Mermin-Ho?
vortex in superfluid liquid helium—the circulation is not quan-
tised and the spin forms a fountain-like profile that adjusts to the
angular momentum of the superfluid. This characteristic fountain
texture has been experimentally observed in BECs?>-%7. If the
non-singular spin texture is not constrained, e.g., energetically, it
can continuously deform to a vortex-free state. We find, however,
that a very sharp bending of the vortex spin profile, corre-
sponding to a strong but incomplete longitudinal magnetisation,
induces an instability wherein the non-singular spin texture
decays by splitting into a pair of singly quantised vortices!4, as
shown in Fig. 3a-d (see also Supplementary Note 1). Once
separated, the resulting singly quantised vortices can no longer
unwind on their own, thus circumventing the Dirac belt trick
along the lines of Fig. 2. The decay paths of the non-singular
vortex therefore include not only its unwinding by local spin
rotations or departure from the condensate at its boundary??, but
also its splitting into a pair of singly quantised SO(3) vortices that
will, in turn, also ultimately leave the condensate. Numerically, a
bending with magnetisation M S — 0.3 that is explicitly conserved
is sufficient to guarantee the splitting, as shown in Figs. 3 and 4.

The splitting process of the non-singular spin texture is
fundamentally different from the previously observed decay of
a multiply quantised singular vortex into multiple singly
quantised vortices?8-31, in which magnetic trapping fields froze
the atomic spin degree of freedom to produce a scalar BEC. In
contrast, our experiment relies upon an all-optical trap that
allows the atoms to retain their spinor nature. Even so,
imprinting a multiply quantised singular vortex fully spin-
polarises the condensate and spinor dynamics do not occur due
to conservation of the maximised longitudinal magnetisation.
The critical feature of our experiment is that the decay
dynamics begin with an imprinted non-singular spin texture.
The incomplete magnetisation ensures active spin degrees of
freedom, and a spinor description is required. The relevant
algebra of the line-vortex charges in our splitting process in SO
(3) thus obeys the cyclic group Z, with only the elements 0 and
1. Both evenly quantised and non-singular vortices are

‘t“{ :"2;

Fig. 2 Contractible and non-contractible loops in SO(3). a Points inside and on the surface of the sphere represent elements of SO(3), with diametrically
opposite points (e.g. A and A’) on the surface corresponding to the same element. The contractible loop on the surface of the sphere corresponds to a
vortex with 4z winding that is continuously deformable into the vortex-free state. Such deformation amounts to enacting the Dirac belt trick. b The decay of
the non-singular vortex into two separated singular line defects is represented by the emergence of two loops in distinct copies of the SO(3) sphere. Each
loop is closed by virtue of the identification of A and A’ and cannot be contracted to a point on its own. The insets show the orientation of the ferromagnetic
order parameter in real space corresponding to the points on the contractible (@) and non-contractible (b) loops, respectively. Each orthonormal triad is
specified in terms of its spin direction (black arrows) and two other mutually orthonormal vectors (green and blue), with an axis of rotation given by a

dashed line
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Fig. 3 Controlled singular SO(3) vortex creation from a non-singular vortex. a Spinor component densities of an analytically constructed non-singular
vortex state immediately after imprinting (see also Supplementary Note 1) in a cross-section through the condensate. b Corresponding experimental
absorption images with Toyone & O ms for dBy/dt = —5 G s~1. The density minimum of the m = —1 component marks the non-singular vortex centre, and
the other two components are non-zero in this region (blue circles). The creation process subjects the three spinor components to sustained differential
forces, distorting the condensate and inducing non-zero densities in the m =0 and m =1 components distant from the vortex centre. The densities of the
experimental images are expressed in terms of dimensionless optical depth (O.D.), and the field of view of each image is 219 pm x 219 um. ¢ Locally stable
state after numerically simulated energy relaxation of the non-singular vortex of b, shown as component densities in a cross-section through the cloud. As
a consequence of the SO(3) order parameter symmetry and conserved magnetisation, the non-singular vortex is unstable towards splitting into a pair of
singly quantised, singular vortices, visible as density dips in the m = —1 component. Peaks in the m = O component at the positions of the vortices show the
formation of vortex cores filled with atoms in the polar phase. d As b, but for T.yove =150 ms and corresponding to ¢. e Schematic of the imprinting
process, showing the condensate (blue), magnetic field lines (grey), nodal line/axis of coreless vortex (yellow), and location of the magnetic field zero (red
dot) at three sequential instants in time. The non-singular vortex is created by incompletely adiabatic spin rotations as the location of the field zero passes
through the condensate in the direction of the red arrow. Source data are provided as a Source Data file

