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ABSTRACT
Early detection of mental health changes in individuals with
serious mental illness is critical for effective intervention.
CrossCheck is the first step towards the passive monitoring
of mental health indicators in patients with schizophrenia and
paves the way towards relapse prediction and early interven-
tion. In this paper, we present initial results from an ongoing
randomized control trial, where passive smartphone sensor
data is collected from 21 outpatients with schizophrenia re-
cently discharged from hospital over a period ranging from
2-8.5 months. Our results indicate that there are statistically
significant associations between automatically tracked behav-
ioral features related to sleep, mobility, conversations, smart-
phone usage and self-reported indicators of mental health
in schizophrenia. Using these features we build inference
models capable of accurately predicting aggregated scores of
mental health indicators in schizophrenia with a mean error
of 7.6% of the score range. Finally, we discuss results on
the level of personalization that is needed to account for the
known variations within people. We show that by leveraging
knowledge from a population with schizophrenia, it is possi-
ble to train accurate personalized models that require fewer
individual-specific data to quickly adapt to new users.
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INTRODUCTION
Schizophrenia is a severe and complex psychiatric disorder
that develops in approximately 1% of the world’s popula-
tion [49]. Although it is a chronic condition, its symptom
presentation and associated impairments are not static. Most
people with schizophrenia vacillate between periods of rela-
tive remission and episodes of symptom exacerbation and re-
lapse. Such changes are often undetected and subsequent in-
terventions are administered at late stages and in some cases
after the occurrence of serious negative consequences. It is
well understood that observable behavioral precursors can
manifest prior to a transition into relapse [2]. However, these
precursors can manifest in many different ways. Studies have
shown these to include periods of social isolation, depression,
stressed interactions, hearing voices, hallucinations, incoher-
ent speech, changes in psychomotor and physical activity and
irregularities in sleep [13, 26]. Evidence also suggests that
clinical intervention at an early enough stage is effective in
the prevention of transitions into a full relapse state. This di-
rectly reduces the need for hospitalization and can also lead
to faster returns to remission [40].

Existing clinical practices are inefficient in detecting early
precursors. Standard methods are based on face to face in-
teractions and assessments with clinicians, conducted at set
times and locations. This has major limitations due to a high
dependency on patient attendance as well as the resources
of clinical centers in terms of time and expertise. More-
over, such assessments have limited ecological validity with
a heavy reliance on accurate patient recall of their symptoms
and experiences. As such, the data from standard assessments
can only be considered as single snapshots rather than a true
record of dynamic behavior. This static data does little to
inform the robust detection of early warning signs as they
emerge longitudinally, especially if there is low adherence to
follow-up visits.

To this end, research has begun in the use of mobile devices
to achieve more dynamic assessments in schizophrenia [31],
though the use of smartphones for this use is still in its in-
fancy. This, in part, is due to the associated risks which ne-
cessitated studies to demonstrate feasibility, acceptability and
usability within this population. Ben-Zeev et al. developed
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the FOCUS self management app [6] that provides illness
self-management suggestions and interventions in response
to participants’ rating of their clinical status and functioning.
This system received high acceptance rates among users and
is shown to be usable by this population [7]. A pilot study in
the efficacy of tracking patients [9] over two weeks shows that
sensing using smartphones is acceptable to both inpatients
and outpatients. These results paves the way for new sensing
and inference systems to passively monitor and detect mental
health changes using commercially available smartphones.

In this paper, we analyze preliminary data from a randomized
control trial of CrossCheck, a smartphone sensing system
currently deployed to outpatients with schizophrenia. Cross-
Check is the first system to use continuous passive sensing
and periodic self-reports to monitor and assess mental health
changes in schizophrenia. The ultimate goal of the project is
to develop sensing, inference and analysis techniques capable
of dynamically assessing mental health changes and predict-
ing the risk of relapse without the need for retrospective recall
or self-reports. Another future aim of CrossCheck is to im-
plement new invention techniques to automatically alert clin-
icians in time to prevent or reduce the severity of relapse. In
this paper, we are not directly addressing relapse or interven-
tion, but take a first step towards these goals by investigating:
(i) the relationships between passively tracked behavior and
self-reported measures, and (ii) how much personalization of
the system is required given the observed variability between
individual patients.

Specifically, the contributions of this exploratory study are:

• CrossCheck, the first system to use passive sensing data to
monitor and predict indicators of mental health for 21 out-
patients diagnosed with schizophrenia recently discharged
from hospital; CrossCheck monitors these outpatients for
periods between 64 and 254 days.

• Meaningful associations between passively tracked data
and indicators or dimensions of mental health in people
with schizophrenia (e.g., stressed, depressed, calm, hope-
ful, sleeping well, seeing things, hearing voices, worrying
about being harmed) to better understand the behavioral
manifestation of these measures and eventually develop a
real-time monitoring and relapse prevention system.

• Models that can predict participants’ aggregated ecological
momentary assessment (EMA) scores that measure several
dynamic dimensions of mental health and functioning in
people with schizophrenia.

• Level of personalization that is needed to account for the
known variations within people. We show that by lever-
aging knowledge from a population with schizophrenia, it
is possible to train personalized models that require fewer
individual-specific data to quickly adapt to a new user.

RELATED WORK
There is growing interest in using smartphones to monitor and
assess wellbeing and mental health [23]. Smartphones are
a natural platform to monitor and assess behavioral patterns
that manifest over long periods. Such longitudinal tracking

is essential for addressing mental health states that have low
frequency changes taking days, weeks or even months [4, 32,
50].

There has been no prior work in the prediction of changes in
mental health using passive sensing data from smartphones in
schizophrenia. Previous work conducted in populations with
depression and bipolar disorder informs our schizophrenia-
focused efforts. For depression, early work by [17] uses lo-
cation, social interaction, activity and mood inferred from a
range of sensors to assess depression. Saeb et al. [45] explore
the relationships between a wide range of features derived
from sensing and show that variation in location as well as
phone usage significantly correlates with depressive symp-
toms. Canzian and Musolei [19] show significant correla-
tions between various measures of mobility derived from lo-
cation traces with depressive mood. In modeling bipolar dis-
order, the findings reported in [1] show the automatic infer-
ence of circadian stability as a measure to support effective
bipolar management. The MONARCA project [41] demon-
strate correlations between accelerometer based activity lev-
els over different periods of the day and psychiatric evaluation
scores for the mania-depression spectrum. Maxuni et al. [38]
add to this by utilizing speech along with activity levels to
successfully classify stratified levels of bipolar disorder. For
stress detection, [35] detects stress with >0.76 accuracy using
acoustic features. Other studies investigate the use of location
information [5], measures of social interaction derived from
phone-call, SMS, and proximity data [14] to detect stress.
In [29, 46, 47], the authors demonstrate using features from
both smartphones and wearables to detect and track stress.

The use of smartphone data has also been used to model
broader measures of well being over long periods. In [43]
the authors demonstrate that speech and conversation occur-
rences extracted from audio data and physical activity infer
mental and social well being. The Studentlife [50] study in-
vestigates correlations between conversation, sleep, activity
and co-location with a range of wellness scores relating to
stress, loneliness, flourishing and depression within the con-
text of a university campus over a single term. This led on
from BeWell [33], which inferred sleep, social interaction and
activity from smartphones, as a means of promoting wellness.

