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Abstract

Unlike text language identification techniques, which are now quite mature, audio

and video language identification techniques still face many challenges. One of the

main challenges, due to a variety of reasons, is that there are not enough audio and

video datasets.

However, text data are sufficient for experiments and many text databases are

free for research which leads to an interesting question: can we identify an unknown

video or audio language based on the relationship between the known text languages?

To answer this question, it requires us to examine two issues: language identification

and language mapping.

In language identification, we compare two methods which are zipping classi-

fication and N -gram modelling. An advantage of zipping classification is that it

tolerates the lack of long training data and can be applied to a large variety of

problems without modification. However, the N -gram model provides a high clas-

sification accuracy and efficiency which makes it worthy of consideration. Also, we

evaluate another audio classification method based on the MPEG compression to

compare with the general zipping tools and the N -gram model.

For the language mapping section, we firstly use the Robinson-Foulds tree dis-

tance to measure the distances between the language trees and also use Sammon

mapping and Shepard’s interpolation to map the language distance results from the

higher dimensions to the lower dimensions and try to find the optimal language

relationships in the specific dimension.
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Chapter 1

Introduction

1.1 Motivation and Aims

Since Mustonen [1965] used MDA (Multiple Discriminant Analysis) to solve prob-

lems in text language identification, there is a large number of researchers investig-

ating in this area. Thus, after decades of studying text language identification, there

are some techniques are well mature and well coded. Some of those techniques, such

as the N -gram model, have high accuracy with great efficiency and are still being

used today. One of the advantages of text language identification is that it is easy to

collect text datasets thanks to the development of the Internet. Hence, researchers

can build up a dataset containing multiple languages in a short time. Also, there are

standard encoding sets to ensure the format of character encoding does not impact

on research results.

For audio language identification, there are also mature datasets which are ac-

cepted by most researchers and are used as part of standard evaluations. Although

it is impossible to collect a dataset representing all languages due to political and

cultural issues, audio language datasets are still comparably larger than video data-

sets. In other words, there are lots of standard audio language datasets available

online (such as NIST datasets), while there are only a few video datasets can be

1



CHAPTER 1. INTRODUCTION 2

used for language identification. Since Zissman [1996] became interested in audio

identification, there have been many researchers involved in speech recognition and

language identification and have been reported that they have achieved high recog-

nition accuracy.

Although video language identification might be useful in security and business

applications where audio or text is not available, it might also provide enhanced

audio language identification, particularly in noisy conditions when audio identific-

ation can fail. That said, there are very few video language identification databases

so the field is highly undeveloped.

This thesis aims to study the problem of audio and video language identification,

based on textural language information. We wonder if the distances between lan-

guages in text, audio, and video have some relationship. If so, then the unknown

audio or video language could be classified or nearly classified by comparing its

relationship to other audio or video signals and for similarities in the relationship

between text languages.



Chapter 2

Literature review

2.1 Introduction

This thesis is concerned with the identification of human language, in either its

written form (text language identification or TLID), acoustic form (audio language

identification or ALID) or from the appearance of the mouth region of the speaker

(video language identification or VLID).

By applying the research of child learning, as one of the earliest papers on lan-

guage identification, Gold [1967] introduced the idea of language learnability. He

remarked that, for effective language learnability, it was essential to consider all

aspects of language from orthography through to semantics. Gold [1967] defined

language identification (LID) as ‘a method to learn an unknown language using a

corpus of specified languages through its presented information’. Gold’s ideas, which

focused on text language identification, have been widely accepted and the resulting

LID technologies have been developed in three branches:

• Text Language IDentification (TLID);

• Audio Language IDentification (ALID);

• Video Language IDentification (VLID);

3
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Table 2.1 lists the major languages of the world with estimates of the number of

speakers globally.

Mandarin, English, Arabic, French, Russian and Spanish are the current official

languages of the UN. Besides French, the other five languages are used widely around

the world. In this report, we concentrate on Mandarin, English and Arabic for the

target languages because they have many speakers and so are easier to record.

The problems with current VLID systems relate to recognition accuracy. In

addition, there is no such thing as a standard video data corpus that is available

and open to all researchers.

In contrast, there are large numbers of multilingual text corpora available and a

commonly used audio language data corpus: NIST 22. In summary, it seems much

easier to build a high-accuracy TLID or ALID system than a VLID system. Now,

we ask what issues might arise if we were to use TLID or ALID to improve VLID?

The first challenge is whether the data resources are reliable. Are the data nor-

malised and well stratified by gender, age or other factors? Does it contain other

forms of unnecessary noise that would reduce accuracy? Does the format of the

input affect our result?

Table 2.1: List of languages with more than 100 million native speakers. Unlike
European languages, which consist of initials and finals, the size of the Chinese
alphabet represents the number of pronunciations in the Pinyin. Also, the size of
the Japanese alphabet represents the number of pronunciations in the Latin alphabet
[Lewis and D.Fenning, 2013].

Language Native speaker Non-native speaker Phoneme size
Mandarin 848 million 1026 million 56
Spanish 406 million 466 million 48
English 335 million 765 million 44
Hindi 260 million 380 million 44− 51
Arabic 206 million 380 million 34

Portuguese 202 million 217 million 28
Bengali 193 million 250 million 36
Russian 162 million 272 million 45
Japanese 122 million 123 million 20
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The second question is how to build a recognition system for TLID, ALID, and

VLID? There are so many techniques that can be used to carry out this task, but

which would perform best? Which kind of features will best fit our requirements?

The third question, which is the key question we need to address, is how to map

TLID and ALID results to VLID.

We provide an introduction to these questions in the subsequent chapters.

2.2 TLID (Text Language IDentification)

Text Language Identification (TLID), which is also described as written language

classification, plays a key role in machine translation and information extraction,

as well as in other areas such as information retrieval. Although some papers on

language identification were published before 1967, such as [Mustonen, 1965], Gold

[1967] might have been the first to define language identification as a method of

learning an unknown language and deciding which class to which the unknown

language belongs. He also devised simple rules for TLID. Some of his assumptions,

such as the assumption that the personal style of the writer was less distinctive than

the language, remain commonplace. Furthermore, his observation that TLID needs

well-defined information on the character sets, spelling and grammar of the language

is also helpful.

A useful summary of the state-of-the-art before 1996 in TLID is given by Sibun

and Reynar [1996]. To compare these language identification methods, they dis-

cussed some issues as standards for evaluation. The text-language-identification-

based issues discussed below are features, language selection, algorithm, text encod-

ing, input format, size of text and evaluation methods.

The first question mentioned by Sibun and Reynar [1996] is what kind of features

might be suitable for TLID? From previous research, characters, words, and phon-

emes are frequently used. Other linguistic rules might also help, such as morphology,

syntax, semantics, pragmatics, and graphemics. Morphology is defined as a method
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of analysing words’ construction and their relationships with each other based on

morphemes. For example, for a word like ‘happy’, there are several words sharing

the same element of ‘happy’ such as ‘happily’, ‘unhappy’ and ‘happiness’. In this

case, morphology is used to explain the nature of the connections between those four

words. Syntax defines the rules on governing how sentences are organised. Syntax,

semantics, and pragmatics are all concerned with the transmission of meaning. Syn-

tax concentrates mainly on the relationships between words, while semantics is used

for the study of s igns, such as words, and what they refer to. Pragmatics is the

study of what sentences mean for users and interpreters and how that the meaning

is transmitted through the context of the utterance. Graphemics is related to writ-

ing systems. Although, in most cases, the writing system is quite simple, there are

some exceptions that might present a challenge for text language identification. For

example, some languages might not have consistent writing, such as Arabic, which

is not spoken as it is written. Some languages have no writing system and some

languages might have multiple writing systems, such as Japanese, which has two

types of the character set, one of which is logographic, called kanji, and originates

from Chinese characters, and the other is syllabic, called kana [Collinge, 2002].

Sibun and Reynar [1996] also mentioned the importance of language selection.

Different decisions on language selection might impact on identification accuracy.

Based on a widely accepted linguistic method known as genetic classification, an

example is given by Ruhlen [1991] is that Portuguese, Spanish, Catalan, French,

Italian, Sardinian and Romanian all originated from Latin, so are more likely to be

confused than, for example, Mandarin and Russian.

With the development of the internet, the number of languages that can be

collected electronically has increased dramatically. However, to include a variety of

languages, the early stages of text encoding were different from that which we use

currently. Many historic TLID databases used ASCII (American Standard Code for

Information Interchange), which is a coding highly tuned to American English but

then revised for other languages as the internet is used internationally. In addition,
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there are multiple encoding standards that are used in parallel today. To train and

test the language identification model, it is necessary to ensure all language texts

are encoded in uniform character sets.

Input formatting is concerned with whether resources come from online texts,

images or other methods. Most language identification methods are based on online

text but some applications work on Optical Character Recognition (OCR) [Peake

and Tan, 1997; Hochberg et al., 1999]. Since we use only online text resources in

this thesis, we do not discuss OCR in detail.

It is common to find that language identification accuracy will improve with the

increasing size of the text. However, some languages might not have such large

datasets to support long string training and testing tasks. An ideal language iden-

tification algorithm should be able to identify languages in a short period with high

accuracy. Additionally, accuracy should improve as the training and testing data

expands. The lack of training data can make the language identification model un-

able to describe the data features. Also, the lack of testing data can not indicate the

complexity of the languages and would reduce the identification accuracy [Manning

and Schütze, 1999].

In Section 2.2.1 to 2.2.5, we will discuss TLID based on these issues and give a

brief introduction to the different algorithms, encoding forms, and their classification

performance.

2.2.1 Feature extraction

Substantial research in TLID feature extraction has been conducted in the decades

since the 1960s. TLID features may be described as character- or word-level features.

In the Cambridge Dictionary, the definition of a character is a ‘mark or a symbol

in writing, painting and other works’. Characters can be alphabetical, punctuation,

numbers or other special symbols. Words are the minimal unit that is meaningfully

written and pronounced in isolation. Both characters and words are sequential data
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and easy to describe, so feature extraction from text is much easier than from audio

and video. Besides these two basic feature extraction methods, some researchers

have also tried to improve classification performance by using n-grams. Cavnar and

Trenkle [1994] defined the n-gram as all possible co-occurring characters in a string

within a particular language. Although n-grams can boost accuracy, they can be

computationally expensive to collect, so the most commonly used n-gram models

for TLID are unigrams, bigrams, trigrams and, if necessary, four-grams [Manning

and Schütze, 1999].

Table 2.2: TLID feature extraction methods

Feature Citation
Particular character detection [Clive et al., 1994]
Particular word detection [Ingle, 1976][Henrich, 1989] [Clive et al.,

1994]
Particular character n-grams [Henrich, 1989] [Clive et al., 1994] [Sibun and

Reynar, 1996]
Frequency of character n-grams [Beesley, 1988] [Henrich, 1989] [Cavnar and

Trenkle, 1994]

Table 2.2 summarises the feature extraction techniques used in TLID. Current

research tends to use character sequences, particular characters and word detection,

especially in cross-language family identification. Most prefer to use Cavnar and

Trenkle [1994]’s n-gram counting by using rank order statistical techniques; how-

ever, Dunning [1994] found that Bayesian models for character sequence prediction

performed as well as Cavnar and Trenkle [1994]’s n-gram. Cavnar and Trenkle

[1994] argued that n-gram models need tokenisation and this would be harmful to

performance. He introduced Markov models to predict the probability distribution

of characters because they are easy to deal with mathematically and can be de-

scribed relatively succinctly. His work used Bayesian decision rules to minimise the

probability of error of which possible language models (if there are more than two

models) have caused a particular observing string. [Dunning, 1994] claimed that the

accuracy of about 92% could be achieved with only 20 bytes of test text and 50K

of training. This result could be improved up to 99.9% accuracy after testing 500

bytes.
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[Ingle, 1976] emphasised the importance of language identification approaches.

Previously, TLID was a task relatively unfamiliar to computer science but more

closely related to linguistic problems. On receiving an unfamiliar language text,

translators had to identify the language using a list with languages based on special

features such as words and characters. Up to this point, TLID was seen as a specialist

task that could only be tackled successfully by skilled translators. However, Ingle

[1976] noted that it was possible to design a table that could implement language

identification by unskilled operators using some ‘key’ words. By manually selecting

the most frequently used words, he listed the single or two-lettered words of an

unknown language text and eliminated languages that were the lowest probability

for each word.

Although Ingle [1976] did not automate his method, Henrich [1989] realised his

idea as a computer program in ASCII text. He believed that the identification

system could use only information of character codes of written text, word length,

and positions of words in specified sentences. By working on English, German and

French through an n-gram model, the identification accuracy was 51.4% in unigram

but much improved in trigrams to 73.6%.

Clive et al. [1994] tried to combine unique character detection, word frequency and

n-gram models in his project. His results also showed that unigrams performed worse

than bigrams, whose accuracy was 88%, which, in turn, was worse than trigrams,

with an accuracy of 91%. He found that, for bigrams and trigrams, it was not

necessary to learn all n-grams and only 75% of bigrams were required, and even fewer

for trigrams, which only required 25 − 50%. Sibun and Reynar [1996]’s character

unigram statistics or character bigram statistics results, based on the ISO Latin-1

alphabet, also support Clive et al. [1994]’s conclusion and Sibun and Reynar [1996]

claimed that 100% accuracy was possible using n-gram models.

Beesley [1988], who found the relationship between character frequency and lan-

guages, argued that applying the highest n-gram likelihood to identify a language

as possible. Cavnar and Trenkle [1994] continued his work by getting the highest
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overall accuracy, which would be 99.8%, within 300 characters. Since then, the

Cavnar and Trenkle algorithm, Cavnar and Trenkle [1994], has become the default

algorithm for computer implementation. We will use Cavnar and Trenkle [1994]’s

method for our text, audio and video language identification methods and show

the identification results. Its technical details of n-gram frequency are presented in

Section 3.2.1.1.

2.2.2 Algorithms

Table 2.3: Review of identification techniques

Techniques Citation
Manual [Ingle, 1976]
Support vector machines and
kernel methods

[Henrich, 1989] [Clive et al., 1994]

Monte Carlo based sampling [Poutsma, 2002]
Text compression [Benedetto et al., 2002] [Cilibrasi and

Vitányi, 2005]

Since Ingle [1976] provided a manual language identification table for his transla-

tion tasks, language identification had been developing into fully automatic analysis

systems. Alternative algorithms, which were previously mentioned ( Sibun and

Reynar [1996]; Henrich [1989] in Section 2.2.1), are important recognition results.

However, Henrich [1989] still needed to manually build exception character combin-

ations in languages.

Poutsma [2002] described methods to address one of the disadvantages of lan-

guage identification systems. He claimed that language identification systems needed

too much data to train models and could catch only a few language features. He

introduced a Monte Carlo sampling method to find which features appeared the

most in languages. Hence, language identification tasks could reduce the number of

samples required for training. He also used standard errors to check whether the

database was large enough. He compared the performance of n-gram and common

words techniques by applying Monte Carlo sampling and found that the n-gram’s
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results were much better than those of common words with less than 100 characters

of input.

Benedetto et al. [2002] introduced an interesting technique by compressing text

and measuring the Kolmogorov distance between pairs of texts in 10 official lan-

guages of the European Union. The Kolmogorov distance in this case, which is also

known as Kolmogorov complexity, is the shortest length of computing program that

produces as output the string. Based on this distance, he could build a phylogenetic-

like tree to show the relationships between languages. The advantage of his technique

is that the recogniser does not need to know the characters or n-gram information,

which means it can work much more efficiently than other n-gram-model-based sys-

tems.The detailed technique is described in Section 3.3. Cilibrasi and Vitányi [2005]

redid Benedetto’s tasks and also achieved good performance.

2.2.3 Language selection

Sibun and Reynar [1996] noted that almost all recognition systems were built on ten

or fewer languages due to lack of resources. Hughes et al. [2006] argued that one

significant issue existing in text language identification studies was the paucity of

data. Before Hughes et al. [2006], previous studies collected data from large numbers

of sources for specific projects that were often too specific to be applied to other

problems. The result was that research for a specified language might not have been

suitable for other languages.

In addition, Hughes et al. [2006] noted the problems of ‘open class language iden-

tification’, which is the question of whether classifiers can guess unknown languages.

2.2.4 Text encoding and input format

Since the invention of Morse code, there had been a question of how to best encode

text for machine translation.

The most common character coding used in modern techniques is the Unicode
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character set [Chopra et al., 2005], yet most language identification systems have

been designed to use the ASCII encoding [Sibun and Reynar, 1996].

Because ASCII (also Extended ASCII) coding is shorter than Unicode, it can

only accommodate western European language coding, which limits the language

selection. To fit the increasing requirement for a uniform code set, The Unicode

Consortium [2011] reports the invention of a new character coding set like ASCII,

but which could work for the whole world, called ‘Unicode’.

Since the rapid expansion of the multilingual internet, Unicode and 8-bit Unicode

Transformation Format (UTF-8) conventions later became the most popular website

characters.

Later on, in proposal 98− 18: Unicode Identification and Encoding in USMARC

records, [Aliprand, 2011] suggested the use of UTF-8, which is recognised as the

best current practice by the Internet Architecture Board. Unlike previous charac-

ter encodings that had strong relationships with a particular language, a Unicode

character is a 16-bit entity and thus able to display over 65, 000 characters. It is an

international charset that contains the most commonly used languages in the world.

Table 2.4 displays the languages that Unicode currently supports.

Table 2.4: Unicode 6.2 Character Code Charts [Unicode, 2013].

European Scripts Middle Eastern Scripts South Asian Scripts

Armenian Arabic Bengali and Assamese

Coptic Aramaic, Imperial Brahmi

Cypriot Syllabary Avestan Chakma

Cyrillic Carian Devanagari

Georgian Cuneiform Gujarati

Glagolitic Hebrew Gurmukhi

Gothic Lycian Kaithi

Greek Lydian Kannada

Latin Mandaic Kharoshthi
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Linear B Old South Arabian Lepcha

Ogham Pahlavi, Inscriptional Limbu

Old Italic Parthian, Inscriptional Malayalam

Phaistos Disc Phoenician Meetei Mayek

Runic Samaritan Ol Chiki

Shavian Syriac Oriya

Phonetic Symbols Central Asian Scripts Saurashtra

IPA Extensions Mongolian Sharada

Phonetic Extensions Old Turkic Sinhala

Modifier Tone Letters Phags-Pa Sora Sompeng

Spacing Modifier Letters Southeast Asian Scripts Syloti Nagri

Superscripts and

Subscripts

Balinese Takri

Combining Diacritics Batak Tamil

Combining Diacritical

Marks

Cham Telugu

Combining Half Marks Javanese Thaana

American Scripts Kayah Li Vedic Extensions

Cherokee Khmer Philippine Scripts

Deseret Lao Buhid

Unified Canadian

Aboriginal Syllabics

Myanmar Hanunoo

African Scripts New Tai Lue Tagalog

Bamum Rejang Tagbanwa

Egyptian Hieroglyphs Sundanese East Asian Scripts

Ethiopic Tai Le Bopomofo

Meroitic Tai Tham CJK Unified Ideographs

(Han)
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N’Ko Tai Viet CJK Compatibility

Ideographs
Osmanya Thai CJK Radicals / KangXi

Radicals
Tifinagh Other Hangul Jamo

Vai Alphabetic Presentation

Forms

Hangul Syllables

Halfwidth and Fullwidth

Forms

Hiragana

ASCII Characters Katakana

Kanbun

Lisu

Yi

When the Unicode project began, the ISO 10646 standard was also simultan-

eously started by the Joint Technical Committee 1 (JTC1) of the International

Organisation for Standardization (ISO) and the International Electrotechnical Com-

mission (IEC). Unlike the ISO 10646 standard, Unicode defines character properties

(script direction, punctuation, shaping, width, etc) and implementation rules. Both

the ISO and Unicode character repertoire and encoding are successfully and accep-

ted by HTML 4.0 Raggett et al. [1999], XML 1.0 Bray et al. [2008] and their later

versions, and they are also able to map to previous encodings, including ASCII,

easily.

As Unicode had 16bits code length, the Unicode Consortium realised they re-

quired double the space on disk rather than those coding sets that only need 8 bits.

Unicode solves this problem through its flexible variable length coding.

The method of flexible variable length coding of UTF-8, UTF-16, and UTF-

32 is a compressed stream of bytes, which means that space requirements will vary

alongside based on encoding form. The Unicode compression schemes vary according

to context with 10 encoding modes: single-byte mode, Unicode model, window,
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locking shift, non-locking shift, dynamically positioned window, static window, tag

byte, index byte and supplementary codespace [Wolf et al., 2000].

2.2.5 Length of text and evaluation methods

The final issue mentioned by Sibun and Reynar [1996] is a common one in ma-

chine learning - it is difficult to compare classifiers trained in different ways. Sibun

and Reynar [1996] proposed that there are two main factors could be taken into

consideration: length of training data and methodology complexity.

They reviewed a number of algorithms and found that, in almost all cases, the

longer the training data, the better the classifier. Furthermore, some methods were

very slow - is it reasonable to compare a slow, exhaustive method with a fast, effective

one?

[Hughes et al., 2006] suggested building a standard evaluation corpus so that a

variety of systems could be tested and compared to each other. She also noted the

importance of the effects of pre-processing, which were ignored or not mentioned in

most language identification research, although stemming, stop word removal, case

folding, and other kinds of normalisation usually improve the results.

2.3 ALID(Audio Language IDentification)

Audio language identification (ALID) is a computer system that enables the re-

cognition of a language based on its digitised speech signal [Zissman and Berkling,

2001]. As the world becomes more globalised, there is an increasing need to identify

and translate the spoken language but it is unlikely that this need can be met with

human exerts alone. ALID development could provide a faster and cheaper lan-

guage classification system. Usually, the ALID application automatically detects

the speaker’s language and switches to the right language system or links to human

interpreters. ALID would work well, particularly, when there is a large number of
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speakers and it is difficult to find enough experts for artificial language identification.

Figure 2.1: Basic language identification system procedure using MFCC features
[Ambikairajah et al., 2011]

Figure 2.1 shows a basic ALID system using MFCC features. Generally, an ALID

system can be separated into two processes: training and identification.

For the training stage, the system can be further divided into the front-end and

back-end sections. The front-end section works mainly on extracting features from

speech data; the back-end section builds models for language feature vectors.

Speech data in ALID refers usually to acoustic information. Because speech data

is too large to be analysed directly, features are used to summarise the data, so

feature extraction is essential for feature discrimination. Based on the principles of

phonetics, the features of languages can be utterance level, syntax level, morpho-

logy level, and others. Typical features in most ALID projects include Mel-frequency

cepstral coefficients (MFCCs), linear prediction coefficients (LPC), perceptual linear

prediction (PLP), learner prediction cepstral coefficient (LPCC), smart data com-

pression (SDC), etc. [Ambikairajah et al., 2011] (The definition of these features

will be explained in Section 2.3.1). However, all of the methods focus on extracting

speech features as much as possible while losing minimal information. Section 2.3.2
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discusses feature extraction in detail.

Having extracted feature vectors from the speech data, the back-end section

builds a model to describe the features for each language. During the identification

stage, the ALID system extracts an unknown language feature from the speech

data and builds up a language model for it. The ALID system then uses some

measurements to compare similarities between known and unknown language models

and identifies the languages based on maximum likelihood probability. For example,

if an unknown language is classified as 70% English and 30% Italian, the system

would recognise the unknown language as English.

2.3.1 Speech information

Based on the work of Ambikairajah et al. [2011], speech features for language iden-

tification could be roughly categorised as low and high level. Low-level features

contain acoustic, phonotactic and prosodic information. High-level features include

morphology, syntax and grammar information.

Although acoustic, phonotactic and prosodic features are all low level and could

be extracted directly from speech data, there are different levels of analysis of speech

production. The acoustic level is the initial production of the analysis of speech data

and is closest to the physics of the real speech data. To judge whether two acous-

tic level events are different, the instrumental acoustic analyser should be able to

provide evidence of the differences. Considering timing and quality, either two repe-

titions made by a single speaker but linguistically and paralinguistically identical,

or two utterances made by two different speakers would be thought of as different

at the acoustic level[Laver, 1994]. The timing and quality differences between the

utterances in a digital signal could be represented as differences along an ordinate

or amplitude of the waveform. In practice, phonotactic- and prosodic-level features

could be extracted from acoustic-level speech data through MFCC, LP, PLP, LPCC,

acceleration cepstrum and SDC [Ambikairajah et al., 2011].
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As a branch of phonology, the phonotactic level concerns the constraints in syl-

lable structure and phonological distribution of consonant and vowel. Different

languages would have unique consonants and vowels and an individual consonant or

an individual vowel could occur in different positions phonologically. The example

given by Laver [1994] is the word ‘zloty’, which cannot be recognised as English

because the position of the consonants /zl/ never appears as a bigram.

The prosodic level is related to articulation, phonation and overall muscular ten-

sion factors [Laver, 1994]. The main prosodic areas that are studied by ALID are

tone, stress, duration and rhythm [Ambikairajah et al., 2011].

As we described in Section 2.2, lexical morphology and syntactic structure are

high-level features concentrating on the language structure itself. Based on invest-

igating the internal structures of words, lexical morphology also includes describing

how many similarities there are between words such as happy and happiness. It is

not difficult to recognise words in different languages because the word components,

such as the root, the prefix and the suffix (collectively known as affixes), are always

different in each language. Additionally, different languages also have their unique

word dictionaries and ways to form words.

The syntactic level is more concerned with the words used in languages. For

example, most spoken languages have their unique word vocabularies that could

be used in ALID. In ALID, the most used word-level features are morphology and

syntax, which have been discussed in Section 2.2.

In conclusion, low-level features are easier to obtain compared to high-level fea-

tures, while high-level features might be able to extract more language-discriminative

information. However, high-level feature extraction spends more time analysing

large datasets and finding lexical and syntactic rules between phrase, clauses, and

sentences.
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Acoustic: MFCC, PLP, SDC, etc

Phonotactic: n-Gram LM

Prosodic: Duration, Pitch, Stress

Lexical: Word

Syntactic: Word n-Gram High-Level
  Feature

Low-Level
 Feature

Figure 2.2: Basic language identification system procedure [Ambikairajah et al.,
2011].

2.3.2 Feature extraction

In Figure 2.2, acoustic features are the lowest and most simple level. Speech events

at this level can be distinguished through the amplitude and frequency components

of waveforms. Acoustic features normally include Mel frequency cepstral coefficient

(MFCCs), linear prediction coefficients (LPCs), perceptual linear prediction (PLP),

and linear prediction cepstral coefficient (LPCCs). Sometimes, these features are

augmented with additional information such as delta and acceleration cepstrum and

smart data compression (SDC) [Ambikairajah et al., 2011].

The phonotactic feature sets rules for the sequence of admissible sound patterns.

Obviously, not all phonemes appear in all languages, which means it is possible to

identify a language by its phonotactic features. For example, the sequence \zl-\does

not appear in native English pronunciation so zloty cannot be a native English word.

Thus, a speech containing zloty could never be identified as English. Tong et al.

[2006] support the use of phonotactic features since they might have a better per-

formance than acoustic features and are less complex than other high-level features.

One phonotactic feature analyser suggested by Ambikairajah et al. [2011] is the N -

gram language model. The technical details of the N -gram model will be discussed

in Section 3.2.1.1.
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Prosodic features are not encoded by grammar, and generally have not been

handled fully in LID [Tong et al., 2006]. Current ALID prosodic features include

duration, pitch, rhythm and stress of language. To present features in quantitative

digital signal format, the tone is explained as the pitch or fundamental frequency,

stress is defined as intensity and rhythm as a duration sequence. Prosodic features

would be of help in identifying tonal languages such as Mandarin, Thai or Viet-

namese, or language with stresses such as English, French and Spanish. Moreover,

prosodic features are identical in emotional information such as rising tones [Am-

bikairajah et al., 2011].

Syntax features specify the rules of forming phrases, clauses and sentences. Gram-

mar is one of the typical sentence-generation rules. Note that the same word might

exist in different languages but once put into context, it would be much easier to

determine to which language it belongs [Zissman, 1996].

2.3.3 Recognition approaches
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Figure 2.3: ALID system processing detail [Ambikairajah et al., 2011]
.

An ALID system normally consists of two components: training processing and

identification processing. By training on acoustic-level features, an ALID front-

end system builds one or more compact and representative models, which describe
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language-dependent, fundamental speech properties [Zissman, 1996].

In Figure 2.3, the front-end system contains four steps: data pre-processing, fea-

ture extraction, appended features and feature normalisation [Ambikairajah et al.,

2011].

The pre-processing steps include voice activity detection, windowing and pre-

emphasis. Voice activity detection detects signal existence and eliminates extraneous

information from the signal. Windowing, sometimes called apodisation and tapering,

sets a zero value on a junk interval. Pre-emphasis techniques refer to frequency

selective amplification to improve part of the magnitude in order to enlarge the

overall signal-to-noise ratio. Pre-processing can also analyse the data to check that

it is useful for training - a phase known as data validation.

The feature extraction step parameterises the signal into numerical vectors and

provides much of the most useful data for distinguishing languages.

Appended features, commonly used, such as delta features and smart data com-

pression (SDC), are added into the feature vectors. A previous study by Bielefeld

[1994] suggests that appending SDC features could improve ALID system perform-

ance.

The final step, feature normalisation, involves adjusting the trained models and

improving the robustness by reducing noise and channel mismatch.

Zissman [1996] compared four commonly used approaches for ALID speech utter-

ance systems: Gaussian mixture model (GMM) classification; single-language phone

recognition followed by language-dependent and interpolated n-gram language mod-

elling (PRLM); parallel PRLM (PPRLM), and language-dependent parallel phone

recognition (PPR).

The GMM method is based on the assumption that different languages have

different sounds and frequencies [Zissman, 1996]. The GMM function (2.1) is a

parametric representation of a probability density function, based on a weighted

sum of Gaussian densities of specified mean and variance [Gold et al., 2011].
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p(~vt|λ) =
N∑
k=1

pkbk(~vt;λ). (2.1)

where λ is the set of model parameters

λ = {~µ,Σk}. (2.2)

k is the mixture index (1 ≤ k ≤ N), pk are the mixture weights and
∑N

k=1 pk = 1

and bk are the Gaussian densities function defined by means ~µ and variance Σk.

In Zissman [1996], the maximisation of likelihood to determine the optimal para-

meters was performed via multiple iterations of the estimate-maximise (E-M) al-

gorithm, as in [Dempster et al., 1977] and [Baum, 1972].

GMMs are computationally efficient compared to the other three systems and

do not require orthographically or phonetically transcribed speech data. However,

GMMs perform worse than single-language phone recognition followed by language-

dependent and interpolated n-gram language modelling (PRLM), PPRLM, and

language-dependent PPR [Zissman, 1996].

Acoustic
Preprocessing

Single Language
Phone Recognition

Language A
N-gram Model

Phone
Sequence

Language B
Likelihood

Language A
Likelihood

Speech

Language B
N-gram Model

Figure 2.4: PRLM system processing detail [Zissman, 1996]
.

A single-language phone recognition followed by language-dependent and inter-

polated n-gram language modelling (PRLM) procedure is shown in Figure 2.4. It

applies a single model combined with n-gram features that are labelled depending

on a single-language recogniser output rather than human-supplied orthographic or

phonetic features. In testing, speech is tokenised and, based on its symbol sequence
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likelihood of each language, its highest likelihood is identified via the corresponding

n-gram model.

Since PRLM is not a language-dependent system, in some cases, it can be trained

on any language without a transcript or other high levels of information. The recog-

niser built by Zissman [1996] applied the hidden Markov model and the probability

density modelled by a GMM counts the occurrence of n-gram symbols (usually,

symbols mean phones). [Zissman, 1996]’s testing also found that there was only a

small advantage to using n > 2 models.
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Figure 2.5: PPRLM system processing detail [Zissman, 1996]
.

Zissman [1996] defined parallel PRLM (PPRLM) as an improvement of PRLM.

Since the sounds that are unique in a language might not always occur in speech,

especially when a short time of identification is required, it is better to train multiple

language recognition models in the same system.

Figure 2.5 shows an example of a PPRLM system. First, unique models for target

languages are built in each language front-end system. Then, the PPRLM system

calculates the highest likelihood overall and obtains the hypothesised language. Al-

though both PRLM and PPRLM system performance is better than a GMM system,

the number of training language limitations remains a concern. The more languages

trained, the more time required for training models and identification.

PPR runs a single-language phone recognition in parallel, and, like PRLM but
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Figure 2.6: PPR system processing detail [Zissman, 1996]
.

instead of HMM, its inter-phone transition between phone i and j is

aij = s log
∼
P (j|i) (2.3)

where s is the grammar scale factor, and P are the bigram probabilities derived from

training speech labels. He also points out that PPR differs from PRLM, as PPR

recognises phones by using the 100 most commonly used right context-dependent

phones in addition to monophonic.

2.3.4 Normalisation

It is certain that noise will affect language identification performance. Normally,

noise refers to environmental and mechanical noise. Environmental noise might be

caused by other talkers, music or other factors, and mechanism noise might arise

because of microphone quality and bad noise reduction techniques. In addition, the

different volume of noise across records also has an impact on recognition results.

Other factors that could contribute to unreliable recognition results, such as short-

term channel distortions, speaker variations and other forms of interference, are

proposed by De La Torre et al. [2002].

Normally, language recognition systems require data pre-processing before train-

ing and testing models. Normalisation techniques are necessary for any front-end

language recognition system. The reduction of noise effects without the loss of in-
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formation on acoustic characteristics is a desirable outcome for language recognition

systems [De La Torre et al., 2002].

