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Abstract 12 

China has the largest number of industrial parks in the world. These parks are not only crucial 13 

for the country to accelerate industrialization but also to achieve its climate change targets. 14 

Constructing CO2 emission inventories for industrial parks is the first step in analysing the 15 

park's emission patterns and designing low-carbon policies. However, most of the previous 16 

emission accounts for industrial parks adopted various scopes and methodologies, making them 17 

incomparable with each other. This study develops a self-consistent methodology and 18 

framework for China’s industrial parks based on enterprise-level data. We consider both Scope 19 

1 and 2 emissions and construct the inventories by 19 energy types and 39 industrial sectors, 20 

which are consistent with the existing national, provincial, and city-level emission inventories. 21 

Such sectoral-based emission inventories will be not only able to provide data support for the 22 

design of emission/energy control policies, but also help the central/local governments evaluate 23 

a park’s emission reduction performance. Finally, an empirical study is applied to four 24 

industrial parks to verify the method. In addition, we review the eco-industrial park 25 

programmes in Japan and South Korea, as well as their emissions accounting framework. We 26 

find that most of the Japanese industrial parks provide Scope 1, 2 and 3 emissions, while for 27 

South Korea, parks mostly focus on Scope 1 emissions. The discussion of Japan and South 28 

Korea’s eco-industrial parks have referential significance for the construction China’s low-29 

carbon parks. 30 

Keywords: CO2 emissions, Industrial parks, Climate change, China 31 

1 Introduction 32 

Industrial parks can be defined as a specific area (tract of land) and zoned specifically for the 33 

location of industrial facilities. Industrial parks can accelerate national economic growth and 34 

maximize the industries’ comparative advantage (Schmitz, 1995). At the same time, the 35 

development of industrial parks have also generated significant negative environmental 36 

externalities (Word Bank, 2018). Scholars have discussed the low-carbon development of 37 

industrial parks since the early 2000s (Côté and Cohen-Rosenthal, 1998; Hashimoto et al., 2010; 38 

Lehtoranta et al., 2011). 39 

China has the largest number of industrial parks in the world (over 2534 national and provincial 40 

industrial parks) (NDRC, 2018) and more than 60% of the country’s industrial output is 41 
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generated by industrial parks. Considering that industry is China’s primary consumer of energy 42 

(60% of the country’s total consumption) and CO2 emissions (85%) source (Shan et al., 2018b), 43 

managing energy and CO2 emissions in industrial parks is essential for achieving the country’s 44 

climate change mitigation targets and realizing low-carbon transformation. 45 

Constructing emission inventories is the first step to analyse the industrial parks’ emission 46 

patterns and further identify their driving factors and constraints. Accurate emissions 47 

accounting of industrial parks has the benefit of helping industrial parks design specific climate 48 

strategies and also helping the government evaluate the parks’ low-carbon achievements. 49 

Many studies have discussed the accounting methods or framework at the national or regional 50 

level. For example, the Intergovernmental Panel on Climate Change (IPCC) recommends an 51 

emissions inventory framework for countries (IPCC, 2006). The National Development and 52 

Reform Commission (NDRC) has developed a series of guidelines for provincial greenhouse 53 

gas inventories in China (NDRC, 2011). Some additional studies even focused on a finer scale: 54 

the city level (Chen et al., 2019; Li and Chen, 2013; Li et al., 2013). Shan et al. (2018a), Shan 55 

et al. (2019) and Ramaswami et al. (2017) individually developed city-level emissions 56 

accounting frameworks. WRI et al. (2014) and ICLEI (2009) provided bottom-up methods for 57 

the compilation of city emission inventories (Yang et al., 2016). 58 

Compared with the national or regional level, estimating the CO2 emissions for industrial parks 59 

is more challenging, mainly due to the lack of consistent accounting methods and data source. 60 

The industrial parks, most of which have specific characteristics of industrial clustering, need 61 

their accounting methods to be detailed at the corporate/industrial sector level. The emissions 62 

accounting methods designed for administrative units (country/province/city) are not 63 

appropriate for park-level emissions accounting. Enterprise-specified activity data and 64 

emissions factors are needed to construct emission inventories for the industrial parks, i.e. using 65 

a bottom-up approach. 66 

Therefore, few studies have attempted to calculate the CO2 emissions for industrial parks, or 67 

propose low-carbon strategies for them (Wei and Liao, 2014; Xiong and Liu, 2013). For 68 

example, Gibbs and Deutz (2005) suggested developing eco-industrial parks in the USA in 69 

2005; Roberts (2004) used an eco-industrial park in Australia as a case study to discuss its 70 

sustainable industrial development; and Tudor et al. (2007) reviewed the literature on drivers 71 

and limitations of eco-industrial park development. As for studies of China’s parks, Geng et al. 72 

(2009) designed a new standard to evaluate national eco-industrial parks. The indicators 73 

included both carbon emissions and air pollutants. Lv et al. (2015) developed a method to 74 

calculate the CO2 emissions of China’s industrial parks, which was based on the IPCC and 75 

NDRC guidelines and included both Scope 1 direct emissions from fossil fuel combustion and 76 

indirect emissions from imported electricity/heat consumption. Liu et al. (2013) calculated only 77 

the Scope 1 energy-related emissions from several sectors of Suzhou industrial park, such as 78 

industrial production, transportation, and construction. Zhang et al. (2013) calculated the 79 

greenhouse gas emissions from different sectors, including energy consumption, waste 80 

deposition, and cement production, and used the industrial park located in Shandong Province 81 

as a case study. Liu et al. (2014) estimated the Scope 1 and 2 greenhouse gas emissions from 82 

the Beijing Economic Technological Development Area. This method included seven 83 

greenhouse gases: CO2, CH4, N2O, HFCs, PFCs, SF6, and NF3. The first six are listed in the 84 

Kyoto Protocol, while NF3 is largely emitted in electronics manufacturing. Yu et al. (2015) 85 

evaluated the emissions from the Xinfa Group. Several scenarios were discussed for emission 86 

reduction policies. Furthermore, some other studies calculated the Scope 3 emissions (from the 87 

perspective of consumption) or evaluated the environmental performances of industrial parks 88 
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in China. For example, Chen and Yang (2017) compared current methods used for three scopes 89 

of emissions accounting at the industrial park level. Dong, H.J. et al. (2013) applied the hybrid 90 

life cycle analysis (LCA) model to calculate the consumption-based carbon emissions (carbon 91 

footprint) of the Shenyang Economic and Technological Development Zone. 92 

After comparing these previous studies, this study finds that these previous methods contain 93 

large uncertainties regarding data measurement, data collection, and calculation methodologies. 94 