CROSSCHECK STUDY DESIGN
The CrossCheck study is a randomized control trial (RCT)
[20] conducted in collaboration with a large psychiatric hos-
pital in Long Island, NY. The study aims to recruit 150 par-
ticipants for 12 months using rolling enrollment. The par-
ticipants are randomized to one of two arms: CrossCheck
(n=75) or treatment-as-usual (n=75). The participants from
the CrossCheck smartphone arm enrolled to date are the fo-
cus of this paper. We report on inferring indicators of mental
health and not relapse prediction as there is only a small num-
ber of relapses cases (7) observed at present. Given previous
data on this type of study population, we expect that at the end
of the year long RCT there will be a larger cohort of patients
that have experienced relapse to make robust relapse predic-
tion viable.The study has been approved by the Committees
for the Protection of Human Subjects at Dartmouth College
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and Human Services and the Institutional Review Board at
Zucker Hillside Hospital. In what follows, we discuss partic-
ipant recruitment, the sensing system, and the detailed study
procedure.

Identifying Participants
The study hospital’s Electronic Medical Record is used to
identify potential study candidates who are then approached
by a staff member to gauge their interest in the study. If inter-
ested, a research interview is scheduled. Research flyers are
also posted at the study site with the research coordinator’s
phone number. A candidate is a patient who is 18 or older,
met DSM-IV or DSM-V criteria for schizophrenia, schizoaf-
fective disorder or psychosis, and had psychiatric hospital-
ization, daytime psychiatric hospitalization, outpatient crisis
management, or short-term psychiatric hospital emergency
room visits within 12 months before study entry. The candi-
date should be able to use smartphones and have at least 6th
grade reading determined by the Wide Range Achievement
Test 4 [51]. Individuals with a legal guardian are excluded.

Recruiting Participants
The staff at the recruitment hospital first screened candidates
based on criteria described in Identifying Participants. Then
the staff contacted candidates in person at the study site or by
phone to provide a complete description of the study. Inter-
ested individuals review the consent form with study staff and
are administered a competency screener to verify that they
understand what is being asked of them and are able to pro-
vide informed consent. After consent, enrolled participants
are administered the baseline assessment, then are randomly
assigned to CrossCheck or the treatment-as-usual arm where
no sensing is done. Participants in the smartphone arm are
loaned a Samsung Galaxy S5 Android phone equipped with
the CrossCheck app and receive a tutorial on how to use the
phone. To ensure the acquired data has a broad coverage of
behaviors, participants personal phone numbers are migrated
to the new phone and they are provided with an unlimited
data plan for data uploading. Participants are asked to keep
the phone turned on and to carry it with them as they go about
their day and charge it close to where they sleep at night. As
of February 2, 2016, 48 participants are randomized to the
CrossCheck arm, with 14 who dropped out. The primary rea-
son for dropping out is due to leaving treatment at the study
site. A few participants dropped out due to not being inter-
ested in participating anymore. In the 34 remaining, 17 par-
ticipants are females and 17 are males (11 African American,
2 Asian, 19 Caucasian, 1 Multiracial and 1 did not disclose).

CrossCheck System
The CrossCheck sensing system is built based on our prior
sensing work [1, 33, 50] that uses smartphone sensing and
self-report tools. Compared with the StudentLife sensing
system [50], the CrossCheck app uses the Android activity
recognition API instead of the self developed classifier to in-
fer activities. The CrossCheck app collects sensor data con-
tinuously and does not require the participant’s interaction.
The CrossCheck app automatically infers activity (stationary,
walking, running, driving, cycling), sleep duration, and socia-
bility (i.e., the number of independent conservations and their

durations). The app also collects audio amplitude, accelerom-
eter readings, light sensor readings, location coordinates, and
application usages. CrossCheck uses a built in MobileEMA
module [50] to administer EMAs [9]. During the collec-
tion phase, participants are asked to respond to EMA ques-
tions every Monday, Wednesday, and Friday (see CrossCheck
Dataset). This paper focuses on the EMA data as symptom
measures. CrossCheck is published in Google Play Store’s
beta testing channel to control access. Google Play Store is
used to remotely update the sensing system when necessary.
The inferences, the sensor data, and the EMA responses are
temporarily stored on the phone and are efficiently uploaded
to a secured server when users recharge their phones. Fig-
ure 2 gives an overview of the data collection and analysis
workflow.

Data collection monitoring. CrossCheck includes manage-
ment scripts that automatically produce statistics on compli-
ance. It sends a daily report on how many hours of sensor
data had been collected for the last few days. The daily report
labels participants who have not uploaded any data. Cross-
Check also sends out weekly reports with visualizations of
participants’ sensing data (e.g., distance traveled, sleep and
conversation duration) and EMA responses for the most re-
cent week. Daily reports and weekly reports help researchers
to identify participants who are collecting data or are having
problems with the system. Research staff would call non-
compliant participants to give assistance and get them back
on track.

Privacy considerations. In order to protect participants’ per-
sonal information, each participant is given a random study
ID. Any identifiable information is stored securely in locked
cabinets and secured servers. The participant’s personal in-
formation, such as phone number and email address, is not
collected by the sensing app. Participants’ data is uploaded
to a secured server using encrypted SSL connections. If a
participant’s phone is lost we remotely erase the data on the
phone and reset it.

CROSSCHECK DATASET
The dataset includes behavioral features and inferences from
raw sensor data, EMA responses, and combined indicator
scores calculated from EMA responses. We select behavioral
features based on participants’ behaviors (e.g., physical ac-
tivity, sociability, sleep , mobility) that are associated with
dimensions of mental health state [1,19,33,38,41,43,45,50].
We use self-reported EMA data as mental health state indica-
tors of schizophrenia patients.

Timescale and Epochs
Behavioral features are computed on a daily basis. For exam-
ple, the daily conversation frequency is the number of con-
versations a participant is around over a 24-hour period. In
addition, a day is partitioned evenly into four epochs: morn-
ing (6 am to 12 pm), afternoon (12 pm to 6 pm), evening (6
pm to 12 am), and night (12 am to 6 am), we also compute be-
havioral features for these four epochs to explore behavioral
patterns within different phases in a day.
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Behavioral Sensing Features
A wide range of behavioral sensing features from the raw sen-
sor data and behavioral inferences are collected by the Cross-
Check app. These features describe patterns of participants’
physical activity, sociability, mobility, phone usage, sleep,
and the characteristics of the ambient environment in which
the participant dwells. Below, we discuss these features and
the rationale behind using them for our analysis.

Activity. We use the Android activity recognition API that
includes: on foot, still, in vehicle, on bicycle, tilting, and un-
known. CrossCheck gives an activity update every 10 sec-
onds when the user is moving, or every 30 minutes when
the user is stationary. We compute the durations of station-
ary state and walking states per day and within each of the
four epochs as physical activity features. Our scale evalua-
tion shows that the Android activity recognition API infers
walking and stationary with 95% accuracy.

Speech and conversation. Previous studies [33, 43, 50] have
shown that the detection of conservations and human voice
is related to wellness and mental health. We compute the
number and duration of detected conversational episodes per
day and over each of the four epochs. We also compute the
number of occurrences of human voice and non human voice
along with their respective durations per day.

Calls and SMS. To further inform the level of social inter-
action and communication we consider phone calls and SMS
activities. We compute the number and duration of incoming
and outgoing calls over a day and the number of incoming
and outgoing SMS.

Sleep. Changes in sleep pattern or the onset of unusual sleep
behavior may indicate changes in mental health [13]. Sleep
related features that are derived from the sleep inferences are:
overall duration of sleep, going to sleep time, and wake time
for each day [21, 50].

