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Vocal instability over time in individual male European Nightjars, 

5 
Caprimulgus europaeus: recommendations for acoustic monitoring and 

7 
surveys. 

9 
10 

11 Acoustic monitoring of birds is developing rapidly as equipment, methods and analyses 

12 improve. However, most population monitoring studies still utilise traditional 
13 
14 techniques like mark-recapture or line transects. Rebbeck et al. (2001) used vocal 

15 recordings of male European nightjars, Caprimulgus europaeus, to identify individuals, 

17 finding that four acoustic parameters correctly assigned 98.5% of calls to individuals. 
18 
19 We tested Rebbeck et al.’s methods on a population of European nightjars recorded 

20 over two successive breeding seasons and found that percentage of males correctly 
21 

22 classified within a season reached a maximum of 73.5%, rising to 75% if full-length 

23 calls and 13 acoustic parameters were used. We tested whether males could be re- 
24 
25 identified over a two-year period and found that only 20% of calls were assigned to the 

26 same putative territorial individuals, despite separate ringing data showing that males 

28 can maintain site fidelity for up to eight years. Our results indicate that the 
29 
30 characteristics of male nightjar vocalisations may alter over time. We therefore 

31 recommend that vocal discrimination be used in conjunction with existing monitoring 
32 
33 techniques when surveying for population monitoring, that as many call parameters as 

34 possible are used and that recording for automated presence/absence surveys takes 

36 place over a short time-frame. 
37 
38 
39 Keywords: European nightjar, Caprimulgus europaeus, acoustic monitoring, vocal 

40 individuality, census method, discriminant function analysis 

42 
43 

Introduction 

45 
46 Birds of many species use auditory cues to recognise other individuals (Halpin 1991). This 
47 
48 

ability to discriminate among different individuals is vital to the evolution of sociality and the 

50 
51 maintenance of cooperative relationships in many taxa (Axelrod and Hamilton 1981; Colgan 
52 
53 1983). Vocal discrimination can be used for purposes such as neighbour-stranger 
54 
55 

discrimination (Falls 1982; Budka and Osiejuk 2013) or identification of mates and offspring 

57 

58 (Charrier et al. 2001). Successful individual recognition using vocalisations requires low 
59 
60 intra- and high inter-individual variation (Falls 1982). This type of individuality in acoustic 
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2 
3 signals has been identified to some degree in most bird species investigated so far (Peake et 
4 
5 

al. 1998; Terry et al. 2005; Grava et al. 2008; Li et al. 2017; Zdenek et al. 2017). A variety of 

7 

8 temporal and frequency variables in calls have been shown to be useful in identifying 
9 
10 individuals of different species (Charrier et al. 2001; Rebbeck et al. 2001; Grava et al. 2008; 
11 
12 

Klenova et al. 2011). Identification from vocalisations can provide a useful non-invasive 

14 

15 means of monitoring birds that are normally difficult to observe (Terry et al. 2005). 
16 
17 Existing techniques for monitoring and tracking birds include the use of radio 
18 
19 

transmitters, satellite loggers, geolocators, coloured and numbered bands or tags, tattoos, dyes 
20 
21 

22 and medical cautery units, but these techniques are labour-intensive, costly and/or invasive, 
23 
24 so usually limited to tracking only a few individuals (Budka et al. 2015). While tagging birds 
25 
26 can provide accurate data on those individuals, extrapolation of data from tagged individuals 
27 
28 

to the whole population can also be inaccurate (Budka et al. 2015). Capture can also result in 

30 

31 harmful disturbance to birds (McGregor and Peake 1998; Terry et al. 2005). Many existing 
32 
33 techniques are unsuitable for difficult to observe species, such as nocturnal, crepuscular or 
34 
35 

secretive birds, or those sensitive to human disturbance (Terry et al. 2005). It is preferable to 

37 

38 use naturally occurring markers of individuality which can be detected non-invasively, such 
39 
40 as vocalisations, where possible (McGregor and Peake 1998; Budka et al. 2015). While all 
41 
42 

sampling techniques suffer from biases, the non-invasive nature of vocal identification 
43 
44 

45 reduces the biases associated with handling and physical marking (Terry et al. 2005). 
46 
47 Acoustic census studies have been conducted in a variety of bird species, including the 
48 
49 European bittern, Botaurus stellaris and black-throated divers, Gavia arctica (Gilbert et al. 
50 
51 

1994), common cuckoo, Cuculus canorus (Li et al. 2017), the corncrake, Crex crex (Peake et 

53 

54 al. 1998; Budka et al. 2015), the crested auklet, Aethia cristatella (Klenova et al. 2011), eagle 
55 
56 owls, Bubo bubo (Lengagne 2001; Grava et al. 2008), and the European nightjar, 
57 
58 

Caprimulgus europaeus (Rebbeck et al. 2001). 