represented by the trivial element and their splitting corre-
sponds to the group operation 0 =1+ 1, with no counterpart
in a scalar BEC.

We use time-varying magnetic fields (Fig. 3e) to initiate the
creation process experimentally with a condensate initially
prepared in |m=1), where |m) denotes the mth spinor
component. Such techniques®2-*3 have been used to prepare,
e.g., non-singular?>27-34 and multiply quantised vortices2’, as well
as monopoles®®, skyrmions3®, and knots3’.

Controlled creation of singular vortices in scalar BECs333? and
continuous textures in spinor systems2° have also been achieved
using phase imprinting methods. In our experiment the atoms
experience an applied magnetic field described by

B = By (1)i + by(xX + y — 228). )

where by is the strength of the quadrupole contribution and By,(t)
is a time-dependent bias field that shifts the location of the point
at which the magnetic field vanishes (the field zero) to z, = By/
(2bg) on the z-axis. We initially choose By, such that the field zero
is slightly above the condensate (see Methods) and the magnetic
field is approximately uniform (Fig. 3e).

Reducing the bias field slowly induces adiabatic spin rotations
as the magnetic field zero passes through the condensate from
above, trailed by a 3D nodal line®> (Fig. 3e). At faster magnetic
field ramp rates the otherwise identical experiment yields
controllably incomplete adiabatic spin rotations, and results in
a non-singular vortex?%34 with additional populations in |0) and |
1) (Fig. 3a, b and Supplementary Note 1). The atoms are released
from the trap after an evolution time Teyolve, measured from the
completion of the field ramp. Following a period of ballistic
expansion they are imaged, whereupon we observe a pair of singly
quantised SO(3) vortices in |—1) with filled cores containing
atoms in |0), as shown in Figs. 3¢, d and 4. These results agree
with a numerical simulation of the locally relaxed state
(Supplementary Note 1). One of these singular spinor vortices
typically departs the condensate before the other, thus lowering

>

rg\\'\\t\m

N
>
>
N
\
\
\
N
>

Pl L L PP PP

b

4

"4 ~
. -
e N
Vs !

>
-

Fig. 4 Theoretical spin textures and corresponding experimental data. a The
characteristic fountain-like spin texture of the initial non-singular vortex,
with spin magnitude one everywhere. b The spin texture of the relaxed
vortex state. The background colour indicates spin magnitude, showing the
filled vortex cores. ¢, d Experimentally obtained composite colour images of
the corresponding structures using the data of Fig. 3, where the colours
indicate the spinor components. In the absence of atoms in the m =1 spinor
component, pure blue represents the P phase and pure green represents
the ferromagnetic phase. The field of view of ¢, d is 219 pm x 219 pm.
Source data are provided as a Source Data file

the condensate energy!>!4 and leaving behind a single SO(3)
vortex (Fig. 5). The main dissipative sources, as in scalar
BECs®%0, are a non-vanishing thermal cloud and potential
collisions with high-temperature atoms.

