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Abstract 

This thesis describes the development of a microparticle system, containing 

bioactive molecules for use in the regeneration of tendon tissue. An introduction 

is given into the cause of tendon injury and subsequent changes to the tissue 

post healing, as well as the shortcomings in treatments. The current state of the 

art in the field is given, including the use of cells and proteins for tissue 

engineering, polymer candidates for regenerative medicine, click chemistry for 

protein conjugation, and microparticles as drug delivery systems. 

The 3 results and discussion chapters highlight the successful synthesis of a 

microparticle system template that can conjugate proteins via an azide-alkyne 

click chemistry dibenzocyclooctyne linking unit. The synthesis of a novel 

polymer; polycaprolactone azide is described in chapter 2, showing the ability to 

conjugate to the linking unit in 30 minutes. Chapter 3 describes the subsequent 

use of the polymer for the formulation of microparticles via membrane emulsion 

technique. Microparticles from 10-153 µm were produced, with size controlled 

by altering process parameters such as stir speed and polymer concentration. A 

live/dead staining assay showed microparticles display no toxicity to tenocytes. 

The availability of the azide is demonstrated by the conjugation of an alkyne 

containing fluorescent compound to microparticles. Chapter 4 shows the 

successful conjugation of 4 proteins; bovine serum albumin, human serum 

albumin, transforming growth factor βeta 1 and 3 to microparticles. This reaction 

was efficient, with human serum albumin conjugation occurring in 10 minutes in 

physiological conditions. Two different linking molecules, with a conserved 

dibenzocyclooctyne core, were used. Attachment to the microparticles was via 

azide-alkyne click reaction and to protein via either an N-hydroxysuccinimide 

ester or thiol-maleimide reaction.  

Chapter 5 reviews the translation of academic research to a commercial 

product, supported by a 3-month studentship with Neotherix Ltd. Chapter 6 is a 

brief conclusion on the success of the project and future work that could be 

attempted to progress it further.  
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1. Tissue Engineering and Regenerative Medicine 

The body’s natural response to injury is an attempt to heal, with the immediate 

activation of appropriate repair pathways.1 Some tissues such as skin are able 

to self-regenerate, however other tissues, including tendons have little or no 

regenerative capacity. The ‘Holy Grail’ of tissue engineering and regenerative 

medicine (TERM) is to be able to repair damage by stimulating self-renewal, so 

that the regenerated tissue completely recapitulates the pre-existing tissue 

before disease.2–4 Ideal TERM therapies aim to either produce functional tissue 

in vitro that can be subsequently implanted, or to stimulate the production of de 

novo tissue in vivo. A successful TERM therapy could be useful in the treatment 

of previously life threatening or incurable diseases.5 Similarly, TERM therapies 

can be used to improve patient’s quality of life, by application in chronic 

diseases where tissue abnormalities result in morbidity and decreased mobility, 

such as tendon disorders. Within the field of orthopaedic surgery, damage to 

tendons is the most common soft tissue injury.6 Worldwide, of the 30 million 

musculoskeletal injuries reported, over half involve tendons and ligaments, and 

as many as 50% of sports-related injuries involve tendons.7,8 The prevalence of 

such injuries is only set to rise with the increase in average life expectancy and 

popularity of high mechanical load activities such as gymnasium use, football 

and athletics.9  Tendon injury is debilitating, associated with pain, and long term 

suffering for the patient, and the tissue is characterised by low cellularity and 

limited healing capacity.2 As a consequence, the treatment of tendon disorders 

would be aided by the identification of an appropriate TERM strategy.  

The most effective strategies incorporate knowledge across a whole range of 

disciplines including materials science, stem cell research and developmental 

biology to progress the healing and development of tissues and organs.10 

T.E.R.M strategies usually take a three-pronged combinatorial approach (Figure 

1).11 This includes the use of cells, proteins and scaffolds, each with their own 

unique role to play in the regeneration of new tissue. Cells are an essential 

component of the healing potential of tissue and by supplementing these to the 

site of repair, regeneration may be initiated.12,13 Without cells and the synthesis 

of new matrix components there is no healing response seen in tissue.11 
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Signalling molecules, such as growth factors, can aid the recapitulation of the 

specific spatial and temporal progression of natural tissue healing and can be 

tailored specifically to the tissue of interest.14 Scaffolds can be used as a 

delivery vehicle for these signalling molecules or to support the growth and 3D 

structure of the newly forming tissue.15 The scaffold can provide a suitable 

environment for the attachment, proliferation and migration of cells, therefore 

providing a foundation for matrix remodelling and tissue regeneration.11 

 

Figure 1: Tissue engineering and regenerative medicine strategies. Cells, 

stimuli and materials can be used in combination, or alone, for the treatment of 

diseased tissue. 
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2. Characteristics of Healthy Tendons  

In order to begin the successful development of a TERM therapy for the 

treatment of disease or injury, it is paramount that there is a fundamental 

understanding of the normal development of the healthy tissue to be targeted.2 

It is important to understand the cellular composition, and elucidate the key 

molecular components essential to the development and maintenance of 

healthy tissue, so that the engineered tissue can fully imitate the native state.16  

2.1. Structure and Function of Tendons  

Tendons are tough bands of fibrous, viscoelastic, connective tissue that connect 

every muscle of the body to bone.17 Their primary function is the transmission of 

forces generated by muscle to the corresponding bone, essential for the 

conversion of muscle-induced tensile stress to movement.9,18 It is critical that 

tendons have the ability to withstand large exerting tensile forces, and are able 

to provide an effective buffering system, absorbing shock and preventing 

muscular damage.18 The location of the tendon within the body, and its function 

which is decided by the forces acting upon it from surrounding muscle, has an 

impact on its structure.19 Tendons bearing large forces are more likely to be 

short and broad, such as those of the quadriceps, whereas those intended for 

small and delicate movements, like the flexor tendons of the hands, will be long 

and thin.19 The length and breadth of tendons is related to the amount of 

collagen present.18 The Achilles tendon bears the greatest tension and is 

estimated to transmit forces as high as twelve times that of the human body 

weight.20 All muscles have both a proximal and a distal tendon, connected to 

the muscle at the myotendinous junction, and to the bone at the osteotendinous 

junction.19 The insertion site of the tendon to bone is known as the enthesis and 

is formed of four distinct regions of tissue.21 The enthesis is capable of 

withstanding forces four times greater than that of the tendons mid-substance, 

with the myotendinous junction being the weakest point of the tendon.20  

Tendons are formed from the continual aggregation of the smallest structural 

unit, collagen, into an increasingly complex architecture.20 The resident cells of 
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the tendon; tenocytes, synthesise the collagen precursor molecule 

tropocollagen.2 Tropocollagen molecules, catalysed by lysyl oxidase, then 

crosslink to form a stable molecule of collagen.22 Spontaneous aggregation of 

multiple collagen molecules then results in the formation of collagen fibrils.20 

These fibrils then continually agglutinate to form progressive hierarchal 

structures beginning with a collagen fibre, leading to a primary fibre bundle, also 

known as a sub fascicle, a secondary fibre bundle, termed a fascicle, a tertiary 

fibre bundle and ultimately the tendon unit.2,19,22 Surrounding each fibre and 

connecting the fascicles together, is a network of connective tissue known as 

the endotendon (Figure 2).19 This fine, sheath-like network is responsible for 

supplying the tissue with blood vessels, nerves and a lymphatic system.2 

Additionally, it provides the lubrication necessary for collagen fibres to easily 

glide over one another during movement.19 The entire tendon unit is then 

encompassed with the epitenon, a dense network of collagen.2 The tendon can 

sometimes also be encompassed by a secondary meshwork of double layered 

areolar connective tissue, known as the paratenon.23 

Figure 2: Hierarchical structure of tendon tissue. Collagen is the smallest 

unit, and with continual accumulations into increasingly large complexes forms 

the final tendon tissue. 
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This fatty tissue is present in the interstices of the fascicles and acts as a 

protective layer against friction and assists in the movement of tendon against 

adjacent tissue.19 The epitenon and the paratenon are often considered in 

combination and termed the peritenon or peritendineum.2 It is the highly 

organised and aligned structure of tendon tissues that allows it to carry out its 

function. It is able to withstand high loading forces by modifying its structure 

after mechanical stimulation via a process known as mechanical adaptation.20 

At rest, a highly organised crimped configuration can be seen in the tissue.18 

Once under tensile strain the crimped formation enables the tissue to distend, 

absorbing large forces. This conformational change allows for the tendon tissue 

to be stretched up to 2%, which is known as the ‘toe region’.20 This stretching is 

temporary and after the stimulus has receded the tissue is able to revert back, 

displaying the characteristic crimped formation once again.19 This is due to the 

effect of elastin molecules present in the tissue.20 However, the resistive 

capability of tendons is not infinite and if the stretching limit is exceeded, this 

crimp formation is lost and the tissue becomes vulnerable. If stretching of the 

tendon continues to 4%, the result is microscopic tears, with further stretching 

up and past 10% causing rupture of the tendon (Figure 3).20 Continual overuse 

and excessive mechanical load of the tendon results in repeated macroscopic 

tears, forming scar tissue, and eventually a weakened tendon, exhibiting the 

clinical condition known as tendinopathy.16,17  
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Figure 3: Stress-strain curve of tendon tissue. Tendons ability to resist 

tensile forces is shown in the toe and linear region where the crimped structure 

of the tissue allows them to distend and absorb shock. Trauma to the tissue is 

seen above 4% strain. Adapted from Walden et al.49 

2.2. Cellular and Molecular Composition  

Tendon tissue is characterised by low vascularity and hypocellularity.2 The 

predominant cell type found in tendon tissue is the elongated fibroblast-like cells 

known as tenocytes.24 These account for as much as 95% of the cellular 

composition of the tissue and are situated within the aligned collagen fibres of 

the epitenon and endotendon.18,22,24,25 These cells are responsible for the 

synthesis of collagen, essential for the hierarchical architecture of the tissue and 

extracellular matrix components.2 The additional 5% is comprised of progenitor 

cells, chondrocytes, synovial cells and vascular cells.22,24 The extracellular 
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matrix (ECM) of tendon is responsible for the structural and biomechanical 

support of the cells and helps to define tissue shape, act as a scaffold, and is 

composed of the essential biomolecules such as proteoglycans, 

glycosaminoglycans (GAGs), glycoproteins, and collagens.20 The extracellular 

matrix has the ability to respond to stimuli and is able to remodel its 

microenvironment in response to stresses and traumas. This is mediated by the 

action of matrix metalloproteinases and is essential for the repair, development 

and function of the tendon tissue.24  Proteoglycans and GAGs are necessary for 

the tissues to withstand compressive forces and allow for the easy gliding of 

fibres during mechanical deformation.9,19,26–28 Their functions include; acting as 

shock absorbers and lubricants through the retention of water, conferring 

elasticity, maintaining organisation, growth and assembly of collagen fibrils, 

providing cell adhesion sites and the binding of secreted growth factors.9,23  

Collagen is the most abundant protein found in tendon, with collagen type I 

accounting for 95% of the total collagen in the tissue.7,20 Collagen type I is 

highly organised and aligned, and is found in the mature collagen fibrils of 

healthy tendon. 24,29 Structurally it comprises three parallel polypeptide chains, 

consisting of repeating glycine and proline residues, allowing the formation of a 

triple helix which facilitates hydrogen bonding and crosslinking, stabilising the 

molecule.30 A decrease in collagen type I is indicative of a weakened tendon 

and results in decreased tensile strength and ability to withstand mechanical 

load.31 Collagen type III, and V provide the remaining 5% of collagens in 

tendon.20 

Type III collagen is located chiefly in the endotendon and epitenon.9 It is weaker 

than collagen type I due do a decrease in crosslinking and visually produces 

smaller and thinner fibres, which have a decreased resistive capacity.27,28,31 

Collagen type III is much less organised resulting in decreased mechanical 

strength.20 In healthy tendon it is synthesised at significantly lower levels in 

comparison to collagen type I.27 However, it is upregulated in damaged tendon, 

and synthesised in abundance, during the repair process.27,29  Increase in the 

production of collagen type III, relative to type I, can lead to the formation of 

adhesion sites between tendon and surrounding tissue, a reduction in 
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mechanical strength, an increased risk of rupture, and ultimately the formation 

of scar tissue.27 Despite these drawbacks, collagen type III is essential for the 

initiation of the healing process of tendon and to provide a provisional matrix in 

response to injury, as well as being essential for fibrillogenesis  of collagen type 

I.31,32 

3. Tendon Injury and Healing  

In order to engineer the regeneration of diseased tendon tissue successfully, it 

is important to understand fully the natural healing process that takes place 

after injury. Future successful advances will be underpinned by this 

knowledge.33 Post injury to the tendon, two pathways of repair occur; the 

intrinsic and the extrinsic, which work synergistically.2 Most repair is carried out 

by the intrinsic pathway where proliferation of fibroblasts present within the 

epitenon and endotendon occurs, resulting in cellular migration to the site of the 

lesion and the synthesis of new matrix materials.2,24,28 The extrinsic pathway is 

associated with migratory inflammatory cells and fibroblasts from surrounding 

tissues.2,28 Fibroblast cells have an important role in the initial closure of the 

wound after injury by exerting contractile forces on the extracellular matrix. 

However, excessive fibroblast contraction can result in the formation of scar 

tissue and increased collagen production.20 The natural healing of tendon tissue 

after trauma can be characterised into three overlapping stages; inflammation, 

repair, and remodelling (Figure 4).28  

Inflammation predominates in the first week immediately after injury and is 

associated with swelling of the tissue. After the initial tear a blood clot is formed, 

beginning the inflammatory process and acting as a scaffold for migratory 

cells.23 Platelets in this clot release chemoattractants and cell proliferative 

growth factors such as insulin like growth factor (IGF), platelet derived growth 

factor (PDGF), and basic fibroblastic growth factor (BFGF). These growth 

factors are important for the recruitment of surrounding fibroblasts and 

tenocytes, and the production of new matrix materials.20 They also release 

histamines essential for the vasodilation of blood vessels allowing for increased 

permeability.33 Within the first twenty four hours inflammatory cells, such as 
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macrophages, invade the lesion and are responsible for the phagocytosis and 

removal of necrotic tendon tissue. 18,28 Transforming growth factor-β (TGF-β) is 

released from invading macrophages, which is essential for the production of 

new collagen fibres.33 Vascular endothelial growth factor (VEGF) stimulates 

angiogenesis and the re-establishment of vascularisation to the healing tissue.34  

 

Figure 4: Repair process of tendon injuries. Shown are the cellular and 

molecular changes in the tissue, where up arrows denote an increase or 

upregulation and down arrow a decrease or down regulation.   

The repair phase of tendon healing is characterised by the synthesis of new 

matrix materials, collagen, GAGs, and proteoglycans. This process begins two 

days after tendon injury and can persist for a further six weeks.23,33 This stage is 

characterised by hyper-cellularity, upregulation of growth factors, increased 

protein synthesis, and neovascularisation. It is during this period when growth 

factors such as IGF, BFGF, PDGF, VEGF, TGF-β and bone morphogenetic 

proteins (BMPs) have the most activity.33 GAG and water content is elevated 

throughout this process.20 During this repair phase the synthesis of the essential 

components of tendon tissue, which will allow the wound to heal, occurs. 

However, this is a reparative process rather than regenerative and therefore the 

collagen synthesised in the most abundance is type III.18,23,28,35  
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The remodelling process is concerned with reshaping and resizing the tissue.36 

This is a prolonged period which begins six weeks after injury and lasts 

approximately a year.23 Cellularity, protein content and vascularity slowly begins 

to return to normal and the synthesis of new materials decreases.18 Collagen 

fibre crosslinking increases and the tissue stabilises with a return of some 

stiffness and tensile strength.20 Eventually the tissue begins to develop a scar 

like phenotype.28  

The repaired tendon tissue is both structurally and biomechanically inferior to 

the original uninjured tendon.18,21,22 The resulting tissue is characterised by a 

broad range of cellular and molecular deviations from the native tissue (Figure 

5).24 This includes altered protein content and composition, abnormal 

vascularity, which is associated with the onset of pain, and an increase in 

collagen type III relative to type I.24,28 This increase in collagen type III results in 

disorganised, aberrantly aligned fibrils and the presence of scar tissue.4,23 This 

results in the clinical presentation of tendinopathy. This is characterised by a 

reduction of mobility, an increase in pain and morbidity for the patient and 

overall a weaker tendon that is prone to rupture and tears.4,28  

 

Figure 5: Changes in tendon tissue post injury. Both tissue architecture and 

molecular composition are altered in tendinopathy. Adapted from Scott et al.259 
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4. Tendinopathies  

Tendinopathy is the umbrella term used to describe a broad spectrum of several 

different tendon pathologies.37 The term tendinopathy does not suggest 

anything about the underlying pathology of the tendon and includes; 

degenerative tendon, inflammatory tendon, failures at enthesis, and paratenon 

injury.38,39 Most tendinopathies are not caused by one single factor and there 

are many contributory elements which can be either intrinsic or extrinsic. These 

factors can include age, gender, disease, occupation and physical training.22,39 

Tendinopathy can either be classified as acute, resulting from excessive 

overload, or chronic, due to an underlying degenerative condition. This explains 

the tendency for tendinopathy to occur in young patients with active lifestyles 

and the elderly.16 Degeneration and repeated micro-traumas are considered as 

the primary causative factor of chronic pain-free tendinopathy and often results 

in tendon that is likely to ‘spontaneously’ rupture.23,39 In fact, studies have found 

that in 97% of spontaneous ruptures, an underlying degenerative pathology was 

existent before the incident.16 Tendinopathy can also be used to describe 

adhesions that form as a result of scar tissue. These hinder the gliding of the 

tendon and lubrication with surrounding tissue and result in reduced mobility 

after injury.15,40 The most common site for tendon injury is near, or at, the 

enthesis. This area is highly stressed and subjected to higher strains and 

forces, combined with the fact that the tissue here is the least vascular of the 

entire tendon. Tendons most susceptible to tear are the patellar tendon, the 

Achilles tendon, the medial and lateral extensors of the elbow, the long head of 

the biceps, and rotator cuff in the shoulder.  

5. Current Treatment Options for Tendon Injuries  

The current, readily available treatments for tendinopathy are focused upon the 

management of pain rather than healing of the underlying causative issues.24 

These include the use of non-steroidal anti-inflammatory drugs (NSAIDs), 

steroidal injections, exercise and mobilisation therapies, and as a last resort, 

surgery. NSAIDs such as ibuprofen are of the most benefit in tendinitis, in which 

inflammation is a key component. Here they are able to inhibit the synthesis of 
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prostaglandins, a chemoattractant implicated in the onset of inflammation and 

pain. However, this treatment option is not viable when the tendinopathy is no 

longer accompanied by inflammation, such as degenerative conditions.  As a 

result the use of NSAIDs as a first line response and management of 

tendinopathy is controversial and is lacking efficacy.41  

Exercise and mobilisation therapy is another widely used method for the 

treatment of tendinopathies, with stretching and strengthening activities being 

the most commonplace.41 Gradual increase in applied tension has a positive 

effect on cell proliferation, stimulation of growth factors, and synthesis of 

collagen. Conversely, immobilisation has been shown to have serious 

deleterious effects on the tendon. Immobilisation can result in the deposition of 

uneven collagen fibrils, decreased tissue stiffness and resistive capacity, and 

decreased cellular metabolic activity.20 On the other hand, if excessive pressure 

is applied too soon after injury, this can also result in a detrimental response, 

resulting in impaired healing.42 This means that the precise mobilisation 

strategies employed need to be tightly controlled for improved healing, and 

quick recovery times. Additionally, the precise therapy, and quality of treatment, 

can vary between clinics. To date there is no defined procedure that dictates the 

best mobilisation activities, and so healing times, and results from patient-based 

evidence, fluctuates widely.41 Therefore, more work needs to be carried out to 

produce an evidence-based, exercise regimen, which is able to demonstrate 

successful tissue remodelling. This would allow for more consistent results 

demonstrating improved strength and function of damaged tissue.  

Surgery is a last resort treatment when other avenues have been exhausted, or 

rupture of the tendon has occurred. Ruptures resulting in lesions greater than 5 

mm do not heal naturally and thus surgery is usually the only option.9 Surgical 

treatment aims to remove the frayed and damaged tissue and then reconnect 

the torn ends by suturing them together.43 Over the last few decades a 

multitude of suture techniques and materials have been proposed each with 

their own benefits.9 Regardless of the numerous advances in both materials 

and techniques in search of the ideal treatment method, surgery still has 

multiple complications associated with it. 15,42 Re-rupture is common, and in 
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rotator cuffs has been reported to be as high as 94%.42 Long term outcomes for 

patients are highly variable, and morbidity remains high even after what is 

considered successful treatment.2,28 Additionally, further complications 

postoperatively are prevalent, such as the increased risk of early onset 

osteoarthritis, chronic pain, and in the case of allografts, the risk of immune 

rejection. Furthermore, to date, attempts to regenerate tendon tissue after 

damage at the enthesis have proven problematic.2 Currently surgical 

procedures are often chosen on clinician preference rather than established 

evidence-based guidelines. This explains the vast multitude of suture materials 

and techniques available, and the absence of a single ‘gold standard’ treatment 

option. Surgical intervention is yet to yield consistently satisfying results without 

the presence of pain, reduced motility, morbidity or high risk of re-rupture for 

patients.21,28 

It is apparent that current treatments in tendinopathy are both unreliable and 

inefficient.24 The practiced therapies are not supported by satisfactory clinical 

trials, are not effective, and fail to address the underlying pathophysiological 

changes that have occurred to the tissue.16 When considering the current 

treatment options available to patients, the need for the development of a 

successful system that incorporates the knowledge of the native tissue, and 

aims to address the underlying pathological issue, with the goal of a 

regenerative outcome is apparent.  

6. Tissue Engineering Approaches to Tendon Injuries  

T.E.R.M therapies have focused around the delivery of cells and proteins to the 

repair site of damaged tendon. Natural tendon tissue is characterised with hypo-

cellularity and as a result has limited healing capacity. Therefore it is 

hypothesised that supplementation of essential cells and growth factors can 

boost the healing potential of the tissue, increasing the synthesis of essential 

collagens and matrix components resulting in restoration and regeneration.2,12,13 
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6.1. Cell-Based Therapies  

Many different cell populations have been used for the regeneration of tendon 

injuries, each with their own advantages and disadvantages (Table 1). 

Tenocytes are the primary cell type within healthy tendon tissue and as such 

have achieved popularity as a cell-based therapy for tendinopathy.28 They are 

responsible for the synthesis of collagen and extracellular matrix components 

and have shown success in small animal models, and clinical trials.7,13,18,41,44 

However, these therapies are limited by the potential for donor site morbidity to 

occur and the need for cell expansion once harvested, which can lead to the 

loss of metabolic activity, specific tendon markers, and phenotype.7,25,45 

Tendon-derived stem cells have also been investigated, offering the advantage 

of being a tendon-specific, multipotent cell line for the treatment of tendon 

disorders.7,46 As tendon progenitor cells they have the ability to express tendon 

specific biomolecules such as collagen type I, decorin, biglycan, tenomodulin, 

and scleraxis, as well as being self-renewable.7,13 However they suffer from a 

slow metabolic rate, and lose their ability to differentiate after multiple passages, 

resulting in poor proliferation in vitro.46 Additionally, these cells are difficult to 

harvest because of their limited availability, only accounting for 4% of the 

tendon cell population.7 

Cells derived from tissues located elsewhere in the body, such as muscle and 

skin cells, have also been investigated. Muscle-derived cells including myocytes 

and fibroblasts have been used due to their role in the natural development of 

embryonic tendon tissue.2,26 They share a similar morphology and secretome to 

tenocytes, being able to synthesise collagen types I and III, decorin and 

fibronectin.7 Dermal fibroblasts from skin have also been previously tested.12,50 

These cells are available in abundance, are easily proliferated in culture and the 

harvesting process is not associated with donor site morbidity or invasive 

procedures. Although both these discussed cell lines are easier to harvest and 

expand in vitro, they come from differentiated tissue and therefore, there are 

concerns surrounding their specificity.7,26 
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Table 1: Cell based therapies for the treatment of tendon injuries. Adapted 

from Walden et al. 49 

 

Cell Type Type of study Results 

BM-MSC In vitro / in vivo 
Equine tendon 

Improved tissue organisation. Formation of 
crimp structure. Histological improvement of 
tissue, including reduction in GAG, DNA and cell 
content, comparable to normal tendon.21 

ADSC In vitro / in vivo  

Rabbit Achilles 
tendon 

Neo-tendon formed, with tensile strength 
comparable to 60% of normal tendon. 
Production of parallel collagen fibres and 
elongated cells aligned longitudinally with 
collagen fibres.45 

ADSC In vitro / In vivo  

Rabbit Achilles 
tendon 

Increased tensile strength of tendon tissue. 
Partially regular and longitudinal alignment of 
collagen fibres. Increased collagen type I 
production.31 

Tenocytes Clinical trial level 
4 

Human extensor 
carpi radialis 
brevis tendon 

Improvement of patients’ pain score by 86% 
after 12 months. Improved grip strength. 
Reduction in clinical prevalence of tendinosis. 
Functional improvement and structural repair of 
tendon.13 

Tenocytes In vivo  

Rabbit Achilles 
tendon 

Increased collagen type I expression, 
demonstrating enhanced alignment. Increased 
stiffness of tissue.47 

Dermal 
Fibroblast 

Randomised 
controlled trial 
level 1 

Human patella 
refractory 
tendinopathy 

Pain, severity and functionality scores improved 
from 44-75 after 6 months. Decrease in tendon 
thickness.12 

Muscle 
derived 
stem cells 

In vivo  

Mouse muscularis 
fascia of dorsum 
tendon 

Formation of cord-like neo-tendon similar to 
native tissue in appearance. Increased 
maximum load capacity. Increased stiffness at 
12 weeks. Increase tensile strength.26 

Tendon 
stem cells 

In vivo/ in vitro 

Rat patella tendon 

Increased expression of collagens type I and III, 
and tenomodulin. Formation of tendon-like 
tissue after 8 weeks. Enhanced collagen fibre 
thickness.46 

Fibroblast In vitro 

Rabbit 
infraspinatus 
tendon 

Increased type I collagen expression. Increased 
tensile strength of regenerated tissue.48 

Periosteal 
progenitor 
cells 

In vivo  

Rabbit 
infraspinatus 
tendon 

Increased matrix deposition. Increased 
production of agrecan and collagen type I and II. 
Formation of fibrocartilage and bone at the 
tendon-bone insertion site.47 
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Stem cells, such as mesenchymal (MSCs), bone marrow derived (BMSCs) and 

adipose derived (ADSCs) have been investigated.2,7,15,21,25,45,51–55 Their 

pluripotency, abundance and relative ease of harvesting make them attractive 

candidates for T.E.R.M therapies.25,45 They have the ability, in the appropriate 

conditions, to differentiate down a number of lineages into specialised cells 

such as bone, ligament, muscle, cartilage and tendon.4,25,36 These cells can be 

pre-differentiated before delivery or post-implantation within the environment of 

the tissue.7 It has been shown that simply aligning stem cells in the orientation 

of collagen fibrils of native tendon tissue can result in cell differentiation and the 

production of tendon specific markers.56 A set of criteria has been produced to 

classify differentiated cells as tendon cells. These include; positivity for collagen 

type I, III and V, expression of decorin, scleraxis, tenomodulin, and tenascin-C, 

and an elongated, spindle morphology. These cells must be negative for non-

tendon markers such as collagen type II, osteocalcin, alkaline phosphatase and 

myogenetic markers.7,25 The use of stem cells in tendon tissue repair can be 

problematic. The inherent pluripotency of these cells means that the specificity 

of the tissue produced is not guaranteed. Differentiation of these cells into 

osteoblastic and chondrogenic lineages, with the formation of ectopic bone and 

cartilage at the repair site has been reported.7,13 

6.2. Protein Delivery-Based Therapies  

Another potential target emerging for the regeneration of tendon is the 

sustained release of proteins and growth factors.10,57 These have the potential 

to regenerate tendon tissue by stimulating the natural remodelling 

pathways.28,58 The use of exogenous growth factors presents the possibility of 

accelerating cell proliferation, collagen synthesis and extracellular matrix 

synthesis, leading to quicker recovery and enhanced repair.6,38,40 The desired 

outcome is one in which the complex temporal and spatial delivery of signalling 

molecules mimics the natural healing of tendon, resulting in the regeneration of 

functional tissue, comparable to its undamaged counterpart.28,57 Several growth 

factors have been studied for this purpose which have been shown to be 

expressed in nearly every phase of healing progression (Table 2).4,15,59 
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Table 2: Protein delivery strategies for the regeneration of tendon tissue. 