60 
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4 
1 
2 
3 The European nightjar, hereafter referred to as the nightjar, is a crepuscular, 
4 
5 

migratory, insectivorous bird that breeds across most of the western Palearctic region and 

7 

8 winters in southern and eastern Africa (Cramp 1985; del Hoyo et al. 1999). It is the only 
9 
10 member of the Caprimulgidae native to the UK (Cresswell and Edwards 2013). Nightjars are 
11 
12 

ground-nesting and breed in areas of lowland heath, clearings, clear-fells and at the edges of 

14 

15 woodland and forestry plantations (del Hoyo et al. 1999). The species has declined in both 
16 
17 numbers and range in the UK since the late 19th century, due to long-term destruction and 
18 
19 

degradation of their heathland and woodland habitats and is listed on the Amber list of Birds 
20 
21 

22 of Conservation Concern in the UK (Cramp 1985; Langston et al. 2007; Eaton et al. 2015). 

23 
24 Although nightjars are threatened, their ecology is still poorly understood (Lowe et al. 2014). 
25 
26 It is critical to have the ability to conduct accurate nightjar censuses so that trends in 
27 
28 

population size and stability can be assessed (Jiguet and Williamson 2010). 

30 

31 Individual recognition of acoustic signals is particularly important for birds because it 
32 
33 enables communication over a longer distance than visual cues (Vargas-Castro et al. 2017). 
34 
35 

The crepuscular nature of nightjars (Jiguet and Williamson 2010) is likely to limit how 

37 

38 effectively they can distinguish among individuals visually, whereas, the clarity of 
39 
40 vocalisations is unaffected by light levels. Birds can utilise the differences between the songs 
41 
42 

of potential mates to assess the ‘quality’ of an individual, with longer and higher-tempo songs 
43 
44 

45 being indicative of more experienced and better-quality birds in species such as the Java 

46 
47 sparrow Lonchura oryzivora (Ota and Soma 2014). Acoustic recognition and the species- 
48 
49 specific nature of calls also allow nightjars to identify threats and to alert conspecifics 
50 
51 

(Brandes 2008; Magrath et al. 2010) or to maintain territories (Parra et al. 2017). 

53 

54 Rebbeck et al. (2001) examined recognition of vocal individuality in nightjars by 
55 
56 recording males ‘churring’, as the typical male territorial call is known, on 21 different 
57 
58 

territories between dusk and midnight throughout the breeding season. They reported that 

60 
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5 
1 
2 
3 four parameters extracted from the male churring could be used to classify 98.5% of the 
4 
5 

individuals correctly using discriminant function analysis. Pulse rates alone were found to 

7 

8 classify 95% of individuals correctly, with the major phrase pulse rate (Figure 1.) being the 
9 
10 most useful variable for identifying individuals. Rebbeck et al. (2001) intended to assess 
11 
12 

return rates of males to the same territory; however, there were insufficient between-year 

14 

15 data, which also prohibited analysis of longer-term vocal stability of individuals. Despite this, 
16 
17 Rebbeck et al. (2001) suggested that individual discrimination of male nightjars by call was 
18 
19 

feasible and a potentially useful surveying tool. This technique has not been widely adopted 
20 
21 

22 in the intervening years even with improvements in both equipment, such as automated 
23 
24 recording devices, and analysis software; perhaps due to the lack of conclusive evidence 
25 
26 regarding the vocal stability of male nightjars. A large number of studies involving 
27 
28 

population monitoring still use techniques such as line transects and capture-mark-recapture 

30 

31 (White and Burnham 1999) and assign individual males to territories based on behavioural 
32 
33 cues alone (e.g. Tella et al. 2005; Gómez-Catasús et al. 2018). 
34 
35 

The aim of this study was to test whether the method for identifying individuals 

37 

38 (Rebbeck et al. 2001) is replicable, effective and applicable across years and to other 
39 
40 populations of nightjars. This study recorded male nightjar churrs across a two-year period 
41 
42 

and investigated the use of pulse rates and phrase lengths (a discrete unit comprised of two or 
43 
44 

45 more adjacent pulses) as predictors of within-year individuality and between-year individual 
46 
47 site fidelity. The study also tested whether limiting the number of parameters or the song 
48 
49 length used in analysis affected the effectiveness of individual discrimination. Utilising the 
50 
51 

four parameters outlined in Rebbeck et al.’s (2001) study was predicted to produce a similar 

53 

54 level of correct classifications in this study. We also predicted that increasing the number of 
55 
56 call parameters used for individual identification would improve the percentage of calls 
57 
58 

correctly classified to individuals. 