Vortex core filling and interface. For comparison, we also pro-
duce vortices with empty cores by reducing the ramp rate such
that the spins rotate nearly adiabatically, leaving the system with
unobservable populations in |0) and [1). The size of the filled
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Fig. 5 A singly quantised, singular SO(3) vortex in three dimensions. a, b Experimental absorption images of the atomic density in each spinor component
from the top (a) and side (b), expressed in terms of dimensionless optical depth (O.D.), for the SO(3) vortex configuration after one of the two vortices has
exited the system. The m = —1 component displays a vortex line, the core of which is filled with m = 0 atoms. The system has evolved for 1000 ms after
imprinting. ¢ Composite false colour image of the condensate density as viewed from the top. The field of view of each image is 219 pm x 219 pm. Source

data are provided as a Source Data file

vortex core is typically much larger than that of an empty core, as
shown in Fig. 6. We have numerically verified that for our
experimental parameters the superfluid vortex core expands at a
rate similar to that of the whole condensate after the release from
the trap. In the experiment, the size of the filled vortex core is a
further manifestation of the topology of the spinor where the
spinor interactions break the |(F)| = 1 spin condition of the FM
phase. In the ground state, the size of a filled vortex core is
determined by a spin healing length!>15 arising only from the
spin-spin interactions, which is much larger than the density
healing length that limits the size of an empty core. Thus, as the
condensate evolves, dissipation causes the filled vortex cores to
inflate as |0) atoms accumulate there. We observe no corre-
sponding growth of empty vortex cores, as also shown in Fig. 6.

Whereas the SO(3) order parameter of the FM phase may be
represented by the orientation of an orthonormal vector triad, the
P order parameter is characterised by an unoriented nematic axis

d together with the condensate phase (Supplementary Note 2).
The filling of the vortex core thus results in an interface between
regions where the superfluid order parameter breaks different
symmetries. In our system the interface appears in the internal
structure of the defect itself and is observed directly in the
experiment as a smooth transition between the FM vortex state in
the surrounding superfluid and the P phase at the vortex core
(Fig. 5). A numerical simulation of this transition allows us to
portray the condensate spinor graphically in terms of a spherical-
harmonic expansion, Z (see Fig. 1). The deformation of Z
illustrates the continuous topological interface that connects the
SO(3) symmetric order parameter of the FM phase to the nematic
order parameter of the P phase. Note that in the pure FM phase,
the triad order parameter corresponds exactly to the orientation
and argument of Z.

Analytically, the spinor describing the vortex and its superfluid
core can be constructed as an interpolating filled-core vortex
solution as in ref. 14,

V2e (cos2 §D+ — sin? §D7)
sin(D, +D_) , (3)
\/Ee"‘l’ (sin2 §D+ — cos? ng)

1
¢=3

where D, = v/1*F represents the interpolation between the FM
and P phases for F varying from 1 to 0, respectively. The azimuthal
angle around the vortex line is represented by ¢, and § is the polar
angle. The spin vector is (F) = F(sinfp + cospz), and the unit

Atom number in core (thousands)

Core radius (um)

Fig. 6 Effect of the core atoms on the size of the core. The post-expansion
size of the vortex cores in the m = —1 component with unfilled (red) or
filled (blue) cores. The core size depends in part on the number of |O)
atoms within the core, which grows as |0) atoms accumulate there. Each
blue point represents a single vortex measurement. As even empty vortex
cores near the condensate boundary are enlarged, we indicate the radial
position of a vortex by the size of the point, with smaller points
corresponding to larger radii. A typical uncertainty in the atom number
within the core is given as a vertical error bar for a single point. The red
point and error bar illustrate the mean and standard deviation of a
representative sample of unfilled vortex cores from more than 25
condensates, produced with a low-speed (|dBy/dt| <1Gs~1) ramp of the
magnetic bias field. The insets show typical experimental atomic density
profiles from absorption imaging, expressed in terms of dimensionless
optical depth (O.D.), of the three spinor components for the case of filled
(upper left, and points marked with green circles) and empty (lower right)
cores. The field of view of each image in the insets is 219 pm x 219 pm.
Source data are provided as a Source Data file

vector orthogonal to it is d = —cosfp + sinz, where p is the radial
unit vector relative to the vortex line. For F= 1, Eq. (3) reduces to
the singular FM vortex, and for F=0, the spinor represents the
non-circulating P phase that occupies the vortex core.