Adapted from Walden et al.49 

Platelet rich plasma (PRP) consists of a concentrate of autologous blood 

platelets. It offers the potential release of a cocktail of proteins for tendon 

healing.27 Platelets when delivered to the site of injury are able, upon 

degranulation, to release stored growth factors which initiate the healing 

process.27,34,61 PRP has been shown to increase proliferation of human 

tenocytes, and synthesis of collagen type I, as well as upregulate essential 

matrix components; decorin and tenascin-C.27,60 However, the use of PRP is 

controversial, with some studies finding it ineffective.64 Additionally there are 

concerns over the potential for PRP to secrete inflammatory mediators, that 

would have a negative impact on healing.61 Complications also arise when 

 

Treatment  Tendon Model  Results  

PDGF Canine flexor   Increased cell density and proliferation. 
Increased expression of collagen type I. 30% 
increase in reducible crosslinks.14 

PRP Equine  
superficial digital 
flexor  

Increased cellularity. Increase collagen and 
GAG content. Increased tensile ability.  
Increased collagen matrix integrity.60 

VEGF-11 Rat achilles   Increase ultimate tensile strength of tendon. 
Increase in mechanical stress needed to 
rupture healed VEGF tendons compared to 
controls.61  

IGF-1 and TGFβ Rabbit patellar  Increased vessel formation. Production of 
fibrous repair tissue, with enhanced 
orientation. Increased force at failure, 
ultimate stress and stiffness at 2 weeks.35 

BMP-12  
 

Sprague-Dawley 
rats calcaneal  

Increased expression of tenocyte lineage 
markers such as scleraxis and tenomodulin. 
Formation of tendon like tissue. Increased 
cell proliferation. Elongation and alignment 
of cells, and increased matrix deposition.62  
 

BFGF  Rat rotator cuff  Increased production of GAG. Improved 
collagen organisation, stiffness, and ultimate 
load to failure 8 weeks postoperatively. 
Improved healing at enthesis.63  
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considering the reproducibility of results, as variability can occur between each 

batch of PRP.7  

PDGF has been implicated in the increased production of collagen type I during 

healing of tendons and ligaments.33,40 It has been proposed that the exogenous 

application of PDGF may facilitate the healing of tendon tissue, with both in vitro 

and in vivo studies showing an increase in collagen type I production after its 

application.14,33,65 Currently there are some concerns surrounding the exact 

dosage, and the suitable period in which to deliver PDGF as a therapeutic 

molecule. Further studies, including the most appropriate carrier system, are 

required before this growth factor can be used commercially.15  

VEGF is important in the early phases of tendon healing. It is well known to 

stimulate angiogenesis, and increases the vascularity of tissue, and the 

corresponding proliferation of endothelial cells.34,58,61,66 Within the healing 

tendon approximately 67% of the cells present at the repair site express 

VEGF.33,67 In acute tendinopathy of patellar tendons, patients exhibited a higher 

VEGF expression when compared with those suffering from the chronic 

condition. This has led to the suggestion that increase in VEGF expression may 

lead to an accelerated healing after acute injury, especially when mechanical 

load is kept to a minimum.61 Conversely however, VEGF has also been found to 

have a negative effect on the healing tendon tissue.68–70 Correspondingly, the 

current opinion on the benefit of VEGF as a therapeutic agent for the 

regeneration of tendon tissue is still inconclusive, requiring further investigation 

and evidence of improved clinical outcomes.66  

BFGF plays an important role in the proliferation of cells in tendon tissue, and 

the initiation of angiogenesis.33,71 It is secreted by inflammatory cells and 

fibroblasts present after tendon injury and mediates cellular proliferation, 

migration, angiogenesis and the synthesis of collagen.33 It has been suggested 

that BFGF is most effective when delivered during the inflammatory process, 

immediately after tendon injury.59 Unfortunately, there is no consensus in the 

literature as to whether BFGF is beneficial for the treatment of tendinopathy, 

with contradictory hypotheses prevalent.40,71 
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BMPs are low molecular weight signalling proteins included within the TGF-β 

superfamily, with the ability to induce the formation of bone, ligament, cartilage 

and tendon tissue.20,27 These small signalling molecules are able to initiate the 

transcription and expression of a range of genes responsible for the remodelling 

of tissue, and differentiation of cells.28,37,72 Several studies of BMP-12 as a 

deliverable growth factor for the treatment of tendon injuries have made 

promising advances, showing its potential to induce the formation of tenogenic 

tissue both in vitro, and in vivo.25,32,62,73–77 One promising feature of BMP-12 is 

its ability to differentiate stem cells down a tenogenic lineage.73,74,78 BMP-12 

has also been implicated in the formation of tendon tissue in vivo, using animal 

lacerations as model defects.32,62,77 

6.3. Current Delivery Systems for Tendon Regeneration  

In order to successfully deliver cells or proteins to tendon and mimic the spatial 

and temporal signalling profile seen in the healing tissue, a suitable delivery 

system is necessary.79,80 Biomaterials can be designed as a delivery system, 

incorporating cell adhesion moieties, as well as signalling molecules and cells 

that are able to co-ordinate the regeneration of the tissue.11,23,48,81  

Hydrogels are crosslinked polymer networks capable of retaining large volumes 

of water within their 3D structure.82 They can be functionalised to have desired 

properties such as easy injection, mechanical stiffness, controllable degradation 

rates and sensitivity to temperature and pH.62 Hydrogels, encapsulating cells 

and proteins, have been investigated for their application in tendon 

regeneration.44,63,83,84 Injectable hydrogels are advantageous for smaller tendon 

defects, offering a non-invasive alternative to surgical intervention.85 They can 

act as ‘plugs’ at the repair site, forming a sealant and barrier to the formation of 

adhesion sites.86,87 They offer a simple and convenient method for the 

prolonged and controlled delivery of regenerative factors.86,88 

Currently implantable systems are more commonplace in tendon repair than 

injectable ones, preferred in larger defects where the structural and mechanical 

properties of the tissue are greatly diminished.88 They are able to bridge the gap 
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created within larger midpoint ruptures, allowing surgeons the ability to remove 

the necrotic frayed end of the tissue, reconnect the tendon, and suture in place 

the regenerative device.88 Implantable systems explored have been woven 

sutures, patches, electrospun fibres, and sponges.26,48,89–93 

Decellularised tissue offers the advantage of exactly resembling the structure of 

tendon tissue, whilst being able to provide the appropriate adhesion and 

signalling cues to host cells.94 As a scaffold, it allows the growth of cells along 

the aligned collagen fibrils present, leading to an improved healing 

response.46,94,95 

Exogenous delivery of growth factors has also been explored but is hindered by 

the short half-life of proteins, and their quick clearance and degradation6,34,96 

One method to combat this has been their incorporation into the bulk of 

microparticles.97–99 Similarly, cells can be delivered via autologous injections, 

and have seen some success in clinical trials.12,13,50 

Although it is clear that much work is being carried out to determine possible 

therapeutic agents for the treatment of tendinopathy, the optimal technique and 

delivery method has yet to be discovered. Each deliverable factor, and method 

of delivery, although with advantages, is not without limitations. There is still an 

apparent need for an effective T.E.R.M therapy that can deliver, and retain, 

growth factors at the site of tendon injury, with continued controlled release and 

the opportunity for sequential administration of different factors. 

7. Aims and Objectives   

The aim of the work carried out in this thesis was to produce an effective 

delivery system of a therapeutic protein for the treatment of tendon disorders. 

The ideal system would be a template model that could easily be adapted and 

manipulated for a multitude of different therapeutics. A good delivery system 

would have the ability to incorporate protein for delivery and would allow for 

controlled, tuneable and sustained release at the repair site. The overall aim 

was to produce a delivery system that is non-toxic, non-immunogenic and bio-

resorbable that would be bio-responsive for the regeneration of tendon tissue.  
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To achieve this aim, it was decided that a microparticle system would be used 

for the delivery of therapeutics. To this end, the key objectives carried out were; 

1) Decide on an appropriate polymer candidate that could be used to produce 

microparticles via a double emulsion method. 2) Decide the most appropriate 

method of incorporation of protein. To achieve this aim, encapsulation methods, 

surface modification methods and conjugation via click chemistry were 

investigated. 3) Formulate microparticles with a specific size range and uniform 

dispersity. 4) Demonstrate microparticles ability to conjugate proteins of 

interest.  

The work described in this thesis highlights the steps taken to formulate a 

polymeric, microparticle drug delivery system which would be able to conjugate 

to a relevant protein; TGF-β, and therefore be capable of stimulating the natural 

tendon healing response. Chapter 2 gives a review into the multitude of 

polymers available for the formulation of a drug delivery system and the 

available methods of both pre and post functionalisation to allow for protein 

conjugation. The initial aim of determining an appropriate method for 

incorporating protein into microparticles is discussed, with a focus on protein 

encapsulation within the bulk. Investigations then turned to surface modification 

and eventually functionalisation of a polycaprolactone polymer, to allow for 

protein conjugation via click chemistry.  Proof of concept experiments were 

carried out to validate the polymers ability to attach to an alkyne containing click 

chemistry linker molecule.   

Chapter 3 highlights the use of microparticles as a drug delivery system, with 

specific interest into control of their size and uniformity. A detailed description of 

the method of microparticle production is given using the polymer synthesised 

in chapter 2. Extensive optimisation was carried out to ensure microparticles 

could be produced over a large size range and monodispersity could be tightly 

controlled by altering process parameters. It was important to show that the 

microparticles had the ability to attach to a crosslinking molecule, and therefore 

the potential to conjugate to proteins in physiological conditions.  

Chapter 4 gives insight into the available sites of conjugation present in proteins 

that can be targeted for their attachment to the microparticle drug delivery 
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system. Detailed are the numerous cross-linking molecules that can be used 

with the same conserved dibenzocyclooctyne core. With the aim of producing a 

template drug delivery system, 2 model proteins; human serum albumin and 

bovine serum albumin and 2 therapeutic proteins; TGF-β1 and TGF-β3 were 

investigated for their ability to conjugate to microparticles produced in chapter 3.  

This project has an added Industrial Cooperative Awards in Science & 

Technology (CASE) studentship. In partnership with Neotherix Ltd, work was 

carried out to investigate the process behind the transition from academic 

research to industrial translation with the aim of understanding the production of 

a commercially available clinical product for the treatment of tendon injuries.  

Chapter 6 gives concluding statements on the key findings of the project and 

addresses the success of the project in reaching the aims and objective set out 

above.  
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1. Introduction  

1.1. Polymers for Tissue Engineering and Drug Delivery  

A critical factor in the design of a successful drug delivery system for application 

in tissue engineering is the selection of an appropriate polymer candidate.100 

Polymers are large molecules formed of chains of repeating monomer units, 

and can be natural or synthetic. An ideal polymeric material for tissue 

engineering should be biocompatible, without any toxic, immunogenic or 

inflammatory side effects. The material should be resorbable and degrade into 

harmless products that can be cleared from the body via normal biochemical 

pathways. It should have the ability to promote cell proliferation, adhesion and 

migration and facilitate the development of de novo tissue.101 Additionally, the 

polymer of choice should degrade at a rate that is comparable to the healing 

and re-establishment of new tissue.11 Biodegradable polymers are preferred in 

tissue engineering applications because surgical intervention can be kept to a 

minimum. Drug release can often also be tailored to coincide with polymer 

degradation, allowing for controlled release rates.100  

The appropriate polymer for a drug delivery system depends on the desired 

function of the material and its final application.102 Polymers can be selected 

based on the properties required of the scaffold such as mechanical strength 

and elasticity, or those needed for formulation processes, such as viscosity and 

rigidity.101 Another consideration when selecting polymers for drug delivery is 

their ability to interact with biomolecules. This may be dependent on the 

polymer containing biomimetic adhesion sites for the facile conjugation of 

bioactive agents.103   

Biodegradable polymers can be classified into either synthetic or natural, 

depending on their source of origin.104,105 Currently, research towards the 

synthesis of these types of delivery systems has been met with the challenge of 

choosing between natural polymers, abundant in biologically active interaction 

sites, or mechanically superior synthetic polymers, amenable to controlled 

manufacture, but lacking useful functional groups for conjugation.106  
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1.2. Natural Polymers  

Natural polymers are an attractive candidate for drug delivery systems due to 

their similarity to the ECM of cells. The ECM is responsible for the facilitation of 

tissue formation and maintaining homeostasis, therefore, natural polymers such 

as collagen have been the target of investigation.101 One advantage of natural 

polymers is their abundance within living organisms, meaning that they are both 

readily available and inexpensive.100 Due to their organic nature they are 

inherently able to interact with the biological environment and contain 

recognition sites for bio-conjugation, as well as being biocompatible and 

biodegradable in physiological conditions.101 Natural polymers also offer the 

advantage of being able to undergo biological remodelling processes.104   

Collagen type I is the most abundant protein within the ECM, and as such has 

been one of the most extensively studied biomaterials for tissue 

engineering.101,105 It is readily purified from animal tissue, including tendon, and 

can support the proliferation and adhesion of cells.23,105 Collagen can also be 

easily formulated into different formats such as hydrogels, fascicle fibres and 

scaffolds, depending on the final target application.107–110  

 

Figure 6: Examples of natural polymers used for tissue engineering and 

regenerative medicine 

Alginate (Figure 6) is a natural polysaccharide that is readily extracted from 

brown algae. When in the presence of divalent cations, such as calcium, 

alginate can form a gel under mild conditions.90,111,112 Therefore gelation can 

occur under physiological conditions, including pH and temperature, resulting in 

good cellular biocompatibility.107 As a result of this, alginate has been 

investigated for the encapsulation of cells and proteins in tendon 

regeneration.90,112–114  
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Chitosan (Figure 6) is one of the most abundant polysaccharides in crustaceous 

marine animals, and can be readily cultivated from their exoskeleton.78 It has 

great versatility due to its processability, being easily formulated into many 

structures such as hydrogels, fibres and sponges.101,105,115–117 One advantage of 

chitosan is that it has been shown to reduce the formation of focal adhesions 

when implanted, improving the healing of regenerating tissue.115,117 Additionally, 

chitosan displays good solubility in physiological conditions, allowing for 

maintenance of bioactivity when used in conjugation with proteins or peptides.78 

Table 3 gives a non-exhaustive overview of the different natural polymers and 

formulations used as drug delivery systems for the regeneration of tendon 

tissue. However, unfortunately, natural polymers also exhibit undesirable 

properties. Owing to the biological nature of the polymers, often degradation 

varies considerably between batches, which poses a problem when formulating 

a controlled delivery system with defined release rates.104 Natural polymers also 

tend to exhibit poor mechanical strength in applications where load bearing is 

high, such as tendons. For these situations chemical crosslinking or 

modification is often needed to improve this.100,109,118 Furthermore, when used 

in clinical applications, natural polymers can provoke adverse symptoms such 

as inflammation and immunogenicity, especially when derived from animal 

sources.107,111 As a result of these shortcomings, synthetic polymers have been 

investigated as alternatives.  
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Table 3: Examples of in vitro drug delivery systems utilising natural 

polymers for tendon regeneration. 

1.3. Synthetic Polymers  

Synthetic polymers offer advantages over their naturally occurring analogues for 

applications in biomaterials and tissue engineering.104 Synthetic polymers have 

demonstrated superior mechanical strength compared to their natural 

counterparts.100,105 The synthesis of these polymers is also highly reproducible 

 

Formulation Drug  Tendon Results 

Electrospun 
collagen fibre 
Implant 

PRP Rabbit Achilles Promoted cell migration & 
proliferation.  Increased 
number, diameter, & 
density of collagen fibrils, 
with improved alignment 
and maturation.91 

Crosslinked 
alginate sponge 

TGF-β1 Rabbit 
Supraspinatus  

Enhanced cell proliferation. 
Increased collagen fibres 
bridging tendon-bone 
interface. Increased 
ultimate load failure.90   

Fibrin 
heparin/peptide 
matrix 

PDGF Canine Flexor Increased cell density and 
proliferation. Increased 
expression of collagen type 
I.40 

Collagen sponge  BMP-12 Rat Calcaneal Increased expression of 
tenocyte lineage markers. 
De novo tissue formation. 
Increased cell proliferation, 
elongation & alignment. 
Increased matrix 
deposition.62 

Gelatin 
crosslinked gel 

Ibuprofen Chicken Flexor Reduction in inflammation 
and adhesion formation 
compared to controls.119 

Gelatin hydrogel FGF-2 Rabbit 
supraspinatus 

Improved mechanical 
strength, formation of dense 
well aligned collagen fibres 
compared to control 
groups.120 
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and it is possible to precisely control polymer length, composition, and 

degradation rate, allowing tight control over batch to batch variability.104 Among 

the polymers investigated to date, aliphatic polyesters have been the preferred 

biomaterials.121 Their ability to degrade in physiological conditions via hydrolytic 

or enzymatic degradation into metabolisable products, have made them leading 

candidates.121–123 Of these polyester polymers, poly(lactic-co-glycolic acid) 

(PLGA), poly(lactic acid) (PLA) and poly(caprolactone) (PCL), have been the 

preferred materials for delivery systems (Figure 7).124,125  

 

Figure 7: Examples of commonly used synthetic polymers for tissue 

engineering and regenerative medicine 

PLA has been used as a biomaterial in tissue engineering due to its favourable 

mechanical properties, including tensile strength, as well as its low toxicity.102 

Moreover, its properties can be tailored to suit the application by 

copolymerisation. PLGA, a co-polymer of glycolic acid and lactic acid, is one 

such example.100 Alterations in the ratio of glycolic acid to lactic acid results in 

precise control over both the degradation rate and mechanical properties of the 

subsequent polymer.126,127 Furthermore, upon degradation, the polymer is 

hydrolysed to its monomeric acids, which are simply and efficiently removed 

from the body via the Krebs cycle and eliminated in urine.100 PLGA has been 

used in many different formulations as a drug delivery system. Delivery of anti-

inflammatory drugs, gene complexes, cells and proteins within PLGA scaffolds 

have all been applied to the regeneration of tendon tissue.128–133 The 

degradation of these polymers has posed some concern, however, when 

encapsulating proteins, due to the acidic microenvironment created upon 

degradation of the monomeric acids.102 At low pH the denaturation or 

aggregation of proteins can occur.100   

PCL is one of the most extensively studied polymers for tissue 

engineering.123,134 Table 4 gives some examples of clinical products for tissue 
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engineering and drug delivery utilising PCL. Within tendon regeneration 

specifically, PCL has been formulated into many structures, such as fibres, 

membranes and scaffolds.135–139 PCL exhibits excellent properties such as 

mechanical strength, biocompatibility, and its degradation into easily eliminated 

metabolites.102,140 It has been extensively studied as a drug delivery system by 

encapsulation within microparticles via a double emulsion process.89,141,142 It is 

an excellent candidate biomaterial for application in tendon regeneration 

because its complete degradation takes between 2-3 years. This means it is 

able to match the long regeneration and remodelling periods seen in tendon 

repair.104 PCL is easily synthesised via the ring opening polymerisation of ε-

caprolactone. This technique requires the use of an initiator to open the first 

cyclic lactone, after which repeated reactions of monomers results in continual 

ring opening of subsequent monomers in chain growth polymerisation (Scheme 

1).104  

 

Scheme 1: Mechanism of ROP of PCL. Co-ordination insertion occurs using 

tin(II) 2-ethylhexanoate as a catalyst.143 

A theoretical molecular weight can be predetermined based on the 

monomer/initiator ratio, resulting in predictable molecular weights and narrow 

polydispersity indices.143 This is particularly advantageous in tissue engineering 

because good control over both molecular weight and polydispersity allows the 

degradation rate to be precisely tailored, as well as adding a high level of quality 

control and material reproducibility.104 These polymers, however, lack the 

functional groups needed to allow easy conjugation to bioactive agents such as 
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peptides or proteins. This limits their interaction with cellular components and 

therefore their biological application.106,121,134 

 

Table 4: Clinical products utilising polycaprolactone for tissue 

engineering and drug delivery 

1.4. Pre- and Post-Polymerisation Modification Strategies  

In an attempt to synthesise polymers that are able to conjugate to biomolecules, 

their functionalisation and modification has been investigated.144 Polymer 

functionalisation can involve the incorporation of functional groups throughout 

the backbone of the polymer or at specified regions.145 Methods to functionalise 

PCL include; synthesis of new caprolactone monomers, co-polymerisation, post 

polymerisation modification, and chain end modifications prior to polymerisation 

through utilisation of the initiating species.121,123,134,143,146–150 Surface 

modification is another method that can be used to alter the functional groups 

within polymers to allow for bio-conjugation.151,152 Methods include passive 

surface coating, plasma etching, and chemical immobilisation of cell recognition 

ligands such as peptides.118,153–156 

 

Product Use Description  

Ellansé® Collagen 
stimulator 

Bioresorbable injectable dermal filler of PCL 
microspheres with results lasting 1-4 years.   

Capronor® Contraceptive  Sub dermal PCL capsule for the release of 
levonorgestrel for 12-18 months.  

Monocryl® Suture  Co-polymer suture made from glycolide and ε-
caprolactone. Fully absorbed within 90-120 
days.  

Resilon™ Sealant  Root canal filling material comprised of PCL 
and inorganic fillers.  

Osteoplug™ Implant Bioresorbable porous implant for bone 
regrowth over burr holes in neurosurgery.  

Artelon™ Implantable 
patch/strip 

PCL and polyurethane copolymer fibres for 
tendon injury. Fully replaced by regenerated 
tendon tissue within 4-5 years.  
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1.5. Aminolysis of Polycaprolactone  

One of the most commonly employed techniques for polymer functionalisation is 

aminolysis, which has previously been applied to PCL.151,157–159 Amine reactive 

groups are one of the most utilised functional groups in conjugation as they 

allow for reactivity with nearly all peptide or protein molecules.145 Cross coupling 

reagents such as carbodiimides are necessary for the subsequent conjugation 

of biomolecules; they direct the conjugation of amines to carboxyl groups 

present within biomolecules, forming a stable amide bond.145,159 The 

development of the water soluble carbodiimide cross coupling reagent (1-ethyl-

3-(3-dimethylaminopropyl)carbodiimide hydrochloride) (EDC) has allowed for 

the occurrence of this reaction in aqueous solutions, ideal for the conjugation of 

proteins (Scheme 2).145,160  

 

Scheme 2: EDC cross coupling reaction. Amine functionalised polymers can 

be conjugated to proteins via cross coupling chemistry. 

One limitation of these reactions however, is that secondary side-reactions can 

occur if multiple reactive sites are present within the biomolecule. Moreover, 

common functional groups employed for the conjugation of proteins, such as N-
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hydroxysuccinimide (NHS) esters, maleimides and activated carboxyl groups, 

are predisposed to hydrolysis and therefore not stable in aqueous 

solutions.145,161 

1.6. Click Chemistry  

One bio-conjugation method that is extremely selective, even within complex 

biological systems, is “click chemistry”, a term coined by Sharpless in 

2001.145,162 These reactions were described by Sharpless and his colleagues as 

possessing the following criteria; 

“The reaction must give high yields, generate only inoffensive by-products. The 

required process characteristics include simple reaction conditions (ideally, the 

process should be insensitive to oxygen and water), readily available starting 

materials and reagents, the use of no solvent or a solvent that is benign (such 

as water) or easily removed, and simple product isolation”.162  

These reactions are described as bio-orthogonal, meaning that there is little to 

no potential of cross-reactivity with other biological functional groups.145,162 They 

are efficient and high yielding which is advantageous when designing a delivery 

system with the intention of clinical or industrial applications.162 The most 

routinely employed click reactions include the Diels-Alder cycloaddition, the 

thiol-ene reaction, the Staudinger ligation and the copper(I) catalysed azide-

alkyne cycloaddition (CuAAC).163,164 Scheme 3 shows the potential for 

functionalisation of PCL to allow for the subsequent bio-conjugation of 

molecules using click chemistry.  
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Scheme 3: Examples of functionalisation methods for PCL. Pre-and post-

modification of polycaprolactone can allow for bio-conjugation using click 

chemistry techniques. Adapted from Chen et al and Hvilsted134,261 

1.7. Copper Catalysed Azide-Alkyne Cycloadditions  

Sharpless describes the “cream of the crop” of these reactions as being the 1,3-

dipolar Huisgen cycloaddition between azides and alkynes, to form a stable 

triazole.162 Huisgen developed this reaction in the early 1960s, however it 

requires elevated temperatures, long reaction times and gives no 

stereoselectivity.165–167 The addition of a copper(I)  catalyst allows the reaction 

to proceed in aqueous conditions at room temperature, yielding solely the 1,4-

triazole, in a much shorter amount of time.145,168 The copper catalysed azide-

alkyne cycloaddition is deemed the click reaction and it is the archetypal 

reaction of click chemistry (Scheme 4).122 CuAAC is highly applicable in the 

conjugation of biomolecules to polymers for drug delivery. The synthesis of 

azide or alkyne functionalised polymers, proteins and cells have all been 

reported.149,167,169–172  

 

Scheme 4: CuAAC reaction. Reaction between azides and terminal alkynes 

result in the formation of 1,4-triazoles, referred to as the click reaction 
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One limitation to this reaction is the necessity of metal catalysts for it to proceed 

in aqueous solutions and at room temperature. These metal catalysts have 

been shown to display severe cytotoxic effects even in micromolar quantities.167 

Concerns around the toxicity of copper create the need for additional 

purification techniques, and has therefore restricted the use of these 

conjugations in biomedical applications where biocompatibility is paramount.173  

1.8. Strain Promoted Azide-Alkyne Cycloadditions  

An alternative cycloaddition reaction, which remains biorthogonal and follows 

the prerequisites of a click reaction but eliminates the need for a metal catalyst, 

is the strain-promoted azide-alkyne cycloaddition (SPAAC) (Scheme 5).145,174 

SPAAC relies on the highly reactive nature of an internal alkyne within a 

cyclooctyne ring, caused by ring strain.175 The introduction of ring strain 

increases the ground state energies of the cyclooctynes and allows the reaction 

to occur without the need for a catalyst.176   

 

Scheme 5: SPAAC reaction 

This method of click chemistry, utilising cyclooctynes, was first demonstrated in 

the literature by the Bertozzi group in 2004.177,178 The reaction has similar 

reaction kinetics to copper-catalysed click reactions, whilst also being able to 

proceed in a living organism.168,175 The reaction has been demonstrated in vivo 

within mouse models for live cell imaging.167,168,175  The SPAAC reaction has 

drawn the attention of the tissue engineering and regenerative medicine 

communities, owing to its excellent biocompatibility, especially within 

physiological conditions.171 The SPAAC reaction is a promising method for the 

conjugation of biomolecules for drug delivery.  
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1.9. Aims and Objectives  

The main aim of the work carried out in this chapter was to determine an 

appropriate polymer candidate that could be used to produce microparticles. An 

appropriate polymer needed to be biocompatible, bioresorbable, have the ability 

to be formulated as microparticles and be able to incorporate proteins. A key 

aim was therefore to decide on an appropriate method for incorporation of 

protein with the polymer microparticles. To achieve this, it was necessary to 

carry out investigations into methods of incorporation including encapsulation, 

surface modification and polymer functionalisation. After deciding an 

appropriate polymer, and protein incorporation method, this polymer could then 

be used to produce microparticles.  

After optimisation, protein conjugation via click chemistry to a functionalised 

polycaprolactone was decided as the appropriate protein incorporation method. 

Therefore, the overall hypothesis of the work carried out in this chapter is that 

functionalisation of a polycaprolactone polymer with azide groups could have 

potential as a microparticle based drug delivery system.  

2. Results and Discussion  

2.1. Selecting a Polymer Candidate and Protein Incorporation 

Technique 

It was known from the beginning of the project that the main aim was to produce 

a drug delivery system, using microparticles, which could incorporate a 

therapeutic protein. Therefore, it was important for initial investigations to be 

carried out to identify a polymer candidate that could be used for the production 

of microparticles and an appropriate method of incorporating protein within or to 

them. 

Polycaprolactone was initially chosen as the target polymer for the drug delivery 

system due to its commercial availability, slow biodegradation, good 

biocompatibility and ease with which its properties can be tailored to suit its 

function.134 Polycaprolactone-triol (PCLT) was the first polymer candidate 
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investigated and was initially assessed for its ability to produce microparticles 

as it was paramount that the polymer candidate was able to do this.  

Microparticles were produced via a membrane emulsification method in which 

polymer was dissolved in solvent and then injected into an aqueous phase 

containing poly(vinyl alcohol) (PVA) (Full detailed information regarding the 

manufacture process as well as optimisation and production of microparticles is 

given in chapter 3.) Table 5 details the reaction conditions used to attempt to 

make PCLT microparticles. It was found that PCLT alone was not able to 

produce solid microparticles, resulting in the production of an oil. To combat 

this, polymer concentration was increased, which resulted in a cream like 

substance. PCLT has a low melting point and is liquid at room temperature and 

thus it was hypothesised that PCLT on its own would not be able to form solid 

particles. PCLT was therefore blended with another commercially available 

polycaprolactone with a molecular weight of 10,000 g/mol (deemed PCL from 

herein). The addition of this secondary PCL resulted in the formation of 

particles; however, an oil was still present resulting in them being highly 

clumped and difficult to distinguished by microscopy. When PCL only was used 

at a concentration of 10% solid microparticles formed after solvent evaporation. 

These microparticles had a spherical morphology and were easily lyophilised. It 

was therefore decided that this PCL would be the chosen polymer candidate for 

further experiments and would be used to produce the microparticle drug 

delivery system. Full details of the manufacture and optimisation process of 

PCL microparticles is given in chapter 3 section 2.1.  
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Table 5: Reaction conditions tested to produce PCL-triol microparticles 

The next aim to be fulfilled was deciding on an appropriate method of 

incorporation of therapeutic proteins into PCL microparticles. The most common 

method utilised to achieve this is through encapsulation within the bulk of 

microparticles via a double emulsion technique. Therapeutic proteins of interest 

are dissolved in an internal water phase within solid microparticles. For 

hydrophobic agents, encapsulation is within an internal oil phase instead. 

Therefore, tests were carried out to see if it was possible to produce solid 

microparticles, containing an internal water phase, using the PCL polymer 

through the creation of a water-in-oil-in-water (W/O/W) emulsion. An internal 

water phase which would have the potential to dissolve water soluble proteins, 

was emulsified into an oil phase containing PCL. This primary emulsion was 

further emulsified into an aqueous layer containing PVA to produce solid 

microparticles (Table 6). It was found that to be able to produce double 

emulsions it was necessary to use sonication, homogenisation or vigorous 

stirring. All of these techniques require high sheer stresses, which can cause 

protein aggregation or denaturation.102 Additionally the resulting particles had a 

large size distribution, lacking uniformity. These issues were deemed to be 

incompatible with the final aim of a sustained release delivery system. 

Additionally, when looking further into the literature, it was found that one of the 

major limitations of proteins incorporated within microparticles via double 

emulsion is that they suffer burst release. Several studies using PCL to 

encapsulate drugs identified a bi-phasic release profile whereby there was an 

 

Polymer Solvent  Emulsifier Solid 
Particles 

Morphology 

10% PCLT DCM  1% PVA  No Oil 

20% PCLT 

 

DCM  1% PVA  No  Oily Cream 

PCLT: PCL 
80:20 Blend 

DCM  1% PVA  Yes Multiphase powder/oil 
Clumped particles.  

PCLT: PCL 
50:50 Blend 

DCM  1% PVA  Yes Powdered highly clumped 
particles 

10 % PCL  DCM 1% PVA Yes Solid particles with spherical 
morphology 



Chapter 2: Functionalised Polymer Synthesis 

39 

initial burst release of the majority of the protein, followed by a sustained 

release until reaching a plateau phase.89,141,179–181 There is evidence that the 

encapsulation efficiency of proteins in W/O/W emulsions is low, resulting in 

waste of expensive protein resources. With industrial scale up in mind, this was 

also a major limitation.182 As a consequence of all of this, investigations into the 

encapsulation of proteins were ceased and potential conjugation methods were 

investigated instead. 

 

Table 6: Conditions used to produce Water-in-Oil-in-Water (W1/O/W2) 

primary emulsions.  

2.2. Functionalisation of Polycaprolactone by Aminolysis 

A limitation of PCL as a drug delivery system is that it lacks the necessary 

functional groups required for the conjugation of biomolecules.156 One method 

used to functionalise PCL is by introducing free amino groups into the polymer 

via aminolysis.151,156,157 If PCL microparticles are modified to contain amino 

groups, bio-conjugation and immobilisation of proteins can then be carried out 

at the carboxylic acid present at the carboxyl-terminus (C-terminus) of amino 

acids using standard cross coupling techniques (Scheme 6).156 Microparticles 

containing amino functional groups (1) were produced to investigate this as a 

potential bioconjugation method. 