Some of the common normalisations are shown in Table 2.5.

Table 2.5: Review of normalisation techniques [Ambikairajah et al., 2011] .

Techniques Citation
CMN(Cepstral Mean Normalisation) [Atal, 1976]
Feature Warping [Pelecanos and Sridharan, 2001]

De La Torre et al. [2002] assert that the main impact of noise is that it shifts the

mean of the probability distributions of the features.

Cepstral mean subtraction (CMN) was introduced by [Atal, 1976]. Cepstral

mean and variance (CMVN) normalisation for mismatching means of the probability

distributions of the features, has become a standard method and is widely applied

in ALID systems for its simplicity.

Current ALID systems use Mel frequency cepstral coefficients (MFCCs) as fea-

tures. MFCCs are derived from speech waveforms by a log filterbank, which means

that non-linear transformation caused by additive noise also exists in MFCCs [De La Torre

et al., 2002]. Since CMN is not good at dealing with the non-linear distortion effects

on the cepstral coefficients, [De La Torre et al., 2002] suggests adding the histogram

equalization (HEQ) technique to improve the transformation quality.

Feature warping is a linear normalisation method. To deal with additive noise

and mismatched channel environments, Pelecanos and Sridharan [2001] recommend

filtering noise through a channel, which known as feature warping. It constructs a

more robust speech feature distribution by transforming individual cepstral feature

streams.

2.3.5 Current problems

There are a number of identified problems with multi-lingual speech identification.

1. The limited amount of multi-lingual speech data available for training the
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automatic LID system. Researchers may not want to share their data for

security or financial reasons, among others. Systems trained and tested on

different datasets are not comparable. In addition, other researchers collect

their own data, then this is a wasted effort to compare with other researches

by using different datasets.

2. The limited number of languages that the current systems are able to identify

(typically 10-15 out of about 6,900 ‘living’ languages). Unless there are large

amounts of speakers available, it is difficult and expensive to collect small

languages and build a large data corpus for them. Therefore, most current

studies focus only on certain high-frequency languages such as English, Arabic,

French, Russian, Mandarin, etc. See Table 2.1.

3. The currently limited incorporation of different dialects within the same lan-

guage also make speech recognition difficult to realise. Although we use norm-

alisation to minimise the differences between independent speakers, we cannot

remove the dialect impact from the speech data.

4. Another significant deficiency in most current systems is that they perform

well on 30- or 45-second samples but relatively poorly on shorter 3−10-second

samples. In an emergency situation (such as a call to an emergency number),

a shorter identification time is essential.

2.4 VLID (Visual language IDentification)

Compared to TLID and ALID, VLID is new and so has received less attention.

Sumby and Pollack [1954] concluded that visual information contributed to speech

intelligibility. Due to technology limitations, their work was mainly focused on hu-

mans rather than machines. However, their conclusions indicated that visual inform-

ation was promising at low speech-to-noise ratios and the relative visual information

extracted from speakers’ facial and lip movements was not related to speech-to-noise
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ratio. Sumby suggested that visual information would work in many practical situ-

ations such as those encountered in military or industrial applications. Starner [1995]

mentioned VLID as a good way to identify sign language that does not have any

speech information. It might also be helpful in situations such as noisy environments

when the talker is distant from the microphone.

2.4.1 VLID models

Petajan built the first audio-visual speech recognition in 1984 [Matthews, 1998].

This system illustrated that visual recognition improved the recognition accuracy

on digits, letters and some small vocabulary tests. Later on, Petajan’s improved

system introduced the vector quantisation of the mouth images and dynamic time

warping to better align with utterances for template matching.

2.4.2 Visual feature extraction models

Table 2.6: Historic review of feature extraction techniques

Year Technique Citation
1974 DCT(Discrete Cosine Transform) [Ahmed et al., 1974]
1984 Eigenlips [Bregler and Konig, 2002]
1987 Snake [Kass et al., 1988]
1995 ASM(Active Shape Model) [Cootes et al., 1994]
1998 AAM(Active Appearance Model) [Cootes et al., 2001a]
1998 MSA(Multiscale Spatial Analysis) [Matthews et al., 1998]

The original lip-reading systems were based on a low-level analysis of images

such as the discrete cosine transform (DCT) but later works attempted to capture

shape explicitly. Kass et al. [1988] first attempted ‘snakes’ to fit an elastic contour

to greyscale contours. Unfortunately, the greyscale gradient from the lips and face

display results proved to be too weak to train a snake [Cetingul et al., 2006].

The AAM aims to solve the boundary definition problem. So far, as Matthews

proposed in 1998, attached AAM is generally regarded as the most effective method

for tracking and feature extraction in the lip area[Newman, 2011].



CHAPTER 2. LITERATURE REVIEW 28

Table 2.6 shows the history of techniques used for feature extraction. There are

six types of model: discrete cosine transform (DCT), Eigenlips, AAM, ASM and

multiscale spatial analysis (MSA), which are in common use today.

The DCT can provide very efficient compressive information in the fewest coef-

ficients. However, the disadvantage of the 2D DCT is that it is very sensitive to

changes in illumination when used for feature extraction [Aguilar-Torres et al., 2009].

Eigenlips was proposed by Turk and Pentland [1991] for facial recognition pur-

poses. It is a machine learning method and is able to work under variable conditions

since it sets up parameters to define the spatial shifting, rotation and scaling, and

also captures the lighting.

MSA is a low-level, pixel-based method that does not relate to the absolute

amplitude or the positions of images, so, again, it is a very fast and robust method

of feature extraction [Matthews et al., 2002, 1998].

ASM is another high-level, model-based method for lip-reading feature extraction

from image sequences. Matthews et al. [1998] argued that it compactly describes

the shape of the lips with several contours, and is able to display the lips’ movement

in detail.

AAM is an improvement on ASM since the shape-only analysis is insufficient for

facial recognition. Both AAM and ASM use a (top-down) model but AAM also uses

appearance alongside shape models [Matthews et al., 2002]. The other significant

advantage of AAM is that it can also fit the emotions the speakers show [Cootes

et al., 2001a].

Although AAM and ASM are popular in current studies, the concern over com-

puting efficiency still exists. Both precompute several images as samples and use

them to work out the result by updating an iterative matching algorithm. This pro-

cedure, which transfers from high-dimension pixels to low-dimension computational

metrics, can be moderately expensive.



CHAPTER 2. LITERATURE REVIEW 29

2.5 Current problem

Both language typologies are widely accepted; however, this makes it difficult for

computational language classification to find a background truth for comparison.

Although the language tree gives the differences between languages, it does not tell

us the distances between two languages. For example, in Figure 2.7, is Catalan

further from Spanish than Portuguese? We also cannot tell how far English is

from Chinese because there is no distance definition between Indo-Hittite and Sino-

Tibetan. What is more, the linguistic language is more text based than audio

and video, so is the linguistic language tree reliable for audio and video language

identification?

One of our tasks is to try to build up language trees based on text, audio and

video and compare them with the linguistic language tree. Since we have chosen the

linguistic language tree as the background truth, we will find the differences between

the trees using the Robinson-Foulds tree distance measurement.

2.5.1 Linguistic language tree classification

For human languages, linguistics concludes that there are two kinds of language clas-

sification that are most helpful for researchers. One is the classification of languages

by typology and the other is what has been called genetic classification.

Typology classification concentrates on the structure of languages as phonolo-

gical and grammatical complexity similarities. Examples of these similarities might

be the number and kinds of vowels and the order of sentences. Although the ty-

pology classification could explain the relationship between languages, it is not a

perfect method because the grammar derivations between languages are not fully

understood. There is no guarantee that the inadequate information in phonology

and grammar would not impact on the classification [Voegelin and Voegelin, 1977].

Genetic classification divides languages by generations. Like typology classifica-

tion, genetic classification takes the grammatical and phonological similarities into
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consideration, not only introducing the original languages from which other lan-

guages are descended but also considering the historical background relationships.

Genetic classification is widely accepted by linguists. The concept of the ‘language

tree’ was introduced into classification to represent the generations and closeness

between languages. Figure 2.7 describes the genetic classification of the main Indo-

Hittite languages. Each language has its own historical origins and links to other

languages by their common origins. Figure 2.8 shows other language trees for lan-

guages we are going to use in our project [Ruhlen, 1991].
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Figure 2.7: Language tree of European family
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Ruhlen [1991] gives two definitions of genetic language classification. One is that

all relevant languages should be categorised into one subclass and the other is that

the languages in one subclass should be related more to each other than to languages

outside the class. In Figure 2.7, it is clear that Portuguese, Spanish, Catalan, French

and Italian are under the Latin class and are more related than other languages such

as Japanese, Arabic, Chinese and so on.

2.5.2 IPA (International Phonetic Alphabet)

The IPA (International Phonetic Alphabet) aims to find a consistent method to

represent the sounds of language and display them mainly by the Roman alphabet.

It is widely used in dictionaries and acoustic annotation. The International Phonetic

Association claims that the IPA is comprehensive enough to understand nearly all

sounds in all languages in the world [Association et al., 1999]. IPA contains 107

letters, 52 diacritics and 4 prosodic marks. Table 2.7 shows the IPA chart which

includes the basic IPA letters.
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2.6 Current datasets

2.6.1 Text datasets

Our text data is based on the Universal Declaration of Human Rights (UNDHR).

The UNDHR is provided by the United Nations General Assembly and freely avail-

able on the official website. It contains about 500 translations that are interpreted1.

We use 255 text language scripts into our n−gram experiment. The list of text

language datasets is in Appendix A. Table A.1 shows a list of all used languages

with their codes for the representation of names of languages by ISO 639-2, ISO

639-3 and ISO 639-6 codes.

2.6.2 Audio datasets

For audio, we use the audio version of the UNDHR corpus. It is an open online

resource provided by LibriVox and all records are uploaded by volunteers. Each

record lasts more than ten minutes and is read by one female speaker. The audio

is recorded using a 16-bit signal sampled at 22.050 kHz. Table 2.8 shows the list of

languages that the LibriVox dataset provides2.

Table 2.8: LibriVox datasets.

Arabic Portuguese Cantonese Czech English Farsi
German Hindi Hungarian Indonesian Italian Japanese
Korean Mandarin Polish Russian Spanish Swahili
Swedish Tamil Vietnamese

According to Figure 2.7 and Figure 2.8, we can find the Portuguese and Spanish

are under the same sub-tree, Czech and Polish are under the same sub-tree and

Japanese and Korean are under the same sub-tree. It means these three pairs

of languages are linguistically closed to each other and can be used as criteria to

evaluate our language distances results.
1http://www.ohchr.org/EN/UDHR/Pages/SearchByLang.aspx.
2https://librivox.org/the-universal-declaration-of-human-rights-by-the-united-nations/
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The other dataset we use is Dr. Jacob Newman’s dataset which is created in

2011 and contains three languages: English, Mandarin and Arabic. Unlike the

LibirVox only has one speaker for each language, Jake collects multi-speaker for

each language. The English dataset contains 24 speakers with 20 male speaker and

4 female speakers. The Arabic dataset has 9 speakers with 7 male speakers and 2

female speakers. The Mandarin dataset has 22 speakers with 9 male speakers and

13 female speakers. The audio files are recorded by 16-bit signal sampled at 22.050

kHz.

2.6.3 Video datasets

For the video datasets, we still want to compare to text and audio datasets. The

video version of the UNDHR dataset was collected by Dr. Jacob Newman in 2011.

It contains three languages: English, Arabic and Mandarin. These three languages

are very different from each other. The speakers are recorded via high-definition

video of the mouth region. Figures 2.9, 2.10 and 2.11 show some examples of the

video images. Figure 2.9 shows Arabic speakers, 2.10 are Arabic speakers and 2.11

are Mandarin speakers. They were all recorded with 1920× 1080 screen resolution,

48 KHz, stereo and 60 frames per second. The features of the videos are extracted

by AAMs.

Figure 2.9: Arabic speaker examples that were recorded by video and only taken for
mouth area movement.

Figure 2.10: English speaker examples that were recorded by video and only taken
for mouth area movement.
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Figure 2.11: Mandarin speaker examples that were recorded by video and only taken
for mouth area movement.



Chapter 3

TLID (Text Language IDentification)

results

3.1 Introduction

TLID is a mature field of research and is in routine use in high-traffic applica-

tions such as Google Translate. We describe two TLID techniques to evaluate their

identification performance. We first use Benedetto et al. [2002]’s zipping language

distances and then we compare the zipping results with an improved n-gram model

that is based on the frequency idea of Cavnar and Trenkle [1994].

In this chapter, we will discuss the TLID procedures for zipping and n-gram

modelling. For both the training and testing stages, we used scripts from the United

Nations’ Declaration of Human Rights and all scripts were encoded as Unicode. For

the zipping method, we used the 17 languages are shown in Table 3.1.

Table 3.1: Languages used for Benedetto et al. [2002]’s zipping methods.

Vietnamese Arabic Chinese Czech English German
Hungarian Indonesian Italian Japanese Korean Polish
Portuguese Russian Spanish Swahili Swedish

For the n-gram frequency model of Cavnar and Trenkle [1994], we applied all text

38
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languages described in Section A.1. One of the advantages of the n-gram frequency

model is that it only compares the highest-frequency grams and can quickly generate

a language distance matrix.

3.2 Cavnar and Trenkle’s N-gram model

3.2.1 Methods

Notwithstanding the recent interest in classification via zipping, the fact remains

that the current state-of-art is Cavnar and Trenkle [1994]’s method, as previously

explained in Section 3.2.1.1. To compare two languages, we rank all possible n-grams

by their frequency and compare the difference between the two n-gram lists. For

example, ‘a’ is ranked first in language A but ranked 10-th in language B, then the

n-gram difference would be 10 between language A and B. If an n-gram is not in

one of the languages, we set up a maximum penalty, which is conventionally chosen

as 400.

We also use 10-fold cross-validation in this task. For the 17 language scripts, each

language script is split into 10 parts. 9 parts are used for training the n-gram model

and a single-fold script is used for identification. We then calculate the identification

accuracy for each language and this step is repeated 10 times.

To examine the order of n-grams suitable for TLID, we introduce unigrams,

bigrams, trigrams, quadgrams and five-grams in our task. Figure 3.1 shows the

steps for implementing Cavnar and Trenkle [1994]’s N -gram model.

The dataset we used in this section was the UNDHR text dataset, which contains

254 languages; these are all available on the website1. Table A.1 in Appendix A

shows a list of all languages used, with their codes for the representation of names

of languages according to ISO 639-2, ISO 639-3 and ISO 639-6 codes.
1http://www.ohchr.org/EN/UDHR/Pages/SearchByLang.aspx
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Figure 3.1: Cavnar and Trenkle [1994]’s n-gram frequency model for UNDHR data-
set provided by librivox.

3.2.1.1 N-gram

In most automatic language processing applications, we will find the testing sen-

tences have never been heard before. The n-gram model is a widely used method to

solve this problem by predicting probabilities p [Manning and Schütze, 1999]:

p(wn|w1, ..., wn−1) = p(w1)p(w2|w1)...p(wn|wn−1), (3.1)

which means the probability of gram wn is based on the previous n− 1 grams. So,

after learning a lot of text, the model know which characters tend to follow other

characters. Considering efficiency and accuracy, the n-gram model usually limits

n = 1, 2, 3, 4, (or the unigram, bigram, trigram and four-gram model [Manning and

Schütze, 1999]).

For the n-gram model, it is not necessary to divide sentences into words. Other

features such as characters and phonemes could also be used in TLID.

The N -gram model used by Cavnar and Trenkle [1994] represented Zipf’s Law,

implying that a language could be identified by a set of high frequency words. The

zipf’s Law says that if the n-grams are list in order by the frequency of occurrence,

for each n-gram, the frequency of occurrence is proportional to its position in the

list [Zipf, 1949]. Cavnar and Trenkle [1994] used multi-length n-gram models simul-

taneously and also included blanks to the beginning and ending of the strings. For

example, the word “GRAM” would be constructed by n-grams shown in table 3.2:
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Table 3.2: n-gram construction for word “GRAM”.

uni-gram: _, G, R, A, M
bi-grams: _G, GR, RA, AM, M_
tri-grams: _GR, GRA, RAM, AM_, M__
quad-grams: _GRA, GRAM, RAM_, AM__, M___

Figure 3.2: N -gram based language identification

Figure 3.2 shows the process of n-gram based language identification. Cavnar and

Trenkle’s n-gram model system first introduces a set of language files. Those files

are then tokenized into single words, characters or phonemes from which we could

construct n-grams. After generating n-grams and sorting them from high frequency

to low frequency for each sample language, the system repeats the same steps for

the unknown language U . The unknown language is classified as language i such

that i = avgmin(dist) when dist is the distance between the n-gram of language U

and the n-gram of languages.

The distance measurement used in Cavnar and Trenkle [1994] is the “out-of-

place” rank-order statistic. For example, the bigram “pre” is at rank 5 in the sample

language k while it is at rank 3 in the unknown language U , then the “out-of-place”

value between language k and U is 2. If there are some n-grams found in neither

of the languages, then the system uses a predefined maximum “out-of-place” value.

The distance between two n-gram sequences is then the sum of the “out-of-place”

scores with all n-grams. We used “penalty” for short in this thesis.

Since Cavnar and Trenkle’s n-gram model sorts n-grams from high frequency to
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low frequency, it does not need to worry about the specific frequency thresholds or

the distributions at a specific range of values. Such an n-gram system has proven

to provide a high accuracy language identification solution by simply collecting a

representative set of samples and building up a training and testing system.

3.2.1.2 Histogram distribution and quantisation

A histogram represents the distribution of a set of univariate data. The range

of the data is divided in each bin. Histograms calculates the occurrences of data

into bins. The bin counts and column size can be viewed as a density estimate of

data distribution [Sircombe, 2000]. The histogram also represents the underlying

probability density distribution which the absolutely continuous probability density

function p(x) for given function f(x) which x in limit [a, b] is shown in Equation 3.2

[Parzen, 1962]

p(x) =

∫ v

a

f(x)dx (3.2)

We use the Shannon [2001]’s entropy h to measure the uncertainty of the probability

density function p(x) which is

h = −
M∑
i=1

p(x)i log2p(x), i ∈ (1...M) (3.3)

The p is previously described as the probability density function. A large value

of entropy h means the distribution of histogram is smooth and the small entropy

h means the distribution is spiky. Since we want to get the distances between

languages, it is important that the distances can be vary as much as possible, which

means we need a large entropy for our tasks. One issues is how to define those

intervals when they are not pre-defined, in the other word, histogram quantisation.

One of the earliest guidelines of histogram quantisation was proposed by Sturges
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[1926] in which the bin width, w, is proposed as:

w =
∆

1 + log2n
, (3.4)

where n is the number of points in the dataset and ∆ is the range of the data.

However, Scott [1979] claimed that Sturges [1926]’s work tends to over-smooth as w

is going to be small when applied to large dataset.

w = 3.49σn
−1
3 , (3.5)

Alternatively, Freedman and Diaconis [1981] used the interquartile range r of the

data n for width quantisation. They claim this method is less sensitive to outliers:

w = 2
r
3
√
n
, (3.6)

Since we have 254 languages the in text language identification database and outliers

are not especially problematic, we are going to use Scott [1979]’s equation 3.5 to

measure the bin width.

In this thesis, we compare the language distances between different n-grams and

penalties. It is inappropriate to define a unique w value for all distances matrices.

So, in order to compare the distance distribution by the same axis value, we use the

bin width ∆ = w/σ instead of w, where σ is the standard deviation of the histogram.

It means the distance shown in the diagram is d/σ, where d is the distance between

languages. Thus, the entropy of histograms can be compared by the same bin width

in all cases (otherwise the bin width of histogram can be vary in each experiment).

This also avoids the problem that entropy 3.3 can also be sensitive to bin width.

3.2.1.3 Cross validation

To evaluate how well a particular model works, the model needs to be tested on a

new dataset which has not been seen before. In order to use the dataset efficiently,
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the cross-validation method uses each part of the training dataset for the testing.

In our case, we use the 10-fold cross validation. Figure 3.3 describes the 10-fold

cross-validation process. We split the dataset D (text in this section but can also
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Figure 3.3: Cross validation process.
.

be audio or video) into 10 parts which are {D1, D2, D3, D4, D5, D6, D7, D8, D9, D10}

and we alternately “hold-out” one of the subsets for testing. For test segmentation,

we have decided whether to split the main dataset at character boundaries, word

boundaries, sentence boundaries or something larger. All of the methods need an

accurate measurement of character n-grams. So, while splits of character boundaries,

allowing for near-equal size subsets, they will introduce character n-gram errors.

Sentence-level segmentation reduces the character n-gram errors but leads to the

subset size potentially varying by the difference in sentence lengths. For this reason,

in this work, we have chosen to split at word boundaries.

3.2.2 Phylogenetic tree clustering

Benedetto et al. [2002] first proposes a new language identification method. They

state that, instead of obtaining very precise meanings of strings, language identific-
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ation techniques are concerned more about the difference between languages. His

idea is not only available in language phylogenetics but also works for other areas

such as authorship attribution, music classification, image identification and optical

character recognition. They assume that the distances between compressed pairs of

sequences are related to the real semantic differences of the sequences.

This idea is initially from Kolmogorov complexity method which is originally used

for analysing the shortest length of program for computing a given task. The main

idea of Kolmogorov complexity is that, when there is a task to compute a string a,

the shortest length of this program is k(a). Suppose computing string a when string

b is appended into the program, the Kolmogorov complexity could be presented as

k(a|b) and the distance d(a, b) between the string a and the string b is defined by

equation 3.7.

dab =
k(a|b) + k(b|a)

k(ab)
(3.7)

Benedetto et al. [2002] uses a function so called the relative entropy to evaluate

the differences between the languages A and the language B by compressing the

string a from the language A and the string b from the language B. Equation 3.8

shows the distances SAB which is the so called relative entropy by Benedetto et al.

[2002]. as is a substring of a and bs is a substring of b. ∆abs = L(abs) − L(a)

which L(a) means the length in bits of the zipped string a.

SAB =
∆abs −∆bbs

| b |
, (3.8)

According to Benedetto et al. [2002]’s theory, it is possible to use an evolution

tree to describe the relationships between the languages by zipping. Thus we applied

the phylogenetic tree clustering to evaluate the results.

As a kind of hierarchy clustering, which tries to build a hierarchy of clusters, the

phylogenetic tree computes the distances between clusters and nodes: the complete-

linkage clustering, the single-linkage clustering and the average-linkage clustering.



CHAPTER 3. TLID (TEXT LANGUAGE IDENTIFICATION) RESULTS 46

The complete-linkage clustering merges two clusters with the smallest maximum

pairwise distances, the single-linkage clustering merges two clusters with the smallest

minimum pairwise distances and the average-linkage clustering merges two clusters

with the smallest average pairwise distances. The complete-linkage clustering is

more sensitive to the outlier while the single-linkage clustering might cause a long

chain of clusters. The average-linkage clustering is the compromise of these two

clustering[Tsvetovat and Kouznetsov, 2011]. Figure 3.4 shows examples which is
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(c) Average-linkage clustering

Figure 3.4: Diagrams display the differences between complete-linkage clustering,
single-linkage clustering and average-linkage clustering. Figure 3.4(a) shows the tree
structure built by complete-linkage clustering, Figure 3.4(b) shows the tree structure
built by single-linkage clustering and Figure 3.4(c) shows the tree structure built by
average-linkage clustering.

displayed by tree structures and the tree structures are built by complete-linkage

clustering, single-linkage clustering and average-linkage clustering. Figure 3.4(a)
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shows the tree structure built by complete-linkage clustering, Figure 3.4(b) shows

the tree structure built by single-linkage clustering and Figure 3.4(c) shows the tree

structure built by average-linkage clustering. According to the linguistic language

tree which is previously described in Figure 2.7, it is obvious that the complete-

linkage clustering shows more language structures and performs a better grouping

because all Indo-Hittite languages are grouped under one subtree. Thus, we use

complete-linkage clustering instead of the other two.

3.2.2.1 Hypothesis Test

To evaluate whether the language distance distributions are significantly different,

we need to use the hypothesis test. By using the hypothesis test, we can understand

whether these differences occur more often than chance. The hypothesis test uses

a null hypothesis H0 which means there is no significant difference between two

samples. The probability p value shows that the result is possible to occur if H0

were true. The null hypothesis of H0 will be rejected if p is lower than the significant

level of p < 0.05, 0.01, 0.005 or 0.001 [Manning and Schütze, 1999].

The t-test is one of the most common hypothesis tests which looks at the mean

of two independent normal populations. The equation of calculating the value of

the t-test is shown in Equation 3.9.

t =
x1 − x2√
S2
1

n1
+

S2
2

n2

(3.9)

which x1 is the mean of the first data set and x1 is the mean of the second data set.

S1 is the sample variance of the first data set and S2 is the sample variance of the

second data set. n1 is the sample size of the first data set and n2 is the sample size

of the second data set. Thus, the null hypothesis H0 is the mean of the two data

set are equal and the alternative hypothesis Ha is the mean of the two data set are

not equal.
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3.2.3 Results

In this section, we use histograms to display language distance variation. The

method used for determining bin width for histogram is previously detailed in Sec-

tion 3.2.1.2. The distances are calculated via Cavnar and Trenkle [1994]’s n-gram

model with 10-fold cross validation which was previously explained in Section 3.2.1.3.

This task uses the UNDHR dataset which is listed in appendix A. The predefined

maximum “out-of-place” value, which we called “penalty” here has a default value

of 400 by Cavnar and Trenkle [1994]. Note here we are going to vary the default

penalty parameter of 400 later.

Table 3.3: Entropy(top) and accuracy(bottom) values with histogram binwidth =
0.13.

Entropy
Penalty value 1 5 10 50 100 400 500 1000
Gram=1 4.70 4.41 4.31 3.93 3.90 3.89 3.90 3.89
Gram=2 4.61 4.71 4.85 4.99 4.84 4.73 4.72 4.71
Gram=3 4.38 4.38 4.37 4.50 4.33 4.34 4.33 4.34
Gram=4 4.44 4.45 4.44 4.60 4.34 4.32 4.29 4.33
Gram=5 4.44 4.43 4.46 4.67 4.41 4.30 4.30 4.24

Accuracy value
Gram=1 0.04 0.62 0.77 0.79 0.74 0.65 0.65 0.65
Gram=2 0.00 0.00 0.00 0.42 0.62 0.82 0.82 0.84
Gram=3 0.00 0.00 0.00 0.06 1.00 1.00 1.00 1.00
Gram=4 0.00 0.00 0.00 0.03 0.99 1.00 1.00 1.00
Gram=5 0.00 0.00 0.00 0.02 0.98 1.00 1.00 1.00

Table 3.3 shows the recognition accuracy and entropy of uni-gram, bi-gram, tri-

gram, quad-gram, five-gram results with different bin widths. To compare histo-

grams with different penalties and n-grams, we test the same bin width for all

language distances. Those bin widths are all calculated by function 3.5. And also,

to compare the histogram distributions and entropies for all pairs of n-grams and

penalties, it is necessary to use the same bin width and counts the number of occur-

rences. According to Scott [1979] which is explained in Section 3.2.1.2, the optimal

bin width for this task is 0.13.

Figure 3.5 shows examples of histogram distributions with the maximum and
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minimum entropy. According to Section 3.2.1.2, the fixed x-axis value is 3.49n
−1
3

by using the same bin width w = 0.13. Figure 3.5 shows, the x-axis, the distance

values of histogram d is divided by the standard deviation σ (d/σ). The y-axis

shows the probability density in each bin for Cavnar and Trenkle [1994]’s distances.

The probability density pdi = hi
n

which hi is the count in the i-th bin and n is

the size of language distance matrix (the total count). The yellow curve shows the

histogram distribution of the lowest entropy in TLID n-gram results and the blue

curve shows the histogram distribution of the highest entropy. The lowest entropy

has a spiky distribution and the highest entropy has a smooth distribution. By

testing the probability of the null hypothesis of the highest and the lowest distance

matrix, the p value of the t-test is 0 which rejects the null hypothesis H0 that there is

no difference between the means. So, we can say that the distribution of the highest

entropy and the lowest entropy are significantly different. Thus, as the high entropy

can provide more distances information about languages, we prefer to choose high

entropy with high accuracy result.

Figure 3.5: histogram distribution for highest and lowest entropy of language dis-
tances.
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3.2.4 Conclusion

Table 3.3 tells the dramatic story of why this method is the method of choice for

TLID - high accuracy with high entropy. We tested different penalty values on

our model which are shown in Table 3.3. We found that, high penalty values are

needed for high accuracy. However, if we need to use the distance to provide some

subsequent language distances, then we want high entropy.

And also, given that the maximum penalty p is a parameter of the method,

we might expect a graph showing how the accuracy and entropy of distance vary

with p. Figure 3.6 shows the entropies and accuracies in each n-gram and varied by

penalties (the histogram results for each penalty and n-grams are listed in Appendix

B). We find in Figure 3.6(b), 3.6(b), 3.6(c), 3.6(d) and 3.6(e), the accuracies of n-

gram increase with the penalties. For unigram results in Figure 3.6(a), we see the

entropies in penalty 50, 100, 400, 500 and 1000 are similar because the unigram does

not have too many n-grams. For example, English has 26 characters, so once the

penalty is over 26, the penalty cannot impact on the language distance distributions.

To compare with zipping results in Section 3.3, and also to cope with ALID

dataset, we extract 16 languages and build a colormap and a dendrogram to describe

the language relationships. In ALID, the number of languages is 21 which are listed

in Table 2.8. However, in the text database of UNDHR2, Cantonese is written as

Mandarin. Tamil, Hindi, Farsi, Vietnamese are printed as pictures which cannot

be transformed into Unicode text files. In that case, we only describe 16 languages

distances relationships in TLID. Appendix C lists the color map and language tree

for each n-gram model and penalty. The colormap 3.7(a) displays the color density

of distances. It displays the data as an image that uses the full range of RGB colors.

Based on the linguistic language trees in Figure 2.7 and Figure 2.8, we can define

three language subsets - Spanish and Portuguese, Korean and Japanese, Czech and

Polish. In the colormaps, we denote Spanish and Portuguese in pink, Korean and
2https://www.ohchr.org/EN/UDHR/Pages/SearchByLang.aspx
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Japanese in blue and Czech and Polish in red. In the dendrogram, we denote Spanish

and Portuguese as symbol “$”, Korean and Japanese as symbol “∗” and Czech and

Polish as symbol “+”.

According to Figure 3.6, we can see the highest accuracy with the highest en-

tropy is the trigram with 100 penalty, whose colormap and language tree are shown

in Figure 3.7. Figure 3.7(a) tells the languages are all close to themselves which

corresponds to the accuracy in Table 3.3. Comparing with Figure 2.8, we can find

Catalan is close to Spanish, Czech is close to Polish. The colormap cannot tell that

Japanese and Korean have a close relationship. However, Figure 3.7(b) shows that

Japanese is close to Mandarin and Korean is close to Japanese. This is because writ-

ten Japanese contains Sino-Japanese vocabulary which is written as Chinese char-

acters in the text. Additionally, although Swahili and Indonesian are not European

languages, as they were influenced by Dutch and English, their alphabets are consist

of Latin characters. In this case, it is not surprising that these two languages are

close to European languages.
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Figure 3.6: Accuracy and entropy distribution for n-grams. The x-axis is the penalty
value. The left y-axis is the entropy value and the right y-axis is the accuracy value.
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Figure 3.7: The 16 UNDHR text language distances results of tri-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 100. Figure 3.7(a) shows the colormap of the language distance vari-
ations and Figure 3.7(b) shows the language tree which is built by the distances. The
colour variation in Figure 3.7(a) shows the pairwise distances between languages.
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3.3 Language distance calculated by compression

This section covers the computing of text language distances using compressors,

which implement Benedetto et al. [2002]’s compression methods by using three

compressors: zip, bzip and ppm. The detail of Benedetto et al. [2002]’s method

is discussed in Section 3.2.2. The database we used in this project was UNDHR,

encoded using Unicode. We have introduced all of the text languages we used for the

zipping methods. Table 3.1 was previously mentioned in Section 3.1 and describes

all of the languages we used in this project.

Sab =  (∆ab − ∆bb)/∆bb + (∆ba − ∆aa)/∆aa

String a String b

a b

Compress and measure the length of the compressed sequence

b a b b

L(a+a) L(a+b) L(b+a) L(b+b)La Lb

Δab =L(a+b)-La Δbb=L(b+b)-Lb Δba=L(b+a)-Lb Δbb=L(b+b)-Lb

a a a b a b

Figure 3.8: Compression on text and calculate the distance between two languages.

Figure 3.8 describes the language compression algorithm in detail. The basic

requirement is to measure how compressible source a is given knowledge of itself

and knowledge of b. La is the length of compressed a and Lb is the length of

compressed b. To measure the distance of the sequence itself, we concatenate the

string with itself; in this case, the length of the compressed sequence with itself

should be L(a+a) and L(b+b). L(a+b) is the length of compressed sequence a with

sequence b and L(b+a) is the length of compressed sequence b with sequence a. The
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equation we used for measuring language distance is:

Sab = (L(a+b) −min(La, Lb)/max(La, Lb)

+ (L(b+a) −min(La, Lb))/max(La, Lb),
(3.10)

We also use the interleave and non-interleave methods on the text to prove

whether the interleaved text would impact on our results. A simple explanation

of the interleave and non-interleave methods is presented in Figure 3.9. According

to Figure 3.9, the interleave methods chunk sequence a into a1,a2,a3, ...,an and

sequence b into b1, b2, b3, ..., bm then combine them as a1, b1,a2, b2, b3, b3, ...,an, bm.