These uncertainties lead to inconsistent results. Most of the previous emissions accounting 95 

methods were designed for one or two specific industrial parks, and as a consequence the 96 

methods cannot be used universally. Different studies have different accounting scopes and 97 

subsequently produce the emission inventories for different sectors/energy types, making the 98 

emissions of different parks inconsistent and incomparable with each other (Li and Wang, 2014; 99 

Xie et al., 2010). Additionally, the reliability and appropriateness of previous methods remain 100 

unknown. To achieve a comparative analysis of CO2 emissions across industrial parks and a 101 

multi-resolution emissions assessment in China, we should develop a robust, transparent, and 102 

standard carbon emissions accounting framework for industrial parks. 103 

This paper addresses the gap by proposing a universal emissions accounting framework for 104 

industrial parks in China. The framework that has been developed is based on our previous 105 

studies on national/provincial/city-level CO2 emissions accounting (Shan et al., 2017; Shan et 106 

al., 2018b; Shan et al., 2016a). The park-level inventories constructed by this new accounting 107 

framework will have the same accounting scope, method and format as China’s national and 108 

regional inventories, making them self-consistent and comparable with each other. The park 109 

inventories include CO2 emissions from both fossil fuel combustion (i.e. Scope 1 direct 110 

emissions) and purchased or imported heat and electricity consumption (i.e. Scope 2 indirect 111 

emissions). 19 energy types (17 fossil fuels plus heat and electricity) and 39 industrial sectors 112 

are covered in the emission inventory. In particular, when calculating the Scope 2 indirect 113 

emissions from heat and electricity consumption, we use the park-specific emissions factors to 114 

achieve an accurate account of the emissions. 115 

We consider the most comprehensive and complex situations of the industrial parks. The 116 

framework can be applied to various types of industrial parks with different economic and 117 

energy structures. Following the framework, industrial parks in China can develop CO2 118 

emission inventories that are consistent with each other, as well as with inventories of other 119 

resolutions in terms of scope, format, and method. 120 

The following sections are designed as follows: Section 2 introduces the development of low-121 

carbon industrial parks in China, Japan, and South Korea. Section 3 develops an emissions 122 

accounting framework for China’s industrial parks. Section 4 tests and verifies the accounting 123 

framework by conducting an empirical study on four industrial parks in China. The selection 124 

of the case parks is based on geographic and data diversity from the first round National Low-125 

Carbon Industrial Park Pilot Programme. Section 5 presents the conclusions. 126 

2 Low-carbon development of industrial parks 127 

While facilitating economic growth, industrial parks also bring severe resource and 128 

environmental challenges. Recent years have shown that a number of countries are seeking 129 

possible low-carbon development pathways for industrial parks. For example, China initiated 130 

the National Low-Carbon Industrial Park Pilot Programme (LCIPPP), and South Korea and 131 

Japan have also launched several programs to develop their own eco-industrial parks, which 132 

have led to significant achievements. 133 
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2.1 Low-carbon industrial parks in China 134 

Industrial parks have made significant contributions to China’s economic growth, yet have also 135 

caused serious environmental issues, such as greenhouse gas/air pollutant emissions and water 136 

pollution (Dong, L. et al., 2013; Wang et al., 2013). The direct and indirect energy-related 137 

greenhouse gas emissions of 213 Chinese national-level industrial parks were 1042 and 181 138 

million tonnes CO2 equivalent in 2015, respectively. These amounts account for 11% of the 139 

national greenhouse gas emissions for the year (Guo et al., 2018). Thus, industrial parks could 140 

be possible targets for the Chinese government to reduce its emissions and tackle climate 141 

change. 142 

Considering the importance of the role industrial parks can play in addressing climate change, 143 

the Chinese government has already run a series of low-carbon programmes at the industrial 144 

park level to accelerate their low carbon transformation and their technologies innovation, 145 

especially for resource-based industries. For example, in 2013, the Ministry of Industry and 146 

Information Technology (MIIT) and NDRC jointly launched the National Low-Carbon 147 

Industrial Park Pilot Programme (LCIPPP). All pilot industrial parks were required to provide 148 

detailed emissions accounting and set emission reduction goals. The program has achieved 149 

remarkable progress and effectively raises the public consciousness of environmental 150 

protection. From 2014 to 2016, 51 industrial parks successively joined the LCIPPP (shown in 151 

Figure 1) (Yu et al., 2018). The red triangles on the map illustrate the industrial park locations. 152 

The pilot industrial parks vary not only in location but also in many other aspects, including 153 

‘pillar’ industrials, output, population, energy consumption and carbon emission. During the 154 

pilot period, most of the pilot parks maintained rapid economic growth, while significantly 155 

reducing energy consumption and carbon emissions. For example, the Yi Xing Industrial Park 156 

for Environmental Science & Technology and Jin Qiao Economic and Technological 157 

Development Zone decreased their emission intensities (calculated as per GDP emissions) by 158 

8.01% and 8.06% during 2012 to 2016 (Yu et al., 2018). 159 
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Figure 1 LCIPPP industrial parks in China. The four industrial parks marked with names are selected 161 
as case studies in the following analysis. 162 

2.2 Eco-industrial parks in Japan and South Korea 163 

Similar to China, industrial parks also play a key role in South Korea and Japan, with most of 164 

their industrial upgrades being achieved by industrial parks. Both Japan and South Korea have 165 

promoted eco-industrial parks since the 1990s, and they have already delivered significant 166 

achievements. Their experiences can enlighten China’s low-carbon industrial parks 167 

development. 168 

In 2013, South Korea developed 1,033 industrial parks, including 41 state-level industrial parks, 169 

528 general-purpose industrial parks, 11 municipal-level high-tech development zones, and 170 

453 agricultural parks (Park et al., 2016). As for Japan, the eco-town project is one key 171 

programme that establishes innovative recycling activities in cities with voluntary initiatives 172 

by companies and financial support from the national government. The project aims to achieve 173 

a zero-emissions society through the promotion of advanced resource recycling and waste 174 

treatment technologies, as well as the development of environmental industry and a series of 175 

environmentally friendly cities. From 1997 to 2006, 26 local governments were sponsored for 176 

comprehensive recycling planning and waste treatment (Berkel et al., 2009; Sun et al., 2017). 177 