Location. Prior studies have shown that a user’s mobility
patterns from geo-location traces are associated with mental
health and wellness [19, 45, 50]. In schizophrenia, for exam-
ple, it is not uncommon for people to be isolated and stay at
home with little external contact especially when individuals
are experiencing distressing psychotic symptoms. We calcu-
late the following set of location features on a daily basis:
total distance traveled, maximum distance travelled between
two tracked points, maximum displacement from the home,
standard deviation of distances, location entropy, duration of
time spent at primary location, duration of time spent at sec-
ondary location. Finally, we compute a locational routine in-
dex over seven days to quantify the degree of repetition in
terms of places visited with respect to the time of day over a
specific period of time. These features stem from the works
on depression in [19, 45]. Further we propose the number
of new places visited in a day by using the number of new
locations in a day that have not been seen previously. Sam-
pled location readings/coordinates are clustered in to primary,
secondary or other location using the DBSCAN clustering

method [37] with a minimum of ten points per cluster and
a minimum cluster radius of ten meters over the entirety of
a single user’s data. The first and second largest clusters are
labeled as the primary and secondary locations, respectively.

Phone and app usage. User interaction with the phone is
potentially indicative of general daily function. For a coarse
measure, we compute the number of times the phone is un-
locked per day, as well as the duration in which the phone
is unlocked per day and within each of the four epochs. We
also create more nuanced measures by leveraging information
about the types of apps that are running. Given the wide vari-
ety of apps, we classify each app into one of the three broad
categories: social, engagement, and entertainment. These
categories were chosen as they are indicative of sociability
and daily function which in turn may potentially be indica-
tive of mental health changes. We use the meta-information
from Google Play’s categorizations and bin all active apps
into one of the three categories. The social category is a com-
bination of social and communication apps, examples include
Facebook and Twitter. The engagement category consists of
health & fitness, medical, productivity, transportation and fi-
nance apps, examples include Calendar and Runkeeper. The
entertainment category consists of news & magazines, media
& video, music & audio, and entertainment apps. Examples
of apps in this category are YouTube and NetFlix. We com-
pute the total number of apps that belong to each of these
three categories every 15 minutes from the process stack. We
then calculate the increases in the number of apps that belong
to each category which is indicative of how often the partici-
pant launches an app in one of the categories.

Ambient environment. We compute features to measure the
ambient sound and light environment. The mean levels of
ambient volume per day and within four epochs reflect the
ambient context of the participant’s acoustic environment, for
example quiet isolated places versus noisy busy places. Sim-
ilarly, we consider the ambient light levels to get more in-
formation about the environmental context of the participant,
for example dark environment versus well illuminated envi-
ronment. We acknowledge that the phone cannot detect the
ambient light when in the pocket. However, we found that
the phone can opportunistically sense the ambient light envi-
ronment that can be used to help infer sleep [21]. We use the
mean illumination over a day and within the four epochs.

Ecological Momentary Assessments
There are several dynamic dimensions of mental health and
functioning in people with schizophrenia that are of interest.
These include items such as visual and auditory hallucina-
tions, incoherent speech delusion, social dysfunction or with-
drawal, disorganized behavior, and inappropriate affect [3].
Other possible indicators of changes in mental health include
variations in sleep, depressive mood and stress. EMA has
shown to be a valid approach to capture mental health states
amongst people with schizophrenia [27]. The set of EMA
questions we use in CrossCheck are based on self-reported di-
mensions defined in previous schizophrenia research [8]. The
EMA has 10 questions, which can be grouped into two cat-
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egories: positive item questions and negative item questions.
Higher score in positive questions indicates better outcomes
whereas higher scores in negative item questions indicates
worse outcomes. Positive questions ask a participant if they
have been feeling calm, been social, been sleeping well, been
able to think clearly, and been hopeful about the future. Neg-
ative questions ask a participant if they have been depressed,
been feeling stressed, been bothered by voices, been seeing
things other people can’t see, and been worried about being
harmed by other people. The questions are framed as simple
one sentence questions with a 0-3 multiple choice answers
(for specific phrasing see Table 1). The MobileEMA user in-
terface is designed to be simple and easy to use. It shows the
questions one by one. The participant responds to the ques-
tion by touching a big button associated with their response.

We calculate the EMA negative score, positive score, and sum
score from the responses. The EMA positive score is the sum
of all positive questions’ score, the negative score is the sum
of all negative questions’ score, and the sum score is the posi-
tive score minus the negative score. The positive and negative
score range from 0 to 15 and the sum score ranges from -15
and 15.

Table 1: EMA questions related indicators of mental health
Have you been feeling CALM?
Have you been SOCIAL?
Have you been bothered by VOICES?
Have you been SEEING THINGS other people can’t see?
Have you been feeling STRESSED?
Have you been worried about people trying to HARM you?
Have you been SLEEPING well?
Have you been able to THINK clearly?
Have you been DEPRESSED?
Have you been HOPEFUL about the future?

Options: 0- Not at all; 1- A little; 2- Moderately; 3- Extremely.

ANALYSIS AND RESULTS
We identify a number of important associations between
phone-based behavioral features described in CrossCheck
Dataset and dynamic dimensions of mental health and func-
tioning in terms of EMA scores (e.g., feeling depressed, hear-
ing voices or thinking clearly). Also in this section, we
present results on the use of predictive models on aggregated
EMA scores. We test the level of personalization needed for
accurate modeling and for predicting longer term underlying
trends in the scores.

Methods overview
We first run bivariate regression analysis to understand as-
sociations between the measures of interest in schizophrenia
from the EMA scores and passively tracked behavioral fea-
tures. The regression results are presented in Bivariate Re-
gression Analysis. We then run prediction analysis using Gra-
dient Boosted Regression Trees (GBRT) [25, 42] to evaluate
the feasibility of predicting EMA sum scores, which is dis-
cussed in Prediction Analysis. Finally, we generate person
specific models using Random Forest (RF) [15] to gain in-
sight into predicting smoothed EMA sum scores that charac-
terize underlying trends.

Data cleaning. Given that our analysis is based on data that
are aggregated over a day (e.g., distance traveled during a
day), missing data during a day would skew derived values
and may misrepresent behavior. Therefore, the proportion of
three forms of continuously sampled data (activity, location,
and audio) are used to determine how many hours of data is
sensed in a day. Days with fewer than 19 hours of sensing
data are discarded. Since recruitment of outpatients and data
collection is an ongoing process, participants join the study
at different times leading to varying amounts of data. We in-
clude participants who have been in the study for longer pe-
riods and are compliant when answering EMAs. Specifically,
we select participants who have more than 60 days of sensor
data as of February 2nd 2016 and completed at least 50% of
the EMAs. 21 out of 34 participants in the CrossCheck arm of
the RCT satisfy this criteria. As a result we analyze 2809 days
of sensing data and 1778 EMA responses for 21 participants.
All participants are in the study for a minimum of 64 days.
The total number of days ranges from 64 to 254 days. On av-
erage, each participant in the study provides 133.76 days (19
weeks) of sensing data and 84.7 EMA responses.

Data preparation. Given that the EMA module launches a
set of questions every 2-3 days, we aggregate the sensed data
from the days within this interval by taking the mean. Fig-
ure 1 shows the daily data aggregation strategy used to pre-
dict EMA scores. For example, if a participant gave EMA
responses on day 3, 6, and 9, we compute the mean of each
feature data (e.g., the mean sleep duration and the mean dis-
tanced traveled) from day 1 to 3 to predict the EMA score at
day 3, the mean from day 4 to 6 to predict the EMA score at
day 6, and the mean from day 7 to 9 to predict the EMA on
day 9.

