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Cuspidal /-modular representations of p-adic
classical groups

By Robert Kurinczuk at London and Shaun Stevens at Norwich

Abstract. For a classical group over a non-archimedean local field of odd residual char-
acteristic p, we construct all cuspidal representations over an arbitrary algebraically closed field
of characteristic different from p, as representations induced from a cuspidal type. We also give
a fundamental step towards the classification of cuspidal representations, identifying when cer-
tain cuspidal types induce to equivalent representations; this result is new even in the case of
complex representations. Finally, we prove that the representations induced from more general
types are quasi-projective, a crucial tool for extending the results here to arbitrary irreducible
representations.

1. Introduction

In recent years, congruences between automorphic representations have assumed a cen-
tral importance in number theory. This has led to the desire to understand representations of
reductive p-adic groups on vector spaces over fields of positive characteristic £. There are vast
differences between the cases ¢ = p and ¢ # p, with the latter sharing many similarities with
the theory of complex representations, including the existence of a Haar measure. However,
there are also many important and interesting differences between the ¢ # p theory and the the-
ory for complex representations, including the presence of compact open subgroups of measure
zero, the non-semisimplicity of smooth representations of compact open subgroups, and that
cuspidal representations can and do appear as subquotients of parabolically induced represen-
tations (in fact, all of these phenomena are related). In this article we focus on the ¢ # p case,
and work with an arbitrary algebraically closed field R of characteristic ¢ or zero.

The theory of (smooth) representations of a general reductive p-adic group over such
fields was developed by Vignéras in [26]. However, many subsequent articles and fundamen-
tal results (for example, the unicity of supercuspidal support) focus just on the general linear
group. One of the main reasons that this group has been more accessible for a modular theory,
is that the Bushnell-Kutzko classification of irreducible complex representations via types ex-
tends in a natural way to /-modular representations, which is the subject of the final chapter of
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[ibid.]. This classification, in favourable circumstances, allows one to reduce a problem to an
analogous question in associated finite groups where hopefully it is either tractable to the pur-
suer, or already known. Recently, this approach has been adopted for other groups: Sécherre
and Minguez in [17] for inner forms of GL,,; and the first author in [15] for unramified U(2, 1).
In this article, we pursue this approach for p-adic classical groups G over locally compact non-
archimedean local fields with odd residual characteristic. (See the end of the introduction for a
remark on the exclusion of the case p = 2.)

Of particular importance in this approach is the construction of all irreducible cuspi-
dal complex representations of general linear groups as compactly induced representations. We
accomplish this for /-modular representations of p-adic classical groups in our main results:

Theorem A (Theorems 12.1 and 12.2). There is an explicit list of cuspidal types, con-
sisting of certain pairs (J, ), with J a compact open subgroup of G and \ an irreducible
R-representation of .J such that

(i) the compactly induced representation indf,; A is irreducible and cuspidal;

(ii) every irreducible cuspidal representation arises as in (i), for some cuspidal type (.J, \).

See below for a more precise definition of cuspidal type. For complex representations
this is the main result of [25]. But here we do more, giving an initial refinement of this ex-
haustive list of cuspidal types. Part of the data used to define a cuspidal type is a family of
skew semisimple characters, related by a transfer map (see below for more detail). In the case
where two cuspidal types are defined relative to the same family (that is, their skew semisimple
characters correspond under the transfer map), we obtain the following intertwining implies
conjugacy result:

Theorem B (Theorem 12.3). Let (J1, A1), (J2, A2) be cuspidal types defined relative to
the same family of skew semisimple characters. Then indS’Y1 Al ind?2 Ao if and only if there
exists g € G such that J{ = Jo and \{ ~ Ao.

Note that A{ here denotes the representation of .J{ = g~1.J1g givenby X (5) = A1 (gjg™1),
for j € Jp. In forthcoming joint work with Skodlerack, this theorem will be combined with
work of the second author and Skodlerack to prove an intertwining implies conjugacy result
without the condition on the skew semisimple characters. We now give more details and ex-
plain our approach.

Let GG be a p-adic classical group with p odd, that is (the points of) a unitary, symplectic
or special orthogonal group defined over a locally compact non-archimedean local field F' of
residual characteristic p. Let § € Lie G be a semisimple element, and put G = Cg(S) the
G-centraliser of 3. Let A be an o p-lattice sequence corresponding to a point in the Bruhat-Tits
building of Gg. From 3 and A we get a set of self-dual semisimple characters of a group H}\;
the precise definition is somewhat complicated but these characters have very useful formal
properties (some of which we generalize here). For example, given another lattice sequence
T as above, there is a canonical transfer map which takes a self-dual semisimple character 6
in this set to a corresponding self-dual semisimple character fy of H%f Writing J, for the
normaliser of 6, in the (non-connected) parahoric subgroup of GG corresponding to A, and J}\
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for its pro-p radical, there is a unique irreducible representation 1, of JI{ which contains 65 on
restriction. Our first major diversion from the earlier results of the second author is:

Theorem C (Theorems 4.10 and 5.1). With notation as above:
(i) the intertwining of 65 with Oy is JYGgJa;

(i1) the intertwining spaces of np with ny are at most one dimensional; more precisely:

. 1 ifge JrGpJy;
A Hom‘]km(‘]‘lf)g(m’n%) N {0 otherwise.

This theorem is an asymmetric generalisation of [24, Propositions 3.27 & 3.31], see
also [18], which deals with the case A = Y. It appears possible, and indeed it is already hinted
at in [4, 1.5.12], that one could prove such an intertwining result by developing the theory ab
initio, with lattice sequences such as these rather than just a single lattice sequence. However,
our approach is briefer and more elegant, utilising a construction for semisimple characters to
relate the case of not necessarily conjugate lattice sequences to the case of conjugate lattice
sequences in a larger group. This construction is inspired by a similar one for simple strata, in
work of the second author with Broussous and Sécherre [3].

The next step is to extend 77, to a suitable representation xp of Jy, called a B-extension,
which is accomplished in Section 6. While we have to change the proofs of [25] here, the
changes are straightforward. Following ideas in [17], we then use these [3-extensions to intro-
duce induction and restriction functors R,;, and I, between representations of GG and those
of the group Jy / J}\, which is a finite (possibly disconnected) reductive group. These provide
a key tool for connecting the theory for positive depth representations to that for depth zero
representations (notably from [28], see Section 7). We prove several results about the compo-
sition Ry, o1, notably the following:

Theorem D (Corollary 8.5(ii)). With the notation as above, suppose that G has com-
pact centre and that Jy, N G is the normalizer of a maximal parahoric subgroup of Gg. Let 7
be an irreducible cuspidal R-representation of J /JA. Then Ry, oL, (7) ~ .

All this is new even in the case of complex representations and it is in this part that our
methods depart radically from those of [25]. Writing J = Jj and A = kp ® 7, it follows from
this that, in the situation of Theorem D, the representation I, (7) = ind§()) is irreducible
and cuspidal (see Theorem 12.1); thus it is such pairs (J, \) which we call cuspidal types.

Thanks to our work in this paper on asymmetric intertwining of semisimple characters
and Heisenberg representations, asymmetric results along the the lines of Theorem D allow us
also to compare cuspidal representations constructed in this way whose semisimple characters
are in the same family (i.e. related by the transfer map), proving Theorem B.

It remains to prove exhaustion, for which we need a fundamental tool from the literature,
namely the theory of covers. This is originally due to Bushnell-Kutzko [5] in the case of
complex representations, with results generalised to R-representations by Vignéras [26, 27]
and Blondel [1]. We recall the precise definition and basic results on covers in Section 2.3; for
now, it is sufficient to recall that, given a proper parabolic subgroup P = MU of GG with Levi
component M and an irreducible representation Ay, of a compact open subgroup Jys of M, a



4 Kurinczuk and Stevens, Cuspidal /-modular representations of p-adic classical groups

G-cover of (Jar, Aar) is a pair (Jp, Ap) consisting of a compact open subgroup Jp of G and
an irreducible representation \p of Jp whose restriction to Jp N M = Jjs is Aps. The crucial
fact then is that, if an irreducible representation 7 of G contains such a G-cover (Jp, Ap) then
it has a non-zero Jacquet module with respect to U; in particular, it is not cuspidal.

In order to know that we have a G-cover, there is an additional technical condition on the
spherical Hecke algebra H (G, Ap). However, there is one particular case where it is relatively
easy to prove that we have a G-cover. If there is a Levi subgroup L containing M such that the
intertwining I(Ap) € JpLJp, then (Jp, Ap) is a G-cover of (Jp N L, Ap|s.nr) so that any
irreducible representation containing Ap is not cuspidal.

The problem now is to construct certain G-covers explicitly, following [18,24,25]. That
the constructions remain valid for R-representations requires a line-by-line check, with some
minor changes required in a few places. In Sections 9 and 10 we recall the construction of
the GG-covers required and indicate the places where change is needed. At the suggestion of a
referee, we also include here a brief account of the schema of the proof.

The starting point is a result of Dat [9, Proposition 8.5], building on the work in [24]:
given any irreducible representation 7 of G, there is a self-dual semisimple character 0, of H }\
such that 7|1 contains 6 as a subrepresentation. Now suppose that 7 is a positive depth ir-
reducible cuspidal representation of GG. (The depth zero representations are dealt with in [28].)
Let 05 be a self-dual semisimple character contained in 7r; it is associated to some semisim-
ple 8 € LieG and we set Gg = Cg(f) as previously so that A determines a parahoric sub-
group Py p of Gp. Among all such semisimple characters 65 contained in 7 (associated to
this fixed ) we choose one with Py . minimal.

Now 7 also contains the representation 7y of J/{ so contains a representation of Jy of
the form A = k5 ® 7, with 7 an irreducible representation of .J / J}\, which is a finite re-
ductive group, possibly disconnected. Now the minimality of PX7 p implies that 7 is cuspi-
dal. This means that the restriction of A to J§ = Py EJ}\ is composed of representations of
the form \° = kp ® 7°, with 7° a cuspidal represenfation of the (connected) reductive quo-
tient G}  := Py /P4 . We choose one such component \° = x4 ® 7° which is contained
inw ’ ’

We need to prove that G’ has compact centre and PK p 1s a maximal parahoric subgroup
of G so, for contradiction, suppose this is not the case. One can associate to A a Levi sub-
group M of GG and choose a parabolic subgroup P = MU with Levi component M, which is
a proper Levi subgroup by our assumption. Then we can form the group Jp = H}\(JX N P)

Jg . . . .
and we have \° ~ Ind’;$ A%, where A% is the natural representation on the (.J§ NU)-invariants
P
of \°.

If G is contained in a proper Levi subgroup L of G then intertwining calculations show
that I¢(Ap) C JpLJp, whence (Jp, Ap) is a cover of (JpN L, Ap| o1 ). But this contradicts
the cuspidality of 7 so we suppose G’ is not contained in any proper Levi subgroup of G.

Now the involution defining GG acts also on the reductive quotient G} 5 so on its repre-
sentations. If 7° is not invariant then we can again find a Levi subgroup L containing M, with
the property that Ig(\%) C JpLJp, so again we find a cover and contradict the cuspidality
of 7. Thus we are left with the case where 7° is invariant under the involution.

If Y is another lattice sequence such that Py , D Py , then we can identify G} ; as a
Levi subgroup of the reductive quotient G5 , and 7° as a representation of it. We find that there
is a character y of order at most two such that the finite Hecke algebra 7 (G5 5, 7°®x) embeds
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into the Hecke algebra (G, A% ). The structure of this finite Hecke algebra is known (in the /-
modular case by Geck—Hiss—Malle [11]) and allows us to identify an invertible element 7'
supported on a certain double coset.

We do this for two different lattice sequences Y1, Yo, giving Hecke algebra elements 77, 15
with the property that a suitable power (7775)™ is supported on a double coset J3(.Jp with ¢
a strongly negative element of the centre of a Levi subgroup L. This is the technical condition
needed to show that (Jp, A%) is a cover of (Jp N L, A% | jon1), and we are done.

We now mention further results we prove with future work in mind. In the ¢-modular
setting, compactly induced representations from types may not be projective. This provides an
obstruction to following Bushnell-Kutzko’s approach via covers to the admissible dual, as the
category of representations containing a type (J, A), will not in general be equivalent to the the
category of right modules over the algebra Endg(ind§ A). Following Minguez—Sécherre we
construct covers on pro-p groups (Theorem 10.3); these will have the advantage of providing
such an equivalence of categories to the category of modules over an algebra as above. It may
be that this algebra will prove unwieldy for classification purposes, but it can be related to a
similar algebra in depth zero. For general linear groups, this is the approach taken by Chinello
in [8], while Dat has begun a detailed study of the depth zero subcategory in [10]. Writing J°
for the inverse image in J of the connected component of .J/J! and \° for an irreducible
component of the restriction of A to .J°, we show:

Theorem E (Theorem 11.2). The representation ind% A° is quasi-projective.

Thanks to work of Vignéras and Arabia [27], this implies that the irreducible quotients
of indgo A° are in bijection with the simple right modules of Endg(ind% A°), (see Section 2
for details). As any irreducible representation of G is a quotient of such an induced represen-
tation, this result is the starting point of an approach to classifying all irreducible /-modular
representations of G.

Remark. We avoid the case p = 2 throughout. For results concerning depth zero rep-
resentations (see [28]) this restriction is not necessary; however, as soon as we look at positive
depth representations, we encounter difficulties. The techniques used here rely fundamentally
on various vanishing cohomology arguments, which come from having an involution acting on
a pro-p group and would be false when p = 2. It is possible that other techniques could lead to
results similar to those here in the case p = 2 but this seems to be a difficult problem.

2. Representations of reductive p-adic groups

Let G be a reductive p-adic group, it is a locally compact topological group. We let R
denote an algebraically closed field of characteristic ¢ different from p, allowing the case ¢ = 0.
For any locally compact topological group H, we denote by R z(H ) the category of smooth R-
representations of H. Henceforth, all representations are supposed to be smooth. For general
results on representations of reductive p-adic groups over R, we refer to Vignéras’s book [26].
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2.1. Representations and Hecke algebras. Let K, K, K5 be compact open subgroups
of G, (1, W) be a smooth R-representation of K, and (7;,)V;) be smooth R-representations
of K;, fori = 1,2. For g € G, the g-intertwining space of 71 with 15 is defined to be the set

IQ(T17 T2) = HOH’lKlng (T17 Téq))
and the intertwining of 7 with 75 in G'is
IG(TlaTZ) = {g €G: 19(7177—2) 7é 0}7

where K§ = g~ ' Ksg and 73 () = m2(gxg™!) for z € K. We also write YKy = gK2g~
Ir9(z) = T2(g9 L2 g) for x € IKs.