60 
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3 Materials and Methods 
4 
5 
6 

Study site 

8 
9 The study was carried out in Sherwood Pines Forest Park, Nottinghamshire, UK (Latitude = 
10 
11 

53.15, Longitude = -1.08), which has a 17-year history of nightjar population monitoring 

13 

14 (Lowe et al. 2014). Nightjars were recorded during their breeding season from May until 
15 
16 August 2016 and 2017 on 11 different potential nightjar territories across the 1335 ha site. 
17 
18 

These locations were chosen on the basis of habitat suitability and where recordings had been 

20 

21 made in the past. The territories varied in habitat-type but most consisted of a mix of 
22 
23 commercial pine plantations, clear-fell, lowland heath and some deciduous trees (Lowe et al. 
24 
25 2014). 
26 
27 
28 
29 Population monitoring 
30 
31 

32 Extensive efforts have been made to monitor nightjars at Sherwood Pines Forest Park over 
33 
34 the last 17 years. Surveyors had detailed knowledge of the site and the nightjar population 
35 
36 

and their territories. The compact size of the park and ease of accessibility make this study 

38 

39 site suitable for long-term monitoring. The number of males, pairs, nests and fledged chicks 
40 
41 on every territory have been recorded each year since 2004 (e.g. Lowe et al. 2014), with 
42 
43 

nightjars regularly caught in mist-nets and ringed under licence from the British Trust for 
44 
45 

46 Ornithology. This allowed assessment of recapture rates and thus determination of whether 

47 
48 male nightjars were returning to the same territories between different years. Because 
49 
50 nightjars are difficult to catch and re-catch, and rings are impossible to observe adequately in 
51 
52 

the field for individual identification, the return rate data are limited, yet important and 

54 

55 complementary to the present study. 
56 
57 The 11 territories were labelled as: 1, 6, 14a, 14b, 16, C, D, F, Fb, G and I. All male 
58 
59 

nightjars were recorded on at least two occasions at each territory within a single year, with 



Page 7 of 36 Bioacoustics 

 

 

 

 

6 

13 

29 

47 

54 

7 
1 
2 
3 all but sites 1, 16 and C being recorded on three nights – these three territories were 
4 
5 

abandoned by the nightjars prior to the third visit. 

7 

8 A Sennheiser MKH 70 microphone in a Sennheiser MZW 70-1 basket windshield and 
9 
10 Sennheiser MZH 70-1 long-hair wind muff attached to a Marantz Professional Solid-State 
11 
12 

Recorder PMD660 was used to record nightjar churrs in the field. Recording began shortly 

14 

15 after civil twilight, the time when the geometric centre of the Sun's disk is at most 6 degrees 
16 
17 below the horizon, when nightjars emerged for the night (Cadbury 1981) and continued until 
18 
19 

the male stopped churring and flew off to forage. It was assumed that the initial calls of the 
20 
21 

22 evening heard at each site belonged to the territorial male at that site. Birds heard later in the 

23 
24 evening, after the initial churring period, could not be determined to be the same territorial 
25 
26 male and were discounted. All birds were simultaneously observed by a second fieldworker 
27 
28 

who noted spatial positions and behaviours. Recording stopped if more than one male, 

30 

31 distinguished from females by large white spots on the wings and tail, was observed at the 
32 
33 same time on the same territory, because it was unclear which male was churring. 
34 
35 
36 
37 Data extraction 
38 
39 

40 Recordings from each territory were opened in Audacity version 2.1.3 and split into 
41 
42 individual churrs, by using the cropping function, based on the corresponding behavioural 
43 
44 notes. An individual churr ended when the male flew to a new song post or flew and returned 
45 
46 

to the same song post. The length of each churr (in seconds) and the number of pauses were 

48 

49 obtained using Praat version 6.0.29 by looking for gaps a few seconds long within the 
50 
51 individual churrs. The ‘Filter(formula)…’ function in Praat was used to filter out noise below 
52 
53 

400 Hz and above -3000 Hz in each individual churr, enabling background noise from traffic 

55 

56 to be reduced. 
57 
58 
59 
60 
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8 
1 
2 
3 Churrs contained both major and minor phrases (Figure 1), which were distinguished 
4 
5 

by consistently higher and lower frequencies respectively. The mean length of the major and 

7 

8 minor phrases was calculated in Praat by using the cursor to measure the length of each 
9 
10 phrase and dividing the sum of the phrase lengths by the total number of phrases within each 
11 
12 

churr. The pulse rate of the major and minor phrases of the churr was calculated in Praat as 

14 

15 pulses per second by measuring the mean number of seconds for ten pulses to occur across 
16 
17 ten major and minor phrases chosen at random across the entire churr sample. The mean was 
18 
19 

then used as the pulses per second variable for each churr. Other parameters measured using 
20 
21 

22 the cursor included churr length (in seconds), number of pauses, number of major and minor 

23 
24 phrases within the entire churr, maximum and minimum frequency (Hz) of major and minor 
25 
26 phrases, and the frequency bandwidth of major and minor phrases. After analysis at full 
27 
28 

length, recordings were cropped using Audacity to less than 120 seconds long to match the 

30 

31 sample lengths used by Rebbeck et al. (2001) and analysed again by using Praat to extract the 
32 
33 four variables that Rebbeck et al. used, to compare the relative success rates of individual 
34 
35 

identification between the two methods. 