EMA

sensing

days

average average average

Figure 1: Feature/EMA preparation

Feature Space Visualization
To gain an insight into the feature space, the data from
all participants is mapped using the t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [36] method. The t-
SNE [36] is an emerging technique for dimensionality re-
duction that is particularly well suited to visualize high-
dimensional datasets. It projects each high-dimensional data
point to a two-dimensional point such that similar data points
in the high-dimensional space are projected to nearby points
in the two-dimensional space and dissimilar data points are
projected to distant points. The feature visualization is shown
in Figure 3.

Figure 3(a) shows the mapped features on a two-dimensional
space. Each data point represents a subject’s behavioral fea-
tures used to predict EMA responses. We observe data points
are grouped into different clusters. By color-coding each
point per participant, it can be clearly seen that each cluster
is predominantly participant specific. This important finding
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Figure 2: CrossCheck sensing and analysis system.
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Figure 3: Feature visualization using t-SNE. (a) Data is color coded by user ID.
Individual subject’s data clusters together. (b) Data is color coded by EMA sum
scores. Data with same score tend to cluster within subject.

is interesting because it shows that our features captures be-
havioral difference between different individuals and that the
data is highly person dependent. Figure 3(b) shows a further
color coding of the data; this time by EMA sum scores. In
this case, the colors are intermixed. However, we observe that
data points associated with the same score are also clustered
together, though the purity of such clusters are not as high as
shown in Figure 3(a). This observation gives us confidence in
predicting participants’ EMA sum scores using personalized
models. These insights govern the analysis discussed in the
remainder of this section.

Bivariate Regression Analysis
Standard statistical analysis methods such as correlation anal-
ysis and ordinary regression analysis assume independence
between observations. However, our longitudinal dataset vio-
lates this independence assumption: data from the same sub-
ject are likely to be correlated. Models that do not account
for intra-subject correlations can lead to misleading results.
To addrress this, we apply generalized estimating equations
(GEE) [18, 22, 34, 52] – a model specifically designed to an-
alyze longitudinal datasets – to determine associations be-
tween each of the features and their EMA responses.

The GEE method is a marginal model, in which the regres-
sion and within-subject correlation are modeled separately.
The marginal expectation of subject i’s response Yit at time t
isE(Yit) = µit. This is related to the features xit by function
g(µit) = β0 + βxit, where g is a link function. From initial
inspection we assume the EMA responses have Poisson dis-
tributions leading to the use of log as the link function. The
β coefficients corresponding to feature vector xit, which in-
dicates the association between the features and the outcome
Yit, where β0 is the intercept. The p-value associated with
each β indicates the probability of the feature coefficient β
being zero (i.e., the feature does not associate with the out-
come). In addition, GEE does not rely on strict assumptions
about distribution and is robust to deviation from assumed
distribution. The GEE analysis describes differences in the
mean of the response variable Y across the population, which
is informative from the population perspective.

The resultant β values indicate the direction and strength of
the association between a behavioral feature and an EMA
score. A unit increase in the feature value is associated with
eβ increase in the associated EMA value. To allow for inter-
person comparability, each feature is normalized per partici-

pant to a zero mean with one standard deviation. Therefore,
the resultant features values are indicative of feature devia-
tion from the mean. A positive β indicates that a greater fea-
ture value is associated with a greater EMA score, whereas a
negative β indicates that a greater feature value is associated
with a smaller EMA score. The most significant β values are
selected using the corresponding p-value from each feature-
EMA combination.

We apply a bivariate regression using GEE to all 610 combi-
nations of the 61 features and 10 EMA questions. We apply
the Benjamini-Hochberg procedure (BH) proposed in [10,11]
to inform the false discovery rate (FDR) in our exploratory re-
gression analysis. The BH procedure finds a threshold for the
p value given the target false discovery rate by exploring the
distribution of the p-values. We find 88 regressions with p <
0.05, which corresponds to FDR < 32.8%, meaning associa-
tions with p < 0.05 has at most 32.8% chance of being false
discoveries. We find 12 regressions with p < 0.0016,FDR <
0.1, and 7 regressions with p < 0.00025,FDR < 0.05.

Table 2: Positive questions regression results

EMA item associated behavior

calm

sleep end time (-), conversation number (-),
conversation number afternoon (-), conversation
number night (-), call in (-), call out (-), increase
in entertainment app use (-), ambient light after-
noon (-), ambient sound volume night (-)

hopeful call out (-), call out duration (-), sms in (-), sms
out (-)

sleeping
conversation duration evening (-), conversation
number evening (-), ambient sound volume morn-
ing (-)

social walk duration evening (-), sleep duration (-), sleep
end time (-), ambient light evening (-)

think

conversation duration night (-), call in (-), call in
duration (-), call out (-), sms in (-), increase in
entertainment app use (-), durations of non-voice
sounds (-), number of non-voice sounds (-), num-
ber of voice sounds (-)

(-):negative association, (+):positive association
all associations with p < 0.05.

FDR < 0.1 in bold and FDR < 0.05 in bold italic.

Positive Questions. Table 2 shows features that are asso-
ciated with the five positively worded questions (viz. calm,
social, thinking clearly, sleeping well and hopeful). A higher
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(a) Positive score distribution.
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(b) Negative score distribution.
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(c) Sum scores distribution.

Figure 4: EMA aggregated score distributions

score indicates a more positive mental health state. The re-
ported associations’ feature β values are within−0.04 < β <
−0.02 with p < 0.05. We find in general, higher scores in
positive questions are associated with waking up earlier, hav-
ing fewer conversations, fewer phone calls, and fewer SMS.
Specifically, higher calm scores are associated with fewer
number of conversations, fewer phone calls, and staying in
quieter environment at night and darker environment in the
afternoon. Higher hopeful scores are associated with mak-
ing fewer phone calls, and sending and receiving fewer SMS.
Higher sleeping well scores are associated with fewer con-
versations, and staying in quieter environment in the morn-
ing. Higher social scores are associated with walking less in
the evening, sleeping less, waking up earlier, and staying in
darker environment in the evening. Finally, higher ability to
think clearly is associated with fewer conversations at night,
having fewer calls and SMS, and using fewer entertainment
apps.

Negative Questions. Table 3 shows features that are associ-
ated with the five negatively worded questions (viz. hearing
voices, seeing things, stress, harm and depressed). A higher
score indicates a more negative mental health state. The re-
ported associations’ feature β values are within−0.22 < β <
0.2 with p < 0.05. We find in general, higher scores in neg-
ative questions are associated with staying stationary more
in the morning but less in the evening, visiting fewer new
places, being around fewer conversations but making more
phone calls and SMS, and using the phone less. In addition,
we find higher depressed scores are associated with using the
phone less in the morning; higher harmed scores are associ-
ated with using fewer engagement apps; higher hearing voices
scores are associated with staying in quieter environments,
especially in the morning period.

Prediction Analysis
In this section, we discuss two supervised learning schemes
for predicting aggregated EMA scores. The first scheme ex-
plores the level of personal data needed for accurate predic-
tion. We use different training sets with various proportions
taken from one participant of interest along with instances
taken from the general population, we then test the model
on the scores of the said participant. The second scheme is
a further analysis on a set of wholly personalized models to
test the difference in predicting smoothed versus raw aggre-
gated EMA and the effect on accuracy by varying temporal
proximity between training and testing data. The distribution

of EMA positive scores, negative scores, and sum scores are
shown in Figure 4.