L and

Remark 2.1. The motivation for this definition is provided by the following decompo-

sition
Homg(ind]G(1 (71),ind[G(2(7'2)) ~ @ Iy(71,72),
Ko\Ig(71,72)/ K1

by reciprocity and Mackey theory. Note that, if K = Ky = Ko, 7 =7 = mand g € G,
for complex representations or if K is pro-p, the two spaces I,(7) = Homgngo (7, 79) and
Hom o (7,97) have the same dimension, as representations of K N KY are semisimple and
the second space is always isomorphic to Homgnxa(79,7), so in previous works one sees
intertwining defined in either way.

For an R-representation (,))) of a locally profinite group we denote by (7", VV) its
contragredient representation. Let H (G, 71, 7o) be the R-vector space of compactly supported
functions f : G — Hompg (Wi, Ws) which transform on the left by 79 and on the right by 7.
Let H(G,7) = H(G,7,7) denote the R-algebra consisting of compactly supported func-
tions f : G — Endgr(V) which transform on the left and the right by 7 together with the

convolution product
fixfah)= D" filg 'h),

geG/K

for f1, fo € H(G, 7). This algebra has a unit element if the index of every open subgroup

in K is invertible in R (i.e. the pro-order of K is invertible in R). The K-invariant bilinear
pairing ( , ) on W x WY induces an anti-isomorphism H(G,7) — H(G,7V) by f — fV
with £V defined by (w, f¥(¢g~)w) = (f(g)w,w) for all w € W, @ € W". Under con-
volution H(G, 11, 72) has an (H(G, 1), H(G, 72))-bimodule structure. If g € G, we denote

by H(G, 71, T2)4 the subspace of all functions with support K g K.

Under composition Endg (ind 7 7) has an R-algebra structure and Homg (ind%1 1, ind%2 T2)

is an (Endg(ind% R, 1), Endg(ind% K, T2))-bimodule. The proof of the following Lemma fol-
lows from the proofs contained in [26, §8.5, 8.6, & 8.10].

Lemma 2.2. (i) We have an isomorphism of algebras
H(G,7) ~ Endg(ind% 7).

(i) Fori = 1,2, we identify H(G, 7;) with EHdG(lnd K, Ti) by (i). We have an isomorphism
of (H(G, 7'1), H(G, m2))-bimodules

H(G, 11, 72) =~ Homg(ind?(1 T, indgz T).
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(iii) Fori = 1,2, let H; be compact open subgroups of GG containing X;. We have an isomor-
phism of (H(G, 1), H(G, 72))-bimodules

. . H . H
H(G, indg! 71, indy? 72) ~ H(G, 11, 72),
which restricts to give isomorphisms of vector spaces, for g € G,

H(G,ind% Tl,ind% T2)g ™ H H(G, 1, 72)p-

heH1\G/Ho
Ki1hK>=K1gK>

2.2. Modular representation theory techniques. As (smooth) R-representations of
compact open groups are not necessarily semisimple (unlike the case R = C), we will need to
use appropriate versions of some well known representation theory techniques. The first is the
simple criterion for irreducibility of [28, Lemma 4.2].

Lemma 2.3. Let A\ be an irreducible representation of a compact open subgroup K
of G. Suppose that Endg(ind% (\)) ~ R and, for any irreducible representation 7 of G, if A
is a subrepresentation of 7 then it is also a quotient of 7. Then inle(()\) is irreducible.

A representation 7 of G is called quasi-projective if, for all representations 7’ of G and all
surjective homomorphisms ¢ : 7 — 7', the homomorphism Endg(7) — Homg (7, 7'), o — poa
for a € Endg(7), is surjective. The second modular representation theory criterion we make
use of is the simple criterion for quasi-projectivity of [28, §3] (cf. also [13, Proposition 3.15]).

Lemma 2.4. Let K be a compact open subgroup of GG, A an irreducible representation
of K and m = ind% ()). If the A-isotypic component of 7 is a direct summand of the restriction
of m to K and no subquotient of its complement is isomorphic to A then 7 is quasi-projective.

Let 7, 7 be R-representations of G. Then Homg (7, 7) is a right Endg (7)-module by
pre-composition. In attempts to classify the irreducible representations of GG, quasi-projective
representations are particularly interesting due to the following theorem of Arabia.

Theorem 2.5 ([27, Appendix Théoréeme 10]). Suppose 7 is quasi-projective and finitely
generated. Then the functor R (G) — Endg(7)-mod, 7 — Home (7, 7), induces a bijection
between the irreducible quotients of 7 and the simple right End ¢ (7)-modules.

Suppose that J is a compact open subgroup of G containing a compact open pro-p sub-
group J! which is normal in .J and that 7 is an irreducible representation of .J! which extends
to an irreducible representation s of J. Then we have the following lemma, implicit in [28]
(cf. [29, Proposition 4.2] and [17, Lemme 2.6] for a proof).

Lemma 2.6. The functor k®— induces an equivalence of categories between R (J/J!)
and the category R (J, n) of n-isotypic representations of .J.

The following lemma is a mild abstraction of [4, Proposition 5.3.2], the proof of which
still applies.
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Lemma2.7. Let X; and X5 be closed subgroups of G, and X1 (resp. X1 ) be a subgroup
of X7 (resp. X3). Fori = 1,2, let (; be a representation of X trivial on Xl-l, and let u; be a
representation of X;. Suppose that Homx, nx, (p1, p2) = HOHlelmX21 (1, p2) ~ R. Then,
for any non-zero S € Homx, nx, (11, pt2), the map

HoleﬂXQ (Cb CQ) - HomX1ﬂX2 (Ml & C17 2 & C2)a

T — S ®1T,is an isomorphism of vector spaces.

2.3. Covers. The theory of covers is a method to study parabolic induction in reduc-
tive p-adic groups at the level of compact groups. In this article, we only use the coarse prop-
erty, that an irreducible R-representation which contains a cover is not cuspidal.

Let M be a Levi factor of a parabolic subgroup P of Gz, let U denote the unipotent radical
of P, and let U~ denote the unipotent radical of the parabolic subgroup P~ opposite to P.

Definition 2.8. Let K be a compact open subgroup of G. An element z of the centre
of M is called strongly (P, K)-negative if it satisfies the following properties:

() Letting KT = KNUand K~ = KNU ", wehave zKt2' D KtTand 2K~ 27! C K~.

(ii) For all compact open subgroups H, H' of U (respectively U ™) there exists a negative
(respectively positive) integer m such that 2™ Hz~"™ C H'.

Let Kj; be a compact open subgroup of M and pj; be an R-representation of K ;.

Definition 2.9. A pair (K, p) consisting of a compact open subgroup K of G and an R-
representation p of K is said to be decomposed above (K, par) relative to P if the following
two properties are satisfied:

(i) We have K); = K N M and, setting K™ = K NU and K~ = K N U, we have an
Iwahori decomposition K = K~ K K.

(i) We have p |k,,= pam. and p |+ and p |- are both multiples of the trivial representa-
tion.

A decomposed pair (K, p) is called a G-cover of (K, par) relative to P if also:

(iii) There exist a strongly (P, K )-negative element of the centre of M and an invertible
element of H (G, p) with support Kz K.

An immediate corollary of [27, II 10.1(2)] is that an R-representation which contains a
cover is not cuspidal:

Proposition 2.10. Let 7 be an R-representation of G which contains a (G-cover relative
to P = MU. Then the Jacquet module of 7 with respect to U is non-zero.

There is one particularly simple case where we can detect that a decomposed pair is a
cover without having to check the third condition of Definition 2.9.

Lemma 2.11 (cf. [27, Proposition I1.8]).  Suppose (K, p) is decomposed above (K 7, par)
relative to P and I (p) € KM K. Then (K, p) is a G-cover of (K, ppr) relative to P.



Kurinczuk and Stevens, Cuspidal ¢-modular representations of p-adic classical groups 9

2.4. Double coset identities. We state mild generalisations of some results of [22], the
proofs of which, [op. cit., Lemmas 2.1, 2.2 and Theorem 2.3], still apply. The notation in this
short subsection is independent of that in the rest of the paper. Let G be a group and I" a group
of automorphisms of G. If H is a I'-stable subgroup of G we let H' denote subgroup of fixed
points of T".

Theorem 2.12. Let U; and U; be ['-stable subgroups of G.

(i) Suppose that, forall g € G, the (non-abelian) cohomology pointed set H(T", gUy g~ *NU3)
is trivial. Then, for all g € G, we have (U1gUs)" = U} gUJ.

(i1) Suppose that I' is a soluble group of order coprime to p, that U; and Us are I'-stable pro-p
subgroups of (G, and that g € G.

(@) (UygUsz)" # () if and only if Uy gUs is stable under T'.

(b) Let H be a I'-stable subgroup of G such that U1hUs; N H = (U; N H)h(Us N H),
forall h € H. Then (U1 HU2)" = Uf H'UY.

3. Classical groups and semisimple strata

Let Fy be a non-archimedean local field of odd residual characteristic p and let F' be
either Fy or a quadratic extension of Fy. Let — denote the generator of Gal(F/Fy). If E'is a
non-archimedean local field we denote by o the ring of integers of E, by pr the unique max-
imal ideal of o, by kp the residue field and by ¢ the cardinality of kr. We write 09 = 0p,,
and similarly abbreviate pg, ko, qo. We fix a uniformizer wp of F' such that wp = —wp
if F'/F} is ramified and ©or = wp otherwise. We fix a character 1)y of the additive group Fj
with conductor po and let Y = g 0 Trp) .

Let V' be an N-dimensional F'-vector space equipped with a non-degenerate -hermitian
formh:V x V — F withe = +1. Let A = Endp(V) and G = Auty(V). The group

Gt ={g€G:h(gv,gw) = h(v,w) forall v,w € V}

is the Fy-points of a unitary, symplectic or orthogonal algebraic group G* defined over Fj.
From now on, we let G denote the Fj-points of the connected component of G and call G
a classical group. Hence the special orthogonal group is a classical group whereas the full
orthogonal group is not.

Let ~ denote the adjoint (anti)-involution induced on Aby handlet A~ = {a € A : a+a = 0},
which is isomorphic to the Lie algebra of G. Let o denote both the involution on G defined
byo:g— g ' forg € G, and its derivative @ — —a, for a € A. Let ¥ be the cyclic
group of order two generated by 0. Then G+ = GZand A~ = A= Wehave A = A~ @ A
where A* = {a € A:a—a=0}. Weletiqg = ¢y o Try/p. If Sis a subset of A, we
let S* ={x € A:y(xS) =1}.

3.1. Lattice sequences and parahoric subgroups. An op-lattice sequence in V is a
function
A :7Z — {op-lattices in V'}
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which is decreasing, that is A(n + 1) C A(n), for all n € Z, and periodic, that is, there exists
a positive integer e(A) such that A(n + e(A)) = wprA(n), forall n € Z.

The e-hermitian form h defines a duality on the set of op-lattices; given an o p-lattice L
we let L¥ = {v € V : h(v,L) C pr}. An op-lattice sequence A is called self-dual
if A(k)* = A(1 — k), forall k € Z.

An op-lattice sequence A induces a decreasing filtration on A by op-lattices 2,,(A) in A
where

A, (A) ={x € A:2A(m) C A(m+n),m € Z}, forn € Z.

This filtration induces a valuation on A defined by

() = sup{n € Z:z € A, (A)} ifx e A\{0};
T it 2 = 0.

If A is self-dual, it induces a decreasing filtration on A~ by op-lattices 2 (A) in A~ where

A (A) =2, (A)N A, forn € Z.

n

We let
D nAX if n = ;
Br(A) — A, (A) 1n 0
1+2,(A) ifn>0.

Then P(A) = PY(A) is a compact open subgroup of G and P™(A), n > 0, is a decreas-
ing filtration of P(A) by normal open subgroups. If A is self-dual then P(A) = P(A) N G
(resp. PT(A) = P(A) N G) is a compact open subgroup of G (resp. G*) which has a de-
creasing filtration of normal compact open subgroups P"(A) = ]3”(1\) N G, n > 0. We have
a short exact sequence

1—PA) = PA) S MA) -1

where M (A) is the ko-points of a reductive group M defined over k. Let M°(A) denote
the ko-points of the connected component of M and let P°(A) be the inverse image of M°(A)
under 7. We call the subgroups P(A) of G and P°(A) of G parahoric subgroups.

In fact, by [2] and [16], the filtrations of parahoric subgroups defined here, by considering
different (self-dual) lattice sequences in the vector space V', coincide with the Moy—Prasad
filtrations.

Let A be an o p-lattice sequence in V. For integers a,b € Z with a > 1, we let aA + b be
denote the op-lattice sequence in V' defined by

al +b(r) = A([(r —b)/a)),
for all r € Z. The affine class of A, is the set of lattices of the form aA +b witha,b € Z,a > 1.
3.2. Semisimple strata and characters. A stratum in A is a quadruple [A,n,r, (]
where A is an op-lattice sequence in V, n,r € Zwithn > r > 0,and § € A_,.(A). A
stratum [A,n,r, 5] is called self-dual if A is self-dual and § € A~. Two strata [A,n,r, 1]

and [A, n, 7, (2] are called equivalent if 5y — B2 € _,(A). If n > r > & > 0, an equivalence
class of strata corresponds to a character of P, (A), by

[A7 n,r, ﬁ] = wﬁ
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where ¥g(x) = Ya(B(x — 1)) forz € P,.1(A), while an equivalence class of self-dual strata
corresponds to a character of P,1(A), by

[A,TL,’I“, B] = ¢E = 1/1/3 ‘PT+1(A) .

If F[] is a field then let B = C'4(3) be the A-centraliser of 8, G = B*, B, (A) = Ay (A)NB
and ng(B8,A) = {z € Ag(A) : Bz — zB € A(A)}. We say [A,n,r, (5] is a zero stratum
if n = r and 8 = 0 and we call [A, n,r, 8] simple if it is either zero or E = F[J] is a field, A
is an o-lattice sequence, A () = —n < —rand n_, (3, A) C Bo(A) + A1 (A).