37 

38 [Figure 1 near here] 
39 
40 
41 

Data analysis 

43 
44 Discriminant function analysis was performed using the same method as Rebbeck et al. 
45 
46 

(2001) to assess churr individuality based on the pulse rate and length of minor and major 

48 

49 phrases. We then performed the analysis again using the full range of features we had 
50 
51 measured. We used data gathered in 2016 to test whether we could identify males on the 
52 
53 

same territories in 2017 using the full range of measured features and following the methods 

55 

56 of Rebbeck et al. (2001). We also used discriminant functions derived from the 2017 churr 
57 
58 data to categorise churrs recorded in 2016. The 2016 dataset did not include a count of major 
59 
60 



Page 9 of 36 Bioacoustics 

 

 

 

 

6 

13 

19 

25 

32 

38 

43 

50 

57 

9 
1 
2 
3 phrases in each churr, so this variable was excluded from between-year analyses. The 
4 
5 

Euclidean distance (a measure of distance which is a metric of similarity between two points) 

7 

8 was calculated manually between the group centroids of each territory, allowing a test of the 
9 
10 assumption that vocalisations that were recorded on a particular territory were produced by 
11 
12 

the same males between years. Discriminant function analysis was performed in IBM SPSS 

14 

15 Statistics 24 and group centroid and eigenvalues extracted. 
16 
17 
18 

Results 

20 
21 Male nightjar territory fidelity determined from ringing data 
22 
23 
24 

Limited ringing data indicated that male nightjars returned to the same territories between 

26 

27 years. Nine male nightjars that were marked and recaptured in Sherwood Pines Forest Park 
28 
29 between 2004 and 2015 were recaptured on the same territory in at least two consecutive 
30 
31 

years. The average number of years of territory re-use was 3.3 years and one male nightjar 

33 

34 returned to the same territory for eight consecutive years. 
35 
36 
37 

Call characteristics 

39 
40 In 2016 recordings of churrs were collected on 13 territories visited over 42 nights. Churring 
41 
42 

was heard from the resident male on each territory on all but six of these visits. From these 

44 

45 recordings a total of 159 individual churr calls were identified and used in our analyses. 
46 
47 Churring began between 9 minutes before and 46 minutes after civil twilight, with a mean 
48 
49 

initiation time of 19 minutes after twilight. 

51 

52 In 2017 recordings were collected on 11 territories, over 36 nights. Again, churring 
53 
54 was heard from the resident male on all but six visits. From these recordings a total of 82 
55 
56 

individual churr calls were identified and used in our analyses. Churring began between 6 

58 
59 
60 
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10 
1 
2 
3 minutes before and 51 minutes after civil twilight, with a mean initiation time of 22.5 minutes 
4 
5 

after twilight. 

7 
8 
9 

Discrimination of individuals 
10 
11 
12 Discriminant function analysis was performed using only churrs of two minutes or less in 
13 
14 

length (as per Rebbeck et al. 2001) and only the pulse rate and phrase length variables, 

16 

17 analysing data collected in 2016 and 2017 separately. Discriminant function analysis using 
18 
19 leave-one-out classification correctly identified 45.1% of males from 2016 after cross- 
20 
21 validation (49.0% before cross-validation) and 73.5% of males from 2017 after cross- 
22 
23 

validation (79.5% before cross-validation). The first two functions explained 92.7% of the 

25 

26 variance in churrs for 2016, with the mean length of minor phrases and the pulse rate of 
27 
28 major phrases being the most important predictor variables, while in 2017 the first two 
29 
30 

functions explained 88.9% of the variance, with the pulse rate of minor phrases and the pulse 

32 

33 rate of major phrases being the most important predictor variables (Table 1). Figures 2 and 3 
34 
35 show the grouping of the calls by male using the first two discriminant functions for each 
36 
37 

year. 

39 

40 [Table 1 near here] 
41 
42 [Figures 2 and 3 near here] 
43 
44 Discriminant function analyses were then performed using the full length of recorded 
45 
46 

churrs and all variables (except for the bandwidth variables which failed tolerance tests for 

48 

49 collinearity) for data collected in 2016 and 2017 separately. Discriminant function analysis 
50 
51 using leave-one-out classification correctly identified 53.3% of males from 2016 after cross- 
52 
53 

validation (65.6% before cross-validation) and 75% of males after cross-validation (95.6% 

55 

56 before cross-validation) for 2017. The first two functions explained 70.1% of the variance in 
57 
58 churrs for 2016, with the mean length of major phrases and the pulse rate of major phrases 
59 
60 
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1 
2 
3 being the most important predictor variables (Table 2, Figure 4), while for 2017 the first two 
4 
5 

functions explained 72.1% of the variance in churrs, with the mean length of minor phrases 

7 

8 and the pulse rate of major phrases being the most important predictor variables (Table 2, 
9 
10 Figure 5). 
11 
12 

[Table 2 near here] 

14 

15 [Figures 4 and 5 near here] 
16 
17 
18 

Between-year discrimination of individuals 

20 
21 The Euclidean distances between discriminant function group centroids for a male occupying 
22 
23 

the same territory in 2016 and 2017 were in the range of 2.546 - 6.823, with a mean distance 