 

W1 O W2 Surfactant Primary emulsion  Secondary 
Emulsion  

0.1M 
PBS 

10% 
PCL  

1% PVA 
13g/L 
NaCl 

20% Span 
80 

Stirring  Membrane 
emulsification 

0.1M 
PBS 
2% 
PVA  

25% 
PCL  

1% PVA 
13g/L 
NaCl 

20% Span 
80 

Homogenisation 
1min @ 24,000RPM 

Membrane 
Emulsification 

0.1M 
PBS 
2% 
PVA 

25% 
PCL  

0.5% 
PVA 

20% Span 
80 

Sonication 1 min Dropwise addition 
stirring @ 
1200RPM 
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Scheme 6: Schematic representation of aminolysis technique. NH2 groups 

can be incorporated into PCL which can be used for subsequent bio-

conjugation to proteins (Step 2). Adapted from Zhu et al 151,157 

1,6-hexanediamine was used to introduce amino functional groups into 

microparticles formulated from commercial PCL (Scheme 6, Step 1). The 

presence of amino groups was then confirmed using both trioxohydrindene 

monohydrate (Ninhydrin) and rhodamine B isothiocyanate. Ninhydrin works on 

the basis that nucleophilic attack from amino groups results in the formation of 

the chromophoric compound Ruhemann’s purple (Scheme 6, insert), it is this 

compound that is measured using absorbance spectroscopy.183 Rhodamine can 

be used for fluorescent labelling, where the isothiocyanate groups reacts with 

the amino groups present to form a stable thiourea.161 This labelling can then be 

visualised using fluorescence imaging or quantified via absorbance 

spectroscopy. Standard calibration curves were created using known 

concentrations of rhodamine B isothiocyanate or known concentrations of 1,6-

hexanediamine, reacted with Ninhydrin (Figure 8). 
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Figure 8: Standard calibration curves of rhodamine B or 1,6-

hexanediamine for the detection of amino groups. Increasing concentrations 

of rhodamine B isothiocyanate (A) or 1,6-hexanediamine (B) were reacted with 

Ninhydrin. The concentration of 1,6-hexanediamine in µg/mL reacted with 

ninhydrin was converted to mol/L concentration of NH2.  

After microparticles were treated with 1-6 hexanediamide to introduce free 

amino groups (1) they were labelled with either rhodamine B isothiocyanate or 

ninhydrin and absorbance measurements taken. The absorbance readings of 

the microparticles treated with 1,6-hexanediamine increased at both 555 nm 

and 590 nm when stained with rhodamine B isothiocyanate and ninhydrin 

respectively (Figure 9). For both techniques the increase in absorbance for 

treated particles was statistically significant (P >0.05) when compared to 

untreated particles, with P=0.01 when reacting with rhodamine and P=0.02 with 
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ninhydrin. This suggests that the microparticles have been successfully 

functionalised with amino groups to produce compound 1. 

 

Figure 9: Absorbance of PCL particles treated with 1,6-hexanediamine. (A) 

shows absorbance after reaction with rhodamine B isothiocyanate and (B) with 

ninhydrin to detect the presence of NH2 groups, with untreated PCL particles as 

a control. 

There were concerns however, that this increase in absorbance could be due to 

physical absorption of unbound 1,6-hexanediamine on the surface of the 

microparticles. This would result in the detection of amino groups, even if the 

structure of PCL had not been altered, and therefore give rise to a false 

positive. To confirm if amino groups were from unbound 1,6-hexanediamine 

contaminating the sample, as opposed to being incorporated into the structure 

of PCL, thermogravimetric analysis (TGA) was performed. TGA gives 

information on the changes in mass of a sample over time when subjected to 
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heating.184 It can be determined if a sample is a composite by analysing the 

weight loss curve and identifying changes to the onset of thermal 

degradation.185,186 The thermal decomposition spectra of 1,6-hexanediamine, 

commercial PCL, PCL microparticles, and PCL microparticles treated with 1,6-

hexanediamine (1) are shown in Figure 10.  

 

Figure 10: TGA of PCL microparticles treated with 6-hexanediamine 

(Blue). Untreated PCL particles (black) commercial PCL 10,000 mw from sigma 

(red) and 1,6-hexanediamine (green) were used as comparisons. 

The thermal decomposition of 1,6-hexanediamine was rapid, with onset at 89oC 

and 100% weight loss of the sample occurring by 133ºC. If the treated 

microparticle samples contained unbound 1,6-hexanediamine, that was 

physically absorbed to the surface, then two obvious thermal decomposition 

patterns would be expected, one comparable to the decomposition of 1,6-

hexanediamine and the other comparable to PCL. However, there is no thermal 

decomposition in PCL samples treated with 1,6-hexanediamine (1) between 

89ºC-133ºC. Onset of decomposition does not occur until 365ºC. This pattern of 

decomposition is more comparable to both commercial PCL and untreated PCL 

samples, where onset of decomposition does not occur until much higher 

temperatures, above 300ºC, in agreement with published literature.185,187 
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However, higher temperatures are required to reach 100% weight loss of PCL 

samples treated with 1,6-hexanediamine, when compared to commercial PCL, 

and untreated PCL samples. 100% weight loss was not achieved until 414ºC for 

treated particles compared to 411ºC for both untreated PCL particles and 

commercial PCL respectively. This slight difference in decomposition could be 

due to the addition of the amino groups throughout the carbon backbone of 

treated PCL particles. Additionally, all microparticles had a neutral pH of 7, 

suggesting there was no residual 1,6-hexanediamine. This suggests that 

aminolysis of PCL microparticles has been successful, resulting in a PCL 

polymer functionalised with amino groups (1).  

 

Figure 11: Effect of increasing reaction time of 1,6-hexanediamine on 

amine concentration within microparticles.  

In an attempt to optimise the treatment time of PCL particles, the reaction of 

1,6-hexanediamine was assessed at the following time points; 30 min, 45 min, 

1, 1.30, 2.30, 3, 4.30 and 5 h, after which they were thoroughly washed and 

then reacted with ninhydrin to detect the presence of amino groups. However, it 

was found that there was no linearity between reaction time and NH2 

concentration (Figure 11). In addition to this, when using the calibration curve 

and equating increase in absorbance to 1,6-hexanediamine concentration, it 

was found that this increase was not significant. This meant that with each 
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treatment of 1,6-hexanediamine, there was no control over the number of NH2 

groups present, nor whether the aminolysis of PCL would be successful. With 

the final product and the aims of the project in mind, these anomalies could lead 

to inconsistencies when attempting to conjugate proteins of interest, especially 

when considering batch to batch variability. Therefore, other methods of bio-

conjugation were investigated. 

2.3. Synthesis of 2-[2-(2-azidoethoxy)ethoxy]ethanol Initiator for Ring 

Opening Polymerisation  

The next conjugation method investigated was the click reaction. For this to be 

successful, either the polymer used to produce microparticles or the protein of 

interest would need to contain one of the reactive functional groups, an alkyne 

or an azide. Chain-end modifications of PCL can be carried out by incorporating 

target functional groups into the initiator used for the ring opening 

polymerisation (ROP) of ε-caprolactone.123,134 For this reason, the modification 

of PCL was investigated via the use of an azide-containing initiator, which would 

result in the synthesis of an azide functionalised polycaprolactone (PCL-N3) (4). 

This could subsequently be used for the bio-conjugation of proteins using click 

chemistry.  

An azide-containing initiator for ROP was synthesised that included a small 

poly(ethylene glycol) (PEG) chain (2) (Scheme 7). PEG chains can be used to 

increase hydrophilicity and water solubility and the hypothesis was that 

incorporation of a small peg spacer would result in azides being present on the 

surface of the microparticles, as opposed to buried within the bulk.145  To 

synthesise the initiator for ROP, commercially available 2-[2-(2-

chloroethoxy)ethoxy]ethanol was reacted with sodium azide to substitute the 

chloride group (Scheme 7).  

 

Scheme 7: Synthesis of 2-[2-(2-azidoethoxy)ethoxy]ethanol (2) 
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To confirm the success of the reaction (Scheme 7) and if the azide functionality 

was present in the initiator 2 Infrared spectroscopy (IR) and nuclear magnetic 

resonance (NMR) were carried out. 1H NMR and 13C NMR data showed a peak 

shift in the protons and carbons adjacent to the terminal azide (Appendix A, 

Figure 59 & Figure 60).188 IR showed an obvious addition of a peak at 2095 cm-

1, corresponding to the newly introduced azide functionality (Figure 12). 

 

Figure 12: IR spectra of 2-[2-(2-azidoethoxy)ethoxy]ethanol 2 (blue). The 

starting material 2-[2-(2-Chloroethoxy)ethoxy]ethanol is used for comparison 

(red). 

To confirm the azide group was reactive towards alkynes, a click reaction with 

phenyl acetylene was performed (Scheme 8). The 2-[2-(2-

azidoethoxy)ethoxy]ethanol initiator (2) was successfully able to carry out the 

click reaction with the alkyne to form  stable 1,4-triazole (3) (Scheme 8). This 

was confirmed with 1H NMR analysis which showed a successful reaction with 

the presence of a triazole peak at 7.95 ppm (Figure 13, a).  

N3 
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Scheme 8: CuAAC click reaction of 2-[2-(2-azidoethoxy)ethoxy]ethanol 

initiator with phenyl acetylene.  

 

 

Figure 13: 1H NMR analysis of copper click reaction.2-[2-(2-

azidoethoxy)ethoxy]ethanol reacted with phenyl acetylene results in a triazole 

peak (a) at 7.95 ppm. 

2.4. Polymerisation of Polycaprolactone Using Azide-Containing 

Initiator  

Once the successful synthesis of 2-[2-(2-azidoethoxy)ethoxy]ethanol initiator 

had been confirmed, ring opening polymerisation of ɛ-caprolactone was 

performed (Scheme 9). ROP facilitates the synthesis of well-defined polymers, 
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with an end group that can be altered depending on the initiator used to control 

the reaction.134 Synthesis of an azide functionalised PCL (4) was attempted 

using 2-[2-(2-azidoethoxy)ethoxy]ethanol (2) as the initiator. Three batches of 

the resulting polymer were assessed by gel permeation chromatography (GPC) 

in filtered chloroform against polystyrene standards to assess the molecular 

weight (Figure 14). The number average molecular weight was confirmed as 

19,502 Mn with a typical dispersity index (PDI) for ROP of 1.2. These results 

were indicative of a controlled polymerisation and a uniform polymer, in 

agreement with published work.189,190 A PDI of 1.2 is very good for polymeric 

materials.145,190 

 

Scheme 9: ROP of ε-caprolactone. 2-[2-(2-azidoethoxy)ethoxy]ethanol (2). 

was used as an initiator, and Tin(II) 2-ethylhexanoate (Sn(Oct)2) as a catalyst, 

to synthesis azide functionalised PCL (PCL-N3) (4). 
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Figure 14: GPC analysis of PCL-N3 polymer (4). Table above shows data for 

each batch tested and the average for the triplicate samples. Trace below 

shows sample 1 as an example 

The resulting polymer (4) was characterised by 1H NMR (Figure 15). The 

spectrum resembles a characteristic 1H NMR for polycaprolactone with 

additional peaks present between 3.3-3.6 ppm in agreement with published 

literature.149 These peaks correspond to the addition of CH2 groups into the 

polymer, due to the incorporation of the initiating unit (2) during ring opening 

polymerisation. As the repeating units of the PCL are in much higher 

abundance when compared to the initiating unit, further proof of the addition of 

the azide into the polymer was sought. Thin film IR on sodium chloride crystal 

plates confirmed the addition of the azide by the appearance of a peak at 2100 

cm-1, suggesting the successful synthesis of PCL-N3 (Appendix B, Figure 61).  
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Figure 15: 1H NMR of PCL-N3 (4). Peaks a and e are representative of the CH2 

groups associated with the initiating unit. 

Having successfully synthesised PCL-N3, the ability of the polymer to undergo 

the click chemistry reaction was tested. With the application of the final product 

in mind, and biocompatibility being paramount, it was decided that the use of a 

copper catalyst for click reaction could pose potential problems.173 

Consequently, conjugation of PCL-N3 was investigated utilising the strain 

promoted alkyne-azide cycloaddition (SPAAC) reaction to the internal alkyne 

situated within a dibenzocyclooctyne (DBCO) ring (5) (Scheme 10). Removal of 

copper for this reaction would allow for the direct conjugation of proteins or cells 

in physiological buffer with minimal purification.  
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Scheme 10: SPAAC reaction. Polycaprolactone-azide (PCL-N3) attaches via 

the strained internal alkyne situated within a dibenzocyclooctyne (DBCO) ring. 

The reaction shown in Scheme 10 was monitored using 2D diffusion ordered 

spectroscopy (DOSY). DOSY has been used for the identification of individual 

components within complex mixtures of small molecules.191–193 Signals are 

separated according to their chemical shift along one axis, and their diffusion 

constant along the other.191 Signals that originate from the same compound will 

appear in the same horizontal plane and share a diffusion constant. This means 

that it can be determined if the solution is a heterogenous or homogeneous 

mixture and individual compounds can easily be identified.191,192 Therefore, it 

was possible to monitor the reaction between PCL-N3 (4) and DBCO and 

determine if a successful SPAAC reaction had occurred. If PCL-N3 conjugates 

to DBCO, and forms a stable triazole, only one species will be present, 

indicative of the formation of compound 5 (Scheme 10). If this does not occur, 

two separate species will be identifiable, one correlating to PCL-N3 and the 

other to DBCO. Figure 16 shows the reaction between PCL-N3 and DBCO-acid, 

using commercial PCL without azide as a control. The reaction between PCL-N3 

and DBCO-acid (5) results in the presence of only one diffusion pattern. The 

peaks between 2-4 ppm are indicative of the polyester backbone of PCL-N3, 
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and 6-8 ppm are the aromatics within DBCO-acid. As these signals are grouped 

and share the same diffusion coefficient of 10.6 log(m2/s), this strongly suggests 

that the SPAAC reaction has occurred between PCL-N3 and DBCO-acid 

resulting in compound 5. Additionally, it was found that this reaction occurred 

within just 30 minutes. When compared to the control reaction, two diffusion 

patterns can be seen, with one diffusion pattern being comparable to 

commercial PCL and the other to DBCO-acid. Due to the abundance of PCL 

backbone compared to DBCO unit, areas of the spectra needed to be magnified 

to clearly visualise the peaks identified.  
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3. Conclusion 

To summarise, polycaprolactone was chosen as the polymer candidate to be 

used to produce microparticles due to its excellent biocompatibility. Preliminary 

investigations showed that it was possible for polycaprolactone to produce 

microparticles. After optimisation, it was decided that the conjugation of 

biomolecules to microparticles would be investigated via the use of a 

bifunctional DBCO click chemistry linking unit. A polycaprolactone polymer 

containing an azide could be conjugated to a DBCO linking unit via the internal 

alkyne using click chemistry. This chapter detailed the successful synthesis of 

an azide functionalised polycaprolactone polymer that has the potential for bio-

conjugation via the SPAAC reaction. The synthesis of the polymer is a one pot 

reaction, which is high yielding (>80%) and reproducible, demonstrating good 

control over the polydispersity index with an average PDI of 1.2. The presence 

of azide was confirmed by IR with the addition of a peak at 2100 cm-1 in both 

the initiating unit and the polymer after synthesis. The subsequent PCL-N3 

polymer was shown to be reactive toward internal alkynes present within a 

DBCO-acid unit. NMR DOSY showed that this reaction was efficient with 

conjugation occurring within just 30 minutes. As this polymer has shown the 

ability to conjugate to a click chemistry linking unit of DBCO-acid it can be taken 

forward and used in the formulation of microparticles to attempt to produce a 

drug delivery system for the conjugation of biomolecules.   
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4. Experimental Procedures 

4.1. General Methods  

Unless stated otherwise, all starting materials were commercially sourced and 

used without any further purification. Reactions were carried out under an 

atmosphere of nitrogen, using dried glassware and all solvents and liquid 

reagents were added via syringe injection through rubber septa.  

4.2. Materials 

All materials were purchased from Sigma Aldrich and used without any further 

purification unless stated otherwise. Hexamethylenediamine (98%), ninhydrin 

(95%), rhodamine B isothiocyanate (mixed isomers), ammonium chloride 

(99.5%), 2-[2-(2-chloroethoxy)ethoxy]ethanol (96%), ε-caprolactone (97%), 

polycaprolactone (MW ~14,000 average Mn ~10,000 by GPC), sodium azide 

(100%), sodium ascorbate (98%), copper sulfate pentahydrate (98%), 

phenylacetylene (98%), tin(II) 2-ethylhexanoate (92.5-100%), 

dibenzocyclooctyne-acid (Click Chemistry Tools, 95%).  

4.3. Instrumentation  

All 1H and 13C NMR spectra were recorded using a Bruker 400 spectrometer at 

400 MHz and 101 MHz respectively. Deuterated chloroform (CDCl3) was used 

as the solvent in all cases. All chemical shifts reported are in parts per million 

(ppm) and have been referenced to the residual protons (1H) or carbons (13C) of 

the deuterated solvent used. HNMR DOSY experiments were recorded using a 

Bruker Ascend™ 500 spectrometer at 500 MHz with CDCl3 as the solvent. All IR 

spectra were recorded using a Perkin-Elmer Spectrum 100 FT-IR 

spectrophotometer in the range of 4000-400 cm-1 as thin films on NaCl plates.  

Polymer analysis of molecular weights and polydispersity index (PDI) were 

determined using Varian/Polymer Laboratories GPC 50 instrument. All samples 

were recorded in filtered chloroform as the solvent at a concentration of 1-5 

mg/mL with a flow rate of 1 mL/min. All polymer samples were read in triplicate 
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and Mn and PDI values given as average. All molecular weights were calibrated 

to polystyrene standards. Thermal Analysis was carried out using a TGA Q5000 

(TA instruments, Newcastle, USA) and analysed using Trios software 

v4.3.1.39215. Samples (2-10 mg) were analysed by applying a temperature 

programme of 10 °C/min to a final temperature of 500°C.  
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4.4. Aminolysis of Polycaprolactone Microparticles (1) 

General Formula: N2H15C6(C6H10O2)n 

A calibration curve for 1,6-hexanediamine was constructed from a 25 mg/mL 

stock solution in isopropanol. Concentrations from 8 µg/mL to 96 µg/mL were 

reacted with a 1 M ninhydrin/ethanol solution (500 µL, 1:1) and heated with 

stirring at 75°C for 15 min. Absorbance was measured in triplicate at 590 nm.   

PCL microparticles (0.5 g, 0.05 mmol) were immersed in a 10% 1,6-

hexanediamine solution in isopropanol (20 mL) and stirred at room temperature 

for 2 h. Afterwards the particles were thoroughly washed with distilled water and 

lyophilized to yield compound 1. Microparticles treated with 1,6-hexanediamine 

solution (1) were reacted with 1 M ninhydrin/ethanol solution (500 µL) and 

heated with stirring at 75°C for 15 min. Non-treated particles reacted with 

ninhydrin solution were used as a control. Absorbance of the particles was 

measured at 590 nm.  

A calibration curve for rhodamine B isothiocyanate was constructed. 

Concentrations from 0.8 µg/mL to 4.8 µg/mL were dissolved in DMSO. 

Absorbance was measured in triplicate at 555 nm.   

Microparticles treated with 1,6-hexanediamine solution (1) were suspended in 

PBS (5 mg/mL, 5 mL) and rhodamine B isothiocyanate was added in 5 µL 

aliquots to a total volume of 250 µL and left to react for 24 h at 4°C in the dark. 

Ammonium chloride was added to a final concentration of 50 mM and incubated 

for 2 h at 4°C to quench the reaction. The particles were washed with distilled 

water (10x1 mL), suspended in water (1 mL) and the absorbance read at 555 

nm. Non-treated particles reacted with rhodamine b isothiocyanate were used 

as a control.  
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4.5. Synthesis of an Initiator for Ring Opening Polymerisation (2)188 

 

General Formula: C6H13N3O3 

Molecular Weight: 175.19  

2-[2-(2-Chloroethoxy)ethoxy]ethanol (9 g, 53 mmol), sodium azide (6.9 g, 106 

mmol, 0.5eq) and sodium iodide (2 g, 13 mmol, 0.1eq) were dissolved in 

distilled water (25 mL) and heated at reflux for 72 h. The product was extracted 

using ethyl acetate (3x20 mL), the organic layers were combined, and solvents 

were removed under reduced pressure to yield compound 2 as a light pink 

liquid (6.406 g, 69%).  

1H NMR (400 MHz, CDCl3) δ: 3.68 (m, 2H), 3.64 (m, 6H), 3.59 – 3.53 (t, 2H), 

3.36 (t, 2H), 2.70 (s, 1H). 

13C NMR (101 MHz, CDCl3) δ: 72.56, 70.64, 70.36, 70.02, 61.69, 50.65.  

IR (NaCl, cm-1) 3391, 2867, 2095, 1454, 1345, 1283, 1063.   
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4.6. 2-(2-(2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethoxy)ethoxy)ethanol (3)  

 

General Formula: C14H19N3O3 

Molecular Weight: 227.32 

Compound 2 (1.01 g, 5.76 mmol) sodium ascorbate (0.133 g, 0.67 mmol, 

0.1eq), copper sulfate pentahydrate (0.149 g, 0.59 mmol, 0.1eq) and phenyl 

acetylene (0.7 mL, 6.37 mmol, 1.1eq) were dissolved in a tert-butyl 

alcohol/water (1:1, 40 mL) mix and stirred vigorously for 16 h. The solution was 

diluted with water and an extraction carried out using ethyl acetate (3x30 mL). 

The organic layers were combined and dried using magnesium sulfate. 

Impurities were removed using activated charcoal with filtration through cotton. 

Solvents were removed under reduced pressure to yield product 3 as a yellow 

oil (1.04 g, 76%).  

1H NMR (400 MHz, CDCl3) δ: 7.95 (s, 1H), 7.85 – 7.79 (m, 2H), 7.44 – 7.36 (m, 

2H), 7.34 – 7.27 (m, 1H), 4.64 – 4.46 (m, 2H), 3.97 – 3.81 (m, 2H), 3.77 – 3.66 

(m, 2H), 3.64 – 3.57 (m, 4H), 3.57 – 3.45 (m, 2H), 2.30 (s, 1H). 

IR (NaCl, cm-1) 3404, 2869, 1441, 1372, 1242, 1114.  
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4.7. Polymerisation of Polycaprolactone (4)149   

 

General Formula: N3C6H12O3(C6H10O2)n 

Average Molecular Weight: ~23,000 (Confirmed by GPC)  

ε-caprolactone (9.742 g, 85.35 mmol) was heated to 85°C under an atmosphere 

of nitrogen. Compound 2 (0.1 g, 0.57 mmol, 1eq) and catalytic tin(II) 2-

ethylhexanoate (0.023 g, 0.05 mmol, 0.1eq) were added and the mixture was 

stirred for 12 h at 120°C. The solution was cooled to room temperature, and the 

solid mixture recrystallized from DCM using cold methanol to remove unreacted 

monomers. The precipitate was collected using a Buchner funnel to yield the 

desired compound 4 as a white solid (7.868 g, 81%). The polymer MW and 

polydispersity index were analysed using gel permeation chromatography with 

chloroform as an eluent.  

1H NMR (400 MHz, CDCl3) δ 4.05 (t, 192H), 3.74 – 3.59 (m, 10H), 3.38 (s, 2H), 

2.30 (t, 192H), 1.69 – 1.49 (m, 384H), 1.42 – 1.10 (m, 192H). 

IR (NaCl, cm-1) 3437, 2944, 2865, 2100, 1722.  

(GPC) Mn 19502 (polydispersity Index) 1.17.  
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4.8. Polycaprolactone-Azide-Dibenzocyclooctyne Triazole (5) 

 

 

General Formula: C27H31N4O6(C6H10O2)n 

Molecular Weight: ~23,376 

Compound 4 (0.044 g, 0.0019 mmol 0.1eq) and DBCO-acid (0.005 g, 0.014 

mmol, 1eq) were dissolved in CDCl3 (250 µL) in an NMR tube and 2D 1H NMR 

DOSY spectrum collected periodically every 30 min for 6 h to monitor the 

formation of compound 5. Commercial PCL (0.0152 g, 0.00152 mmol, 0.1eq) 

and DBCO-acid (0.005 g, 0.014 mmol, 1eq) were treated the same and used as 

control.  



 
 

Chapter 3: Microparticle 

Production and Optimisation
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1. Introduction  

1.1. Microparticles as a Drug Delivery System  

From the beginning of the project, microparticles were the chosen method of 

drug delivery. Researchers need to consider several factors when formulating a 

drug delivery system; an appropriate receptacle for delivery, the duration and 

manner of release, and the method of formulation, which includes ensuring the 

therapeutic agent is not degraded during production.100 A successful drug 

delivery system should be able to maintain a therapeutic dose of the delivered 

drug for a sustained period, corresponding to the healing time at the repair 

site.126 Unfortunately, one of the major limitations to the delivery of proteins is 

their short half-lives and quick clearance by the body.6,34,96,194 Concentrations 

can fall below the therapeutic dosage very quickly, making it necessary for 

either frequent administrations or high loading concentrations, which in turn can 

cause toxic side effects.104,111,127,195 Frequent administrations of proteins are 

problematic, requiring high levels of patient compliance and close supervision 

from a medical professional. As a result, there has been limited industrial and 

commercial success of these types of products.100,182 To negate these safety 

concerns, as well as improve the efficacy of the delivered protein, microparticles 

have been used as an improved delivery system.100,126,127,12,13  

Microparticles are composed of highly crosslinked or entangled long chains of 

linear polymers with spherical morphology.145 One of their advantages is that 

they can be formulated as injectable systems and localised to the site of 

repair.101,194 Another advantage of microparticles is that they can also be 

formulated as dry powders, allowing for a long storage life.127,194 When 

formulating microparticles as a delivery system it is important to consider the 

release profile; the timing of the protein’s release is as equally important as its 

delivery.194 The diffusion of proteins and the timing of their release can be tightly 

controlled depending on the method used to incorporate them into the 

microparticles. They can be encapsulated within the bulk, physically adsorbed, 

or conjugated to the surface.179 Each method will alter the rate at which the 

protein is released. This can allow for controlled release of a singular protein, or 
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even cocktails of proteins, taking into account factors such as the degradation 

rate of the microparticles, which can be adjusted to closely match the rate of 

healing tissue.79,89 The properties of the microparticles depend on the 

production and encapsulation method as well as the type and concentration of 

polymer used.126,182 If a microparticle drug delivery system is to see commercial 

success, the encapsulation efficiency should be high to minimise wastage of 

expensive resources.182 

1.2. Microparticle Encapsulation Techniques  

Microparticles can be formulated via several techniques, with the technique 

used for production having an effect on both their size and entrapment 

efficiency.101,126 These techniques include spray drying, dispersion 

polymerisation, the use of microfluidic devices, homogenisers and rotor-stator 

mixers.81,100,101,182,196–199 These techniques rely on the production of either oil in 

water (O/W) or water in oil (W/O) emulsions.200 The definition of emulsions is 

the dispersion of two immiscible liquids, usually water and oil, or organic 

solvent, where droplets from the dispersed phase form within the continuous 

phase.196 Therapeutic proteins can be encapsulated within these droplets, and 

the type of emulsion used will be dependent on the solubility of the protein of 

interest.126  

O/W emulsions are used for the encapsulation of hydrophobic or insoluble 

agents, but are not compatible with hydrophilic proteins, as they rapidly leach 

into the external water phase.141,181,201 For these agents W/O emulsions are 

used.141,182 However, these systems are not ideal because the external oil 

phase is either composed of large volumes of organic solvent, or oils such as 

mineral or vegetable oil, which are difficult to remove when washing and 

collecting the formed particles.102 Therefore, the most common and extensively 

studied method for the encapsulation of proteins within microparticles is via 

double emulsions.79,142,202,203 For this technique an emulsion is made within 

another emulsion.200 Primary emulsions of either O/W or W/O are produced and 

then emulsified again into an appropriate secondary continuous phase 

producing either water in oil in water (W/O/W) or oil in water in oil (O/W/O) 
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emulsions.124,204 In these emulsions the oil phase typically contains a 

biodegradable polymer, which upon solvent evaporation will form solid 

microparticles.126,205  

The most common method for the entrapment of proteins within double 

emulsions is within the internal water phase of a W/O/W formulation (Figure 17). 

The internal oil phase separates the two water phases, and acts as a liquid 

membrane, therefore allowing for the controlled release of protein.124,126 Using 

double emulsions, it is possible to deliver a cocktail of therapeutic agents, with 

water soluble drugs contained within the internal water phase, and lipophilic 

drugs within the oil phase.102  

 

Figure 17: Representation of the double emulsion technique. Therapeutic 

proteins are encapsulated within the internal water phase of microparticles 

during production of a water-in-oil-in-water (W/O/W) emulsion. 

The characteristics of the resulting microparticles are difficult to control with 

these conventional methods, and the population is rarely uniform.182 The multi-

step nature of double emulsions means that it is first necessary to produce a 

stable primary emulsion. Breakup of the primary emulsion during the secondary 

emulsification step can result in a broad size distribution in the resulting 

microparticles.205  Successful production of double emulsions requires high 

shear forces to emulsify the primary emulsion into the secondary continuous 

phase. Typically, this is done via homogenisation, mechanical stirring, or 

sonication, which breaks down the larger droplets to disperse them in the 

external phase.196,205 These forces need to be tightly controlled to prevent the 

rupture of the primary emulsion droplets.124 These processes are not 
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homogenous throughout and as a result the particles produced often have 

broad size distributions, and highly variable average particle sizes between 

batches.197 Additionally, as the mechanical energy required in these systems is 

so high, the microparticles are subjected to high temperatures during production 

and as such this method is not amenable to sensitive materials such as proteins 

and cells.102,112,196 To combat this problem, milder systems have been 

employed to produce double emulsions that minimise the shear stress needed.   

1.2.1. Membrane Emulsification  

Membrane emulsification was first introduced by Nakashima and co-workers as 

a method to produce monodispersed microparticles with a tightly controlled size 

range.206 This technique can be used to produce single or double emulsions, 

and reduces the high shear stresses, large surfactant volumes and high energy 

required to produce double emulsions.196,198 For this, uniform microparticles are 

produced by forcing the primary emulsion through a membrane, into the 

secondary aqueous phase (Figure 18).182,200 The membrane acts as the 

secondary emulsifying agent of the primary emulsion, with the reduced risk of 

rupture of the primary emulsion droplets200,206 This process does not require the 

high energy levels or mixing techniques such as sonication or homogenisation 

because as the droplets are formed on the surface of the membrane, they 

detach upon reaching a critical size rather than needing to be broken up.196,207 

The membrane is made from materials with high mechanical strength such as 

Shirasu glass or metal, and has uniform pores throughout its surface, through 

which the dispersed phase is passed.205,206 This technique offers advantages 

over the uniformity of the microparticles produced, resulting in smaller size 

distribution of the particle population.208 This allows the particles to be 

reproducible, and possess the same characteristics between batches, meaning 

the process can be easily scaled for an industrial setting.100  
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Figure 18: Representation of membrane emulsification. Water-in-oil-in-

water (W/O/W) emulsions are produced by emulsifying the primary water-in-oil 

(W/O) emulsion through a membrane.  