Suppose V = ,.; V" is a decomposition of V into F-subspaces. We let A" = AN V*
and we let §; = e'fe’, where € : V. — V" is the projection with kernel @j 2; V7. The
decomposition V' = @, ; V* of V is called a splitting of [A,n,r, 8] if 3 = >, _; B; and, for
all k € Z, we have A(k) = @, A'(k). A stratum [A, n,r, 8] in A is called semisimple if it is
zero or vA () = —n and there exists a splitting @,.; V* for [A, n, r, 5] such that:

(i) fori € I, the stratum [A?, g;, 7, 3;] in Endr(V?) is simple, where

{r if 8 = 0,
qi =

—vpi(B;) otherwise;

(i) fori,j € I withi # j, the stratum [A* & A7, max{q;, g; },7, B; + B3;] is not equivalent to
a simple stratum in Endz(V? @ V7).

We write E = F[] and E; = F[B;], hence £ = @,.; E; is a sum of fields. As in the
case when F is a field, we write B = C4(f) and éE = B*. By abuse of notation, we
will call a sum EBZ.E 1 \; of op,-lattice sequences in V; an op-lattice sequence in V. We
write By (8,A) = A,(A) N B which gives the filtration on B by considering A as an op-
lattice sequence. We write B(3, A) = Bo(8,A), Q(B, A) = B1(B, A) and A(A) = Ap(A).
Let AY = Homp(V7, VZ) and £ = EB cr A", and write L = £ =[], 1 Gi» where G; = AutF(VZ).
Alsoput B; = C i (f;) and G, = B C Gj. Then B = @Dic; Bi € Land Gp = [Licr Gg, C L.
We write A when we want to make it clear that we are considering A as an o p-lattice se-
quence.
If [A, n,0, f] is a non-zero semisimple stratum we let

ko(8,A) = —min{r € Z : [A,n,r, §] is not semisimple }

denote the critical exponent of [A,n,0, ] and kp(3) := ﬁko(ﬁ,A); by [24, §3.1], this is
independent of A.

If [A, n,r, B] is self-dual semisimple with associated splitting V = €D, ; V" then, for
eachi € I, there exists aunique o'(i) = j € I suchthat 3; = —3;. Wesetlp = {i € I : o(i) = i}
and choose a set of representatives I for the orbits of o in I\ Iy. Then we let I = o(I) so
that we have a disjointunion [ = I U Iy U I_.

A semisimple stratum [A, n, r, 5] is called skew if it is self-dual and the associated split-
ting @, ; V' is orthogonal with respect to the e-hermitian form h, i.e. I = I in the notation
above. In this case, we let Gg, = éE, NG and Gg = Hiel GE,.

Associated to a semisimple stratum [A, n, 7, 3] there are two o p-orders (5, A) C J(5,A)
which are defined inductively in [24, §3.2]. These give rise to compact open subgroups

H(B,A) = $H(8,A) N P(A) and J(B,A) = J(B,A) N P(A)
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of G with decreasing filtrations ﬁ’(ﬁ A) =9(5,A) ﬂ]Bi(A) and ji(ﬂ, A) =3J(B,A) ﬂlgi(A),
for ¢ > 1 by compact open normal subgroups.

If [A, n, 7, 5] is self-dual then the associated orders and groups are stable under the action
of ¥ and we write 3~ (5,A) = J(B,A) N A™,

J(B,A) = J(B,A) NG, JHB,A) = J(B,A) NG, J(B,A) = T (B,A) NG,

fori > 1, and similarly define (53, A), H(5,A), H' (38, A). Wehave J(3,A) = P(Ag)J (3, A)
and

J(B, M)/ T (B, A) ~ P(Ap)/P*(Ap) =~ M(Ap).

The group M (Ag) is the group of points of a finite reductive group over kr, and we denote
by J°(3, A) the inverse image of the connected component M ° (A ) under the projection map.

The following constructions were carried out and the quoted results were proved in the
case R = C but, since the groups involved are all pro-p, their proofs apply provided the
characteristic of R is not p, as is the case here.

By [24, Proposition 3.4], the stratum [A, n,r + 1, 5] is equivalent to a semisimple stra-
tum [A,n,r + 1,v] with v € L. In [24, Definition 3.13], for 0 < m < r + 1, a set of char-
acters C(A,m, 3) of H m+L(3, A) is attached to [A,n, ,7, ], depending on our initial choice
of ¢p. Precisely, C(A, m, B) consists of the characters 6 of H™1(3, A) which satisfy

) 0 | Fm+1(8,0)N G is a simple character, in the sense of [4, Definition 3.2.3];
(i) if m’ = max{m, [r/2]} then there exists §y € C(A,m’,~) such that § |gm/+1(5 Nz 501#5_7-

If [A, n,r, (5] is self-dual then C(A, m, 3) is preserved by the involution o and, as in [24, § 3.6],
one associates to [A, n,r, 3] the set C_(A,m, 3) of characters of H™*1(3, A) obtained by
restriction from C(A, m, 3)*.

Theorem 3.1 ([24, Theorem 3.22]). Let [A,n,0, ] be a semisimple stratum in A.
(i) If @ € C(A,0, 8) then I a0 0) = JU(B,N)GpJ (B,A).

(i) Let [A’,n/,0, 5] be another semisimple stratum in A. There is a bijection
TAN B - C(A7 07 B) — C(A/> 07 6)7

called the transfer map, which takes 0 €C(A,0,3 ) to the unique character 0 € C(N,0,p)
suchthat1l € I~ (6 0') and, moreover, G C I+ (0 0.

Let [A,n,r, 3] be a semisimple stratum. The affine class of [A,n,r, (] is the set of
all (semisimple) strata of the form [A’,n/,7’, 5], where A’ = aA + b is in the affine class
of A,n’ = an and 7’ is any integer such that [r'/a| = r. By induction on k() (cf. [3, Lemma
2.2]), many objects associated to a semisimple stratum only depend on the affine class of the
stratum. In particular, if [A’, n’, 7/, (] is in the affine class of [A, n, 7, (], we have:

() H"HH(B,A) = H™(8,A);
(i) C(A,r",B") =C(A,r, B);
(iii) the transfer map 74 o g : C(A, 7, ) — C(A/, 7/, B) is the identity.
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If the associated strata are self-dual, then we have the following analogue of Theorem 3.1.

Theorem 3.2 ([18, Lemma 3.5]). Let[A,n,0, 5] be a self-dual semisimple stratum in A.
() If € C_(A,0,B) then I5(0) = J*(B, N )GJ' (B, ).

(i) Let [A’,n/,0, 3] be another self-dual semisimple stratum in A. There is a bijection
TAN B - C_ (A, O, B) —C_ (A/, O, 5),

called the transfer map, which takes 6 € C_(A, 0, §) to the unique character ¢’ € C_(A’, 0, )
such that 1 € I5(6,0’) and, moreover, Gg C I(6,¢).

Let [A,n,0, 5] be a semisimple stratum and 0 e C(A,0,p5).

__ Theorem 3.3 ([24, Corollary 3.25]). There exists a unique irreducible representation 7
of J(B, A) containing 6.

If [A,n,0, ] is self-dual and § € C_(A,0, 3), then we have the following analogue of
Theorem 3.3.

Theorem 3.4 ([18, Lemma 3.5]). There exists a unique representation 7 of .J 1 (B,A)
containing 6.

We call the representations 7 and 7 of Theorems 3.3 and 3.4, Heisenberg representa-
tions. We define a bijection, which we also denote by 75 A/ g, between the set of Heisen-
berg representations of J* (3, A) containing a semisimple character in C(A, 0, 3) and the set
of Heisenberg representations of Jt (8, ") containing a semisimple character in C(A’,0, 3)
which restricts to the transfer map, i.e. if 77 is the unique Heisenberg representation of Jt (B, A)
containing # € C(A, 0, ) then 7p o+ g(7) is the unique Heisenberg representation of JYB,N)
containing 7, A/ﬁ(g?). Similarly, we define a bijection 75 A/ 3 between the set of Heisenberg
representations of J'(3, A) containing a self-dual semisimple character in C_(A, 0, 3) and
the set of Heisenberg representations of .J'(3, A’) containing a self-dual semisimple character

inC_(A,0,0).

4. Asymmetric generalisations via {-constructions

In this section we present a particularly useful construction: to an o g-lattice sequence A
in V, we associate a strict o z-lattice sequence AT of period e(A) in a direct sum of e(A) copies
of V, whose associated hereditary order 2((AT) is principal and such that all the blocks 2 (AT) = A(A),
for 0 < ¢ < e(A). This construction becomes useful later when applied to two op-lattice
sequences A and T in V, which, if necessary, after changing in their affine classes we as-
sume e(A) = e(Y); in this situation A(AT) and A(YT) are principal orders in VT of the same
block size, hence are conjugate, yet when we restrict to a single block we find the not necessar-
ily conjugate orders 2((A) and (). This construction originates in work of the second author
with Broussous and Sécherre in [3]. The first part of this section is concerned with revisiting
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the construction of [ibid.] and generalising it to semisimple strata. Then we provide two new
applications of 1: a generalisation of the semisimple intersection property of [25] and an ex-
tension of the computation of the intertwining of a semisimple character in [24] to the case of
two semisimple characters related by transfer.

4.1. The j-construction. Let A be an op-lattice sequence in V' of op-period e(A).
Let VI = V@ --- @V (e(A) times). Following [3, Section 2], we define an op-lattice se-

quence AT in VT by
e(A)—1

A= 5 A +k), forallr € Z.
k=0
Then, forall r € Z,

e(A)—1
dimg,. (AT(r)/AT(r 4+ 1)) = Z dimy, (A(r + k)/A(r + k+ 1)) = dimp(V).
k=0

Therefore, AT is a strict o p-lattice sequence in VT of period e(A) whose associated order 21(AT)
is principal.

Let [A,n,r, (] be a semisimple stratum in A with associated splitting V' = @,; Vi,
and e = e(A) = e(A;). Foreachi € I,let Vil = Vi@ ... @ V7 (e(A) times), and let A%
be the op-lattice sequence in V1, defined as above. Let VI = Dicr Vol and let AT be
the op-lattice sequence in V1 defined by AT = Dicr A*T. Note that this is the same lattice
sequence as that defined above (working directly with A within V). Let AT = Endp(V1)
and GT = Autp(V1).

We recall that § = Zz‘e 1 Bi, where B; = e;fBe; ande; : V — V' is the projection
map with kernel i VI, Let ﬁzr denote the image of 3; under the diagonal embedding
of Endp(V?) into Endp(V?1), and g = Y., BZ-T. Then A% is an op,-lattice sequence,
whose associated hereditary o -order 2(A®T) is principal. Moreover, the stratum [AT, n, 7, 1]
in AT is semisimple, with associated splitting VI = @,; V1.

We recall also that L is the stabilizer in G of the decomposition V = @D, V" Let Q=LU 5
be a parabolic subgroup of G with Levi component L, and opposite parabolic @‘ = Z(}é with

respect to f; Then, for any m > 0, the group Hm 1 (8, A) has an Iwahori decomposition with
respect to (L, Q) with

(4.1) H™ B, A)NL=[[H™(8:,A).
el

Moreover, by [24, Lemma 3.15], any semisimple character geccC (8, m, A) is trivial on the
unipotent parts H™ (3, A) N Uét and

0|(f{m+1(,8,A)mZ) = ®91’
el

with 5, € C(B;, m, A?) a simple character. Analogously, we have the Levi subgroup L' which
is the stabilizer of the decomposition V1 = €0,.; V" and H™ (57, AT) has an Iwahori
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decomposition with respect to any parabolic subgroup @T with Levi component LT, with

A (B AN L = T H#™ 18], AT).
el

Let M denote the Levi subalgebra of AT which is the stabilizer of the splitting VI = V- -

and let M T be its group of units. Let I' be the subgroup of Mt consisting of elements with
blocks +1d. Let PT be any parabolic subgroup of G with Levi factor M T and unipotent
radical U T, and let P~ denote the opposite parabolic of Pt with respect to M t, with Levi
decomposition Pt =Mt x U Similarly, for each ¢ € I, we have a Levi subgroup Mt
of GI = Autp(Vit).

For all m > 0, using [25, Proposition 5.2], we have an Iwahori decomposition

“4.2)
IfIerl(ﬁT’AT) _ (ﬁerl(BT’AT) N ﬁ*,T)(ﬁm+1(6T7AT) N MT)(fIm“(ﬁT,AT) N ﬁm

H™Y (B AN N M T = B8, A) x - x H™ (B, A).

There are similar decompositions for H™+1(31, Ab1).

Let € C(B8,m,A) be a semisimple character, with §; € C(B;, m, A?) the correspond-
ing simple characters as in (4.1). By [4, Theorem 3.6.14] (see [6, Section 5] for the case of
non-strict lattice sequences), as we have an isomorphism of F-algebras F'[3;] — F[Bj ] send-
i7Ai,T’ﬁi757}‘ : C(ﬁi,m,Ai) — C(ﬂg,m,Ai’T)
called transfer; this is a generalisation of the definition of transfer given in Theorem 3.1 in
the case of simple characters. We now use these transfer maps of simple characters to build a
transfer of semisimple characters C(3,m, A) —LC(BT, m, AT).

Put 02 = Thi it g 61 (0;), the transfer of 6; to C(BZ-T, m, Ab1). By [3, Lemma 2.7], the re-

striction ofgiT to H™+1 (BZT, A’VT)OM@T has the form 6;®- - -®6;; moreover, for P = Mt
any parabolic subgroup of G*' with Levi component A%, the restriction of HZT to the unipotent
part H™ (81, AWTY 0 U s trivial.

ing f3; to Bg , there is a canonical bijective map 7

Lemma 4.3. There is a unique semisimple character ot eC (,BT, m, AT) such that

Pl _ ol
9T|(ﬁm+1(ﬁT’Af)mZT) = @ 91';
iel

Moreover, 6 is trivial on the unipotent parts in (4.2), and

O | i (gt anyarr =0 © - © 6.