The non-interleaved method combines sequence a with sequence b without chunking.

To evaluate and describe the interleave and non-interleave results, we use colour

maps and phylogenetic-like trees to show the distances between the text languages.

Like TLID n-gram result, we also measure the entropy of the language distances

for each zipping with interleaving and non-interleaving method. By looking at the

entropy, we can find which method shows more language distance variations. Con-

sidering the accuracy and the entropy, we can conclude which method performs

best.
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(a) Interleave

(b) Non-interleave

Figure 3.9: Interleave and non-interleave methods
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3.3.1 Language distance results via zip

3.3.1.1 Zip

In this section, we applied the “zip” command in Mac OS X, the default compression

for which is deflate. Deflate compression is a lossless compression that combines

LZ77 and Huffman encoding [Deutsch, 1996].

Figure 3.10: Lempel and Ziv compression [Ziv and Lempel, 1977]

LZ77 compression is proposed by Ziv and Lempel [1977] using code schemes,

which map characters to bytes, to solve the data compression with limited knowledge

of data source. Figure 3.10 shows a example of LZ77 process. The LZ77 replaces the

repeated occurrences based on the previous uncompressed string and refers them to

a fixed-length codeword c, which is presented as c = {position, length, first non-

matching symbol}. Position is the length between two repeated characters in s and
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l. Length is the offset that characters move into search buffer string z. Figure 3.10

shows an example of the LZ77 process. String s = aabbabcbc is a part of a string

b. To compress string s, LZ77 first sets an all-zero-string z with length(z) = 9 as

a search buffer and a lookahead buffer l with length(l) = 3. An explanation of this

process is given below.

1. The model checks the first character “a” in l and finds it does not match any

character in z. Then “a” is moved into the search buffer and the model defines

the position = 0, length = 0 and the first symbol in l is “a”. So the first

codeword c1 = (0, 0, a).

2. Now, the first character in z is still “a” and the same character is found in l. So

the “a” and the follow character “b” is moved into z. In this case, c2 = (1, 1, b).

3. The first character in Z is “b” and the same character is found in L and the

distance between them is 1. So b and the following character “a” are moved

into z. In this case, c3 = (1, 1, a).

4. The first character in z is “b” and the same character is found in l. So the

distance between them is 2. So “b” and the following character “c” are moved

into z. In this case, c4 = (2, 1, c).

5. The first character in z is “b” and the same character is found in l. Also,

“bc” is found in l. Considering the length is defined as the maximum length

of repetition, the length = 2 and the distance between them is 2. So b and

the following character “c” are moved into z. The lookahead buffer is empty.

Thus, c5 = (2, 2, ∅).

6. The output string is (0, 0, a), (1, 1, b), (1, 1, a), (2, 1, c), (2, 2, ∅).

3.3.1.2 Huffman coding

As one of the most famous data compression methods, Huffman coding provides an

optimum binary coding. Huffman et al. [1952] referred to “message code” as the
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symbols associated with a given message (e.g. string) and ‘message length’ as the

time for the transmission message. Thus, the sum of probabilities p(i) of n messages

will be:

n∑
i=1

p(i) = 1 (3.11)

And for the average length of a message lper, which also, as the number of coding

digits of a message, is:

lper =
N∑
i=1

pl(i) (3.12)

Based on the above definitions, Huffman et al. [1952] suggested five limitations

for constructing an optimum compression algorithm.

1. The identical coding digit sequence could not consist of two different messages.

2. When the start of a sequence is known, it is unnecessary to additionally point

out where the begin and end of a message exist.

In an optimum compressing code, to implement minimum redundancy, the

shorter codes would be associated with the more probable messages. Thus,

the relation between each probability of messages would be:

p(1) ≥ p(2) ≥ · · · ≥ p(n− 1) ≥ p(n) (3.13)

3. In corresponding to condition 2, the length of messages’ relations are:

l(1) ≤ l(2) ≤ · · · ≤ l(n− 1) ≤ l(n) (3.14)

4. Despite the final digits, assuming there are d types of symbols used for coding,
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if messages have the same code length l(n), there are at least two, but no more

than d types of symbols are alike.

5. Each possible sequence of l(n) − 1 digits should be used as a message code,

otherwise its prefixes should be used as a message code.

When using three or more types of digits for messages, the optimum coding is

similar to binary coding. A simple Huffman binary tree coding is shown in Figure

3.11. The Huffman binary tree satisfies all the restrictions mentioned earlier.

0.1 0.2 0.3 0.4

0.3

0.6

1.0

Figure 3.11: Simple Huffman coding
.

3.3.1.3 Results

This section describes the language distance distribution by using the colour map,

phylogenetic tree and histogram distribution. The distances are calculated by the

relative entropy which is described in Equation 3.10 and the compressor we use in

this section is zip.

The description of phylogenetic tree is in Section 3.2.2 and the description of

histogram distribution is in Section 3.2.1.2. Figure 3.12(a) and 3.12(b) show the
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colour map of the languages distances. Figure 3.13(b) and 3.13(b) show the tree

structure of language distances.

For compression results, a 0 following the name of the compressor denotes the

interleaving status. For example, zip0, means non-interleaved string with the zip

compressor and ppm1 means an interleaved string with the ppm compressor.

To illustrate the method we consider this distances generated via 3.13 using the

zip algorithm 3.3.1. In Figure 3.12 we show density plots where the distance is

colour-coded as in the right hand scale. We consider the cases: without interleaving

and with interleaving case in Figure 3.12. The languages here are the UNDHR files

described in Section 3.1.

There are some encouraging results in the non-interleave result (Figure 3.13(a)):

Portuguese and Spanish, Czech and Polish are close. Languages that are isolated

representatives of these trees, such as Arabic, Chinese, Japanese and Korean, are

grouped together as they all have unique character system and far from all Indo-

Hittite languages. Russian should be grouped as a part of Indo-Hittite language but

in fact is not. According to the linguistic language background truth tree in Figure

2.7, we can see Russian is linguistically closed to Czech and Polish (although not un-

der the same subtree). The reason is that Russian contains a lot of unique characters

that can be viewed as different from other Indo-Hittite languages. The interleave

result in Figure 3.13(b) shows a bad language grouping. Since the interleave change

the occurrences of characters in the buff strings. Once the languages share part of

characters, the interleave method destroys the structure of words and confused the

classifier. This is why the interleave still can distinguish the Indo-Hittite languages

from other languages.

Figure 3.14 shows the distribution of the pairwise distance between the 16 lan-

guages. If the distance between language i and j is Dij(i ≤ j) then we show 1/2

of Dij since the distance matrix is symmetric and we do not want to calculate the

language pair-wise distances twice. The distribution is presented by Dij/σ, which

σ is the standard deviation of Dij. We use the entropy to summary the histogram
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Figure 3.12: The 16 UNDHR text languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. Figure 3.12(a) shows the non-interleaved result and Figure
3.12(b) shows the interleaved result.

distribution. The detail of the histogram and entropy is explained in Section 3.2.1.2.

We can see the interleave result gets a higher entropy rather than the non-interleave
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Figure 3.13: The 16 UNDHR text languages distances are computed by zip and the
distance matrix is shown by tree structure. Figure 3.13(a) shows the non-interleave
result and Figure 3.13(b) shows the interleave result. The length of branches between
the points correspond with the distances between languages.

one. Although we want to get a higher entropy to show more distances variations,

the language trees (in Figure 3.13) shows that the non-interleave method is a better

choice rather than the interleave.
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(a) without interleave

(b) with interleave

Figure 3.14: The 16 UNDHR text languages distances are computed by zip and
the distance matrix are shown by histogram distributions. Figure 3.14(a) shows the
non-interleave result and the entropy value of the histogram is 2.5. Figure 3.14(b)
shows the interleave result and the entropy value of the histogram is 2.77.
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3.3.2 Language distance results via bzip

3.3.2.1 Bzip

Bzip is a compression method that uses the Burrow-Wheeler transform followed

by Huffman encoding (explained in Section 3.3.1.2). It claims that its compression

performance is better than LZ77 and LZ78 and the accuracy is close to the PPM

compressor [Seward, 1996].

3.3.2.2 BWT (Burrows-Wheeler Transform)

Burrows [1994] simply processes a block of text S as a single unit rather than as

a sequential mechanism. Suppose string s = “abcdc|′′ has n = 5 characters with a

“|” symbol which standards for the end of the string s . By cycling shifts, rotations

and sorting in lexicographical order for strings, the original and rotated string could

form a M = n× n matrix with contents as shown below:

Table 3.4: Burrow-Wheeler Transform.

Row Rotation M Sorting M
1 abcdc| abcdc|
2 |abcdc bcdc|a
2 c|abcd cdc|ab
3 dc|abc c|abcd
4 cdc|ab dc|abc
5 bcdc|a |abcdc

Then, the last column of M is the transformed string s = “|abdcc′′.

Burrows [1994] argues that this kind of block text can easily be compressed by

Huffman or arithmetic coding since it runs out the repeated characters after running

MTF (Move to Front) transform and RLE (Run-Length encoding). Its performance

could be comparable to statistical modelling techniques and the speeds obtained

were as good as the Lempel-Ziv compressor.
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3.3.2.3 MTF (Move to Front) and RLE (Run-Length Encoding)

MTF (Move to Front) applied permutation of the data into the index of alphabet

dataset [Ryabko, 1980]. A 8-bit data string need a size of 255 identity permutation.

It simply moves the symbol (which occurs in the data) into the front of permutation

and count the displacement. Table 3.5 shows a simple example of MTF and the

string is s = “bannana′′. For simple describe the process, the list of permutation

symbols is the English alphabet.

Table 3.5: Move to Front.

Row Displacement Permutation list
bannana 1 abcdefghijklmnopqrstuvwxyz
bannana 1, 1 bacdefghijklmnopqrstuvwxyz
bannana 1, 1, 13 bacdefghijklmnopqrstuvwxyz
bannana 1, 1, 13, 0 nbacdefghijklmopqrstuvwxyz
bannana 1, 1, 13, 0, 2 nbacdefghijklmopqrstuvwxyz
bannana 1, 1, 13, 0, 2, 1 anbcdefghijklmopqrstuvwxyz
bannana 1, 1, 13, 0, 2, 1, 1 nabcdefghijklmopqrstuvwxyz

The first step describes that the first character of string s is “b”. To move “b” to

the front of list, the displacement is 1. The other steps are followed by the first step

and the string s is encoded into 1, 1, 13, 0, 2, 1, 1.

RLE (Run-length Encoding) simply calculates the occurrences for each characters

[Robinson and Cherry, 1967]. It counts the transformed string s = {1, 1, 13, 0, 2, 1, 1}

into s = {21113101221}. The first 2 means character “1” occurs twice at the first

time and the other numbers in the string s describe the same story as it. This

method is helpful when the string contains many long repeated characters.

3.3.2.4 Results

This section describes the language distance distribution by using colour map,

dendrogram and histogram distribution. The distances are calculated by the rel-

ative entropy which is described in Equation 3.10 and the compressor we use in this

section is bzip.
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Figure 3.15: The 16 UNDHR text languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. Figure 3.15(a) shows the non-interleaved result and Figure
3.15(b) shows the interleaved result.

The description of dendrogram is in Section 3.2.2 and the description of histogram

distribution is in Section 3.2.1.2. Figure 3.15(a) and 3.15(b) show the colour map
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of the languages distances. Figure 3.16(b) and 3.16(b) show the dendrogram of

language distances.

Figure 3.15 shows the colour map of the pairwise distances between the languages

which is produced by the same methods as Figure 3.12 but with bzip as the com-

pressor. Figure 3.15(b) shows more distance variation of language distances than

3.15(a) because the interleaving method shows more character variations in one

buffer string. What is positive in both colour map is, the languages are all close to

themselves. And also, in both Figure 3.15(a) and 3.15(b), Portuguese and Spanish is

close. What is more, the language tree in Figure 3.16(a) shows that Czech and Pol-

ish, Japanese and Korean are also close. Russian shows a closer distance to the other

Indo-Hittite language in the non-interleaving result, which shows that bzip performs

better than zip. The interleaving result performs worse than the non-interleaving

result is because that the interleave change the occurrences of characters in the buff

strings. Once the languages share part of characters, the interleaving method des-

troys the structure of words and confused the classifier. This is why the interleaved

method still can distinguish the Indo-Hittite languages from other languages.

Figure 3.17 shows the distribution of pairwise distance between the 16 languages.

This diagram is produced by the same methods as Figure 3.14. We use the entropy

to summarise the histogram distribution. The detail of the histogram and entropy is

explained in Section 3.2.1.2. We can see the interleaving result gets a higher entropy

rather than the non-interleave one. Although we want to get a higher entropy to

show more distances variations, the language trees (in Figure 3.16) tells that the

non-interleaving result is a better choice rather than the interleave.
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Figure 3.16: The 16 UNDHR text languages distances are computed by bzip and the
distance matrix is shown by dendrogram. Figure 3.16(a) shows the non-interleaved
result and Figure 3.16(b) shows the interleaved result. The length of branches
between the points correspond with the distances between languages.



CHAPTER 3. TLID (TEXT LANGUAGE IDENTIFICATION) RESULTS 70

(a) without interleave

(b) with interleave

Figure 3.17: The 16 UNDHR text languages distances are computed by bzip and
the distance matrix are shown by histogram distributions. Figure 3.17(a) shows the
non-interleaving result and the entropy value of the histogram is 2.5. Figure 3.17(b)
shows the interleaving result and the entropy value of the histogram is 2.54.
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3.3.3 Language distance results via PPM

3.3.3.1 PPM (Prediction by partial matching)

Prediction by partial matching (PPM) uses ‘adaptive coding’ to dynamically update

the model for compression. To solve the inefficient coding of the high-order Markov

model, Cleary and Witten [1984] introduces ‘partial match’ so that the high-order

Markov model can count the frequency faster with high compression quality.

Figure 3.18 shows a simple Markov chain for prediction. State A, B, C are codes

and P is the probability of state transmission.

PA(A)

PC(C)PB(B)

A

B C

pB(A)

PC(A)

PA(C)

PC(B)

PB(C)

PA(B)

Figure 3.18: Markov chain

PPM uses a prepared coding alphabet that denotes all probabilities for each code.

The coding alphabet can be ASCII, Unicode or other codes. For example, the string

“How are yo” into the model and, assuming the order is a trigram, it finds that

the highest probability after “yo” is “u”. PPM uses the dynamic length order of the

Markov model, which means the order of the Markov chain can be bigram, trigram

or more. This can avoid the long length order with large numbers of infrequent

predictions.

To deal with characters that have not been seen before, PPM provides an ‘escape

mechanism’ that is partly similar to arithmetic coding methods. For example, the
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number of a known character x occurs after ‘yo’ in the context is n times. PPM

calculates the number of times m that ‘yo’ has occurred, then the probability of x

is p(x) = n
m+1

. If there are three characters x = (a, b, c) that have not occurred

before, the probability of all seen characters k should be p(k) =
∑
p(k). Thus, the

probability of s = 1−
∑
p(k) = 1

m+1
. Suppose the size of the coding alphabet is na

and the known characters are nk, then the probability of each new character should

be 1
m+1
× 1

na−nk
.

3.3.3.2 Arithmetic encoding

Witten et al. [1987] introduced arithmetic encoding into data compression. Theor-

etically, Huffman coding only has the “minimum redundancy” (best performance)

under the circumstance in which all symbol probabilities are integral powers of 1
2
.

The worst performance for Huffman coding would be when one symbol has a prob-

ability approaching unity, which, generally, sophisticated models predict.

The model predefines the probability to each symbol. This step can be done by

counting frequencies of each symbol in a sample of text to be transmitted. Here is

a symbol example.

Suppose there is a small alphabet in which A = {m,n, o, p, q, s}, then a fixed

model with probabilities is shown in Table 3.6.

Symbol Probability Range
m 0.2 [0, 0.2)
n 0.3 [0.2, 0.5)
o 0.1 [0.5, 0.6)
p 0.2 [0.6, 0.8)
q 0.1 [0.8, 0.9)
s 0.1 [0.9, 1.0)

Table 3.6: Arithmetic encoding

When inputting a message ‘S = “nmoos” ’, we model the rescale interval at each

stage. Figure 3.19 presents the arithmetic coding process.

When finding the first symbol n, the model narrows it to [0.2, 0.5), which means
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Figure 3.19: Arithmetic coding process with interval scaled at each stage
.

the rang of [0.2, 0.5) indicates the symbol n. The second symbol m narrow the range

into the first one-fifth of it and the previous range is 0.3 and the one-fifth of 0.3 is

0.06. Then the range turns into [0.2, 0.26). Proceeding in this way, the final value

of the range is [0.23354, 0.2335).



CHAPTER 3. TLID (TEXT LANGUAGE IDENTIFICATION) RESULTS 74

3.3.3.3 Results

This section describes the language distance distribution by using colour maps,

phylogenetic trees and histogram distributions. The distances are calculated by the

relative entropy which is described in Equation 3.10 and the compressor we use in

this section is ppm.

The description of phylogenetic tree is in Section 3.2.2 and the description of

histogram distribution is in Section 3.2.1.2. Figure 3.20(a) and 3.20(b) show the

colour map of the languages distances. Figure 3.21(b) and 3.21(b) show the tree

structure of language distances.

To illustrate the method we consider the distances generated via 3.21 using the

ppm algorithm 3.3.3. In Figure 3.20(b) we show density plots where the distance is

colour-coded as in the right hand scale. We consider the cases: without interleaving

and with interleaving case in Figure 3.20. The languages here are the UNDHR files

described in Section 3.1.

Figure 3.20 shows the colour map of the pairwise distances between the lan-

guages which is produced by the same methods as Figure 3.12 but with ppm as the

compressor. We can find that both interleave and non-interleaving result show all

languages are close to themselves. The distance between Portuguese and Spanish,

Czech and Polish are significantly close to each other. Like zip and bzip results,

the non-interleave ppm result shows that Japanese is close to Chinese rather than

Korean for sharing Chinese characters in the writing system. But comparing to zip

and bzip, the interleave ppm result shows fewer distance variations. Which means

that ppm is heavily impacted by the interleaving because there is a rapid change in

the context of the string as in [A|B] leads to non-optimal compression.

Figure 3.22 shows the distribution of the pairwise distance between the 16 lan-

guages. This diagram is produced by the same methods as Figure 3.14. We use the

entropy to summary the histogram distribution. The detail of the histogram and

entropy is explained in Section 3.2.1.2. To compare different language distances, we
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Figure 3.20: The 16 UNDHR text languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. Figure 3.20(a) shows the non-interleaved result and Figure
3.20(b) shows the interleaved result.

need a fixed bin width which calculated by the same method as n-gram (see Section

3.2.1.2). We can see the interleaving result gets a higher entropy rather than the
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non-interleave one. However, as we previous study in Appendix C, we can find that

once the classification accuracy is 100%, the entropy only show the internal structure

(whether the distances are further or closer) but does not change the relationships

between the languages (like Chinese is always close to Japanese, German is always

close to Swedish in tri-gram with 100, 400, 500 and 1000 penalty). For different

methods like interleaved and non-interleaved, since entropy is impacted by different

factors, it can only tell the distance variations between the languages instead of

which result is better. Comparing with linguistic language tree in Figure 2.7 and

Figure 2.8, we can find for both interleave and non-interleaving result, Portuguese

and Spanish are under the same sub-tree, Korean and Japanese are also close to each

other. The reason why Japanese is next to Chinese is explained in Section 3.2.4.

However, the non-interleaving result shows that Czech and Polish are close, which is

better than the interleaving result. Thus, although we want to get a higher entropy

to show more distances variations, it shows that the ppm with the non-interleaving

result is a better choice rather than the interleave one.
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Figure 3.21: The 16 UNDHR text languages distances are computed by ppm and
the distance matrix is shown by tree structure. Figure 3.21(a) shows the non-
interleaving result and Figure 3.21(b) shows the interleaving result. The length of
branches between the points correspond to the distances between languages.
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(a) without interleave

(b) with interleave

Figure 3.22: The 16 UNDHR text languages distances are computed by ppm and
the distance matrix are shown by histogram distributions. Figure 3.22(a) shows
the non-interleaving result and the entropy value of the histogram is 2.52. Figure
3.22(b) shows the interleaving result and the entropy value of the histogram is 2.77.
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3.3.4 Conclusion

Table 3.7: Entropy(top) and accuracy(bottom) values with histogram binwidth =
0.68.

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 2.52 2.77 2.49 2.77 2.5 2.54
Accuracy 1 1 1 1 1 1

Figure 3.23: The histograms distributions of highest entropy and lowest entropy.
The highest entropy is zip with interleaving and the lowest entropy is zip without
interleaving.

In this section, we compare the language distances generated by 3 compressors:

zip, bzip and PPM. The distance we used in the histogram is Distance/σ and

compared by probability density according to Section 3.2.1.2. Table 3.7 shows the

entropy and accuracy for all zipping methods. The highest entropy is zip with inter-

leaving and the lowest entropy is zip without interleaving. Figure 3.23 displays the

histogram distributions of highest entropy (zip with interleave) and lowest entropy
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(zip without interleave). By testing the probability of the null hypothesis of the

highest and the lowest distance matrix, the p value of the t-test is 0.0017 < 0.01

which rejects the null hypothesis H0 that there is no difference between the means.

So, we can say that the distribution of the highest entropy and the lowest entropy

are significantly different. The bin width is w/σ, which is explained in Section

3.2.1.2 and the bin width is applied for zip, bzip and ppm with interleaving and

non-interleaving results. This makes the histogram distribution too spiky to find

the difference between the highest entropy and the lowest entropy. So we intro-

duce the random distance matrix to calculate the random entropy and compare

with those entropies. We run the random function for 1000 time with the same bin

width and the average entropy of the random matrix is 1.0826. It shows that all

entropy results are better than the random average result. However, the entropy

here cannot fully describe the distance variations of languages since interleaving

methods mix the character sets. Especially that when languages are very similar in

this case, interleaving does not perform better grouping than non-interleave (as the

word structure is destroyed by the interleaving method). And the languages trees

also show that the non-interleaving results are more close to the linguistic language

tree. Thus, to describe the language relationships by the highest entropy, the ppm

without interleaving is the best choice for our task.
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3.4 Conclusion

In this section, we have made an initial examination of the performance of TLID

systems. We have looked at two classes of system. In the first class are those

based on an approximation of the algorithm information theory distance ([Cilibrasi

and Vitányi, 2005]). Instead of using the default penalty value, we compare the

recognition results of different penalty cases. We study the n-gram distances by

looking at the histogram distributions and entropies. We use the language distances

to build the language tree which can be compared to the linguistic language trees.

In the second class, the distances are built by zipping and build up the language

trees by using the same method as n-gram method. It is well known that n-gram

systems outperform zipping systems (indeed, this point was made strongly in a series

of criticisms of zipping by Goodman [2002]). However, we do not merely want to

solve the TLID problem (it is mostly solved anyway); we are interested in generating

a meaningful distance between languages in the hope that we can use that distance

to interpolate the missing distance in ALID and VLID. For this purpose, we need

a method that can generate “good” distance matrices. In this chapter, we have

considered what might constitute a “good” distance matrix and we have developed

the concept of measuring the entropy of the distance matrix. As we previously

mentioned, all n-gram results can be built up into language trees. Those language

trees are compared with the linguistic language tree (shown in Figure 2.7 and Figure

2.8). Additionally, referring to the linguistic language tree can also avoid the random

tree impact whose entropy might also be high. As we discussed in Section 3.3.3, the

entropy describes the internal structure of the language distances. A high-entropy

matrix provides more differentiation of distances than low-entropy matrices, which

tend to be “all or nothing”. For example, according to Figure 2.7, Catalan, Spanish

and Portuguese are under the same sub-tree. So is it possible that Portuguese

is closer to Spanish rather than Catalan? For linguistic language tree, it does not

answer this question but our experiment tries to explain. So, the high entropy result

might be more applicable to answer this question than low entropy.
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This section, we have shown how, with a few parameters, both zipping meth-

ods and n-gram methods can produce “good” distance matrix. The next question,

therefore, requires that we examine audio or video to see how we might map the

domains to text. Before answering this question, however, it is wise to examine the

performance of ALID specifically using some of our existing methods - is it viable to

apply these text-based algorithms to audio? This is the topic of the next chapter.



Chapter 4

ALID (Audio Language

IDentification) results

4.1 Introduction

In this chapter, we will introduce four techniques to compute audio language dis-

tances. Previously we have introduced two methods for TLID which performed with

high accuracy. One is from Cavnar and Trenkle [1994]’s n-gram model and one is

from Benedetto et al. [2002]’s zipping model based on relative entropy. Although

the zipping methods do not show high entropy results, we wonder if these two tech-

niques produce the same results as TLID. What we expect is, in ALID, the Cavnar

and Trenkle [1994]’s n-gram model still gets a higher accuracy and a higher entropy

than zipping methods. In ALID, we also examine Campana and Keogh [2010]’s

CK-distance model based on MPEG compression by using the same database.

The database we used in this chapter is the Universal Declaration of Human

Rights (UNDHR) dataset, which is a high-quality dataset downloaded from Lib-

riVox1. A detailed description of the audio datasets was presented in Section 2.6.
1https://librivox.org/the-universal-declaration-of-human-rights-by-the-united-nations/

83
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4.2 Feature extraction

The audio datasets contain recordings of the waveforms of utterances from each lan-

guage signal collected from different speakers. For acoustic recognition and speech-

to-text systems, the benchmark features are MFCCs.

4.2.1 MFCC (Mel-frequency cepstrum coefficient)

Mel-frequency cepstral coefficients (MFCCs) are an audio feature extraction tech-

nique, proposed by Rabiner and Juang [1993]. We use HTK which implemented by

Cambridge University Engineering Department (CUED) for feature extraction and

Figure 4.1 shows an overall MFCC feature extraction procedure.

Speech signal

Pre-emphasis

Windowing

Fourier transform 

Mel-filtering

Discrete cosine transform

Mel-frequency  cepstral coefficients

Cepstral Mean Normalisation

Figure 4.1: A standard example of MFCC feature extraction
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The pre-emphasis stage removes the impact of the glottal pulses and radiation

impedance [Markel and Gray, 2013], which is:

y(sn) = sn − ksn−1 (4.1)

s means the symbol in a speech and s ∈ 1...n. k is a pre-defined parameter, for

which 0 < k < 1.

Since the Fourier transform is performed only on periodic samples, it is necessary

to apply windowing techniques. In reality, the sample cannot be an integer number of

periods, so the required windowing techniques should be able to reduce the boundary

effect. [Young et al., 2006] use the Hamming window function (shown in 4.2).

y(sn) = (0.54− 0.46× cos(
2π(n− 1)

N − 1
))× sn, n ∈ 1...N (4.2)

The Discrete Fourier transform (DFT) converts a signal from the time domain

to the frequency domain. After using the Hamming window function, the signal is

framed into 10ms which allows overlap to the frames. For each frame, it calculates

the frequency under the condition of n known samples s with a sample period T .

The jth discrete time signal of Fourier coefficient cj is equal to

cj = 1/n
n−1∑
i=0

si exp(−jik2π/n), 0 < |i| < N/2 (4.3)

where k is the frequency and frequency(sn) = k × T/n [Schilling and Harris, 2012].

Young et al. [2006] transform the FFT frequency sequence f to mel-scale m, see

equation 4.4. The mel-scale stage tries to imitate the human auditory system, which

percepts signal frequency on a non-linear scale [Stevens et al., 1937]. It applies the

triangular filter to each periodogram. The triangular filter can help to capture the

spectrum energy with its shape.

mf = 2595× log10

(
1 +

f

700

)
(4.4)
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The discrete cosine transform (DCT) produces the MFCCs ci by log filter bank

amplitude, and the transmission equation is shown in equation 4.5 [Young et al.,

2006]. m is the sequence that was produced by mel-scale previously.

ci =

√
2

N

N∑
j=i

mj cos(
πi

N
(j − 0.5)) (4.5)

To remove long-term spectral effects, such as multiple microphones and room

acoustics, Young et al. [2006] recommended cepstral mean normalisation, which can

remove the cepstral mean of the transmission channels from all input vectors in the

log cepstral domain.

The HTK parameters used for MFCC generation are summarised in Table 4.1

Table 4.1: MFCC parameters definition in HTK for audio files.

Parameters Value Description

SOURCEFORMAT WAV Definition of the format of the speech files.
WAV stands for waveform.

TARGETKIND MFCC_0_D_A
Identifier of the coefficients to use.
In this task, we used delta and acceleration
coefficients with 0th cepstral coefficient.

WINDOWSIZE 250000.0 = 25 ms Length of a time frame
TARGETRATE 100000.0 = 10 ms Length of a frame period.
NUMCEPS 12 Number of MFCC coefficients

USEHAMMING T Use of Hamming function for windowing
frames.

PREEMCOEF 0.97 Pre-emphasis coefficient.
NUMCHANS 26 Number of filterbank channels.
CEPLIFTER 22 Length of cepstral filtering.

Thus, using the parameters in Table 4.1, we converted each waveform into a

matrix of HTK vectors of dimension 39 and a rate of 1
10ms

= 100Hz

4.3 Cavnar and Trenkle’s N-gram model

In this section, we examine the Cavnar and Trenkle [1994]’s N -gram frequency

model to discover the relationships between audio languages. We previously applied
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the techniques of Cavnar and Trenkle [1994]’s N -gram frequency model in Section

3.2.1.1.

The dataset we used in ALID is the UNDHR dataset, which is provided by

Librivox2 and was previously described in Section 2.6.2. The UNDHR audio data

were transformed into MFCCs using the procedure in Section 4.2.1.

4.3.1 Methods

Figure 4.2 is a modified TLID system but applied to ALID. A critical issue is how

best to convert MFCCs to a text format for N-gram analysis. Our solution is to use

a vector quantiser (VQ) system.

Training
documents

Tokenization
and generate
all possible
n-grams. Count
n-grams frequency
and sort them

N-gram frequency
documents for training

N-gram frequency
documents for testing

Training MFCCs

Testing MFCCs

Tr1Tr2Tr3 Trn
VQ

VQ

...

Te1Te2Te3 Ten...

Measure distance
between training
and testing

Classify languages
by minimum
distance

Testing
documents

Figure 4.2: Cavnar and Trenkle [1994]’s n-gram frequency model for UNDHR audio
dataset.

To use n-grams, it is necessary to convert MFCCs into discrete features. In

that case, we use vector quantisation to divide MFCCs features into different bins.

However, the index of the bins is not easy to make an n-gram list. A simple bigram

case is that both 11 and 121, 111 and 21 can construct the bigram of 11121. To

solve this problem, we define each bin is assigned to a unique Unicode character. So,

the ALID n-gram frequencies can be calculated the same as the TLID. The detail

of vector quantisation is in Section 4.3.1.1.

According to Figure 4.2, we first vector quantise the MFCCs into different bins.

We examine 16, 32, 64, 128 and 256 bins to see which bin size gets the better per-
2https://librivox.org/the-universal-declaration-of-human-rights-by-the-united-nations/
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formance. Each bin is represented by one character. The string of the characters is

then analysed via Cavnar and Trenkle [1994]’s N -gram frequency model to calculate

the frequency of each bin and hence calculate the language distances based on the

bin frequency differences and averaged by the 10-fold cross validation. The detail

of cross validation is in Section 3.2.1.3. We examine ALID by uni-gram, bi-gram,

tri-gram, quad-gram and five-gram. Also as Cavnar and Trenkle [1994] mentioned,

the maximum penalty of n-gram sequences is 400 without accepting all n-grams.

4.3.1.1 Vector quantisation

VQ (Vector quantisation) is one of the implementations of Shannon’s sampling the-

orem for speech, image coding and compression from real vectors into digital repres-

entations. It is often considered to be a form of lossy data compression: outputting

a digital signal from an analogue signal such as sound, temperature, light and pres-

sure. VQ is widely applied in multiple areas such as communications, statistics and

cluster analysis. Shannon implied that performance of coding vectors is always bet-

ter than scalars [Gray, 1984]. Vector quantisation is useful for modelling symbolic

data and reduce computation cost. In speech processing, vector quantisation cre-

ates a codebook and quantises each speech vector and give a unique symbol for each

input frame. In this section, we use the HTK to create the codebook. Once a new

MFCC feature comes in, vector quantisation compares the Mahalanobis distance

D (4.6) between the features x and the means of the partitions µ in the codebook

[Young et al., 2006]. Function 4.6 shows the Mahalanobis function which rescales

the variables to make distances more comparable:

D =

√
(x− µ)TS−1(x− µ) (4.6)

where S is the covariance matrix of x and µ and is calculated as S =
√∑n

i=1(x−x)(µ−µ)

n−1
,

which n is the length of x, x is the mean of x and µ is the mean of µ. In this section,

we use the linear partition to create the codebook. The codebook saves the centroid

of each bin. It firstly calculates the mean of the input features and divide features
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by the mean value. Then, the mean is perturbed to generate two means and fea-

tures are split based on which mean is nearest to them by using Equation 4.6. The

means are then re-calculated by the split features and features are re-partitioned

by the new means. These steps repeat until there is no significant total distortion.

The total distortion is defined as the total distance between the features and the

mean. Then the means are repeated the perturbing step until the required number

of clusters are worked out[Young et al., 2006].