The eco-town project achieved significant greenhouse gas emissions reductions and natural 178 

resource conservation effects. 179 

Japanese industrial parks have established relatively mature accounting systems. For example, 180 

the eco-town project accounts for emissions of different scopes in Japan, and the scopes of 181 

regional emissions are the same as that shown in Table 1. In the Kawasaki eco-town, which 182 

was among the first four local government areas designated as eco-towns in 1997, the emissions 183 

accounting scopes include Scope 1, 2 and 3. The total emissions (Scope 1, 2 and 3) of the 184 

Kawasaki eco-town are 26,595 thousand tonnes of CO2 equivalent, which include Scope 1 185 
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emissions of 26,006, Scope 2 emissions -6,630, and Scope 3 emissions of 7,219 (Dong et al., 186 

2014). The Scope 1 emissions include 21,656 thousand tonnes CO2 equivalent from direct 187 

energy consumption, 4,405 thousand tonnes from industrial processes, and 5.15 thousand 188 

tonnes from waste treatment. The “iron and steel manufacturing” sector is the dominant emitter 189 

of Scope 1 emissions, followed by the power sector. The Scope 2 emissions of Kawasaki eco-190 

town in 2009 were -6,630 thousand tonnes CO2 equivalent because 79% of the power generated 191 

in the eco-town was sold to industries or residential areas outside the town. The Scope 3 192 

emissions of Kawasaki eco-town were 7,219 thousand tonnes CO2 equivalent and included 193 

material consumption carbon emissions and depreciation carbon emissions, with values of 194 

6,491 and 728 thousand tonnes, respectively. Their data was sourced from questionnaire 195 

surveys and statistical departments for the cities and prefectures in which the parks are located 196 

(Ohnishi et al., 2012). 197 

Currently, there are no CO2 emission inventories for all industrial parks in South Korea, though 198 

some existing research has focused on the energy-saving and emission reduction effects of 199 

industrial symbiosis (Kim, H.-W. et al., 2018; Kim, H.W. et al., 2018). Regarding CO2 emission 200 

accounting, most of the studies provide Scope 1 only; if the accounting scope was extended to 201 

Scope 2 and 3, the results would be much different. For example, Ulsan city, a typical industrial 202 

city in South Korea, has developed the Onsan and Ulsan Mipo national industrial parks since 203 

2005 via the national eco-industrial park (EIP) initiative. The Ulsan eco-industrial park focuses 204 

on energy symbiosis network construction, and 14 energy symbiosis networks of the high-205 

grade heat were gradually established from 2004 to 2015. With the high- and low-grade waste 206 

heat exchange and utilization, the CO2 emission reduction effect of 14 energy symbiosis 207 

networks was 487 thousand tonnes CO2 in 2014. 208 

Different low carbon polices and technical approaches have been applied to Japan and South 209 

Korea’s parks. Eco-towns in Japan emphasize resource recycling and direct energy 210 

consumption, with eco-town projects focussing on the construction of sustainable waste 211 

management systems, that aim to combine municipal solid waste treatment systems with 212 

industrial systems, and promote the development of vein industry, material circulation and 213 

treatment. From the life cycle perspective, the eco-town project has shown great energy savings 214 

and emission reduction potential. The Korean EIP places more emphasis on energy symbiosis 215 

network construction. Under the complete market economy, the short investment payback 216 

period and considerable environmental benefits have encouraged enterprises to actively 217 

participate in industrial symbiosis networks. Their business model is successful, though from 218 

the perspective of emission reductions, there is still room for improvement, e.g. promoting raw 219 

material conservation and by-product exchanges. 220 

3 Methodology 221 

3.1 Accounting scope 222 

Multiple industrial parks formulate and implement climate actions using different emissions 223 

accounting scopes. There are no uniform emissions scopes defined for industrial parks. 224 

Drawing on the scopes used for national and regional emissions accounting (WRI and WBCSD, 225 

2014), this study identifies three scopes for industrial park emissions accounting, as shown in 226 

Table 1. 227 

Table 1 Scopes of regional emissions accounting (Kennedy et al., 2010) 228 

Term Spatial boundaries Components 

Scope 1 In-boundary emissions Fossil fuel combustion 
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Industrial process and product use 

Waste/landfill disposition emissions 

Agriculture, forestry, and other land use 

emissions 

Scope 2 In-boundary heat/electricity use 
Out-of-boundary heat/electricity emissions at 

power plants 

Scope 3 
Out-of-boundary energy 

consumption 

Aviation and marine fuel combustion 

Imported products and services 

From Table 1, we can see that Scope 1 (also called IPCC administrative territorial emissions) 229 

are in-boundary emissions induced by fossil fuel combustion, industrial production, 230 

waste/disposition, agriculture and other sources. Scope 2 emissions refer to the emissions 231 

induced by in-boundary purchased heat/electricity consumption, i.e. electricity-related/heat-232 

related emissions, respectively. The Scope 3 emissions (also called consumption-based 233 

emissions) are induced by out-of-boundary energy consumption, such as aviation and marine 234 

fuel combustion and energy consumed for imported products and services. The Scope 3 235 

emissions reflect the emissions induced by the production of goods outside the regional 236 

boundary that are imported and consumed within the boundary via the trade chain. 237 

Compared with Scope 3 emissions, both Scope 1 and 2 CO2 emissions are calculated from the 238 

perspective of production. They describe the actual CO2 emitted within the administrative 239 

boundary of an industrial parks, which can provide detailed policy implications for reducing 240 

emissions. Although Scope 3 emissions provide a further understanding of the emission 241 

landscape from the perspective of consumption, information on Scope 3 emissions does not 242 

have strong policy significance for reducing the emissions of one specific industrial park. When 243 

we explore the carbon emission reduction policies, or low-carbon development pathways for a 244 

specific industrial park, we focus on production-based emissions, which are emissions actually 245 

emitted from within the park. To some extent, the Scope 3 emissions are more closely related 246 

to the interaction between industrial parks. Moreover, the Scope 3 emissions have very high 247 

data requirements (such as inter-park trade data) and accounting methods (such as economic 248 

models or life-cycle assessments). 249 

In this way, our accounting framework involves both Scope 1 and 2 emissions. We consider 250 

the direct emissions from 17 fossil fuels’ combustion for the Scope 1 emissions, including both 251 

final energy consumption and energy inputs for electricity/heat generation. As for the Scope 2 252 

indirect emissions, we consider both the electricity/heat production (negative emissions) and 253 

consumption (positive emissions), in order to avoid double accounting with the Scope 1 254 

emissions. In this way, overall 19 types of energy are included in our emission inventory 255 