Proof.  The first part follows easily from the inductive definition of semisimple charac-
ters (see in particular [24, Lemma 3.15]). Moreover, for any parabolic subgroup Qf = L' Ug?
with Levi component L, the restriction of 61 to H m+L (gt AT N (722 is trivial; the second
statement follows from this, the corresponding statement in the simple case ([3, Lemma 2.7])
and the unicity in [24, Lemma 3.15] again. |

For g € G, let g denote its diagonal embedding in GT.

'@Vs
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Lemma 4.4. Fori = 1,2, let~5i be semisimple characters in C(A,m, §3;). If g inter-
twines 61 and 0, then gT intertwines HI and 6;

Proof. For simple characters, it is shown in the proof of [3, Proposition 2.6] that this
follows from [3, Lemma 2.7]. The proof in the semisimple case follows mutatis mutandis
using Lemma 4.3 in place of [3, Lemma 2.7]. O

4.2. Applications of {. Let [A,ny,0, ] and [T, ny,0, 5] be semisimple strata in A
with splitting V' = @, ; V. Let ey (resp. ey) denote the op-period of A (resp. 1), and hence
of A’ (resp. Y?) for all i € I. By changing [A,ny, 0, 8] and [T, ny, 0, 3] in their affine classes,
we assume the e = ey = ey. As remarked earlier, this does not change the objects (orders,
groups, characters) associated to the semisimple strata.

For i € I, we apply the construction of Section 4.1 to A* and to Y. Suppose that the o, -
period e, of A, and hence of T, is related to the o p-period e, by

€p, = MyE,

so that m; is the ramification index of F;/F. Then, for all r € Z,

mieEifl

dimg,, (AST(r) /AT (r + 1)) = Z dimy,, (A'(r + k) /A (r + k + 1)) = m; dimp, (V7).
k=0

Hence, the lattice sequences A»' and YT are strict o £, -lattice sequences in Vi1 of o p-period e
(and o g, -period e, ). Furthermore, the associated hereditary o, -orders B (3;, A*T)and B(5;, Y51
are principal o, -orders with the same block size, hence there exist z; € Cz 1 (BJ ), such that

AT (r) = a; - Y (),
forallr € Z. Letx = [[,.; ;i then z € é; and we have
A=z 7T,

It follows that the data coming from the semisimple strata [AT,n4,0, 31 and [YT, ny,0, 37]
are conjugate in G ; and we get:

Lemma 4.5. In the situation above, there exists x € G ;3 such that
() J(BF,AT) =3(BF, TN and H(57, AT) = H(67, TT)";
(i) J(Bt, A = J(8F,r1)* and H(BT, AT) = H(BT, Y1),
(iii) conjugation by 2 defines a bijection C(5%,0, AT) — C(B,0, ).

Throughout this section, “applying the {-construction” will mean applying it in the way
just described.
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4.3. Semisimple intersection property. In this section we generalise the semisimple
intersection property of [25, Lemma 2.6].

Lemma 4.6. Let [A,n4,0, 5] and [T, ny, 0, 5] be semisimple strata in A and y € Gp.
Then B B B B B
PY(T)yPY(A)NGE = P (Tr)yP'(AR).

Proof. Applying the f-construction, by Lemma 4.5 we have = € G ]LE such that
Pyt Pr(At) = PY(Y)yfa Pt (YT

By the semisimple intersection property in é; (cf. the proof of [25, Lemma 2.6]), because x € G ;
we have N N B B _
PY(rhylaP (Y NG = Py P! (1)
Hence B B B B B
PNy PY (AT NG, = PY(TL)yf PH(AL).

Recall, M T is the Levi subgroup of G1 defined by the decomposition of VT into a sum
of copies of V, and I' is the 2-subgroup of Mt consisting of elements with blocks + Id.
Notice that, MT s equal to the fixed point subgroup of G under the conjugation action
of I'. Hence, because I" is a 2-group and ﬁl(ATE) and ﬁl(TE) are pro-p groups, with p
odd, H(T, yTﬁl(TtE)(yT)_l N ﬁl(AE)) = 1 and we can apply Theorem 2.12(i) to find

Pyt PH(AL) n Mt = (PY(TE) n M Ty (PH(AL) n M),

We have (P'(Y}) 0 M) = [T, P'(Yp) and (P'(Al) N M) = [T, P'(Ag). Thus,
restricting to a single block in M T we recover the result. |

Corollary 4.7. Let [A,n4,0, 5] and [T, ny, 0, 5] be self-dual semisimple strata in A.
Then

PYT)yPY(A) NG} = PH(Yp)yP (AR), fory € G;
PY(Y)yP'(A) N Gp = P (Yp)yP' (Ap), fory € Gp.
Proof.  Applying Theorem 2.12(i), under the fixed points of the involution o, we have
P (Yp)yP'(Ap) N G = (P'(Tp) N GLy(P'(Ap) NGE).

Therefore, by Lemma 4.6, P1(Y)yP'(A) N Gf = PY(Yg)yP'(Ag). The second equality
follows by intersecting with G, since P*(Ag) C Gg. O

A simple application of the semisimple intersection property gives us the following bi-
jection of double cosets, where we note that JyGpJy = J“lr G EJ}\ is the union of all (Jy, Jy )-
double cosets containing an element of G g.
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Lemma 4.8. Let [A,n4,0,] and [T, ny,0, 5] be self-dual semisimple strata in A.
Let Jy, = J(B,A) and Jy = J(B,T). The following map is a bijection

P(Yp)\GE/P(Ag) = Jx\JxGgrJx/ I
X J’I*XJA.

Proof. Let g € Gg. Considering A and T as op-lattice sequences, we have contain-
ments J+ C P1(Y) and J§ C P'(A). Hence

Jx(P(YE)gP(AR))JA N Ge € PY(Y)(P(TE)gP(AR))P'(A) N GE.

We choose a set of representatives for the finite double coset space P1(T)\(P(Yg)gP(Ag))/P(A)
and for each representative we apply the simple intersection property, Corollary 4.7, to find

PYY)(P(Tg)gP(AR))P (A)NGE = P(TE)gP(Ag).
Therefore P(Yg)gP(Ag) = Jx(P(Tg)gP(Ag))Ji N G and the map is a bijection. O
4.4. Intertwining of transfers. Let [A,ny,0, 5] and [T, ny, 0, 5] be semisimple strata.

Letdy € C(Y,0, ) and Oy = TA7T7@(§A). We apply the f-construction and abbreviate j}\ = JY(B, M)
and (J)! = J'(5%, AT), with similar notation for T, and also write 7 = 7 y g and 71 = 7, 1+ g.

Theorem 4.9. We have I5(0a, 0r) = J+G pJ}.

Proof. Letg € 1 @(9~A, §T) and, as before, let g7 denote the diagonal embedding of ¢
in G1. By Lemma 4.4, we have o
g' e Iét(egaﬂr)'
Thus, as 1 € Ié(gA, 5@() by Theorem 3.1 (ii), we have
1€ 15 (6. 67),

hence 9?} = TT@[J{), again by Theorem 3.1 (ii). Moreover, taking x € G ]TE such that AT = 2T,
as in Lemma 4.5, we have
GL C 15183, (0))").
as CNJITE intertwines 5/{ by Theorem 3.1 (i). Since (9~;{)x e C(Y1,0,41), we deduce that 5; = (51)3”
by the unicity of the transfer in Theorem 3.1 (ii).
By Theorem 3.1 (i), we have

I50(0),0%) = a7 15,01, (00)%) = 2 YT G LI = (TG LI

Now, as in the proof of Lemma 4.6, let I be the group 2-subgroup of ]\Z T generated by blocks
consisting of Id and — Id. Because T is a 2-group and (Jg)1 and (Jli)1 are pro-p groups,
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with p odd, the non-abelian cohomology pointed set H(T, g(j%)l gin(J 1)1) is trivial, for
all g € G. Hence, by Theorem 2.12,

(IGLTHY A M = (Fh)' A MYGL 0 MY n M
= (JE N MYGEN MY AT,
Finally, for g € I (;(5117 5;}), we have an Iwahori decomposition
HY(pt AN 7Y (8t rhe = (st A n i3 st et n o
(H' (8, Yy 0 B (81, T 0 MY (Y (8T, A7) 0 B (8,70 0 D),

and, by Lemma 4.3, 97;, @} are trivial on the unipotent parts of this decomposition. Hence, we
have

It 0 571,05 1574) = 15004, 04) n M.
Therefore B B N L L .
Ly 08 574,04 I51) = (AN MO)GL N MT)(T{ n M),

Restricting this equality to a single block in Mt we recover I 5(5 A, gr) = JrGgJy. |

Suppose further that [A, na, 0, 5] and [T, ny, 0, 8] are self-dual. Let 85 € C_(A,0,5)
and Oy = TA,’I‘,,B(HA)- Let Jy = J(B,A) and Jy = J(5,Y).

Theorem 4.10. We have I (0p,0y) = JyGgJa.

Proof. Letfy € C (A,0,p) and by € C (Y,0,3) be self-dual semisimple characters
which restrict to 6, and 6y respectively. Since g'r is the unique >-fixed semisimple character
restricting to 6y, we have 5@( = T(gA). Furthermore, letting g denote the Glalﬂ)erman cor-
respondence (cf: [23, §2] and the references therein), Oy = g(6,) and 6y = g(6y). By [23,
Corollary 2.5], Ig(gA, fr) # 0 if and only if Ig(g(gA), g(fy)) # 0. Therefore,

Ia(05, 0v) = I6(64,6¢) N G.
Furthermore, Ig(g/\, gr) = JxGrda by Theorem 4.9, and
(JxGeJA) NG = (JYGpJY) NG = JYGpJi = JyGrJa
by Theorem 2.12 and the semisimple intersection property Corollary 4.7. O

4.5. Some exact sequences. Let [A,ny,0, 5] be a semisimple stratum in A. We denote
by as the adjoint map given by ag(x) = fx — x5 for x € A, and by s a tame corestriction
on A relative to F'[3]/F (cf. [4, 1.3] and [24, Proposition 3.31]).

Lemma4.11. (i) Let [A, ny, 0, 5] be a semisimple stratum in A. The sequence

0 —— Q(BA) —— JUBA) — (B, A) — = B(B,A) —— 0
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18 exact.

(ii) Let [A,na,0, 5] and [T, ny, 0, 5] be semisimple strata in A and y € G p. The sequence

JHB,A) + (3HB,T))Y
ag
HLB,A)* + (9B, 1)) —— B(B,A) + (B(B,T))Y — 0

18 exact.

Proof. When A = T, both parts follow from [24, Lemma 3.17] (cf. [op. cit., Proposi-
tion 3.31]). Passing to 1 we have the second exact sequence for the semisimple strata [AT, 4, 0, 81]
and [YT, nj\, 0, 5], by choosing = € 6’; as in Lemma 4.5, and replacing y by xy in the ex-
act sequence for Af. Intersecting with a single block we have (ii), while (i) is the special
casey = 1. |

When we have a self-dual semisimple stratum [A, ny, 0, 5], we may (and do) choose a
tame corestriction s which commutes with the anti-involution ¢ on A (cf. [21, 2.1.1]). Then
we get the self-dual analogue of Lemma 4.11.

Lemma 4.12. (i) Let [A,ny,0, 5] be a self-dual semisimple stratum in A. The se-
quence

00— Q7(8,A) —— 3 (B.A) —— HL(B,A) —+ B~ (B, A) —— 0

is exact.

(ii) Let [A,na,0, ] and [T, ny, 0, 8] be self-dual semisimple strata in A and y € G.. The
sequence

0 ——9Q (BN +(Q (5T1) JL(B,A) + (LB, 1))

ap
HL(B, A+ (HL(B, 1) )Y —— B~ (B, A) + (B~ (8,1))Y — 0

18 exact.

5. Intertwining of Heisenberg representations

While up to now, we have been generalising results for both G and G in this section we
concern ourselves only with representations of G. The same methods apply for representations
of G.

Let [A, na, 0, 5] and [T, ny, 0, 3] be self-dual semisimple strata in A. In this section we
will abbreviate lattices in A~ without the superscript and subscript —, to simplify the notation.

Thus we write Qy = Q7 (8,A), Hx = HL(B,A), Jn = JL(B,A), and By = B~ (B, A),
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using analogous notation for Y. (Note, in particular, that we are omitting the superscript !
here.) We also write Hx = H'(3,A) and J} = J'(3, A), with HY., J% defined similarly.

Let 0y € C_(A,0,5) and Oy = 75 v g(0a). Let 0y be the unique Heisenberg representa-
tion containing 6 and ny = 7 v 5(na) the unique Heisenberg representation containing 6.

Theorem 5.1. The intertwining of n4 and 7y in G is given by

1 ifg e JrGgdy;

dimpg(Z,(nA, =
R g(77 ) {0 otherwise.

This theorem is an asymmetric generalisation of [4, Proposition 5.1.8] in the classical
groups setting (see also [24, Proposition 3.31]) and we imitate those proofs.

Lemma 5.2. Foranyy € GT., we have
(JA:JANydyry Dy oy iy N Jy) = (HY : Hy NyHyy ') (Hy :y~"Hiy N Hy).

Proof.  'We begin by recalling the following from [4]: let0 — V] — Vo - V3 — V; — 0
be an exact sequence of finite-dimensional F'-vector spaces and, for 1 < ¢ < 4, let y; be an F'-
Haar measure on V;. By [4, Lemma 5.1.3], there is a constant ¢ € F'* such that, if the sequence
restricts to an exact sequence 0 — Ly — Lo — L3 — Ly — 0 of op-lattices L; in V;, then

pa(La)ps(Ls)

p2(La)pa(La)

Moreover, f11(L1)p1(L7) is also independent of the op-lattice Ly, by [4, Lemma 5.1.5].
We have such an exact sequence

0B334 4% B,

and, choosing F-Haar measures p14 on A and pup on B, we denote by ¢ € F* the invariant
given by [4, Lemma 5.1.3], as above. Now we apply this to the rows of the following giant
commutative diagram of op-lattices, which we get from Lemma 4.12(ii).