Personalized EMA Predictions
Predicting the aggregate EMA scores is a regression task.
We use Gradient Boosted Regression Trees (GBRT) [25, 42]
to predict EMA scores. GBRT is an ensemble method
which trains and combines several weak regression trees to
make accurate predictions. It builds base estimators (i.e., re-
gression trees) sequentially. Each estimator tries to reduce
the bias of the previously combined estimators. More for-
mally, GBRT is an additive model with the following form
[42]: F (x) =

∑M
m=1 γmhm(x), where hm(x) are the ba-

sis functions and γm are the step length for gradient de-
cent. Building the additive model can be viewed as gra-
dient descent by adding hm(x). This addition is based on
a forward stagewise fashion where the model at stage m
is Fm(x) = Fm−1(x) + γmhm(x). The additional term
γmhm(x) is determined by solving Fm(x) = Fm−1(x) +
argmin

h

∑n
i=1 L(yi, Fm−1(xi) − h(x)), where L is the Hu-

ber loss [25, 30] also GBRT is less sensitive to outliers [30].

Ideally, an EMA score prediction system should be able to
predict a new user’s scores accurately. However, the visual-
ization of participants’ data (Figure 3) shows that there are
clear separations between different subjects’ behavioral data.
Therefore, a certain level of model personalization is needed.
We personalize a predictive model by training the model with
the subject’s data. In order to understand the effectiveness of
the model personalization, we train three models with differ-
ent training data setups to predict each of the three aggregate
EMA scores: leave-one-subject-out models, mixed models,
and individual models.

A leave-one-subject-out model (LOSO) is trained to predict
a particular subject’s EMA scores. The model is trained on
the data from other study participants with the subject’s data
left out. This model emulates a new unseen user starting to
use the system that has learned on data from other people.
A mixed model personalizes the training data by introducing
a small amount of the subject’s data to a larger population
data. The idea is to leverage knowledge from the population
to help training so fewer examples of the subject’s data are
needed. Specifically, we train a model for a particular subject
with data from the population plus some data from the sub-
ject. We want to understand how much data from a subject is
needed to train an accurate model. We test models with dif-
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(a) Predicting positive scores.
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(b) Predicting negative scores.
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(c) Predicting sum scores.

Figure 5: EMA aggregated scores prediction MAE and Pearson r. loso: leave-one-subject-out model, mixed: mixed model, individual:
individual model. The results show that the model without personalization does not work. The prediction performance improves as more data
from the subject is included in the training set.

Table 3: Negative questions regression results

EMA item associated behavior

depressed

still duration morning (+), walk duration (-), walk
duration morning (-), sleep start time (+), new
places visited (-), call in duration (+), call out (+),
call out duration (+), sms in (+), sms out (+), un-
lock duration morning (-)

harm

still duration morning (+), walk duration (-),
walk duration night (-), walk duration morning
(-), walk duration evening (+), sleep start time
(+), new places visited (-), conversation duration
morning (-), call in (+), call in duration (+), call
out (+), number of non-voice sounds (+), number
of voice sounds (+), unlock duration (-), unlock
duration morning (-), unlock duration afternoon
(-), increase in engagement app use (-)

seeing things

still duration evening (-), walk duration evening
(+), walk duration morning (-), sleep start time
(+), conversation duration morning (-), call in
duration (+), call out (+), number of non-voice
sounds (+), number of voice sounds (+), unlock
duration (-), unlock duration afternoon (-), unlock
duration evening (-)

stressed

still duration morning (+), walk duration morn-
ing (-), sleep start time (+), conversation duration
afternoon (-), conversation duration morning (-),
call in duration (+), call out duration (+), unlock
duration morning (-)

voices

still duration morning (+), walk duration night (-),
sleep start time (+), new places visited (-), con-
versation duration morning (-), call in (+), call in
duration (+), unlock duration afternoon (-), un-
lock duration morning (-), ambient sound vol-
ume (-), ambient sound volume morning (-)

(-):negative association, (+):positive association
all associations with p < 0.05.

FDR < 0.1 in bold and FDR < 0.05 in bold italic.

ferent amount of data from a subject while keeping the pop-
ulation data fixed. Specifically, we use 20%, 40%, 60%, and
80% of a subject’s data plus the population data to train and
evaluate four models. This model emulates a system mak-
ing predictions for a new user by leveraging knowledge from
the population plus a small amount of the subject’s behav-
ioral patterns. Please note, the leave-one-subject-out model
is a special case of the mixed model, where we use 0% of
a subject’s data for training. An individual model is a fully
personalized model, which uses data from only the subject to
train the model.

We use a 10-fold blocked cross validation method [12,16,28,
48] to evaluate the prediction performance of the individual
models and mixed models. We define a block as a temporally
continuous segment of the data. This ensures that test data
stems from a different block of time to those in the training
data. Moreover, for additional rigour, we also omit bound-
ary instances in the training set that are temporally close to
the test set based on the h-block cross-validation as proposed
in [16], which was designed to evaluate time dependent ob-
servations. Training instances that are less than or equal to h
time points from the test block are not used in training. This
ensures that temporally the test instances are always at least
h time points from instances used in the training set.

To evaluate the individual model, we use n− 1 blocks as the
training set and the remaining block as the test set. As stated,
we remove h observations in the training set preceding and
following the observation in the test. In order to make use
of all the data, we iteratively select each block for testing, as
suggested in [12]. As the data collection is ongoing, there
are different amounts of data from each subject leading to
different sized test sets for different subjects. The number
of observations in the testing set ranges from 5 to 13 with
median of 9. We choose h = 6 for our cross-validation (i.e.,
2 weeks of data because we administer 3 EMAs a week). The
value of 6 for h is used as it is ~50% of the block size of the
subject with the most data.

For the mixed models, we use the same h-block cross val-
idation method. The mixed-model’s training data has two
parts: the population data and the subject’s data. The pop-
ulation data does not contain any data from the subject and
is the same for all folds. The training data from the target
subject follows the similar h-block cross validation principle
as in the individual model. Again, we test using 20%, 40%,
60%, and 80% of the data from the subject (i.e., 2 blocks, 4
blocks, 6 blocks, and 8 blocks) plus the population data for
training. We test on the rest of the subject’s data. Similar
to the individual model, the training and test data are from
time-continuous blocks and h = 6 observations are removed
from the subject’s training data that are at either side of the
test data. For every fold, we shift the training data from the
subject 1 block forward, and test on the rest. For example, if
we run cross-validation with 20% from the subject, we first
train the model with block 1 and 2 plus the population data,
and test on blocks 3 to 10. In the second fold, we train the
model with block 2 and 3 plus the population data, and test
on block 1 and blocks 4 to 10.
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Prediction performances. Figure 5 shows the mean abso-
lute error (MAE), and the Pearson’s r for all models predict-
ing EMA positive, negative, and sum scores. For the positive
scores, we get the best prediction performance from the indi-
vidual model, where MAE = 1.378. The prediction strongly
correlates with the outcome with r = 0.77 and p < 0.001.
We get the worst prediction performance from the leave-one-
subject-out model, where MAE = 3.573 and the predicted
scores do not correlate with the ground-truth. This supports
our observation from Figure 3 for the need for personaliza-
tion in building the model. In mixed models, we see consis-
tent prediction performance improvement as we include more
data from the subject in the training set. With 20% of the
subject’s data as the training data plus the population data,
the MAE of the mixed model is reduced to 2.254 comparing
with the LOSO model. The predicted scores correlate with
the ground-truth with r = 0.479 and p < 0.001. The MAE
further reduces and the predicted scores are more correlated
with ground-truth as we use more data from the subject for
training. With 80% of the data from the subject as training
data, the MAE drops to 1.525.