(shown in Table 2). 256 

Table 2 Energy types and their emissions factors 257 

No. Energy types in this study 𝑁𝐶𝑉𝑖 𝐶𝐶𝑖 𝑂𝑖 

1 Raw coal 0.21 26.32 92% 

2 Cleaned coal 0.26 26.32 92% 

3 Other washed coal 0.15 26.32 92% 

4 Briquette 0.18 26.32 92% 

5 Coke 0.28 31.38 92% 

6 Coke oven gas 1.61 21.49 92% 

7 Other gas 0.83 21.49 92% 

8 Other coking products 0.28 27.45 92% 

9 Crude oil 0.43 20.08 98% 
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10 Gasoline 0.44 18.90 98% 

11 Kerosene 0.43 19.60 98% 

12 Diesel 0.43 20.20 98% 

13 Fuel oil 0.43 21.10 98% 

14 Other petroleum products 0.51 17.20 98% 

15 Liquefied petroleum gas (LPG) 0.47 20.00 98% 

16 Refinery gas 0.43 20.20 98% 

17 Natural gas 3.89 15.32 99% 

18 Electricity Specified in each park 

19 Heat Specified in each park 

Unit: 𝑁𝐶𝑉𝑖, 𝑝𝐽 104⁄ 𝑡𝑜𝑛𝑛𝑒𝑠 𝑜𝑟 108 𝑚3; 𝐶𝐶𝑖, 𝑡𝑜𝑛𝑛𝑒𝑠 𝐶 𝑡𝐽⁄ . 258 

The emission inventories are constructed by 39 industrial sectors (shown in Appendix Table 1), 259 

which are defined according to the National Standard GB/T 4754-2011 (National 260 

Administration for Quality Supervision and Inspection and Quarantine of China, 2011), and 261 

the sectors are consistent with the System of National Accounts. We clustered the 39 sectors 262 

into four categories, i.e. energy production, heavy manufacturing, light manufacturing, and 263 

high-tech industries, for sectoral analysis (Shan et al., 2018a). 264 

We collected the activity data (energy consumption) and calculated the emissions from 265 

individual enterprises in the industrial park. Each enterprise was allocated to one industrial 266 

sector to construct the emissions inventory of the industrial park. 267 

3.2 Calculation methods 268 

3.2.1 Scope 1 emissions from fossil fuel combustion 269 

According to the IPCC (IPCC, 2006), the Scope 1 fossil fuel-related CO2 emissions can be 270 

calculated based on the mass balance theory shown in Equation 1. 271 

𝐶𝐸𝑖𝑗 = 𝐴𝐷𝑖𝑗 × 𝑁𝐶𝑉𝑖 × 𝐶𝐶𝑖 × 𝑂𝑖  
Equation 1 

In the equation, 𝐶𝐸𝑖𝑗  refers to the CO2 emissions induced by fossil fuel 𝑖 ’s combustion in 272 

enterprise 𝑗, and 𝐴𝐷𝑖𝑗 refers to the corresponding fossil fuel consumptions in enterprise 𝑗. The 273 

symbols 𝑁𝐶𝑉𝑖, 𝐶𝐶𝑖, and 𝑂𝑖 are the various emissions factors. 𝑁𝐶𝑉𝑖 is the net caloric value of 274 

fossil fuel 𝑖, which refers to the value of heat released per unit of fuel 𝑖 combustion. 𝐶𝐶𝑖 is the 275 

carbon content, which refers to the CO2 emitted during per unit of heat released from fossil 276 

fuel 𝑖. 𝑂𝑖 is the oxygenation efficiency, which refers to the fuel combustion ratio in boilers. 277 

The CO2 emissions induced by heat and electricity generation in the industrial park are 278 

calculated from the production side, i.e. calculated based on the fossil fuel combustion in power 279 

plants. The related emissions are accounted as Scope 1 fossil fuel-related emissions. Please 280 

note, that restricted by the data accessibility, enterprises do not provide detailed energy loss 281 

data during the generation of electric power and heat. We then assume all the energy inputs in 282 

power plants are combusted for electricity/heat generation when calculating the emissions. 283 

Fuels input as raw material (such as raw coal inputs for plastic making and pharmaceutical uses) 284 

are removed from the corresponding enterprise’s energy consumption. This part of energy 285 

consumption does not emit any CO2 (Peters et al., 2006; Shan et al., 2016b). 286 
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3.2.2 Scope 2 emissions from imported/purchased electricity and heat 287 

The Scope 2 CO2 emissions induced by imported heat and electricity can be calculated using 288 

Equation 2 and Equation 3, respectively (IPCC, 2006). 289 

𝐶𝐸ℎ𝑒𝑎𝑡𝑗 = 𝐻𝑒𝑎𝑡𝑗 × 𝐸𝐹ℎ𝑒𝑎𝑡  Equation 2 

𝐶𝐸𝑒𝑙𝑒𝑗 = 𝐸𝑙𝑒𝑗 × 𝐸𝐹𝑒𝑙𝑒  Equation 3 

In Equation 2, 𝐶𝐸ℎ𝑒𝑎𝑡𝑗  refers to the Scope 2 heat-related CO2 emissions from enterprise 𝑗 , 290 

𝐻𝑒𝑎𝑡𝑗 refers to the net imported (purchased) heat by enterprise 𝑗, and 𝐸𝐹ℎ𝑒𝑎𝑡 is the emission 291 

factor for heat consumption, which refers to the CO2 emissions embodied in the per unit heat 292 

generation. In Equation 3, 𝐶𝐸𝑒𝑙𝑒𝑗 refers to the Scope 2 electricity-related CO2 emissions from 293 

enterprise 𝑗, 𝐸𝑙𝑒𝑗 refers to the net imported (purchased) electricity by enterprise 𝑗, and 𝐸𝐹𝑒𝑙𝑒 is 294 

the emissions factor for heat consumption, which refers to the CO2 emissions embodied in the 295 

per unit electricity generation. 296 

It is worth noting that the net imported (purchased) electricity/heat values are calculated as the 297 

electricity/heat consumption value minus production. A negative result indicates that the 298 

enterprise produces more electricity/heat than it consumes, implying that the enterprise is an 299 

electricity/heat exporter. In contrast, if the net imported (purchased) electricity/heat is a positive 300 

value, the enterprise is an electricity/heat importer and has a positive Scope 2 emission value. 301 

3.3 Emissions factors 302 

3.3.1 Emissions factors for fossil fuels 303 

Several research institutes have provided the emissions factors (𝑁𝐶𝑉𝑖, 𝐶𝐶𝑖, and 𝑂𝑖) for fossil 304 

fuels in China, including the IPCC (2006), NDRC (2011), Carbon Dioxide Information 305 