25 

26 of 4.5, while the distances between males churring on different territories in 2017 were in a 
27 
28 similar range of 2.908 – 6.978, with a mean of 4.2 (Figure 6). The high degree of overlap in 
29 
30 

these ranges indicates that churrs recorded on the same territory in two consecutive years 

32 

33 were not more similar than churrs of birds recorded on different territories within the same 
34 
35 year. Discriminant function classification of churrs recorded in 2016 using the 2017 churr 
36 
37 

data as a training dataset classified just 20% of calls correctly (30 of 147 churrs). Of the 30 

39 

40 calls correctly classified, 27 of them were recorded in three territories, with 50% of churrs 
41 
42 recorded on territories I and Fb in 2016 being correctly classified and 33% from territory 14a. 
43 
44 [Figure 6 near here] 
45 
46 
47 
48 Summary 
49 
50 

51 To determine the efficacy of acoustic monitoring between years to assess site fidelity, we 
52 
53 used site fidelity that was acquired through ringing data and compared those data to our 
54 
55 

acoustic data that was acquired via using putative individuals on known territories. Given the 

57 

58 large disparity between these two sets of results and the unlikelihood of an 80% territory 
59 
60 replacement rate between years, we conclude that males change their vocalisations between 
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3 years, therefore limiting robust acoustic monitoring to within-year analyses. 
4 
5 
6 
7 
8 

9 Discussion 
10 
11 

Discriminant function analysis of male nightjar calls using the same parameters as Rebbeck 

13 

14 et al. (2001), including pulse rates and phrase lengths for minor and major phrases, produced 
15 
16 much lower successful identification rates with our population of nightjars than in the 
17 
18 

original study. Whilst Rebbeck found that 98.5% of males were correctly classified, only 

20 

21 45.1% of males in 2016 and 73.5% of males in 2017 were correctly classified in our study. 
22 
23 The two most important parameters for identifying individuals in Rebbeck’s population were 
24 
25 major and minor pulse rates, which is also the case for our 2017 population; however, in 2016 
26 
27 

we found that the mean length of the minor phrase and the major pulse rate were the best 

29 

30 determinants of individuality. The inconsistencies in the importance of parameters in 
31 
32 discriminating between individuals between the two years in this study and between the 
33 
34 

present study and Rebbeck et al.’s (2001) overall, indicate that restricting variables to only a 

36 

37 few types may give a false impression of the variables requiring measurement in different 
38 
39 populations and years to robustly acoustically identify individuals over time. 
40 
41 

We tested whether the addition of extra parameters (increasing the total from four to 

43 

44 13) and use of whole churrs would improve our ability to discriminate between individuals. 
45 
46 We found that the percentage of correctly classified calls increased to a maximum of 75%; 
47 
48 however, this is still relatively poor for identification purposes compared to other studies (eg: 
49 
50 

Grava et al. 2008; Li et al. 2017). Similar studies into vocal individuality of birds have also 

52 

53 found discrepancies between how effectively call parameters can be used to distinguish 
54 
55 between individuals of the same species. For example, a study into the buff-throated 
56 
57 

woodcreeper Xiphorhynchus guttatus used six parameters to correctly assign 100% of songs 

59 

60 for three individual birds (Moseley and Wiley 2013); however, calls from three other 
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52 

13 
1 
2 
3 individuals were misidentified as close-neighbouring birds which was attributed to the close 
4 
5 

proximity of the birds and calls temporally overlapping. Nightjar males occasionally overlap 

7 

8 their calls, but we did not include any recordings that included more than one male in our 
9 
10 analyses and can thus exclude this problem in the present study. The tendency of the males of 
11 
12 

many bird species to overlap their calls in territorial interactions (e.g. Mennill and Ratcliffe, 

14 

15 2004; Vehrencamp et al. 2007) can negatively impact the effectiveness of vocal 
16 
17 discrimination as a census method. 
18 
19 

The between-year call analysis in both studies produced low percentages of reliably 
20 
21 

22 classified calls, with both Rebbeck et al. (2001) and the present study finding significant 

23 
24 overlap between same-bird data from different years and different-bird data from the same 
25 
26 year. Only 20% of calls from the 2016 dataset were correctly classified by discriminant 
27 
28 

function analysis using the 2017 dataset as training data, with three territories accounting for 

30 

31 27 out of 30 of the correctly classified calls. At these territories, only 50% of calls were 
32 
33 correctly classified across years, demonstrating that recordings from the same individuals did 
34 
35 

not always produce the same results and thus vocalisations cannot necessarily be used 

37 

38 reliably on their own to monitor individual return rates to territories. Our limited ringing data 
39 
40 confirmed that some male nightjars return to the same territorial location each year, for as 
41 
42 

long as eight consecutive years. Female nightjars are thought to change territories and mates 
43 
44 

45 each year (Cramp 1985), while males are thought to return to the same sites approximately 

46 
47 two weeks in advance of the migrating females and churr to advertise their presence. It is 
48 
49 therefore unlikely that there was an 80% replacement rate of individual males between years; 
50 
51 

rather, vocal changes in individuals between years are more likely. This means that acoustic 