This same trend occurs with the negative scores and the sum
score (Figure 5b), the LOSO models are not predictive. How-
ever, the negative score mixed models trained with 20% of
an individual’s data starts to be able to make predictions with
MAE = 2.401, r = 0.680, and p < 0.001. The prediction
performance steadily improves as we use more data from the
subject for training. The individual model achieves the best
prediction performance with MAE = 1.383, r = 0.856, and
p < 0.001.

Please note that the EMA sum score has a larger scale than the
positive score and the negative score, where the sum score
ranges from -15 to 15 and the positive and negative scores
range from 0 to 15. By taking the different score scales
into consideration, we find that the individual model pre-
dicts the sum score (MAE × 0.5 = 1.15) more accurately
than the positive score (MAE = 1.378) and negative scores
(MAE = 1.383). We suspect that the sum score better cap-
tures individuals’ mental health state in general. Again, the
results from mixed models show that including 20% of the
subject’s data in the training set bolsters performance and the
prediction performance steadily improves as more data from
the subject is used.

Our results show that model personalization is required to
build EMA score prediction systems. With small amount of
training data from the subject (20%) plus the population’s
data we can make relevant EMA predictions that are corre-
lated with the ground truth. Therefore, we can quickly build
an EMA prediction model for a new user when we do not have
much data from them. The predictions would be more accu-
rate as more data from the subject becomes available. These
results provide confidence that our ultimate goal of building
a schizophrenia relapse prediction systems is likely feasible.

Relative feature importance. We examine which features
are relatively more important in predicting EMA positive,
negative, and sum scores. In GBRT models, this is calculated

by averaging the number of times a particular feature is used
for splitting a branch across the ensemble trees, higher values
are deemed as more important. We average the feature im-
portance across all individual models to find the top-10 most
important features for predicting the EMA positive, negative,
and sum scores, as shown in Table 4.

Compared with the regression analysis results, we find that
four of the top-10 features (i.e., durations of non-voice
sounds, walk duration evening, call in duration, and ambient
sound volume night) to predict the positive score are associ-
ated with positive EMA items. To predict the negative score,
six of the top-10 features (i.e., sleep start time, walk duration
morning, conversation duration morning, call out duration,
call in, and call in duration) that are associated with negative
EMA items. For the sum score, two of the top-10 important
features (i.e., ambient sound volume afternoon and ambient
light night) are not associated with any EMA items. We also
observe that epoch behavioral features are more important
than corresponding daily features. For example, the predic-
tive models find conversational features during the morning is
more predictive than daily conversational features. This sup-
ports our initial decision to divide the day into 4 equal epochs
to explore the data. We suspect that epoch features better
capture behavioral changes when an individual experiences
changes in mental health state.

Table 4: Feature importance

top-10 important features

positive score

durations of non-voice sounds, ambient light
night, unlock duration night, walk duration
evening, sleep start time, call in duration, ambi-
ent sound volume night, walk duration, location
entropy, duration at primary location

negative score

sleep start time, call out duration, max dist trav-
elled btwn 2 location points, ambient light morn-
ing, unlock number, call in, call in duration, walk
duration morning, stdev of distances travelled,
conversation number morning

sum score

call out duration, ambient sound volume after-
noon, walk duration, conversation number morn-
ing, unlock duration evening, sleep start time, du-
rations of non-voice sounds, call in, ambient light
night, call in duration

Predicting Underlying EMA Trends
In this section, we investigate the prediction of underlying
trends in the EMA score specific to each participant. Figure 6
shows lower frequency trends in the aggregated EMA score
which are especially apparent for outpatients who are in the
study for longer durations. To extract these underlying trends
we apply a Savitzky-Golay filter (with polynomial order of
2) to the sum EMA score only. Smoothing is not applied to
the feature values. Compared with other adjacent averaging
techniques, this method better preserves the signal’s charac-
teristics (e.g., relative maxima, minima and width). For pre-
diction, we train a set of Random Forest regression (RF) [15]
models. Training is done using person specific data to gener-
ate a set of individual models. We consider data points that
are temporally closer would be more similar to each other
than data points taken further in time. We also consider that
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such temporal dependencies to be personalised, hence the use
of individual models only in this experiment. For example,
the amount of staying at home in cold months may be high
and may decrease as months get warmer, however the rate
of this change will be dependent on each person’s circum-
stances. Similar to the evaluation in the previous section, we
evaluate the models using a time blocked cross validation ap-
proach. We set the block size to be a variable interval length
in terms of multiples of training instances m, this can be in-
terpreted in real terms since a unit m spans 2-3 days.
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Figure 6: Examples of smoothing on EMA sum score from one
participant where f is the frame size of the Savitzky-Golay filter.
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Figure 7: Mean Squared Error from Leave-One-Interval-Out vali-
dation for interval sizes versus smoothing level.

We implement a grid search between different levels of
smoothing (i.e., the Savitzky-Golay frame size parameter)
and different time interval sizes which we will call the leave-
one-interval-out validation. We choose the Savitzky-Golay
frame size parameter f as one of {5, 15, 25, .., 45} and the
time interval sizes m as one of {1, 5, 10, .., 25}. We train
models with different f and m combinations, and evalu-
ate their prediction performance using Mean Squared Error
(MSE). Figure 7 shows an example of the MSE of a model
trained on one participant’s data. The MSE is taken from the
leave-one-interval-out validation. It can be seen that where
m is smaller the MSE is better, demonstrating that smaller
intervals which contain data that is closer in time between the
training and test sets leads better to MSE scores, but as m in-
creases the MSE score gets worse. However, the grid search
also reveals that smoothing the target score has the effect of
countering this limitation. This is due to the model predict-
ing a more stable underlying trend which is more predictable.
For example in Figure 7 a smoothed outcome with f = 45
and m = 25 has a similar MSE to a model at f = 5 and
m = 1. This can be interpreted as: if the interval is 3 days
long (time between EMA scores), a model for a smoothed
score (f = 45) trained on data up to 75 days ago (25 x 3)

is as good as a model for an non-smoothed score (f = 5)
trained on data up to 3 days ago. Within the personal models
we find that additive increases in the smoothing parameter f
by 10 increases the time span within which the tracked data
is relevant and predictive by 10-15 days.

DISCUSSION AND CONCLUDING REMARKS
CrossCheck is the first system to use passive sensing data
from smartphones to find significant associations with men-
tal health indicators and to accurately predict mental health
functioning in people with schizophrenia. We find lower lev-
els of physical activity are associated with negative mental
health, which is consistent with previous work [24]. In terms
of sociability, our results show that patients around fewer con-
versations during the morning and afternoon periods are more
likely to exhibit negative feelings. However, we also find par-
ticipants who make more phone calls and send more SMS
messages also have significant associations with negative di-
mensions of mental health. This may suggest that the partici-
pants prefer to use the phone instead of face-to-face commu-
nication when exhibiting a negative mental state. In terms of
locations, our findings show that outpatients are likely to visit
fewer new places when in a negative state. Our “new places
visited” measure adds to the emerging knowledge in the use
of location data for mental well being [19, 45]. For sleep,
getting up earlier is associated with positive mental health,
whereas going to bed later is associated with negative feel-
ings; this also relates to a promising new direction in consid-
ering a person’s chronotype and changes in sleep rhythm [44]
for mental health assessment. However, we would like to note
that we do not yet understand the cause and effect of these as-
sociations.