0
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Using the first row, we get

pa(94 0 (59)7) _ pn(Ba 0B
A3 NJIY) 1p(Qa N Q%)
we have 1p(Qa NQY) = up(Qa)us(Qy)/ne(Qa + Q% ), from the first column, and simi-
larly for pea (93 N (H%)Y), whence

pa($H3)raHy) _ pB(BaANBYL)up(Qa +QY)

pa@aNIPpal®; + 9%~ pup@aus(@r)
Since (5 N HL)* = H}) + (H%)Y, from [4, Lemma 5.1.5] we have

(DR + (O ra(Ba N H4) = (La(Oa)a(BR)ra(T)1a(HT))?,

with a similar result using (B N BL)* = Qp + QF. Substituting, we get

(94 0 9%) (w(ﬁzm(m)% _, (anA)uB(%T))%
pa@aNIy) \pna®a)pa($r) pe(Qa)ps(Qy))

Finally, from Lemma 4.11(i), we have

pa(@)) _  15(Ba)
pa(Ja) pp(Qa)’

and similarly for T, which gives

pa(A N ) <MA<m>uA<m>)5
pa(IaNIy) pAFn)na@r) )

Conjugating by y, we get the same formula for 4 (Y94 N H)/pa(YIa N Jr). Multiplying
these and rearranging, we get

<MAZ§A(~?WAS)5%)> <NA(A;:%E\5F: Zﬁr)) N <MA'L(L§A(%%Z/T)> (m(%fr:)‘?r)) '

The result follows from this additive statement since H}\ is the image under the Cayley trans-
form of $,, and similarly for the other groups involved. |

Lemma 5.3. Forany y € G}, we have
[H\ Ty} /HY| = (7} : H)? (JF : HY)?.

Proof. Fix a F-Haar measure p on G. Decomposing J+1y.J; by right Jx.-cosets, and by
left .J} -cosets, and then multiplying, we have
p(Jrydr)? = p(J)Rr) (I = Iy Ny~ ry) (Jy sy iy~ 0 Jy).
By normality of H /1\ in J/{ and H %( in J%, for any y' € J%(yJ}\ we similarly have
p(Hyy' Hy)* = p(H)p(Hy)(Hy = Hy Ny~ Hyy)(Hy : yHyy ™' 0 Hy).

Therefore, we have | HA\JLgJ+/HY| = (J} : HY)2 (J% : HL)?, by Lemma 5.2. o
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1
Proof of Theorem 5.1. By [24, Corollary 3.29] the induced representation indi}‘l (04) is
A

a multiple of 7, that multiple being (J} : H/{)%, and analogously for 6. Thus
: A A 1 IR INL o
dlmR(Ig(lndH}\ (91\,1ndH%f Or)) = (Jp : Hy)2(Jy : Hy)2 dimg(Zg(na, 1))
By Lemma 2.2(iii),
H(G,ind’A 0y, ind”%, Oy), = H(G, 04,0
(G, indp O, ind) Or)g =~ 11 (G, 04, 07)p-

A
heH)\G/HL
JAhJi=J}% gl

Therefore, by Theorem 4.10 and Lemma 5.3, we have
: ! JLHD2(JE HY)2 ifg € JyGpla;
dimR(Ig(ind#1 9A,indi}§ Ov)) = (Ja : Hy)2 (Jy y)z ifg 'T EJA

A r 0 otherwise,

whence the result. O

Remark 5.4. In the setting of Theorem 4.10, we also have I+ (0a, 0v) = JYGLJ} by
intersecting the intertwining of 1 (0, 6 ) with G rather than G. Moreover, in the setting of
Theorem 5.1 the same proof shows that the intertwining of 775 and 7y in G is given by
1 ifg e JLGLJIL;

dimp(I , =
R g(TlA ) {O otherwise.

We will also make use of the following lemma of [25].
Lemma 5.5 ([25, Lemma 3.6]). dim(ny)/dim(ny) = (J} : J3)/(PY(AR) : PY(YE)).

Conjugating if necessary, we assume that B(A) and B(Y) contain a common minimal
self-dual hereditary order 8 (I") corresponding to an op-lattice sequence I in V; thus P°(I'g)
is an Iwahori subgroup of Gg. Let r = 75 s(0r) = Trra(fy) € C_(I',0,5). Let nr
be the unique Heisenberg representation containing fr and let Jr = J(3,T'). Since P}(I'g)
normalises J1 and J1 we can form the groups J%’A = PY(T'g)J} and Jll’T = PY(T'g)Jt.

Lemma 5.6 ([25, Proposition 3.7]). There exist unique irreducible representations 1 A
of Jll A and 7 y of Jll,’r such that
() nra |=mnaand ey [ 1= nr;
(i1) 7mr A, nr,y and nr induce equivalent irreducible representations of p! ().

We can now extend the intertwining result of [25, Proposition 3.7]. The proof is essen-
tially the same as that of [4, Proposition 5.1.19].

Lemma 5.7. The intertwining of nr » and - v in G is given by

dimp (7, , =
R (e, rv)) {0 otherwise.
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We remark that Jll +G EJIl A= J}rG EJ}\, and that we have a similar result for the
intertwining in G*.

Proof. We have Ig(nra,nry) C Ig(na,ny) = JyGgJ) and the non-zero intertwin-
ing spaces are one-dimensional by Lemma 5.1. If x € G then x € I(nr), by Theorem 5.1,

so € Ig(nd), P nr)). Thus @ € Ig(nd’, (), nd” (e 1)) by Lemma 5.6.
r T r,

A T
Therefore there exist u,v € P(I") such that uxv € Ig (mr.a,mr x); since this intertwining set

is contained in JyGpJ}, there exist j4 € J} and jy € J+ such that jyuzvjy € Gg. By
Corollary 4.7, PY(T)x P} (A)NGg = P}(T'g)xz P! (Ag). Therefore, we can find v’ € P}(T'g)
and v’ € P'(Ag) such that u'zv’ = jiuzvja, whence z € Ig(nr.a, nrr)- o

6. 3-extensions

We generalise the definition of 3-extensions for classical groups, as defined by the second
author when R = C in [25]. As the J groups are not pro-p, the proofs of the corresponding
statements need to be adapted in characteristic £. However, as the J! groups are pro-p, these
modifications are relatively simple.

Let [A,ny, 0, 5] be a self-dual semisimple stratum, 0, € C_(A,0, 5) and 7, the unique
Heisenberg representation containing 6. We will write B(Ag) = B(5, A) for the heredi-
tary oz-order in B determined by the lattice sequence A, and will abbreviate J;{ = JT(B,A),
etc.

Theorem 6.1. Let I be any self-dual o g-lattice sequence such that B(I'g) is a minimal
self-dual og-order in B contained in B(Ag). There exists a representation Iij{ of JX extend-
ing nr A. Moreover, any two such extensions differ by a character of P*(Ag)/P!(Ag) which
is trivial on the subgroup generated by all its unipotent subgroups.

Proof. The proof follows mutatis mutandis the proof of [25, Theorem 4.1]. |

In the setting of the theorem, minimal self-dual o g-orders in B contained in B (A g) exist,
see for example [25, Corollary 2.9]; moreover, all are conjugate in P*(Ag) so that the set of
representations /iX as in the theorem is independent of the choice of I. In the case that B(Ag)
is a maximal self-dual o p-order in B, we call such a representation x{ a 3-extension. If B(Ag)
is not maximal, while Theorem 6.1 gives a collection of extensions of 7, it gives too many
such extensions. As in the complex case, we define (-extensions in the non-maximal case
by compatibility with S-extensions in the maximal case. Let [Y,ny,0,3] be a self-dual
semisimple stratum such that B(Y g) is maximal and B(Ag) C B(Yg); let Oy = 7a v 5(0r)
and iy = 747 5(na). Let J{ y = P'(Ag)Jf and Ji v = PT(Ag)Jy.

Theorem 6.2. There is a canonical bijection
: ~ + + : + +
ba,r : {extensions k) of 9y to J) } — {extensions x} y of ny to J 1 }.

Furthermore, if A(A) C 2A(T) then by v () is the unique extension of 7y such that x
and b v (r} ) induce to equivalent irreducible representations of P (Ag)P(A).
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Proof.  Assume that 2(A) C 2((Y) and, as in the proof of [25, Lemma 4.3, Case (i)],
we follow the argument of [4, Proposition 5.2.5]. Let nj{ be an extension of nj{ to JX and put

. PH(Ag)PH(A
A = ind? A2) ()(KZX).

By Mackey Theory,

+ 1 ) 1
Res;((AA)E)P (A)()\) ~ 1nd§}\ () (7)),

which is irreducible, since I;(na) N PY(A) = J}; in particular, A is irreducible. Moreover, by

Lemma 5.6,
P (Ag)PY(A . PYA
Respl((A)E) ( )()\) ~ de}\,(T )(77/\7T)a
fi(AE )P A which contains 75 v; indeed, there
ALY

. . PY(A)
deﬁ,T (

so there is an irreducible quotient HX v of Res

PL(A)

is a unique such quotient, since 7,y appears with multiplicity 1 in Res’;, (AT)

ALY )

by Lemma 5.7. Now put
1
N = ind?{iAE)P (A) HX7T.
Then, as above,

+ A i '
ReSIP;I((AA)E)P ( )(/\') ~ 1nd5/1\’(:) (ma,7);

so that \ is also irreducible, and hence equivalent to \. Comparing dimensions, using Lemma 5.5,
we see that IQX v extends 7 v as required.

The arguvment is reversible, giving the required bijection, and the remainder of the proof
follows from this special case 2A(A) C 2(Y), exactly as in the proof of [25, Lemma 4.3]. o

An extension HX of np to J;{ is called a 3-extension if there exist a self-dual semisimple
stratum [, ny, 0, 5] such that B(Y g) is a maximal self-dual o z-order containing *8(Af) and
+
a B-extension x5 of ny = 7a v 5(na) such that by v (k) = Resj{ (k). More precisely, we
ALY

say that such a representation ,%X is a [3-extension relative to Y.

There is a standard (non-canonical) choice for the self-dual opg-lattice sequence YT as
follows. For r € Z and s € {0, 1}, let

pip, AY(0) ifie Iy
My (2r +5) =  ply Al(s) ifi € Ip;
pp A1) ifiel .

Then My = P, O is a self-dual op-lattice sequence in V' such that 2(9M,) N B is a
maximal self-dual hereditary o p-order in B. A representation /@X of JIJ{ is called a standard (-
extension of ny if it is a S-extension relative to 2y .

If /iX is a standard (3 extension and [Y, ny, 0, 3] is another self-dual semisimple stratum
with My = Ny, we say that the standard [-extension /ﬁ of J}r is compatible with n'j{ if
they correspond to the same [-extension of JS);A. In the case that 2((A) C 2(Y), this is

. . J¥ . . . . .
equivalent to saying that /ﬁ{ and Res ﬁ RJ{ induce to equivalent (irreducible) representations
AY

of P+(Ag)P(A).
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We also call the restriction from J;{ to J (resp. J}) of a (standard) 3-extension a (stan-
dard) (3-extension and denote the restriction of /ﬁt to Jx (resp. J3) by ka (resp. k3 ), and speak
of compatibility for these standard [-extensions.

Remark 6.3. Being smooth representations of a compact group, all Q,-beta extensions
are integral. When B(Ag) is a maximal self-dual og-order in B, it is straightforward to
check that reduction modulo-/ defines a surjective map from the set of Q,-beta extensions
to the set of [Fy-beta extensions. Moreover, the bijections by v, for Q,-representation and F-
representations, defined by Theorem 6.2 commute with reduction modulo-¢; thus reduction
modulo-¢ defines a surjective map from the set of Q;-beta extensions to the set of Fy-beta ex-
tensions in all cases. Moreover, the reduction modulo-/ of a standard Q,-beta extension is a
standard F,-beta extension.

6.1. Induction functors for classical groups. Now suppose that [A, n,0, 5] is a self-
dual semisimple stratum in A. Let 6 € C_(A,0, 3), let n be the unique Heisenberg extension
of 6 to J*(3, A) and k be a B-extension of i to J (3, A). Recall that we have an exact sequence

1— JYB,A) = J(B,A) = M(Ap) — 1,

with M (Ag) a (possibly disconnected) finite reductive group.
We have a functor I, : Rp(M (Ag)) — Rr(G), which we call k-induction, given by

. . A
I.(—) = md?(ﬁ’A)(n ® mflﬁ%\;)(—))

where infl} (7)) - Rp(M(Ag)) — Re(J(8,A)) is the functor defined by trivial inflation
to J1(B3, A). The functor I,; possesses a right adjoint Ry, : Rr(G) — Rr(M(Ag)), which we
call k-restriction, given by

Ry (=) = Hom ji(g 2y (K, —)-

If 7 is a smooth representation of G, the action of M (Ag) on Ry(7) is given as follows:
if f € Ru(m),m € M(Ag)andj € J(B, A)is any representative for m, thenm- f = 7(j)ofor(j~1).
The functors of x-induction and k-restriction are exact functors as J* (B,A) is pro-p. We also
have variants of these functors when we consider the connected component M°(Ag): writ-
ing k° = K| jo(3,a), the induction functor Lo : Rr(M°(Ag)) — Rr(G) is given by
Lo (=) = indGh g o) (5° @ infly 30 ()

and Rye : Rp(G) — Re(M°(Ag)) is given by Rye (—) = Hom 15 ) (£°, —).

Now let [T, ny, 0, 3] be another self-dual semisimple stratum with Dy = Mt and A(A) C A(Y),
and let 0y be the transfer of 6. Let s be a S-extension and let ky be a compatible -extension
of J(5,Y). Set PAE’T = P(Ag)/PY(Yg), a parabolic subgroup of M (Y ) with Levi fac-

%&ETE ) for the parabolic induction functor and T?D/[éTE )
AT AT

By transitivity of induction, an exercise shows that we have isomorphisms of functors

tor M (Ag); we write i for its adjoint.

M(YTEg)

~ ], andr
E
PA,T

o Rpy =~ Ry,

where the latter follows from the former by unicity of the adjoint.
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We also have the special case of these functors when the stratum is zero, which we can
apply in Gg. Thus, since Ag is an og-lattice chain, we have a level zero parahoric induction
functor I, : Rr(M(Ag)) — Rr(GE) attached to [A, n, 0, 5] given by

. . aP(A
Ir,(—) = 1ndngE)(mﬂM((Ai))(—))

where inﬂf/[(([j\’z)) : Rr(M(Ag)) — Rr(P(Ag)) is the functor defined by trivial inflation
to PY(Ag). The functor I, possesses a right adjoint, which we call level zero parahoric
restriction, Ry, : Rr(Gg) — Rr(M(Ag)) given by the functor of P1(Ap)-invariants

Rp,(—) = (—)F e,

with the group P(Ag)/P'(Ag) ~ M(Ag) acting naturally. Level zero parahoric induction
and restriction are exact functors.