53 

54 monitoring in the absence of other supporting data may not be the most accurate stand-alone 
55 
56 census method for long-term monitoring of bird populations. 
57 
58 
59 
60 
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14 
1 
2 
3 Despite male nightjars being known for their high site fidelity (Berry 1979; Jackson 
4 
5 

1985; Poulin et al. 1996), the low percentage of calls classified as the same males on the 

7 

8 same territories could also be explained by high mortality rates between years, particularly 
9 
10 during migration, when mortality rates in some species can be six times higher than during 
11 
12 

stationary periods (Klaassen et al. 2013). Although this nightjar population has declined over 

14 

15 the last decade (Lowe et al. 2014), our survey data does not support such high mortality 
16 
17 between years, therefore misclassification of returned male’s calls due to changing vocal 
18 
19 

characteristics seems the more likely scenario to explain our results. 
20 
21 

22 Although several recent studies have demonstrated stability in vocal individuality of 

23 
24 non-passerine species over multiple years (e.g. Galeotti and Pavan 1991; González-García et 
25 
26 al. 2017), others, like ours, have not been successful in re-identifying birds over multiple 
27 
28 

years (e.g. Zdenek et al. 2017). Some studies have found that successful re-identification 

30 

31 declines gradually over time. For example, Odom (2013) was able to categorise the calls of 
32 
33 great horned owls, Bubo virginianus with 100% accuracy over a single session, 83% 
34 
35 

accuracy over the season and only 60% accuracy over two seasons. As in our study, birds in 

37 

38 Odum’s (2013) study were unmarked, so the reduction in correct categorisation over time 
39 
40 may have been due to change in territory occupancy. Alternatively, the same birds may be 
41 
42 

present, but their call characteristics may have changed. Vocalisations can be very plastic 
43 
44 

45 and alter in response to age, condition, environment, motivation and social conditions 

46 
47 (Walcott et al. 2006; Ellis 2008; Vehrencamp et al. 2013; Humphries et al. 2016). Some 
48 
49 performance variables, such as pulse rate and bandwidth, can be dependent on the 
50 
51 

motivational state of the male at the time of each call (DuBois et al. 2009). 

53 

54 Nightjars churr to attract a new mate each season (Cramp 1985), so there may not be a 
55 
56 great adaptive advantage to retaining stability in call features over longer periods than a 
57 
58 

single season. In Rebbeck et al.’s (2001) study, ten of the 21 birds were only recorded on a 

60 
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15 
1 
2 
3 single morning or night. Of the eleven birds recorded twice or more, three had their 
4 
5 

recordings separated by less than a week. The longest period over which recordings were 

7 

8 made was six weeks, and this was only for two birds. In contrast, we recorded from each of 
9 
10 our territories on three separate evenings, with recordings for all birds spread over a seven- 
11 
12 

week period in 2017 and over eight weeks in 2016. Variation in the characteristics of the 

14 

15 nightjar’s call over time may therefore account for the higher percentage of correct 
16 
17 classifications achieved by Rebbeck et al. (2001). Our results indicate that long-term vocal 
18 
19 

identification is not possible in nightjars, but to confirm this, this study should be repeated 
20 
21 

22 with marked birds. 
23 
24 Advances in audio recording technology promise to improve the quantity and type of 
25 
26 data that can be gathered by acoustic monitoring in future. Arrays of automated recorders 
27 
28 

can be used to gather data over longer periods of time and triangulate the position of calling 

30 

31 birds (McGregor et al. 1997; Kirschel et al. 2011). This can allow monitoring or tracking of 
32 
33 birds in dense undergrowth or at night (Mennill 2011; Frommolt and Tauchert 2014). The 
34 
35 

continuous monitoring these devices can provide increases the chances of identifying rare or 

37 

38 elusive species (Jahn et al. 2017). Sound recognisers can be used to scan recorded 
39 
40 soundscapes for calls of a particular bird species, making analysis easier. Zwart et al. (2014) 
41 
42 

compared the effectiveness of automated bio-acoustic recorders and associated classification 
43 
44 

45 software with traditional human surveying techniques in detecting the presence of nightjars 

46 
47 and found that the automated recorders detected nightjars in 19 of 22 survey periods 
48 
49 compared to six of 22 for human surveyors. While these advances may allow us to more 
50 
51 

easily detect the presence of nightjars on a territory, based on our results, they would not be 

53 

54 able to reliably identify and track individuals over time. 
55 
56 Peake et al. (1998) found that by adding features of fine temporal structure, such as 
57 
58 

pulse to pulse duration, to their analysis they were able to improve classification from 87% to 

60 
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6 

13 

29 

16 
1 
2 
3 100%. Fine temporal structure analysis may also yield improvements in the classification of 
4 
5 

nightjar calls, potentially allowing more successful discrimination between individuals; 

7 

8 however, very high-quality recordings, with minimal to no background noise, would need to 
9 
10 be obtained in order to utilise fine scale parameters and this is inherently difficult when 
11 
12 

working in natural environments. 