To determine how many clusters is sufficient for vector quantisation, we use the

IPA (International Phonetic Alphabet) to calculate the number of phonemes exists

in all languages (see Section 2.5.2). As the IPA contains 107 letters with 52 diaceitics

and 4 prosodic marks, for vector quantisaiton, we assume that 256 clusters (bins) is

sufficient to cover all phonemes corresponds to the total number of IPA characters.

We start our experiment from the very small bin size, like 16 and 32, to see the

impact of bin size variation. As we use 21 languages in our experiment, it is possible

that not all phonemes in the IPA are used in these languages. So in that case, we also

use the 64, 128 bins to see if a smaller binsize is enough to cover these phonemes in

ALID instead of 256 bins. The vector quantised data are then applied to genereate

the n-gram list.

4.3.2 Language distance results with Jake’s data

Before we start to work on the UNDHR dataset, we firstly do an experiment on a

small dataset which is collected from Jake’s video data. As our UNDHR dataset

only contains one speaker for each language, we need to measure the n-gram distance

based on the multi-speakers. As we previously mentioned in Section 2.6, Jake’s

data has three languages which are English, Mandarin and Arabic. The audio

waveforms are all converted into MFCCs and the MFCCs are all converted into

symbols (Unicode characters). By using the n-gram model, the differences of n-

grams frequencies can determine the differences between the languages. Considering

the IPA (see Section 2.5.2), we use 64 VQ binsize and penalty of 100 with bigram
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for this 3 languages experiment.
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Figure 4.3: The n-gram distances between English, Mandarin and Arabic in ALID.

Figure 4.3 shows the average language distances between English, Mandarin and

Arabic and the error bar on the average distance is the mean ±2 standard error

which obtains about 95% confidence interval of the estimate of the mean. We can

find English, Mandarin and Arabic are all close to itself. The distances between the

languages are far from the self-distance. As Jake’s data has multi-speakers for each

language with male and female speakers, we conclude that the n-gram distances

represent inter-language differences rather than inter-speaker differences.

4.3.3 Language distance results with 16 bins

In this section, we examine the results of Cavnar and Trenkle [1994]’s model applied

to the UNDHR dataset. As we previously explained in Section 4.3.1.1, the audio

waveforms are all converted into MFCCs and the MFCCs are all vector quantised

into indices which represented by corresponding symbols (Unicode characters). By

using Cavnar and Trenkle [1994]’s n-gram model, the differences of n-grams frequen-

cies can determine the differences between languages. We add a penalty to describe

the impact of the n-grams which are not been seen in the other languages.

Tables 4.2 to 4.6 show the accuracy and entropy of each n-gram model with
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different VQ bins. We use uni-grams through to five-grams. Both the accuracy

and the entropy are measured using 10-fold cross validation. The accuracy and its

standard error are computed as the mean and the standard error of the ten test

accuracies from each folder, which using an n-gram classifier trained on the training

data in each fold. Each fold also produces a distance matrix which are the distances

between the test languages in that fold as measured by the n-gram method trained

on each training fold. The mean of these distances is summarised by the entropy.

Table 4.2: Entrpoy values which binwidth = 0.57 vq bin size = 16.

Entropy
Penalty value 1 5 10 50 100 400 500 1000
Gram=1 2.92 2.90 2.87 2.46 1.77 1.22 1.21 1.23
Gram=2 2.89 2.88 2.89 2.87 2.86 2.62 2.67 2.49
Gram=3 2.80 2.75 2.74 2.72 2.72 2.75 2.77 2.81
Gram=4 2.72 2.71 2.63 2.12 2.27 2.63 2.61 2.69
Gram=5 2.77 2.77 2.78 2.48 2.51 2.83 2.86 2.85

Accuracy value
Gram=1 0.65 0.63 0.64 0.61 0.61 0.61 0.61 0.61
Gram=2 0.43 0.48 0.54 0.76 0.57 0.28 0.26 0.16
Gram=3 0.20 0.20 0.21 0.57 0.67 0.57 0.55 0.50
Gram=4 0.07 0.08 0.10 0.47 0.65 0.61 0.60 0.59
Gram=5 0.03 0.03 0.03 0.50 0.70 0.67 0.68 0.61

Standard error
Gram=1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Gram=2 0.06 0.06 0.06 0.05 0.05 0.04 0.04 0.03
Gram=3 0.04 0.04 0.04 0.05 0.05 0.05 0.06 0.05
Gram=4 0.02 0.02 0.03 0.04 0.04 0.05 0.05 0.06
Gram=5 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.04

Table 4.2 shows the accuracy and entropy of Cavnar and Trenkle [1994]’s n-gram

model with 16 VQ bins. Figure 4.4 compares the accuracies and entropies, the

accuracy has error bars with mean ±2 standard error. We find the highest accuracy

is the bi-gram (Figure 4.4(b)), whose penalty is 50. Like we previously explained in

Section 4.3.1.1, we use the Unicode characters to represent the index of VQ bins.

For example, in 16 VQ bins with unigram case, the Unicode characters which are

transformed from the index of VQ bins which contains the Arabic phonemes are

“NOIGMDLHFCJEPKBA_” and the English one is “ABCDGEFMKLHNJIO_”.
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We can find these two string contains the same characters, so these two languages

share the same character set. For uni-gram with 16 VQ bins, there are only 16 n-

grams and most of the languages have the same character set except Czech, English,

Russian and Vietnamese. So the accuracy is similar for all penalties. Considering

the entropy (blue lines) in Figure 4.4(e), we see two effects. For the low-order n-

grams (uni-grams and bi-grams), the major effect of the penalty is to add language

distances onto language pairwise distances if they do not share an n-gram. This

makes the distance distribution spikier and lowers entropy. As we move to high-

order n-grams, the list of comparable n-gram grows but is capped at 400. This

cap has the effect of flattening the distance distribution since the language pairwise

distance involves distance n-grams that no longer appear on the list. Thus we see

two effects with the increasing penalty - decreasing and increasing entropy leading

to a characteristic dip in entropy in the mid-penalty region for longer n-grams. We

want high accuracy and, for later work, we shall want high entropy, which here imply

bi-grams with a penalty of 50.

Figure 4.5 visualizes the bi-gram, 50 penalty result in 16 VQ bins. Figure 4.5(a)

shows the colour map of languages and Figure 4.5(b) shows the dendrogram which

is built based on d = distance/σ where d is normalized into [0, 1]. The dendrogram

is built based on complete-linkage clustering (explained in Section 3.2.2). According

to the linguistic language tree in Section 2.7, we can define three language subsets

- Spanish and Portuguese, Korean and Japanese, Czech and Polish. In the colour

maps, we denote the Spanish and Portuguese in pink, Korean and Japanese in

blue colour and Czech and Polish in red colour. In the dendrogram, we denote

Spanish and Portuguese as “$”, Korean and Japanese as symbol “∗” and Czech and

Polish as symbol “+”. We find Portuguese is close to Polish, Spanish and Swedish.

Czech is also close to Polish, Spanish and Swedish. It is possible that they show

low distances between each other because they are all Indo-Hittite languages. The

distance between the Japanese and Korean is far from each other but is also positive

that the distances between Japanese and English and Russian are longer than the

Japanese and Korean. Thus, we can conclude that the language tree which is built
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by the 16 bins might not previously describe the language relationships. So we are

going to study the 32 bins case and see if the language relationships can be presented

better alongside the VQ binsize.
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(a) Accuracy and entropy distribution for gram
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(b) Accuracy and entropy distribution for gram
= 2

1 5 10 50 100 400 500 1000

penalty

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

E
n
tr

o
p
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Entropy and average accuracy distribution (VQ bins = 16)

gram=3 width=0.57

(c) Accuracy and entropy distribution for gram
= 3
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(d) Accuracy and entropy distribution for gram
= 4
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Figure 4.4: Accuracy and entropy distribution for n-grams. VQ bin size is 16. The
x-axis is the penalty value. The left y-axis is the entropy value and the right y-axis is
the accuracy value. The error bar on the average accuracy is the mean ±2 standard
error which obtains about 95% confidence interval of the estimate of the mean.
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Figure 4.5: The 21 UNDHR audio language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 50 and the VQ bins is 16. Figure 4.5(a) shows the colour map of
the language distance variations and Figure 4.5(b) shows the language tree which
is built by the distances. The colour variation in Figure 4.5(a) shows the pairwise
distances between languages.
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4.3.4 Language distance results with 32 bins

Table 4.3: Entrpoy values which binwidth = 0.57 vq bin size = 32.

Entropy
Penalty value 1 5 10 50 100 400 500 1000
Gram=1 2.90 2.88 2.86 2.82 2.48 1.76 1.72 1.60
Gram=2 2.86 2.78 2.76 2.78 2.78 2.85 2.88 2.85
Gram=3 2.67 2.65 2.57 2.09 1.96 2.55 2.60 2.63
Gram=4 2.74 2.74 2.65 1.96 2.05 2.64 2.69 2.65
Gram=5 2.79 2.77 2.77 2.52 2.48 2.83 2.89 2.88

Accuracy value
Gram=1 0.78 0.78 0.77 0.68 0.62 0.61 0.61 0.61
Gram=2 0.21 0.21 0.22 0.39 0.86 0.51 0.45 0.40
Gram=3 0.07 0.07 0.08 0.33 0.72 0.68 0.66 0.65
Gram=4 0.04 0.05 0.06 0.30 0.75 0.74 0.73 0.71
Gram=5 0.02 0.03 0.04 0.30 0.76 0.76 0.75 0.75

Standard error
Gram=1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Gram=2 0.04 0.04 0.04 0.06 0.03 0.06 0.05 0.05
Gram=3 0.03 0.03 0.03 0.04 0.05 0.05 0.05 0.05
Gram=4 0.01 0.02 0.02 0.04 0.04 0.04 0.04 0.05
Gram=5 0.01 0.01 0.01 0.03 0.04 0.04 0.04 0.04

Table 4.3 shows the accuracy and entropy of Cavnar and Trenkle [1994]’s n-gram

model with 32 VQ bins. Figure 4.6 compares the accuracies and entropies and

comparable to Figure 4.4. We find the accuracy and entropy distribution of 32 VQ

bins are similar to the 16 bins. The highest accuracy in 32 VQ bins is with bi-gram

and the penalty is 100 (rather than 50 in 16 VQ bins). As the number of VQ bins

increases up to 32 (up to 1056 in bi-gram but the model only accept the highest rank

of 400 n-grams), the variation of language character set shows more differentiation

of languages, which means the model needs a higher penalty to identify languages.

We can see it is worth to use higher penalty values since we get a higher accuracy

rather than the results of 16 VQ bins. We can conclude the best performance in 32

VQ bins with bi-grams with 100 penalty.

Figure 4.7 shows the same diagram as 4.5 but with bi-grams, 100 penalty result in

32 VQ bins. Figure 4.5(a) shows the colour map of languages and Figure 4.5(b) shows
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the complete-linkage clustering dendrogram which is built based on d = distance/σ

and the d is normalized into [0, 1]. We can find most of language distances are

far from each other as the penalty is 100. Although through the language tree,

we find the distances between Czech and Polish, Spanish and Portuguese, Japanese

and Korean are not the closest, we still can find the distance between Indo-Hittite

languages are closer than other languages. The Japanese and Korean language is

also represented poorly as the 16 bins case. The colour map shows that most of

distances are larger than Figure 4.5, which is because the penalty is 100 instead of

50 and contains more “out-of-place” n-grams.
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(b) Accuracy and entropy distribution for gram
= 2
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(c) Accuracy and entropy distribution for gram
= 3
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(d) Accuracy and entropy distribution for gram
= 4
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Figure 4.6: Accuracy and entropy distribution for n-grams. VQ bin size is 32. The
x-axis is the penalty value. The left y-axis is the entropy value and the right y-axis is
the accuracy value. The error bar on the average accuracy is the mean ±2 standard
error which obtains about 95% confidence interval of the estimate of the mean.
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Figure 4.7: The 21 UNDHR audio language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 100 and the VQ bins is 32. Figure 4.7(a) shows the colour map of
the language distance variations and Figure 4.7(b) shows the language tree which
is built by the distances. The colour variation in Figure 4.7(a) shows the pairwise
distances between languages.
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4.3.5 Language distance results with 64 bins

Table 4.4: Entrpoy values which binwidth = 0.57 vq bin size = 64.

Entropy
Penalty value 1 5 10 50 100 400 500 1000
Gram=1 2.86 2.86 2.84 2.89 2.74 2.38 2.32 2.01
Gram=2 2.76 2.78 2.77 2.55 2.52 2.70 2.71 2.74
Gram=3 2.73 2.69 2.63 1.81 1.83 2.30 2.34 2.44
Gram=4 2.87 2.80 2.81 2.02 2.06 2.57 2.56 2.66
Gram=5 2.86 2.87 2.83 2.45 2.50 2.85 2.89 2.86

Accuracy value
Gram=1 0.77 0.80 0.84 0.74 0.65 0.50 0.50 0.50
Gram=2 0.13 0.14 0.15 0.49 0.77 0.64 0.63 0.63
Gram=3 0.03 0.05 0.07 0.25 0.80 0.74 0.71 0.70
Gram=4 0.02 0.03 0.03 0.28 0.81 0.78 0.77 0.75
Gram=5 0.03 0.05 0.05 0.35 0.84 0.80 0.80 0.78

Standard error
Gram=1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Gram=2 0.03 0.03 0.03 0.04 0.03 0.06 0.05 0.06
Gram=3 0.02 0.02 0.02 0.05 0.04 0.05 0.05 0.05
Gram=4 0.01 0.02 0.02 0.05 0.05 0.04 0.03 0.04
Gram=5 0.01 0.01 0.01 0.04 0.03 0.04 0.04 0.04

Table 4.4 shows the accuracy and entropy of Cavnar and Trenkle [1994]’s n-gram

model with 64 VQ bins. Figure 4.8 compares the accuracies and entropies with the

accuracy is augmented by error bars. As we previously explained in Section 4.3.1.1,

we use the Unicode characters to represent the index of VQ bins. Comparing with

16 bins case, as the VQ bins increase to 64, the uni-gram accuracy varies because

most of the languages do not share the same bins, in another word, the character

set (only four languages do not share the same character set in 16 VQ bins). The

highest accuracy in the 64 VQ bins is uni-gram and the penalty is 10 rather than

the bi-gram in the 32 VQ bins. And also, the variation of language character set

shows more differences between languages. In this case, we conclude that the VQ

bins do impact on the accuracy and entropy, which is not surprising that uni-gram

gets a high accuracy. Thus, in the 64 bins case, we summarise the best performance

is the uni-gram with 10 penalty.
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Figure 4.9(a) shows the same diagram as 4.5 with uni-gram, 10 penalty result in 64

VQ bins. Figure 4.9(a) shows the colour map of languages and Figure 4.9(b) shows

the complete-linkage clustering dendrogram which is built based on d = distance/σ

and the d is normalized into [0, 1]. We can see 10 penalty shows more distance

variation than 32 bins with 100 penalty. Although thorough the language tree, we

find the distances between Czech and Polish, Spanish and Portuguese, Japanese and

Korean are not the closest, we still find the distance between Indo-Hittite languages

are closer than other languages.
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(a) Accuracy and entropy distribution for gram
= 1
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(b) Accuracy and entropy distribution for gram
= 2

1 5 10 50 100 400 500 1000

penalty

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

E
n
tr

o
p
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Entropy and average accuracy distribution (VQ bins = 64)

gram=3 width=0.57

(c) Accuracy and entropy distribution for gram
= 3
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(d) Accuracy and entropy distribution for gram
= 4
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Figure 4.8: Accuracy and entropy distribution for n-grams. VQ bin size is 64. The
x-axis is the penalty value. The left y-axis is the entropy value and the right y-axis is
the accuracy value. The error bar on the average accuracy is the mean ±2 standard
error which obtains about 95% confidence interval of the estimate of the mean.
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Colormap for 1-gram model

penalty =10, vq =64
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Figure 4.9: The 21 UNDHR audio language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 10 and the VQ bins is 64. Figure 4.9(a) shows the colour map of
the language distance variations and Figure 4.9(b) shows the language tree which
is built by the distances. The colour variation in Figure 4.9(a) shows the pairwise
distances between languages.
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4.3.6 Language distance results with 128 bins

Table 4.5: Entrpoy values which binwidth = 0.57 vq bin size = 128.

Entropy
Penalty value 1 5 10 50 100 400 500 1000
Gram=1 2.88 2.87 2.87 2.82 2.86 2.41 2.42 2.42
Gram=2 2.65 2.67 2.62 2.21 2.11 2.51 2.51 2.55
Gram=3 2.73 2.67 2.61 1.77 1.51 2.25 2.25 2.38
Gram=4 2.84 2.80 2.73 2.03 2.12 2.60 2.59 2.72
Gram=5 2.86 2.85 2.80 2.39 2.52 2.88 2.87 2.88

Accuracy value
Gram=1 0.54 0.61 0.70 0.80 0.64 0.32 0.27 0.19
Gram=2 0.04 0.05 0.05 0.24 0.71 0.68 0.68 0.66
Gram=3 0.03 0.03 0.04 0.27 0.79 0.73 0.73 0.71
Gram=4 0.05 0.05 0.06 0.33 0.84 0.80 0.79 0.77
Gram=5 0.05 0.07 0.08 0.39 0.85 0.80 0.80 0.80

Standard error
Gram=1 0.08 0.07 0.06 0.04 0.05 0.03 0.03 0.03
Gram=2 0.02 0.03 0.03 0.03 0.04 0.05 0.05 0.05
Gram=3 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.05
Gram=4 0.01 0.01 0.01 0.04 0.04 0.03 0.03 0.04
Gram=5 0.01 0.01 0.01 0.04 0.03 0.03 0.03 0.03

Table 4.5 shows the accuracy and entropy of Cavnar and Trenkle [1994]’s n-gram

model with 128 VQ bins. Figure 4.10 compares the accuracies and entropies, the

accuracy has error bars with mean ±2 standard error which gives an approximate

95% confidence interval. The distributions of accuracy and entropy are similar to

64 VQ bins. The penalty value has a greater impact on uni-gram as the increasing

of VQ bins. Also, as the VQ bin increase to 128, the distributions of accuracy and

entropy became similar between tri-gram, quad-gram and five-gram. It tells us as

the increasing of VQ bins, the impact of n-gram variation is less important compared

to the penalty and VQ bins. In the 128 VQ bin results, the uni-gram with 50 penalty

value is as the same accuracy as the five-gram with 400, 500 and 1000 penalty values.

Considering the entropy value, we conclude that the best performance in 128 is the

five-gram with 400 penalty.

Figure 4.11 shows the same diagram as 4.5 with five-gram, 400 penalty result
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in 128 VQ bins. Figure 4.11(a) shows the colour map of languages and Figure

4.11(b) shows the complete-linkage clustering dendrogram which is built based on

d = distance/σ and the d is normalized into [0, 1]. We can find as the penalty

grows up to 400, more language distances become unrelated. In 128 bins, we found

the linguistically closed languages are still not close to each other. However, we

find Polish is still always close to the part of Indo-Hittite languages like Russian,

Spanish, Swahili and Swedish. It shows that the language distance structure is not

highly impacted by the VQ bins if the number of bins contains sufficient information

about the speech. Thus, we can say that the VQ binsize impact the accuracy of

the n-gram language identification. Additionally, although Swahili is not an Indo-

European language, it shares phonetic rules like nasal assimilation (For example,

“good morning”, the “d” in “good” is dropped in a rapid speech in English) with

Spanish and other languages. However, Kučera and Monroe [1968] mentioned that

the rules which wildly occurs are useless in linguistic language classification, which

means the language grouping is based on unique rules in the linguistic area. Ac-

cording to Figure 2.7, there is no other Niger-Kordofanian language except Swahili

in the dataset. So, it is not surprising that Swahili is close to Russian and Polish as

they share part of phonemes and rules. And for the same reason, although Tamil

is Dravidian language, Swahili is Niger-Congo language and Vietnamese is Austric

language, they might share some common phoneme rules with Polish which are high

occurrences but not considered by linguists for language grouping (but the model

use them as the rules for language relationships).



CHAPTER 4. ALID (AUDIO LANGUAGE IDENTIFICATION) RESULTS 106

1 5 10 50 100 400 500 1000

penalty

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

E
n
tr

o
p
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Entropy and average accuracy distribution (VQ bins = 128)

gram=1 width=0.57

(a) Accuracy and entropy distribution for gram
= 1

1 5 10 50 100 400 500 1000

penalty

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

E
n
tr

o
p
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Entropy and average accuracy distribution (VQ bins = 128)

gram=2 width=0.57

(b) Accuracy and entropy distribution for gram
= 2
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(c) Accuracy and entropy distribution for gram
= 3
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(d) Accuracy and entropy distribution for gram
= 4
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Figure 4.10: Accuracy and entropy distribution for n-grams. VQ bin size is 128
The x-axis is the penalty value. The left y-axis is the entropy value and the right
y-axis is the accuracy value. The error bar on the average accuracy is the mean ±2
standard error which obtains about 95% confidence interval of the estimate of the
mean.
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Colormap for 5-gram model

penalty =400, vq =128
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Figure 4.11: The 21 UNDHR audio language distances results of bi-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 400 and the VQ bins is 128. Figure 4.11(a) shows the colour map of
the language distance variations and Figure 4.11(b) shows the language tree which
is built by the distances. The colour variation in Figure 4.11(a) shows the pairwise
distances between languages.
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4.3.7 Language distance results with 256 bins

Table 4.6: Entrpoy values which binwidth = 0.57 vq bin size = 256.

Entropy
Penalty value 1 5 10 50 100 400 500 1000
Gram=1 2.85 2.84 2.81 2.83 2.85 2.59 2.53 2.40
Gram=2 2.81 2.77 2.69 2.42 2.56 2.71 2.73 2.77
Gram=3 2.81 2.72 2.59 1.92 1.78 2.32 2.38 2.45
Gram=4 2.78 2.74 2.69 2.09 1.98 2.35 2.37 2.42
Gram=5 2.80 2.74 2.70 2.22 2.07 2.47 2.48 2.53

Accuracy value
Gram=1 0.29 0.31 0.36 0.78 0.59 0.17 0.16 0.11
Gram=2 0.11 0.12 0.13 0.20 0.57 0.57 0.58 0.56
Gram=3 0.08 0.08 0.09 0.21 0.61 0.60 0.59 0.54
Gram=4 0.11 0.12 0.14 0.33 0.65 0.61 0.60 0.58
Gram=5 0.10 0.11 0.13 0.36 0.67 0.61 0.60 0.57

Standard error
Gram=1 0.05 0.05 0.05 0.04 0.05 0.03 0.03 0.03
Gram=2 0.03 0.04 0.04 0.04 0.05 0.05 0.05 0.06
Gram=3 0.02 0.02 0.02 0.03 0.05 0.06 0.06 0.06
Gram=4 0.03 0.03 0.04 0.03 0.05 0.06 0.05 0.05
Gram=5 0.02 0.03 0.03 0.03 0.05 0.06 0.05 0.05

Table 4.6 shows the accuracy and entropy of Cavnar and Trenkle [1994]’s n-gram

model with 256 VQ bins. Figure 4.12 compares the accuracies and entropies, the

accuracy has error bars with mean ±2 standard error. The distributions of accuracy

and entropy are similar to the 128 VQ bins. The 256 VQ bins results provide

evidence that the penalty value has a greater impact on uni-gram as the increasing

of VQ bins. Also, as the VQ bin increase to 256, the distributions of accuracy and

entropy are similar between tri-gram, quad-gram and five-gram, which also proves

that as the increasing of the number of VQ bins, the impact of n-gram variation is

less important compared to the penalty and VQ bins. However, the accuracy of the

256 VQ bins is lower than the 128 VQ bins. It is because a large number of VQ bins

lose more information during transforming from MFCCs to Unicode characters and

can make the recognition accuracy worse. For example, either the VQ binsize is too

large or small, the n-gram might view the different phonemes as the same or view

the similar phonemes as different. In small binsize case, this might wrongly cause
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the long repeat strings in small binsize case. In large binsize case, making similar

phonemes different might change the rank of n-gram occurrences and decreasing the

accuracy. In the 256 VQ bin results, the unigram with 50 penalty value shows the

highest accuracy and the entropy is also relatively high. In this case, we conclude

that the best performance in 256 is the uni-gram with 50 penalty value.

Figure 4.13 shows the same diagram as 4.5 with uni-gram, 50 penalty result in 256

VQ bins. Figure 4.13(a) shows the colour map of languages and Figure 4.13(b) shows

the complete-linkage clustering dendrogram which is built based on d = distance/σ

and the d is normalized into [0, 1]. In 256 bins, we found the linguistically closed

languages are still not close to each other. Figure 4.13 shows that Polish is still close

to part of the Indo-Hittite languages like Russian and Swahili while the distance

variations are smaller than 64 bins.
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(a) Accuracy and entropy distribution for gram
= 1
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(b) Accuracy and entropy distribution for gram
= 2
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(c) Accuracy and entropy distribution for gram
= 3
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(d) Accuracy and entropy distribution for gram
= 4
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Figure 4.12: Accuracy and entropy distribution for n-grams. VQ bin size is 256
The x-axis is the penalty value. The left y-axis is the entropy value and the right
y-axis is the accuracy value. The error bar on the average accuracy is the mean ±2
standard error which obtains about 95% confidence interval of the estimate of the
mean.
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Colormap for 1-gram model

penalty =50, vq =256
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Figure 4.13: The 21 UNDHR audio language distances results of bi-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 50 and the VQ bins is 256. Figure 4.13(a) shows the colour map of
the language distance variations and Figure 4.13(b) shows the language tree which
is built by the distances. The colour variation in Figure 4.13(b) shows the pairwise
distances between languages.



CHAPTER 4. ALID (AUDIO LANGUAGE IDENTIFICATION) RESULTS 112

4.3.8 Conclusion

As expected, the ALID results are worse than the TLID results. That said, the

n-gram results are competitive with conventional ALID results, which is gratifying

since the method we are using here is comparatively simple compared to other

techniques. Figures 4.4 to 4.12 shows the distributions of entropy and accuracy

with n-grams and penalties. The error bars are small which implies that the system

is genuinely learning language distances rather than some proxy such as gender.

As we explained in Section 4.3.6, the rules which are used to build the linguistic

tree does not cover all of the language phoneme features. However, the n-gram

model tries to compare all of the similarity and differences between the languages.

It makes the language trees which are generated by the n-gram model looks random

if we compare it to the linguistic language tree in Figure 2.7. Comparing with the

TLID which uses the Unicode to represent the large character set, the IPA (Table

2.7) shows that ALID does not have thousands of phonemes variations like TLID

characters. So, the features of phonemes are less distinctive than characters and it

makes the distance entropy of ALID languages less than the TLID.

Looking into the entropies and colour maps, we find the large penalty improves

the accuracy but the distances between languages are far from each other. A high

value of distances matrix is not the best choice since we want the distances to show

the relationships between languages which means, high distance variations. And

also, a higher entropy may cause the low-order n-grams higher influence on distances

than high-order n-grams. As vector quantisation is a kind of lossy compressor, the

higher VQ bins, like 256, may not contain enough information for ALID even with

high penalties. Thus it is obvious that an appropriate number of VQ bins improve

the accuracy while making results worse if it is too small or too large.
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4.4 Language distances calculated by compressor

In this section, we compute the audio language distances by using compressors. We

applied the three compressors discussed in previous chapters: zip in 3.3.1.1, bzip in

3.3.2.1 and ppm in 3.3.3.1. We use the same feature extraction process as in 4.3

which vector quantizes the extracted MFCCs into Unicode characters. In zipping,

we also wonder whether VQ binsize impacts on the results. In this case, we examine

the compression results on 16, 32, 64, 128 and 256 bins, which is the same as n-gram

method.

To evaluate and describe the audio results, and also to allow easy comparison with

Cavnar and Trenkle [1994]’s ALID results, we use colour maps to show the pairwise

distances between audio languages. The distance relationships are displayed by

phylogenetic tree distances (explained in 3.2.2). Like audio Cavnar and Trenkle

[1994]’s method, we use entropy to describe the distance distributions. We compare

the recognition accuracy and entropy in each VQ bin case and compare the accuracy

and entropy by the same compressor but with different VQ bins in Section 4.4.7.

4.4.1 Methods

The zipping methods we used in ALId is the same as in TLID (See section 3.3).

However, there are slight differences in the data files, in other words, identical fea-

tures to TLID. As we want to use the same method as TLID, we need to transform

the waveform into strings. Thus, it is necessary to extract the waveform features by

MFCCs and also convert them into Unicode characters by vector quantisation. The

MFCCs features for zipping are generated by the same process as n-gram, which

the feature extraction is explained in Section 4.2.1 and the vector quantisation is

explained in Section 4.3.1.1. By applying Benedetto et al. [2002]’s zipping model, we

calculate the language distances that are the relative entropies between languages.

For these results, a 0 following the name of the compressor denotes the inter-

leaving status. For example, zip0, means non-interleaved string with zip compressor
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and ppm1 means an interleaved string with a ppm compressor.

4.4.2 Language distance results with 16 bins

This section describes the language distance distribution by using colour map, phylo-

genetic tree and histogram distribution. The number of VQ bins is 16. The de-

scription of phylogenetic tree is in Section 3.2.2 and the description of histogram

distribution is in Section 3.2.1.2. Figure 4.14 to 4.16 show the colour map of the

languages distances. Figure 4.17 to 4.19 show the dendrogram of language distances.

Table 4.7: Entropy(top) and accuracy(bottom) values with histogram binwidth =
0.57, vq binsize = 16.

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 1.54 1.35 0.74 0.89 0.98 1.57
Accuracy 1 1 1 1 1 1

Table 4.7 concludes the entropy values of the histogram distribution for ppm,

zip and bzip with interleaved and non-interleaved data. The results show the re-

cognition accuracies of all compressions are 100% and the highest entropy is 1.54.

According to Equation 3.10, the distances of the languages are calculated by ana-

lysing the compressed length of the strings. For measuring the distance of language

itself, the zipping method compresses one string with itself. So the ppm, bzip and

zip do not need to predict the characters which have never been seen before. Thus,

the compression entropy of language itself is always the smallest and the recogni-

tion accuracy is always 100%. For reference, a histogram with two equiprobable

bins would have an entropy of 1 bit whereas a 16-bin histogram with equiprobable

bins would have an entropy of 4 bits. Thus 1.54 bits indicates a very non-smooth

histogram (an all-or-nothing distance).

Figure 4.14 to Figure 4.19 show the colour map and dendrogram of the pair-

wise language distances for each compression with interleaved and non-interleaved

data. As we previously mentioned in Section 4.3.3, the 16 VQ bins characters exist

nearly all languages, which means the strings contain many continuing and repeated
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characters. So that the interleaving does not significantly impact on the entropy

for zip and ppm since for a fixed length of buffer string, zip (LZ77) sequentially

calculates the maximum repetitions and ppm uses the Markov chain for calculating

probabilities by predicting next character. Interleaving impacts on bzip is because

the Burrow-Wheeler transform sorts the characters by frequencies and the run-

length encoding shortens the length of the encoding. For example, supposing the

bzip blocksize is 6, there is a buffer string of a = “bnnaaa” and a buffer string of

b = “aaabbb”, the interleaved string of a and b is s = “banana|”, the “|” stands for

the end of buffer. For ppm and zip, they compress string by the order of characters.

However, bzip (See Section 3.3.2.1) firstly process “bananaa|” into “annb|aa” that

tends to put the same characters together. So for a fixed length of buffer string,

bzip gets better compressibility for languages shared longer repeated characters(like

“aa” and “nn” in the string s), which makes the interleaved results show a higher

entropy than the non-interleaved.

The dendrograms show a poor language grouping: the Indo-Hittite language

family is randomly located over the trees. Although Figure 4.17(b) shows Spanish

and Portuguese are close, it is linguistically impossible that they are the same origin

as Japanese. According to the colour map, it is also obvious that under the 16 VQ

bins, although the languages are close to themselves, the distance variations are not

easy to observe and the entropy is much lower than Cavnar and Trenkle [1994]’s

n-gram model.
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Figure 4.14: The 21 UNDHR audio languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 4.14(a) shows the
non-interleaved result and Figure 4.14(b) shows the interleaved result.
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Figure 4.15: The 21 UNDHR audio languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 4.14(a) shows the
non-interleaved result and Figure 4.15(b) shows the interleaved result.
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Figure 4.16: The 21 UNDHR audio languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 4.16(a) shows the
non-interleaved result and Figure 4.16(b) shows the interleaved result.
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Figure 4.17: The 21 UNDHR audio languages distances are computed by zip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 4.17(a) shows the
non-interleaved result and Figure 4.17(b) shows the interleaved result.
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Figure 4.18: The 21 UNDHR audio languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 4.18(a) shows the
non-interleaved result and Figure 4.18(b) shows the interleaved result.



CHAPTER 4. ALID (AUDIO LANGUAGE IDENTIFICATION) RESULTS 121

0 0.1 0.2 0.3 0.4 0.5

ppm no interleave, vq =16

cantonese
swahili
indonesian
$portuguese
tamil
english
italian
russian
vietnamese
german
swedish
farsi
mandarin
*japanese
hindi
*korean
hungarian
$spanish
+czech
arabic
+polish

(a) without interleave

0 0.1 0.2 0.3 0.4 0.5

ppm interleave, vq =16

$portuguese
tamil
*japanese
english
russian
italian
vietnamese
cantonese
farsi
swahili
indonesian
+polish
hindi
mandarin
hungarian
$spanish
arabic
*korean
swedish
german
+czech

(b) with interleave

Figure 4.19: The 21 UNDHR audio languages distances are computed by ppm and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 4.19(a) shows the
non-interleaved result and Figure 4.19(b) shows the interleaved result.
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4.4.3 Language distance results with 32 bins

This section displays the results with 32 VQ bins. Figure 4.20 to 4.22 show the

colour map of the languages distances and Figure 4.23 to 4.25 show the dendrogram

of language distances. The diagrams are produced the same as 16 VQ bins in Section

4.4.2 but with 32 VQ bins.