7. Level zero interlude

In this section we recall some results of Morris [19] and Vignéras [28] on level zero
representations of G (cf. also [30, §4]). Later, we will apply them to G g, which will be a
product of groups like G over extensions of F'. The results of this section apply in the greater
generality of [19], and we retain the notation of [ibid.] as it is much more convenient here, as
such, the notation of this section is independent of that of the rest of the paper. We recall this
notation briefly below and explain how to translate to our notation in the rest of the paper.

Let G be a connected reductive group over F, T be a maximal F'-split torus in G,
and N = Ng(T). We write G = G(F), T = T(F), and N = N(F) for the respective
groups of F-points. Let B be an Iwahori subgroup of G in the apartment defined by 7". Fol-
lowing [ibid.], (G, B, N) is called a generalised affine BN -pair, and, associated to this data,
we have a generalised affine Weyl group W = N/B N N. According to [ibid.], we have a
decomposition W = Q x W' with W’ the affine Weyl group of some split affine root system.
Let S be a set of fundamental reflections in W',

If J C S is a proper subset of S, we let W be the subgroup of W generated by the
reflections in J. The standard parahoric subgroups of GG correspond to proper subsets of .S,
via J C S maps to P; = BN B for Nj any set of representatives of W; in G. Given a
parahoric subgroup Pj, we write U for its pro-p unipotent radical and M; = P;/Uj the
points of a connected reductive group over a finite field. We write Up for the pro-p unipotent
radical of B = F.

Let J, K be proper subsets of S. A set of double coset representatives D gk for WA\W/ Wi
is called distinguished if each representative has minimal length in its double coset, (cf. [ibid.,
§3.10]). A set of double coset representatives D for Py\G/Pk is called distinguished
if its projection to W is a set of distinguished double coset representatives for W;\W/Wg.
Let D i be a set of distinguished double coset representatives for P;\G/Pg. Letd € Dk
and w be its projection in WW. By [ibid., Lemma 3.19, Corollary 3.20, Lemma 3.21], we have

(i) Prrwr = Uj(Py N ?Py) with unipotent radical U jn, i = Uy (Py N Uk).

(i1) PJmeK = Pjrwi /Uy is a parabolic subgroup of M; = P; N U;.
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We can form the following lattice of groups:

1 Uy Py My 1
1 Uy Prowg —— P —— 1

| |

1——U;(PiN"Uk) — Pjawx — Mjnwx — 1

Furthermore, as D}% is a set of distinguished double coset representatives for P \G/ Py,

the group Pf_l Jnx 18 a parabolic subgroup of Mk and we can form an analogous diagram

for PX, .. Note also that Mjnwr = (My-150x)"

This section collects results based upon the following theorem of Vignéras. Before we
state it, we must recall the parahoric induction/restriction functors in this notation; let I ; : Rp(M ) — Rr(G)
denote the parahoric induction functor

I;(-) = ind@ (infl}7 (-)),

and R : Rr(G) — Rr(My) denote, its right adjoint, the parahoric restriction functor

The normaliser N¢(Py) of Py in G normalises Uy, and Mjr = Ng(Py)/Uy contains My as a
normal subgroup. We write I} : Rr(M}) — Rp(G) for the functor

. . aNa(P,
Ij(—) = md%G(P,)(mﬂMGj( J)(—)),
and R : Rr(G) — Rp(M]) its right adjoint, again given by U j-invariants.

Theorem 7.1 ([28, Basic decomposition 5.1]). We have an isomorphism of functors

w
Ryolx~ P ipy o<7‘?§[,§ ) :

- JNwK w—linK
'LUGDJ,K

Corollary 7.2. Let 7 be a cuspidal R-representation of My and let 7" be an irreducible
b . . dM;
subquotient of ind < 7.
(i) The representation R oI (7) is a direct sum of conjugates of 7.
Ry ol (1) ~ @ T,
wGWKyK
wK=K
Moreover, if Pk is maximal, then R} oI} (77) = 7.

(i1) Suppose that Pk is maximal and Pj is not conjugate to Py in GG. Then

Rjolg(r)=0  and RYolL(rT) =0.
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Proof. All statements are straightforward applications of the theorem. Part (i) is [28,
Corollaries 5.2 & 5.3], and the first part of (ii) follows as, if P; is not conjugate to Py, then

Puff,l Jn 1s aproper parabolic subgroup of M, forany w € W k', whence r%ﬁi . (T%) =0
by cuspidality. The final part follows as I;z(7T) is a subquotient of I (), by exactness

- 1G
Of lndNG(PK) O

Remark 7.3. In case (i) of Corollary 7.2, the direct sum can be infinite. Indeed this is
the case when K is empty (and the building of G is not a point).

Finally, we will need the following variant of [19, Proposition 4.13], (cf. [25, Lemma
1.1]), which requires a different proof in our setting.

Lemma 7.4. Let J, K be proper subsets of S, and D be a set of distinguished double
coset representatives for P \G/P;. Let 7 be a cuspidal representation of M7, and let n € D.
If n lies in the support of H(G, 7 |v7,). i.e.

Homygnuy (7, 7") # 0,

then wK = J, where w € W is the projection of n.

Proof. By [19, Lemma 3.21], we have P;NUk C Ujnwx € Up. Hence, as Uy C Up,
we have

Homynus (r,7") C Homp,num (r,7") = Homp,nysp (7, dim(7)1).

But, by [ibid.], P; N U} is the unipotent radical of the parabolic subgroup Pjyr, i /Uy of M.
Hence by cuspidality of 7, we must have wK = J. |

7.1. Level zero Hecke algebras. Let P°(Y) be a parahoric subgroup of G associated
to the o z-lattice sequence Y with pro-p unipotent radical P!(Y) and connected finite reductive
quotient M°(7T).

Remark 7.5. By conjugating if necessary, the parahoric subgroup P°(Y') will be equal
to a standard parahoric subgroup P; considered above, and we will interchange notations
freely.

Let Q°(A) be a parabolic subgroup of M°(Y') with Levi decomposition Q°(A) = M°(A)xU°(A),
and denote by P°(A) the parahoric subgroup which is the preimage of Q°(A) under the projec-
tion map P°(Y) — M°(Y). Thus the quotient of P°(A) by its pro-p unipotent radical P!(A)
is M°(A). Let 7 be an irreducible cuspidal representation of M°(A) and 7 denote both its
inflation to Q°(A) and to P°(A). The following Lemma follows immediately from the defini-
tions.

Lemma 7.6. We have an isomorphism of Hecke algebras H(M°(Y),T) ~ H(P°(A),T)
which preserves support: if f € H(M°(Y),7) is supported on Q°(A)yQ°(A) fory € M°(Y)
then the corresponding element f € H(P°(A),T) is supported on P°(A)yP°(A).
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Let W(M*°(A), 7) denote the inertia group of T, that is, the elements of the relative Weyl
group of M°(A) in M°(Y) which normalize 7 (see [12, Proposition 4.2.11]). We can give
a presentation of the algebra H(M°(Y),7) due to Howlett-Lehrer [14] when R = C and to
Geck-Hiss—Malle [11] in general.

Theorem 7.7 ([12, Theorem 4.2.12]). There are a Coxeter system (W7, .S7) and a finite
group €2 acting on (W7, S1) such that W (M°(A),7) ~ Q x Wi, furthermore H(M°(Y),T)
has a basis {T,, : w € W(M°(A),7)} which gives a presentation of the algebra with the
following rules for multiplication:

(i) forallw € Wand w' € Q,
Tw* Ty = p(w,w )Ty and Ty * Ty = p(w', w) Ty,

for some 2-cocycle p: W(M°(A),7) x W(M°(A),7) = R*;
(ii) for s € Sy, there are ps € R\{0, 1}, such that,

T.%T, — Tsw if [y (sw) > ll(w),
psTsw + (ps - 1)Tw if ll(sw) < ll(w)a

for all s € S7 and w € Wy, where [; is the length function on 7.

8. Reduction to level zero

Let [Y,ny,0, 3] and [A, ny, 0, 5] be self-dual semisimple strata in A. By conjugating
by an element of G, if necessary, we assume that Y5 and A lie in the closure of a common
chamber in the building of G'g, corresponding to an op-lattice sequence ' in V. As before,
let 0y € C_(Y,0,53) and 05 = 7y p g(fy). Let ny be the unique Heisenberg representa-
tion containing 6y and np = Ty A g(7nr) the unique Heisenberg representation containing 6.
Let ky be a standard S-extension of 7y and x be a standard S-extension of 7.

We will abbreviate Jy = J(3,T), and also Py = P(Yg) and My = M(Yg), with
analogous notation for A and I'. We also write J%’T = PLJ3, etc.

Lemma 8.1. The intertwining of n5 and s~ in G is given by

1 ifg € JLGrJ}i;

dimgr(Hom ;1 A, kD)) =
R JAN%(U T)) {O otherwise.

Proof. We have J}\ NJ5 = J}\ N K9 for some Sylow p-subgroup K of Jy. All Sylow p-
subgroups of Jy are conjugate to Ji\ y s0 K = (Jf, v )’ forsome j € Jy. Thus ResyX Ky ~ b ¢
and, as vector spaces, we have

9y ~ , Jg
HomJ}\mJ{ﬁ (A, k) HomJ}\m(JI{T)Jg (1A, Ur,r)-

As nr v extends 7y, the result now follows by applying Lemma 5.7 and Theorem 5.1. |
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Let 7 be a representation of M~y which we identify with a representation of Jy triv-
ial on JA} and with a representation of Py trivial on P%. By Mackey’s restriction-induction
formula and exactness of kx-restriction we have the following lemma.

Lemma 8.2. We have isomorphisms of representations of My
Ry, 0Ly (7) @ Hom j1 (KA’indjiﬁJﬁ((’{T ® 7)9)) :
Jr\G/JIn
Rag,oly, (1) =~ EB Homp: (1, indllzimpg (7-9)) ‘

PT\GE/PA

Lemma8.3. Letg € G.If Hom ;1 (HA, indﬁm%(mf ® 7-)9) # 0theng € JyGpJ;.

Proof. Consider Hom Jt (/{ As indjﬁ e (ky ® 7)Y ) as an abstract R-vector space. We
T
have

N JA - JA g\ ~ @ gh
HomJ}\ (ReSJ}x ﬁA,ResJk OdeAm@(HT ® ) ) ~ HokamJ%h na, (Fr ® )

he(JANTENIA /TR

by Mackey’s restriction-induction formula and Frobenius reciprocity. We have an injection of
vector spaces

Hom ;1 g (m, (k1 ® T)gh> — Hom j11y 71 )on (Um (Kr ® T)gh>

and on (Jalr)gh we have H‘%h = ngYh and 79" is a multiple of the trivial representation. Thus
gh € Ig(na,my) = J+GgJ}, by Theorem 5.1, and we deduce that g € J3+GpJpy = J+GgJ}.
O

Lemma84. () Letg € Gp. If Hompy (1, indll’_i,im py (7)) = 0, then
Hom 1 (KA, indjﬁmﬁ%(ﬁq‘ ®7)9) = 0.
(ii) As representations of M (Y g), we have isomorphisms
HOHIJ%(K}T, Ky ®T) =~ HomP%(l, T)~T.
Proof.  As an abstract vector space, by Mackey theory, we have

HomJ}\ (KA, indﬁm}i} (ky @ 7)9) =~ @ HomJ}\angfh (nA, (kr ® T)gh).

hE(JAﬁJ%)\JA/J}\

By Lemma 8.1 gh intertwines np with xy for every h € Jx. Hence by Lemma 2.7 (applied
with X = X{ = JL, Xo = J¢", X3 = (JR)9", 1 =, p2 = w9, ¢ = 1, and (o = 797)
for each summand, we have an isomorphism of vector spaces
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Moreover, as Ji N J;‘}h contains P} N P%h, we have

Hom (1,79") C Hom 1,79

h h
JANJS PyNPY (

But the right hand side is isomorphic as a vector space to a direct summand of the representation
. P, h'
HomP}\(l,lndpimpg(Tg)) o~ @ HomP/{mPgh/(l’Tg )
h’E(PAﬁP¥)\PA/PA
where the above decomposition is again an isomorphism of abstract vector spaces obtained by

Mackey theory. However, by our hypotheses Hom p (1,ind%_ . (79)) is trivial, whence all

PAﬂPg«
the summands HomJAmJ%h(nA, (ky @ 7)9") are trivial, as is HomJ}\(nA, indﬁm%(/w ®T)9)
and we have shown (i). The second part follows directly from Lemma 2.6. |

Corollary 8.5. Let 7 be a representation of M~.
(i) If R, oIy, (7) is trivial then so is Ry, oL (7).

(ii) Suppose 7 is irreducible with cuspidal restriction to My. If G has compact centre
and P°(Y p) is a maximal parahoric subgroup of G g then

Riyoluy (1) 7.

Proof. By Lemmas 8.2 and 8.3, we have isomorphisms of representations of My

Reyolor(r)= @ Homyy (sa,ind} ((er @ 7)9))
J\JZGEJ} /s

Rapolry(r)= @ Hompy (Lindf (7).
Py\Gg/Px

We choose a set of distinguished double coset representatives for P3\Gg /Py and a subset
of these giving a set of double coset representatives for Py\G /P, (which we also call dis-
tinguished). By the bijection of Lemma 4.8, this fixes a set of double coset representatives
of JT\J%G EJ}\ /Ja in Gg. We can now compare the summands of both isomorphisms on
the right. Part (i) follows from Lemma 8.4(i). For (ii) notice that, by Corollary 8.4(i),(ii) and
Lemma 7.2(ii), that the only summands which contribute correspond to distinguished double
cosets Pyn Py where n has projection w in the extended affine Weyl group satisfying wK = K
for K the proper subset of fundamental reflections of the affine Weyl group corresponding
to Py. However, as Py is maximal wK = K implies that n € Ng, (Py) = Py by [19, Ap-
pendix]. Thus (ii) follows from Lemma 8.4(ii) and Corollary 8.4(i). O

We will also need the following o-variant of Lemma 8.4, whose proof is identical.