An advantage of membrane emulsification is that the particles produced are 

uniform in size. This is particularly advantageous when producing a drug 

delivery system as the release of the drug needs to be controlled and 

uniform.200 Uniform particle size and distribution will mean that there is little 

batch to batch variability and that the delivery system has repeatable release 

characteristics.78 Another advantage is that microparticle size can be tightly 

controlled by careful selection of the pore sizes present within the membrane.182 

It is possible to estimate the size of the microparticles produced before carrying 

out any experimental work as the relationship between pore size and 

microparticle size is linear.206,207 As a rough guide, it is suggested that particles 

produced will be approximately three times larger than the size of the pores 

present in the membrane used, when following the manufacturers guidelines 

(Appendix C, Table 14). Reproducibility and energy efficiency of the systems 

means that the technique lends itself to industrial scale up. This can be 

achieved using industrial sized stirred cells or the addition of more membrane 

modules.207  



Chapter 3: Microparticle Production and Optimisation 

68 

1.3. Effect of Controlling Particle Size and Uniformity  

If microparticles are to be used as a drug delivery system, it is extremely 

important to be able to control their size and uniformity.78 Uniformity of 

microparticles is highly dependent on the uniformity of dispersed phase droplet 

size at creation during the membrane emulsification. If the microparticle 

population has a broad size distribution there will be variation in the amount of 

drug loaded within each batch, and the rate at which the drug is released.78 

Control of particle size is also important as it can affect their final application 

and method of delivery. Smaller particles with a size range below 10 µm can 

easily be phagocytosed by macrophages in the body, whereas larger particles 

would need to undergo degradation before this would occur. Therefore, particle 

size has a direct effect on the degradation rate and immune response times.100 

An advantage of larger particle sizes is the higher drug loading capacity they 

allow.182 Particle size may also influence the route of administration that is 

needed. If the particles are to be injected, the smaller the particles are the 

smaller the needle needs to be.209 The smaller the needle then the more cost 

effective the treatment, as these can be delivered either via ultrasound guided 

injections, or carried out under local anaesthetic. Particles around 150 – 200 µm 

offer the advantage of being large enough to remain at the repair site for longer 

periods of time before clearance by the body, but also small enough to allow for 

intravenous transfusion or subcutaneous injections.182,209 Microparticle size can 

be tightly controlled by adjusting the process parameters used in their 

production.  

1.4. Factors Affecting Particle Size and Uniformity  

All the parameters used to produce the particles can be altered to affect their 

monodispersity and size. These parameters can be divided into three 

categories; membrane properties, processing conditions, and material 

properties.198 These can include, but are not limited to, membrane pore size, 

the viscosity of the dispersed and the continuous phases, the rate at which the 

dispersed phase is injected, the rotation speed of the continuous phase, as well 

as the surfactant type and concentration. Optimisation of the production process 
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is usually necessary because small changes can result in varied and sometimes 

unpredictable outcomes within the microparticle population.182,210 Different 

parameters also have varying levels of magnitude in terms of effect.197  

Droplet size is controlled largely by the forces acting upon the droplet and the 

resulting detachment from the membrane. These forces each alter the droplet 

formation in a different manner and include those acting on the droplet, causing 

its adherence to the membrane surface, and those effecting its detachment. 

Droplets can detach from the membrane in two ways; spontaneously after 

reaching a critical size or involuntarily due to the presence of shear force.197 

These forces include the shear forces acting on the droplet from the rotation of 

the continuous phase, the interfacial tension, and the pressure of the injecting 

dispersed phase.207 Shear stress is generated by the rotation of the continuous 

phase, this force acts upon the forming droplet to allow it to detach from the 

surface of the membrane.196  

Surfactant type and concentration can also affect particle size and uniformity. 

The surfactant concentration must be sufficient to reduce the interfacial tension 

of the growing droplets, which is in part controlled by the rate at which the 

droplets grow from the membrane.197,211 If surfactant concentration is too low it 

will result in the coalescence of particles with an increased size and 

polydispersity124,198,207  Rotation speed of the continuous phase will also affect 

the resulting particle size. Higher rotation speeds will produce smaller droplets, 

whereas lower speeds can increase droplet size as well as size distribution. 

Viscosity of the materials used also affects the membrane size, lower viscosities 

decrease the critical pressure needed to pass the dispersed phase through the 

membrane pores, which results in more uniform microparticles.78 Increasing 

viscosity increases the resulting particle size.207   

1.5. Aims and Objectives 

The hypothesis of the work detailed in this chapter is that previously 

synthesised PCL-N3 polymer could be used to produce microparticles. It was 

necessary to assess if control over the parameters used at production could 
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result in particles with a tightly controlled size range that could easily be altered. 

It had to be confirmed that the azide of the PCL polymer was accessible and the 

particles could undergo the click chemistry reaction to deem the production of 

the microparticles a success and proceed to the next experimental steps. 

2. Results and Discussion  

2.1. Microparticle Production Optimisation  

Microparticle production and optimisation was carried out in parallel to the 

experiments discussed in chapter 2. At the beginning of the project it was 

necessary to prove that microparticles could be produced and primarily it was 

necessary to decide on the most appropriate experimental conditions for their 

production. Particles should have a smooth spherical morphology, and a tightly 

controlled size distribution. Microparticles were produced using the dispersion 

cell, from Micropore Technologies Ltd. It is a mechanical membrane 

emulsification system used to produce emulsions containing uniform, 

monodisperse microparticles with a narrow size distribution. The system 

contains a 3-way injection valve, an electronic injection pump, an injection 

chamber, a glass cylinder and a motorised stirring unit (Figure 19). To produce 

microparticles via membrane emulsification, a dispersed phase is slowly and 

steadily injected into a continuous phase and passed through a membrane. The 

membrane is a circular sheet of metal with uniform pores spaced evenly on the 

surface. The pores can cover the entire surface or be confined to just a small 

area of the membrane in a ring formation, depending on if the membrane is 

standard or ringed (Figure 19, Insert).209,212 The emulsification process is stirred 

cell emulsification. Droplets form on the surface of the membrane and the 

continuous phase is stirred by a paddle that sits above the membrane. This 

produces the required shear stress needed to detach the droplets. Hydrophilic 

membranes can be used to produce O/W emulsions and hydrophobic 

membranes for W/O emulsions207.  



Chapter 3: Microparticle Production and Optimisation 

71 

 

Figure 19: Representation of the process for microparticle production 

using a Micropore Dispersion Kit. Microparticles are produced via membrane 

emulsification by passing the dispersed phase through a membrane into a 

stirring unit. Insert shows the different membranes that can be used, either 

standard or ringed. 

Microparticles were produced by injecting the PCL polymer as the oil phase into 

the aqueous phase through the membrane. After microparticle production, each 

batch of particles were measured using Image J analysis software to collect 

data relating to average particle size. Monodispersity was assessed based on 

the span of the particle population. The span of particles represents the size 

distribution, and can be calculated using the following equation; 

                      
         

    
 

Where D signifies the diameter at which that given percentage (10, 50 or 90) of 

the particle population is contained.209,210,213,214 The more uniform a population 

of particles, the narrower the size distribution, the closer to zero the span value 

becomes.215 A size distribution of less than 1 indicates a monodisperse 

population of particles.212 Optimisation of the production of particles was carried 

out using commercial PCL to avoid wasting resources of PCL-N3. Knowledge of 

the system and the production process of microparticles could then be applied 

when producing PCL-N3 particles. Control over particle monodispersity and size 

was important because at the beginning of the project it was not known how 

proteins were going to be incorporated with microparticles. If protein was to be 

encapsulated within the internal phase of particles produced by double 

emulsion, then a broad size range would result in large batch to batch variability 
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of protein content within each microparticle. Additionally, it was undetermined at 

the beginning of the project if the bioactive agent would be proteins, or cells. 

The incorporation of cells with microparticles requires a larger particle size than 

protein, therefore it was important to be able to manipulate particle size. Table 7 

shows the different parameters tested to try to produce monodisperse particles 

using commercial PCL and the resulting particle size distribution.  

 

Table 7: Parameters tested to produce monodisperse microparticles. 

Microparticle production was optimised using commercial PCL and standard 

membrane with 15 µm pore size. Poly(vinyl)alcohol (PVA). 

Surfactant and salt concentration had the greatest effect on both average 

particle size and monodispersity of particles (Table 7). Initial investigations 

began by looking into the effect of altering the surfactant concentration. The 

addition of a surfactant in the aqueous phase is essential for the formation of 

PARAMETER 

TESTED 

OIL WATER RPM RATE 

ML/MIN 

AVERAGE 

(µM) 

SPAN 

(µM) 

PVA 
CONCENTRATION 

10% 
PCL 
in 
DCM 

0.3% PVA 779 0.5 61 ± 8.75 2.38 

1% PVA 
779 0.5 35 ± 1.45 0.86 

SALT ADDITION 

10% 
PCL 
in 
DCM 

1% PVA, 

13 g/L 

NaCl 

779 0.5 43 ± 0.69 0.43 

1% PVA 

40 g/L 

NaCl 

779 0.5 48 ± 1.06 0.22 

STIR SPEED 

10% 
PCL 
in 
DCM 

1% PVA 

13 g/L 

NaCl 
1091 0.5 34 ± 0.84 0.42 

INJECTION RATE 

10% 
PCL 
in 
DCM 

1% PVA 

13 g/L 

NaCl 

779 1 45 ± 1.23 0.52 

779 2.1 42 ± 0.62 0.63 

PCL 
CONCENTRATION 

15% 
PCL 
in 
DCM 

1% PVA 

13 g/L 

NaCl 

779 0.5 54 ± 1.07 0.34 

20% 
PCL 
in 
DCM 

1% PVA 

13 g/L 

NaCl 

779 0.5 55 ± 1.85 0.63 

 



Chapter 3: Microparticle Production and Optimisation 

73 

monodisperse particles. PVA is a popular stabiliser as it has low toxicity, is cost 

effective, is readily solubilised in water and is commercially available in a vast 

array of molecular weights.205 PVA concentrations of 0.3% and 1% w/v in the 

aqueous phase were assessed. It was found that at 0.3% w/v PVA 

concentrations, the emulsion was not stable. The resulting droplets quickly 

coalesced producing very large particles, (>100 µm), as well as smaller 

particles (between 18-30 µm) (Figure 20). The resulting span was 2.38, proving 

that these particles were not monodisperse. This can be attributed to the low 

surfactant. concentration, resulting in increased interfacial tension and droplet 

coalescence.198,205  Conversely, increasing the concentration of PVA to 1% w/v 

improved the droplet stability, decreased the risk of coalescence and reduced 

the presence of larger particles (>100 µm). Additionally, the span of the 

particles was 0.86, suggesting this concentration of PVA was sufficient to 

produce monodisperse particles. Increasing PVA concentrations beyond 1% 

w/v, although beneficial for size distribution and monodispersity, is unfavourable 

due to surfactant adherence to the surface of particles, which is difficult to 

remove.205 

 

Figure 20: Improvement of particle dispersity and morphology. Particle 

dispersity and morphology was improved by altering process parameters. 0.3 

%w/v PVA (left) increased to 1 %w/v PVA and addition of 13 g/L NaCl (right). 

The addition of sodium chloride to the water phase was tested as this can also 

help to stabilise emulsions.100,126 In an attempt to improve the span and 

monodispersity of particles further, concentrations of 13 and 40 g/L sodium 
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chloride were investigated. Overall the addition of salt had a positive effect on 

the morphology and monodispersity of the resulting particles (Table 7), at both 

concentrations. The span of microparticles was 0.22 and 0.43 for 40 and 13 g/L 

sodium chloride respectively. Monodispersity of particles was best at 

concentrations of 40 g/L. However, this resulted in the presence of salt crystals 

upon solidification and collection of microparticles, which were difficult to fully 

remove (Figure 21). For this reason, salt concentrations were kept at 13 g/L. 

 

Figure 21: Microparticle images produced using 40 g/L sodium chloride. 

Microparticles contained a grainy like substance that was assumed to be salt 

that appeared as a solid in scanning electron microscopy (A) and a grainy 

appearance in optical microscopy (B). 

Increasing stir speed resulted in a decrease in average particle size from 

43±0.69 to 34±0.84 µm for speeds of 779 to 1091 RPM respectively. Although it 

was found that this had no effect on the span of the particles with these being 

comparable at both speeds. Increasing injection rates had an adverse effect on 

particle span, increasing from 0.43 at injection rate of 0.5 mL/min to 0.52 and 

0.63 at speeds of 1 and 2.1 mL/min respectively. Also, it was found that 

increasing the injection speed, could result in damage to the membrane. This 

was assumed to be because of a pressure increase in the injection chamber of 

the dispersion kit. Increasing PCL concentration resulted in an increase in 

average particle size from to 54±1.07 and 55±1.85 µm for concentrations of 15 

and 20% w/v respectively. Overall through multiple optimisations, it was found 

the best improvements in particle morphology and size were found when 
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particles were produced with 1% w/v PCL and 13 g/L sodium chloride (Figure 

20)  

As it was possible to produce monodisperse microparticles using the methods 

described above, investigations into the ability to alter the particle size were 

carried out. A recommended method for altering the size of microparticles is by 

changing the pore size of the membrane used for emulsification.78 Droplet size 

is closely associated with membrane pore size in a linear relationship, in both 

O/W and W/O emulsions.206,207 The use of ringed membranes results in the 

production of microparticles with better size distributions and tighter control over 

monodispersity when compared to particles produced using standard 

membranes.216 Therefore ringed membranes with pore sizes of 10 and 5 µm 

were investigated.  

Decreasing the pore size within the membrane resulted in a decrease in 

average particle size, changing from 24±0.4 µm to 16±0.2 µm for membranes 

with pore sizes 10 µm and 5 µm respectively. Additionally, decrease in the pore 

size resulted in a decrease in the size range, with smaller minimum and 

maximum particle sizes. The smallest particles measured were 11 µm and the 

largest 45 µm when using a membrane with 10 µm pore sizes. Whereas when a 

membrane with 5 µm pore size was used the smallest particles measured were 

9 µm with the largest particles being only 26 µm (Figure 22). Both membranes 

resulted in the production of a monodisperse population of microparticles with 

span values of 0.8 and 0.4 for membranes with pore sizes of 10 and 5 µm 

respectively. This shows that it is possible to produce monodisperse 

microparticles by membrane emulsification and control particle size by altering 

the membrane used. This information could therefore be applied to the 

production of azide containing microparticles using PCL-N3 as the polymer in 

the oil phase.  
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Figure 22: Effect of pore size on particle morphology and size distribution. 

Images show light microscope and scanning electron microscopy images of 

particles produced using membrane with pore sizes of 10 µm (A) and 5 µm (B) 

with corresponding histograms showing microparticle size (10 µm and 5 µm.) 

2.2. Porous Microparticles 

Another avenue that was investigated was the ability to produce porous 

microparticles. The presence of pores within microparticles allows for the 

formation of new tissue, neovascularisation, proliferation and migration of cells 

as well as free movement of nutrients and waste products.217–219 Additionally 

porous surfaces, such as microparticles can allow for the in vitro culture of cells 

in a 3D environment. This more closely mimics the natural environment of 
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tissues.220 This could have allowed for a microparticle system that was able to 

deliver cells to the repair site. The frequency of pores throughout the 

microparticles, as well as their diameter and interconnectivity are the most 

important factors for cell migration and proliferation as well as 

neovascularisation.217 Pores can be introduced into microparticles by a process 

known as porogen leaching.  During this process particulate substances, such 

as salts, are added to the polymeric material in which pores are to be 

introduced. Solvent is added to erode or dissolve the polymer allowing the salts 

to leave holes in the material. After this, the solvent is evaporated and the 

polymer hardens and the salt can be leached out with multiple washing steps 

leaving a porous microparticle (Figure 23).220 

 

Figure 23: Production process for porous microparticles. A primary W/O 

emulsion containing salt as a porogen is used as the dispersed phase for 

membrane emulsification. The solvent is then allowed to evaporate, and the salt 

is leached from the particles with multiple washing steps, producing a hardened, 

porous particle. 
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Porous microparticles (6) were produced via double emulsion technique using 

commercially available PCL, incorporating sodium chloride as a porogen in the 

primary emulsion and using this as the dispersed phase for membrane 

emulsification. Pores were introduced after solvent evaporation and subsequent 

porogen leaching with aqueous washes. A membrane containing pore sizes of 

40 µm was selected for membrane emulsification to produce larger 

microparticles to allow for the incorporation of pores on the surface without 

collapsing the particle. Table 8 details the experimental conditions attempted to 

produce porous particles with the resultant average particle size and pore 

diameter. 

 

Table 8: Experimental conditions used to produce porous microparticles. 

Primary emulsions were used as the dispersed phase for membrane 

emulsification. W2: External water phase. 

It was possible to produce monodisperse microparticles >100 µm with pores 

throughout (6). Average particle size was 84 ± 0.91 µm and 79 ± 1.20 µm when 

using salt as a porogen at concentrations of 13 or 40 g/L respectively. The size 

range of particles was comparable with a range of particles from 60-110 µm for 

particles produced using 40 g/L sodium chloride and a range of 58-116 µm for 

particles produced with 13 g/L sodium chloride. Pores were present throughout 

for all particles produced using salt as a porogen. Pore sizes were largest when 

 

Primary Emulsion W2 Average 

(µm) 

Span Average Pore 

Size (µm) 

Pore 

range 

(µm) 

1% PVA 40g/L NaCl 

sonicated for 1 min with 

15% PCL in DCM 

1% PVA 

40g/L 

NaCl 

84 ± 0.91 0.27 7 ± 3.43 2-20 

1% PVA 13g/L NaCl 

sonicated for 1 min with 

15% PCL in DCM 

1% PVA 

13g/L 

NaCl 

79 ± 1.20 0.43 5 ± 2.07 2-11 

3% PVA 40g/L NaCl 

sonicated for 1 min with 

15% PCL in DCM 

3% PVA 

40g/L 

NaCl 

51 ± 1.39 0.72 4 ± 2.1 1-12 

1 X PBS sonicated for 1 

min with 20% PCL in DCM  

0.3 % 

PVA 

68 ± 0.92 0.37 5 ± 3.84 1-20 
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using higher concentrations of salt, and lower concentrations of PVA (Table 8). 

Average pore diameter for particles produced using 40 g/L sodium chloride and 

1% w/v PVA was 7 ± 3.43 µm with a pore size range of 2-20 µm. When salt 

concentrations were reduced to 13 g/L, pores were still present throughout the 

particles with an average diameter of 5 ± 2.06 µm and a pore size range of 2-11 

µm. However, these pores were not present as uniformly across all particles as 

seen at higher salt concentrations (Figure 24). Increasing PVA concentrations 

to 3% w/v resulted in the presence of smaller particles with a size range of 23-

81 µm. The decrease in particle size led to a decrease in pore size, and less 

uniformity between pore presence within microparticles. This meant that several 

microparticles appeared smooth in morphology when visualised by SEM (Figure 

24). Additionally, higher concentrations of PVA decreased the average pore 

diameter to 4 ± 2.1 µm and a pore size range of 1-12 µm. Phosphate-buffered 

saline (PBS) was also investigated as a porogen in the same manner. It was 

found that particles contained pores throughout ranging from 1-20 µm, with an 

average pore 5 ± 3.83 µm. Highly porous particles have been reported in the 

literature with similar pore sizes of 8 ± 3 µm and a maximum pore diameter of 

15 µm.217  

 

Figure 24: SEM images of porous microparticles. (Columns left to right); 40 

g/L NaCl 1% w/v PVA; 13 g/L NaCl 1% w/v PVA; 40 g/L NaCl 3% w/v PVA; 

PBS 3% w/v PVA. Top row shows x850 magnification with scale bars 

representing 20 µm. Each image in the bottom row corresponds to the one 

above but shows x150 magnification with scale bars representing 100 µm. 
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Both micro and macro pores (20-100 µm) are necessary for successful 

dispersal of waste and nutrients.217,218 It has been shown that cells were able to 

penetrate microparticles where pore diameters were 20 µm.219 Pore diameters 

of 20 µm were seen in microparticles produced using 40 g/L sodium chloride 

concentrations with 1% w/v PVA and with PBS as a porogen. However, pore 

diameters of this size were rare and were not present in all microparticles. 

Therefore, an attempt was made to increase the pore diameter present on the 

microparticle surface. All particles (6) were treated with a sodium hydroxide and 

ethanol solution for the following time periods; 5, 10, 20 and 30 mins. However, 

it was found that the pore diameter did not increase (data not shown). It is 

possible that the pore diameter did not increase because the use of ethanol as 

a solvent was not sufficient to erode the particles, potentially this could be 

improved by using a solvent in which PCL has slight solubility, such as acetone.  

2.3. Assessing Polymer Viscosity 

Before attempts were made to produce microparticles with PCL-N3, the 

viscosity of the polymer was assessed. There was a concern that due to the 

increase in molecular weight of the PCL-N3 polymer (4) in comparison to 

commercial PCL (19,502 and 10,000 Mn respectively) PCL-N3 would produce a 

more viscous solution when prepared for the disperse phase for particle 

production.100,221 Alterations in the viscosity can influence the monodispersity of 

microparticles as at higher viscosities droplets collecting on the surface of the 

membrane are likely to adhere to the surface and remain there for longer than 

their less viscous counterparts. This can result in the coalescence of multiple 

droplets on the membrane surface, decreasing particle monodispersity and 

increasing particle size.78,124 Additionally, an increase in viscosity can result in 

an increase in pressure when attempting to inject the polymer solution through 

the membrane.196 This can lead to damage in which increased pressure forces 

the membrane to warp to allow the dispersed phase to flow through the pores. 

As well as being expensive to replace, damage to the membrane can result in 

the production of polydisperse microparticles. Therefore, the viscosity of PCL-

N3 polymer was investigated before attempting to produce microparticles to 

avoid any possible damage to the membranes. Successful production of 
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particles had already been achieved using 10% w/v commercial PCL (Section 

2.1, above) and so the viscosity of PCL and PCL-N3 at increasing polymer 

concentrations was tested. It was hypothesised that the concentration of PCL-

N3 with a viscosity most comparable to commercial PCL at 10% w/v would be 

appropriate for use in the production of microparticles, without risk to the 

membrane. Figure 25 shows the effect of increasing polymer concentration of 

both commercial PCL and PCL-N3 on the viscosity. 
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Figure 25: Effect of increasing polymer concentration on the liquid’s 

viscosity. 

As expected, for both commercial PCL and PCL-N3 (4), as the concentration of 

the polymer increased so did the viscosity. It was found that commercial PCL 

and PCL-N3 had comparable viscosities at all polymer concentrations. 

Commercial PCL increased from 5x10-7 m2/s to 9.9x10-6 m2/s from 1% w/v PCL 

in DCM to 20% w/v respectively. Similarly, PCL-N3 increased from 4.66x10-7 

m2/s to 8.4x10-6 m2/s at the same concentrations. This suggest that the 

increased molecular weight of the PCL-N3 polymer did not affect its viscosity, 

with PCL and PCL-N3 being comparable. This means that PCL-N3 (4) can be 

used at a concentration of 10% w/v or higher to produce microparticles without 

the potential risk of damage to the membrane. Therefore the next step was to 

carry out the production of PCL-N3 microparticles.  
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2.4. Producing Microparticles Using Polycaprolactone-Azide  

PCL-N3 microparticles (7) were produced using the same method of production 

as PCL microparticles but using PCL-N3 (4) dissolved in DCM as the dispersed 

phase for membrane emulsification (Figure 26).  

 

Figure 26: PCL-N3 microparticle production process. 

When optimising the microparticle production process, it was found that using 

ringed membranes resulted in better control over particle size and 

monodispersity. It was decided that to produce PCL-N3 particles (7) the 

membrane would be kept constant and a ringed membrane with pore sizes of 

15 µm was to be used. This membrane has the advantage of quicker production 

times, due to an increased injection rate correlating to larger pore size. 

Microparticle size was controlled by altering process parameters such as stir 

speed and polymer concentration. Table 9 and Figure 27 show the effect of 

changing these parameters on the resulting microparticle morphology and size 

distribution.  
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Table 9: Effect of polymer concentration and stir speed on microparticle 

size distribution. 

It was found that as the polymer concentration increased, so did the average 

particle size, resulting in particles of 24±0.21 µm and 34±0.39 μm in diameter 

for 5% and 40% w/v PCL-N3 respectively (Table 9). The increase in particle size 

can be attributed to the increased viscosity, caused by the increased 

concentration of the polymer, which results in larger droplets forming on the 

surface of the membrane before detachment by the rotating stirrer paddle.124 At 

all PCL-N3 concentrations the size distribution of particles was low, with span 

values less than 0.5, indicating highly monodisperse populations. Particles at all 

PCL-N3 concentrations exhibited a good spherical morphology and smooth 

particle surface (Figure 27).  

When rotation speed was increased, the average particle size decreased, 

resulting in particles with a diameter of 71±2.18 μm and 22±0.24 μm at rotation 

speeds of 400 and 1500 respectively (Table 9). This inverse relationship is due 

to the decrease in droplet formation time caused by the increasingly rapid 

detachment of particle droplets from the surface of the membrane.124,196 At the 

lowest RPM (400 and 590) it was found that the dispersity of the microparticles 

was poorest, with span values of 0.74 and 0.61 respectively. As rotation speed 

increased the polydispersity of particles improved with stir speeds of 770 RPM, 

resulting in the best span values (Table 9). At lower stir speeds droplets can 

remain attached to the surface of the membrane for longer periods before 

 

PCL-N3 
(W/V) 

Stir Speed 
(RPM) 

Size Range 
(µM) 

Average 
(µM) 

St Dev Span ± 
(µM) 

5 % 1140 16-34 24 3.46 0.42 0.21 
10 % 1140 12-38 25 3.63 0.33 0.25 
20 % 1140 18-41 30 4.23 0.33 0.31 
30 % 1140 20-55 33 5.72 0.43 0.43 
40 % 1140 24-50 34 4.80 0.35 0.39 

 

10 % 400 22-153 71 23.08 0.74 2.18 
10 % 590 16-64 40 9.84 0.61 0.70 
10 % 770 23-58 36 4.84 0.28 0.36 
10 % 950 17-39 29 4.20 0.38 0.32 
10 % 1140 12-38 25 3.64 0.33 0.25 
10 % 1500 10-33 22 3.67 0.40 0.23 
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detachment, resulting in droplet coalescence and therefore larger droplet size 

and increased polydispersity.196,207 As stir speed increased, an improvement in 

the particle morphology can be seen. At the lowest stir speed of 400 RPM, 

small particles on the surface of larger particles are present, this is indicative of 

particle aggregation and coalescence, resulting in a polydisperse population 

(Figure 27). It was shown that highly monodispersed particles (7) with a 

uniform, spherical morphology could be produced using membrane 

emulsification. Precise control over the resulting particle size was possible by 

altering process parameters such as rotation speed of the continuous phase 

and polymer concentration.  
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2.5. Dibenzocyclooctyne Staining of Polycaprolactone-Azide Particles 

The presence of an azide functional group was confirmed using IR for all 

batches of PCL-N3 microparticles (7), with positive results showing a peak at 

2100 cm-1 (Appendix D, Figure 62 & Figure 63). Although it was shown that the 

azide was present, it was not certain that it would be accessible for the click 

chemistry reaction. It has previously been shown that the polymer was able to 

carry out SPAAC click reaction (chapter 2, section 2.4). It was a possibility that 

after microparticle production, the azide may no longer be accessible on the 

surface, instead buried within the bulk of the particle. For protein conjugation to 

be successful in future experiments, it had to be confirmed at this stage that the 

microparticles were able to undergo the SPAAC reaction to an internal alkyne, 

forming a stable triazole. To test this, microparticles formulated using PCL-N3 

(7) were reacted with dibenzocyclooctyne-PEG4-Fluor 545. A control reaction 

was also performed using commercial PCL microparticles treated in the same 

way. Dibenzocyclooctyne-PEG4-Fluor 545 is a fluorescent reagent for labelling 

molecules containing an azide via SPAAC click chemistry. If the azide is 

present and accessible within microparticles then the internal alkyne present 

within the DBCO unit will readily conjugate, resulting in fluorescent particles that 

can be visualised using fluorescent imaging or quantified using fluorescent 

spectroscopy (8) (Scheme 11). 
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Scheme 11: Conjugation of PCL-N3 microparticles to DBCO-PEG4-Fluor 

545 fluorescent tag. 

It was found that PCL-N3 particles treated with dibenzocyclooctyne-PEG4-Fluor 

545 (8) showed a statistically significant increase in fluorescence compared to 

particles produced using commercial PCL. Microparticles produced using 

commercial PCL had an average fluorescence reading, comparable to the water 

only control sample, which is negligible and can be considered as background. 

PCL-N3 microparticles stained with dibenzocyclooctyne-PEG4-Fluor 545 (8) had 

an obvious colour change, resulting in pink particles that were visible to the 

naked eye (Figure 28, A) which was not present in commercial PCL control 

particles (Figure 28, B). PCL-N3 fluorescence, following treatment with 

dibenzocyclooctyne-PEG4-Fluor 545, was visualised using a fluorescent 

microscope to clearly show the fluorescent particles (8) (Figure 28, insert). 
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Figure 28: Fluorescence of PCL-N3 and commercial PCL particles stained 

with DBCO-PEG4-Fluor 545. Water was used as a control. Inserts show visual 

effect of DBCO-PEG4-Fluor 545 on PCL-N3 particles (A) and commercial PCL 

particles (B) and fluorescent imaging of PCL-N3 DBCO dyed particles. 

Next, optimisation of the reaction between dibenzocyclooctyne-PEG4-Fluor 545 

and the PCL-N3 microparticles was carried out. It was found that with increase 

in the mole ratio of dibenzocyclooctyne-PEG4-Fluor 545, in relation to the 

particles (7), a detectable increase in fluorescence intensity of compound 8 

occurs (Figure 29). Increasing dibenzocyclooctyne-PEG4-Fluor 545 resulted in 

approximately a five-fold increase in fluorescence intensity at a mole ratio of 

1.7:1 when compared to the lowest ratio (0.3:1). Similarly, an increase in the 

reaction time of dibenzocyclooctyne-PEG4-Fluor 545 with microparticles 

showed an increase in fluorescence intensity of compound 8 (Figure 29). It was 

found that when reaction times were increased to 2 hours, a 5-fold increase in 

fluorescence intensity occurred. This increased to a 10 and 20-fold increase 

when reaction times were 6 and 48 hours respectively.  
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Figure 29: Effect of changing mole ratio of DBCO-PEG4-Fluor 545 (dye) to 

PCL-N3 microparticles and reaction time. 

2.6. Peptide Synthesis  

After it had been shown that the microparticles could readily conjugate to a 

DBCO linking unit, it was hypothesised that this could be manipulated for the 

attachment of different bioactive agents. As the ideal microparticle delivery 

system would be a template for a multitude of therapeutics the synthesis of a 

cell adhesion peptide was investigated. A small 5 amino acid peptide; GRGDS 

(glycine-arginine-glycine-aspartic acid-serine) could be produced using solid 

phase synthesis and modified to contain a DBCO linking unit. The DBCO linking 

unit would then, in theory, be able to conjugate to the microparticles via the 

internal alkyne as previously demonstrated, and the peptide could help to 

facilitate cell adhesion.  