Table 4.8: Entropy values which histogram binwidth = 0.57 and the VQ binsize
= 32 .

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 0.99 1.48 0.72 1.05 1.06 0.79
Accuracy 1 1 1 1 1 1

Table 4.8 concludes the entropy values of the histogram distribution between

the pairwise distances of languages for ppm, zip and bzip with the interleaved and

the non-interleaved data. The results show the recognition accuracies of all com-

pressions are 100% and the highest entropy is ppm with interleaved, which is 1.48.

Figure 4.20 to Figure 4.25 show the colour map and dendrogram of the pair-wise

language distances for each compression (interleaved and non-interleaved). As in

the 32 VQ bins, languages share a part of the character set, the ppm and zip in-

terleaved entropy results are higher than the non-interleaved because of the unseen

characters. For bzip, in the fixed length of buffer string, the diversity of characters in

one language increased but the interleaved string might have longer repeated strings

than non-interleaved. For example, if there are two strings a =“aabbccddc” and b

= “abcccdeed”, the size of buffer string is 8. The interleaved string is i = “aaab-

bccc|cddedecd” and the non-interleaved string is n= “aabbccddc|abcccdeed”. Since

Burrow-Wheeler transform groups repeated characters, the interleaved string gets

better zipping performance. Thus, the entropy of non-interleaved results is higher

than the interleaved.

The colour maps perform more pairwise distance variations (the distance en-

tropy) than the 16 VQ bins, especially for Figure 4.21(b), the bzip interleaved case.

However, the dendrogram still describes it is a poor grouping. Figure 4.20(a) shows
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that for the interleaved and the non-interleaved data with zip, the Indo-Hittites are

randomly located in all subtrees. Also, there is no evidence that Japanese is close

to Korean. Figure 4.22(a) and 4.22(a) show the same problem. In this case, we can

conclude that zipping methods with 32 bins cannot show the relationships between

the languages.
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Figure 4.20: The 21 UNDHR audio languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 4.20(a) shows the
non-interleaved result and Figure 4.20(b) shows the interleaved result.
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Figure 4.21: The 21 UNDHR audio languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 4.20(a) shows the
non-interleaved result and Figure 4.21(b) shows the interleaved result.
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Figure 4.22: The 21 UNDHR audio languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 4.22(a) shows the
non-interleaved result and Figure 4.22(b) shows the interleaved result.
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Figure 4.23: The 21 UNDHR audio languages distances are computed by zip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 4.23(a) shows the
non-interleaved result and Figure 4.23(b) shows the interleaved result.
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Figure 4.24: The 21 UNDHR audio languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 4.24(a) shows the
non-interleaved result and Figure 4.24(b) shows the interleaved result.
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Figure 4.25: The 21 UNDHR audio languages distances are computed by ppm and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 4.25(a) shows the
non-interleaved result and Figure 4.25(b) shows the interleaved result.
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4.4.4 Language distance results with 64 bins

This section displays the results with 64 VQ bins. Figure 4.26 to 4.28 show the

colour map of the languages distances and Figure 4.29 to 4.31 show the dendrogram

of language distances. The diagrams are produced the same as 16 VQ bins in Section

4.4.2 but with 64 VQ bins.

Table 4.9: Entropy values which histogram binwidth = 0.57 and the VQ binsize
= 64 .

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 1.20 1.40 0.72 1.16 0.69 1.48
Accuracy 1 1 1 1 1 1

Table 4.9 concludes the entropy values of the histogram distribution between the

pair-wise distances of languages for ppm, zip and bzip with interleaved and non-

interleaved data. The results show the recognition accuracies of all compressions

are 100% and the highest entropy is bzip with interleaved, which is 1.48. Figure

4.26 to Figure 4.31 show the colour map and dendrogram of the pair-wise language

distances for each compression (interleaved and non-interleaved). As the 64 VQ bins

case has a larger character set, the ppm and zip methods get a higher entropy for

interleaved than non-interleaved. And for 64 bins, bzip also perform a higher entropy

for interleaved data than non-interleaved. This tells us the repeated characters do

not have a high occurrence so bzip has similar compressibility to ppm and zip.

The colour maps of Figure 4.26 to 4.28 perform some distances variation like 32

VQ bin case. We still can find languages are close to themselves but the relationships

with other languages are also not so clear. The structure helps us to find the

relationships but the Indo-Hittite languages are still randomly in different subtrees.

Since we can not conclude the language relationships based on the 64 VQ bins, we

then focus on 128 VQ bins.
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Figure 4.26: The 21 UNDHR audio languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 4.26(a) shows the
non-interleaved result and Figure 4.26(b) shows the interleaved result.
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Figure 4.27: The 21 UNDHR audio languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 4.26(a) shows the
non-interleaved result and Figure 4.27(b) shows the interleaved result.
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a
ra

b
ic

p
o

rt
u

g
u

e
s
e

c
a

n
to

n
e

s
e

c
z
e

c
h

e
n

g
lis

h

fa
rs

i

g
e

rm
a

n

h
in

d
i

h
u

n
g

a
ri
a

n

in
d

o
n

e
s
ia

n

it
a

lia
n

ja
p

a
n

e
s
e

k
o

re
a

n

m
a

n
d

a
ri
n

p
o

lis
h

ru
s
s
ia

n

s
p

a
n

is
h

s
w

a
h

ili

s
w

e
d

is
h

ta
m

il

v
ie

tn
a

m
e

s
e

arabic
portuguese
cantonese

czech
english

farsi
german

hindi
hungarian

indonesian
italian

japanese
korean

mandarin
polish

russian
spanish
swahili

swedish
tamil

vietnamese
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) without interleave
ppm interleave, vq =64

a
ra

b
ic

p
o

rt
u

g
u

e
s
e

c
a

n
to

n
e

s
e

c
z
e

c
h

e
n

g
lis

h

fa
rs

i

g
e

rm
a

n

h
in

d
i

h
u

n
g

a
ri
a

n

in
d

o
n

e
s
ia

n

it
a

lia
n

ja
p

a
n

e
s
e

k
o

re
a

n

m
a

n
d

a
ri
n

p
o

lis
h

ru
s
s
ia

n

s
p

a
n

is
h

s
w

a
h

ili

s
w

e
d

is
h

ta
m

il

v
ie

tn
a

m
e

s
e

arabic
portuguese
cantonese

czech
english

farsi
german

hindi
hungarian

indonesian
italian

japanese
korean

mandarin
polish

russian
spanish
swahili

swedish
tamil

vietnamese
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) with interleave

Figure 4.28: The 21 UNDHR audio languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 4.28(a) shows the
non-interleaved result and Figure 4.28(b) shows the interleaved result.
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Figure 4.29: The 21 UNDHR audio languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 4.30(a) shows the
non-interleaved result and Figure 4.30(b) shows the interleaved result.
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Figure 4.30: The 21 UNDHR audio languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 4.30(a) shows the
non-interleaved result and Figure 4.30(b) shows the interleaved result.
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Figure 4.31: The 21 UNDHR audio languages distances are computed by ppm and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 4.31(a) shows the
non-interleaved result and Figure 4.31(b) shows the interleaved result.
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4.4.5 Language distance results with 128 bins

This section displays the results with 128 vector quantisation bins. Figure 4.32 to

4.34 show the colour map of the languages distances. Figure 4.35 to 4.37 show the

dendrogram of language distances. The diagrams are produced the same as 16 VQ

bins in Section 4.4.2 but with 128 VQ bins.

Table 4.10 concludes the entropy values of histogram distribution between pair-

wise distances of languages for ppm, zip and bzip with interleaved and non-interleaved

data. The results show the recognition accuracies of all compressions are 100% and

the highest entropy is zip with interleaved, which is 1.49. Like section 4.4.4, the

entropy results of interleaved are all higher than non-interleaved because of the big

size of the character set.

Table 4.10: Entropy values which histogram binwidth = 0.57 and the VQ binsize
= 128 .

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 0.65 1.41 0.76 1.49 1.02 1.20
Accuracy 1 1 1 1 1 1

Figure 4.32 to Figure 4.37 show the colour map and the dendrogram of the pair-

wise language distances for each compression (interleaved and non-interleaved). For

colour maps, Figure 4.32 to Figure 4.34 shows all zip methods get 100% accuracy

that correspond to the Table 4.10. However, it is still hard to find the language

distances relationships between languages. So we investigate the dendrogram in

Figure 4.35, 4.36 and 4.37. Although the entropies of 128 VQ bins show that all

zip methods compress languages based on the character variation instead of long,

repeated characters, the language is still not linguistically well grouped as what we

expect. In Figure 4.35(a), it is still hard to find the language classes. Japanese

and Korean are related to different Indo-Hittite languages rather than each other.

The Indo-Hittite languages are not close to each other and randomly located in

the tree. Also, for Figure 4.35(b), there is no evidence in linguist and geography

that Swedish is close to Japanese rather than other Indo-Hittite languages. Spanish
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and Portuguese are in different language subtrees which means, their distances are

far more than most of the distances between other languages. Also there is no

clear background truth can claim that Polish and Korean have the same origin.

Figure 4.36(a) shows the same problem that the distances between Spanish and

Portuguese describe that bzip with interleaved languages in 128 VQ bins is a bad

language classification in Indo-Hittite languages. For ppm, Figure 4.37(b) describes

that Japanese is close to Portuguese rather than Korean. Also, there is no Indo-

Hittite language is well grouped into one subtree except English, Italian and Russian.

However, the language distance between Polish and Czech is far from each other

than other languages which is a similar problem as Figure 4.35(b). Looking into

the interleaved case for ppm (Figure 4.37(a)), although the Portuguese and Polish

are close since they are all Indo-Hittite language, Spanish should not be close to

Japanese and Hungarian rather than Portuguese.
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Figure 4.32: The 21 UNDHR audio languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 4.32(a) shows the
non-interleaved result and Figure 4.32(b) shows the interleaved result.
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Figure 4.33: The 21 UNDHR audio languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 4.32(a) shows the
non-interleaved result and Figure 4.33(b) shows the interleaved result.



CHAPTER 4. ALID (AUDIO LANGUAGE IDENTIFICATION) RESULTS 141

ppm no interleave, vq =128
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Figure 4.34: The 21 UNDHR audio languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 4.34(a) shows the
non-interleaved result and Figure 4.34(b) shows the interleaved result.
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Figure 4.35: The 21 UNDHR audio languages distances are computed by zip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 4.35(a) shows the
non-interleaved result and Figure 4.35(b) shows the interleaved result.
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Figure 4.36: The 21 UNDHR audio languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 4.36(a) shows the
non-interleaved result and Figure 4.36(b) shows the interleaved result.
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Figure 4.37: The 21 UNDHR audio languages distances are computed by ppm and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 4.37(a) shows the
non-interleaved result and Figure 4.37(b) shows the interleaved result.
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4.4.6 Language distance results with 256 bins

This section displays the results with 256 vector quantisation bins. Figure 4.38 to

4.40 shows the colour map of the languages distances. Figure 4.41 to 4.43 shows the

dendrogram of language distances. The diagrams are produced the same as 16 VQ

bins in Section 4.4.2 but with 256 VQ bins.

Table 4.11: Entropy values which histogram binwidth = 0.57 and the VQ binsize
= 256 .

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 0.64 1.59 1.33 1.77 1.29 1.09
Accuracy 1 1 1 1 1 1

Table 4.11 concludes the entropy values of the histogram distribution between

the pair-wise distances of languages for ppm, zip and bzip with interleaved and non-

interleaved data. The results show the recognition accuracies of all compressions are

100% and the highest entropy is zip with interleaved, which is 1.77. The ppm and

zip produce a higher entropy in interleaved case but bzip with non-interleaved result

shows a higher entropy than interleaved. As we have mentioned in ALID n-gram

results (Section 4.3.7), VQ is a lossy compressor which cause 256 VQ bins loses

more information. In zipping, it may cause the languages to share more Unicode

characters with other languages. As we previously mentioned in 32 VQ bins (Section

4.4.3), the bzip uses BWT and RLE to compress the duplicated characters which

decrease the entropy value of the interleaved result.

Figure 4.38 to Figure 4.43 show the colour map and dendrogram of the pair-

wise language distances for each compression (interleaved and non-interleaved). For

colour maps, Figure 4.38 to Figure 4.40 shows all zip methods get 100% accuracy

that correspond to the Table 4.11. For zip diagrams (Figure 4.38), both interleaved

and non-interleaved results tell that Polish and Korean are close to Arabic and

also Polish and Korean are close to each other. As we know in the language tree,

the Indo-Hittite languages should have closer distances, thus there is no linguistic

reason that Polish is far from other Indo-Hittite languages but is close to Korean. It
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proves that the 256 VQ bins lose information and confuses the language classification

results. Since the other language distances are not easy to observe, we investigate

the dendrogram in Figure 4.41, 4.42 and 4.43.

In Figure 4.41(a), it is still hard to find the language classes. The distance

relationship between Polish, Korean and Arabic is also mentioned and prove that zip

does not group language properly. Also, this problem shows a bad language group

and make results unreliable in Figure 4.39(a), 4.39(b), 4.40(a) and 4.40(a) since

there is no evidence in linguistics and geography that Swedish is close to Japanese

rather than other Indo-Hittite languages. For this reason, we can conclude that 256

is not appropriate to find the language relationships.
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Figure 4.38: The 21 UNDHR audio languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 256. Figure 4.38(a) shows the
non-interleaved result and Figure 4.38(b) shows the interleaved result.
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Figure 4.39: The 21 UNDHR audio languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 256. Figure 4.38(a) shows the
non-interleaved result and Figure 4.39(b) shows the interleaved result.
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ppm interleave, vq =256
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Figure 4.40: The 21 UNDHR audio languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 256. Figure 4.40(a) shows the
non-interleaved result and Figure 4.40(b) shows the interleaved result.
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(b) with interleave

Figure 4.41: The 21 UNDHR audio languages distances are computed by zip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 256. Figure 4.41(a) shows the
non-interleaved result and Figure 4.41(b) shows the interleaved result.
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(b) with interleave

Figure 4.42: The 21 UNDHR audio languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 4.18(a) shows the
non-interleaved result and Figure 4.18(b) shows the interleaved result.
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(b) with interleave

Figure 4.43: The 21 UNDHR audio languages distances are computed by ppm and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 4.19(a) shows the
non-interleaved result and Figure 4.19(b) shows the interleaved result.
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4.4.7 Conclusion

Figure 4.44 compares the entropy and the accuracy of zipping methods. The error

bars are not displayed because the accuracies are all 100%. The reason that ppm

shows a lower entropy in the 32 VQ bins than in the 16 VQ bins is it can predict the

“escape” characters. As the compressor use the fixed length of blocksize to control the

length of the strings for zipping, the “escape” characters mean the characters which

are not shown in the first blocksize but shown in the next one. If the compressor

does not know the characters, it has to use more space in the compressed string to

describe them. As we know the 16 VQ bins case contains a lot of long repeated

characters, the character set in two blocksize might be very different - the amount

of the “escape” characters might be high. The 32 VQ bins case has more variant

in characters thus it has shorter long repeat character. It means the number of the

“escape” characters is less than the 16 VQ bins and the strings become predictable.

From the 32 VQ bins to the 64 VQ bins, the entropy increases is because the size of

the character set increases. As the increasing of the VQ binsize, the differences in and

between the languages become large. It makes the distances between the languages

large and worse the compressibility - a higher entropy of the language distance

distribution. The ppm interleaved results perform better because the interleaving

solves the problem that the non-interleaving faces - the “escape” characters.

The entropy distribution of the ppm shows that the compressibility of the ppm is

stable if it can predict all characters at the very first time. For the zip method, the

LZ77 simply compresses the duplicate characters which are neighbours. That means

the zip is not good at dealing with the irregular string, for example, the interleaved

string which does not contains so many repeated and connected characters. That is

why the entropy of the zip with interleaved method is larger than the zip with non-

interleaved. For the non-interleaved result, the entropy goes high because the 256

VQ bins case has more variant of characters and fewer long repeated characters. The

interleaved results show more character variations inside the buffer string and the

entropies increases along with the number of VQ bins. Since bzip is over-sensitive to



CHAPTER 4. ALID (AUDIO LANGUAGE IDENTIFICATION) RESULTS 154

long repeated characters, the 16 VQ bins get a high entropy than the 64 VQ bins in

the non-interleaving result. For the 32 VQ bins, as it still contains a lot of repeated

characters inside the language and more character variation between languages, it

shows a higher entropy than the 16 VQ bins. The 64 VQ bins show the impact of

larger characters and less repeated characters. The 32 VQ bins shown in interleaved

result also describe the impact of repeated characters inside the language and the

differentiation of the characters between the languages. The entropy decreased in the

128 and the 256 VQ bins in the interleaved result is because of the loss of information

as some languages might share more characters. The interleaved characters will be

sorted by BWT and transformed into long repeated characters and re-calculated by

the run-length encoding. Thus, the Bzip model performs better compressibility and

views these languages as similar to each other.

According to the zipping results, we can see the audio features are different

from the text since it contains long repeat Unicode character strings which are

explained in Section 4.4.2. Not like n-gram model, zipping cannot identify the

internal relationships of those long strings and simply ignore them for a better

compression performance. Also, the blocksize of zipping limits the ability to predict

the unknown characters. Thus, we can say that the differences between the ALID

languages are not distinctive. However, it still can build the language tree based on

the distance matrix. So we are going to compare the highest entropy - the ppm tree

with the linguistic tree and the TLID tree in Chapter 6.
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Figure 4.44: Accuracy and entropy distribution for zip, ppm and bzip with inter-
leaved and non-interleaved data. The x-axis is the number of VQ bins from 16 to
256. The left y-axis is the entropy value and the right y-axis is the accuracy value.
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4.5 CK distance using MPEG

4.5.1 Introduction

In this section, we will discuss the language distance, proposed by Campana and

Keogh [2010]: the CK-distance. The technical details of the CK-distance are de-

scribed in Section 4.5.2, so just a brief explanation is given here. The main question

discussed by Campana and Keogh [2010] is whether it is possible to find similarities

by using video compressors, such as MPEG. Campana and Keogh [2010] use CK

distance for texture analysis based on five different features in the psychology of

perception: coarseness, contrast, directionality, line-likeness and roughness, which

is proposed by Tamura et al. [1978]. They claim CK-distance performs high recogni-

tion accuracy in species classification and breast cancer identification. The features

for MPEG can be global scalars and global vectors such as energy, entropy, and

wavelet coefficients. Like bzip, zip and ppm, the image compressor for CK-distance

mainly works on the similarities of two images. Image compressors reduce the size of

images by creating a “video” and compare to the size of original images. Campana

and Keogh [2010] claims two images are similar if the compressor produces a smaller

size of the file which can be viewed as a significant similarity.

Base on Campana and Keogh [2010]’s idea of image classification, we come up

with an idea that if it is possible to apply the same method for audio language

identification. And in fact, Hao et al. [2012] proposed that CK-distance also works

for insect sounds classification by using MPEG. In that case, we can create spectro-

grams for the waveform. By using the video compressor, we wonder if CK-distance

can find the similarities between the languages.

4.5.2 Methods

Figure 4.45 explains the procedure of CK distance. The procedure is similar to zip,

bzip and ppm but we use waveform instead of MFCCs for generating the spectro-
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grams to show the spectral characteristics varies during the time period. We also

introduce 10-fold cross validation and use the UNDHR 21 language corpus, where

the sampling frequency rate is 8kHz. The waveforms are chunked into subsignal

by 0.5 seconds for each spectrum. The waveforms are converted into spectrograms

Si, i ∈ (1...n) by using the short-time Fourier transform, which is a sequence of

short overlapping DFTs, see Equation 4.7:

S(m, i)
∆
= |DFTy(k)xmk|, 0 ≤ m < 2M − 1, 0 ≤ i < L (4.7)

S(m, i) means the spectrogram matrix of signal sequence x(k). 2M − 1 means the

number of subsignals and the length of x(k) is L. w(k) is the windowing function

which in our case is the Hamming window for DFT (Discrete Fourier Transform).

The purpose of using the window function w(k) is to reduce frequency domain

leakage [Schilling and Harris, 2012]. The concepts of the Hamming window and

DFT are described in Section 4.2.

After concatenating Si and Sj, i, j ∈ (1...n), the combined spectrograms are

compressed by the MPEG compressor. The sizes of the compressed files are labelled

as l(mij), i, j ∈ (1...n). The CK-distance we used in this section is in equation 4.8.

dab =
m(a|b) +m(b|a)

m(a|a) +m(b|b)
− 1 (4.8)

The distance dab means the difference between image a and b and m(a|b) stands for

the size of compressed images a and b but image b is attached after image a.

The generated CK-distances are regarded as the distances, or difference, between

languages. To look into the difference between languages and ease to compare with

n-gram, bzip, zip and ppm results, we use a colour map, a phylogenetic like tree and

a histogram distribution to explain the CK-distance result.
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Frequency =8000HZ
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L(M11)+L(M22)
L(M12)+L(M21)
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MPEG Compressor

L(M11) L(M12) L(M21) L(M22)

1pitch = 0.5seconds

Figure 4.45: CK-distance procedure. This model introduces MFCC features to
generate a spectrogram and calculate the CK-distance between spectrogram images.
The UNDHR 21 languages datasets are used for both training and testing.

4.5.3 CK-distance results

This section describes the language distances via CK-distance. The language dis-

tances are represented by a colour map, a phylogenetic like tree and a histogram

distribution. The colour map displays the colour density of distance. Figure 4.46

shows the colour map of the languages distances which displays the data as an im-

age that uses the full range of RGB colors. The description of phylogenetic tree is

in Section 3.2.2 and the description of histogram distribution is in Section 3.2.1.2.

Figure 4.47 shows the phylogenetic like dendrogram of language distances.

Based on the linguistic language tree in Section 2.7, we can define three language
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subsets - Spanish and Portuguese, Korean and Japanese, Czech and Polish. In the

colour maps, we denote the Spanish and Portuguese by pink, Korean and Japanese

by blue and Czech and Polish by red. In the dendrogram, we denote Spanish and

Portuguese as symbol “$”, Korean and Japanese as symbol “∗” and Czech and Polish

as symbol “+”.

Figure 4.48 shows the histogram distribution for MPEG. The entropy value of

the histogram distribution is 0.71. The bin width of the histogram is also calculated

the same as previous chapters that bin width is w/σ, which is previously discussed

in Section 3.2.1.2. It means the distances shown in the diagram are distance/σ.
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Figure 4.46: The 21 UNDHR audio languages CK-distances calculates the size
of compressed images using MPEG. The distances shown in the colour map are
distance/σ and are normalized into [0, 1].

4.5.4 Conclusion

This section discusses whether we can use CK-distance as a language distance. The

CK-distance requires the use of MPEG to compress the images and to estimate the

size of the compressed image files L(Mi), i ∈ (1...n). The CK-distance measures
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Figure 4.47: The 21 UNDHR audio languages CK-distances calculates the size of
compressed images using MPEG and displayed by the dendrogram. The distances
shown in the diagrams are distance/σ and are normalized into [0, 1]. The lengths of
the branches between the points correspond to the distances between the languages.

differences in L(Mi) and we describe the CK-distance matrix using colour maps and

tree distance structures.

We can see that the MPEG gets 100% in language classification and can find the

spectrograms that are the same as itself. Thus, MPEG works for identifying different

languages and can tell which language it is under the condition that the language

is collected in the database. However, we can see that the distances between the

different languages shown in Figures 4.46 and 4.47 slightly differ. Figure 4.48 shows

the histogram of language distances distribution. The entropy of histogram distri-

bution of CK-distance is 0.71, which is much lower than Cavnar and Trenkle [1994]’s

n-gram model (Section 4.3) and other compressor. We can find this is another “all-

or-nothing” classifier. Considering the time period of the MPEG compression, it is

also not suitable for fast language identification in the emergency case. Thus, the

MPEG is not fit for our requirement.
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Figure 4.48: The 21 UNDHR audio languages CK-distances calculate the size of
compressed images using MPEG. The histogram shows the distance distribution of
languages.
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4.6 Conclusion

In this chapter, we examine three methods for ALID. We might expect that, for

audio signals, the best performance would be obtained with methods that work for

the text domain. In fact, we find the evidence that the benchmark method in text

language classification, the Cavnar and Trenkle [1994]’s n-gram method, also works

well in audio for language identification. Of course one has to find an acceptable

audio representation (we use MFCCs) and quantise it, but otherwise it works. For

the language relationships, we can see the trees which are built by the n-gram and

the zipping are not similar to the linguistic language tree. As we explained in

Section 4.3.6, the linguistic tree is not built by all linguistic rules and the linguists

view some unique rules more important than others. However, we still can find

some Indo-European languages are close to each other. We are going to talk about

the similarity and differences of the ALID languages trees, the TLID trees, and the

linguistic language trees in Chapter 6.

A further advantage of the n-gram techniques arises from its independence of

phonemes. As the vector quantised MFCCs contains long repeated characters, it

is different from text languages since text are already vector quantised by Unicode

and has a huge variety in character set. Both zipping and CK-distance by MPEG

do not concern the internal relationships between those characters, which make the

entropy of zipping and CK-distance lower than n-gram. As the CK-distance is

another “all-or-nothing” methods, and also the text is vector quantised by Unicode

and not suitable for image compression, we are not going to further investigate the

MPEG results in TLID and VLID.



Chapter 5

VLID (Video Language

IDentification) results

5.1 Introduction

This chapter is going to apply Cavnar and Trenkle [1994]’s n-gram model and zipping

methods to the VLID system. As previous chapters have been shown that both n-

gram model and zipping methods have high recognition accuracies and entropies,

by applying these methods to video data, we expect the languages can be identified

and also show the distance relationships between each other. What we expect is, in

VLID, the Cavnar and Trenkle [1994]’s n-gram model still gets a higher accuracy

and entropy than zipping methods.

The database we used in this chapter is the Universal Declaration of Human

Rights (UNDHR) dataset, which was recorded by Jacob Newman. The database

records English, Arabic and Mandarin speakers who read the UNDHR. A detailed

description of the video datasets is presented in Section 2.6.

163



CHAPTER 5. VLID (VIDEO LANGUAGE IDENTIFICATION) RESULTS 164

5.2 Cavnar and Trenkle’s n-gram model

This section will apply Cavnar and Trenkle [1994]’s n-gram model to the VLID

system. Like Cavnar and Trenkle [1994]’s n-gram model work on ALID, in VLID,

the dataset is not sequenced data, such as strings. The extracted AAMs are vectors

that contain shape and appearance features, so the n-gram model cannot be used

directly for calculating the frequency of AAM features.

Figure 5.1 details the procedure of Cavnar and Trenkle [1994]’s n-gram model

working on video AAM features. First, the system vector-quantises the AAMs into

16, 32, 64, 128, 256 bins. Each bin is represented by a character so the sequence of

bins is then written as a sequence of characters into text files.

We use 10-fold cross-validation in the experiment. The vector-quantised AAMs

of each language were chunked into 10 folds, with 9 folds for training the n-gram

frequency models and 1 fold for testing these models. We compare the distance

between the training frequency model and the testing frequency model and used the

difference in rank as the n-gram distance. If the n-grams do not exist in the training

or testing frequency vector, we charge a maximum penalty of 400 as their distance.

As with ALID, we examine the effect of the penalty parameter.

Training
documents

Tokenization
and generate
all possible
n-grams. Count
n-grams frequency
and sort them

N-gram frequency
documents for training

N-gram frequency
documents for testing

Training AAMs

Testing AAMs

Tr1Tr2Tr3 Trn
VQ

VQ

...

Te1Te2Te3 Ten...

Measure distance
between training
and testing

Classify languages
by minimum
distance

Testing
documents

Figure 5.1: Cavnar and Trenkle [1994]’s n-gram frequency model for UNDHR video
dataset provided by Newman [2011].
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5.2.0.1 AAM (Active Appearance Models)

The active appearance model (AAM) is an extension of the active shape model

(ASM) and is used to interpret images as a set of parameters without the loss of

important information [Cootes et al., 2001b]. The ASM concentrates on modelling

the shape of images while the AAM tries also to generate and interpret the appear-

ance represented by texture and colours. Both AAMs and ASMs can be used for

high-level interpretation of images, as well as image reconstruction.

To enhance the flexibility of models, AAMs and ASMs generate a ‘shape-free’

appearance by pre-defining all images in the training set to have the same shape. In

this project, we use labels, or ‘landmarks’, to constrain the boundary of the shape

and the landmarks can be adapted in all images.

To generate a robust and flexible ASM model, the training set P = {p1, p2, p3, ...,

pn, n ∈ N
}

are generated from images set N by

pn = P + Eb, n ∈ N (5.1)

where pn is the training examples and pn could be the shape or colour. P is the

means of the training examples. E is the matrix of orthogonal modes of the training

set and b is the weight parameters of eigenvectors E used for controlling shape and

texture. The parameters in b are initialised to 0 and only change one at a time with

±3 standard deviations from the means P .

In shape part, the training set P (n) is generated by an in-plane rotation σ, a

scaling S and a translation T = (Tx, Ty). The rotated scaling (Sσx, Sσy) is determined

by rotation and scaling, which is Srx = (S cos(σ − 1)) and Sry = S sinσ. Assuming

the transpose matrix V = (Srx, Sry, Tx, Ty) ≈ 0 for identity transformation, then the

corresponding shape set PV+δV (n) is close to PV (PδV (n)) [Cootes et al., 2001b].

In appearance part, the training set P is generated by a scaling S and an offset

F to the intensities, which means P (n) = (S + 1)P (n) + F1, 1 stands for a unit

vector. Assuming V = {S, F} is the vector of transformation and S ≈ 0 and F ≈ 0,
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then the appearance set PV+δV (n) ≈ PV (PδV (n))[Cootes et al., 2001b].

Since the shape and appearance are trained separately, AAM applies PCA to

overcome the problem of combining shape and appearance parameters and reducing

the dimension. To reduce the unbalance significance between shape and appearance,

Cootes et al. [2001b] mentions that it is necessary to normalise both the shape and

appearance vectors.

5.2.1 Language distance results with 16 bins

In this section, we examine the results of Cavnar and Trenkle [1994]’s model applied

to video. As we previously said, the facial features are all converted into AAMs and

the AAMs are all converted into symbols (Unicode characters). By using Cavnar and

Trenkle [1994]’s n-gram model, the differences of n-grams frequencies can determine

the differences between languages. We add a penalty to describe the impact of the

n-gram which is not been seen in the other languages.

Table 5.1 to 5.5 show the entropy and accuracy of each penalty. We use the 16,

32, 64, 128 and 256 VQ bins in this experiment. The accuracy and its standard error

are computed as the mean and standard error of the ten test accuracies from each

folder using an n-gram classifier trained on the training data in each fold. Each fold

also produces a distance matrix which are the distances between the test languages

in that fold as measured by the n-gram method trained on each training fold. The

mean of these distances is summarised by the entropy. We can find the accuracy of

identification language is always low by using n-gram.

Table 5.1 shows the accuracy and entropy of Cavnar and Trenkle [1994]’s n-gram

model with 16 VQ bins. Figure 5.2 compares the accuracies and entropies, the

accuracy has error bars ±2 standard error. Considering the highest accuracy and

entropy, we find the best performance is the tri-gram (Figure 5.2(c)), whose penalty

is 5. For uni-gram with 16 VQ bins, there are only 16 n-grams and these three

languages share the same character set. So the accuracy is the same for all penalties.



CHAPTER 5. VLID (VIDEO LANGUAGE IDENTIFICATION) RESULTS 167

Table 5.1: Entropy(top) and accuracy(bottom) values with histogram binwidth =
1.93, vq bin size = 16.

Penalty value
1 5 10 50 100 400 500 1000

Entropy value
Gram=1 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25
Gram=2 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.01
Gram=3 0.97 1.14 0.97 1.25 0.97 0.97 0.97 0.97
Gram=4 1.25 0.97 0.83 0.97 0.97 0.83 1.25 0.83
Gram=5 1.25 0.97 1.25 0.97 1.14 0.83 1.25 0.83

Accuracy value
Gram=1 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Gram=2 0.33 0.33 0.33 0.33 0.30 0.30 0.30 0.30
Gram=3 0.37 0.37 0.33 0.27 0.27 0.30 0.33 0.30
Gram=4 0.20 0.20 0.23 0.17 0.20 0.20 0.20 0.23
Gram=5 0.37 0.37 0.33 0.20 0.20 0.27 0.27 0.27

Standard error
Gram=1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Gram=2 0.03 0.03 0.03 0.03 0.06 0.06 0.06 0.06
Gram=3 0.07 0.07 0.03 0.03 0.03 0.06 0.07 0.12
Gram=4 0.15 0.15 0.13 0.07 0.06 0.10 0.10 0.07
Gram=5 0.09 0.09 0.09 0.06 0.00 0.03 0.03 0.03

However, unlike ALID results, there are only three languages in video dataset. The

histogram bin width is based on Equation 3.5 which means it is inversely related to

the number of distance results. For this reason, the binwidth value of histogram is

larger than the TLID and the ALID. A large histogram binwidth means the language

distances can only be binned into a small number of bins - the worst case is 2 bins.