Lemma 8.6. Let 7 be a representation of M.
Px

(i) Letg € Gg. If HomP,{(lvindP/ﬁm(Pg)g

(19)) = 0, then
o J3 o
Homjk(m/\,mdjﬁm(]%)g(/w ®7)9) = 0.

(ii) As representations of M (Y i), we have isomorphisms

HomJ}f(Kz%, Ky @ T) =~ Hompé(l, T) ~T.
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9. Skew covers

This section is concerned with revisiting and making the necessary changes to the second
authors construction of covers in [25] so that the same construction works in positive charac-
teristic £. The construction follows mutatis mutandis the constructions of the second author
for complex representations and rather than go through all the proofs, which are lengthy, we
introduce all the notation of op. cit. and indicate where changes need to be made to the proofs.

9.1. Iwahori decompositions. Let [A,n,0, ] be a semisimple stratum with associ-
ated splitting V = @,.; V*. A decomposition V' = @}, W) of V is called subordinate
to [A,n,0, g if

(i) each WU N Viisan E;-subspace of V;
Giy W) = @z‘ef(W(j) NVH;
(i) A(r) = @7, (A(r) N W), forall r € Z;
It is called properly subordinate to [A,n, 0, 3] if it is subordinate and, also,

(iv) for each r € Z and i € I, there is at most one j such that
AP WO AV D (A(r+1)NnWwI AV,

If [A,n,0, B] is a semisimple stratum and V' = @', W) is a decomposition which
is subordinate to [A,n,0, 8] then we put AY) to be the op-lattice sequence in W) given
by AW (r) = A(r) N W; and put B = eU)Bel) where el9) is the orthogonal projec-
tion V' — W;. Then there is an integer n'9) such that [A(j ), n9) 0,30 )] is a semisimple stratum
in AY) = Endp (W) with splitting W) = @, (WU nV?). We put BY) = C ;) (BY)).
Let M denote the Levi subgroup of G equal to the stabiliser of the decomposition V' = @;”:1 W)
and let P be any parabolic subgroup of G with Levi factor M and Levi decomposition P=MxU.

Lemma 9.1 ([25, Propositions 5.2 and 5.4]). IfV = @;nzl W) is subordinate to [A, 7, 0, ]
then J'(3,A) and H'(3, A) have Iwahori decompositions with respect to (M , P). Moreover

m
HY(5,0) N M = [ H'(8D,A0),
j=1
there is a similar decomposition for Jt (B,A)N M, and we can form the groups
71 7yl 1 77 71 _ 77l F1 >
Hy=H (B,A)(J(B,A)NU), Js=H(B,N)(J(8,A)NP)
which have Iwahori decompositions with respect to any parabolic subgroup with Levi factor M.

If the decomposition V' = P’ W) is properly subordinate to [A, 7,0, 3] then J (3, A) also

has an Iwahori decomposition with respect to (M , ]5), we also have
J(B,0) N M =[] 789, A9),
j=1

and we can form the group .J; 5= H'(B,A)(J(B, A)N P) which has an Iwahori decomposition

with respect to any parabolic subgroup with Levi factor M.
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Let [A,n,0, 5] be a self-dual semisimple stratum. A decomposition V P i —m W)

is called self-dual if, for —m < j < m, the orthogonal complement of W) is @, . Wk,

Put M = M NG aLevi subgroup of G and M+ = = Mn G aLevi subgroup of G*. Choosing
a o-stable parabolic subgroup P of G with Levi factor M we have P = P N G a parabolic
subgroup of G with Levi factor M and PT = P N G a parabolic subgroup of G with Levi
factor M.

Lemma 9.2 ([25, Corollaries 5.10 and 5.11] (cf. [9, Fait 8.9])). If V = EB W(J is
a self-dual subordinate decomposition to [A, n, 0, 3], then the groups H'(3, A) and J LB, A)
have Iwahori decompositions with respect to (M, P),

HY(B,A) N M~ H'(3 xHHl AW)

there is a similar decomposition for .J*(3, A), and we can form the groups
Hp = H'(B,A)(J"(B,A)NV), Jp=H"B,A)(J'(B,A)NP).

Moreover, if the decomposition is properly subordinate to [A,n,0, 3] then J* (3, A) has an
Iwahori decomposition with respect to (M ™, PT), J(3, A) and J°(/3, A) have Iwahori decom-
positions with respect to (M, P),

J(B,ANNM~J 5(0 A(O H B A(]

there are similar decompositions for J (3, A) N M ™ and J°(8, A) N M, and we can form the
groups

J]er = Hl(ﬁ,A)(J+(ﬁ,A)ﬂP), Jp = HI(B,A)(J(,B,A)QP), JI% = HI(B,A)(JO(ﬁ,A)ﬂP)

Let 0ccC (A,n,0,3) and 7) be the unique Heisenberg representation of J L(B,A) con-
taining #. By Lemma [25, Lemma 5.6], we can define a character of H}S by

0p(hj) = 6(h),
for h € HY(B,A) and j € JY(3,A) N U.

Lemma 9.3 ([25, Corollary 5.7 and Lemma 5.8]). There exists a unique irreducible

J(ﬁ )(

representation 75 of J J1 containing 9 Moreover 7] ~ 1nd np) and for each y € Gz,

there is a unique (J ]15, Jlﬁ)—double coset in J1 (8, A)yJ* (8, A) which intertwines 775. We have

I5(05) = Ig(ip) = JLGrJL.

Let § € C_(A,0,3) and 7 be the unique Heisenberg representation of .J' (3, A) contain-
ing 0. We can define a character 0p of H}, by

Op(hj) = 0(h),
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for h € H*(B8,A) and j € J'(3,A) N U. Then §p = g(6) is the Glauberman transfer of gﬁ

(as ] 5 18 a character the Glauberman transfer here is just restriction to H},).
We let np = g(7). Using properties of the Glauberman correspondence the following
Lemma is proved in [25].

Lemma 9.4. The representation np is the unique irreducible representation of J}D which
JH(B,A)
T
double cosetin J1 (3, A)y.J*(B, A) which intertwines np and dimpg (I4(np))is 1if g € JEG LT}
and 0 otherwise.

contains fp, n = ind (np). Moreover for each y € Gp, there is a unique (J}5, J})-

Let T be a standard 3-extension of 7. We can form the natural representation ﬁF of J;

+
on the space of (J! NU)-fixed vectors in k. Then Resjlf (k}) = np, hence 7}, is irreducible.
P

The Mackey restriction formula as in [25, Proposition 5.13] shows that indﬁ (;@;) ~ k1. We
P

can also define representations of xp of Jp and k% of Jp, for which analogous statements hold
+ +
and Resﬁ (k}5) = kp, Resiloz (k}) = K%.
In the next Lemma we identify H* (3, A)NM with H (3, A(0)) x IT7%, HY(pW), AU))
using Lemma 9.2, and use the similar identifications for J*(3, A) N M and J(3,A) N M.

Lemma 9.5 ([25, Section 5]). If V = EB;”:_m W) is a self-dual subordinate decom-
position, then

02 L= 00 © G (1)
j=1

with 0©) e ¢_ (A0, 3©) and 90 € ¢(AY), 0, 8)). Similarly we have

e | gmynr= 1" @ Qi
j=1
where 7(°) is the unique irreducible representation of .J*(5(?), A(?)) containing () and 7717 is
-~ . . ~ .\ 2 . .
the unique irreducible representation of J' (), A4)) containing (9(3)> e C(AD),0,25)).

Moreover, if V = @;n:_m W) is a self-dual properly subordinate decomposition,

~b Limna= £l © Q) Ry,

Jj=1

with KJB) an extension of 79 to J* (3, A(9)) and K(;) an extension of 79 to J(BW), AD).

—~

Lemma 9.6 ([25, Lemma 6.1]). Let K be a compact open subgroup of J (3, A) con-
taining J*(3, A) which has an Iwahori decomposition with respect to (M*, P*) and write
KnMt = KO x [TKY). Let p be the inflation to K of an irreducible representation

of K/JY(B,A), set A = Res‘]};(ﬁ ’A)(Fﬁ) ® p and let A\p the representation of the group
Kp = H'(3,A)(K N P) on the space of J'(3,A) N U-fixed vectors in A. Then
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(i) Apisirreducible and A = ind% Kp Ap.
(ii) Ap ~ kp ® p considering p as a representation of Kp/J} ~ K/J'(3, ).

(i) Ap |knm= )\ ®®m A9 where A©) = ORI0) ®p' is a representation of & (¥)
and \U) = (j.) | 706) ®ﬁ@) is a representation of K@ for1< Jj<m.

(iv) There is a support preserving algebra homomorphism H (G, A\p) ~ H(GT,\);if ¢ € H(GT,\)
has support Ky K for some y € GE then the corresponding ¢pp € H(G™, Ap) has sup-
port KpyKp.

Proof. The proof follows mutatis mutandis the proof of [25, Lemma 6.1], making use
of the results quoted in this section and Lemma 2.6 for parts (i), (ii), and (iii). o

The self-dual decomposition V' = @;n:_m W) is exactly subordinate to [A,n,0, 8], in
the sense of [25, Definition 6.5], if P°(Ag) N M is a maximal parahoric subgroup of Gg N M
and, for each j # 0, there is an i such that W) is contained in V* and 2(A?)) N BWY) is a max-
imal o i-order in BU ), or equivalently, if it is minimal amongst all self-dual decompositions
which are properly subordinate to [A, n, 0, 53].

For the rest of this section, we suppose that the self-dual decomposition V' = @;”:_m W)
is exactly subordinate to [A,n,0, 3]. For j,k > 0, in [25, Section 6.2] a collection of Weyl
group element s; i, s;, and s57, all of which lie in GE, of G is defined. The element s; . ex-
changes the blocks e/) Ae() and e(*) Ae(¥) | and the blocks e(~7) Ae(=7) and e(~*) Ae(~=%)_ The
elements s; and s7” exchange the blocks e() AeU) and e(=7) Ae(=7). Let AM be a op-lattice
sequence in V' such that 2(A}) is a maximal o g-order containing (A ). For j,k > 0, W)
and W) are called companion with respect to AM if s, € PT(AY), while W) and W(=7)
are called companion with respect to A if s; or 5% lies in PH(AY ) Following these defini-
tions in op. cit. an involution ¢; is defined on G ,={@G 19 G G(=3) x G} by conjugation
by s;. Furthermore, by [25, Lemma 6.9], the group J (5( ),A(j)) is stable under o, and ,
if1 <j<k<mand W ~ W) ag F;-spaces for some 7, then conjugation by s; x induces
an isomorphism J(3), AW ~ J(a%) AR)),

Lemma 9.7 ([25, Proposition 6.3, Corollary 6.10]). Suppose the self-dual decompo-
sition V- = DL _,, WU is exactly subordinate to [A,n,0, 5]. Then H(O) is a standard (-

extension of (?) to J (B, A©)) and % K(j) is a standard 28U)-extension of 77) to J(5), AW)).

Furthermore, for 1 < j < m, conjugation by s; induces and equivalence £ ;) o 0 =~ K(;), and,

i)
if1<j<k<mand W0 ~ W as F;- spaces for some i, then conjugation by s; ;. induces
an equivalence ;) > K-

This lemma together with the comparison of -extensions leads to the following obser-
vation, as in op. cit. Let AM, AM' be self-dual op-lattice sequences such that the associ-
ated op-orders are maximal and contain 2(Af). Let & be a S-extension of 7 relative to A
and ' be a 3-extension of 7 relative to AM". ". There are o;-invariant characters x) of k:Xi and

a character x(©) of M°(Ag) such that, setting y = x(¥ @ b2 X9 o det?), we have

K = indj;D(B’A)(/fp ® X)-
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9.2. kp-induction and restriction. We have functors L., : Rr(M°(Ag)) — Rr(G)
andI;, : Rr(M°(Ag)) — Re(L) withright adjoint functors R, : Rr(G) — Rr(M°(Ag))
and Ry, : Rr(L) — Rr(M°(AE)); defined analogously to I,, and R,; in Section 6.1. In fact,
as indj}P (kp) ~ Kk, we have natural isomorphisms of functors I, ~ 1., and R, ~ R, .

9.3. Bounding I (xp). Suppose P°(Ag) is not maximal. Let N denote the nor-
maliser in G'r of the product of maximal E;-split tori T, in Gg;, chosen relative to a cer-
tain F;-basis of V* as in [25, Section 6]. Let Ny = {w € Ng : w normalises P°(Ag) N M}
and Np(p) = {n € Ny : p" ~ p}.

Lemma 9.8 ([25, Corollary 6.16]). The intertwining of x% satisfies

Ig(kp) 2 JpNa(p)Jp,

and the intertwining of A% = Ap | g is given by
Ig(Ap) = JpNa(p)Jp-

The proof follows exactly as in op. cit. with one caveat: we replace the use of [25,
Proposition 1.1] with Lemma 7.4.

A Hecke algebra injection. Let [A,n,0, 5] and [A’,n/,0, 3] be skew semisimple strata
with A(Ag) € A(A%). Let 0 € C_(A,0,5) and ¢ = 7p s 5(#) be semisimple charac-
ters, x and ' compatible [-extensions of # and ¢, and p denote the inflation of an irre-
ducible cuspidal representation p of M°(3,A) to the groups J°(5,A), J§ ,, and P°(Ag).
Weput A = k@ pand N = K/ | 7, @p We have a canonical support préserving isomor-
phism H (G, \) ~ H(G, \') as in 25, Proposition 7.1], this follows essentially by transitivity
of induction and our results on S-extensions. Exactly as in op. cit. Proposition 7.2, we have
a support preserving isomorphism of algebras #(J(5,A’), ') ~ H(P(A’;), p). The compo-
sition of these isomorphisms with the natural injection H(J(8,A"), \') — H(G, \'), gives us
an injective map

H(P(Np), p) = H(G, ),

which preserves support; if ¢ € H(P(A'y), p) has support P°(Ag)yP°(Ag) fory € P(AY)
then the corresponding ¢ € H(G, \) has support JpyJp.