Spinor analysis. Next, we explicitly demonstrate the SO(3) nature
of the vortex. The representation of the vortex wave function as a
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three-component spinor depends on the choice of the spinor
basis, and the order parameter symmetry dictates how the
representation transforms under a change of basis. Experimen-
tally it is more convenient to change the orientation of the spin
with respect to a fixed quantisation axis by applying a radio-
frequency (RF) 7/2 pulse, which rotates the spin according to the
unitary transformation U(0, 71/2, y,) where the arbitrary angle y,
does not affect the outcome. The resulting density profiles are
notably more complicated, as shown in Fig. 7. To understand
these results theoretically, we assume cylindrical symmetry and
neglect any small population in |1), leading to a qualitative model
for the vortex

0
(= vi-2glp) |, (4)
e?\/g(p)
where  g(p) = p?/(p* +r2) approximates the  vortex-

core profile with size parameterised by ro. The FM part of
the spinor (4) in the original basis transforms as
€9(0,0,1)" — ¢®(1/2,-1/v/2,1/2)", distributing the atoms
across all three components. The P part transforms as
(0,1,0)" — (=1/+/2,0,1/v/2)", splitting the atoms evenly
between the |+1) components. Thus, after the pulse, the original
atomic density distribution of the FM phase is reproduced

in the |0) component as it only contains atoms that originated in
the |—1) component. On the other hand, the other two com-
ponents exhibit phase singularities that have shifted to different
locations, leading to a split-core solution that appears to have
broken the axial symmetry of the original state. This translation
of the vortices after the basis transformation is a manifestation
of the SO(3) symmetry of the order parameter, and indicates the
presence of a line singularity about which the spin vector rotates
(disgyration). After the 7/2 rotation, one can still identify the
locations of the vortices by the density minima of the atoms in
the |0) component.

The matter wave in |£1) may also be interpreted as an
interference between the overlapping spinor components before
the spin-tip pulse. In all cases, the experimental density profiles of
Fig. 7 agree well with the theoretical prediction obtained by
applying a 71/2 spin rotation to Eq. (4).

Discussion

Our results advance the experimental and theoretical investiga-
tions of defects containing topological interfaces. Similar techni-
ques can be used to generate half-quantum vortices, as well as
vortices with coherent interfaces involving the many diverse
magnetic phases observed in spin-2 spinor condensatestl-44,
The filled vortex cores themselves may be used as tracers to
examine the longitudinal dynamics of the vortex lines*>, which

Fig. 7 Signature of SO(3) character. a Spinor component densities after applying a z/2 spin-tip pulse to the analytically constructed singly quantised vortex,
Eg. (4), corresponding to a change of spinor basis. The vortex core is at the density minimum of the |0) component. b, ¢ Experimental absorption images of
the atomic density, expressed in terms of dimensionless optical depth (O.D.), in each spinor component after applying a z/2 spin rotation for condensates
containing one and two vortices, respectively. The vortex cores are identified by the density minima in the m = 0 component, and yellow circles are drawn
around the corresponding locations in each spinor component and in the colour composite image. The false-colour composite images show alternating
regions of m = £1 components in the vicinity of the vortex core. The field of view of each image in b, ¢ is 219 pm x 219 pm. Source data are provided as a

Source Data file
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are otherwise difficult to discern. A further exciting extension
would be to study the corresponding system in rotation where the
nucleation and stability of vortices should dramatically depend on
the precise value of the conserved magnetisation!4—determining
whether non-singular or singular vortices will prevail.