Analysis Centre (CDIAC) (Boden et al., 2017), and Emissions Database for Global 306 

Atmospheric Research (EDGAR) (Olivier et al., 2016). However, according to Liu et al. 307 

(2015)’s study on China’s energy quality, the emissions factors provided by the IPCC are 40% 308 

higher than the actual condition in China. Therefore, this study adopts the most up-to-date 309 

emissions factors for fossil fuels, i.e. see Table 2 (Shan et al., 2018b). The 𝑂𝑖 values are defined 310 

as 92%, 98%, and 99% for coal-, oil-, and gas-related fuels, respectively. 311 

3.3.2 Emissions factors for heat/electricity 312 

The NDRC provides the electricity emission factors for China’s regional power grids (NDRC, 313 

2013; Shan et al., 2016b). However, considering the different technique levels/cleaner energy 314 

mixes used in different industrial parks, the electricity emissions factors of different industrial 315 

parks may be different. In this study, we calculated the specific electricity emissions factors for 316 

industrial parks using Equation 4. The equation is derived with an inverse logic of the IPCC 317 

emission estimation equation (Equation 3) (IPCC, 2006). 318 

𝐸𝐹𝑒𝑙𝑒 =
𝐶𝐸𝑒𝑙𝑒

𝑃𝑟𝑜𝑑𝑒𝑙𝑒
⁄   Equation 4 

In the equation, 𝐶𝐸𝑒𝑙𝑒 refers to the total CO2 emissions induced by the fossil fuel inputs for 319 

electricity generation in the energy enterprises, and 𝑃𝑟𝑜𝑑𝑒𝑙𝑒 refers to the overall generation of 320 

electricity by all of the energy enterprises in the industrial park. Similarly, the emission factors 321 

for heat can be calculated using Equation 5. 322 
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𝐸𝐹ℎ𝑒𝑎𝑡 =
𝐶𝐸ℎ𝑒𝑎𝑡

𝑃𝑟𝑜𝑑ℎ𝑒𝑎𝑡
⁄   Equation 5 

When one industrial park does not have any power plants, both Equation 4 and Equation 5 are 323 

ineffective. We then suggest using the NDRC default emissions factors, which represent the 324 

regional average technical level, to calculate the electricity/heat-related CO2 emissions for the 325 

industrial park. 326 

4 Empirical study of four industrial parks 327 

4.1 Case parks 328 

To verify the emissions accounting framework, we applied the method to four industrial parks: 329 

Suzhou industrial park (Suzhou Park), Nanchang High-tech Industrial Development Zone 330 

(Nanchang Park), Laocheng Economic Development Zone (Laocheng Park), and Zhengzhou 331 

High-tech Industrial Development Zone (Zhengzhou Park). The four parks were selected based 332 

on geographic and data diversity. 333 

Suzhou Park is located in Jiangsu Province, and there are more than 2,000 enterprises in the 334 

park. Representing a typical large-scale mixed industrial park, most of its enterprises are 335 

considered high-tech industries, such as new materials, nanotechnology, 336 

electronics/information technology, and bioengineering/pharmaceutical. In addition, Suzhou 337 

Park comprises six energy-intensive enterprises, which accounted for approximately 15% of 338 

its gross industrial output in 2012. The park participated in the LCIPPP in 2013, and has 339 

witnessed a gradual annual decline in total carbon emissions while economic growth continued 340 

to increase during the pilot period of 2014-16. Its average economic growth from 2012 to 2016 341 

was 7% and covered more than 10% of Suzhou’s total economic outputs. 342 

Moreover, Suzhou Park has made significant efforts to build its emissions accounting system, 343 

identifying 53 key units as work objects and subjects for greenhouse gas emissions reporting. 344 

Training was conducted on greenhouse gas emissions reporting for 12 key enterprises in the 345 

glass, electric power, chemical, ceramics, magnesium smelting, and steel industries and the 346 

park also entrusted third-party agencies to conduct on-site verification of the greenhouse gas 347 

emissions of enterprises and to identify the carbon footprints of products. 348 

Nanchang Park, located in Jiangxi Province, has formed a low energy-intensive and high-349 

quality green industrial structure based on aviation, optoelectronics, new materials, 350 

biomedicine, and new material development. The park had an average economic growth of 11% 351 

from 2012 to 2016. The total GDP of the park in 2015 and 2016 was 45 and 50 billion Chinese 352 

yuan, respectively. The park has implemented a series of policies to control its energy 353 

consumption and carbon emissions and has seen its energy intensity and emission intensity 354 

decreased by 31% and 23% in 2016 compared with the 2012 level, respectively. 355 

Laocheng Park, located in Hainan Province, is one of the five strategical development zones in 356 

China. The park relies on the energy production, petrochemical, software and information 357 

technology, new material development, and food processing industries. Before 2013, there 358 

were 149 industrial enterprises in the park, and these contributed to 60% of the park’s total 359 

GDP. In 2013, the total GDP and output of the park were 11 and 49 billion Chinese yuan, 360 

respectively. 361 

Zhengzhou Park, located in Henan Province, was established in 1993, and further developed 362 

to a national-level development zone in 2000. In 2017, the park’s industrial GDP and output 363 
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were 28 and 99 billion Chinese yuan, respectively. Additionally, 36% (or 36 billion Chinese 364 

yuan) of the industrial output was contributed by the high-tech industries. 365 

4.2 Data collection 366 

4.2.1 Activity data 367 

This study collected the activity data (energy consumption of each enterprise) using field 368 

investigations. The total energy consumption, energy inputs/outputs, and non-energy use of 369 

each enterprise are needed for the emission inventory compilation. We consider only 370 

enterprises with an annual main business revenue of 20 million yuan or more (namely, 371 

enterprises above the designated scale) because they overwhelmingly contribute to the energy 372 

consumption and economic growth of the parks. 373 

Among the four parks, Suzhou and Laocheng parks had all necessary data. Nanchang and 374 

Zhengzhou parks did not have any energy production enterprises; therefore, no energy input 375 

and output data could be collected for those two parks. 376 

4.2.2 Emissions factors for electricity and heat 377 

As introduced in Section 3.3.2, this study uses the emissions from energy production 378 

enterprises and their electricity/heat outputs to estimate the specific electricity/heat-emission 379 

factors for each industrial park. There are four energy enterprises with energy transformation 380 

producing activities locate in Suzhou Park and three in Laocheng Park. Figure 2 shows the 381 

energy flow in the energy enterprises of Suzhou and Laocheng parks. The energy data are 382 

aggregated by the energy enterprises. We can see that Suzhou park produces electricity with 383 

natural gas while Laocheng park use raw coal to produce electricity, that brings Suzhou park a 384 

relatively lower emission factors of electricity generation. Laocheng park has more 385 

comprehensive energy transformation system that includes both electricity generation and 386 

petroleum refining. 387 
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 388 