Skew covers. Let 7 be an irreducible cuspidal representation of (G, and consider the set
of all pairs ([A, n,0, 5], 0) such that [A, n,0, 3] is a skew semisimple strata, § € C_(A,0, 5)
and 7 contains §. Choose a pair in this set whose parahoric subgroup P°(Ag) is minimal
under containment relative to all other pairs in the set. Since there is a unique irreducible
representation 1 of J'(3, A) containing §, 7 must also contain 7. Hence, by Lemma 2.6, 7
contains a representation A = k° ® p of J°(3, A) where x° is a standard [3-extension of 7
and p is an irreducible representation of J°(3,A)/J(3, A). As P°(Ag) is minimal, it follows
that p is cuspidal (c¢f. [25, Lemma 7.4]).

Suppose that either P°(Ag) is not a maximal parahoric subgroup in G g or G does not
have compact centre.
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Theorem 9.9 ([25, Propositions 7.10, 7.13] (cf. [18, Appendix A])). There exists an
exactly subordinate self-dual decomposition V' = @;”me W) to [A,n,0, 3] such that the
pair (Jp, Ap) is a G-cover of (Jp N M, Ap |u), where Jp is as constructed in Lemma 9.2
and kp as in Lemma 9.5.

The construction follows mutatis mutandis that of [25], noting that:

(i) We use the results for S-extensions in positive characteristic from Section 6, and use
Lemma 2.6 (the characteristic zero version of which is obvious).

(i) In the construction of [25] for a parahoric subgroup P°(90t) containing P°(A ), the proof
requires knowledge of the structure of H(P°(9), p°) (c¢f. Section 7.2.2 of op. cit.) given
by the results of [19]. Here we must appeal to Geck—Hiss—Malle’s generalisation of the
description of the structure of H(P°(9N), p°) to positive characteristic (see Lemma 7.7).

(iii)) The proof of [25] requires the construction of covers in general linear groups, namely it
uses [20, Proposition 6.7]. For general linear groups, the analogous proposition holds in
positive characteristic (see [17, Remarque 2.25]).

(iv) In the definition of lies over (cf. [25, Definition 7.6]), the use of the word component
should be replaced with quotient.

10. Self-dual and pro-p covers

This section generalises the construction of covers we have given for skew strata to
semisimple strata, following [18]. Also, inspired by [17, Proposition 2.27], we define pro-p
covers at the level of the J! groups. These results will not be used in the rest of the paper, and
are included with future work in mind.

Let M be a Levi subgroup of GG which is the stabiliser of the self-dual decomposi-
tion V.= P ,, W@, Letting G@ = Autp(W@) and GO = Autp(W©) N G we
have M = G x I GD. Lett =70 g QL 70U) be a cuspidal irreducible representa-
tion of M. Let M denote the stabiliser of V' = @;n:_m W) in A,

Lemma 10.1 ([9, Proposition 8.4], [18, Proposition 5.1]). There are a self-dual semisim-
ple stratum [A, n, 0, 8] with 3 € M and a self-dual semisimple character 6 of H'(3, A) such
that V = @gifm W) is properly subordinate to [A, n, 0, 3] and

0 | sayu= 00 @ ® (5(j))2,
j=1

N2
with 09 contained in 7(©) and, for each 5 > 0, (0(3 )) contained in 7; where we have identi-

fied /'(3,A) N M with H'(3®, A®) x [T/~ H' (89, AD) as in Lemma 9.5.

Let p be an irreducible cuspidal representation of M°(Ag) = Jp/Jp ~ J7/J}. We can
form the representations A\p = kp ® p of Jp and A} = k1, ® p of J} by inflation.
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Theorem 10.2 ([18, Theorem 5.3] (¢f. also [25, Proposition 7.13])). The pair (Jp, A\%)
is a G-cover of (J7, A7) relative to P.

The proof generalises to positive characteristic with the same adaptations as commented
on in the proof of Theorem 9.9.

Theorem 10.3. The pair (.}, 7p) is a G-cover of (J1,7.) relative to P.

Proof. By [1, Page 246, (0.5)], it is equivalent to show that; for all irreducible R-
representations 7w of G the map of vector spaces

D Rﬂp(ﬂ-) - RHL (T%(Tr)),

given by ®(f) = 7§ o f for f € R, (m), is injective. This map is easily checked to be a
homomorphism of representations of M°(Ag). Assume w := ker(®) is non-zero and let ¢
be an irreducible subrepresentation. Let (7, L) be in the cuspidal support of ¢. Thus L is a
Levi subgroup of M°(Ag) (we allow the case L = M°(Ag)). Let P be the standard parabolic
subgroup of M°(Ag) containing L with Levi decomposition P = LU so that ¢ is a quotient
of i%[ "(Ae )(?). Choose a self-dual op-lattice sequence A’ such that P°(A’;) is equal to the
preimage of P under the projection P°(Ag) — M} and such that P°(A) D P°(A’) (consider-
ing A and A’ as op-lattice sequences); this is possible by [25, Lemma 2.8]. Let &’ = by a/(k).
The decomposition of V' = @;n:_m W; is exactly subordinate to the [A’,n’, 0, 5]. Hence we
can form the groups

Jp=HY B, N)J(B,N)NP), J, =JpNL

and the representations x» of .Jj (the natural representation on the (J°(3,A") N U)-fixed
vectors of &) and K}, = K'p |7 .
We start with the left exact sequence of representations of M°(Ag)

0 = w = Ryep () = Ris, (rE ()

where, by definition, w is the kernel of the final map ®. We apply the Jacquet functor r%/[ "(Ap)

(which is exact) and have

°(A
0 — 7”%4 ( E)(w) — Ry (m) = RH'L(Tg(W))v

asr AP o R, (1) = Ry (n) and r M) o R (rG(m)) = Ry (G () by compatibility
of x and «’. Then, taking the T-isotypic components (which is a left exact functor) we have an
exact sequence

0 — Homp (7,72 ") (w)) — Homz(7, Ry (7)) — Homz(7, Ry (r§(m))).

By right adjointness of R,Q/P and RH'L with IHQD and IH'L and right adjointness of restriction with
compact induction this is isomorphic to the exact sequence
M°(Ag)

0 — Homz (7, r5

& P (w)) = Homys (Kp @ 7, m) — Homye (v}, @ 7, 7 (7))

As w contains a subrepresentation with cuspidal support 7, Hom4(7, r%l "(Ap) (w)) # 0. How-
ever, by Theorem 10.2, (Jp, k', ® T) is a G-cover of (J},k} @ T) relative to P. Hence,
by [1, Page 246, (0.5)], the map Hom js (kp @ 7, 7) — Hom e (K7, © 7,73 ()) is injective, a
contradiction. O
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11. Quasi-projectivity of types

This section shows that the types we consider are quasi-projective, so that Theorem 2.5
applies.

Lemma 11.1.  Suppose that n is a distinguished double coset representative of Py\G /Py
with projection w in the affine Weyl group of G'r; such that, if Py corresponds to the subset K
of the fundamental reflections in the affine Weyl group W’ (cf. Section 7), then wK = K.
Let 7 be a representation of M°(Y ). Then, we have an isomorphism of vector spaces

. L JS
Hom S, ind Y
0 J%(KTa dJ%ﬁ(J%)n(

which is an isomorphism of representations if n € Ig(k%).

Proof. Observe that we have J5. = J%(J3 N (J3)") 2 J-(Pg N (P3)™) and moreover
J3 /I = JR(Py N (Pg)")/J%, as wK = K (and using Section 7 (i)). We deduce that
J3 = JL(Pg N (P$)™). Thus, by Mackey theory, we have

JS . JS . ,]1
Resé (lndJ§m(J%)n (kY ®@T)") =~ lndjim(J%)n (ky @7)".

Therefore, we have isomorphisms of vector spaces

. JS ) J
HOHIJW} (K,%, 1ndJ§ﬂ(J%)n (/ﬂ?ofr ® T)n> ~ HOHIJ}[ (/ﬁ;OT7 deim . (/iofr ® T)n)

(J%)
= Home(J%)n(ﬁor, (k)" ®T")

which, is actually an isomorphism of representations of My, where the action of
My = Jy(J3 N (J3)™)/ It = (Jx N (J3)")/(Jx N (J3)")

on homomorphisms in Hom j1 ~( J%)n(/@or, (k)™ ® 7") is given in the usual way by pre-
composition with (x5)~! and post-composition with (k%)" ® 7. By Lemma 8.1 we can
choose S € Hom i soyn (K%, (K53)") nonzero. On the other hand, by Theorem 5.1, we
have Homj%m(‘]%)n(/{%, kY)") = Homj%m(‘]%)n(/{%,(/{%)”) ~ R. Hence, by Lemma 2.7
(applied with X; = X{ = J%, Xy = JE, X3 = (J%)", pio= nr, pe = K%, G = 1,
and (2 = 7") we have an isomorphism of vector spaces

Homj%m((]%)n(l, ™) — Hom j1 (yo)n (Y, (RY) @ T"),

given by the tensor product with S which is an isomorphism if S € Hom je (e )n (K%, (£5)"),
which will be the case if Hom jo n(jo)n (K%, (£%)") # 0, ie. if n € Ig(k%). Moreover, as a
representation of M$. = (J3 N (J$)™)/(J% N (J§)™),

Hom j1(joyn (1,7") >~ 7" o

It seems likely that the elements n considered in Lemma 11.1 do intertwine x5, we do
not prove this here as it is not needed for our application.
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Theorem 11.2.  Suppose 7 is cuspidal. The representation I (1) is quasi-projective.

Proof. Notice that, as J% is pro-p, the 7-isotypic component of I (1) is a summand
of the restriction of ;e (1) to Jv, and no representation in its complement contains 7, whence
cannot be isomorphic to A = k3 ®7. However, we have I;¢ (7)1 ~ kS @Ryeg 0 lye (1) (cf 17,
Lemme 2.6]). We can decompose RH% OII{% (1) as a direct sum and choose distinguished
double cosets for each summand as in the proof of Corollary 8.5. By Lemmas 8.6 and 11.1 and
Corollary 7.2 (ii), the summands are either zero (when the distinguished coset representative
projects to an element w with wK # K), or have the same dimension as 7. Hence the x5 ® 7-
isotypic component must be a direct summand of the 7-isotypic component of I ;o (7) and, by
Lemma 2.4, the representation ;e (1) is quasi-projective. i

12. Exhaustion

We show how Corollary 8.5 can be used to show certain representations of G we have
constructed are irreducible and cuspidal. Moreover, with Theorem 9.9, we show that this con-
struction exhausts all irreducible cuspidal representations of GG. In the complex case this con-
struction is the same as [25, Corollary 6.19]. However, in addition to extending this construc-
tion to /-modular representations, Corollary 8.5 allows us to make some comparisons between
certain irreducible cuspidal representations in our exhaustive lists.

We call a skew semisimple stratum [A, n, 0, 3] cuspidal if G g has compact centre and P°(Ag)
is a maximal parahoric subgroup. A fype for G is a pair (J,x ® 7) where J = J(3,A) for
some self-dual semisimple stratum [A, n, 0, 3], x is a -extension of the unique Heisenberg rep-
resentation 7) containing § € C_(A,0, 3) and 7 is an irreducible representation of .J/J! with
cuspidal restriction to J°/J'. We call a type (J, x ® 7) cuspidal if [A,n,0, 3] is a cuspidal
stratum.

Theorem 12.1. Let (J, x ® 7) be a cuspidal type for G relative to the skew semisimple
stratum [A, n, 0, 5], then I;(7) is irreducible and cuspidal.

Proof. The conditions on [A,n,0, 3] guarantee that P(Ag) is its own normaliser. By
adjunction of R, and I, Corollary 8.5, and Schur’s lemma for irreducible representations
of J/J*,

Endg(Ix(7)) ~ Hom (7, Rk 0 1(7)) ~ End s (7) ~ R.

Let 7 be an irreducible R-representation of G such that x ® 7 is a subrepresentation of 7
(hence 7 is a quotient of I,;(7)). We must show that k®7 is also a quotient of 7 in order to apply
Lemma 2.3. As J! is pro-p, we can decompose 7 ~ 77 &7 (n) where 7" denotes the n-isotypic
component of 7 and no subquotient of 7(n) contains 1. By Corollary 8.5, R o I,,(7) ~ 7
hence I,;(7)" ~ k® 7, and hence by exactness 7”7 ~ k& 7 (or zero which it can’t be as k @ T is
a subrepresentation of 7). Therefore, by Lemma 2.3, I;(7) is irreducible. Cuspidality follows
from a classical argument (cf. [7, §1] and [26, §2, 2.7]). |

Theorem 12.2. Every irreducible cuspidal representation of GG contains a cuspidal type.
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Proof. Let 7 be an irreducible cuspidal representation of G. By [24, Theorem 5.1],
the proof of which applies in positive characteristic £ # p, there exist a skew semisimple
stratum [A,n,0, ] and @ € C_(A,0, ) such that 7 contains §. Thus 7 contains the unique
extension 7 of § to J'. Let x be a standard 3-extension of 7. By Lemma 2.6, the functor x ® —
identifies the category of R-representations of M (Ag) with the category of n-isotypic repre-
sentations of J. Thus 7 contains x ® 7 for some irreducible representation 7 of J/J!. The
proof now follows, using [27, II 10.1], from Theorem 9.9 (cf. [18, Appendix A] and [25, The-
orem 7.14]). O

A consequence of Corollary 8.5 is the following intertwining implies conjugacy theorem:

Theorem 12.3. Suppose (Jp, kA @77 ) and (Jy, Ky @ 7y ) are cuspidal types associated
to the self-dual semisimple strata [A, nx, 0, 3] and [T, ny, 0, 5] whose underlying semisimple
characters are related by transfer. If I, (7a) =~ I.,(7r), then there exists g € Gg such
that (J¥., Iigr ® 7'%) = (JA, KA @ TA).

Proof. By Corollary 8.5 (i) and Corollary 7.2 (ii), the lattice sequences Ar and Y g
are in the same (Gg-orbit. Hence, by conjugating by an element of G if necessary, we can
assume A = Y. By Theorem 6.1, there exists a character x of M (Ag) such that kA = x ® K3
then replacing xy by Y ' ® ky and Ty by x ® 7y, we reduce to the case Ky = Kky. By
Corollary 8.5 (ii) and adjointness, we have

Homg Ly (7)), Loy (7)) = Hompzy 1) (7a, Ry 0 Ly (77)) = HOIHM(TE)(TA, )

which is non-zero by hypothesis. Thus 7o ~ 7y and the cuspidal types (Jx,kpa ® Ta)
and (Jv, Ky ® 7r) are the same (up to equivalence). o
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