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Abstract 

 

Variability in blood pressure (BP) may influence ischaemic stroke outcomes in addition 

to mean BP. However, how best to measure BP variability (BPV) and whether different 

measurements are equivalent is unknown, as is whether treatment can reduce BPV. 

This thesis aimed to investigate relationships between BP and BPV measurements 

from different devices in patients with ischaemic cerebrovascular disease, 

relationships between BPV and stroke severity, and whether antihypertensive 

medications can reduce BPV. 

 

Three trials that recruited patients following an ischaemic cerebrovascular event 

provided data. Correlations and limits of agreement between mean BP and BPV from 

different measurement devices were assessed. Relationships between baseline BPV 

and stroke severity were investigated, along with differences in baseline BPV in those 

treated with calcium channel blockers (CCB) or renin-angiotensin system inhibitors. A 

feasibility trial was developed to compare the effects of these medication classes on 

reduction of BPV post stroke. 

 

BP from daytime ambulatory monitoring was significantly lower than home BP 

monitoring and BPV values from different devices were unrelated. There was an 

inverse relationship between baseline BPV and stroke severity, with BPV increased in 

lacunar infarction. There was no difference in baseline BPV with the medication 

regimens specified above. Recruitment to the feasibility trial was insufficient due to 

patient ineligibility, but a reduction in BPV over three month follow-up was 

demonstrated.  

 

In patients with ischaemic cerebrovascular disease, BP and BPV recorded using 

different devices are not equivalent. Work to standardise BPV measurement and 

establish if any method is clinically superior is required. Treatment to reduce BPV may 

particularly benefit certain stroke patients, yet establishing that it is possible to target 

BPV, and doing so improves outcomes, is prerequisite. The feasibility trial in this thesis 

requires modification to be scaled up, but a definitive trial could be successful if 

recruitment were improved.
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IHD  Ischaemic heart disease 

INTERACT Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage 

Trial (first) 

INTERACT-2 Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage 

Trial (second) 

IST-3  Third International Stroke Trial 

LACS  Lacunar stroke 

LIFE  Losartan Intervention For Endpoint reduction in hypertension (trial) 

MAP  Mean arterial pressure 

MH  Masked hypertension 

MI  Myocardial infarction 

MiND-B Motor Neuron Disease Behavioural Instrument 

MMD  Maximum-minimum difference 

MoCA  Montreal Cognitive Assessment 

MRC  Medical Research Council (trial) 

MRI  Magnetic resonance imaging 
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mRS  Modified Rankin score 

NHS  National Health Service 

NIHSS  National Institutes of Health Stroke Scale 

NINDS  National Institute of Neurological Disorders and Stroke 

NNUH  Norfolk and Norwich University Hospital 

OCSP  Oxford Community Stroke Project classification 

OR  Odds ratio 

PACS  Partial anterior circulation stroke 

PATS  Post-stroke Antihypertensive Treatment Study 

POCS  Posterior circulation stroke 

PROGRESS Perindopril Protection Against Recurrent Stroke Study 

RCT  Randomised controlled trial 

RR  Relative risk 

SBP  Systolic blood pressure 

SCAST  Scandinavian Candesartan Acute Stroke Trial 

SD  Standard deviation 

SHEP  Systolic Hypertension in the Elderly Program(trial) 

SITS-ISTR Safe Implementation of Thrombolysis in Stroke – International Stroke 

Thrombolysis Register 

SPRINT  Systolic Blood Pressure Intervention Trial 

SPS3  Secondary Prevention of Small Subcortical Strokes (trial) 

TACS  Total anterior circulation stroke 

TIA  Transient ischaemic attack 

TOAST  Trial of Org 10172 in Acute Stroke Treatment 

VA  Veterans Association 

VIM  Variation independent of the mean 

WCH  White coat hypertension 

WHO  World Health Organisation 

X-CELLENT Natrilix SR Versus Candesartan and Amlodipine in the Reduction of 

Systolic Blood Pressure in Hypertensive Patients (trial) 
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1 Introduction 
 