Figure 2 Energy use in energy enterprises of Suzhou and Laocheng parks 389 
Unit: tonnes of standard coal equivalent 390 

Taking Suzhou park as an example, Table 3 shows the energy inputs and outputs of the four 391 

energy enterprises in Suzhou Park. The total raw coal used for electricity generation was 597.42 392 

thousand tonnes, while the natural gas consumption was 710.88 thousand m3. Therefore, the 393 

𝐶𝐸𝑒𝑙𝑒 value was equal to 2630.47 thousand tonnes. The total generated electricity of the four 394 

energy companies, 𝑃𝑟𝑜𝑑𝑒𝑙𝑒 , was 4693.01 mWh. Thus, this study calculated the electricity 395 

emission factor for Suzhou industrial park as 0.561 𝑡𝑜𝑛 𝐶𝑂2 𝑚𝑊ℎ⁄ , which was 40% lower 396 

than the average grid level (0.93 𝑡𝑜𝑛 𝐶𝑂2 𝑚𝑊ℎ⁄ , east grid). Similarly, the electricity emission 397 

factor for Laocheng Park was calculated as 0.776 𝑡𝑜𝑛 𝐶𝑂2 𝑚𝑊ℎ⁄ . 398 

Table 3 Energy inputs and outputs of four energy enterprises in Suzhou park 399 

Energy enterprises A B C D Total 

Raw coal 

Total 

consumption 
0 721459 301782 40933 1064174 

Transformed 

inputs 
0 692656 301782 40933 1035370 

Power inputs 0 416735 178051 2631 597417 

Heat inputs 0 275920 123731 38301 437953 

Natural 

gas 

Total 

consumption 
34489 1786 0 41841 78116 

Transformed 34489 0 0 41841 76331 
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inputs 

Power inputs 33599 0 0 37490 71088 

Heat inputs 891 0 0 4352 5242 

Heat 

Total 

consumption 
0 2357573.45 0 0 2357573 

Transformed 

inputs 
0 0 0 0 0 

Power inputs 0 0 0 0 0 

Heat inputs 0 0 0 0 0 

Total outputs 312054 4756805 2541660 2149942 9760461 

Electricity 

Total 

consumption 
2589 49473 6211 4071.7 62345 

Transformed 

inputs 
0 0 0 0 0 

Power inputs 0 0 0 0 0 

Heat inputs 0 0 0 0 0 

Total outputs 159697 88443 43433 177728 469301 

Unit: raw coal, 𝑡𝑜𝑛𝑛𝑒𝑠; natural gas, 104 𝑚3; heat, 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑘𝐽; electricity, 104 𝑘𝑊ℎ. 400 
Note: due to the data protection policy, we cannot disclose the names of the enterprises. 401 

For Nanchang and Zhengzhou parks, there were no power plants located in the parks. We used 402 

the grid average emissions factors instead, which was 0.801 𝑡𝑜𝑛 𝐶𝑂2 𝑚𝑊ℎ⁄   (centre grid) 403 

(NDRC, 2011). 404 

The heat emission factor for Suzhou Park was calculated as 0.09 𝑡𝑜𝑛 𝐶𝑂2 106𝐾𝐽⁄  based on 405 

energy inputs and heat outputs of the four energy enterprises in Suzhou park. As for Zhengzhou 406 

park, there is no heart generation enterprise, we use the provincial average heat emission factor, 407 

which was 0.12 𝑡𝑜𝑛 𝐶𝑂2 106𝐾𝐽⁄ . There is no heat consumption in Laocheng and Nanchang 408 

parks. 409 

4.3 Results 410 

 411 
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Figure 3 CO2 emissions of the four industrial parks in 2015 412 

4.3.1 Total emissions and emissions by energy types 413 

Figure 3 describes the emissions of the four industrial parks in 2015. The total emissions are 414 

compared in sub figure e) and the sub-emissions for each energy source are presented in sub-415 

figures a) to d). We find that Suzhou park had significant high emissions of 5,505 thousand 416 

tonnes compared with the other three parks. This is mainly due to the large scale of Suzhou 417 

Park. The total GDP of Suzhou Park in 2015 was 173.8 billion yuan, while that of Laocheng, 418 

Nanchang, and Zhengzhou Parks are 38.3, 31.6, and 43.0, respectively. We divide the parks’ 419 

total emissions by their GDP and get the emission intensity of the parks: 0.317 (Suzhou Park), 420 

0.334 (Laocheng Park), 0.337 (Nanchang Park), and 0.148 (Zhengzhou Park) tonnes per 10 421 

thousand yuan. Suzhou, Laocheng, and Nanchang Parks had similar emission intensities while 422 

Zhengzhou had a lower intensity (more than 50% lower). This is mainly due to the clean energy 423 

structure used in Zhengzhou Park. As the sub figure d) shows, there is no raw coal used in 424 

Zhengzhou Park. Also, Zhengzhou Park had more high-tech industries (discussed in section 425 

4.3.2), which consumed less energy and produced higher economic outputs. 426 

By investigating the detailed emissions by energy types, we may describe the emission patterns 427 

of the parks in more detail. Taking Suzhou Park as an example (shown in Figure 3-a), our 428 

results show that the total carbon emissions of the park was equal to 5504.7 thousand tonnes, 429 

in which Scope 1 emissions were valued at 4135, and Scope 2 emissions were valued at 1370. 430 

From the Scope 1 emissions, coal and natural gas were responsible for 96% of the industrial 431 

park’s carbon emissions, indicating the primary energy use of the industrial park. Although raw 432 

coal and natural gas had approximately the same share of the Scope 1 carbon emissions (i.e. 433 

47% vs. 49%), natural gas was more widely used, with 20% of enterprises consuming natural 434 

gas. In contrast, raw coal-related carbon emissions were induced by only four enterprises that 435 

were influenced by the electricity supply, textile, and paper-making industries. An 436 

overwhelming 99% of the total carbon emissions of raw coal combustion were from electricity 437 

production and supply enterprises. These two enterprises have been identified as significant 438 

components that must be considered if the low-carbon transition of industrial parks is to be 439 

achieved. Given that only 34% of the total enterprises in the park use raw coal and natural gas, 440 

this value indicates that the industrial park is relatively clean in comparison with the regional-441 

level value, where natural gas accounted for only 5% of the total carbon emissions of Jiangsu 442 