14 

15 Vocal discrimination may be useful for conducting a census of nightjars within a 
16 
17 compact site where each male on a territory can be recorded within a very short time frame. 
18 
19 

Our results indicate that vocal individuality as a monitoring technique is not currently 
20 
21 

22 suitable for use in longer-term studies, as variation in call parameters over time may cause 

23 
24 misidentification, possibly leading to overcounting which could have negative consequences 
25 
26 for nightjar conservation. We recommend using traditional field techniques of mark and 
27 
28 

recapture and that field workers develop a deep knowledge of both their site and population if 

30 

31 anything more than presence/absence data is required, in order to understand population 
32 
33 demographics over time. 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
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22 
1 
2 
3 Figure 1. Typical sonogram of the churr of a male Nightjar labelled with the major and minor 
4 
5 phrases and the identification of 10 pulses. 
6 
7 

8 Figure 2. Linear discriminant analysis biplot of 2016 churr data using only phrase length and 

9 pulse rate variables and churrs of up to two minutes in length, with each male nightjar 

11 represented by a different shape. The axis of discriminant function 1, for which the pulse rate 
12 
13 of major phrases (pulses/second) is the greatest contributor, explains 74.0% of the variance. 

14 Vectors for the four most important predictor variables are labelled as follows: lmi - mean 

16 
length of minor phrases (seconds), lma - mean length of major phrases (seconds), rmi – pulse 

17 
18 rate of minor phrases (pulses/second), rma - pulse rate of major phrases (pulses/second). 
19 

20 Males were grouped by territory name and each territory is represented by a different symbol. 

21 Online version in colour. 

23 
24 Figure 3. Linear discriminant analysis biplot of 2017 churr data using only phrase length and 
25 
26 pulse rate variables and churrs of up to two minutes in length, with each male nightjar 
27 

28 represented by a different shape symbol. The axis of discriminant function 1, for which the 

29 pulse rate of major phrases (pulses/second) is the greatest contributor, explains 74.9% of the 

31 variance. Vectors for the four most important predictor variables are labelled as follows: lmi - 
32 
33 mean length of minor phrases (seconds), lma - mean length of major phrases (seconds), rmi – 

34 pulse rate of minor phrases (pulses/second), rma - pulse rate of major phrases 

36 (pulses/second).  Males were grouped by territory name and each territory is represented by a 
37 
38 different symbol. Online version in colour. 
39 
40 

41 Figure 4. Linear discriminant analysis biplot of 2016 churr data with each male nightjar 

42 represented by a different shape symbol. The axis of discriminant function 1, for which the 

44 mean length of minor pulses (seconds) is the greatest contributor, explains 44.6% of the 
45 
46 variance. Vectors for the most important predictor variable on each axis are labelled as 
47 

48 follows: lmi - mean length of minor phrases (seconds), rma - pulse rate of major phrases 

49 (pulses/second). Males were grouped by territory name and each territory is represented by a 

51 different symbol. Online version in colour. 
52 
53 

54 Figure 5. Linear discriminant analysis biplot of 2017 churr data with each male nightjar 

55 represented by a different shape symbol. The axis of discriminant function 1, for which the 

57 mean length of minor pulses (seconds) is the greatest contributor, explains 44.6% of the 
58 
59 variance. Vectors for the four most important predictor variables are labelled as follows: lmi - 
60 
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9 

15 

23 
1 
2 
3 mean length of minor phrases (seconds), lma - mean length of major phrases (seconds), rmi – 
4 
5 pulse rate of minor phrases (pulses/second), rma - pulse rate of major phrases 
6 

7 (pulses/second). Males were grouped by territory name and each territory is represented by a 

8 different symbol. Online version in colour. 

10 
11 Figure 6. The frequency of occurrence of the Euclidean distance d between dyads of 
12 
13 discriminant function group centroids for the same territory between years, comparing churrs 

14 recorded in 2016 and in 2017, and different territories in the same year. The high degree of 

16 
overlap in the ranges of the Euclidean distance indicates that churrs recorded at the same 

17 
18 territory across two years were no more similar than churrs recorded at different territories 
19 

20 within the same year. 
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45 Figure 2. Linear discriminant analysis biplot of 2016 churr data using only phrase length and pulse rate 

46 variables and churrs of up to two minutes in length, with each male nightjar represented by a different 
47  shape. The axis of discriminant function 1, for which the pulse rate of major phrases (pulses/second) is the 

greatest contributor, explains 74.0% of the variance. Vectors for the four most important predictor variables 
are labelled as follows: lmi - mean length of minor phrases (seconds), lma - mean length of major phrases 
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51 symbol. Online version in colour. 
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45 Figure 3. Linear discriminant analysis biplot of 2017 churr data using only phrase length and pulse rate 

46 variables and churrs of up to two minutes in length, with each male nightjar represented by a different 
47 shape symbol. The axis of discriminant function 1, for which the pulse rate of major phrases (pulses/second) 

is the greatest contributor, explains 74.9% of the variance. Vectors for the four most important predictor 
variables are labelled as follows: lmi - mean length of minor phrases (seconds), lma - mean length of major 