In wound repair, adhesion molecules such as integrin and fibronectin are 

necessary to allow for cell migration and support cell adhesion to the site of 

repair. Fibronectin specifically can also act as a chemoattractant molecule for 

migrating cells.222 The peptide sequence arginine-glycine-aspartic acid (RGD) 

identified in 1984 by Pierschbacher and Ruoslahti, is a conserved unit 

throughout many ECM proteins. It is an essential requirement for cell adhesion 

via integrin proteins, which act as cell surface receptors. Integrin binding to 

proteins containing the RGD sequence initiates a signalling cascade that can 

encourage the migration, proliferation and differentiation of cells.223 The 
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pentapeptide; GRGDS specifically was chosen as it has previously been shown 

to promote and increase the adhesion, proliferation and differentiation of human 

tenocytes.223 

Using a Wang resin containing an fluorenylmethyloxycarbonyl (FMOC) 

protected serine, solid phase synthesis was used to produce the GRGDS 

peptide. This was through the sequential cross coupling of amino acids between 

the carboxylic acid terminus of one and the amine terminus of the other using 1-

[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid 

hexafluorophosphate (HATU) as a cross-coupler to produce compound 9. The 

terminal glycine was then modified to contain a DBCO-acid linking unit via 

standard cross-coupling techniques to produce compound 10 (Scheme 12). A 

kaiser test, a colorimetric assay used to determine the presence of free amines, 

was used between each addition of amino acid, and after the addition of DBCO 

linker to confirm completeness of the coupling reaction. If free amines are 

present and the coupling reaction has not gone to completion the Kaiser test 

solution will be a dark blue/brown colour. If there are no free amines present the 

solution will remain yellow.  
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Scheme 12: DBCO acid-GRGDS peptide synthesis. Amino acids are added 

sequentially using solid phase peptide synthesis. DBCO acid is attached to the 

terminal glycine residue to produce a DBCO-acid-GRGDS pentapeptide. 

DIPEA: N,N-Diisopropylethylamine. TFA: Trifluoracetic acid.  TIPS: 

Triisopropylsilane. 

After synthesis and cleavage from the resin, the resulting products; compound 

10 and control compound 11 were analysed by HPLC to ascertain their purity 

and to gauge the success of the synthesis. HPLC data showed a single peak for 

both DBCO-acid-GRGDS (10) and FMOC-GRGDS (11) at 11.42 minutes 

(Appendix E, Figure 64 & Figure 65). The percentage purity was estimated to 
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be 90% and 64% for each compound respectively. Both compounds were sent 

for mass spectrometry analysis and it was found that the exact mass (M+1) for 

both was correct with a mw of 806 for DBCO-acid-GRGDS (10) and 713 for 

FMOC-GRGDS (11) (Figure 30).  

 

Figure 30: Mass spectrometry analysis of DBCO-GRGDS and FMOC-

GRGDS peptide. 

With the aim of ultimately using the peptide to carry out a cell adhesion assay, 

GRGDS peptide with no linker was also synthesised (12) (Figure 31). This 

would allow for a control when comparing adhesion to see if there was a 
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difference between cells treated with GRGDS peptide alone and cells with 

DBCO-GRGDS peptide attached to microparticles. Matrix assisted laser 

desorption/ionisation-time of flight (MALDI-TOF) analysis again showed the 

successful production of GRGDS peptide with a mw of 490 (Figure 31). 

 

Figure 31: Mass spectrometry analysis of GRGDS peptide 

After mass analysis showed all GRGDS peptides (10, 11 and 12) on a 100 mg 

scale had been synthesised successfully, attempts to scale this up to 300 mg 

were made. However, it was found when repeating the synthesis on a larger 

scale the results were unreproducible and production of the correct peptide was 

unsuccessful. Mass spec analysis of the DBCO-acid-GRGDS peptide (10) when 

scaled up, showed a molecular weight of 589 suggesting an unsuccessful 

synthesis of the compound. HPLC analysis corroborated this data with multiple 

peaks seen at 13, 17 and 18 min. (Appendix E, Figure 66 & Figure 67). As it 

was not possible to scale up the synthesis, attempts to purify compounds 10, 11 

and 12 were carried out using preparative HPLC. Fractions were collected at 

3.4, 4.8, 14.3 and 16.5 minutes (Appendix E, Figure 68) and MALDI analysis 

carried out of all products. No peaks corresponding to the correct mw of 805 for 



Chapter 3: Microparticle Production and Optimisation 

94 

the DBCO-acid-GRGDS product (10) were found, and it was not possible to 

isolate a single product from the fractions (Appendix E, Figure 69-Figure 72). As 

it was not possible to purify the peptide no further experimentation was carried 

out to this end.  

2.7. Microparticle cytotoxicity  

With the final application of a drug delivery system for the regeneration of 

tendon tissue in mind, it was important that the formulated microparticles did not 

exhibit toxicity towards cells. In an effort to assess their cytotoxicity PCL-N3 

microparticles (7) were analysed using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and 

compared to microparticles formulated using commercial PCL. Live cells are 

able to convert the tetrazolium dye into a formazan, which has a strong 

absorbance at 490 nm and a deep purple colour. If the sample does not contain 

metabolically active cells, this formazan is not produced and the dye will remain 

yellow. The formation of formazan, and therefore the absorbance is directly 

proportional to the number of live cells present within the sample. The following 

concentrations of PCL and PCL-N3 microparticles (7) were analysed; 30, 330, 

630, 930, 1230, 1530, 1830, and 2000 µg/mL. Microparticles at increasing 

concentrations were incubated with 3T3 fibroblast cells for, 1, 3, 5 and 7 days 

(Figure 32). Control samples of cells only, treated with MTS was used.  
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Figure 32: Cytotoxicity analysis of PCL-N3 microparticles. N=3. Control 

wells of cells only reacted with MTS assay were taken to be 100% cell viability. 

All other wells were normalised against these controls. 

It was found that PCL-N3 microparticels (7) showed little cytotoxicity to 3T3 cells 

after 1 day with cell viability remaining >87% for all concentrations. After 3 days, 

viability of cells treated with PCL-N3 microparticles was greater than that of 

untreated controls. This could suggest that PCL-N3 microparticles results in cell 

proliferation. However, this trend was not seen consistently in all microparticle 

concentrations, with both a decrease and increase in cell viability seen across 

concentrations at days 5 and 7. If microparticles were increasing cell 

proliferation, linearity between microparticle concentration and increased cell 

viability would be expected. This trend was not seen however, and instead the 

results were concluded to be unreliable. Cells treated with PCL microparticles 

had comparable results (Appendix F, Figure 73). Samples were measured in a 

plate reader, in a 96 well plate. It was hypothesised that the presence of 

microparticles within the well plate resulted in interference with the assay and 

absorbance readings. To test this hypothesis, control samples containing 

microparticles only and no cells were treated with MTS assay. It was found that 

these control samples resulted in positive absorbance readings, although no 

colour change of the dye was observed. In an attempt to remove the potential 

interference of the microparticles from the assay the experiment was repeated. 
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After the necessary incubation time of cells with microparticles the media was 

removed, and the cells were washed multiple times with PBS. It was 

hypothesised that multiple washings of the cells would remove the particles 

before addition of the MTS and taking absorbance readings. However, it was 

found that this resulted in rounding of the cells and their detachment from the 

tissue culture plastic. Therefore, it was not possible to remove the interference 

of microparticles from the assay.  

Investigations into a cytotoxicity assay that did not rely on absorbance therefore 

were carried out. Trypan blue is a cell viability staining assay. After cells 

undergo apoptosis, their membranes become permeable, which trypan blue is 

able to penetrate. Live cells however, are able to exclude the dye from their 

membranes. This means that dead cells treated with trypan blue will stain a 

vivid blue and can be counted using a haemocytometer. PCL-N3 and PCL 

microparticles were incubated with adult horse tenocytes at increasing 

concentrations of 1, 10 and 20 mg/mL.  

Trypan blue staining results indicated that PCL-N3 microparticles (7) did not 

result in increased cell death (Figure 33). The total percentage of dead cells in 

the control sample was 11%. Percentage dead cells, in all populations treated 

with PCL-N3 microparticles remained at or below 11%. Concentrations of 1, 10 

and 20 mg/mL microparticle solution resulted in percentage dead cells of 9, 11 

and 6% respectively. This suggests that PCL-N3 microparticles (7) were not 

toxic to these cells.  
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Figure 33: Trypan blue staining of tendon cells treated with PCL and PCL-

N3 microparticles.  

3. Conclusion 

To summarise, this chapter has shown the successful production of 

microparticles formulated using PCL-N3 polymer. It has been shown that particle 

size can be tightly controlled by altering parameters during the production 

process such as stir speed and polymer concentration, resulting in particles that 

had monodispersed size ranges with good morphology. Microparticles contain 

accessible azide functionality and can undergo the SPAAC click reaction to 

conjugate to a fluorescent DBCO unit. The success of this model reaction is a 

promising indicator that these microparticles can be used for the conjugation of 

biomolecules. The production of these microparticles represents a template 

drug delivery system which can be taken forward and used for the conjugation 

of biomolecules to the particles surface using click chemistry and DBCO linkers.  
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4. Experimental Procedures 

4.1. Instrumentation  

LDC-1 dispersion cell (Micropore Technologies Ltd, UK) and Aladdin-1000 

motorised injection pump (World Precision Instruments Inc, Uk) were used to 

produce microparticles. Injection rates were kept at the manufacturers 

recommended value unless otherwise stated (Appendix C, Table 14). RPM 

values were calculated using manufacturers guidelines. Hydrophilic nickel 

membranes were supplied from Micropore Technologies with pore sizes of 5, 

10 or 15 µm orientated in either a ringed area or throughout the membrane 

(known as standard membranes). All microparticles were lyophilised and 

visualised using SEM analysis, mounted on aluminium stubs and coated with 

gold (Jeol Ltd, Japan). Light microscopy images were taken using Evos XL core 

microscope (Life Technologies, USA). Image J analysis was carried out to 

measure particles size. Fluorescent images were taken using an AxioPlan 2ie 

(Zeiss, Germany). Quantitative fluorescent data was gathered using a 

CLARIOstar® plate reader (BMG Labtech, UK). A Heraeus™ Megafuge™ 8 

bencthop centrifuge (Thermo Fisher Scientific, USA) was used for 

centrifugation.  

4.2. Materials 

All materials were from Sigma Aldrich and used as received, unless otherwise 

stated. Tween® 20, polycaprolactone (Mw ~14,000 Mn, ~10,000 by GPC), 

sodium hydroxide (≥98%, anhydrous pellets), citric acid (≥99.5%), poly(vinyl 

alcohol) (89,000-98,000 Mw, 99+% hydrolysed), sodium chloride (≥99.5%), 

phosphate buffered saline (tablet), trypan blue, dibenzocyclooctyne-PEG4-Fluor 

545 (dissolved in DMSO, 2.67 mM), N,N-diisopropylethylamine (≥99%), 

triisopropylsilane (98%), trifluoroacetic acid (99%), piperidine (99%, dissolved in 

DMF at a concentration of 40% or 5%), dibenzocylooctyne-acid (95%), 

potassium cyanide (≥98.0%), ninhydrin (dissolved in ethanol at final 

concentration of 5%), phenol (≥99.5%, dissolved in methanol to a final 

concentration of 80%), 2-(7-Aza-1H-benzotriazole-1-yl)-1,1,3,3-
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tetramethyluronium hexafluorophosphate (98%, Fluorochem), FMOC-Ser(tBu)-

Wang resin (100-200 mesh) (Serine resin, Novabiochem), Fmoc-Arg(Pbf)-OH 

(Arginine, Novabiochem), Fmoc-Gly-OH (Glycine, Novabiochem), Fmoc-

Asp(OtBu)-OH (Aspartic acid, Novabiochem), fetal bovine serum (Filtered prior 

to use, Thermo Fisher Scientific), Dulbecco’s modified eagle medium (DMEM, 

Thermo Fisher Scientific), penicillin and streptomycin (Pen Strep, 5000 units of 

penicillin and 5000 µg/mL of streptomycin in 0.85% saline), and L-Glutamine 

(Thermo Fisher Scientific).   
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4.3. Microparticle Production   

General method 

All membranes were calibrated prior to use using Micropore’s dispersion cell 

calibration protocol. A 10% v/v oil in water emulsion of sunflower oil in 2% w/v 

Tween® 20 was produced and droplets analysed for signs of membrane 

damage. All membranes were cleaned as per the manufacturer’s guidelines in 4 

M NaOH and 2% w/v citric acid. All microparticles were produced using the 

same general procedure of membrane emulsification. Polymer was dissolved in 

DCM (10 mL) to produce the oil phase and injected using a syringe pump 

through a porous membrane into distilled water containing PVA as a surfactant 

(100 mL, filtered) under constant rotation. Once all the oil phase had been 

injected, particles were collected in a glass beaker and left stirring overnight at 

120 rpm to solidify microparticles via solvent evaporation. Solidified particles 

were collected by centrifugation (5000 RPM, 3 min) and washed thoroughly with 

water (10 x 50 mL). Particles were lyophilised to yield white powder (typical 

yields ~50%). 

4.3.1. Microparticle Optimisation 

For microparticle optimisation tests, microparticles were produced using the 

general method detailed above with alterations made to one of the following; the 

oil phase, the water phase, the RPM of continuous phase rotation or the 

injection rate of the dispersed phase. Table 10 below details the experimental 

conditions tested for the optimisation of microparticles.  

The effect of membrane pore size: Microparticles were produced using the 

general method detailed above, with 10% commercial PCL in DCM as the oil 

phase injected into 1% w/v PVA with 13 g/L NaCl, through a ringed membrane 

with either 10 or 5 µm pore sizes. All tests were carried out in triplicate to 

ensure reproducibility.  
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Table 10: Experimental conditions used for microparticle optimisation.  

(S= standard membrane. R = ringed membrane. 

The effect of stir speed and polymer concentration: Microparticles were 

produced using the general method detailed above with alterations made to 

either the concentration of PCL-N3 (4) used as the oil phase, or the stir speed 

used at injection. For both experiments the oil phase was injected into 1% w/v 

PVA through a ringed membrane with pore sizes of 15 µm at an injection rate of 

0.70 mL/min. For the effect of stir speed, 10% w/v PCL-N3 (4) dissolved in DCM 

was used as the oil phase and stir speeds of 400, 590, 770, 950, 1140 and 

1500 RPM were assessed. For polymer concentration, stir speeds were kept 

constant at 1140 RPM and PCL-N3 (4) concentrations of 5, 10, 20, 30 and 40% 

w/v were used as the oil phase.  

 

Membrane  Oil  Water RPM  Rate mL/min 

15 µm S 10% PCL  0.3% PVA  779 0.5 

15 µm S 10% PCL  1% PVA  779 0.5 

15 µm S 10% PCL 1% PVA, 13 g/L NaCl 779 0.5 

15 µm S 10% PCL  1% PVA, 40 g/L NaCl 779 0.5 

15 µm S 10% PCL  1% PVA, 13 g/L NaCl 1091 0.5 

15 µm S 10% PCL  1% PVA, 13 g/L NaCl 779 1 

15 µm S 10% PCL  1% PVA, 13 g/L NaCl 779 2.1 

15 µm S 15% PCL  1% PVA, 13 g/L NaCl 779 0.5 

15 µm S 20% PCL  1% PVA, 13 g/L NaCl 779 0.5 

10 µm R 10% PCL  1% PVA, 13 g/L NaCl 779 0.26 

5 µm R 10% PCL  1% PVA, 13 g/L NaCl 779 0.07 

15 µm R 5% PCL  1% PVA, 13 g/L NaCl 1140 0.7 

15 µm R 10% PCL 1% PVA, 13 g/L NaCl 1140 0.7 

15 µm R 15% PCL  1% PVA, 13 g/L NaCl 1140 0.7 

15 µm R 20% PCL 1% PVA, 13 g/L NaCl 1140 0.7 

15 µm R 30% PCL  1% PVA, 13 g/L NaCl 1140 0.7 

15 µm R 40% PCL  1% PVA, 13 g/L NaCl 1140 0.7 

15 µm R 10% PCL  1% PVA, 13 g/L NaCl 400 0.7 

15 µm R 10% PCL  1% PVA, 13 g/L NaCl 559 0.7 

15 µm R 10% PCL  1% PVA, 13 g/L NaCl 770 0.7 

15 µm R 10% PCL  1% PVA, 13 g/L NaCl 950 0.7 

15 µm R 10% PCL  1% PVA, 13 g/L NaCl 1500 0.7 
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4.4. Porous Microparticles (6) 

Porous microparticles were produced via double emulsion technique. First a 

primary emulsion of an internal water phase containing PVA (1 or 3% w/v) and 

NaCl (13 or 40 g/L) was emulsified by sonication with the oil phase containing 

15% w/v commercial poly(caprolactone). The primary emulsion was then used 

as the dispersed phase for membrane emulsification. The emulsion was 

injected through a ringed membrane (40 µm) at an injection rate of 2.5 mL/min, 

stirring at 600 RPM into the external water phase (1% w/v PVA, 13 g/L NaCl). 

Once injection had been sufficient to produce a 10% v/v emulsion, droplets 

were collected and added to 1% w/v PVA solution at a ratio of 1:10 and left 

overnight stirring at 120 RPM to solidify microparticles via solvent evaporation. 

Solid particles were collected by centrifugation (3000 RPM, 3 min) and salt 

leaching was carried out via multiple aqueous washings (10 x 50 mL). Particles 

were lyophilised to yield compound 6 as a white powder (typical yields ~10%). 

Microparticle size, and pore diameter was evaluated using Image J software.  

PBS was evaluated as a porogen. First a primary emulsion of 1x PBS (1 mL) 

was emulsified by homogenisation (9000 RPM, 2 min) with the oil phase 

containing 20% w/v commercial poly(caprolactone). The primary emulsion was 

then used as the dispersed phase for membrane emulsification. The emulsion 

was injected through a ringed membrane (40 µm) at an injection rate of 2.5 

mL/min stirring at 779 RPM into the external water phase (0.3% w/v PVA). The 

solution was left overnight stirring at 120 RPM to solidify microparticles via 

solvent evaporation. Solid particles were collected by centrifugation (3000 RPM, 

3 min) and washed (10 x 50 mL). Particles were lyophilised to yield a white 

powder.   
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4.5. Assessing Polymer Viscosity  

The viscosity of commercial PCL and PCL-N3 (4) was tested using a Rheotex 

U-tube viscometer. The viscosity of DCM, sunflower oil and water were used as 

controls. Concentrations of 1-20% w/v PCL or PCL-N3 dissolved in DCM were 

produced. The amount of time taken for the liquid to flow through the viscometer 

was recorded and the following equation used to calculate viscosity.  

                       

 

Where C = Constant for the specific viscometer used and T = Time in seconds. 

The viscometer was cleaned thoroughly between each reading, and all 

concentrations were read in triplicate and an average time taken to record 

viscosity.    
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4.6. Fluorescence Staining of Polycaprolactone-Azide Particles (8) 

 

General formula: N8C63H80O13(C6H10O2)n 

Molecular Weight: ~23,936.   

PCL-N3 microparticles (7) (10 mg, 0.51 nmol, 1eq) were suspended in PBS (1 

mL, pH 7.4). 2.6 mM Dibenzocyclooctyne-PEG4-Fluor 545 (220 µL, 0.59 nmol, 

1.15eq) was added and the solution was left to stir for 1 h at 200 rpm. The 

reaction was carried out in triplicate. The suspension was filtered via vacuum 

filtration through an organic membrane. The resulting particles (8) were washed 

thoroughly with water (10x50 mL) and lyophilised.  

For fluorescence data, particles (8) were suspended in DMSO to a final 

concentration of 1 mg/mL and heated to fully dissolve. Particle solution (300 µL) 

was used for fluorescence spectroscopy (567 nm). Samples of water washes 

from particles were also taken and measured in triplicate to ensure no further 

dye leaching was evident. Samples of particles suspended in water were taken 

for fluorescence microscopy.   
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4.6.1. Optimisation  

To optimise the conjugation of the dye, microparticles (8) were prepared using 

dibenzocyclooctyne-PEG4-Fluor 545 as previously described, stirring at 200 

RPM and with reaction times altered to; 5, 30 min, 2, 6 or 48 h.  

The effect of mole ratio of PCL-N3 to dibenzocyclooctyne-PEG4-Fluor 545 was 

assessed. PCL-N3 microparticles (7) (10 mg, 0.51 nmol) were suspended in 

PBS (1 mL, pH 7.4) and dibenzocyclooctyne-PEG4-Fluor 545 was added at 

either 55 µL (0.15 nmol, 0.3 eq), 220 µL (0.59 nmol, 1.15 eq) or 330 µL (0.88 

nmol, 1.7 eq). The solution was left to stir for 1 h at 200 rpm.   
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4.7. Synthesis of GRGDS Peptide (9, 10, 11 & 12) 

4.7.1. Protected GRGDS Peptide-Wang Resin (9)  

 

FMOC-Ser(tBu)-Wang resin (102.3 mg, 0.064 mmol, 1eq) was swelled whilst 

shaking with DCM (10 mL) for 30 min and then DMF (10 mL) for 30 min. 

Removal of FMOC protecting groups was with 40% piperidine in DMF (4 mL) for 

10 min, 5% piperidine in DMF (2x4 mL) for 5 min whilst shaking, and then 

washed with DMF (6x10 mL). Aspartic acid (133.2 mg, 0.32 mol, 5eq) and 

HATU (122.2 mg, 0.32 mol, 5eq) were dissolved in DMF (2 mL) and left to 

activate for 2 min. DIPEA (111 µL, 0.64 mol, 10eq) was added and the amino 

acid and cross coupling solution was added to the peptide column to react 

whilst shaking for 2 h. The peptide was then washed with DMF (6x10 mL) and 

DCM (6x10 mL). A small sample of the peptide was taken and one drop of each 

solution of 0.001 M 2% potassium cyanide, 80% phenol in methanol, and 5% 

ninhydrin in ethanol was added and the solution boiled to carry out a Kaiser 

test, a brown colour confirmed the absence of primary amines. All steps were 

repeated for the sequential addition of the remaining amino acids; Glycine (95.1 

mg, 0.32 mol, 5eq), Arginine (208.9 mg, 0.32 mol, 5eq) and Glycine (128 mg, 

0.32 mol, 5eq) to produce compound 9 (93 mg, 55%)  
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4.7.2. GRGDS-Dibenzocyclooctyne Acid Pentapeptide (10) 

 

General Formula: C38H47N9O11 

Molecular Weight: 805.35 

A small portion of 9 (24.2 mg, 0.016 mmol, 1eq) was taken for the addition of 

DBCO acid. Removal of FMOC protecting groups was done with 40% piperidine 

in DMF (4 mL) for 10 min, 5% piperidine in DMF (2x4 mL) for 5 min whilst 

shaking, and then washed with DMF (6x10 mL). DBCO acid (5.9 mg, 0.0176 

mmol, 1.1 eq) and HATU (6.8 mg, 0.0176 mmol, 1eq) were dissolved in DMF 

(500 µL) and left to activate for 2 min. DIPEA (7 µL, 0.032 mmol, 2eq) was 

added and the DBCO acid and cross coupling solution was added to the 

peptide column to react whilst shaking for 22 h. The peptide was then washed 

with DMF (6x10 mL) and DCM (6x10 mL) and a Kaiser test performed. The 

peptide was washed with methanol and DCM (1:1, 6x10 mL) and desiccated 

overnight. A cleavage cocktail (3 mL) of 95% TFA, 2.5% H2O and 2.5% TIPS 

was added to the peptide column and left for 3 h whilst shaking. Peptide was 

washed with TFA (3x2 mL) the solvent was removed by rotatory evaporation 

and the peptide was precipitated with cold ether to yield compound 10.  
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4.7.3. GRGDS- Fluorenylmethyloxycarbonyl Pentapeptide (11)   

General Formula: C32H40N8O11 

Molecular Weight: 712.29 

A small portion of compound 9 was washed with methanol and DCM (1:1, 6x10 

mL) and desiccated overnight. A cleavage cocktail (3 mL) of 95% TFA, 2.5% 

H2O and 2.5% TIPS was added to the peptide column and left for 3 h whilst 

shaking. Peptide was washed with TFA (3x2 mL) the solvent was removed by 

rotatory evaporation and the peptide was precipitated with cold ether to yield 

compound 11.  
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4.7.4. GRGDS Pentapeptide (12)   

 

General Formula: C17H30N8O9 

Molecular Weight: 490.47 

Removal of FMOC protecting groups from a small portion of compound 9 was 

done with 40% piperidine in DMF (4 mL) for 10 min, 5% piperidine in DMF (2x4 

mL) for 5 min whilst shaking, and then washed with DMF (6x10 mL). The 

peptide was washed with methanol and DCM (1:1, 6x10 mL) and desiccated 

overnight. A cleavage cocktail (3 mL) of 95% TFA, 2.5% H2O and 2.5% TIPS 

was added to the peptide column and left for 3 h whilst shaking. Peptide was 

washed with TFA (3x2 mL) the solvent was removed by rotatory evaporation 

and the peptide was precipitated with cold ether to yield compound 12.  
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4.7.5. Peptide Analysis 

GRGDS peptide (10, 11 or 12) were dissolved in HPLC grade methanol (400 

µL) at a final concentration of 1 mg/mL and filtered through a 0.45 µM syringe 

filter. Analytical RP-HPLC was carried out on an Agilent 2000 (Agilent 

Technologies, USA) using an eclipse XDB-C18 column (Agilent Technologies, 

USA), 4.6x100 mm, 3.5 µM with a flow rate of 1 mL/min. Solvent A was; 95% 

H2O with 0.05% TFA. Solvent B was 95% methanol with 0.05% TFA. Solvent B 

was increased to 95% over 15 minutes, then held at 95% for 5 minutes. 

Detection was carried out at 214 nm and 254 nm.  

Mass analysis of compound was carried out either by Dr Nora Francini at the 

Boots science building in Nottingham in ESI positive mode or by MALDI-TOF 

analysis using an analytical Axima MALDI-TOF (Kratos analytical, Uk) in 

positive reflectron mode. Sinipinic acid in 50% ACN with 0.03% TFA was used 

as the matrix.  
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4.8. Cytotoxicity of Polycaprolactone-Azide Microparticles 

Adult horse tenocytes (passage 18) were cultured in Dulbecco’s modified eagle 

medium (DMEM) supplemented with foetal bovine serum, glutamine, penicillin 

and streptomycin (Penstrep). At 50% confluency, cells were seeded in a 96 well 

plate at a density of 15,000 cells per well and left for 12 h to adhere. 

Polycaprolactone azide particles (7) and polycaprolactone particles (1, 10 and 

20 mg) were sterilised by ultra violet light for 12 h. After sterilisation, particles 

were suspended in media (1 mL) to final concentrations of 1, 10 and 20 mg/mL. 

After cells had adhered to the well plate, the media was removed, and replaced 

with 1 mL of particle solution to each well. Cells were incubated with the particle 

solution for 24 h at 37°C. After incubation, the media was aspirated from cells, 

and they were washed with PBS (6x1 mL). Cells were treated with a trypsin 

solution (200 µL) removed from the well plate and diluted in fresh media (800 

µL). A sample from each well (10 µL) was taken and mixed at a ratio of 1:1 with 

trypan blue dye. 10 µL of this solution was taken for cell counting using a 

haemocytometer. All samples were carried out in triplicate. Three wells 

containing only cells and no particle solution treated in the same way were used 

as a control. 
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1. Introduction  

As discussed previously, a multitude of proteins and growth factors are 

upregulated during the regeneration of tendon tissue. In order to validate 

microparticles as a drug delivery system it was important to choose a 

therapeutic protein of interest with which conjugation attempts could be 

investigated. Attentions were turned towards proteins from the superfamily; 

transforming growth factor-βeta (TGF-β). TGF-β has been shown to be 

upregulated in the inflammatory response and repair of tendon tissue.20 Of 

particular interest was its critical role in the differentiation of tendon tissue in 

embryonic development.2,22 The healing process in adult tendons is reparative, 

characterised by increased collagen III and disorganised matrix. Conversely, 

foetal tendon healing is regenerative, after which the healed tissue is identical to 

the original tissue.35 Therefore, it was hypothesised that the incorporation of 

TGF-β proteins within the microparticle drug delivery system would result in 

regeneration of the targeted tissue.  

1.1. Transforming Growth Factor-β for the Regeneration of Tendon 

Tissue   

The TGF-β superfamily includes many growth and differentiation factors, 

including bone morphogenetic proteins, which regulate cell proliferation, 

differentiation, and overall homeostasis of tissues.28,68 If TGF-β signalling is 

knocked out in mice, the resulting mutants are not able to form tendon tissue, 

highlighting its importance for tendon development.2 After tendon injury, TGF-β 

is significantly increased and is active in the remodelling of the tissue.28 In the 

inflammatory phase of healing, release of TGF-β stimulates the synthesis of 

collagen, inhibits the action of matrix metalloproteinase, aids the production of 

fibronectin and proteoglycans, and thus facilitates the remodelling of the 

extracellular matrix.29,58,60,224 Currently three isoforms, TGF-β1, TGF-β2 and 

TGF-β3 have been identified in the repair process of tendon injury, each 

exerting a different regulatory role in tissue development and growth.20 When 

cultured with tendon fibroblasts, all TGF-β isoforms were able to increase the 

production of collagen type I.29 
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TGF-β1 is highly upregulated during the healing process of adult tendon tissue, 

with it being expressed in the early stages of tendon healing, with a peak at 

fourteen days, which decreases after the first two months.20,42 It is released 

from platelets and exogenous macrophages during the inflammatory phase of 

repair and it is necessary for a multitude of biological processes.33,58,60 TGF-β1 

has been implicated in cellular migration, proliferation and apoptosis, as well as 

being involved in the deposition of extracellular matrix.20,68 It is able to regulate 

the action of matrix metalloproteinase and the production of matrix proteins, and 

collagens.60,224 Application of TGF-β1 to regenerating patellar tendon resulted in 

an increase in the tissues tensile strength, improving its mechanical properties 

after damage.225 

TGF-β3 is the predominant isoform upregulated during the embryonic 

development of tendon tissue.33,42  When TGF-β3 was delivered to the repair 

site of tendon-to-bone insertions of rats, cell proliferation, vascularity and an 

accelerated healing process were observed.35 TGF-β3 application in tendon 

repair has been shown to significantly increase biomechanical and structural 

properties of the tendon, leading to a better quality tissue when compared to 

controls.35,224 When tested in a rat tendon healing model, TGF-β3 resulted in an 

increased expression of collagen types I and III, with evidence of matrix 

remodelling.29 

Unfortunately, controversy still exists regarding the potential of TGF-β as a 

regenerative molecule. It has been shown that significant interaction occurs 

between the three isoforms, with TGF-β1 having the ability to inhibit the action 

of TGF-β2 and TGF-β3.29 If all three isoforms are delivered simultaneously, the 

resulting tendon exhibits excessive scar formation and reduced mechanical 

strength.29,42 Further investigations into each isoform as an individual entity still 

needs to be done before its potential in clinical settings will become more 

apparent29,42  
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1.2. Dibenzocyclooctyne Linkers for Protein Conjugation 

As previously discussed (chapter 2) the chosen method of conjugation to the 

microparticles was using the strain-promoted azide-alkyne cycloaddition 

(SPAAC), utilising a dibenzocyclooctyne (DBCO) unit. DBCO molecules are a 

set of bifunctional cross-linkers that contain two different reactive groups, one of 

which is a strained internal alkyne. The second functional group can be 

specifically chosen to allow for conjugation to a protein from a vast array of 

commercially available products (Figure 34). Therefore, the protein can be 

directly conjugated to microparticles with the DBCO unit acting as a crosslinking 

spacer arm. Each linker molecule can be tailored to conjugate to a specific 

group within the protein by choosing a specific functional group on the linker. 