Province in 2015 (Shan et al., 2018b). The electric power and steam supply represented the 443 

main consuming sector, and half of the carbon emissions from natural gas were supplied by 444 

this sector. 445 

In addition to the emissions from primary energy, electricity is the major energy used in Suzhou 446 

Park, with 97% of enterprises consuming electricity. There are 3946 thousand tonnes of carbon 447 

emissions caused by electricity use in non-energy production enterprises; of these, 47% are 448 

from the manufacturing of electronics and telecommunications equipment and 10% are from 449 

the manufacturing of raw chemical materials and chemical products. The electricity plants 450 

produced only 2201 thousand tonnes of carbon emissions-equivalent electricity. That is, the 451 

electricity generated in the industrial park cannot meet the entire demand for electricity, which 452 

is evident by the 1745 thousand tonnes of carbon in the Scope 2 emissions value for the 453 

industrial park. In contrast, non-fossil heat produced in energy enterprises was a net export to 454 

areas outside the park, while enterprises in the park consumed heat that accounted for 319 455 

thousand tonnes of carbon; moreover, 694 thousand tonnes of carbon emissions-equivalent heat 456 

was produced. Therefore, the net Scope 2 emissions in the industrial park were equal to 1370 457 

thousand tonnes, contributing to approximately 25% of total Scope 1+ Scope 2 emissions; this 458 
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result suggests Suzhou industrial park relies on energy purchased outside the park to meet its 459 

demands. 460 

Laocheng Park emitted 5918 thousand tonnes of CO2 in 2015, of which 95% was caused by 461 

raw coal. Natural gas contributed only 3% (or 194 thousand tonnes) to the total emissions. Most 462 

of the raw coal used in Laocheng Park is for electricity generation. There are two 463 

environmentally friendly power plants in the park, and these generated 7212 million kwh of 464 

electricity in 2015, with inputs of three million tonnes of raw coal and 239 tonnes of diesel. 465 

The emission factor of the two power plants is 0.776 𝑡𝑜𝑛 𝐶𝑂2 𝑚𝑊ℎ⁄ , which is 15% lower than 466 

the Hainan grid’s average emission factor (0.917 𝑡𝑜𝑛 𝐶𝑂2 𝑚𝑊ℎ⁄ ). Despite the large amount 467 

of electricity production in Laocheng Park, the park itself consumed only 1235 million kwh of 468 

electricity. Furthermore, 5977 million kwh of electricity was exported for usage outside the 469 

park. As a result, the Scope 2 emissions of Laocheng Park is -4638 tonnes. 470 

Nanchang and Zhengzhou parks have a plain emission structure, as shown in Figure 3-c and -471 

d. There are no energy production enterprises in the parks, and electricity is the primary energy 472 

source that is used. The total emissions (Scope 1 and 2) of Nanchang and Zhengzhou parks are 473 

1065 and 635 thousand tonnes of CO2, respectively, of which electricity contributes 85% and 474 

86%, respectively. Apart from electricity, raw coal is the second largest source of emissions in 475 

Nanchang Park (119 thousand tonnes, or 11%), and natural gas is the second largest source of 476 

emissions in Zhengzhou Park (39 thousand tonnes, or 6%). 477 

4.3.2 Scope 1 and 2 emissions by sectors 478 

To illustrate the detailed industrial structure of the emissions patterns of the four industrial 479 

parks, this study analysed the sectoral emissions of each park, and the results are shown in 480 

Figure 4. The Scope 1 emissions are shown as the orange bars, while the green bars represent 481 

the Scope 2 emissions. There are only 32 kinds of sectors in the four parks, rather than a full 482 

category of 39 sectors (as shown in Appendix Table 1). Some energy production or energy-483 

intensive industries are not allowed in the parks. Therefore, Figure 4 present only 32 sectors. 484 

We further classified the sectors into four clusters, including the high-tech industries (blue 485 

background), light manufacturing industries (yellow), heavy manufacturing industries (orange), 486 

and energy production industries (red) (Shan et al., 2018a). 487 

 488 
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Figure 4 Scope 1 and 2 emissions by sectors of the four industrial parks. The sectors with blue 489 

backgrounds belong to the high-tech industries, while the sectors in yellow/orange/red are part 490 

of the light manufacturing/heavy manufacturing/energy production industries, respectively. 491 

Comparing the four parks, we found that Laocheng Park had the simplest industrial structure. 492 

Nanchang and Zhengzhou parks did not have any energy production enterprises; however, they 493 

gathered more high-tech and heavy manufacturing industries. Suzhou Park had the most 494 

comprehensive industrial structure among the four parks. 495 

Using Suzhou Park as an example, we found that the power sector was the dominant emitter of 496 

Scope 1 emissions, contributing to 88% of the total CO2 emissions. After offsetting the 497 

emissions embodied in purchased electricity and heat, the total Scope 1+2 emissions from the 498 

electric power and steam supply were equivalent to 752 thousand tonnes, which implied that 499 

the electricity and heat used by these energy enterprises embodied that total amount of 500 

emissions. In Suzhou Park, four sectors represented the main consumers of purchased energy, 501 

in which the electronic and telecommunications equipment represented the largest carbon 502 

emitter in terms of the Scope 1+2 emissions, values at 1955 thousand tonnes. The 503 

manufacturing of raw chemical material products, papermaking, and electricity equipment had 504 

much higher Scope 2 emissions than Scope 1 emissions. This result indicates that these sectors 505 

relied more on the electricity purchased from the electricity sector in the park or outside of the 506 

park, which demonstrates that emissions embodied in the energy supply chain could be more 507 

important than the mitigation policy focusing on primary energy for the non-energy sectors. 508 

Given the role of the electricity power and steam supply in the energy supply chain of the 509 

industrial park, a reduction in their Scope 1 emissions could help with the low-carbon transition 510 

at the industrial park scale. Despite natural gas being widely used in the electricity sector, half 511 

of the Scope 1 emissions were still from the raw-coal combustion found in electricity and heat 512 

production. Thus, switching the primary energy used by these enterprises should be a priority 513 

in implementing mitigation techniques. 514 

4.4 Low-carbon strategies for the parks 515 

The detailed analysis of the emissions patterns identified the key sources of emissions in each 516 

park and shed light on potential emission reduction policies. We suggest that the policies should 517 

be designed to consider both Scope 1 and Scope 2 emissions. For the policies related to Scope 518 