49 phrases (seconds), rmi – pulse rate of minor phrases (pulses/second), rma - pulse rate of major phrases 
50 (pulses/second).  Males were grouped by territory name and each territory is represented by a different 
51 symbol. Online version in colour. 
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27 different shape symbol. The axis of discriminant function 1, for which the mean length of minor pulses 
28  (seconds) is the greatest contributor, explains 44.6% of the variance. Vectors for the most important 

predictor variable on each axis are labelled as follows: lmi - mean length of minor phrases (seconds), rma - 
pulse rate of major phrases (pulses/second). Males were grouped by territory name and each territory is 

30 represented by a different symbol. Online version in colour. 
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27 different shape symbol. The axis of discriminant function 1, for which the mean length of minor pulses 
28  (seconds) is the greatest contributor, explains 44.6% of the variance. Vectors for the most important 

predictor variable on each axis are labelled as follows: lmi - mean length of minor phrases (seconds), rma - 
pulse rate of major phrases (pulses/second). Males were grouped by territory name and each territory is 

30 represented by a different symbol. Online version in colour. 
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Figure 5. Linear discriminant analysis biplot of 2017 churr data with each male nightjar represented by a 
33 

different shape symbol.  The axis of discriminant function 1, for which the mean length of minor pulses 34 
(seconds) is the greatest contributor, explains 44.6% of the variance. Vectors for the four most important 35 

predictor variables are labelled as follows: lmi - mean length of minor phrases (seconds), lma - mean length 36 
of major phrases (seconds), rmi – pulse rate of minor phrases (pulses/second), rma - pulse rate of major 37 

phrases (pulses/second). Males were grouped by territory name and each territory is represented by a 
38 

different symbol. Online version in colour. 
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33 Figure 5. Linear discriminant analysis biplot of 2017 churr data with each male nightjar represented by a 

different shape symbol. The axis of discriminant function 1, for which the mean length of minor pulses 
(seconds) is the greatest contributor, explains 44.6% of the variance. Vectors for the four most important 

35 predictor variables are labelled as follows: lmi - mean length of minor phrases (seconds), lma - mean length 
36 of major phrases (seconds), rmi – pulse rate of minor phrases (pulses/second), rma - pulse rate of major 
37 phrases (pulses/second). Males were grouped by territory name and each territory is represented by a 
38 different symbol. Online version in colour. 
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1 
2 
3 
4 Table 1. Results of discriminant function analysis for classifying nightjar churrs to a male, 
5 
6 based on the pulse rate and phrase length variables of churrs two minutes or less in length, for 
7 

8 2016 (n = 102) and 2017 (n = 68). The coefficients for the two functions which explained the 

9 greatest amount of variance in churrs are shown for the two variables which best predicted 

11 the identity of the male, along with the percentage of variance explained and eigenvalues for 
12 
13 those functions. 
14 

15 Year Variable Coefficients 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33    
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

 Function 1 Function 2 

2016 Mean length of minor phrases (s) 0.170 -3.960 

 
Rate of pulses in major phrases (pulses/s) -0.881 0.119 

 
Percentage of variance explained 74.0 18.7 

 
Eigenvalue 1.81 0.458 

2017 Rate of pulses in minor phrases (pulses/s) 0.579 -0.008 

 
Rate of pulses in major phrases (pulses/s) 0.612 0.054 

 Percentage of variance explained 74.9 14.0 

 Eigenvalue 9.288 1.736 
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3 
4 Table 2. Results of discriminant function analysis for classifying nightjar churrs to a male, 
5 
6 based on full length of recorded churrs and all variables measured, for data collected in 2016 
7 

8 (n = 122) and 2017 (n = 68). The coefficients for the two functions which explained the 

9 greatest amount of variance in churrs are shown for the two variables which best predicted 

11 the identity of the male, along with the percentage of variance explained and eigenvalues for 
12 
13 those functions 
14 

15 Year Variable Coefficients 

16 
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40 
41 
42 
43 
44 
45 
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60 

 

 

  Function 1 Function 2 

2016 Mean length of major phrases (s) 0.122 0.007 

 
Rate of pulses in major phrases (pulses s¯¹) -0.816 0.480 

 
Percentage of variance explained 49.1 21.1 

 
Eigenvalue 2.444 1.049 

2017 Mean length of minor phrases (s) 1.386 -1.093 

 
Rate of pulses in major phrases (pulses s¯¹) 0.695 0.230 

 Percentage of variance explained 44.6 27.5 

 Eigenvalue 10.042 6.182 
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35 Figure 6. The frequency of occurrence of the Euclidean distance d between dyads of discriminant function 
36 group centroids for the same territory between years (black bars) and different territories in the same year 
37 (grey bars), comparing churrs recorded in 2016 and in 2017, and different territories in the same year. The 
38 high degree of overlap in the ranges of the Euclidean distance indicates that churrs recorded at the same 
39 territory across two years were no more similar than churrs recorded at different territories within the same 
40 year. 
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