Methods

Experiment. The experimental techniques resemble those described in ref. 3°,
beginning with an optically trapped 87Rb condensate prepared in the FM phase
(1,0, 0)T = |1). The optical trap frequencies are w, ~ 27 x 130 Hz and w, ~ 27 x
170 Hz in the radial and axial directions, respectively, and with an initial atom
number N of typically 2 x 10°. The axial Thomas-Fermi radius of the condensate is
5um and the corresponding radial extent is 7 um. The bias magnetic field By, is
controlled by a single Helmholtz coil pair, and the quadrupole magnetic field
strength b, by a second coaxial anti-Helmholtz pair. Two other pairs of coils for the
x and y directions null those field components such that the field zero passes
through the centre of the condensate.

The magnetic field zero is initially placed approximately 35 um above the
condensate with an initial gradient strength by =4.3(4) Gecm™! and initial bias
field B, =~ 30 mG. The bias field is then reduced to ~—50 mG at the rate dB,/dt,
and then to —0.38 G over the following 10 ms. The atoms are then held in the
trap for a time Teyolve. An optional 8 ps, 0.266 MHz RF 71/2 spin-tip pulse is
applied immediately afterwards. At the conclusion of the experiment the
quadrupole field and the optical trap are extinguished. A brief exposure to a
magnetic field gradient of 70 G cm~! during the 23 ms expansion separates the
spinor components horizontally, after which they are imaged absorptively along
the y- and z-axes in a 0.1 G field aligned with the z-axis. Atom loss during the
experiment, both during the ramp and during the subsequent evolution time,
reduces the total number of atoms to approximately 2 x 10° at the time of
imaging.

Reducing the bias field at the rate —0.25 G s~ ! results in a doubly-quantised
vortex in |—1) and essentially no atoms in the other spinor components. The
experiments with filled cores were conducted at higher ramp rates, between —4 and
—6Gs~l. Ramp rates exceeding —10 G s~! result in larger non-singular vortices
that occupy all three spinor components. These are not observed to evolve into
singular SO(3) vortices.

Numerical model. We use experimental parameters for the Gross-Pitaevskii
Hamiltonian density of the spin-1 BEC
@

S [(B)* — pn(B - E) + qn{(B - F)?), Q)

H:%+%#+

where h, = % |V¥|*+V(r)n includes the harmonic trapping potential V(r).
Here h is the reduced Planck constant and M, is the atomic mass. The spin
is defined as the expectation value (F) = > ap (Zcﬁaﬁ(ﬁ’ where F is a vector of
dimensionless spin-1 Pauli matrices. The condensate spin vector corresponding
to Eq. (1) is given by (F) = cosasinfk + sinacospy + cospz. The FM order
parameter can be defined by the orientation of two orthogonal vectors (F)
and d = (—sinacosy — cosasinycosf)x + (cosacosy — sinasinycosp)y -+ sinysinfi.
The last two terms of Eq. (5) describe the linear and quadratic Zeeman shift of
strengths p and g, respectively. The two interaction terms of strengths ¢, and ¢,
arise from s-wave scattering of the atoms.

In s-wave scattering the only spin-flip processes are
2|m = 0)=|m = +1) + |m = —1). The longitudinal magnetisation

L[5
M= N/d ra(r)F,(r), (6)

where F, is the z component of the condensate spin, is therefore approximately
conserved on time scales for which s-wave scattering dominates. This condition is
broken when the Gross-Pitaevskii equations are made dissipative, e.g., by
imaginary-time evolution. We employ an algorithm to strictly restore the
conservation of magnetisation!# throughout energy relaxation in pure imaginary
time evolution and in evolution dynamics following imprinting, in which case we
set time to include a small imaginary component ¢ — (1 — in)t, where 7 ~ 102, All
numerical simulations are carried out using a split-step algorithm on a minimum
of 128 x 128 x 128-point grid.

Data availability

All relevant data sets generated during and/or analysed during the current study are
available from the corresponding author upon request. The source data underlying
Figs. 1 and 3-7 are provided as a Source Data file in the Zenodo repository (https://doi.
org/10.5281/zenodo.3404017)°.
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