DBCO units can be purchased with or without a poly(ethylene) glycol (PEG) 

spacer arm depending on the desired level of hydrophilicity of the particles after 

conjugation. The more repeat units that are incorporated, the higher the degree 

of the hydrophilicity imparted and the increased likelihood of the conjugate to be 

located on the surface of the microparticle.145  

 

Figure 34: Examples of commercially available DBCO molecules.   

To be able to successfully conjugate a protein of interest to PCL-N3 

microparticles it is important to understand the functional groups available within 

proteins. Identification of appropriate functional groups abundant on the surface 

of the protein, can allow for conjugation without the need to sacrifice the 

biological activity of the protein.226  
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1.3. Functional Groups Present in Proteins for DBCO Conjugation  

Of the twenty natural amino acids used as the building blocks for proteins, only 

nine are chemically active for conjugation (Figure 35). These active amino acids 

are; arginine, histidine, methionine, tryptophan, cysteine, tyrosine, lysine, 

glutamic acid and aspartic acid.226 The most commonly used of these for the 

conjugation to proteins are cysteine and lysine, with connections being made 

through reactions with the thiol and amino groups respectively.  

 

Figure 35: Functional groups available on common amino acids. The 

available functional group highlighted in blue for each amino acid can be target 

for the conjugation of proteins. 

Primary amines are the most commonly used functional groups for protein 

conjugation.161 They are abundant in proteins, found in the N-terminus and on 

amino acid side chains.227 Primary amines are likely found on the surface of the 

protein and are therefore readily accessible.145 As primary amines are 

predominately found on the proteins surface, conjugation to them does not tend 

to result In denaturation of the protein and conjugation via primary amines can 

be applied to nearly all proteins and peptides.161 N-hydroxysuccinimide (NHS) 
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esters are commonly used for conjugation to primary amines, the reaction 

proceeds in alkaline conditions (pH 7-8) and results in the formation of a stable 

amide bond. Upon reaction with a primary amine, the NHS leaving group is 

released ( 

Scheme 13), which is easily removed through dialysis.145 Hydrolysis of the NHS 

ester can also occur, and this increases with pH of the reaction buffer. This is a 

competing reaction to the cross coupling with primary amines and therefore 

decreases the efficiency of protein conjugation.  

 

Scheme 13: Reaction scheme for the use of NHS esters for the 

conjugation of proteins. Primary amines present in the protein can conjugate 

with NHS resulting in a stable amide bond. 

Free cysteines have a thiol functional group which can be used for conjugation.  

However, free cysteines are rare as they are necessary for disulphide bonding 

to maintain the quaternary structure of the protein, and join multiple polypeptide 

subunits.104,228 Therefore to obtain a free thiol prior to conjugation cysteines 

must first be reduced, which can often have detrimental effects to the function of 

the protein. Another limitation to the conjugation of proteins via cysteines is the 

relatively hydrophobic nature of these amino acids means they predominate 

within the protein core and are therefore rarely accessible. However, if thiols are 

present, or can be reduced prior to conjugation, the reaction can be carried out 

in neutral conditions (pH 6-7.5) using water as the solvent.145 Maleimide 

functional groups are reactive towards thiols and result in the formation of stable 

thioether linkages (Scheme 14).  
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Scheme 14: Reaction scheme for the use of maleimide for the conjugation 

of proteins. Free thiol groups present in the protein can conjugate with 

maleimide functional group resulting in a stable thioether bond. 

1.4. Aims and Objectives  

The hypothesis of the work carried out in this chapter is that protein could be 

conjugated to previously formulated PCL-N3 microparticles. The conjugation 

should be able to occur by utilising a bifunctional linker containing a DBCO unit. 

The best method of conjugation to the DBCO unit needed to be identified. It was 

necessary to assess if the conjugation reaction could occur between a model 

protein and the DBCO unit. If this reaction was successful endeavours to 

conjugate a therapeutic TGF-β protein could then be attempted.   

2. Results and Discussion 

2.1. Human Serum Albumin Conjugation to Polycaprolactone-Azide 

Microparticles  

Whilst working on the DBCO conjugation to the azide polymer and 

microparticles (Chapter 2 section 2.3 and Chapter 3 section 2.5 respectively), 

parallel experiments were carried out to assess the feasibility of protein 

conjugation. Investigations began into the ‘proof of concept’ of conjugating a 

human serum albumin (HSA) protein to a DBCO-PEG4-maleimide (DBCO-mal) 

linker. HSA is an abundant protein that is commercially available at low cost. It 

is known to contain a free cysteine at residue 34 of its quaternary structure.229 

Therefore, this protein can be used as a model, to test the conjugation of 

DBCO-mal.195,230 The first step in achieving this was to conjugate the HSA 

protein to a DBCO-mal linker, which could then in turn be attached to the azide 
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group of PCL-N3 microparticles using click chemistry (14) (Scheme 15). Native 

HSA purchased from Sigma Aldrich was fully biochemically and biophysically 

characterised prior to conjugation using liquid chromatography mass spec (LC-

MS), high performance liquid chromatography (HPLC), and matrix assisted 

laser desorption/ionisation-time of flight. (MALDI-TOF) (Appendix G, Figure 74-

Figure 76). 
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Scheme 15: Conjugation of HSA to PCL-N3 microparticles. HSA (PDB 

ID:2BX8)260 can be conjugated to dibenzoclyooctyne-PEG4-malemide via the 

free cysteine at residue 34 (Step 1) and subsequently to the azide group on the 

PCL-N3 microparticles via click chemistry (Step 2) 
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2.1.1. Human Serum Albumin-Dibenzocyclooctyne-PEG4-Maleimide 

Conjugation 

The first experiment to carry out was the conjugation of HSA to DBCO-mal (13), 

as detailed in reaction Scheme 15, Step 1. DBCO-mal was added to HSA 

samples with increasing concentrations of triethanolamine (TEOA, 40 and 400 

mM). Initially, HPLC was the chosen method to assess the success of the 

conjugation reaction. Native HSA and DBCO-mal control samples showed 

clear, separate elution profiles, with HSA eluting at 11.5 minutes and DBCO-mal 

eluting at 10.9 minutes (Figure 36). In theory if the conjugation reaction is 

successful the new species (13) would ideally elute with its own unique 

retention time. However, it was found that retention of HSA conjugated to 

DBCO-mal (13) was comparable to native HSA with elution times of 11.7, 11.6 

and 11.6 for 4, 400 and 0 mM TEOA respectively (Figure 36). Therefore, this 

technique was not suitable for determining if the reaction had been successful 

and as a result, other techniques for analysis were investigated. 
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Figure 36: HPLC analysis of HSA conjugated to DBCO-PEG4-maleimide 

with and without triethanolamine. Elution times for each sample are 

indicated. 

The conjugation of DBCO-mal to HSA relies on the thiol-maleimide chemistry 

between the free thiol present on residue 34 of the protein. It was therefore 

possible that an Ellman’s assay could be used to determine the success of the 

conjugation reaction as Ellman’s reagent can be used for the quantification of 

free thiol groups present within a sample. The main compound of the reagent, 

5,5’-dithio-bis-(2-nitrobenzoic acid) (DTNB) contains a disulphide bond between 

the two 5-sulfido-2-nitrobenzoate (TNB) groups. Upon contact with a free thiol, 

one TNB group is released, resulting in a bright yellow colour which can be 

observed at 412 nm (Scheme 16).145 Each thiol present within the sample will 

result in the release of just one molecule of TNB and so it is possible to quantify 

the concentration of free cysteines present within the protein sample with the 

use of a calibration curve (Appendix H, Figure 77).  

HSA 
HSA 
DBCO-PEG4-maleimide 
DBCO-HSA 4 mM TEOA 
DBCO-HSA 400 mM TEOA 
DBCO-HSA no TEOA 

Key
: 
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Scheme 16: Ellman's assay reaction scheme. On contact with the reagent, 

thiols result in the release of TNB which has a strong absorbance at 412 nm, 

and a yellow colour. 

It was anticipated that native HSA would give a positive Ellman’s assay as there 

is a free thiol present within the protein. Once reaction with DBCO-mal has 

occurred (13), this thiol would no longer be available and therefore a negative 

Ellman’s result or significant reduction in absorbance was expected. This was 

reflected in the data, control samples of DBCO-mal and DBCO-acid gave 

absorbance readings similar to water only controls (data not shown). The native 

protein gave an average absorbance value equivalent to 0.93 mM of cysteine, 

and a bright yellow colour. The average absorbance for the conjugated sample 

(13) resulted in a significantly lower (P < 0.05) cysteine concentration at 0.17 

mM (Figure 37). When taking into the account concentration of the protein 

solution this equates to a ratio of cysteine to protein of 1.24 mM:1 mM for the 

native unconjugated reaction and 0.23 mM:1 mM for the conjugated reaction 

suggesting that the conjugation of DBCO-mal (13) had been successful. 
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Figure 37: Effect of conjugation reaction on concentration of cysteine 

present within HSA sample. HSA is native unconjugated protein. HSA-DBCO-

mal is the conjugated sample. 

Although it could be inferred from the Ellman’s data that the conjugation of HSA 

to DBCO-mal had been a success, more data was needed to prove this 

conclusively before attempting to conjugate the HSA to the PCL-N3 

microparticles. To this end LC-MS was used to analyse the success of the 

conjugation reaction (13). If conjugation is successful, a new peak will be 

identifiable with an increased molecular weight corresponding to the addition of 

the DBCO-mal linker in relation to the native protein. Unmodified native HSA 

protein shows multiple peaks when analysed using LC-MS, with the most 

abundant peak found at 66,560 Da. (Figure 38).231 
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Figure 38: LC-MS analysis of native unconjugated HSA protein. The most 

abundant peak is present at 66,560 Da. 

When HSA was reacted with DBCO-mal (13) LC-MS analysis showed an 

increase in the molecular weight in comparison to the unmodified protein. The 

spectrum (Figure 39) shows multiple peaks similar to those seen in native 

unconjugated protein. The peak at 66,559 is assumed to be an unlabelled, 

unconjugated native protein, with 23% relative abundance. The remaining 

peaks represent 73% relative abundance and suggest the successful 

conjugation reaction of DBCO-mal (13). This is evidenced by an increase in mw 

of 680 Da at each peak when compared to the previous. DBCO-mal has a MW 

of 674.74, therefore this suggests the possibility that the DBCO-mal is able to 

conjugate at multiple sites within the protein.  
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Figure 39: LC-MS analysis of HSA conjugated to DBCO-PEG4-maleimide. 

The addition of ~680 Da relative to unlabelled HSA (66,5 kDa) indicates a 

successful conjugation of the DBCO-PEG4-maleimide linker (674.74 MW). 

2.2.  Human Serum Albumin-Dibenzocyclooctyne-PEG4-Maleimide 

Conjugation to Polycaprolactone-Azide Microparticles  

After showing that it was possible to conjugate the HSA protein to the 

maleimide on the bifunctional DBCO linker, the next step was to see if this 

conjugate could then attach to the PCL-N3 particles via the internal alkyne (14) 

(Scheme 15, step 2). Qualitative confirmation of the success of this reaction 

was carried out using a Bradford assay. The Bradford assay utilises the colour 



Chapter 4: Protein Conjugation 

127 

change observed from red to blue upon the binding of the dye Coomassie 

Brilliant Blue to proteins.232 A resulting blue solution can therefore be used to 

indicate the presence of protein within a sample. PCL-N3 microparticles (7) 

(synthesised in chapter 3, section 2.4) were reacted with HSA-DBCO-mal 

conjugates (13) and thoroughly washed to remove any unbound reactants to 

produce HSA-DBCO-mal-PCL-N3 microparticle conjugates (14). Several 

controls were also carried out for this reaction; 1) PCL microparticles produced 

using commercially available PCL (containing no azide). 2) PCL-N3 particles 

reacted with HSA containing no DBCO-mal and 4) PCL-N3 particles reacted 

with DBCO-mal and no protein.  All control experiments resulted in brown 

solutions, with no protein present. This suggest no conjugation of HSA to the 

particles. The PCL-N3 microparticles reacted with HSA-DBCO-mal conjugates 

(14) gave a positive result and a strong blue coloured solution (Figure 40) 

suggesting successful conjugation.  

 

Figure 40: Visual identification of protein using the Bradford assay. PCL-

N3 microparticles reacted with HSA-DBCO-mal conjugates (left) gave a blue 

colour indicating the presence of protein when incubated with Bradford assay. 

PCL control particles reacted under the same conditions gave a negative result 

for the presence of protein (right). 

From these results, it was possible to infer that the conjugation of the HSA-

DBCO-mal to the PCL-N3 microparticles reaction (14) had been a success. The 

Bradford assay can also be used to quantify the amount of protein present in a 

sample, when compared with standards. This would provide quantification of 

the success of the reaction, thereby increasing confidence in the result. At this 

point, therefore it would be important to discuss the amount of protein loaded 

onto the particles and quantify the protein content. However, the presence of 

microparticles within the sample made it difficult to achieve meaningful 

PCL-N3 

microparticles + 

HSA-DBCO-

mal conjugates 

PCL control 

microparticles + 

HSA-DBCO-

mal conjugates 
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quantitative data for this. Microparticle interreference in the assay meant that 

even if the solution colour suggested a negative result (brown) the absorbance 

reading was still very high. When comparing PCL-N3-DBCO-mal-HSA 

conjugates (14) with commercial PCL control particles treated the same way, it 

was found that the average absorbance at 595 nm was 1.88 and 0.945 for both 

samples respectively. Visually however, samples showed a positive blue result 

for PCL-N3-DBCO-mal-HSA conjugates (14) and brown for commercial PCL 

control particles (Figure 41). This absorbance value is high for a negative result, 

especially when considering that control wells containing reaction buffer only, 

and DBCO-mal only gave absorbance readings of 0.305 and 0.425 respectively.  

 

Figure 41: Bradford assay absorbance readings of PCL-N3 and PCL 

microparticles conjugated to HSA. 

To try to remove the microparticles completely, after carrying out the Bradford 

assay the reaction solution from each well was removed and passed through a 

viva spin column. It was hoped that the particles would be retained at the top of 

the column and the solution would elute, allowing absorbance to be read with 

no particles present. However, it was found when this was carried out the 

solution that eluted from the column was no longer blue, but clear, suggesting 

that the Coomassie blue complex was retained at the top of the column (Figure 

42). This therefore meant that absorbance values obtained were comparable to 

water only.  

PCL-N
3
-DBCO-mal-

HSA conjugates 

PCL control particles 
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Figure 42: Attempted removal of particle interference from the Bradford 

assay.  

Another attempt to remove particle interference was to dissolve them in DMSO 

before addition of the Bradford assay. Microparticles were mixed with DMSO 

and heated to fully dissolve them. However, again absorbance readings showed 

control sample of particles only, with no protein, had a similar absorbance 

reading (1.833) to HSA-DBCO-mal-PCL-N3 microparticles (14) (1.706). The final 

attempt tried to remove particle interference was to take just the supernatant 

after the Bradford assay reaction. 200 µL of each sample was taken from the 

top of each well and absorbance read at 595 nm for HSA-DBCO-mal-PCL-N3 

microparticles and PCL control particles. It was found that the absorbance 

reading of HSA-DBCO-mal-PCL-N3 microparticles (14) equated approximately 

1.73 mg/mL of protein which was statistically significant (P= <0.0001) when 

compared to PCL control (Figure 43).  

Column 

Eluent 
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Figure 43: Protein concentration of microparticles reacted with DBCO-

mal-HSA conjugates. PCL-N3 and PCL microparticles were conjugated with 

HSA and DBCO-maleimide and absorbance was read at 595 nm after reacting 

with Bradford assay. 

2.2.1. Fluorescein Isothiocyanate conjugation to Human Serum 

Albumin-Dibenzocyclooctyne-PEG4-Maleimide-Microparticles 

Next visualisation of the conjugation reaction using Fluorescein isothiocyanate 

(FITC) was carried out. To achieve this, the HSA was fluorescently labelled 

before conjugating to microparticles. FITC is a popular fluorescent probe which 

will react with primary amines present within a protein sample resulting in the 

formation of a stable thiourea linkage.145 HSA protein was labelled with FITC 

(15) and conjugated to DBCO-mal in a one-pot reaction resulting in FITC-HSA-

DBCO-mal conjugates (16), which were then subsequently reacted with PCL-N3 

microparticles (17). Successful reactions would result in green microparticles 

when visualised under fluorescence microscopy (Ex 485 Em 520) (Scheme 17). 

A control of microparticles produced from commercially available PCL that 

contained no azide treated in the same way, was used. 
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Scheme 17: Two step synthesis of fluorescently labelled microparticles. 

FITC labelling of human serum albumin protein and subsequent conjugation to 

PCL-N3 microparticles. 
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Time taken to produce fluorescent microparticles, was studied by looking at 

reaction times of  10 min, 1, 2 and 12 h (Figure 44). Fluorescent imagery of the 

resulting purified microparticles (17) showed that the reaction is highly efficient, 

occurring within just 10 minutes. Fluorescence was observed in all the samples 

containing PCL-N3 microparticles (17) and no fluorescence was observed in 

control particles produced using commercially available PCL until after 12 

hours, at which point low level fluorescence is observed.  Physical adsorption of 

water and protein to the surface of the microparticles could have occurred at 

this time as opposed to a conjugation reaction occurring.  

 

Figure 44: HSA tagged with FITC conjugated to PCL-N3 microparticles via 

a DBCO-PEG4-maleimide linker. Commercial PCL microparticles were used 

as a control (right hand side). Scale bars show 100 µm. 

Combined fluorescence and Bradford assay data show the successful 

conjugation of a model protein to PCL-N3 microparticles using a bifunctional 

DBCO-linker. This success highlights that the microparticles can be used for 

conjugation to protein. This also has the potential to be adapted to other 
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proteins, if the native protein of interest has a free thiol, or can be modified to 

contain one, then in theory these conjugation techniques would be applicable 

also.   

2.3. Transforming Growth Factor-β Conjugation to Polycaprolactone-

Azide Microparticles  

As it was possible to conjugate a model protein to the PCL-N3 microparticles, 

efforts were made for the attachment of a relevant, therapeutic protein for the 

regeneration of tendon tissue. TGF-β1 and TGF-β3 were chosen due to their 

presence in embryonic development of the tendon tissue.2 TGF-β3 is the 

predominant isoform during early foetal development, which is taken over by 

TGF-β1 in the later stages as development progresses.42 Prior to 

experimentation, attempts were made to characterise the TGF-β1 and TGF-β3  

to identify the best techniques for the analysis of the conjugation reaction. TGF-

β has a molecular weight of 25 kDa. Structurally TGF-β proteins are a homo-

dimer of two identical 112 amino acid polypeptide chains, with 9 conserved 

cysteines. The two subunits are held together by a disulphide bridge formed 

between cysteines 77 on each chain.233,234 

2.3.1. Characterisation of Transforming Growth Factor-β1 and 

Transforming Growth Factor-β3 

LC-MS analysis was used to characterise TGF-β1 and TGF-β3 native proteins 

purchased from PeproTech® at a concentration of 4 µM. Exact masses for each 

isoform were calculated using ExPASy ProtParam and were found to be 25,571 

Da for TGF-β1 and 25,427 Da for TGF-β3, which was reflected in the LC-MS 

data (Figure 45). However, to achieve this data, a relatively large amount of 

sample of TGF-β was required. To conserve resources LC-MS analysis was 

carried out on solutions at a concentration of 0.4 µM as well. It was found that 

this concentration was too low to be able to achieve an identifiable peak in the 

spectra (data not shown.)  
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Figure 45: LC-MS analysis of TGF-β1 and TGF-β3 proteins at a 

concentration of 4 µM. TGF-β1 protein peak is seen at 25,572 Da (A) and 

TGF-β3 protein peak at 25,428 Da (B) as expected. 

Characterisation by MALDI-TOF was then attempted with protein 

concentrations of 4 µM (Appendix J, Figure 80 & Figure 81) and 0.4 µM. 

MALDI-TOF offers the benefit of a reduced sample size in comparison to LC-

MS (2 µL of sample compared to 30µL). Additionally, it was found that at the 

lower concentration of 0.4 µM it was possible to visualise the protein for both 

samples. Peaks were identifiable at 25,970 Da and 25,850 Da corresponding to 

the homo-dimer for TGF-β1 and TGF-β3 respectively. Smaller secondary peaks 

were present at 12,958 Da and 12,857 Da for TGF-β1 and 3 respectively, 

showing a small portion of the protein samples had been reduced to their 
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monomeric forms (Figure 46). Due to the quality of the spectra and the reduced 

sample size required, MALDI-TOF mass spec was used to analyse the success 

of the subsequent conjugation reactions.  

 

Figure 46: MALDI-TOF spectra for TGF-β proteins. TGF-β1 (A) and TGF-β3 

(B) show peaks at ~25500 Da and ~13000 Da indicating the dimer and 

monomer respectively. 

2.3.2. Transforming Growth Factor-β Conjugation using Thiol-

Maleimide Chemistry  

Investigations began into how to conjugate TGF-β to a DBCO linker. With HSA 

it was possible to conjugate to the free cysteine present within the protein. 

However, often cysteines are buried within proteins, or are involved in 

disulphide bridging necessary for the maintenance of the protein’s structure. 

TGF-β specifically consists of a cysteine rich core which forms a knot-like 

structure held together by disulphide bonds.233 Therefore, it is possible that 

there are no free thiols accessible within the protein for the direct conjugation of 

DBCO-mal. However, in 2015 kim et al reported the direct conjugation of TGF-

A 

B 
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β1 protein to a methacrylated chitosan hydrogel via a free thiol and a 

succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) 

linker.235 Therefore the conjugation of DBCO-mal directly to TGF-β was 

attempted.  

2.3.2.1. Conjugating TGFβ to DBCO-PEG4-Maleimide 

 

Scheme 18: Fluorescently labelled TGF-β conjugation to DBCO-PEG4-

maleimide and PCL-N3 microparticles. 

TGF-β1 and TGF-β3 were reacted with DBCO-mal and FITC using the same 

methods as those described for the comparative reaction with HSA (Scheme 

18). After reaction of TGF-β with FITC and DBCO-mal (18), the solution was 
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purified, and the resulting conjugate was then reacted with PCL-N3 particles (7). 

Particles were thoroughly washed to remove all unbound FITC and DBCO-mal 

and produce FITC-TGF-β-DBCO-mal-PCL-N3 microparticles (19). Table 11 

details all the experimental conditions tested, and the controls used to generate 

TGF-β conjugated microparticles (19). Successful conjugation of microparticles 

would result in observable fluorescence at 520 nm. Fluorescence would only be 

observed in samples that contain protein, FITC, DBCO-mal and PCL-N3 

microparticles (reactions 1 and 3). All other control samples should have no 

observable fluorescence.  

 

Table 11: Experimental conditions used for the conjugation of TGF-β 

protein to FITC and DBCO-PEG4-maleimide 

Unfortunately, no observable fluorescence was seen in any sample, suggesting 

that conjugation to TGF-β was unsuccessful. One explanation for this is that the 

cysteines present in the protein are not accessible or are involved in disulphide 

bonding. It is possible to reduce proteins by cleaving the disulphide bond to 

leave free thiols, reagents such as tris(2-carboxyethyl)phosphine hydrochloride 

(TCEP) are capable of this.145 TGF-β is a dimer in which the quaternary 

Reaction no. Protein DBCO-mal FITC Particles 

1 TGF-β1 5 eq 20 µL PCL-N3 

2 TGF-β1 5 eq 20 µL PCL 

3 TGF-β3 5 eq 20 µL PCL-N3 

4 TGF-β3 5 eq 20 µL PCL 

5 TGF-B1 - 20 µL PCL-N3 

6 TGF-B1 - 20 µL PCL 

7 TGF-β3 - 20 µL PCL-N3 

8 TGF-β3 - 20 µL PCL 

9 - 2.6 µL 20 µL PCL-N3 

10 - 2.6 µL 20 µL PCL 
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structure is maintained by a disulphide bond.232 Therefore, in this case, 

reducing these cysteines could lead to further complications when attempting to 

assess the biological activity of the protein and its effectiveness as a 

regenerative agent. As a result, other conjugation methods were investigated.  

2.3.2.2. TGF-β Conjugation to Fluorescein-5-maleimide 

Traut’s reagent (2-Iminothiolane) is a small molecule that is capable of reacting 

with primary amines present within a protein to introduce free thiol groups, 

which can then be used for subsequent maleimide conjugation (Scheme 19).145  

 

Scheme 19: Reaction scheme for 2-iminothiolane (Traut's reagent) 

Fluorescine-5-maleimide is a fluorescent molecule, containing a maleimide 

functional group which can be used to test for the successfull conjugation of 

Traut’s reagent to TGF-β. Fluorescence of conjugated protein can be monitored 

at 518 nm. TGF-β1 and TGF-β3 were reacted with Traut’s reagent and then 

subsequently with flourescein-5-maleimide, before being purified. No 

observable fluorescence was seen for this reaction (data not shown). Multiple 

rounds of optimisation were attempted but to no avail and as a result different 

DBCO-units not containing a maleimide were investigated.   
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2.3.3. TGF-β conjugation to Dibenzocyclooctyne-PEG4-N-

Hydroxysuccinimide 

 

Scheme 20: TGF-β conjugation to DBCO-PEG4-NHS 

Dibenzocyclooctyne-PEG4-NHS (DBCO-NHS) contains an N-

hydroxysuccinimide (NHS) group that can be used for the conjugation of 

proteins through a reaction with primary amines. The reaction between the 

primary amines present in the protein results in the formation of a stable amide 

linkage between the protein and the DBCO unit (20), and the release of the 

NHS leaving group (Scheme 20).145 TGF-β1 and TGF-β3 at a concentration of 

0.4 µM were reacted with DBCO-NHS, and then purified using a desalting 

column. The resulting solution (20) was analysed using MALDI-TOF. No 

identifiable protein peak was present in the solution after the reaction (Figure 

47).  
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Figure 47: MALDI-TOF spectrum of TGF-β1 protein reacted with DBCO-

PEG4-NHS. No protein was present, with no observable peaks, only 

background noise 

The absence of a protein peak in the MALDI-TOF spectrum led to several 

optimisations of the reaction between TGF-β and the DBCO-NHS, detailed in 

Table 12. All these attempts resulted in no observable protein peaks, with data 

comparable to Figure 47. Due to the lack of protein peaks present in the 

MALDI-TOF spectra, the matrix used for analysis was investigated. Transferulic 

acid and sinipic acid were used as matricies. For both, peaks at around 25 kDa 

and 12 kDa were observed in the native protein, but again after DBCO-NHS 

conjugation reaction (20), these were no longer visible. Sodium dodecyl sulfate 

(SDS) can aid the solubilisation of proteins and has been used in the 

preparation of MALDI-TOF samples for both hydrophilic and hydrophobic 

molecules.236 SDS was added to the matrix in increasing concentrations of 0.5, 

1, 5, 10 and 50%. MALDI-TOF analysis was carried out on all samples, but 

again, no signal for protein was observable. 
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Table 12: Experimental conditions tested for the conjugation of TGF-β to 

DBCO-NHS. All reactions were carried out independently for TGF-β1 and TGF-

β3. The variable changed for each reaction is highlighted in bold. 

In further attempts to troubleshoot the reasons as to why the protein was not 

observed in the MALDI-TOF, attention was turned to factors outside of the 

reaction conditions. Initial concerns were that the protein was not stable or had 

suffered multiple freeze-thaw cycles and as a result had lost its integrity, 

whether this be by degradation or aggregation. It was found that the MALDI-

TOF analysis of the unconjugated stock protein was always consistently 

comparable to the data seen in Figure 46 for both TGF-β1 and TGF-β3. 

Degradation of the protein was therefore ruled out as a cause of signal loss. 

In order to remove any unbound reactants, the reaction solution (20) was 

purified by being passed through a desalting column. It was hypothesised, that 

 

Reaction 
No. 

TGF-β 
concentration 
(µM) 

TGF-
β 
(µL) 

Temp  Time DBCO Excess  
Peak 
identifiable? 

1 0.4  30  RT 30 min 50 eq. 
DBCO:Protein 

No  

2 0.4   100 RT 30 min 50 eq. 
DBCO:Protein   

No  

3 4  10  RT 30 min 50 eq. 
DBCO:Protein   

No 

4 4  100  RT 30 min 50 eq. 
DBCO:Protein   

No  

5 0.4 100  37°C 12 h 50 eq 
DBCO:Lysine 

No  

6 0.4 100 0°C 12h 50 eq 
DBCO:Lysine 

No  

7 0.4 100  0°C 2 h  5 eq  
DBCO:Lysine 

No  

8 4  100  0°C 
then 
RT 

30 
min 
then 
90 
min 

0.2 eq 
DBCO:Lysine  

No  
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the product (20) was remaining on the column and therefore there would be no 

protein present in the eluent sample being analysed. To test this, the reaction 

solution (20) was analysed by MALDI-TOF prior to any purification. This again 

yielded no peak present in the region of 10,000-80,000 Da for either TGF-β1 or 

TGF-β3 reaction samples where the protein would be expected. The DBCO-

NHS starting material and hydrolysed DBCO were present in the region of 300-

1000 Da (Appendix K, Figure 82).  

To rule out the possibility of the loss of protein signal being due to an artefact of 

instrument or user error, a sample of the reaction carried out using TGF-β 

protein at a concentration of 4 µM (20) was sent to the National Institute for 

Mass Spectrometry in Swansea. The sample was analysed in positive-linear 

mode but only background noise was detected, a ZipTip clean up procedure 

was carried out and the sample was re-analysed, and again nothing was 

identified in the spectrum. The conclusion was that there was no protein present 

in either the TGF-β1 or TGF-β3 sample. Unfortunately, due to time and budget 

constraints it was not possible to send a sample of the native protein to be used 

as a control to verify if the concentration of the protein was detectable.  

Previously it had been possible to analyse the success of the DBCO-mal 

conjugation reaction to HSA by LC-MS (Chapter 4, section 2.1.1). Native TGF-

β, was only observable by LC-MS at a concentration of 4 µM (Figure 45). 