This indicates a very non-smooth histogram, which means low entropy. Additionally,

the long repeated characters in the TLID are longer than the ALID. So, as we use

the 10-fold cross validation, after the data are split into 10 parts, it is possible that

the strings for training are different from the strings for testing. This causes the

distances of languages to vary as the rank of the n-gram occurrences in the training

and testing are different. AS the entropy is the average of the language distances, it

is not surprising that the entropy performs random in the plot. For accuracy, since

one is guessing randomly between the three video languages then the accuracy is 1
3
,
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we conclude that the n-gram does not work on VLID for 16 VQ bins.

Figure 5.3 visualizes the tri-gram, 5 penalty result in 16 VQ bins. Figure 5.3(a)

shows the colour map of languages and Figure 5.3(b) shows the dendrogram which

is built based on d = distance/σ where d is normalized into [0, 1]. The dendrogram

is built based on complete-linkage clustering (explained in Section 3.2.2). However,

Figure 5.3(a) shows that English is more closer to Arabic rather than itself - a bad

language identification. Since there is no clue in linguistic language tree to present

the relationships between English, Mandarin and Arabic, we compare the distances

with ALID result with 16 bins. We can find the distances between Arabic and

English in Figure 5.3(b) are closer than Arabic and Mandarin while Arabic is more

closer to Mandarin in ALID with the same VQ bins (See Figure 4.5(b)). In that

case, we think the 16 VQ bins case still performs poorly in VLID.
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= 4

1 5 10 50 100 400 500 1000

penalty

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

E
n
tr

o
p
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Entropy and average accuracy distribution (VQ bins = 16)

gram=5 width=1.93

(e) Accuracy and entropy distribution for gram
= 5

Figure 5.2: Accuracy and entropy distribution for n-grams. VQ bin size is 16. The
x-axis is the penalty value. The left y-axis is the entropy value and the right y-axis
is the accuracy value.
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Figure 5.3: The video language distances results of tri-gram for English, Mandarin
and Arabic. The distances shown in the diagrams are distance/σ and are normalized
into [0, 1]. The penalty value is 5 and the VQ bins is 16. Figure 5.3(a) shows the
colour map of the language distance variations and Figure 5.3(b) shows the language
tree which is built by the distances. The colour variation in Figure 5.3(a) shows the
pairwise distances between languages.
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5.2.2 Language distance results with 32 bins

Table 5.2: Entropy(top) and accuracy(bottom) values with histogram binwidth =
1.93, vq bin size = 32.

Penalty value
1 5 10 50 100 400 500 1000

Entropy value
Gram=1 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14
Gram=2 1.14 0.97 0.97 0.97 1.25 0.97 0.97 1.31
Gram=3 0.97 0.97 1.01 0.83 0.83 0.83 1.25 0.83
Gram=4 0.97 0.97 0.97 0.97 1.25 0.83 1.14 0.83
Gram=5 0.97 1.25 1.01 1.14 1.25 1.25 0.83 1.25

Accuracy value
Gram=1 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27
Gram=2 0.20 0.20 0.20 0.27 0.23 0.40 0.40 0.37
Gram=3 0.40 0.40 0.40 0.37 0.27 0.20 0.20 0.23
Gram=4 0.43 0.43 0.43 0.30 0.27 0.27 0.30 0.30
Gram=5 0.40 0.40 0.37 0.30 0.27 0.20 0.17 0.20

Standard error
Gram=1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Gram=2 0.06 0.06 0.06 0.12 0.13 0.15 0.12 0.12
Gram=3 0.06 0.06 0.06 0.07 0.09 0.06 0.06 0.07
Gram=4 0.07 0.12 0.12 0.12 0.03 0.03 0.06 0.06
Gram=5 0.10 0.10 0.12 0.12 0.07 0.06 0.07 0.06

Table 5.2 shows the accuracy and entropy of Cavnar and Trenkle [1994]’s n-gram

model with 32 VQ bins. Figure 5.4 compares the accuracies and entropies, the

accuracy has error bars ±2 standard error. Considering the highest accuracy and

entropy, we find the best performance is the tri-gram (Figure 5.4(c)), whose penalty

is 10. And also we conclude that the n-gram does not work on VLID for 32 VQ bins

in most penalty cases since they are guessing randomly between the video languages.

32 VQ bins case also has the same problem as 16 VQ bins that, a large histogram

binwidth means the language distances can only be binned into a small number

of bins which indicates a very spiky histogram which means low entropy. We find

the accuracy decreases with the increasing of penalty for gram 3, 4 and 5, which

proves that the bottom-ranked n-grams contain useless information and confuses

the classifier.
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Figure 5.5 visualizes the tri-gram, 10 penalty result in 32 VQ bins. Figure 5.5(a)

shows the colour map of languages and Figure 5.5(b) shows the dendrogram which

is built based on d = distance/σ where d is normalized into [0, 1]. The dendrogram

is built based on complete-linkage clustering (explained in Section 3.2.2). However,

the video result shown in Figure 5.5(a) shows that English is closer to Mandarin

rather than itself which is also a bad language identification. Since there is no clue

in linguistic language tree to present the relationships between English, Mandarin

and Arabic, we compare the distances with the ALID result with 32 bins. We can

find the distances between Mandarin and English in Figure 5.5(b) are closer than

Mandarin and Arabic while Arabic is more closer to English in the ALID with the

same VQ bins (See Figure 4.7(b)). And compared with the 16 VQ bins case, the

tree is the opposite conclusion of 16 VQ bins. Considering the low accuracy of the

results, the variations of the language distances distributions are random. So, the

average distance of the 10-fold cross validation results is unreliable. In that case, we

think the 32 VQ bins case still performs poorly in the VLID.
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(c) Accuracy and entropy distribution for gram
= 3

1 5 10 50 100 400 500 1000

penalty

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

E
n
tr

o
p
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Entropy and average accuracy distribution (VQ bins = 32)

gram=4 width=1.93

(d) Accuracy and entropy distribution for gram
= 4
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Figure 5.4: Accuracy and entropy distribution for n-grams. VQ bin size is 32. The
x-axis is the penalty value. The left y-axis is the entropy value and the right y-axis
is the accuracy value.
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Figure 5.5: The video language distances results of tri-gram for English, Mandarin
and Arabic. The distances shown in the diagrams are distance/σ and are normalized
into [0, 1]. The penalty value is 10 and the VQ bins is 32. Figure 5.5(a) shows the
colour map of the language distance variations and Figure 5.5(b) shows the language
tree which is built by the distances. The colour variation in Figure 5.5(a) shows the
pairwise distances between languages.



CHAPTER 5. VLID (VIDEO LANGUAGE IDENTIFICATION) RESULTS 175

5.2.3 Language distance results with 64 bins

Table 5.3: Entropy(top) and accuracy(bottom) values with histogram binwidth =
1.93, vq bin size = 64.

Penalty value
1 5 10 50 100 400 500 1000

Entropy value
Gram=1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
Gram=2 1.25 1.14 1.14 0.97 1.25 0.97 0.97 0.97
Gram=3 0.97 1.14 1.14 1.14 1.14 1.25 0.83 1.14
Gram=4 1.25 0.97 1.14 0.83 1.14 0.97 0.83 0.83
Gram=5 1.14 1.14 1.14 1.01 1.25 1.01 1.25 0.97

Accuracy value
Gram=1 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
Gram=2 0.33 0.33 0.33 0.30 0.23 0.27 0.30 0.33
Gram=3 0.53 0.53 0.47 0.40 0.27 0.23 0.23 0.23
Gram=4 0.57 0.53 0.53 0.43 0.33 0.23 0.20 0.20
Gram=5 0.47 0.50 0.47 0.47 0.33 0.23 0.23 0.27

Standard error
Gram=1 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Gram=2 0.09 0.09 0.09 0.06 0.03 0.03 0.06 0.07
Gram=3 0.13 0.13 0.12 0.10 0.07 0.07 0.07 0.07
Gram=4 0.03 0.07 0.07 0.07 0.13 0.07 0.06 0.10
Gram=5 0.17 0.15 0.18 0.15 0.15 0.03 0.03 0.03

Table 5.3 shows the accuracy and entropy of Cavnar and Trenkle [1994]’s n-

gram model with 64 VQ bins. Figure 5.6 compares the accuracies and entropies,

the accuracy has error bars ±2 standard error. Considering the highest accuracy

and entropy, we find the best performance is the quad-gram (Figure 5.6(d)), whose

penalty is 1. And also we conclude that the n-gram still does not work on VLID

for 64 VQ bins in most penalty cases since they are guessing randomly between the

video languages. The 64 VQ bins case also has the same problem as the 16 VQ bins

that, a large histogram binwidth means the language distances can only be binned

into a small number of bins which indicates a very spiky histogram - a low entropy.

Compare to the 32 VQ bins, the accuracy increases as the 64 VQ bins contains more

characters than 32 VQ bins. We find the accuracy decreases with the increasing of

penalty for gram 3, 4 and 5, which proves that the bottom-ranked n-grams contain
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useless information and confuses the classifier.

Figure 5.7 visualizes the tri-gram, 10 penalty result in 32 VQ bins. Figure 5.7(a)

shows the colour map of languages and Figure 5.7(b) shows the dendrogram which

is built based on d = distance/σ where d is normalized into [0, 1]. The dendrogram

is built based on complete-linkage clustering (explained in Section 3.2.2). The video

result show in Figure 5.7(a) shows that based on the average distances, English,

Arabic and Mandarin are all close to themselves. Since there is no clue in linguistic

language tree to present the relationships between English, Mandarin and Arabic,

we compare the distances with ALID result with 64 bins. We can find the distances

between Arabic and English in Figure 5.7(b) are closer than Arabic and Mandarin

while Arabic is more closer to Mandarin in ALID with the same VQ bins (See Figure

4.9(b)). In that case, we think the 64 VQ bins case still performs poorly in VLID.
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(b) Accuracy and entropy distribution for gram
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(c) Accuracy and entropy distribution for gram
= 3

1 5 10 50 100 400 500 1000

penalty

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

E
n
tr

o
p
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 a

c
c
u
ra

c
y

Entropy and average accuracy distribution (VQ bins = 64)

gram=4 width=1.93

(d) Accuracy and entropy distribution for gram
= 4
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Figure 5.6: Accuracy and entropy distribution for n-grams. VQ bin size is 64. The
x-axis is the penalty value. The left y-axis is the entropy value and the right y-axis
is the accuracy value.
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Figure 5.7: The video language distances results of quad-gram for English, Mandarin
and Arabic. The distances shown in the diagrams are distance/σ and are normalized
into [0, 1]. The penalty value is 10 and the VQ bins is 64. Figure 5.7(a) shows the
colour map of the language distance variations and Figure 5.7(b) shows the language
tree which is built by the distances. The colour variation in Figure 5.7(a) shows the
pairwise distances between languages.
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5.2.4 Language distance results with 128 bins

Table 5.4: Entropy(top) and accuracy(bottom) values with histogram binwidth =
1.93, vq bin size = 128.

Penalty value
1 5 10 50 100 400 500 1000

Entropy value
Gram=1 0.97 0.97 0.97 0.97 0.97 1.25 1.25 0.97
Gram=2 0.97 1.01 0.83 0.97 1.01 1.01 1.01 1.01
Gram=3 1.14 0.97 0.97 1.25 1.14 0.83 0.83 0.83
Gram=4 0.97 0.97 1.14 0.97 1.01 0.83 0.83 0.83
Gram=5 1.01 1.01 0.97 0.97 0.97 1.14 1.14 1.25

Accuracy value
Gram=1 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Gram=2 0.60 0.63 0.60 0.47 0.47 0.23 0.27 0.27
Gram=3 0.47 0.47 0.47 0.47 0.50 0.27 0.27 0.37
Gram=4 0.40 0.40 0.40 0.43 0.37 0.33 0.33 0.27
Gram=5 0.50 0.50 0.47 0.40 0.37 0.33 0.33 0.37

Standard error
Gram=1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gram=2 0.06 0.03 0.06 0.07 0.09 0.03 0.03 0.03
Gram=3 0.03 0.03 0.03 0.09 0.10 0.03 0.03 0.09
Gram=4 0.12 0.12 0.12 0.09 0.07 0.03 0.03 0.03
Gram=5 0.15 0.15 0.17 0.10 0.12 0.03 0.03 0.03

Table 5.4 shows the accuracy and entropy of Cavnar and Trenkle [1994]’s n-gram

model with 128 VQ bins. Figure 5.8 compares the accuracies and entropies, the

accuracy has error bars ±2 standard error. Considering the highest accuracy and

entropy, we find the best performance is the bi-gram (Figure 5.8(b)), whose penalty

is 5. And also we conclude that the n-gram still does not work on VLID for 128

VQ bins in most penalty cases since they are guessing randomly between the video

languages. The 128 VQ bins case also has the same problem as the 16 VQ bins

that, a large histogram binwidth means the language distances can only be binned

into a small number of bins which indicates a very spiky histogram - a low entropy.

Compare to the 64 VQ bins, the accuracy increases as the 128 VQ bins contains

more characters than 64 VQ bins. We find the accuracy decreases with the increasing

of penalty for gram 2, 3, 4 and 5, which proves that the bottom-ranked n-grams
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contain useless information and confuses the classifier.

Figure 5.9 visualizes the bi-gram, 5 penalty result in 128 VQ bins. Figure 5.9(a)

shows the colour map of languages and Figure 5.9(b) shows the dendrogram which

is built based on d = distance/σ where d is normalized into [0, 1]. The dendrogram

is built based on complete-linkage clustering (explained in Section 3.2.2). Figure

5.9(a) shows that based on the average distances, English, Arabic and Mandarin are

all close to themselves. Since there is no clue in linguistic language tree to present

the relationships between English, Mandarin and Arabic, we compare the distances

with ALID result with 128 bins. We can find the distances between Arabic and

English in Figure 5.9(b) are closer than Arabic and Mandarin while Arabic is more

closer to Mandarin in ALID with the same VQ bins (See Figure 4.11(b)). In that

case, we think the 128 VQ bins case performs still performs poorly in VLID.
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Figure 5.8: Accuracy and entropy distribution for n-grams. VQ bin size is 128. The
x-axis is the penalty value. The left y-axis is the entropy value and the right y-axis
is the accuracy value.
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Figure 5.9: The video language distances results of bi-gram for English, Mandarin
and Arabic. The distances shown in the diagrams are distance/σ and are normalized
into [0, 1]. The penalty value is 5 and the VQ bins is 128. Figure 5.9(a) shows the
colour map of the language distance variations and Figure 5.9(b) shows the language
tree which is built by the distances. The colour variation in Figure 5.9(a) shows the
pairwise distances between languages.
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5.2.5 Language distance results with 256 bins

Table 5.5: Entropy(top) and accuracy(bottom) values with histogram binwidth =
1.93, vq bin size = 256.

Penalty value
1 5 10 50 100 400 500 1000

Entropy value
Gram=1 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.01
Gram=2 1.14 0.97 1.01 1.14 1.14 1.25 0.97 0.97
Gram=3 1.14 1.25 1.25 1.14 1.25 1.14 1.14 1.25
Gram=4 0.83 1.14 1.14 0.83 1.14 1.25 1.25 0.83
Gram=5 1.14 1.14 0.97 1.25 1.25 0.83 0.83 0.83

Accuracy value
Gram=1 0.40 0.40 0.40 0.40 0.40 0.37 0.37 0.37
Gram=2 0.47 0.47 0.43 0.40 0.37 0.37 0.40 0.33
Gram=3 0.43 0.43 0.43 0.40 0.43 0.27 0.23 0.27
Gram=4 0.40 0.40 0.40 0.37 0.30 0.27 0.27 0.30
Gram=5 0.30 0.30 0.30 0.27 0.23 0.27 0.30 0.30

Standard error
Gram=1 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07
Gram=2 0.07 0.07 0.09 0.00 0.12 0.17 0.15 0.09
Gram=3 0.03 0.03 0.03 0.00 0.09 0.07 0.03 0.03
Gram=4 0.06 0.06 0.06 0.09 0.12 0.12 0.12 0.10
Gram=5 0.06 0.06 0.06 0.07 0.03 0.09 0.12 0.15

Table 5.5 shows the accuracy and entropy of Cavnar and Trenkle [1994]’s n-gram

model with 256 VQ bins. Figure 5.10 compares the accuracies and entropies, the

accuracy has error bars ±2 standard error. Considering the highest accuracy and

entropy, we find the best performance is the bi-gram (Figure 5.10(b)), whose penalty

is 1. As we previously explained, the 256 VQ bins lose more data information, thus

it is not surprising that 256 VQ bins case produces a lower accuracy than 128 VQ

bins. And also we conclude that the n-gram still does not work on VLID for 256

VQ bins in most penalty cases since they are guessing randomly between the video

languages.

Figure 5.11 visualizes the bi-gram, 5 penalty result in 256 VQ bins. Figure 5.11(a)

shows the colour map of languages and Figure 5.11(b) shows the dendrogram which

is built based on d = distance/σ where d is normalized into [0, 1]. The dendrogram
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is built based on complete-linkage clustering (explained in Section 3.2.2). Figure

5.11(a) shows that English is closer to Arabic than itself. Since there is no clue in

linguistic language tree to present the relationships between English, Mandarin and

Arabic, we compare the distances with ALID result with 256 bins. We can find the

distances between Arabic and English in Figure 5.11(b) are closer than Arabic and

Mandarin while Arabic is more closer to Mandarin in ALID with the same VQ bins

(See Figure 4.13(b)). In that case, we think the 256 VQ bins case still performs

poorly in VLID.
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Figure 5.10: Accuracy and entropy distribution for n-grams. VQ bin size is 256.
The x-axis is the penalty value. The left y-axis is the entropy value and the right
y-axis is the accuracy value.
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Figure 5.11: The video language distances results of bi-gram for English, Mandarin
and Arabic. The distances shown in the diagrams are distance/σ and are normalized
into [0, 1]. The penalty value is 1 and the VQ bins is 256. Figure 5.11(a) shows
the colour map of the language distance variations and Figure 5.11(b) shows the
language tree which is built by the distances. The colour variation in Figure 5.11(a)
shows the pairwise distances between languages.
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5.2.6 Conclusion

Based on Cavnar and Trenkle [1994]’s n-gram VLID results, we can see that the

accuracy in VLID is not as good as ALID. The entropy of histogram is also not

able to fully describe how distinctive that languages distances are. This is probably

because of the lack of data in video dataset (which only have 3 languages with

a small number of speakers). Also, the gesture made by the speakers impact on

the recognition results. For example, two Mandarin speakers are not moving their

mouths obviously and their VQ strings are, hence, full of repeat symbols. However,

we still can conclude that for VLID, the best performance is in 64 and 128 VQ bins.

It is possible that the relationships between these three languages will be more clear

if there is enough data.

5.3 Compression distances by zipping

5.3.1 Methods

This section applies zipping methods to the VLID system. We use the three com-

pressors discussed in previous chapters: zip in 3.3.1.1, bzip in 3.3.2.1 and ppm in

3.3.3.1. We use the vector quantisation by the same procedure as in 4.4 VLID fea-

tures - the AAMs. VQ then converts AAMs into Unicode characters. In zipping, we

also wonder whether VQ binsize impacts on the results. In this case, we examine

the compression results on 16, 32, 64, 128 and 256 bins, which is the same as n-gram

method.

For these results, 0 following the name of the compressor denotes the interleaving

status. For example, zip0, means non-interleaved string with zip compressor and

ppm1 means an interleaved string with a ppm compressor.
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5.3.2 Language distance results with 16 bins

This section describes the video language distances by using colour maps, phylogen-

etic trees and histogram distributions. The number of VQ bins is 16. The description

of phylogenetic tree is in Section 3.2.2 and the description of histogram distribution

is in Section 3.2.1.2. Figure 5.12 to 5.14 show the colour maps of the languages

distances. Figure 5.15 to 5.17 show the dendrograms of language distances.

Table 5.6: Entropy(top) and accuracy(bottom) values with histogram binwidth =
1.93, vq binsize = 16.

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 1.00 0.65 0.92 1.00 1.00 1.00
Accuracy 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.6 concludes the entropy values of the histogram distributions for ppm, zip

and bzip with interleaved and non-interleaved data. The results show the recognition

accuracies of all compressions are 100% and the highest entropy is 1.00. According

to Equation 3.10, the distances of the languages are calculated by analysing the

compressed length of the strings. For measuring the distance of language itself, the

zipping method compresses one string with itself. So the ppm, bzip and zip do

not need to predict the characters which have never been seen before. Thus, the

compression entropy of language itself is always the smallest and the recognition

accuracy is always 100%. For reference, a histogram with two equiprobable bins

would have an entropy of 1 bit whereas a 16 VQ binsize of the histogram with

equiprobable bins would have an entropy of 4 bits. Thus 1 bit indicates a very

non-smooth histogram (an all-or-nothing distance).

Figure 5.12 to Figure 5.17 show the colour maps and dendrograms of the pair-

wise language distances for each compression with interleaved and non-interleaved

data. For zip, bzip and ppm, although we can see the interleaving result shows

good performances of language identification, both the interleaving and the non-

interleaving result can hardly show the distances relationships between the languages

and the variation is much lower than Cavnar and Trenkle [1994]’s n-gram model.
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The ppm (Figure 5.13) and bzip (Figure 5.14) show the same problem as zip results.

Like the VLID n-gram results, we compare the VLID zipping trees with ALID ones

under the same VQ binsize. For zip interleaving and non-interleaving result, the

ALID (Figure 4.17) shows Arabic is close to Mandarin while the VLID result shows

English is closer to Mandarin in the non-interleaving result and closer to Arabic in

the interleaving result. For bzip non-interleaving result, the ALID (Figure 4.15(a))

shows Arabic is close to Mandarin while the VLID result shows English is closer

to Arabic. The ALID interleaving result (Figure 4.15(b)) shows that Mandarin is

close to English while VLID result shows the same as the non-interleaving result

that English is closer to Arabic. For ppm, the ALID results (Figure 4.19), both

interleaving and non-interleaving results tell Mandarin and Arabic are close while

the VLID results show the Arabic and English are similar. In that case, we think

the 16 VQ bins case performs poorly in VLID.
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Figure 5.12: The 21 UNDHR video languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 5.12(a) shows the
non-interleaved result and Figure 5.12(b) shows the interleaved result.
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Figure 5.13: The 21 UNDHR video languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 5.12(a) shows the
non-interleaved result and Figure 5.13(b) shows the interleaved result.
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Figure 5.14: The 21 UNDHR video languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 5.14(a) shows the
non-interleaved result and Figure 5.14(b) shows the interleaved result.
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Figure 5.15: The 21 UNDHR video languages distances are computed by zip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 5.15(a) shows the
non-interleaved result and Figure 5.15(b) shows the interleaved result.
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Figure 5.16: The 21 UNDHR video languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 5.16(a) shows the
non-interleaved result and Figure 5.16(b) shows the interleaved result.
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Figure 5.17: The 21 UNDHR video languages distances are computed by ppm and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 16. Figure 5.17(a) shows the
non-interleaved result and Figure 5.17(b) shows the interleaved result.
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5.3.3 Language distance results with 32 bins

This section describes the video language distances by using colour maps, phylogen-

etic trees and histogram distributions. The number of VQ bins is 32. The description

of phylogenetic tree is in Section 3.2.2 and the description of histogram distribution

is in Section 3.2.1.2. Figure 5.18 to 5.20 show the colour maps of the languages

distances. Figure 5.21 to 5.23 show the dendrograms of language distances.

Table 5.7: Entropy(top) and accuracy(bottom) values with histogram binwidth =
1.93, vq binsize = 32.

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 1.00 0.65 1.46 1.00 1.00 1.00
Accuracy 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.7 concludes the entropy values of the histogram distributions for ppm, zip

and bzip with interleaved and non-interleaved data. The results show the recognition

accuracies of all compressions are 100% and the highest entropy is 1.46. There are

still some entropy values are calculated as 1. For the same reason as 16 VQ bins, a

histogram with two equiprobable bins would have an entropy of 1 bit. Thus 1 bit

indicates a very non-smooth histogram (an all-or-nothing distance).

Figure 5.18 to Figure 5.23 show the colour maps and dendrograms of the pair-

wise language distances for each compression with interleaved and non-interleaved

data. For zip, bzip and ppm, although we can see the interleaving result also shows

good performances of language identification, both the interleaving and the non-

interleaving result still can hardly tell the distances relationships between the lan-

guages and the variation is also lower than Cavnar and Trenkle [1994]’s n-gram

model. The ppm (Figure 5.19) and bzip (Figure 5.20) show the same problem as

the zip results. Like the VLID n-gram results, we compare the VLID zipping trees

with ALID ones under the same VQ binsize. For zip, bzip and ppm interleaving and

non-interleaving result, the ALID results (Figure 4.23, 4.24, 4.25) show that Arabic

is close to Mandarin while the VLID result in zip shows English is more closer to

Mandarin in the zip interleaving result and is more closer to Arabic in the other



CHAPTER 5. VLID (VIDEO LANGUAGE IDENTIFICATION) RESULTS 197

results. In that case, we think the 32 VQ bins case also performs poorly in VLID.
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Figure 5.18: The 21 UNDHR video languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 5.18(a) shows the
non-interleaved result and Figure 5.18(b) shows the interleaved result.
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Figure 5.19: The 21 UNDHR video languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 5.18(a) shows the
non-interleaved result and Figure 5.19(b) shows the interleaved result.
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Figure 5.20: The 21 UNDHR video languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 5.20(a) shows the
non-interleaved result and Figure 5.20(b) shows the interleaved result.
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Figure 5.21: The 21 UNDHR video languages distances are computed by zip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 5.21(a) shows the
non-interleaved result and Figure 5.21(b) shows the interleaved result.
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Figure 5.22: The 21 UNDHR video languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 5.22(a) shows the
non-interleaved result and Figure 5.22(b) shows the interleaved result.
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Figure 5.23: The 21 UNDHR video languages distances are computed by ppm and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 32. Figure 5.23(a) shows the
non-interleaved result and Figure 5.23(b) shows the interleaved result.
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5.3.4 Language distance results with 64 bins

This section describes the video language distances by using colour maps, phylogen-

etic trees and histogram distributions. The number of VQ bins is 64. The description

of phylogenetic tree is in Section 3.2.2 and the description of histogram distribution

is in Section 3.2.1.2. Figure 5.24 to 5.26 show the colour maps of the languages

distances. Figure 5.27 to 5.29 show the dendrograms of language distances.

Table 5.8: Entropy(top) and accuracy(bottom) values with histogram binwidth =
1.93, vq binsize = 64.

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 1.00 0.65 0.92 1.00 1.00 0.00
Accuracy 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.8 concludes the entropy values of the histogram distributions for ppm, zip

and bzip with interleaved and non-interleaved data. The results show the recognition

accuracies of all compressions are 100% and the highest entropy is 1. For the same

reason as 16 VQ bins, a histogram with two equiprobable bins would have an entropy

of 1 bit. Thus 1 bit in this case still indicates a very non-smooth histogram (an all-

or-nothing distance). And if the histogram with one bin would have an entropy of

0 bit, which means the language distances variation is not distinctive.

Figure 5.24 to Figure 5.29 show the colour maps and dendrograms of the pair-

wise language distances for each compression with interleaved and non-interleaved

data. For zip, bzip and ppm, like 32 VQ bins, we still can see the interleaving result

shows good performances of language identification while both the interleaving and

the non-interleaving result can hardly show the distances relationships between the

languages and the variation is much lower than Cavnar and Trenkle [1994]’s n-gram

model. The ppm (Figure 5.26) and bzip (Figure 5.25) show the same problem as

the zip results. Like the VLID n-gram results, we compare the VLID zipping trees

with ALID ones under the same VQ binsize. For zip, bzip and ppm interleaving and

non-interleaving result, the ALID results (Figure 4.29, 4.30, 4.31) show that Arabic

is close to Mandarin while the VLID result in zip shows English is more closer to
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Arabic. In that case, we think the 64 VQ bins case also performs poorly in VLID.
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Figure 5.24: The 21 UNDHR video languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 5.24(a) shows the
non-interleaved result and Figure 5.24(b) shows the interleaved result.
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Figure 5.25: The 21 UNDHR video languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 5.24(a) shows the
non-interleaved result and Figure 5.25(b) shows the interleaved result.
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Figure 5.26: The 21 UNDHR video languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 5.26(a) shows the
non-interleaved result and Figure 5.26(b) shows the interleaved result.
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Figure 5.27: The 21 UNDHR video languages distances are computed by zip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 5.27(a) shows the
non-interleaved result and Figure 5.27(b) shows the interleaved result.
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Figure 5.28: The 21 UNDHR video languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 5.28(a) shows the
non-interleaved result and Figure 5.28(b) shows the interleaved result.
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Figure 5.29: The 21 UNDHR video languages distances are computed by ppm and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 64. Figure 5.29(a) shows the
non-interleaved result and Figure 5.29(b) shows the interleaved result.
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5.3.5 Language distance results with 128 bins

This section describes the video language distances by using colour maps, phylo-

genetic trees and histogram distributions. The number of VQ bins is 128. The

description of phylogenetic tree is in Section 3.2.2 and the description of histogram

distribution is in Section 3.2.1.2. Figure 5.30 to 5.32 show the colour maps of the

languages distances. Figure 5.33 to 5.35 show the dendrograms of language dis-

tances.

Table 5.9: Entropy(top) and accuracy(bottom) values with histogram binwidth =
1.93, vq binsize = 128.

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 1.00 0.65 0.92 1.00 1.00 0.00
Accuracy 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.9 concludes the entropy values of the histogram distributions for ppm, zip

and bzip with interleaved and non-interleaved data. The results show the recognition

accuracies of all compressions are 100% and the highest entropy is 1. For the same

reason as 16 VQ bins, a histogram with two equiprobable bins would have an entropy

of 1 bit. Thus 1.00 bits in this case still indicates a very non-smooth histogram (an

all-or-nothing distance). And the Zbzip interleaving result is still 0 which means the

language distances are very similar and there are no differences between them.

Figure 5.30 to Figure 5.35 show the colour maps and dendrograms of the pair-

wise language distances for each compression with interleaved and non-interleaved

data. For zip, bzip and ppm, like previous sections, the interleaving result shows

good performances of language identification while both the interleaving and the

non-interleaving result can hardly show the distances relationships between the lan-

guages and the variation is much lower than Cavnar and Trenkle [1994]’s n-gram

model. The ppm (Figure 5.32) and bzip (Figure 5.31) show the same problem as

the zip results. Like the VLID n-gram results, we compare the VLID zipping trees

with ALID ones under the same VQ binsize. For zip, bzip and ppm interleaving

and non-interleaving result, the ALID results (Figure 4.35, 4.36, 4.37) show that
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Arabic is close to Mandarin (except the ppm with interleaving method shows a

closer distances between English and Arabic) while the VLID result in zip shows

English is more closer to Arabic. Although ppm with interleaving method shows

the same result as ALID, as we previously mentioned in TLID (Section 3.3.1.3),

the interleaving method destroys the internal relationship between characters, the

relationships between VLID feature are also impacted and the distances are related

to compressibility instead of the relationships between the features. In that case,

we think the 128 VQ bins case also performs poorly in VLID.
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Figure 5.30: The 21 UNDHR video languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 5.30(a) shows the
non-interleaved result and Figure 5.30(b) shows the interleaved result.
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Figure 5.31: The 21 UNDHR video languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 5.30(a) shows the
non-interleaved result and Figure 5.31(b) shows the interleaved result.
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Figure 5.32: The 21 UNDHR video languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 5.32(a) shows the
non-interleaved result and Figure 5.32(b) shows the interleaved result.
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Figure 5.33: The 21 UNDHR video languages distances are computed by zip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 5.33(a) shows the
non-interleaved result and Figure 5.33(b) shows the interleaved result.
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Figure 5.34: The 21 UNDHR video languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 5.34(a) shows the
non-interleaved result and Figure 5.34(b) shows the interleaved result.
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Figure 5.35: The 21 UNDHR video languages distances are computed by ppm and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 128. Figure 5.35(a) shows the
non-interleaved result and Figure 5.35(b) shows the interleaved result.
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5.3.6 Language distance results with 256 bins

This section describes the video language distances by using colour maps, phylo-

genetic trees and histogram distributions. The number of VQ bins is 256. The

description of phylogenetic tree is in Section 3.2.2 and the description of histogram

distribution is in Section 3.2.1.2. Figure 5.36 to 5.38 show the colour maps of the

languages distances. Figure 5.39 to 5.41 show the dendrograms of language dis-

tances.

Table 5.10: Entropy(top) and accuracy(bottom) values with histogram binwidth
= 1.93, vq binsize = 256.

Zppm0 Zppm1 Zzip0 Zzip1 Zbzip0 Zbzip1
Entropy 1.00 0.92 0.92 1.00 1.00 0.00
Accuracy 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.10 concludes the entropy values of the histogram distributions for ppm,

zip and bzip with interleaved and non-interleaved data. The results show the recog-

nition accuracies of all compressions are 100% and the highest entropy is 1. For the

same reason as 16 VQ bins, a histogram with two equiprobable bins would have an

entropy of 1 bit. Thus 1 bit in this case still indicates a very non-smooth histogram

(an all-or-nothing distance). And the Zbzip interleaving result is still 0 which means

the language distances are very similar and there are no differences between them.

Figure 5.36 to Figure 5.41 show the colour maps and dendrograms of the pair-wise

language distances for each compression with interleaved and non-interleaved data.