The predicted mental health indicators (i.e., aggregated EMA
scores) strongly correlates with ground-truth, with r =
0.89, p < 0.001 and MAE = 2.29. We also find that by lever-
aging data from a population with schizophrenia it is possi-
ble to train personalized models that require fewer individual-
specific data thereby adapting quickly to new users. The pre-
dictive power of participants’ data decreases when temporally
more distant data are included in the training of the mod-
els. However, this can be countered by predicting underlying
lower frequency trends instead.

CrossCheck shows significant promise in using smartphones
to predict changes in the mental health of outpatients with
schizophrenia. We believe that CrossCheck paves the way to-
ward real-time passive monitoring, assessment and interven-
tion systems. This would include models capable of predict-
ing the mental health outcomes discussed in this paper but
also the detection of impending relapse. Finally, although the
participants in the CrossCheck study are drawn from a pop-
ulation with schizophrenia, we firmly believe that our app,
methods, and findings are relevant to the emerging field of
mHealth for mental health [39].

ACKNOWLEDGEMENTS
The research reported in this article is supported the National
Institute of Mental Health, grant number R01MH103148.

895

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY



REFERENCES
1. ABDULLAH, S., MATTHEWS, M., FRANK, E., DOHERTY,

G., GAY, G., AND CHOUDHURY, T. Automatic detection of
social rhythms in bipolar disorder. Journal of the American
Medical Informatics Association (2016), 538–543.

2. ASCHER-SVANUM, H., ZHU, B., FARIES, D. E., SALKEVER,
D., SLADE, E. P., PENG, X., AND CONLEY, R. R. The cost
of relapse and the predictors of relapse in the treatment of
schizophrenia. BMC psychiatry 10, 1 (2010), 2.

3. ASSOCIATION, A. P., ET AL. Diagnostic and statistical
manual of mental disorders (DSM-5 R©). American Psychiatric
Pub, 2013.

4. AUNG, M., ALQUADDOOMI, F., HSIEH, C.-K., RABBI, M.,
YANG, L., POLLAK, J., ESTRIN, D., AND CHOUDHURY, T.
Leveraging multi-modal sensing for mobile health: a case
review in chronic pain. IEEE Journal of Selected Topics in
Signal Processing 10, 5 (2016), 1–13.

5. BAUER, G., AND LUKOWICZ, P. Can smartphones detect
stress-related changes in the behaviour of individuals? In
Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2012 IEEE International Conference
on (2012), IEEE, pp. 423–426.

6. BEN-ZEEV, D., BRENNER, C. J., BEGALE, M., DUFFECY, J.,
MOHR, D. C., AND MUESER, K. T. Feasibility, acceptability,
and preliminary efficacy of a smartphone intervention for
schizophrenia. Schizophrenia bulletin (2014), sbu033.

7. BEN-ZEEV, D., KAISER, S. M., BRENNER, C. J., BEGALE,
M., DUFFECY, J., AND MOHR, D. C. Development and
usability testing of focus: A smartphone system for
self-management of schizophrenia. Psychiatric rehabilitation
journal 36, 4 (2013), 289.

8. BEN-ZEEV, D., MCHUGO, G. J., XIE, H., DOBBINS, K.,
AND YOUNG, M. A. Comparing retrospective reports to
real-time/real-place mobile assessments in individuals with
schizophrenia and a nonclinical comparison group.
Schizophrenia bulletin 38, 3 (2012), 396–404.

9. BEN-ZEEV, D., WANG, R., ABDULLAH, S., BRIAN, R.,
SCHERER, E. A., MISTLER, L. A., HAUSER, M., KANE,
J. M., CAMPBELL, A., AND CHOUDHURY, T. Mobile
behavioral sensing for outpatients and inpatients with
schizophrenia. Psychiatric Services (2015).

10. BENJAMINI, Y., AND HOCHBERG, Y. Controlling the false
discovery rate: a practical and powerful approach to multiple
testing. Journal of the royal statistical society. Series B
(Methodological) (1995), 289–300.

11. BENJAMINI, Y., AND YEKUTIELI, D. The control of the false
discovery rate in multiple testing under dependency. Annals of
statistics (2001), 1165–1188.

12. BERGMEIR, C., AND BENÍTEZ, J. M. On the use of
cross-validation for time series predictor evaluation.
Information Sciences 191 (2012), 192–213.

13. BIRCHWOOD, M., SPENCER, E., AND MCGOVERN, D.
Schizophrenia: early warning signs. Advances in Psychiatric
Treatment 6, 2 (2000), 93–101.

14. BOGOMOLOV, A., LEPRI, B., FERRON, M., PIANESI, F.,
AND PENTLAND, A. S. Daily stress recognition from mobile
phone data, weather conditions and individual traits. In
Proceedings of the ACM international conference on
multimedia (2014), ACM, pp. 477–486.

15. BREIMAN, L. Random forests. Machine learning 45, 1 (2001),
5–32.

16. BURMAN, P., CHOW, E., AND NOLAN, D. A
cross-validatory method for dependent data. Biometrika 81, 2
(jun 1994), 351–358.

17. BURNS, M. N., BEGALE, M., DUFFECY, J., GERGLE, D.,
KARR, C. J., GIANGRANDE, E., AND MOHR, D. C.
Harnessing context sensing to develop a mobile intervention
for depression. Journal of medical Internet research 13, 3
(2011), e55.

18. BURTON, P., GURRIN, L., AND SLY, P. Extending the simple
linear regression model to account for correlated responses: an
introduction to generalized estimating equations and
multi-level mixed modelling. Statistics in medicine 17, 11 (jun
1998), 1261–91.

19. CANZIAN, L., AND MUSOLESI, M. Trajectories of
depression: unobtrusive monitoring of depressive states by
means of smartphone mobility traces analysis. In Proceedings
of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (2015), ACM, pp. 1293–1304.

20. CHALMERS, T. C., SMITH, H., BLACKBURN, B.,
SILVERMAN, B., SCHROEDER, B., REITMAN, D., AND
AMBROZ, A. A method for assessing the quality of a
randomized control trial. Controlled clinical trials 2, 1 (1981),
31–49.

21. CHEN, Z., LIN, M., CHEN, F., LANE, N. D., CARDONE, G.,
WANG, R., LI, T., CHEN, Y., CHOUDHURY, T., AND
CAMPBELL, A. T. Unobtrusive sleep monitoring using
smartphones. In Pervasive Computing Technologies for
Healthcare (PervasiveHealth), 2013 7th International
Conference on (2013), IEEE, pp. 145–152.

22. DIGGLE, P., HEAGERTY, P., LIANG, K.-Y., AND ZEGER, S.
Analysis of longitudinal data. OUP Oxford, 2013.

23. DONKER, T., PETRIE, K., PROUDFOOT, J., CLARKE, J.,
BIRCH, M.-R., AND CHRISTENSEN, H. Smartphones for
smarter delivery of mental health programs: a systematic
review. Journal of medical Internet research 15, 11 (2013),
e247.

24. FOX, K. R. The influence of physical activity on mental
well-being. Public health nutrition 2, 3a (1999), 411–418.

25. FRIEDMAN, J. H. Greedy function approximation: A gradient
boosting machine. The Annals of Statistics 29, 5 (2001),
1189–1232.