Therefore, conjugation of DBCO-NHS was carried out on TGF-β1 and TGF-β3 

at a concentration of 4 µM (20). The purified reaction was analysed using LC-

MS, however, the results of this also suggested that there was no protein 

present in the sample (data not shown) with small molecule peaks at 575 m/z 

being identified, indicative of hydrolysed DBCO-NHS ester (Figure 48). 
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Figure 48: LC-MS Analysis of Conjugation Reaction Between TFG-β and 

DBCO-NHS. Peak present at 575 is indicative of hydrolysed DBCO-NHS plus a 

sodium ion (M+Na+) 

Since both LC-MS and mass spec data from Swansea concluded that there was 

no protein present in the sample (20), concerns that is was being lost, degraded 

or precipitated during the reaction arose. To test this, SDS-PAGE analysis was 

carried out. TGF-β1 and TGF-β3 at a concentration of 4 µM were reacted with 

DBCO-NHS in excess and the reaction purified (20).  TGF-β1 and TGF-β3  

native, unconjugated proteins at the same concentration were used as a 

control. The samples were then analysed by SDS gel electrophoresis and 

visualised using silver staining and Coomassie Blue (Figure 49, A and B 

respectively). After Coomassie staining, native unconjugated protein showed a 

clear band between 10-15 kDa corresponding to the protein monomers. Very 

faint bands were visible to the eye in the conjugated samples, but this did not 

translate when imaging. The visualisation was successfully achieved using 

silver staining, this is a more sensitive detection method and can be used to 

identify proteins with low abundance at just 0.1 ng/mm2 within the gel.237 After 

staining, TGF-β protein was visualised in all sample lanes, suggesting that 

protein is present in samples (20) after reaction and subsequent purification.  
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Figure 49: Gel electrophoresis of TGF-β proteins reacted with DBCO-NHS. 

(A) shows gel stained with silver staining and (B) with Coomassie Blue. In both 

gels TGF-β proteins are indicated as 1 and 3 in accordance to their isoform. N 

is native unconjugated protein control samples. C is conjugated protein with 

DBCO-NHS. The apparent molecular weights are displayed in kDa in the ladder 

on the right-hand side of the image and are identical for both gels. 

After it was shown that the protein was still present in the sample after reaction 

(20), it was thought that the loss of its signal within the MALDI-TOF spectrum 

could be due to interference from the DBCO unit. To test this theory, DBCO-

NHS which had been hydrolysed (confirmed by MALDI-TOF prior to reaction, 

appendix K, Figure 83) to no longer contain an active NHS ester was added to 

TGF-β. The working theory of this reaction was that with a hydrolysed DBCO it 

should no longer be able to conjugate to the protein. Therefore, if the protein 

signal was still missing from the spectrum, it could be that interactions between 

the DBCO linker unit and the protein are stopping the ionisation process from 

taking place. TGF-β1 and TGF-β3 proteins were mixed with hydrolysed DBCO-

NHS (20) and spotted on the MALDI-TOF plate. As a control TG-β1 and TG-β3 

were also reacted with non-hydrolysed DBCO-NHS. The reactants were mixed 

1(N) 3(N) 1(C) 3(C) 

10 

15 

25 

35 
40 
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1(N
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directly on the surface of the MALDI-TOF plate and measured immediately. 

Interestingly, when the hydrolysed DBCO-NHS was added, the protein was 

present in both spectra at 25,978 Da for TGF-β1 and 25,942 Da for TGF-β3 

(Figure 50, A and B respectively) similar to data described previously. For both 

proteins, a peak indicative of hydrolysed DBCO can be seen at ~555. (Figure 

50, C) Conversely, for the reaction treated with non-hydrolysed DBCO, again 

the protein peak was missing in both spectra (Figure 50, D). This data suggests 

that the loss of the proteins signal is as a direct result of the NHS ester.  
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Figure 50: TGF-β reaction with hydrolysed and non-hydrolysed DBCO-

NHS. TGF-β1 (A) and 3 (B) showed the presence of protein when reacted with 

hydrolysed DBCO (C, peak at 555). This disappears when reacted with a 

DBCO-NHS unit still containing an active ester (D). 

A 

 
B 

C 

D 
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The effect of changing the concentration of trifluoroacetic acid (TFA) present in 

the matrix used for MALDI-TOF analysis was then investigated. TGF-β1 and 

TGF-β3 samples reacted with DBCO-PEG4-NHS (20) were analysed by 

MALDI-TOF with increasing concentrations of TFA mixed with the sample. 

Table 13 shows all the experimental conditions tested. 

 

Table 13: Matrix conditions tested to increase the presence of TFA in 

Samples. All reactions were carried out on both TGF-β1 and TGF-β 3 as 

independent samples. All reactions were carried out using a sandwich method, 

where matrix was spotted and allowed to dry, followed by a protein spot which 

was also allowed to dry and finally a second matrix spot.  Each ‘spot’ was a total 

volume of 2 µL. 

All reactions, apart from reaction 4, resulted in no observable protein signals in 

the MALDI-TOF spectrum. Interestingly, reaction 4 did result in the presence of 

a protein signal at 25,820 Da for TGF-β1 and 27,303 Da for TGF-β3 (Figure 

51). However, the spectra were of low quality and these peaks for the protein 

were only ever seen once, with the results being unreproducible. It is still 

unclear why the protein could not be detected after reaction with DBCO-NHS 

No.  TFA concentration (%)  No of spots.  
Matrix:Protein:matrix  

Matrix 
(µL) 

Protein 
(µL) 

1 0.3  3:2:3 12  4  

2 0.3  3:2:3 
+ 1 spot 0.3%TFA  

12  4  

3 0.5  3:3:3 12  6  

4 3  3:2:3 12 4 

5 3 6:2:6 24 4 

6 3 9:2:9 36 4 

7 3 20:2:20 80 4 

8 10 3:2:3 12 4 
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(20) and therefore it has been impossible to prove the success of the reaction in 

this way.  

 

Figure 51: MALDI-TOF spectra of TGF-β1 and TGF-β3 conjugated with 

DBCO-PEG4-NHS. (A) shows TGF-β1 and (B) shows TGF-β3, samples were 

visualised by increasing TFA concentration present in the matrix to 3% (v/v). 

2.4. Bovine Serum Albumin-Dibenzocyclooctyne-PEG4-N-

Hydroxysuccinimide 

After all attempts to show the successful conjugation of a TGF-β protein to a 

DBCO-NHS linking unit (20) had been unsuccessful, it was hypothesised that 

the NHS reaction was incompatible specifically with the TGF-β protein and 

MALDI-TOF analysis. In order to validate DBCO-NHS as a linker molecule and 

prove that this reaction could be used as a template for the conjugation of 

proteins to the PCL-N3 microparticles, bovine serum albumin (BSA) conjugation 

was investigated. BSA has a MW of 66.5 kDa, with a broad peak at 67856 Da 

identified when analysing the native protein, as purchased from Sigma Aldrich, 

using MALDI-TOF (Figure 52, A). BSA was then reacted with DBCO-NHS (21) 

A 

B 
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using methods comparable to those used for TGF-β (Scheme 21). After reaction 

the protein was still present in the MALDI-TOF spectrum, and the entire peak 

broadened and shifted along the x-axis. The MW increased from 67856 Da to 

70407 Da, which corresponds to the addition of roughly four DBCO-NHS units 

(MW 649.68) (Figure 52, B) 

 

Figure 52: MALDI-TOF spectrum of native and DBCO-NHS conjugated 

BSA. A broad peak for the native protein is identified at 67855 Da (A). The 

whole peak is then shifted right and broadens further with a mw of 70407 Da, 

indicative of the addition of multiple DBCO-NHS linking units (B) 

This data suggests that the issues seen with MALDI-TOF characterisation could 

be specifically as a result of attempting to conjugate with the TGF-β protein. It is 

believed that the conjugation reaction of DBCO-NHS to BSA (21) is successful 

and demonstrates that DBCO-NHS can be used as a linking molecule for the 

conjugation of proteins via their primary amines.  

A 

B 
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2.5. Transforming Growth Factor-β and Bovine Serum Albumin 

Conjugation to Polycaprolactone-Azide Microparticles 

 

Scheme 21: Conjugation reaction of TGF-β or BSA to PCL-N3 

microparticles.  

As it was possible to show the successful conjugation of model protein BSA to 

DBCO-NHS (21), it was assumed that the TGFβ reactions had also been 

successful despite the lack of convincing evidence for this. Therefore, the TGF-

β methodology was resumed, taking forward the products of the DBCO-NHS 

conjugation reactions with TGF-β1 and TGF-β3 (20), as well as the BSA (21) 

(Scheme 21). TGF-β1 and TGF-β3 conjugates (20) produced during reaction 6 

from Table 12, and the BSA-DBCO-NHS conjugate (21) were then 

independently reacted with PCL-N3 microparticles to produce compounds (22) 

or (23) respectively. Microparticles formulated with commercially available PCL 

treated in the same way were used as a control. After the reaction, the 

microparticles (22 or 23) were thoroughly washed to remove all unbound 

reactants and the presence of protein determined qualitatively using a 
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bicinchoninic acid (Micro BCA) assay (Figure 53). Proteins are able to reduce 

copper(II) present in the assay reagents to copper(I) which can then complex to 

the BCA, yielding an intense purple compound.238 This meant that a change in 

the solution from green to purple suggests the sample being analysed contains 

protein and that conjugation was successful. 

 

Figure 53: Colorimetric representation of protein present in PCL 

microparticles. Purple colour indicates the presence of protein, whereas green 

is a negative result. 

All samples that contained microparticles formulated using commercial PCL 

gave a negative result for the presence of protein, producing a green solution 

(wells 5, 7 and 9, Figure 53). This is as expected because the PCL contains no 

azide, meaning it is not possible for the DBCO linking unit to attach, and so 

during the washing steps all protein would therefore be removed. All samples 

containing PCL-N3 microparticles showed a positive result for the presence of 

protein, producing a purple solution (wells 6, 8 and 10, Figure 53). This 

suggests that all steps of the conjugation reaction were successful for both 

TGF-β (22) and BSA (23), with the DBCO-NHS being able to conjugate to the 
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primary amines present in the protein samples. This, in turn, is able to 

conjugate to the azide moiety of PCL-N3 microparticles via click chemistry, 

utilising the internal alkyne of the DBCO unit. This data was interesting and 

strongly suggests that the conjugation of protein to PCL-N3 microparticles is 

possible. Unfortunately, due to budget and resources, it was not possible to 

carry on any further with the investigations. 

2.6. Conclusion  

The work detailed in this chapter has shown that it is possible to conjugate 

protein to PCL-N3 microparticles using two different conjugation techniques 

through the use of varying DBCO linking units. This highlights the potential for 

these methods to be used as a template for a successful drug delivery system. 

A model human serum albumin protein has been shown to successfully 

conjugate to PCL-N3 microparticles using DBCO-mal as a linking molecule. The 

subsequent click reaction between HSA-DBCO conjugates and PCL-N3 

microparticles was shown to be efficient, occurring in just 10 minutes. The 

presence of protein on PCL-N3 microparticles was visualised by fluorescence 

when tagged with a fluorescein isothiocyanate. Through several optimisations, it 

was eventually shown that it was possible to conjugate TGF-β to PCL-N3 

microparticles in a similar manner, using a DBCO-NHS linker. Similarly, model 

protein BSA was shown to be able to conjugate to the same DBCO linker with 

subsequent attachment to microparticles. The work in this chapter has shown 

that if the protein structure and accessible functional groups are known, 

conjugation to microparticles is possible and highlights their potential as a drug 

delivery system.   
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3. Experimental Procedures 

3.1. Instrumentation  

MALDI analysis was carried out using an analytical Axima MALDI-TOF (Kratos 

analytical, Uk) in positive reflectron mode. Sinipinic acid in 50% ACN with 

0.03% TFA was used as the matrix unless stated otherwise. LCMS analysis 

was carried out using an LC-MS 2010EV (Shimadzu, Japan) using electrospray 

ionisation in positive mode (ES+). Absorbance and fluorescence values were 

obtained a CLARIOstar plate reader (BMG lab tech ltd, UK). Fluorescence 

microscopy was carried out using an axioplan 2ie microscope (Carl Zeiss Ag, 

Germany).  Analytical RP-HPLC was carried out on an Agilent 2000 (Agilent 

Technologies, USA) using an eclipse XDB-C18 column (Agilent Technologies, 

USA), 4.6x100 mm, 3.5 µM with a flow rate of 1 mL/min. Solvent A was; ACN 

with 0.05% TFA. Solvent B was; H2O with 0.05% TFA. 30% solvent A was 

increased to 50% over 20 minutes, then held at 75% for 5 minutes. Detection 

was carried out at 220 and 309 nm.  

3.2. Materials 

All materials were from Sigma Aldrich and used as received, unless otherwise 

stated. Dibenzocyclooctyne-PEG4-N-hydroxysuccinimidyl ester (95%, dissolved 

in DMSO prior to use to a final concentration of 10 mM), albumin from human 

serum (≥99%), 5,5′-dithiobis(2-nitrobenzoic acid) (≥98%), phosphate buffered 

saline (tablet), sodium phosphate (96%), sodium carbonate (≥99.0%), HEPES 

(≥99.5%), ethylenediaminetetraacetic acid (≥99.0%), triethanolamine (≥99.0%), 

fluorescein isothiocyanate isomer I (≥90%), acrylamide/Bis-acrylamide (30% 

solution, 37.5:1), Tris base, ammonium persulfate (≥98%), 

tetramethylethylenediamine (~99%), sodium dodecyl sulfate (≥98.5%), 

Dibenzocyclooctyne-PEG4-maleimide (dissolved in DMSO prior to use to a final 

concentration of 0.015 M), Sinapic acid (≥99.0%), bovine serum albumin 

(≥96%), coomasie plus bradford assay reagent (Thermo Fisher Scientific), 

micro BCA™ protein assay kit (Thermo Fisher Scientific), cysteine-HCL (Thermo 

Fisher Scientific), recombinant human TGF-β1 (≥98%, PeproTech, reconstituted 
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in water prior to use to a final concentration of 4 µM), recombinant human TGF-

β3 (≥98%, PeproTech, reconstituted in 5 mM citric acid prior to use to a final 

concentration of 4 µM).   

3.3. General Methods  

Bradford Assay  

The Bradford assay was used as qualitative analysis for the presence of protein 

in microparticle samples. The reaction was carried out using manufacturers 

protocols.  300 µL of Coomassie reagent was added to 10 µL of sample to be 

measured, and mixed well on a plate shaker for 30 s. The reaction was then 

incubated for 10 min at RT. The absorbance was read at 595 nm. 

A calibration curve for the Bradford assay was carried out using Bovine Serum 

Albumin as per the manufacturer’s protocol (Appendix I, Figure 78) . A stock 

solution of Bovine Serum Albumin (2 mg/mL) was prepared in 0.9% saline. 

Serial dilutions were carried out to produce concentrations of protein as follows; 

2000, 1500, 1000, 750, 500, 250, 125 and 25 µg/mL. A sample containing 

buffer only was used as a control. 10 µL of each standard was mixed in a 96 

well plate with coomasie blue reagent (300 µL) and mixed using a plate shaker 

for 30 s. The reaction was left to incubate at RT for 10 min after which 

absorbance was read on a CLARIOstar® plate reader (BMG labtech, UK) at 595 

nm.   

Ellman’s Assay 

The Ellman’s assay was used for the quantitative and qualitative identification of 

free thiols present within protein samples. The reaction was carried out as per 

the manufactures protocol. Ellman’s reagent solution was dissolved in 0.1 M 

sodium phosphate reaction buffer with 1 mM EDTA (pH 8.0) at a concentration 

of 4 mg/mL. 250 µL of sample to be measured was then mixed with 50 µL of 

Ellman’s reagent solution and 250 µL of reaction buffer. The reaction was then 

allowed to incubate at RT for 15 minutes. Absorbance was read at 412 nm. A 

calibration curve was constructed following the manufactures guidelines, with 
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known concentrations of cysteine hydrochloride monohydrate. (Appendix H, 

Figure 77) The concentration of free thiol groups was calculated using the 

extinction coefficient for TNB (14,150 M cm-1).  

Micro BCA Assay 

Micro BCA assay was used for qualitative analysis of protein content in 

samples. The reaction was carried out as per the manufactures protocol. Micro 

BCA Reagents were supplied from the manufacturer and were as follows; Micro 

BCA Reagent A (MA, 240 mL) Micro BCA Reagent B (MB, 240 mL) Micro BCA 

Reagent C (MC, 12 mL). Micro BCA working solution was made by mixing 

reagents at a ratio of 25:24:1, Reagent MA:MB:MC. Reaction sample to be 

measured (150 µL) was mixed thoroughly for 30 s with the working solution 

(150 µL) in a 96 well plate. The reaction was incubated for 2 h at 37°C. 

Absorbance was measured at 562 nm, after the plate had cooled to RT.   
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3.4. Human Serum Albumin Conjugation  

Human serum albumin, as purchased from Sigma Aldrich, was characterised 

using MALDI-TOF, HPLC and LC-MS using the general methods described 

above. Samples at a concentration of 1 mg/mL were used for HPLC dissolved 

in H2O and filtered.  

3.4.1. Human Serum Albumin Conjugation to Dibenzocyclooctyne-

PEG4-Maleimide (13)230  

 

 

 

Human serum albumin (100 mg, 1.5 µmol, 1eq) was dissolved in 0.1 M HEPES 

and 5 mM EDTA buffer solution (2 mL, pH 7). 0.015 M DBCO-Maleimide 

dissolved in DMSO (200 µl, 2eq) and 4 mM Triethanolamine (2 µL) were added 

and allowed to react at RT for 24 h. The reaction was purified and analysed by 

LC-MS and Ellman’s assay.  
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3.4.2. Human Serum Albumin-Dibenzolcycloctyne-Maleimide 

Conjugation to Polycaprolactone-Azide Microparticles (14) 

 

 

PCL-N3 Microparticles (7) (15.3 mg, 665 nmol, 1eq) were mixed with HSA-

DBCO-PEG4-malemide conjugate solution (13) (1 mL, 1eq) and allowed to 

react for 12 h with gentle agitation. Particles were washed with water (10x5 mL) 

and purified using a viva spin column (Sartorius, 100,000 MWCO, 500 µL). After 

purification particles were freeze dried to yield a fluffy white powder (14) (17.7 

mg, 30%). PCL-N3 Microparticles conjugated to DBCO-PEG4-maleimide with 

no HSA and PCL-N3 Microparticles conjugated to HSA with no DBCO-PEG4-

maleimide linker were used as controls. Bradford assay was used for qualitative 

identification of protein. The reaction was carried out in triplicate.  
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3.4.3. Fluorescein Isothiocyanate Labelling of Human Serum 

Albumin for Polycaprolactone-Azide Conjugation (17) 

 

Human serum albumin (150 mg, 2.25 µmol, 1eq) was dissolved in 0.1 M sodium 

carbonate buffer (3 mL, pH 9). 0.015 M DBCO-maleimide dissolved in DMSO 

(300 µl, 2eq) and 4 mM triethanolamine (2 µL) were added. Fluorescein 

isothiocyanate isomer I (FITC) dissolved in DMSO at 1 mg/ml was added slowly 

with gentle agitation in 5 µL aliquots at a ratio of 50 µL per 1 mL of protein 

solution. The reaction was carried out for 24 hours at 4°C. Samples were 

purified using a PD10 desalting column (GE healthcare) with sodium carbonate 

buffer as eluent. Fractions collected were analysed using Bradford assay and 

fluorescent microscopy and relevant fractions combined to produce compound 

16. 
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PCL-N3 (7) (10 mg, 410 nmol, 1eq) were mixed with 16 (700 µL, 410 nmol, 1eq) 

and left to react for 10 min, 1, 2, and 12 hours. Particles were washed (10x10 

mL) to produce 17. Washes were assessed for FITC leaching and particles 

were analysed qualitatively by fluorescence (Ex 485 Em 520) (Appendix I, 

Figure 79) and Bradford assay. Microparticles formulated using commercial 

PCL were used as a control.   
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3.5. Transforming Growth Factor-β Conjugation  

3.5.1. Transforming Growth Factor-β1 and Transforming Growth 

Factor-β3 Characterisation 

TGF-β1 and TGF-β3, as purchased from PeproTech, were characterised by LC-

MS and MALDI using the methods described above. Expasay protparam was 

used to calculate exact protein mw. TGF-β1 and TGF-β3 (10 µg) were 

reconstituted as per manufacturers guidelines in water (100 µL, 4 µM) for TGF-

β1 and 5 mM citric acid (100 µL, 4 µM) for TGF-β3. Aliquots of these solutions 

were taken to make individual samples diluted 1/10 at a final concentration of 

0.4 µM. LC-MS and MALDI-TOF analysis were carried out on samples of the 

stock protein at concentrations of 4 µM for LC-MS and 0.4 and 4 µM for MALDI-

TOF.  

3.5.2. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis 

0.1 mM dibenzocyclooctyne-PEG4-NHS in PBS (2 µL, 0.2 nmol, pH 7.4) was 

reacted with 0.4 µM TGF-β1 and TGF-β3 (10 µL, 0.04 nmol) for 2 h at 0°C. 

After reaction the sample was purified using a viva spin desalting column 

producing compound 20. The resulting conjugate was analysed by SDS-PAGE 

gel electrophoresis. The resolving gel was 15% acrylamide (3.5 mL), 1 M tris 

buffer (2.8 mL, pH 8.8), milliq water (1 mL), 10% SDS (75 µL), 10% ammonium 

persulfate (50 µL) and TEMED (25 µL). The stacking gel was 15% acrylamide 

(1.7 mL), 1 M tris buffer (1.25 mL), milliq water (7 mL), 10% SDS (100 µL), 10% 

ammonium persulfate (75 µL), and TEMED (25 µL). The gel was run for 50 

mins at 180 mV in running buffer (1 X SDS, 30 g tris, 144 g glycine). 10 µL of 

each sample was mixed with loading dye (1:1) and 10 µL of this was loaded into 

each well. The gel was stained with Coomassie blue stain (30 min) and 

destained overnight (methanol:acetic acid:H2O, 2:1:7).  
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3.5.3. Transforming Growth Factor-β and Bovine Serum Albumin 

Conjugation to Polycaprolactone-Azide Microparticles (22 & 23) 

 

0.4 µM TGF-β1 and TGF-β3 (100 µL, 0.04 nmol) was reacted with 774 µM 

DBCO-PEG4-NHS (42 µL) and left to react overnight at 0°C. After reaction the 

solution was purified using a zebra spin column to produce compound 20.  

3 µM BSA (0.192 mg, 0.15 nmol) dissolved in PBS (1 mL) was reacted with 774 

µM DBCO-PEG4-NHS (2.6 µL) and left to react overnight at 0°C. After reaction 

the solution was purified using a zebra spin column to produce compound 21.  

Aliquots of compound (20) or (21) (75 µL) were diluted in PBS (75 µL) to make 

working solutions (150 µL). PCL-N3 microparticles (7) (5 mg, 0.22 nmol) were 

mixed with either BSA (150 µL) or TGF-β (150 µL) working solutions and left to 

react for 1 h, at RT whilst shaking. After reaction, microparticles (22 or 23) were 

washed with water (7x150 µL) and Micro BCA was carried out to determine 

presence of protein. Washes were collected and analysed using Micro BCA 

assay to ensure adequate washing steps. 
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1. Introduction 

This project was supported with an ICASE award to encourage collaboration 

and understanding between research academics and industrial partners. This 

award was in partnership with Neotherix Ltd a regenerative medicine company 

that specialises in tissue regeneration and bioresorbable scaffolds for repair. Dr 

Mike Raxworthy, was the industrial supervisor responsible for providing training 

and insight into the clinical translation of academic research. This was facilitated 

by a three-month placement at Leeds university undertaking a course in clinical 

translation; “Business and entrepreneurial skills training for medical technology” 

(MedTech Best). During this course, talks were given by industrial leaders, and 

informal interviews were held to gain insight into the process of clinical 

translation and the progression of academic research into a commercially 

available product. Industrial specialists included;  

 A chief commercial officer  

 An operations director 

 A chief executive officer 

 An investment director 

 A programme manager in an enterprise hub team at the royal academy 

of engineering 

 An independent non-executive director 

 A director of the institute of medial and biological engineering 

 A professor of biomedical engineering  

Additionally, an informal interview was held with Professor Simon Donell, a 

consultant orthopaedic surgeon, to gain insight into the practical applications of 

a regenerative product for tendon injury. This interview was also used to gain 

insight into the opinions of a potential customer and user of a tendon 

regeneration product. Invaluable information was gathered regarding what the 

customer, a surgeon, would want and need from a product for tendon injury and 

how the product would best be implemented as a treatment.  
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This course allowed for the design of a hypothetical product that would be taken 

from academic research and translated into something that was commercially 

available. The concept should consider throughout the process what steps 

would be necessary to progress the product through each stage of translation. 

The work described throughout the thesis until this point to develop a template 

microparticle drug delivery system for tendon regeneration was used as the 

foundation for a concept product to this end. The information gathered during 

the course was used to identify weakness in the work already carried out, and 

to understand future work that would be necessary to solidify the template 

microparticle drug delivery system as a commercial product.  

2. Aim and Objectives  

The aim of this three-month placement period was to gain understanding of the 

process of translating academic research into clinical products. The information 

gathered throughout the course was used to produce a literature review of the 

translational process. A hypothetical concept product for tendon tissue 

engineering was designed and analysed to understand its level of development 

at each stage of translation. 

3. Introduction to Translational Science  

The UK has an exceptional reputation for scientific health research. One of the 

major contributing factors to this is that it has an extensive network of funders 

from charities, health organisations, and the public sector.239 Funding comes 

from a variety of sources with charities such as Wellcome Trust, Cancer 

Research UK (CRUK) and the British Heart Foundation (BHF) investing millions 

annually. As well as research councils such as the engineering and physical 

sciences research council (EPSRC) and biotechnology and biological science 

research council (BBSRC). Private businesses also have a role to play, with the 

pharmaceutical industry estimated to provide 25% of the UK’s Research and 

Development (R&D) income from industrial investments. On top of this, the two 

largest public-sector funders are the Medical Research Council (MRC) and the 

Health Departments of England, Wales and Scotland. The funding invested is to 
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not only encourage and support research, and to advance the knowledge base, 

but to also see a return, and to produce tangible products that can enter the UK 

market and increase public health benefits.239 In order for this to be a reality, 

scientific laboratory research needs to be translated into the clinics, and applied 

once there.  

However, currently the majority of projects that receive funding are those 

carrying out basic laboratory research. Basic research is considered to be 

driven by a quest for knowledge and doesn’t necessarily have an agenda to 

address a pressing clinical need, but rather to better understand the biological 

workings of health and disease. This is the most common research undertaken 

within university institutes. However, in order to produce a tangible product, 

which can be incorporated into the UK healthcare system to provide substantial 

health benefits to the population, the scientific research carried out must be 

translational.239 Translational science is seen as a from “bench to bedside and 

back” approach to research.240 In order for research to be truly translational it 

needs to be collaborative, combining the skills from a range of experts. These 

include, but are not limited to, laboratory scientists, industrial experts, clinicians, 

manufacturers, and regulatory bodies. It must be able to address an unmet 

clinical need, whilst being practical for use in a clinical setting and be attractive 

to funders and financiers and therefore be cost effective.240 It is rarely possible 

for translation to be achieved by individuals alone. It is much more likely to be 

successful when a team is involved. Physicians are in the strongest situation to 

best identify unmet clinical needs of patients. Engineers and academic 

researchers are able to design and develop ideas into therapies that could be 

used for public health benefits but often lack the insight into what is practical for 

use. By combining these two expertise and bringing in further help from 

industrial experts who are able to attract the funding necessary to take a 

product through development to launch, then an idea has a better chance of 

becoming a commercial product.241   

Translational science is still very much in its infancy and there are considerable 

hurdles to overcome in order to truly translate basic research. The progression 

from idea to profit is a complicated, complex, arduous and risky process. The 
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process is also long, with an average progression time from initial idea to 

product launch being approximately 7 years on average.241 The pathway from 

idea generation through to market penetration for new technologies is riddled 

with obstacles throughout, especially in the field of biomedicine and 

biomaterials where these obstacles present themselves at every step.242 

Several factors have been identified as inhibitors to translation. One major 

contributing factor is a lack of communication between laboratory researchers 

and clinicians. Unfortunately, the current climate of research means that entire 

projects can be funded and carried through with limited contact with healthcare 

professionals who have the most insight into patients’ needs and the knowledge 

of how a product would work practically in a clinical setting.239242  Impacting this 

problem is the fact that medical professionals undertaking academic research 

are often de-incentivised due to appraisals being carried out on either research 

productivity or clinical research but not often both, resulting in academic 

research partnerships being an unattractive prospect to the majority of medical 

professionals.239 Similarly, within academic research, recognition is 

predominantly in the form of published articles in prestigious journals. Journals 

with excellent reputations and high impact factors such as Nature and Cell tend 

to be addressing a broad audience. Translational medicine, due to its very 

nature tends to serve a niche market and as such this research does not make 

it into aforementioned journals, therefore limiting its appeal to academic 

researchers.239 Perhaps the biggest hurdle to translation science is finance. 

Basic science receives the biggest proportion of funding, taking over two thirds 

of government funding compared to translational projects. Additionally, in order 

to translate basic research, complex and lengthy clinical trials are necessary, 

funding is needed to secure intellectual property and high standards of efficacy 

and safety must be demonstrated in order to receive regulatory approval. This 

means that the whole process is exceedingly expensive.239 Figure 54 shows the 

translational pathway for new technologies and highlights the two main areas 

where translation gaps occur, and where most projects fail. 
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Figure 54: Translation pathway from basic research to product delivery. 

The translational gaps that occur during the process are highlighted.239 

Although this process is intimidating and the risk of failure is much higher than 

the chances of success, it is necessary for any individual aiming to 

commercialise their research to fully understand the necessary requirements 

essential for translation.242 Herein this chapter aims to identify the key 

processes, stages and milestones that must be met to take academic research 

through the process of translation, and to become a commercial product that 

can be used from day to day in a clinical environment. Academic researchers, 

industrial specialists and medical professionals wanting to thrive in 

commercialisation need to understand these processes in depth, including how 

to source financial help, protect their intellectual property and analyse the 

market in which their product will be offered and is projected to penetrate. 

Specific examples will be given, in reference to the body of work carried out in 

the previous chapters of this thesis as a hypothetical product to be taken to 

market, to demonstrate and highlight the pathway to commercialisation from 

academic research. 

3.1.  A Hypothetical Injectable Delivery System for Tendon 

Regeneration  

This thesis has described attempts to produce a microparticle delivery system 

for the regeneration of tendon tissue via the conjugation of proteins to polymeric 

microparticles. For the purpose of explaining the processes required to 

commercialise academic research an ideal product based on these initial 

findings has hypothetically been developed. The product detailed below will be 

used throughout this chapter to highlight the decisions that academics would 

need to make at each stage of the development pathway to translate their 

research.  
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The ideal product is a slow release injectable solution containing microparticles 

as the delivery vehicle and TGF-β protein as the payload. The protein is loaded 

onto the surface of the microparticles so that its release is controlled and 

consistent over time to allow for the gradual regeneration of tendon tissue. The 

ensuing healing process results in tissue that is comparable to pre-injured 

counterparts and identical to tissue formed in foetal development. Due to tissue 

remodelling the healing process results in a reduction of surgical re-ruptures 

and pain associated with tendinopathy and results in patients regaining mobility 

after injury. The product is predominantly aimed at achilles tendinopathy and 

rupture. The product has two uses: 1) It can be injected via ultrasound guided 

injections to patients presenting with pain and inflammation before rupture has 

occurred. 2) It can be applied after surgical intervention following a rupture.  