For zip, bzip and ppm, like previous sections, the interleaving result shows good

performances of language identification while both the interleaving and the non-

interleaving result can hardly show the distances relationships between the languages

and the variation is much lower than Cavnar and Trenkle [1994]’s n-gram model. The

ppm (Figure 5.38) and bzip (Figure 5.37) show the same problem as the zip results.

Like the VLID n-gram results, we compare the VLID zipping trees with ALID ones

under the same VQ binsize. For zip, bzip and ppm interleaving and non-interleaving

result, the ALID results (Figure 4.41, 4.42, 4.43) show that Mandarin close to Arabic
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(except ppm with interleaving result whose Mandarin is close to English) while the

VLID result shows that Arabic is close to English in zip, Mandarin is close to Arabic

in bzip and the Mandarin is close to Arabic in ppm without interleaving result but

is close to Arabic in the ppm with interleaving result. We can conclude that, like

ALID in 256 VQ bin case, the distances are more unpredictable in 256 VQ bins.

This is because the large binsize might split similar AAM features into different

clusters and change the rank of the n-gram occurrences. Thus, the 256 VQ bins

case also performs poorly in VLID.
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Figure 5.36: The 21 UNDHR video languages distances are computed by zip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 256. Figure 5.36(a) shows the
non-interleaved result and Figure 5.36(b) shows the interleaved result.
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Figure 5.37: The 21 UNDHR video languages distances are computed by bzip and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 256. Figure 5.36(a) shows the
non-interleaved result and Figure 5.37(b) shows the interleaved result.
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Figure 5.38: The 21 UNDHR video languages distances are computed by ppm and
displayed by colour map. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 256. Figure 5.38(a) shows the
non-interleaved result and Figure 5.38(b) shows the interleaved result.
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Figure 5.39: The 21 UNDHR video languages distances are computed by zip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 256. Figure 5.39(a) shows the
non-interleaved result and Figure 5.39(b) shows the interleaved result.
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Figure 5.40: The 21 UNDHR video languages distances are computed by bzip and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 256. Figure 5.40(a) shows the
non-interleaved result and Figure 5.40(b) shows the interleaved result.
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Figure 5.41: The 21 UNDHR video languages distances are computed by ppm and
displayed by dendrogram. The distances shown in the diagrams are distance/σ and
are normalized into [0, 1]. The number of VQ bins is 256. Figure 5.41(a) shows the
non-interleaved result and Figure 5.41(b) shows the interleaved result.
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5.3.7 Conclusion

This section examines the zipping methods for video features. We can find the

zipping is still an “all-or-nothing” method for TLID and the languages distances are

too close to be discussed - one or two histogram bins are too spiky and do not make

sense to calculate the entropies. We also compare the language distances with ALID

results while all VLID language distances do not match with ALID ones. For lacking

video data, it is hard to find the languages relationships by using zipping. And also,

compared to the n-gram VLID result, the variation of the distances are still poor.

We can conclude than zipping is probable for video language identification while it

is not a good method to calculate the video language relationships.

5.4 Conclusion

In VLID, we apply the Cavnar and Trenkle [1994]’s n-gram model and zipping to

see if we can find the relationships between the video languages.

The accuracy of VLID results for n-gram perform is low compare to TLID and

ALID. Although we can use zipping to identify languages , it can not find the

distances relationships, which is not probable to build language tree for comparison.

For lack of data in VLID, the proof to describe the distances between English,

Mandarin and Arabic is not enough. But we still can conclude that it is possible to

use the Cavnar and Trenkle [1994]’s n-gram model for VLID and the n-gram model

probably can show a higher recognition result with higher entropy compare to the

current results.

Considering we have shown all TLID, ALID and VLID experiments, for the

next chapter, we are going to investigate the relationships between those language

distances.



Chapter 6

Tree Comparison and Mapping

6.1 Introduction

In previous chapters, we illustrate the relationships between languages by distance

measurements formed in the text, audio and video domains. In Chapter 3, we meas-

ured the distances between text languages using Cavnar and Trenkle [1994]’s n-gram

and zipping method. In Chapter 4, we measured the audio language distances via

Cavnar and Trenkle [1994]’s n-gram, zipping and CK-distance method. In Chapter

5, we measured the video language distances via Cavnar and Trenkle [1994]’s n-gram

and zipping.

In this chapter, we will discuss the use of the Robinson-Foulds and mapping

results to describe if we can use the text language distances to find an unknown audio

language. In this case, the data we used in this section is the language distances

which are generated by the previous chapters. For TLID (Chapter 3), since both

Cavnar and Trenkle [1994]’s n-gram model and zipping without interleaved data

get the 100% accuracies with high entropy, we will use both of them in this task.

For ALID, it shows a high accuracy in n-gram model with high entropy, and 100%

accuracy in zipping with a lower entropy. Since the VLID results do not have

enough evidences for the language relationships, we are not going to discuss it in

227
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this chapter.

6.2 Language tree evaluation

To compare the language distance in TLID and ALID, the first question is, how close

those language distances are. And we also wonder if the generated language trees,

which based on the language features, are matched with the linguistic language tree.

To evaluate the results, we use the Robinson-Foulds tree distance measurement.

The Robinson-Foulds is a tree distance measurement which is widely used in Phylo-

genetics and provides a linear computing time for rooted trees [Lu et al., 2017]. It

also allows us to measure two rooted trees distances by branch partition without

considering the branch length (the value of language distances).

6.2.1 Methods

To evaluate the language trees, we compare the TLID and ALID tree results with

the background truth tree which is built by Ruhlen [1991]. As Ruhlen [1991] does

not provide the language distances between Indo-Hittite and other subtrees, we

only compare language trees based on the Indo-Hittite which contains most of the

languages we use. We also create random trees 1000 times by using complete-linkage

tree clustering (explained in Section 3.2.2) to see if the tree distances are better than

the average of random trees with the ground truth tree. Table 6.1 shows the Indo-

Hittite languages for building up the language tree.

Table 6.1: The languages which are used for Robinson-Foulds experiments.

Czech Portuguese Spanish English Polish
Italian German Swedish Russian

According to our previous conclusion, in TLID, the best result of n-gram is tri-

gram with 100 penalty and the best performance of zipping is ppm without inter-

leaving. For ALID, the Table 6.2 lists all best performance by VQ binsize for n-gram
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and Table 6.3 lists the zipping result in ALID. Like previous chapters, for zipping

results, a 0 following the name of the compressor denotes the interleaving status.

For example, zip0, means the non-interleaved string with the zip compressor and

ppm1 means an interleaved string with the ppm compressor.

We can find in ALID, the best performance (the highest accuracy and entropy)

for n-gram model is the 32 VQ bins and the penalty is 100 with bigram. The best

performance for zipping method, we remove the highest entropy in the 16 and the

256 VQ bins cases like the n-gram results show that both of them do not contain

enough information for language identification. Thus, the best performance is ppm

without interleaving in the 64 VQ bins.

Table 6.2: Summary of Cavnar and Trenkle [1994]’s n-gram results in ALID.

VQ binsize Penalty Gram Accuracy Entropy
16 50 2 0.76 2.87
32 100 2 0.86 2.78
64 10 1 0.84 2.84
128 400 5 0.8 2.88
256 50 1 0.78 2.83

Table 6.3: Summary of zipping results in ALID.

VQ binsize Zipping Accuracy Entropy
16 ppm0 1 1.54
32 bzip0 1 1.06
64 ppm0 1 1.20
128 bzip0 1 1.02
256 zip0 1 1.33

6.2.2 Robinson-Foulds metric

As mentioned in Section 2.5.1, linguists define the generations and closeness between

languages using a “language tree”. In this thesis, we use different methods to measure

the differences between languages and hence build language trees. Since a language

tree may contain multiple languages in one node, it is not the same as a binary tree
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distance measurement. Instead, we introduce the Robinson-Foulds metric[Robinson

and Foulds, 1981] to measure the tree distances.

Robinson and Foulds [1981] stated that even the same data could be presented by

different trees if using different methods. Before his study, most research focused on

binary trees. To measure the tree that contains arbitrary nodes in one branch, the

Robinson-Foulds metric separates the tree into several subsets by partition branches.

The distance is calculated by the number of the sets in one tree that are not in other

trees. These These distances are computed by considering all possible branches that

could exist on the the two trees. Each branch divides the set of species into two

groups

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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(b) Tree B

Figure 6.1: An example of two language trees.

For example, Figure 6.1 shows two trees and both contain 9 languages: ita

(Italian), pol (Polish), eng (English), spa (Spanish), cze (Czech), por (Portuguese),

ger (German), swe (Swedish) and rus (Russian). To measure the distance between

tree A and tree B, we separate tree A into subsets and transform it to the Newick

tree format. So the tree A in Newick format is (rus, ((swe, ger), (ita, (pol, (eng,

(spa, (por, cze))))))) and the tree B is ((ita, (spa, por)),((rus,(pol, cze)), ((swe (ger,

eng))))), which the parenthesis means the branchs in the tree. By cutting the tree

branches, the subsets of these two trees are represented as SA = (rus), (ger, swe,

ita, pol, eng, spa, por, cze), (ita, pol, eng, spa, por, cze), (pol, eng, spa, por, cze),
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(eng, spa, por, cze), (eng, spa, por, cze), (spa, por, cze), (por, cze) and B into

set SB = (ita, spa, por), (spa, por), (rus, pol, cze, swe, ger, eng), (pol, cze), (swe,

ger, eng), (ger, eng). Comparing SA and SB, there is no subset appear in the both

trees. Thus, by calculating the number of parenthesis, we can find that SA contains

8 subsets and SB contains 6 subsets, so the distance between tree A and tree B is

DAB = 8 + 6 = 14.

6.2.3 Results

This section explains the results of Robinson-Foulds tree comparison. According to

the previous conclusions, the best performance in TLID n-gram is the TLID 3-gram

with 100 penalty (See Figure 3.7(b)), the best performance in TLID zipping is the

TLID ppm without interleaving (See Figure 3.21(b)), the best performance in ALID

n-gram is the ALID 2-gram with 100 penalty in 32 VQ binsize (See Figure 4.7(b))

and the best performance in ALID zipping is the ALID PPM without interleave in

64 VQ binsize (See Figure 4.31(a)). And also in previous sections, we use the 10-fold

cross validation to measure the language distances for each method. Thus, for each

method, we can build 10 language trees. Here, we compare these trees with the

linguistic language tree by using the Robinson-Foulds distance measurement. Table

6.4, 6.5, 6.6 and 6.7 show the Newick format of these language trees and Table 6.8

shows the Robinson-Foulds average distances of the linguistic language tree and the

10-fold cross validation results. We also build 1000 random trees by using random

distances to see if the results are better than the random case.

We can find the linguistic language is close to itself and the random tree shows a

lower distance compare to other trees. It means, although the generated language

trees look different, the Robinson-Foulds method still view that they are the same

distances to the linguistic language tree. What is more, the generated language trees

do not perform better than the random tree. We can conclude that the generated

language trees are different from the linguistic language tree.

Since the generated languages are not close to the linguistic tree, we wonder that
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Table 6.4: List of the Newick format of the TLID n-gram language trees. The TLID
n-gram tree is built based on the TLID 3-gram tree with 100 penalty result.

TLID 3-gram tree with 100 penalty
((english,(swedish,(italian,(portuguese,spanish)))),(german,(russian,(czech,polish))));
(((italian,(portuguese,spanish)),(swedish,(english,german))),(russian,(czech,polish)));
(((spanish,(portuguese,italian)),(english,(german,swedish))),(russian,(czech,polish)));
(russian,((czech,polish),((german,swedish),((portuguese,spanish),(english,italian)))));
((czech,polish),(russian,((italian,(portuguese,spanish)),(english,(german,swedish)))));
(((spanish,(portuguese,italian)),(czech,polish)),(russian,(german,(english,swedish))));
(((german,swedish),((portuguese,spanish),(english,italian))),(russian,(czech,polish)));
(((portuguese,spanish),(swedish,(english,italian))),((czech,polish),(german,russian)));
(((english,italian),(swedish,(portuguese,spanish))),(russian,(german,(czech,polish))));
(((italian,(portuguese,spanish)),(german,(english,swedish))),(russian,(czech,polish)));

Table 6.5: List of the Newick format of the TLID zipping language trees. The TLID
zipping tree is built based on the PPM without interleaving result.

PPM without interleaving
((english,(swedish,(italian,(portuguese,spanish)))),(german,(russian,(czech,polish))));
(((italian,(portuguese,spanish)),(swedish,(english,german))),(russian,(czech,polish)));
(((spanish,(portuguese,italian)),(english,(german,swedish))),(russian,(czech,polish)));
(russian,((czech,polish),((german,swedish),((portuguese,spanish),(english,italian)))));
((czech,polish),(russian,((italian,(portuguese,spanish)),(english,(german,swedish)))));
(((spanish,(portuguese,italian)),(czech,polish)),(russian,(german,(english,swedish))));
(((german,swedish),((portuguese,spanish),(english,italian))),(russian,(czech,polish)));
(((portuguese,spanish),(swedish,(english,italian))),((czech,polish),(german,russian)));
(((english,italian),(swedish,(portuguese,spanish))),(russian,(german,(czech,polish))));
(((italian,(portuguese,spanish)),(german,(english,swedish))),(russian,(czech,polish)));

if it is possible to compare the TLID language trees with ALID ones. For example, is

the TLID n-gram tree close to the ALID one? So, to compare the TLID results with

ALID ones, we use the Robinson-Foulds to compare the languages trees and we also

compare the TLID trees with the random tree. Table 6.9 shows the Robinson-Foulds

tree distances between the n-gram TLID and the n-gram ALID. We can find, unlike

comparing to the linguistic tree, the average distance between the TLID n-gram

tree and the ALID n-gram tree is closer than the random tree. Table 6.10 shows

the Robinson-Foulds distance proportion of the randomly generated trees. There
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Table 6.6: List of the Newick format of the ALID n-gram language trees. The ALID
n-gram tree is built based on the ALID 2-gram with 100 penalty in 32 VQ binsize.

ALID 2-gram with 100 penalty in 32 VQ binsize
((russian,(english,italian)),((spanish,swedish),((portuguese,polish),(czech,german))));
((portuguese,(spanish,(swedish,(german,(czech,polish))))),(italian,(english,russian)));
((portuguese,(italian,(english,polish))),((spanish,(czech,russian)),(german,swedish)));
((russian,(english,italian)),((portuguese,polish),((czech,swedish),(spanish,german))));
((spanish,(swedish,(german,(czech,polish)))),(portuguese,(italian,(english,russian))));
((russian,(english,italian)),((spanish,polish),(portuguese,(swedish,(czech,german)))));
((swedish,((spanish,polish),(czech,german))),((english,italian),(portuguese,russian)));
((russian,(english,italian)),(swedish,(portuguese,(german,(spanish,(czech,polish))))));
(((swedish,(german,(czech,polish))),(portuguese,spanish)),(english,(italian,russian)));
((italian,(english,russian)),((swedish,(german,(czech,polish))),(portuguese,spanish)));

Table 6.7: List of the Newick format of the ALID zipping language trees. The ALID
zipping tree is built based on the PPM without interleaving in 64 VQ binsize result.

PPM without interleaving in 64 VQ binsize
((czech,(german,swedish)),((english,italian),((portuguese,russian),(spanish,polish))));
(((portuguese,spanish),(czech,(german,swedish))),((english,italian),(polish,russian)));
((russian,(english,italian)),(polish,(spanish,((czech,swedish),(portuguese,german)))));
((spanish,(czech,(german,swedish))),(polish,((english,italian),(portuguese,russian))));
((italian,(russian,(portuguese,english))),((german,(czech,swedish)),(spanish,polish)));
(((polish,(portuguese,spanish)),(german,(czech,swedish))),(russian,(english,italian)));
((russian,(english,italian)),(polish,((portuguese,spanish),(czech,(german,swedish)))));
((russian,(english,italian)),(polish,((czech,portuguese),(spanish,(german,swedish)))));
((italian,(english,russian)),(polish,((czech,(portuguese,swedish)),(spanish,german))));
((italian,(english,russian)),(polish,((portuguese,spanish),(german,(czech,swedish)))));

is no random tree the same as the n-gram tree and most of the random trees have

high distances.And by testing the probability of the null hypothesis of the Robinson-

Foulds distances between the TLID trigram language trees and the ALID 2-gram

trees and the random trees, the p−value of the t−test is 5.0472e−164 < 0.01 which

rejects the null hypothesis H0 that there is no difference between the means. Thus,

the distances between the TLID n-gram trees and the ALID n-gram trees are not

generated by chance.

Table 6.11 shows the Robinson-Foulds distance between the TLID ppm without
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Table 6.8: Robinson-Foulds average distances of the linguistic language tree and the
TLID and the ALID results. Each method has 10 language trees which corresponds
to the 10-fold cross validation results. The TLID n-gram tree is built based on the
TLID 3-gram tree with 100 penalty result. The TLID zipping tree is built based
on the PPM without interleaving result. The ALID n-gram tree is built based on
the ALID 2-gram with 100 penalty and 32 binsize result. The ALID zipping tree
is built based on the ALID PPM without interleaving and 64 VQ binsize result.
The random tree result is the average distance of the 1000 random trees and the
linguistic tree.

Method Linguistic Random tree TLID 3-gram TLID ppm
Linguistic 0 13.6 14 14
Method ALID 2-gram ALID ppm
Linguistic 14 14

interleaving and the ALID ppm without interleaving in 64 VQ binsize. Still, we can

find the average distance between the TLID tree and the ALID tree is closer than

the random tree. Table 6.12 shows the Robinson-Foulds distance proportion of the

randomly generated trees. There is no random tree the same as the ppm trees and

most of the random trees have high distances. And by testing the probability of the

null hypothesis of the Robinson-Foulds distances between the TLID ppm language

tree and the ALID ppm trees and the random trees, the p−value of the t−test is

1.9789e167 < 0.01 which rejects the null hypothesis H0 that there is no difference

between the means. Thus, the distances between the TLID ppm trees and the ALID

ppm trees are not generated by chance.

Table 6.9: Robinson-Foulds average distances of the n-gram TLID and the n-gram
ALID. Each method has 10 language trees which corresponds to the 10-fold cross
validation results. The TLID n-gram tree is built based on the TLID 3-gram tree
with 100 penalty result. The ALID n-gram tree is built based on the ALID 2-
gram with 100 penalty and 32 binsize result. The random tree result is the average
distance of the random trees and the n-gram TLID tree.

Method Random tree ALID 2-gram p-value
TLID 3-gram 13.75 12.12 5.0472e− 164
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Table 6.10: The proportion of the distances between the randomly generated trees
and the TLID 3-gram trees.

Distance 8 10 12 14
Proportion 0.09% 1.43% 11.62% 86.86%

Table 6.11: Robinson-Foulds average distances of the TLID ppm trees without inter-
leaving method and the ALID ppm tree without interleaving method. Each method
has 10 language trees which corresponds to the 10-fold cross validation results. The
TLID zipping tree is built based on the PPM without interleaving result. The ALID
zipping tree is built based on the ALID PPM without interleaving and 64 VQ binsize
result. The random tree result is the average distance of the random trees and the
TLID ppm without interleaving tree.

Method Random tree ALID ppm0 p-value
TLID ppm0 13.73 12.2 1.9789e− 167

Table 6.12: The proportion of the distances between the randomly generated trees
and the ppm trees.

Distance 2 8 10 12 14
Proportion 0.01% 0.14% 1.07% 10.75% 88.03%

6.2.4 Conclusion

This section uses the Robinson-Foulds method on measuring the language trees for

ALID and TLID results. We can find the linguistic language tree is far from the

ALID and TLID language trees rather than the random trees. However, once we

calculated Robinson-Foulds distances between the TLID trees and the ALID trees,

the distances are better than the random trees. Thus, we assume that it is possible

to compare the language trees from TLID to ALID but not the linguistic one. The

reason that the linguistic language tree does not have a good performance might

be that the linguists build the language tree not only on the language features, the

other factors, like empirical classification and culture differences also impact on it.

What is more, the language classification is not commonly agreed by linguists which

makes the work much more harder. For example, the Japanese and Korean are

classified under the Altaic language tree [Ruhlen, 1991] while Lee and Hasegawa
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[2011] views Japanese and Korean as different. Comparing Table 6.9 and Table

6.11, the conclusion is, n-gram performs better than zipping. And also in previous

chapters, the n-gram model shows a higher entropy of the distances distribution

than zipping. So, we are going to use the n-gram results for Sammon mapping in

the next section.



CHAPTER 6. TREE COMPARISON AND MAPPING 237

6.3 Sammon mapping with Shepard interpolation

results

In previous section, we conclude that the n-gram performs a better language group-

ing and shows a better Robinson-Foulds tree distances from TLID to ALID. Now

the question is, whether it is possible to map an unknown language from ALID to

TLID and find what language is it close to? Since Sammon mapping can map to a

variety of dimensions, is there a natural dimensionality in which the text points, for

example, fit?

6.3.1 Methods

Figure 6.2 explains the idea of mapping from TLID to ALID. Suppose there is a

large number of languages in the text dataset while only contains 3 languages in the

audio dataset (these three audio languages L1, L2 and L3 are also exist in the text

dataset). The yellow dots mean the languages which are not in both datasets so

they can not be used for mapping. Supposing there is an unknown audio language x,

we can easily use the n-gram model to calculate the distances between the unknown

language x with L1, L2 and L3 in ALID. We expect if it is possible to find there is

a known language x have similar distance relationships with L1, L2 and L3 in the

text dataset as the relationships in the audio dataset. As we already know what

language it is in text, we can conclude that the unknown language x in the audio

dataset is the known language x in the text dataset.

The basis of our mapping technique is to use an interpolation function based on

distances. We apply the Sammon mapping with the Shepard interpolation function

in this section which is explained in 6.3.2. The text language distances we use in

this section is 3-gram with 100 penalty and the audio language distances we use is

2-gram with 100 penalty.
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Figure 6.2: Explanation of Sammon mapping for language identification.

6.3.2 Sammon mapping

There are two main reasons why researchers reduce the dimensionality of a dataset.

One is to simplify the dataset to save computing cost while preserving most of the

relationship between the data, and the other is for better visualisation of the data

structures.

Sammon mapping can preserve data structures with the minimum loss of inform-

ation. One disadvantage of Sammon mapping is that as it calculates all interpoint

distances, the complexity of mapping is very high and the computational speed is

very slow. The other disadvantage of Sammon mapping is that it cannot process

the unknown data [Pekalska et al., 1999]. It means that once there is unknown

data coming into the dataset, all of the data must be mapped again and there is no

guarantee that the surface of the mapped points will be the same as the previous

mapped points. The Sammon mapping provides an idea about the mapping errors

rate, which can be used to evaluate the mapping performance based on gradient

descent. We use the algorithm designed and published by Cawley and Talbot1. The
1http://theoval.cmp.uea.ac.uk/matlab/default.html
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method works according to the Sammon non-linear mapping algorithm.

Suppose the original matrix A in dimension D1 contains a number of vectors

va, a ∈ 1...n, B is the corresponding matrix of A in dimension D2 and the corres-

ponding mapped vectors could be presented by ua, a ∈ 1...n. Thus, the pairwise

Euclidean distance between va and vb, a, b ∈ 1...n is sab and the pairwise Euclidean

distance between uab, a, b ∈ 1...n is stab. So the loss information of the mapping

can be calculated by the difference between the pairwise distance of the original and

mapped matrices. Equation 6.1 shows the definition of the loss information e in

dimension d at the t iteration[Sammon, 1969].

e(t) =
1∑

a<b sab

n∑
a<b

(sab − stab(t))2

sab
(6.1)

denoting ypq is the d× n variables which is the mapped matrix in dimension d and

corresponds to the error e, the the new mapped matrix at iterative time t+ 1 is

ypq(t+ 1) = ypq(t)−magicfactor × δpq(t) (6.2)

where p is the length of the vectors and q is the dimension so p = 1, ..., n and

q = 1, ..., d. The magicfactor in Equation 6.2 is empirically to be 0.3 or 0.4 but the

program we use replaces it by step-halving approach to make the algorithm works

faster. The Euclidean distance of stab(t) is stab(t) =
√∑d

m=1(yam(t)− ybm(t))2 and

δpq(t) =
∂e(t)

∂ypq
/| ∂

2e(t)

∂ypq(t)2
| (6.3)

The first derivative of e is

∂e

∂ypq
=

−2∑
a<b sab

n∑
b=1
j 6=p

[
spb − stpb
spbstpb

]
(ypq − ybq) (6.4)

and the second derivative of e is worked out by the Hessian matrix which contains
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all the second partial derivatives of e and is shown in Equation 6.5.

∂2e

∂y2
pq

=
−2∑
a<b sab

n∑
b=1
j 6=p

1

spbstpb

[
(spb − stpb)−

(ypq − ybq)2

stpb
(1 +

spb − stpb
stpb

)

]
(6.5)

6.3.3 Shepard’s interpolation

Considering the fact that there are hundreds of text languages but only dozens

of audio language datasets are currently available, it is necessary to find a proper

method for comparison. As we suppose the distances between languages contain

hidden relationships with each language, we expect the distances of the text lan-

guages to correspond reasonably closely to the audio language distances. Meanwhile,

since the distances of text languages and audio languages are more likely to be an

irregularly-spaced data issue, the method proposed by Shepard [1968] regarding a

two-dimensional interpolation might be a possible option to solve this problem. Al-

though Shepard’s method is of limited help in describing the direction between the

points, it is a simple and general method to implement and can show the language

relationships in our project.

Shepard [1968]’s algorithm is a method that tries to explain the distance between

points using simple and local functions that are called a weighted average of points.

For example, supposing the data points si, i ∈ (1...n) in dimension D1 could be

interpolated to the same dimension D2 as the data points qi, i ∈ (1...n), thus each

interpolated point qi = f(si) is a weighted average wi of the values qi.

The qx, which is the interpolated value of sx could be calculated by equation 6.6:

qx = f(sx) =


∑n

i=1 wi(sx)qi∑n
i=1wi(sx)

, w 6= 0, i ∈ (1...n),

qi, w = 0, i ∈ (1...n),

(6.6)
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where wi is

wx =
1

dist(sx, si)p
, i ∈ (1...n) (6.7)

The weight p value in equation 6.6 decides whether the neighbouring points have a

greater influence on interpolation than other points. If the value of p value increases,

the greater the influence of the neighbour points.

6.3.4 Results

To measure the performance of the mapping results, we use a concept of “Goodness

Ratio (GR)” to calculate the ratio of the language distances between itself and other

mapped languages. In our ALID and TLID dataset, we have five languages that con-

tain recordings of more than one speaker which is C = {Chinese, French, Javanese,

Latin, Spanish}. We denote ti is the TLID language points and aj is the ALID lan-

guage points which i is the number of TLID and j is the number of ALID language.

Thus, the interpolated language points of TLID are tmi and the interpolated lan-

guage points of ALID are amj. By interpolating amj to TLID space, the interpolated

points of amj is asj. We measure the Euclidean distances dmij between the asj and

the tmi. So the Goodness ratio GRij of the mapping result can be calculated as:

GRij =

∑
a∈C,b∈C dmab∑r=i,q=j

r≤1,q≤1 dmrq −
∑

a∈C,b∈C dmab

(6.8)

For Sammon mapping, we varied the dimension D from 2 to 20 and for Shepard’s

interpolation, the weight value p was evaluated from 1 to 20. We compared the GR

in each pair of D and p. In each dimension, we measure the goodness ratio of the 5

languages distances with themselves versus the other language distances. The mean

of the goodness ratio is the average of the five languages and the results are shown

in Figure 6.3, 6.4, 6.5 and 6.6. We can conclude that the 2 dimension shows the

lowest goodness ratio compare to the other dimensions.
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Figure 6.3: Goodness rate (Dimension N = 2 to 7)
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Figure 6.4: Goodness rate (Dimension N = 8 to 13)
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Figure 6.5: Goodness rate (Dimension N = 14 to 19)
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Figure 6.6: Goodness rate (Dimension N = 20)
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6.3.5 Conclusion
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Figure 6.7: Minimum mean of Goodness for each dimension N

Figure 6.3 to Figure 6.6 is the mean variation of goodness ratio from the audio

to the text dimension. 6.7 summarise the distribution of the minimum mean of GR

for each dimension and the error bar is the mean ±2 standard error.

We found that the lowest goodness ratio value is in dimension 2 with low standard

error. This means the interpolation performs best at dimension 2. Thus, we can

conclude that the optimal dimensionality for human language is 2.



Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis, we examine the TLID, ALID and VLID language distances based on

several methods. As what we expect, we wonder if we can identify an unknown ALID

language based on the TLID since text dataset is easy for collection and sufficiently

provided on the Internet.

For TLID, we compare the language distances based on the Cavnar and Trenkle

[1994]’s n-gram model and the zipping methods - zip, bzip and ppm. Cavnar and

Trenkle [1994]’s n-gram is a high accuracy method which has been proved to work

for language classification. Language classification is another method proposed by

Benedetto et al. [2002]. The advantage of zipping is that it is parameter free to

identify languages based on the compressibility entropy. What we have done is that,

we introduce the language tree for n-gram model and evaluate the result by difference

penalty and perform the distance results by using the histogram and entropy. We

can find the Cavnar and Trenkle [1994]’s n-gram model shows a good language

grouping in TLID and also the zipping without interleaving method performs well.

For ALID, to fit for TLID result, we introduce the Cavnar and Trenkle [1994]’s

n-gram model and the zipping methods to find the language relationships. We

247
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compare the accuracy and entropy for each penalty and VQ binsize and also build

the language tree for each result to compare with the linguistic language tree. And

also, we apply another method called CK-distance to measure the language distances

by using the MPEG. We can find the n-gram model still perform a good accuracy

with high entropy while the zipping methods show “all-or-nothing” result which has

low entropy. As another kind of compression, CK-distance also shows the same

problem as bzip, zip and ppm. So we conclude that the Cavnar and Trenkle [1994]’s

n-gram model performs the best in ALID.

For VLID, the n-gram has a lower language identification accuracy compare to

TLID and ALID, while it still performs a higher entropy compare to zipping. In

VLID, we can conclude that zipping is an “all-or-nothing” method which is not

appropriate for ALID and TLID. The generated language trees do not describe a

lot of language relationships due to the lack of data but we assume it is possible to

get a more accuracy language tree if there is enough data for VLID.

To identify the unknown audio language by using the text bases, we firstly in-

troduce the Robinson-Foulds to comparing the language trees. We compare the

generated language trees with the linguistic language tree. And also, we apply a

random tree to see if the Robinson-Foulds distances between the TLID and ALID

language trees are better than the random performance. The conclusion is that we

find the TLID and ALID language trees are more similar rather than the linguistic

language tree and the random tree. We suppose this is impacted by multiple factors

such as the cultural and the empirical understanding about the languages. For ex-

ample, linguists view Japanese and Chinese as two different languages, however, the

text of Japanese contains a lot of Chinese characters which are called “Kanji”. This

is because Japanese learn Chinese characters during the Tang Dynasty.

As we conclude the best performance for our task is n-gram model, we introduce

the Sammon mapping and the Shepard interpolation for mapping ALID to TLID.

We use an evaluation method which is called “Goodness ratio” to see if the mapped

languages are close to itself and we find the best performance is dimension 2.
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7.2 Future work

In search of our methods, we obtain a lot of results from zipping, n-gram and

Shepard’s interpolation. However, it is unclear why the linguistic language tree is

different from the ALID and TLID tree. One possible reason is that the language

relationships are not fully investigated by linguists and the rules which used for

language classification have different weights. We aim to study more about the

factors that impact on language recognition. This means we need to read more

linguistic literature and introduce the factors mentioned in our methods.

We conclude that it is feasible to map languages from ALID to TLID. However,

there are still many questions other than dimension questions. For example, can

other algorithm-information theories calculate the language distance? How does

their performance compare to the zipping and the n-gram model? Also, are Sammon

mapping and Shepard’s interpolation the optimal options for mapping? Are there

any alternative methods that perform better than Sammon mapping and Shepard’s

interpolation? Since there are many linguistic language classifications, is it possible

to find a background truth tree that can be used for unknown text, audio and video

language classification?

For VLID, it is necessary to use more dataset that can be used for training

and testing Mandarin and Arabic. We also need more languages to build a bigger

language distance matrix that can be used for mapping to audio and text language

dimensions.



Appendix A

List of text language datasets

Table A.1: List of text languages datasets.