1 emission reductions, we suggest optimizing the parks’ energy mixes and improving the 519 

production efficiency of various enterprises. Using Suzhou park as an example, despite the fact 520 

that coal-related fuels account for 47% of the park’s emissions, which is much lower than the 521 

national average level of 82% (Shan et al., 2018b), there is still the potential for reductions if 522 

the park replaces raw coal with cleaner energy (such as natural gas) or renewable energy (such 523 

as solar power or wind power). We also propose that advanced techniques can be used to 524 

improve production efficiency, which could reduce emission intensity, i.e. producing more 525 

economic outputs with less energy inputs. Suzhou Park has already built a mature industrial 526 

structure that is dominated by high-tech enterprises; there may not be much room for emissions 527 

reductions via structure optimization, but Laocheng Park could achieve more emissions 528 

reductions if it optimized its industrial structure towards a cleaner and more high-tech approach. 529 

From the perspective of Scope 2 indirect emissions, we found that Suzhou and Laocheng parks 530 

had more efficient and cleaner electricity generation lines in terms of their power plants. Their 531 

emission factors of electricity production were 31% and 15% lower than the national grid’s 532 

average level, respectively. Therefore, we encourage these parks to produce more electricity to 533 

meet their own demand and to also support their surrounding areas if possible. When necessary, 534 
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the park should choose clean electricity when purchasing external electricity. Considering the 535 

outsourcing effects of emissions, energy supply chains outside the industrial park should be 536 

scrutinised as well. 537 

5 Conclusion 538 

With an increasing number of industrial enterprises gathering geographically and forming 539 

industrial parks in China, more specific low-carbon strategies should be designed at the park 540 

level in order to achieve the country’s emission reduction goals and fulfil local climate 541 

mitigation and adaptation. Understanding the industrial-park level emissions characteristics is 542 

the very first and foundational step of any further climate change actions. 543 

This study develops a self-consistent methodology and framework for park-level emission 544 

inventory construction in China. The emission inventories include both Scope 1 emissions from 545 

fossil fuel combustion and Scope 2 emissions induced by imported electricity and heat. We use 546 

the park-specific emission factors of imported electricity/heat to achieve an accurate account 547 

of the park’s emissions. The inventories are constructed as 19 energy types and 39 industrial 548 

sectors, as this approach is consistent and comparable with the System of National Accounts 549 

and national/regional emission inventories. Despite the fact that different industrial parks may 550 

have different industrial structures and energy mixes, this integrated emissions inventory 551 

construction framework adapts to all types of industrial parks. By adopting the construction 552 

framework, different industrial parks can achieve comparable emission inventories comprising 553 

the same scopes and formats. In addition, this park-level emissions accounting method is 554 

consistent with our national and regional emission inventories in China, making the emissions 555 

comparable from a multi-scale perspective. 556 

To test and verify the method, we chose Suzhou, Laocheng, Nanchang, and Zhengzhou parks 557 

as empirical studies and compiled the 2015 emission inventories for the parks. Possible low-558 

carbon strategies are discussed for the parks combing our accounting results. We propose the 559 

policies should be designed to consider both Scope 1 and Scope 2 emissions. From the view of 560 

Scope 1 emissions, parks can optimize their energy structure and apply advanced techniques 561 

to improve production efficiency. There might not be that much potential for emissions 562 

reductions via industrial structure optimization, because parks usually have assigned 563 

development roadmaps, which is designed based on local government’s need and comparative 564 

advantages. Also, some parks have already had the most advanced industrial structures. From 565 

the aspect of Scope 2 emissions, some parks have developed more efficient and clean 566 

electricity/heat production lines (such as Suzhou and Laocheng), in this case, we encourage 567 

these parks to produce more electricity/heat to meet their own demand and to also support their 568 

surrounding areas if possible 569 

It is noteworthy that there are still many gaps in mitigating emissions from industrial parks. 570 

Tailoring the mitigation pathways for thousands of industrial parks requires an immense effort 571 

in terms of the carbon inventory construction. We hope our study inspires and offer insights 572 

that are relevant to subsequent studies. 573 
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Appendix 585 

Appendix Table 1 Industrial sectors 586 

No. Industrial sectors Classifications 

1 Coal Mining and Dressing Energy production 

2 Petroleum and Natural Gas Extraction Energy production 

3 Ferrous Metals Mining and Dressing Energy production 

4 Nonferrous Metals Mining and Dressing Energy production 

5 Non-metal Minerals Mining and Dressing Energy production 

6 Other Mineral Mining and Dressing Energy production 

7 Food Processing Light manufacturing 

8 Food Production Light manufacturing 

9 Beverage Production Light manufacturing 

10 Tobacco Processing Light manufacturing 

11 Textile Industry Light manufacturing 

12 Garments and Other Fibre Products Light manufacturing 

13 Leather, Furs, Down and Related Products Light manufacturing 

14 Timber Processing, Bamboo, Cane, Palm Fibre & Straw Products Light manufacturing 

15 Furniture Manufacturing Light manufacturing 

16 Papermaking and Paper Products Light manufacturing 

17 Printing and Record Medium Reproduction Light manufacturing 

18 Cultural, Educational and Sports Articles Light manufacturing 

19 Petroleum Processing and Coking Energy production 

20 Raw Chemical Materials and Chemical Products Heavy manufacturing 

21 Medical and Pharmaceutical Products Light manufacturing 

22 Chemical Fibre Heavy manufacturing 

23 Rubber Products Heavy manufacturing 

24 Plastic Products Heavy manufacturing 

25 Non-metal Mineral Products Heavy manufacturing 

26 Smelting and Pressing of Ferrous Metals Heavy manufacturing 

27 Smelting and Pressing of Nonferrous Metals Heavy manufacturing 

28 Metal Products Heavy manufacturing 

29 Ordinary Machinery Heavy manufacturing 

30 Equipment for Special Purposes Heavy manufacturing 

31 Transportation Equipment Manufacturing Heavy manufacturing 

32 Electric Equipment and Machinery High-tech industry 

33 Electronic and Telecommunications Equipment High-tech industry 

34 Instruments, Metres, Cultural and Office Machinery High-tech industry 

35 Other Manufacturing Industry High-tech industry 

36 Scrap and Waste High-tech industry 

37 Production and Supply of Electric Power, Steam and Hot Water Energy production 

38 Production and Supply of Gas Energy production 

39 Production and Supply of Tap Water Heavy manufacturing 

  587 
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