Here on in this injectable delivery system for tendon repair will be referred to as 

“the product” when giving specific examples of the route to translation.  

4. Development 

Once initial conceptualisation has occurred the development process must 

begin. Translational science has a considerable amount of hurdles that the 

individuals interested in commercialisation must overcome.239 Figure 55 shows 

the processes that the project must go through during design and development 

to ensure that commercialisation is always at the forefront. Design of a product 

should begin with the identification of a pressing unmet clinical need, and 

concurrently the identification of the user’s needs.241 Once this is well 

established and understood the product can begin to be designed and take 

form. During the design process it is essential to continually review and analyse 

the project to ensure that it is still meeting the users’ needs and will remain 

practical once commercialised.241  
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Figure 55: Illustrative representation of the cyclical process of 

development when designing a clinical device.241 

The design and development processes are not linear; it is cyclical with 

continued assessments of project progress and evaluation of whether the 

projects criteria are being met. The best way to increase the chances of 

success is to continually evaluate if the project is performing well and meeting 

agreed objectives. The result of continual evaluation throughout the design 

process is a smoother route to market with fewer mistakes, and allows for the 

termination of projects likely to fail before large investments have been 

squandered.243 There are several tools that can be used in order to do this, by 

utilising these systems the three major hurdles faced by new technology 

development: performance, schedule and budget will be well managed.244  

4.1. Stage Gate Review 

Stage Gate systems break down the entirety of the innovation process into 

smaller segments that are predetermined to allow for evaluation of the projects 

progress. At each Stage there are clearly defined outputs and criteria, agreed at 

the previous Gate review, that need to be met. It is a conceptual model that 

details the blueprints of a successful product launch. It allows for failure of the 

project at any Stage and a decision to terminate before resources are spent. 
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The pathway is separated into ‘Stages and Gates’. Stages act as the “doing” 

period where deliverables are met, and development is carried out, and the 

Gates act as Kill/Go/Hold checkpoints only allowing the product to progress to 

the next Stage if it is ready to do so.  A typical Stage Gate system is comprised 

of between four and seven Stages. At the entrance to each Stage there is a 

Gate, at the Gate a review process and an evaluation of the previous Stage is 

implemented.  

The Gate allows for the project managers and stakeholders to ensure that the 

project is on target to meet the defined outputs and that all milestones have 

been fulfilled. It also allows for transparency, with failures of the project 

progression clearly being highlighted at each Gate. This stops the project from 

progressing too far down the process before problems are identified. Each 

Stage is more expensive than the previous one, due to progressively increasing 

investment required with the increased complexity of the Stage. Therefore, by 

evaluating the project at the Gate before passing to the next Stage there is no 

wastage of funds on a project viewed to have a high risk of failure. This means 

that risk is managed and projects least likely to succeed are terminated early on 

when spending is minimal. In addition, the Stage Gate system allows for 

activities to be carried out in parallel. This means that the project is efficient with 

more being achieved in a shorter timeframe. Inherently this means that all 

members on the project need to be communicating effectively with one another. 

Additionally, by having Gates to each Stage, project managers can implement 

certain criteria that if met will instigate another review. Project managers can, 

for example, impose a maximum spend or a specified time allotment, if these 

are exceeded the project can undergo another formal review. Figure 56 shows 

a typical Stage Gate process from idea to post launch.243  
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Figure 56: A typical Stage Gate process. A Gate at the entrance to each 

Stage from idea generation to full product launch must be past to continue 

development.243 

The Stage Gate system is broken down into separate segments and it should 

be initiated upon idea generation. Initial screening can then be carried out to 

assess the feasibility of the project, and to establish the unmet clinical need that 

the project will be addressing. The second Stage is definition, this is the final 

Stage before product development begins, during this Stage the project 

managers should be convinced of the attractiveness of the project including 

market evaluation before funds are spent. At this Stage the design team should 

have an understanding of what the product needs to deliver and the desires that 

have been expressed from the customer research. Additionally, there should be 

an understanding of the competition within the market and if the product is likely 

to be able to compete. Gate 3 signifies the last point in the process where the 

project is still able to be terminated without suffering heavy loss of finances. 

Stage 4 is concerned with ensuring the product is viable, that it is able to 

perform and that any complications during development have been ironed out. 

Gate 5 is the last “kill” check point before full commercialisation of the product. 

The major driving factor for the project is the financial projections for the product 

and as such thorough market research and market testing is critical here. Post 

implementation review allows for the project managers to look back on the 

project progression and learn from any problems or successes that may have 

arisen during the process.243  
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4.1.1. Stage Gate Assessment for an Injectable Tendon 

Regeneration Product 

The hypothetical concept product would be considered to have passed through 

to stage gate 2 and 3. An idea has been generated by the project manager and 

initial screening has been undertaken to assess the feasibility of the idea. This 

includes a literature research and preliminary data to highlight the presence of a 

niche in the market. Preliminary assessment has been carried out to ascertain 

the attractiveness of the product, funding has been obtained in the form of a 

grant to allow for academic research to begin. Investigations into the project and 

product development have begun through four years of academic research. 

Development of the product is however still very much in its infancy and the true 

feasibility of the product has not been realised. It is possible at this stage that 

the design and development of the product could prove impossible and 

therefore the project would be terminated and not pass through any more 

stages. More funding is still necessary to develop the project further, and the 

development is still focused within an academic setting.  

4.2. Technology Readiness Levels 

During the 1970s the National Aeronautics and Space Administration (NASA) 

introduced technology readiness levels, as a way of assessing the maturity of 

emerging technologies. In 1995 the technology readiness levels (TRL) was 

improved with definitions given at each Stage with accompanying examples. 

The original scale was proposed by Mr Stan Sadin and slowly over the course 

of a few decades the TRL scale developed and was redefined until it was 

accepted worldwide in 2005.244 Companies can user the TRL scale in order to 

assess the development of a new technology and to ensure that the product is 

maturing at an acceptable rate. The original scale goes from 1-9 and explains 

the degree of maturation a technology should have gone through if it is to be a 

commercial product. The scale is highly adaptable and differs from subject to 

subject. The basic principles are the same, with TRL 1 being the least mature 

level and TRL 9 being product launch. Some systems also include a TRL 10 

which considers evaluation of the product post launch. Figure 57 shows a 

typical TRL scale.244  
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Figure 57: Technology readiness level scale.244  

TRL 1 is the beginning point of the TRL scale, at this Stage the new technology 

is in its infancy, no experimental data is present to validate the hypothesis and 

the project is speculative. At TRL 2 again the project is still speculative, with 

potential applications for materials discussed. At this Stage it is likely that there 

are many avenues the project could potentially take, with lots of ideas being 

generated.245 At TRL 3 active R&D is initiated to prove the hypothesis for 

material application. The work carried out between TRL 3 and 4 should be 

designed to establish proof of concept. At this Stage all work carried out comes 

with relatively low costs, unique to the project, and can easily be funded through 

basic scientific investments such as research councils.244  

TRL 4 and onwards begins the Stages where collaborative research is likely. 

Funding from these Stages is likely to come from formal avenues such as 

industry specialists or venture capitalists. The work carried out at TRL 4 is 

focused around the validation of the project concept; it is to prove that the 

technology will work in the hypothesised applications. At this Stage it does not 

have to be demonstrated as an entire technology but could be considered as 

pieces that individually perform the desired function or exhibit preferred effects. 

The costs at this Stage are low in comparison to the overall cost of translation; 

however, they are significantly greater than the funding needed in previous 

Stages.  
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TRL 5 sees the product prototype tested within a similar environment to that in 

which it is intended to be used, and if successful proof of concept can be said to 

be successful. The technology or product needs to be highly reproducible and 

the applications of the product need to be tested in a realistic environment.245245 

By this Stage the research is most likely to be carried out in an industrial 

laboratory.244  

TRL 6 is the last step of validation of the product before it enters clinical trials 

and the product is demonstrated to have successful applications in its intended 

environment. At this Stage a demonstration of a model prototype needs to be 

successful to truly be at TRL 6.  

By TRL 7 clinical trials should have begun for biomedical technologies. The 

clinical trials need to achieve a positive result to progress beyond this Stage. 

TRL 7 incurs one of the largest costs before product launch, needing two times 

the amount of investment than it takes to reach all other previous Stages.245   

TRL 8 marks the end of testing of the product and is the beginnings of the 

process of product launch. Assuming all other TRL levels have been surpassed 

the product should not fail at TRL 8. To achieve TRL 8 it is always necessary to 

acquire formal funding from industrial investments or venture capitalists. TRL 8 

is the most expensive of all the Stages and is 10 times greater than all previous 

TRLs combined, this is due to the high manufacturing costs associated with this 

Stage.  

TRL 9 represents the product launch and penetration of the market. At this 

Stage any problems that may have arisen post launch will be fixed and it marks 

the end of the development process.245 Throughout the TRL process 

assessments should be carried out to confirm that TRL Stages have been met 

and that the technology is maturing at an acceptable rate. During TRL 

assessments the hurdles that the project needs to overcome to achieve the next 

TRL status should be clearly defined. During TRL assessments it is also 

important for project managers to fully evaluate the risks that the project may 

face at each TRL Stage.  



Chapter 5: Industrial Translation 

175 

4.2.1. Technology Readiness Levels Assessment for an Injectable 

Tendon Regeneration Product 

If the product were to be assessed at the point in which the body of this thesis 

leaves the work, it would currently sit between TRL 2 and TRL 3. Basic R&D 

has been carried out and publications, as well as consultations with clinicians, 

have proven that there is an obvious unmet clinical need for the regeneration of 

tendon tissue. Some experimental proof has been generated for the feasibility 

of a particle system conjugated to protein, using model proteins. This could be 

considered the first prototype although its applications have not yet been 

validated.  

To reach TRL 4 more of the elements of the final product would need to be 

introduced. The particle protein conjugation should be prepared into an 

injectable formulation and the fluid mechanisms of this tested. The product 

would need to undergo evaluation for protein release to ensure that the 

hypothesised affect is feasible. Once this has been achieved the particle system 

would then need to prove feasibility within a cellular environment to fully prove 

the concept. Additional tests such as the shelf life would need to be tested. The 

product would then need to be tested in a similar environment to that in which it 

is intended. This could be achieved by carrying out tests in small animal 

models, then moving to larger animals that have tendons most similar to 

humans, such as horse.  

From this work the project managers would then be able to carry out formal 

assessments to determine if the project is still feasible and if the results are 

corroborating the hypothesis. This would allow for identification and risk 

management. Following this a detailed plan of action could then be 

implemented to prepare for safety, efficacy trials and clinical trials to achieve 

higher TRLs and eventually product launch. 

5. Market Analysis  

Market analysis is one of the most crucial Stages of new product development. 

Poor market research has regularly been documented as the largest 
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contributing factor of product failure.243 Market analysis encompasses more 

than just where the product sells. It is the detailed research that needs to be 

undertaken into who the customers are going to be, what their wants and needs 

from the product are, what the market size and growth is like, what regulations 

apply, what and who the competition is and how the new product is superior. 

Understanding the customer is just as important as understanding the 

underpinning science behind the product and how it produces its effect. The 

product must be acceptable to the customers who are going to be using it. In 

the case of medical devices this could be physicians or any other health care 

professionals. The device ideally should fit in with standard practices already 

established within the environment to.243 

5.1. Market Analysis for an Injectable Tendon Regeneration product  

The market for tendon injury can come under orthopaedic soft tissue repair. 

Based on a report by Grand View Research, Inc. the soft tissue repair market is 

estimated to be worth over $9.39 billion by 2024. The progression of the market 

is focused around minimally invasive procedures that minimize the potential 

disturbance to muscles and tendons and result in a more natural healing 

response. The market of orthopaedic soft tissue repair is still quite broad and 

can be broken down into the specific sections including, but not limited to: 

cruciate ligament repair, knee surgeries, hip joint procedures and posterior soft 

tissue.246 The soft tissue repair market includes muscles, ligaments, tendons, 

fibrous tissue, skin, synovial membrane, nerves and other tissue required to 

protect organs and enable movement by supporting bones and the body. This 

means that tendon injury is only a small section of this market and when looking 

at market value and trends for soft tissue injury this must be taken into 

consideration.  Tendon injury can also fall within the market of sports medicine. 

It is estimated that this market will reach $8.24 billion by 2022 with a compound 

annual growth rate (CAGR) of 7.4%.247 

Market size and value can also be determined by the occurrence of injury. Of 

the multitude of tendons present in the body, flexor and extensor tendons of the 

hand, Achilles tendon and rotator cuff tendons are the most frequently injured. 

These account for 4.83 and 18 per 100,000 injuries per year for flexor and 
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extensor tendons respectively, 18 per 100,000 per year for Achilles and 3.73 

per 100,000 per year for rotator cuff.248 Additionally, of the 32.8million reported 

musculoskeletal injuries in the US, 45% involve tendons and ligaments.2 

Tendon injury is the most frequent soft tissue injury in orthopaedic surgery.6 

5.2. Drivers to the Market 

When considering market analysis, it is also important to understand what 

drivers there are to the market. Tendinopathy results from a large number of 

contributory factors including age, occupation and physical training.22 A change, 

or an increase in risk factors associated with tendinopathy will therefore 

inevitably become a driver for tendon injury, which will in turn drive innovation. 

Age is a risk factor for degenerative tendon tissue, this means that an ageing 

population would therefore infer an increase in tendinopathy patients.249  

Rotator cuff tendon tendinopathy predominance, as an example, increases with 

age to 40% in patients aged 70 or above.33 Tendinopathy is currently estimated 

to affect 25% of the adult population, at some point in their lives, with this figure 

expected to rise with life expectancy. According to the Office for National 

Statistics (ONS) life expectancy for men and women is at an all-time high with 

expectancy from birth at 79.1 and 82.8 years for men and women respectively, 

in the UK.250 Therefore an aging population can be considered as a major driver 

for innovation in orthopaedic surgery.  

Education and awareness of health and obesity will result in an increase in 

physical activity and high load activities such as gym usage, which are expected 

to lead to an increase in tendinopathy, and thus innovation. A 2017 report on 

the state of the UK fitness industry revealed that the industry is continually 

growing, which is a further driver for innovation. With 9.7million fitness members 

in the UK, the use of gyms is at its greatest rate at 14.9%, with 1 in 7 people a 

member of a gym. This market is estimated to increase 4.6% in the number of 

facilities, 5.1% in the number of members and 6.3% in market value.251  

Drivers of innovation and markets can also be affected by local policy, interest 

and trends in the area. In the US, a growth in the market can be attributed to an 

increase in the popularity in physical activity and an increase in awareness of 
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sports. In Canada the market growth can be attributed to support from 

government initiatives.247 It is becoming better understood the impact tendon 

injury such as tendinitis has on an athlete’s performance, coupled with a 

growing awareness of treatment options available will result in an increase in 

market growth.252 

5.3. Competition in the Market  

Another factor that must be extensively researched when carrying out market 

analysis is the competition. According to a study published by Grand View 

Research Inc, the largest and dominant companies in the market of orthopaedic 

surgery and soft tissue repair are Stryker, Zimmer Biomet, Smith & Nephew, 

Arthres inc, CONMED and DePuy Synthes, Inc.246 There are several products 

on the market that range from sutures, reinforcement devices, allografts, 

autologous injections and many more. Stryker provides a soft tissue repair 

matrix called TissueMend; an acellular collagen membrane made from foetal 

bovine dermis. It serves as a scaffold for cellular ingrowth and is remodelled by 

the body’s own tissue. It provides a biologic environment to help the tissue 

mend and fortify the tissue until the healing process is complete. It can be used 

for re-enforcement of rotator cuff, patella, Achilles, bicep, quadriceps and other 

tendons. The product combines physical strength and thickness with biological 

properties that encourage cell and blood vessel penetration. A second product 

offered by Stryker is the AlloWrap DS an amniotic membrane used for the 

protection of tendon. It is a dual layer graft that is processed so the epithelial 

layer is facing outwards on both sides of the graft.253 Additionally Stryker is able 

to offer allografts of tendon tissue for single use. They are able to provide an 

individualised service for each customer and exclude donors with conditions or 

behaviours that may affect the tissue quality, such as age. They offer tendon 

allografts for Achilles tendon, semitendinosus, gracills tendon, anterior tibialis 

tendon, posterior tibialis tendon and poroneous longus tendon.  

Zimmer Biomet is able to provide sutures of superior quality that eliminate 

suture fray and breakage. The Maxibraid suture has a high tensile strength and 

a smooth feel as well as outstanding flexibility and pliability.254 Additionally, they 



Chapter 5: Industrial Translation 

179 

are able to supply surgical aids such as the Toggleloc which can be used for 

tendon repair at the tendon-bone-tendon interface. It is resistant to slippage, 

requires simple surgical techniques and minimal implementation.255 Smith & 

Nephew provide surgical augmentation devices such as the Endobutton and the 

Biceptor, both for the repair of the biceps tendon. Neoligaments (xiros) focus on 

the production of suture tapes that can be used to augment repair and provide 

mechanical stability as well as holding the ruptured tendon in position. They 

manufacture Poly-tapes which are open weave mesh implants and Ortho-tapes 

which are exceptionally strong and narrow sterile tapes. They also provide 

implants that can provide mechanical strength to the tissue during repair. The 

Leeds-Kuff Patch is a permanent implant that can provide stability and 

encourage tissue ingrowth throughout the healing process.256 OrthoCell is a 

company which offer personalised injections of autologous tenocytes that is 

used for damaged or degenerate tendons. This treatment directly addresses the 

root cause of the pathology and uses a process by which tendon cells are 

harvested from the patient and re-injected after expansion using ultrasound 

guided methods.257  

5.4. Value Proposition 

A value proposition is a method of understanding what potential customers want 

from a product on the market and what the product should have to meet, and 

then surpass, expectations. Value propositions aim to concisely and effectively 

communicate the advantage a product has over others in the market by 

specifically highlighting its unique value. It aims to put the value of the product 

in the context of the customer’s viewpoint with an understanding of what they 

want to gain rather than the inventors telling the customers what they should 

want from the product. A good value proposition is one in which the needs, 

desires and pains of the customer are fully understood and addressed in a way 

that makes it obvious to the customer the huge benefits they stand to gain from 

the product. Additionally, a value proposition allows the customer base to be 

broken down and categorised so that several different customers can be 

identified. This allows the project managers to see what the product has to offer 

specifically for each individual subset of customer populations. This is important 
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particularly for medical devices because the wants and needs of the customer 

will be different depending on if the customer is a surgeon, a patient or manager 

responsible for purchase requisitions.  

The value proposition is divided into features and benefits, and wants and 

needs. When analysing customer information a need is something the product 

must be able to do to actually solve the problem it is intending to address. A 

want is something that the patient is able to gain above simply solving the 

problem and therefore goes above and beyond the customer’s expectation. 

Value propositions have only gained traction in the last 30 years and there is no 

set standard of the best way in which they should be carried out.258  

5.5. Value Proposition for an Injectable Tendon Regeneration Product 

When considering an injectable product for the regeneration of tendon injury 

several potential customers have been identified. The customer base can be 

divided into those who will directly receive the treatment and therefore receive 

the intended health benefits, and those who will use the product. The main 

beneficiaries of this product are patients who are suffering from degenerative 

tendinopathy of the tendon and those who have experienced ruptures 

undergoing surgical repair. The primary users would be surgeons and 

radiologists. Radiologists would be able to administer the treatment via 

ultrasound guided injections using common practice that is already in place 

within clinics. Secondary benefiters would be GP’s, physiotherapists and the 

National Health Service (NHS). Surgeons will be able to provide better repair to 

tendon tissue and thus providing better care for their patients. Surgeons will be 

able to give the injection at the point of surgical repair and would not need to 

change any operating procedures to administer the product. Surgeons should 

see a decline in the number of repeat surgeries needed to treat the same 

condition in a patient due to the decrease in re-rupture rate. The number of 

prescriptions for pain management medication would also decrease as the 

patients are able to be treated quicker with ensuing shorter rehabilitation times. 

Specific value propositions were generated for the product for each potential 

customer considered. Figure 58 shows a detailed example with surgeons given 

as the assessed customer.   
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Figure 58: Value proposition for tendon injury. For this example, specific 

attention was paid to surgeons as customers and the gains and pains 

associated specifically with them. 

6. Conclusion  

In conclusion, the process of innovation and translation is a long and expensive 

process with many obstacles along the way. In order for academic researchers 

to take basic scientific research through to commercialisation they need to fully 

understand the necessary processes. Only through the development of an 

active hub between researchers, industrial experts and physicians will medical 

technologies stand the best chance of launch to market. Individuals involved 

need to be aware of the regulatory enforcements that devices must adhere to, 

as well as understanding how to protect their intellectual property rights. The 

best chance for innovation success is to intimately understand the unmet 

clinical need the product is addressing as well as the customer’s needs at the 

very beginning of product development and to keep this at the forefront 

throughout the project. With the emergence of better access to technology 

resource centres in the universities and a collaborative culture of research more 

products will be able to make it from bench to bedside. 
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1. Overall Conclusions and Future Work 

This thesis set out to identify a polymeric microparticle drug delivery system that 

could be used as a template for the delivery of proteins for the repair of tendon 

regeneration. From the beginning of the project a final application in a clinical 

setting was considered which helped to shape many of the choices and 

experiments tested. 

Overall, this thesis has shown the successful synthesis of a PCL-N3 polymer. 

This polymer has successfully been formulated into microparticles. Microparticle 

size and uniformity can be tightly controlled by altering the process parameters 

used at production. These microparticles have been shown to successfully 

conjugate to a DBCO linking unit through the use of azide/alkyne click 

chemistry. This reaction was shown to be quick occurring in as little as 10 

minutes. Furthermore, the successful conjugation of model proteins HSA and 

BSA to PCL-N3 microparticles through the use of DBCO-PEG4-maleimde and 

DBCO-PEG4-NHS linkers respectively has been shown. This proves that the 

delivery system is possible, and these methods can be followed as a template 

for other proteins. DBCO-PEG4-maleimide chemistry can be successfully 

utilised for proteins containing a free thiol. Similarly, DBCO-PEG4-NHS can be 

used for protein without a free cysteine, but abundant in primary amines, such 

as those found on lysine side chains. Conjugation of therapeutic protein TGF-β 

proved problematic requiring multiple optimisations. The results of the 

conjugation reaction of TGF-β to PCL-N3 microparticles are promising, but more 

work is needed to prove this conclusively. 

The three months spend working on the industrial CASE studentship allowed 

insight into the laborious and multistep process required to take academic 

research into a commercial setting. This has provided detailed information of 

the meticulous planning that is needed when considering academic research, 

with the ultimate aim of commercial application.   

Overall the work described in these five chapters, shows promise as a template 

drug delivery system, future work could be carried out to build upon the 
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foundations described within the thesis.  DBCO is available with a large range 

of functional groups present, and therefore additional work could be carried out 

to identify the most appropriate conjugation method for TGF-β. Additionally, the 

sheer number of growth factors relevant in the healing process of tendon injury 

allows for further identification of a different therapeutic protein for conjugation. 

If the structure of the protein is known, information about the available functional 

groups can be used when choosing a DBCO linker for conjugation. Once it is 

possible to conjugate a protein of interest to the microparticle delivery system, 

further tests can be carried out into its effect on stem cells or tenocytes for the 

full potential as a regenerative delivery system to be realised. Furthermore, 

experiments to prove that this delivery system is controlled, giving information of 

the release rates of the protein is needed. To meet the main aim of an injectable 

delivery system, work could be carried out on the microparticles to formulate a 

gel, or liquid solution that could fit small gauge needles for a minimally invasive 

treatment option. 
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Appendix  

Appendix A: Characterisation of 2-[2-(2-azidoethoxy)ethoxy]ethanol 

Initiator (2). 

 

Figure 59: 1H MNR of 2-[2-(2-azidoethoxy)ethoxy]ethanol Initiator (2). Peak 

at 3.36 is indicative of the proton next to the terminal azide.  

 

2-[2-(2-azidoethoxy)ethoxy]ethanol: 1HNMR 3.68 (m, 2H), 3.64 (m, 6H), 3.59 – 

3.53 (t, 2H), 3.36 (t, 2H), 2.70 (s, 1H). 

 



 

205 

 

Figure 60: 13C NMR of 2-[2-(2-azidoethoxy)ethoxy]ethanol Initiator 2. Top 

spectra shows 2-[2-(2-Chloroethoxy)ethoxy]ethanol starting material and bottom 

shows 2-[2-(2-azidoethoxy)ethoxy]ethanol Initiator. The carbon peak next to the 

azide or chloride (A) clearly shifts from 42.62 to 50.65 ppm after azide 

substation. 

2-[2-(2-Chloroethoxy)ethoxy]ethanol: 13C NMR (101 MHz, CDCl3) δ 72.48, 

71.16, 70.47, 70.14, 61.46, 42.62. 

2-[2-(2-azidoethoxy)ethoxy]ethanol Initiator 2: 13C NMR (101 MHz, CDCl3) δ 

72.56, 70.64, 70.36, 70.02, 61.69, 50.65.   
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Appendix B: Characterisation of Polycaprolactone-Azide (4). 

 

Figure 61: IR of PCL-N3 (4). Peak at 2100 indicates the presence of the azide. 

IR (NaCl, cm-1) 3391, 2867, 2095, 1454, 1345, 1283, 1063  
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Appendix C: Manufacturer’s Injection Rates  

 

Table 14: Micropore Ltd manufacturer’s guidelines for injection rates of 

dispersed phase through the membrane, and the resulting expected 

particle size depending on a ringed or standard membrane. 

  

 

Type  Material  Pore Size 
Microns  

Total 
area cm2 

Porosity 
% 

Injection rate 
ml/min 

Drop size 
Microns  

Standard  Nickel 5 8 0.06 0.2 ≥15 

Standard  Nickel 10 8 0.23 0.9 ≥30 

Standard  Nickel 15 8 0.51 2.1 ≥45 

Standard  Nickel 20 8 0.91 3.7 ≥60 

Standard  Nickel 40 2.8 3.63 14.5 ≥120 

Ring  Nickel 5 2.8 0.06 0.08 ≥15 

Ring  Nickel 10 2.8 0.23 0.31 ≥30 

Ring  Nickel 15 2.8 0.51 0.7 ≥45 

Ring  Nickel 20 2.8 0.91 1.25 ≥60 

Ring  Nickel 40 2.8 3.63 5 ≥120 

Ring  Stainless 5 2.8 0.05 0.07 ≥15 

Ring  Stainless 10 2.8 0.19 0.26 ≥30 
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Appendix D: Infrared Analysis of Polycaprolactone-Azide Microparticles 

Produced with Increasing Stir Speeds and Polymer Concentrations (7).  

 

Figure 62: IR of PCL-N3 particles produced by altering stir volts applied at 

production. Key;  1500 RPM,  1140 RPM,  950 RPM,  770 

RPM,  590 RPM and  400 RPM. Azide peak can be seen at 2100 cm-1 

for all samples. 

 

 

Figure 63: IR of PCL-N3 particles produced by altering the polymer 

concentration. Key;  5%,  20%,  30%, and  40% PCL-N3. 

Azide peak can be seen at 2100 cm-1 for all samples. 
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Appendix E: Analysis of GRGDS-Pentapeptide (10, 11 & 12) 

 

Figure 64: HPLC analysis of DBCO acid-GRGDS peptide on 100 mg scale 

(10).  
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Figure 65: HPLC analysis of FMOC-GRGDS peptide on 100 mg scale (11). 

 

 

Figure 66: MALDI analysis of GRGDS peptide on 300 mg scale (12) 
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Figure 67: HPLC analysis of GRGDS peptide on 300 mg scale (12) 

 

 

Figure 68: HPLC purification of DBCO acid-GRGDS peptide (12). Fractions 

were collected at 3.4 mins (peak 1) 4.8 mins (peak 2) 14.3 minutes (peak 3) and 

16.5 minutes (peak 4). 
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Figure 69: MALDI of HPLC peak 1 at 3.4 mins for DBCO acid-GRGDS 

peptide (12).  

 

 

Figure 70: MALDI of HPLC peak 2 at 4.8 mins for DBCO acid-GRGDS 

peptide (12). 
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Figure 71: MALDI of HPLC peak 3 at 14.3 mins for DBCO acid-GRGDS 

peptide (12). 

 

 

Figure 72: MALDI of HPLC peak 4 at 16.5 mins for DBCO acid-GRGDS 

peptide (12). 
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Appendix F: Cytotoxicity Testing of Polycaprolactone-Azide 

Microparticles (7) 

 

Figure 73: Cytotoxicity analysis of PCL microparticles. N=3.Control wells of 

cells only reacted with MTS assay were taken to be 100% cell viability. All other 

wells were normalised against these controls. 
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Appendix G: Characterisation of Native Human Serum Albumin 

 

Figure 74: HPLC analysis of native HSA protein. 

 

Figure 75: LC-MS analysis of native HSA showing a Mw of 66,560 Da. 

 

Figure 76: MALDI-TOF analysis of HSA.  
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Appendix H: Calibration Curve of Ellman’s Assay  
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Figure 77: Ellman’s assay calibration curve.  
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Appendix I: Human Serum Albumin-Fluorescein Isothiocyanate-

Dibenzocylooctyne-Maleimide Conjugation to Polycaprolactone-Azide 

Particles (17) 
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Figure 78: Bradford assay calibration curve. Constructed using a protocol 

from thermo fisher scientific with a stock solution of Bovine Serum Albumin. 
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Figure 79: Water washes of microparticles after FITC labelling. PCL is 

microparticles produced using commercial PCL and N3 is PCL N3 

microparticles (7) The corresponding time is length of incubation of particles 

with FITC labelled HSA. After 3 washes of distilled water (3x10 mL) 

fluorescence intensity was comparable to water only sample suggesting that no 

more unbound FITC was leaching from the particles for all samples.   
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Appendix J: Analysis of Transforming Growth Factor- β1 and 

Transforming Growth Factor-β1 

 

Figure 80: MALDI spectra of TGFβ1 protein at a concentration of 4 µM. 

Peak observed at 25777 is as expected for the size of the protein (25 kDa) and 

the smaller peak at 12881 is indicative of one monomer of the protein. 

 

 

Figure 81: MALDI spectra of TGF-β3 protein at a concentration of 4 µM. 

Peak observed at 25573 is as expected for the size of the protein (25 kDa) and 

the smaller peak at 12866 is indicative of one monomer of the protein.   
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Appendix K: Analysis of Hydrolysed Dibenzocylooctyne-N-

Hydroxysuccinimide.  

 

Figure 82: MALDI-TOF of DBCO-PEG4-NHS reacted with TGF-β protein. 

Peak at 655 is the most abundant peak which corresponds to the molecular 

weight of the compound (649.69), the peak at 557 corresponds to hydrolysed 

DBCO-NHS (mw 552.25) 

 

 

Figure 83: MALDI spectrum of hydrolysed DBCO-NHS. Peak at 553 is 

indicative of the hydrolysed DBCO unit (552.25) 

 