ISO 639-2 Language ISO 639-2 Language

abk Abkhaz atj Achehnese

jiv Achuar acu Achuar-Shiwiar

ajg Adja ady Adyghe

gax Afaan afk Afrikaans

agr Aguaruna ccc A’ingae

tws Akuapem aln Albanian

alt Altay amc Amahuaca

amr Amarakaeri amh Amharic

ame Amuesha-Yanesha njo Ao

arl Arabela arz Arabic

arm Armenian ass Asante

cni Asháninca cpu Ashéninca

asm Assamese aii Assyrian

awa Awadhi kbd Kabardian

kwi Awapit aym Aymara

aub Bable inz Bahasa

250
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azb Azeri/Azerbaijani bos Bosnian

mli Bahasa bca Bai

bvi Balanda bzc Balinese

bgp Balochi bra Bambara

bci Baoulé/Baule bfa Bari

bsq Basque bba Baatonum

ruw Belorus bem Bemba

bng Bengali btb Béti

bhj Bhojpuri bcy Bichelamar

bkl Bikol/Bicolano boa Bora

brt Breton bpr Bugisnese

blg Bulgarian bms Burmese/Myanmar

cak Kaqohiquel cpp Campa

cbu Candoshi-Shapra cot Caquinte

cbr Cashibo-Cacataibo cbs Cashinahua

cln Catalan ceb Cebuano

cbi Chaa’pala cjd Chamorro

tso Changane cbt Chayahuita

nyj Chechewa hne Chhattisgarhi

cic Chickasaw fal Fali

hak Hakka Chinese hlt Matu chin

tid Chin csa Chinanteco

chj Chinanteco chn Chinese

cax Chiquitano tru Surayt Taroyo

cjk Chokwe coi Corsican

kea Crioulo gbc Crioulo

hrv Croatian wls Cymraeg

czc Czech dga Dagaare
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dag Dagbani gac Dangme

dns Danish prs Dari

den Dendi ger Deutsch

div Dhivehi nav Dine

dinka Dinka dyo Diola

dyu Dioula tbz Ditammari

dut Dutch dzo Dzongkha/Bhutanese

edo Edo ibb Efik

grk Ellinika’ (Greek) eng English

spn Español (Spanish) epo Esperanto

est Estonian bsq Euskara

eve Even evn Evenki

ewe Ewe/Eve tws Fante

fae Faroese prs Farsi/Persian

fp Fijian tgl Filipino

fin Finnish kng koongo

foa Fon cri Forro

frn French fri Frisian

frl Friulian gac Ga

gli Gaeilge gag Gagauz

gls Gàidhlig (Swedish Gaelic) gln Galician

gbm Garhwali cab Garifuna

geo Georgian ger German

gno Gondi dum Gonja

grk Greek esg Greenlandic

gun Guarani gua Sliki

hna Mina Cameroon gjr Gujarati

hat Haitian nyj Nyanja/Chinyanja
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hni Hani kkn Hankuko

gej Gen hwi Hawaiian

hbr Hebrew hil Hiligaynon

hnd Hindi hea Hmong

hms Hmong blu Hmong-Mien

Hoc Ho ccx Zhuang

hus Huastec hva Huasteco

huu Murui Huitoto hun Hungarian

ibb Ibibio ice Icelandic

ido Ido ig Igbo

ilo Iloko/Ilocano ind Indonesian

ina Interlingua esg Ageri Gondi

esb Inuktitut gle Irish

itn Italian heb Ivrit

jpn Japanese jav Javanese

maz Central Mazahua dyo Jola-Fogny

kbd Kabardian kbp Kabyè

bjj Kanauji kan Kannada

kph Kanuri kqn Kaonde

pmp Kapampangan krl Karelian

pwo Karen kar Karen

xsm Kasem kas Kashmiri

kaz Kazakh kjh Khakas

khk Khalkha khr Kharia

kha Khasi khm Khmer

buc Kibushi quc K’iche’

qug Kichwa kon Kikongo

mlo Kimbundu nyz Kinyamwezi
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kin Kinyarwanda suz Koits-Sunuwar

koi Komi-Permian kor Korean

kou Koulango gkp Kpelewo

hat Kreyol kri Krio

Kur Kurdish kur Kurmanji

kfa Kodava kir Kyrgyz

lad Ladin lms Lamnso’

lao Nomlaki

lat Latin lav Latvian

lij Ligurian lia Limba

lin Lingala lit Lithuanian

lob Lobiri nds Low German

loz Lozi lua Luba-Kasai

lug Luganda/Ganda lun Lunda/Chokwe-lunda

lue Luvale ltz Luxembourgish

mkd Macedonian mad Madurese

mag Magahi hun Magyar

mai Maithili kde Makonde

vmw Makua mlg Malagasy

msa Malay mjs Malayalam

div Maldivian mls Maltese

mam Mam mni Maninka

mni Manipuri mbf Maori

mri Cook Islands aru Mapudungun

mar Marathi mzm Marshallese

mum Marwari mcf Matsés

yua Mayan maz Mazahua

maa Mazateco
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mew Mende mic Mikmaq/Micmac

min Minangkabau miq Miskito

mxv Mixteco lus Mizo

khk Mongolian mhm Mooré/More

moz Mozarabic unr Mundari

oto Ñahñú nhn Nahuatl

gld Nanai nav Navajo

nel Ndebele dut Nederlands

yrk Nenets nep Nepali

nio Nganasan nba Ngangela

pcm Nigerian Nivkh Nivkh

not Nomatsiguenga srt Northern

nrr Norwegian nrn Norwegian

nus Nuer nyz Nyamwezi

nze Nzema oki Ogiek

ojb Ojibway ory Oriya

gax Oromiffa ose Osetin

kua Oshiwambo

lot Otuho pbb Paez

sey Pai Koka plu Palauan

pap Papiamentu pbu Pashto/Pakhto

tsz Purhépecha fum Peuhl

frn Picard pis Pijin

ppl Pipil pql Polish

pnf Ponapean por Portuguese

pro Prouvençau fum Pulaar

fuf Pular pnj Punjabi/Panjabi

qec Quechua kek Q’echi/Kekchi
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raj Rajasthani rrt Rarotongan

rhe Rhaeto-Romance rmn Romani

rum Romanian koo Konjo

rud Rundi/Kirundi nyn Runyankore-rukiga/Nkore-kiga

rus Russian lpi Sami/Lappish

eml Sammarinese smy Samoan

saj Sango skt Sanskrit

sat Santhali zro Sapara atupama

skr Saraiki srd Sardinian

hns Carbbean Hindustani sco Scots

gls Scottish Gaelic ses Seereer

srp Serbian jiv Shuar

crs Seselwa sjn Shan

mcd Sharanahua shk Shilluk

swb Shimaore shp Shipibo-Conibo

shd Shona cjs Shor

sja Sia Pedee snd Sindhi

snh Sinhala swz1 Siswati

slo Slovak slv Slovenian

som Somali snn Soninké

sso Southern Sotho spn Spanish

sua Sukuma suo Sundanese

fin Suomi sus Sussu

swa Swahili/Kiswahili crm Swampy

swd Swedish tht Tahitian

pet Tajik tly Talysh

taj Tamang taq Tamasheq

tzm Tamazight tcv Tamil
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ttr Tatar cjk Tchocwe

ttm Tetum thj Thai

tej Temne tic Tibetan

tca Ticuna tgn Tigrinya

tiv Tiv tob Toba

toj Tojol-a’b’al pdg Tok Pisin

top Totonaco tru Trukese

cof Tsafiki lub Tshiluba

tsh Venda trk Turkish

tck Turkmen tyv Tuvan

tzc1 Tzeltal tzc Tzotzil

uig Uighur oaa Uilta

ukr Ukrainian mnf Umbundu

ura Urarina urd Urdu

uzb1 Uzbek frn Walloon/Wallon

vai Vai vec Venetian

vep Veps vie Vietnamese

ako Wama auc Wao

wry Waray guc Wayuu

wls Welsh tsw Western Sotho

wol Wolof xos Xhosa

yad Yagua sah Yakut

guu Yanomamö yao Yao

yps Yapese iii Yi

ydd Yiddish yor Yoruba

ykg Yukagir zuu Zulu

zap Zapoteco
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Histogram diagrams for text n-gram
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(a) Histogram distribution for penalty = 1 (b) Histogram distribution for penalty = 5

(c) Histogram distribution for penalty = 10 (d) Histogram distribution for penalty = 50

(e) Histogram distribution for penalty = 100 (f) Histogram distribution for penalty = 400

(g) Histogram distribution for penalty= 500 (h) Histogram distribution for penalty =
1000

Figure B.1: Histogram distribution for 1-grams. The x-axis is the distance D/σ.
The y-axis is the probability density. The binsize is the w/σ = 0.13.
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(a) Histogram distribution for penalty = 1 (b) Histogram distribution for penalty = 5

(c) Histogram distribution for penalty = 10 (d) Histogram distribution for penalty = 50

(e) Histogram distribution for penalty = 100 (f) Histogram distribution for penalty = 400

(g) Histogram distribution for penalty= 500 (h) Histogram distribution for penalty =
1000

Figure B.2: Histogram distribution for 2-grams. The x-axis is the distance D/σ.
The y-axis is the probability density. The binsize is the w/σ = 0.13.
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(a) Histogram distribution for penalty = 1 (b) Histogram distribution for penalty = 5

(c) Histogram distribution for penalty = 10 (d) Histogram distribution for penalty = 50

(e) Histogram distribution for penalty = 100 (f) Histogram distribution for penalty = 400

(g) Histogram distribution for penalty= 500 (h) Histogram distribution for penalty =
1000

Figure B.3: Histogram distribution for 3-grams. The x-axis is the distance D/σ.
The y-axis is the probability density. The binsize is the w/σ = 0.13.
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(a) Histogram distribution for penalty = 1 (b) Histogram distribution for penalty = 5

(c) Histogram distribution for penalty = 10 (d) Histogram distribution for penalty = 50

(e) Histogram distribution for penalty = 100 (f) Histogram distribution for penalty = 400

(g) Histogram distribution for penalty= 500 (h) Histogram distribution for penalty =
1000

Figure B.4: Histogram distribution for 4-grams. The x-axis is the distance D/σ.
The y-axis is the probability density. The binsize is the w/σ = 0.13.
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(a) Histogram distribution for penalty = 1 (b) Histogram distribution for penalty = 5

(c) Histogram distribution for penalty = 10 (d) Histogram distribution for penalty = 50

(e) Histogram distribution for penalty = 100 (f) Histogram distribution for penalty = 400

(g) Histogram distribution for penalty= 500 (h) Histogram distribution for penalty =
1000

Figure B.5: Histogram distribution for 5-grams. The x-axis is the distance D/σ.
The y-axis is the probability density. The binsize is the w/σ = 0.13.
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TLID n-gram color maps and

language trees
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Colormap for 1-gram model
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Figure C.1: The 16 UNDHR text language distances results of uni-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 1. Figure C.1(a) shows the colormap of the language distance vari-
ations and Figure C.1(b) shows the language tree which is built by the distances. The
colour variation in Figure C.1(a) shows the pairwise distances between languages.
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Figure C.2: The 16 UNDHR text language distances results of uni-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 5. Figure C.2(a) shows the colormap of the language distance vari-
ations and Figure C.2(b) shows the language tree which is built by the distances. The
colour variation in Figure C.2(a) shows the pairwise distances between languages.
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Figure C.3: The 16 UNDHR text language distances results of uni-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 10. Figure C.3(a) shows the colormap of the language distance
variations and Figure C.3(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.3(a) shows the pairwise distances between
languages.
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(b) Tree structure of uni-gram

Figure C.4: The 16 UNDHR text language distances results of uni-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 50. Figure C.4(a) shows the colormap of the language distance
variations and Figure C.4(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.4(a) shows the pairwise distances between
languages.
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Figure C.5: The 16 UNDHR text language distances results of uni-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 100. Figure C.5(a) shows the colormap of the language distance
variations and Figure C.5(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.5(a) shows the pairwise distances between
languages.
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(b) Tree structure of uni-gram

Figure C.6: The 16 UNDHR text language distances results of uni-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 400. Figure C.6(a) shows the colormap of the language distance
variations and Figure C.6(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.6(a) shows the pairwise distances between
languages.
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(b) Tree structure of uni-gram

Figure C.7: The 16 UNDHR text language distances results of uni-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 500. Figure C.7(a) shows the colormap of the language distance
variations and Figure C.7(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.7(a) shows the pairwise distances between
languages.
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(b) Tree structure of uni-gram

Figure C.8: The 16 UNDHR text language distances results of uni-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 1000. Figure C.8(a) shows the colormap of the language distance
variations and Figure C.8(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.8(a) shows the pairwise distances between
languages.
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(b) Tree structure of bi-gram

Figure C.9: The 16 UNDHR text language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 1. Figure C.9(a) shows the colormap of the language distance vari-
ations and Figure C.9(b) shows the language tree which is built by the distances. The
colour variation in Figure C.9(a) shows the pairwise distances between languages.
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(b) Tree structure of bi-gram

Figure C.10: The 16 UNDHR text language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 5. Figure C.10(a) shows the colormap of the language distance vari-
ations and Figure C.10(b) shows the language tree which is built by the distances.
The colour variation in Figure C.10(a) shows the pairwise distances between lan-
guages.
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Figure C.11: The 16 UNDHR text language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 10. Figure C.11(a) shows the colormap of the language distance
variations and Figure C.11(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.11(a) shows the pairwise distances between
languages.
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Figure C.12: The 16 UNDHR text language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 50. Figure C.12(a) shows the colormap of the language distance
variations and Figure C.12(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.12(a) shows the pairwise distances between
languages.
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Figure C.13: The 16 UNDHR text language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 100. Figure C.13(a) shows the colormap of the language distance
variations and Figure C.13(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.13(a) shows the pairwise distances between
languages.
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(b) Tree structure of bi-gram

Figure C.14: The 16 UNDHR text language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 400. Figure C.14(a) shows the colormap of the language distance
variations and Figure C.14(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.14(a) shows the pairwise distances between
languages.
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(b) Tree structure of bi-gram

Figure C.15: The 16 UNDHR text language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 500. Figure C.15(a) shows the colormap of the language distance
variations and Figure C.15(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.15(a) shows the pairwise distances between
languages.
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(b) Tree structure of bi-gram

Figure C.16: The 16 UNDHR text language distances results of bi-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 1000. Figure C.16(a) shows the colormap of the language distance
variations and Figure C.16(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.16(a) shows the pairwise distances between
languages.
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Figure C.17: The 16 UNDHR text language distances results of tri-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 1. Figure C.17(a) shows the colormap of the language distance vari-
ations and Figure C.17(b) shows the language tree which is built by the distances.
The colour variation in Figure C.17(a) shows the pairwise distances between lan-
guages.
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Figure C.18: The 16 UNDHR text language distances results of tri-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 5. Figure C.18(a) shows the colormap of the language distance vari-
ations and Figure C.18(b) shows the language tree which is built by the distances.
The colour variation in Figure C.18(a) shows the pairwise distances between lan-
guages.
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Figure C.19: The 16 UNDHR text language distances results of tri-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 10. Figure C.19(a) shows the colormap of the language distance
variations and Figure C.19(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.19(a) shows the pairwise distances between
languages.
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Figure C.20: The 16 UNDHR text language distances results of tri-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 50. Figure C.20(a) shows the colormap of the language distance
variations and Figure C.20(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.20(a) shows the pairwise distances between
languages.
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Figure C.21: The 16 UNDHR text language distances results of tri-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 100. Figure C.21(a) shows the colormap of the language distance
variations and Figure C.21(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.21(a) shows the pairwise distances between
languages.
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Figure C.22: The 16 UNDHR text language distances results of tri-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 400. Figure C.22(a) shows the colormap of the language distance
variations and Figure C.22(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.22(a) shows the pairwise distances between
languages.
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(b) Tree structure of tri-gram

Figure C.23: The 16 UNDHR text language distances results of tri-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 500. Figure C.23(a) shows the colormap of the language distance
variations and Figure C.23(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.23(a) shows the pairwise distances between
languages.
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Figure C.24: The 16 UNDHR text language distances results of tri-gram. The dis-
tances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 1000. Figure C.24(a) shows the colormap of the language distance
variations and Figure C.24(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.24(a) shows the pairwise distances between
languages.
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(b) Tree structure of four-gram

Figure C.25: The 16 UNDHR text language distances results of four-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 1. Figure C.25(a) shows the colormap of the language distance vari-
ations and Figure C.25(b) shows the language tree which is built by the distances.
The colour variation in Figure C.25(a) shows the pairwise distances between lan-
guages.
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(b) Tree structure of four-gram

Figure C.26: The 16 UNDHR text language distances results of four-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 5. Figure C.26(a) shows the colormap of the language distance vari-
ations and Figure C.26(b) shows the language tree which is built by the distances.
The colour variation in Figure C.26(a) shows the pairwise distances between lan-
guages.
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Figure C.27: The 16 UNDHR text language distances results of four-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 10. Figure C.27(a) shows the colormap of the language distance
variations and Figure C.27(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.27(a) shows the pairwise distances between
languages.
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Figure C.28: The 16 UNDHR text language distances results of four-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 50. Figure C.28(a) shows the colormap of the language distance
variations and Figure C.28(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.28(a) shows the pairwise distances between
languages.
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Figure C.29: The 16 UNDHR text language distances results of four-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 100. Figure C.29(a) shows the colormap of the language distance
variations and Figure C.29(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.29(a) shows the pairwise distances between
languages.
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Figure C.30: The 16 UNDHR text language distances results of four-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 400. Figure C.30(a) shows the colormap of the language distance
variations and Figure C.30(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.30(a) shows the pairwise distances between
languages.



APPENDIX C. TLID N -GRAM COLOR MAPS AND LANGUAGE TREES 295

Colormap for 4-gram model

penalty =500

a
ra

b
ic

c
a
ta

la
n

c
z
e
c
h

e
n
g
lis

h

g
e
rm

a
n

h
u
n
g
a
ri
a
n

in
d
o
n
e
s
ia

n

it
a
lia

n

ja
p
a
n
e
s
e

k
o
re

a
n

m
a
n
d
a
ri
n

p
o
lis

h

ru
s
s
ia

n

s
p
a
n
is

h

s
w

a
h
ili

s
w

e
d
is

h

arabic

catalan

czech

english

german

hungarian

indonesian

italian

japanese

korean

mandarin

polish

russian

spanish
swahili

swedish
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Colormap of four-gram

0 0.1 0.2 0.3 0.4 0.5

Tree for 4-gram model, penalty =500

*japanese

mandarin

*korean

arabic

german

swedish

$catalan

$spanish

italian

english

hungarian

indonesian

swahili

+czech

+polish

russian

(b) Tree structure of four-gram

Figure C.31: The 16 UNDHR text language distances results of four-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 500. Figure C.31(a) shows the colormap of the language distance
variations and Figure C.31(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.31(a) shows the pairwise distances between
languages.
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Figure C.32: The 16 UNDHR text language distances results of four-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 1000. Figure C.32(a) shows the colormap of the language distance
variations and Figure C.32(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.32(a) shows the pairwise distances between
languages.
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Figure C.33: The 16 UNDHR text language distances results of five-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 1. Figure C.33(a) shows the colormap of the language distance vari-
ations and Figure C.33(b) shows the language tree which is built by the distances.
The colour variation in Figure C.33(a) shows the pairwise distances between lan-
guages.
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Figure C.34: The 16 UNDHR text language distances results of five-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 5. Figure C.34(a) shows the colormap of the language distance vari-
ations and Figure C.34(b) shows the language tree which is built by the distances.
The colour variation in Figure C.34(a) shows the pairwise distances between lan-
guages.



APPENDIX C. TLID N -GRAM COLOR MAPS AND LANGUAGE TREES 299

Colormap for 5-gram model

penalty =10

a
ra

b
ic

c
a
ta

la
n

c
z
e
c
h

e
n
g
lis

h

g
e
rm

a
n

h
u
n
g
a
ri
a
n

in
d
o
n
e
s
ia

n

it
a
lia

n

ja
p
a
n
e
s
e

k
o
re

a
n

m
a
n
d
a
ri
n

p
o
lis

h

ru
s
s
ia

n

s
p
a
n
is

h

s
w

a
h
ili

s
w

e
d
is

h

arabic

catalan

czech

english

german

hungarian

indonesian

italian

japanese

korean

mandarin

polish

russian

spanish
swahili

swedish
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Colormap of five-gram

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Tree for 5-gram model, penalty =10

english

italian

hungarian

mandarin

indonesian

$spanish

*korean

+polish

swedish

arabic

+czech

*japanese

swahili

german

$catalan

russian

(b) Tree structure of five-gram

Figure C.35: The 16 UNDHR text language distances results of five-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 10. Figure C.35(a) shows the colormap of the language distance
variations and Figure C.35(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.35(a) shows the pairwise distances between
languages.
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Figure C.36: The 16 UNDHR text language distances results of five-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 50. Figure C.36(a) shows the colormap of the language distance
variations and Figure C.36(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.36(a) shows the pairwise distances between
languages.
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Figure C.37: The 16 UNDHR text language distances results of five-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 100. Figure C.37(a) shows the colormap of the language distance
variations and Figure C.37(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.37(a) shows the pairwise distances between
languages.
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Figure C.38: The 16 UNDHR text language distances results of five-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 400. Figure C.38(a) shows the colormap of the language distance
variations and Figure C.38(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.38(a) shows the pairwise distances between
languages.
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Figure C.39: The 16 UNDHR text language distances results of five-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 500. Figure C.39(a) shows the colormap of the language distance
variations and Figure C.39(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.39(a) shows the pairwise distances between
languages.
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Figure C.40: The 16 UNDHR text language distances results of five-gram. The
distances shown in the diagrams are distance/σ and are normalized into [0, 1]. The
penalty value is 1000. Figure C.40(a) shows the colormap of the language distance
variations and Figure C.40(b) shows the language tree which is built by the dis-
tances. The colour variation in Figure C.40(a) shows the pairwise distances between
languages.



References

Aguilar-Torres, G., Toscano-Medina, K., Sanchez-Perez, G., Nakano-Miyatake, M.,
and Perez-Meana, H. (2009). Eigenface-Gabor algorithm for feature extraction in
face recognition. International Journal of Computers, 3:20–30.

Ahmed, N., Natarajan, T., and Rao, K. (1974). Discrete Cosine Transform. Com-
puters, IEEE Transactions on, 100(1):90–93.

Aliprand, J. M. (2011). The unicode standard. Library resources & technical services,
44(3):160–167.

Ambikairajah, E., Li, H., Wang, L., Yin, B., and Sethu, V. (2011). Language
identification: a tutorial. Circuits and Systems Magazine, IEEE, 11(2):82–108.

Association, I. P. et al. (1999). Handbook of the International Phonetic Association:
A guide to the use of the International Phonetic Alphabet. Cambridge University
Press.

Atal, B. S. (1976). Automatic recognition of speakers from their voices. Proceedings
of the IEEE, 64(4):460–475.

Baum, L. (1972). An inequality and associated maximization technique in statistical
estimation for probabilistic functions of markov processes. Inequalities, 3:1–8.

Beesley, K. R. (1988). Language identifier: A computer program for automatic
natural-language identification of on-line text. In Proceedings of the 29th Annual
Conference of the American Translators Association, volume 47, page 54. Citeseer.

Benedetto, D., Caglioti, E., and Loreto, V. (2002). Language trees and zipping.
Physical Review Letters, 88(4):048702.

Bielefeld, B. (1994). Language identification using shifted delta cepstrum. In Four-
teenth Annual Speech Research Symposium.

Bray, T., Paoli, J., M Sperberg-McQueen, C., Maler, E., and Yergeau, F. (2008).
Extensible markup language (xml) 1.0 (fifth edition).

Bregler, C. and Konig, Y. (2002). "Eigenlips" for robust speech recognition. In
Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE Inter-
national Conference on, volume 2. IEEE.

305



REFERENCES 306

Burrows, Michael, W. D. J. (1994). A block-sorting lossless data compression al-
gorithm. Includes bibliographical references.

Campana, B. J. and Keogh, E. J. (2010). A compression-based distance measure
for texture. Statistical Analysis and Data Mining, 3(6):381–398.

Cavnar, W. B. and Trenkle, J. M. (1994). N-gram-based text categorization. In
Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and
Information Retrieval, pages 161–175, Las Vegas, US.

Cetingul, H., Yemez, Y., Erzin, E., and Tekalp, A. (2006). Discriminative ana-
lysis of lip motion features for speaker identification and speech-reading. Image
Processing, IEEE Transactions on, 15(10):2879–2891.

Chopra, V., Eaves, J., Jones, R., Li, S., and Bell, J. T. (2005). Beginning JavaServer
Pages. John Wiley & Sons.

Cilibrasi, R. and Vitányi, P. M. (2005). Clustering by compression. Information
Theory, IEEE Transactions on, 51(4):1523–1545.

Cleary, J. G. and Witten, I. (1984). Data compression using adaptive coding and
partial string matching. Communications, IEEE Transactions on, 32(4):396–402.

Clive, S., Churcher, G., Hayes, J., Hughes, J., and Johnson, S. (1994). Natural
language identification using corpus-based models. Hermes Journal of Linguistics,
13(S 183):203.

Collinge, N. E. (2002). An encyclopedia of language. Routledge.

Cootes, T., Edwards, G., and Taylor, C. (2001a). Active appearance models. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 23(6):681–685.

Cootes, T., Taylor, C., and Lanitis, A. (1994). Multi-resolution search with active
shape models. In Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vis-
ion & Image Processing., Proceedings of the 12th IAPR International Conference
on, volume 1, pages 610–612. IEEE.

Cootes, T. F., Edwards, G. J., and Taylor, C. J. (2001b). Active appearance models.
IEEE Transactions on Pattern Analysis & Machine Intelligence, (6):681–685.

De La Torre, A., Segura, J. C., Benitez, C., Peinado, A. M., and Rubio, A. J. (2002).
Non-linear transformations of the feature space for robust speech recognition. In
Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International
Conference on, volume 1, pages I–401. IEEE.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), pages 1–38.



REFERENCES 307

Deutsch, L. P. (1996). DEFLATE Compressed Data Format Specification version
1.3. RFC 1951.

Dunning, T. (1994). Statistical identification of language. Computing Research
Laboratory, New Mexico State University.

Freedman, D. and Diaconis, P. (1981). On the histogram as a density estimator:
L 2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,
57(4):453–476.

Gold, B., Morgan, N., and Ellis, D. (2011). Speech and audio signal processing:
processing and perception of speech and music. Wiley. com.

Gold, E. M. (1967). Language identification in the limit. Information and control,
10(5):447–474.

Goodman, J. (2002). Extended comment on language trees and zipping. arXiv
preprint cond-mat/0202383.

Gray, R. (1984). Vector quantization. IEEE Assp Magazine, 1(2):4–29.

Hao, Y., Campana, B., and Keogh, E. (2012). Monitoring and mining insect sounds
in visual space. In Proceedings of the 2012 SIAM International Conference on
Data Mining, pages 792–803. SIAM.

Henrich, P. (1989). Language identification for the automatic grapheme-to-phoneme
conversion of foreign words in a german text-to-speech system. In EUROSPEECH,
pages 2220–2223. ISCA.

Hochberg, J., Bowers, K., Cannon, M., and Kelly, P. (1999). Script and language
identification for handwritten document images. International Journal on Docu-
ment Analysis and Recognition, 2(2-3):45–52.

Huffman, D. A. et al. (1952). A method for the construction of minimum redundancy
codes. Proceedings of the IRE, 40(9):1098–1101.

Hughes, B., Baldwin, T., Bird, S., Nicholson, J., and MacKinlay, A. (2006). Recon-
sidering language identification for written language resources. In Proc. Interna-
tional Conference on Language Resources and Evaluation, pages 485–488.

Ingle, N. C. (1976). A language identification table. The Incorporated Linguist,
15(4):98–101.

International Phonetic Association (2018). The International Phonetic Alpha-
bet (revised to 2018). International Phonetic Association. bibtex: interna-
tional_phonetic_association_international_2018.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models.
International journal of computer vision, 1(4):321–331.



REFERENCES 308

Kučera, H. and Monroe, G. K. (1968). A comparative quantitative phonology of
Russian, Czech, and German. Number 4. Elsevier.

Laver, J. (1994). Principles of phonetics. Cambridge University Press.

Lee, S. and Hasegawa, T. (2011). Bayesian phylogenetic analysis supports an agri-
cultural origin of japonic languages. Proceedings of the Royal Society B: Biological
Sciences, 278(1725):3662–3669.

Lewis, M. Paul, G. F. S. and D.Fenning, C. (2013). Ethnologue: Languages of the
world, seventeenth edition. Dallas, Texas: SIL International.

Lu, B., Zhang, L., and Leong, H. W. (2017). A program to compute the
soft robinson–foulds distance between phylogenetic networks. BMC genomics,
18(2):111.

Manning, C. D. and Schütze, H. (1999). Foundations of statistical natural language
processing, volume 999. MIT Press.

Markel, J. D. and Gray, A. J. (2013). Linear prediction of speech, volume 12. Springer
Science & Business Media.

Matthews, I. (1998). Feature for Audio-Visual Speech Recognition. PhD thesis,
School of Information System, University of East Anglia, UK.

Matthews, I., Cootes, T., Bangham, J., Cox, S., and Harvey, R. (2002). Extraction
of visual features for lipreading. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(2):198–213.

Matthews, I., Cootes, T., Cox, S., Harvey, R., and Bangham, J. (1998). Lipreading
using shape, shading and scale. Proceedings-institute of Acoustics, 20:99–106.

Mustonen, S. (1965). Multiple discriminant analysis in linguistic problems. Statist-
ical Methods in Linguistics, 4:37–44.

Newman, J. L. (2011). Language Identification Using Visual Features. PhD thesis,
School of Information System, University of East Anglia, UK.

Parzen, E. (1962). On estimation of a probability density function and mode. The
annals of mathematical statistics, 33(3):1065–1076.

Peake, G. and Tan, T. (1997). Script and language identification from document
images. In Proceedings Workshop on Document Image Analysis (DIA’97), pages
10–17. IEEE.

Pekalska, E., de Ridder, D., Duin, R. P., and Kraaijveld, M. A. (1999). A new
method of generalizing sammon mapping with application to algorithm speed-up.
In ASCI, volume 99, pages 221–228.



REFERENCES 309

Pelecanos, J. and Sridharan, S. (2001). Feature warping for robust speaker verific-
ation. In 2001: A Speaker Odyssey - The Speaker Recognition Workshop, pages
213–218, Crete, Greece. International Speech Communication Association (ISCA).

Poutsma, A. (2002). Applying monte carlo techniques to language identification.
Language and Computers, 45(1):179–189.

Rabiner, L. R. and Juang, B. (1993). Fundamentals of speech recognition. Prentice
Hall signal processing series. Prentice Hall.

Raggett, D., Le Hors, A., Jacobs, I., et al. (1999). Html 4.01 specification. W3C
recommendation, 24.

Robinson, A. and Cherry, C. (1967). Results of a prototype television bandwidth
compression scheme. Proceedings of the IEEE, 55(3):356–364.

Robinson, D. F. and Foulds, L. R. (1981). Comparison of phylogenetic trees. Math-
ematical biosciences, 53(1):131–147.

Ruhlen, M. (1991). A guide to the world’s languages: classification, volume 1.
Stanford University Press.

Ryabko, B. Y. (1980). Data compression by means of a “book stack”. Problemy
Peredachi Informatsii, 16(4):16–21.

Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE
Transactions on computers, 18(5):401–409.

Schilling, R. J. and Harris, S. L. (2012). Introduction to digital signal processing
using MATLAB. Cengage Learning.

Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3):605–
610.

Seward, J. (1996). bzip2 and libbzip2. avaliable at http://www. bzip. org.

Shannon, C. (2001). A mathematical theory of communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):3–55.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced
data. In Proceedings of the 1968 23rd ACM national conference, pages 517–524.
ACM.

Sibun, P. and Reynar, J. C. (1996). Language identification: Examining the issues.
In 5th Symposium on Document Analysis and Information Retrieval, pages 125–
135, Las Vegas, Nevada, U.S.A.

Sircombe, K. (2000). The usefulness and limitations of binned frequency histograms
and probability density distributions for displaying absolute age data. Natural
Resources Canada, Geological Survey of Canada.



REFERENCES 310

Starner, T. E. (1995). Visual recognition of american sign language using hidden
markov models. Technical report, DTIC Document.

Stevens, S. S., Volkmann, J., and Newman, E. B. (1937). A scale for the measure-
ment of the psychological magnitude pitch. The Journal of the Acoustical Society
of America, 8(3):185–190.

Sturges, H. A. (1926). The choice of a class interval. Journal of the american
statistical association, 21(153):65–66.

Sumby, W. H. and Pollack, I. (1954). Visual contribution to speech intelligibility in
noise. The journal of the acoustical society of america, 26(2):212–215.

Tamura, H., Mori, S., and Yamawaki, T. (1978). Textural features correspond-
ing to visual perception. IEEE Transactions on Systems, man, and cybernetics,
8(6):460–473.

The Unicode Consortium (2011). The Unicode Standard. Technical Report Version
6.0.0, Unicode Consortium, Mountain View, CA.

Tong, R., Ma, B., Zhu, D., Li, H., and Chng, E. S. (2006). Integrating acoustic,
prosodic and phonotactic features for spoken language identification. In Acous-
tics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on, volume 1, pages I–I. IEEE.

Tsvetovat, M. and Kouznetsov, A. (2011). Social Network Analysis for Startups:
Finding connections on the social web. “ O’Reilly Media, Inc.”.

Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. Journal of cognitive
neuroscience, 3(1):71–86.

Unicode, I. (2013). Unicode 6.2 character code charts.

Voegelin, C. F. and Voegelin, F. M. (1977). Classification and Index of the World
Languages. Elsevier, Amsterdam.

Witten, I. H., Neal, R. M., and Cleary, J. G. (1987). Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540.

Wolf, M., Whistler, K., Wicksteed, C., Davis, M., and Freytag, A. (2000). A stand-
ard compression scheme for unicode. Unicode Tech.

Young, S. J., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., and Woodland, P.
(2006). The HTK Book Version 3.4. Cambridge University Press.

Zipf, G. K. (1949). Human behavior and the principle of least effort.

Zissman, M. A. (1996). Comparison of four approaches to automatic language identi-
fication of telephone speech. IEEE Transactions on Speech and Audio Processing,
4(1):31.



REFERENCES 311

Zissman, M. A. and Berkling, K. M. (2001). Automatic language identification.
Speech Communication, 35(1):115–124.

Ziv, J. and Lempel, A. (1977). A universal algorithm for sequential data compression.
IEEE Transactions on information theory, 23(3):337–343.