26. GLEESON, J. F., RAWLINGS, D., JACKSON, H. J., AND
MCGORRY, P. D. Early warning signs of relapse following a
first episode of psychosis. Schizophrenia research 80, 1 (2005),
107–111.

27. GRANHOLM, E., LOH, C., AND SWENDSEN, J. Feasibility
and validity of computerized ecological momentary assessment
in schizophrenia. Schizophrenia bulletin 34, 3 (2008), 507–514.

28. HAMMERLA, N. Y., AND PLÖTZ, T. Let’s (not) stick together:
Pairwise similarity biases cross-validation in activity
recognition. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing
(New York, NY, USA, 2015), UbiComp ’15, ACM,
pp. 1041–1051.

29. HOVSEPIAN, K., AL’ABSI, M., ERTIN, E., KAMARCK, T.,
NAKAJIMA, M., AND KUMAR, S. cstress: Towards a gold
standard for continuous stress assessment in the mobile
environment. In Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing
(New York, NY, USA, 2015), UbiComp ’15, ACM,
pp. 493–504.

30. HUBER, P. J., ET AL. Robust estimation of a location
parameter. The Annals of Mathematical Statistics 35, 1 (1964),
73–101.

31. KIMHY, D., MYIN-GERMEYS, I., PALMIER-CLAUS, J., AND
SWENDSEN, J. Mobile assessment guide for research in
schizophrenia and severe mental disorders. Schizophrenia
bulletin (2012), sbr186.

32. LANE, N. D., MILUZZO, E., LU, H., PEEBLES, D.,
CHOUDHURY, T., AND CAMPBELL, A. T. A survey of mobile
phone sensing. Communications Magazine, IEEE 48, 9 (2010),
140–150.

896

SESSION: HEALTH II



33. LANE, N. D., MOHAMMOD, M., LIN, M., YANG, X., LU,
H., ALI, S., DORYAB, A., BERKE, E., CHOUDHURY, T.,
AND CAMPBELL, A. Bewell: A smartphone application to
monitor, model and promote wellbeing. In 5th international
ICST conference on pervasive computing technologies for
healthcare (2011), pp. 23–26.

34. LIANG, K.-Y., AND ZEGER, S. L. Longitudinal data analysis
using generalized linear models. Biometrika 73, 1 (1986),
13–22.

35. LU, H., FRAUENDORFER, D., RABBI, M., MAST, M. S.,
CHITTARANJAN, G. T., CAMPBELL, A. T., GATICA-PEREZ,
D., AND CHOUDHURY, T. Stresssense: Detecting stress in
unconstrained acoustic environments using smartphones. In
Proceedings of the 2012 ACM Conference on Ubiquitous
Computing (2012), ACM, pp. 351–360.

36. MAATEN, L. V. D., AND HINTON, G. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9 (2008),
2579–2605.

37. MARTIN ESTER, HANS-PETER KRIEGEL, J. S., AND XU, X.
A density-based algorithm for discovering clusters in large
spatial databases with noise. In KDD ’96 (1996), AAAI Press,
pp. 226–231.

38. MAXHUNI, A., MUÑOZ-MELÉNDEZ, A., OSMANI, V.,
PEREZ, H., MAYORA, O., AND MORALES, E. F.
Classification of bipolar disorder episodes based on analysis of
voice and motor activity of patients. Pervasive and Mobile
Computing (2016).

39. mhealth for mental health program.
http://www.mh4mh.org/.

40. MORRISS, R., VINJAMURI, I., FAIZAL, M. A., BOLTON,
C. A., AND MCCARTHY, J. P. Training to recognize the early
signs of recurrence in schizophrenia. Schizophrenia bulletin 39,
2 (2013), 255–256.

41. OSMANI, V., MAXHUNI, A., GRÜNERBL, A., LUKOWICZ,
P., HARING, C., AND MAYORA, O. Monitoring activity of
patients with bipolar disorder using smart phones. In
Proceedings of International Conference on Advances in
Mobile Computing & Multimedia (2013), ACM, p. 85.

42. PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A.,
MICHEL, V., THIRION, B., GRISEL, O., BLONDEL, M.,
PRETTENHOFER, P., WEISS, R., DUBOURG, V.,
VANDERPLAS, J., PASSOS, A., COURNAPEAU, D.,
BRUCHER, M., PERROT, M., AND DUCHESNAY, E.
Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

43. RABBI, M., ALI, S., CHOUDHURY, T., AND BERKE, E.
Passive and in-situ assessment of mental and physical
well-being using mobile sensors. In Proceedings of the 13th
international conference on Ubiquitous computing (2011),
ACM, pp. 385–394.

44. ROENNEBERG, T. Chronobiology: the human sleep project.
Nature 498, 7455 (2013), 427–428.

45. SAEB, S., ZHANG, M., KARR, C. J., SCHUELLER, S. M.,
CORDEN, M. E., KORDING, K. P., AND MOHR, D. C.
Mobile phone sensor correlates of depressive symptom severity
in daily-life behavior: an exploratory study. Journal of medical
Internet research 17, 7 (2015).

46. SANO, A., AND PICARD, R. W. Stress recognition using
wearable sensors and mobile phones. In Affective Computing
and Intelligent Interaction (ACII), 2013 Humaine Association
Conference on (2013), IEEE, pp. 671–676.

47. SHARMIN, M., RAIJ, A., EPSTIEN, D., NAHUM-SHANI, I.,
BECK, J. G., VHADURI, S., PRESTON, K., AND KUMAR, S.
Visualization of time-series sensor data to inform the design of
just-in-time adaptive stress interventions. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (New York, NY, USA, 2015), UbiComp
’15, ACM, pp. 505–516.

48. SNIJDERS, T. A. On cross-validation for predictor evaluation
in time series. Springer, 1988, pp. 56–69.

49. VOS, T., BARBER, R. M., BELL, B., BERTOZZI-VILLA, A.,
BIRYUKOV, S., BOLLIGER, I., CHARLSON, F., DAVIS, A.,
DEGENHARDT, L., DICKER, D., ET AL. Global, regional, and
national incidence, prevalence, and years lived with disability
for 301 acute and chronic diseases and injuries in 188
countries, 1990–2013: a systematic analysis for the global
burden of disease study 2013. The Lancet 386, 9995 (2015),
743–800.

50. WANG, R., CHEN, F., CHEN, Z., LI, T., HARARI, G.,
TIGNOR, S., ZHOU, X., BEN-ZEEV, D., AND CAMPBELL,
A. T. Studentlife: Assessing mental health, academic
performance and behavioral trends of college students using
smartphones. In Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing
(New York, NY, USA, 2014), UbiComp ’14, ACM, pp. 3–14.

51. WILKINSON, G. S., AND ROBERTSON, G. Wide range
achievement test (wrat4). Psychological Assessment Resources,
Lutz (2006).

52. ZEGER, S. L., AND LIANG, K. Y. An overview of methods
for the analysis of longitudinal data. Statistics in medicine 11,
14-15 (Jan 1992), 1825–39.

897

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY

http://www.mh4mh.org/

	Introduction
	Related Work
	CrossCheck Study Design
	Identifying Participants
	Recruiting Participants
	CrossCheck System

	CrossCheck Dataset
	Timescale and Epochs
	Behavioral Sensing Features
	Ecological Momentary Assessments

	Analysis and Results
	Methods overview
	Feature Space Visualization
	Bivariate Regression Analysis
	Prediction Analysis
	Personalized EMA Predictions
	Predicting Underlying EMA Trends


	discussion and concluding remarks
	Acknowledgements
	References 