Stroke is an important health issue both globally and in the UK [1, 2]. The last 20-30 

years have seen several major advances in stroke care, such as the creation of 

specialist stroke units and the development of acute reperfusion treatment strategies 

[3-5]. However, in spite of these developments stroke remains a major cause of 

morbidity and mortality [2, 6]. Raised blood pressure (BP) is recognised to be one of 

the major modifiable risk factors for stroke, with extensive evidence demonstrating 

that treatment aimed at reducing BP confers a reduced risk of both first episode and 

recurrent stroke [7, 8]. Furthermore, it is suggested that the relationship between BP 

and cardiovascular risk is linear (at least to a lower threshold of 115/75mmHg) [9], but 

with regard to stroke the relationship may not be this straightforward. 

 

Raised BP (>140/90mmHg) is frequently demonstrated in the hours to days following a 

cerebrovascular event [10], yet usually falls without specific intervention in the 

subsequent days to weeks [11]. The exact mechanism underlying this observation is 

uncertain and it is likely a multifactorial process. Interestingly, trials that have 

investigated intervening to reduce BP in the acute phase of ischaemic stroke have not 

demonstrated any benefit from such intervention in terms of mortality or stroke 

recovery, with limited data suggesting that doing so may be harmful [11]. This 

observation may relate to one of the proposed mechanisms underlying the rise in BP 

seen in acute stroke. Cerebral autoregulation allows the adjustment of cerebral blood 

flow (CBF) to match metabolic demand [12]. However, cerebral autoregulation is 

dysfunctional following stroke [13], leading to an increased dependence on systemic 

BP for the maintenance of adequate CBF. In this context it could be hypothesised that 

rapid changes in systemic BP levels (i.e. BP variability (BPV)), rather than simply the 

absolute BP level, may be the most important factor. 

 

There is a growing body of evidence examining the prognostic importance of BPV, with 

the majority of data suggesting that increased BPV is an independent risk factor for 

cardiovascular death, coronary heart disease events, and stroke events in addition to 

mean BP [14]. Further work focusing on BPV following ischaemic stroke indicates 

associations between increased BPV and both adverse stroke outcomes [15], and the 
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risk of stroke recurrence [16]. However, there is inconsistency in the approach to 

defining BPV in the literature due to variability being measured over different 

timescales and calculated using multiple techniques [17]. This inconsistency is 

underscored by a lack of data directly comparing different measures of BPV and 

uncertainty regarding which is most relevant. Furthermore, much of the evidence 

regarding the clinical importance of BPV in relation to stroke risk and outcomes has 

come from post hoc analysis of existing trial data. Whilst some of this evidence 

suggests that it may be possible and desirable to reduce BPV in patients with stroke, 

this has not been adequately investigated. Consequently, the role of BPV in acute 

stroke and secondary prevention is a subject of current interest and debate. 

 

The first part of this thesis will concentrate on the measurement of BPV using different 

techniques, and the relationships between these different techniques and durations of 

BP recording, in patients with a recent cerebrovascular event. In chapter four, different 

out-of-office BP measurement techniques will be compared for their equivalence. 

Chapter five will then go on to investigate differences in variability from beat-to-beat 

BP measurements compared with other short and medium-term variability measures. 

The second part of the thesis will investigate the potential of BPV as a therapeutic 

target following an ischaemic cerebrovascular event. In chapter six the relationships 

between BPV and stroke severity will be investigated and whether any subgroup of 

stroke patients in particular might benefit from treatment intended to reduce BPV will 

be discussed. Chapters seven and eight will then explore if there are differences in the 

effect on BPV between commonly used antihypertensive medication classes, the 

former using a cross-sectional analysis of trial data and the latter presenting a 

feasibility trial comparing two different antihypertensive medication classes. 
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2 Background 

 

2.1 Stroke 

 

2.1.1 Definition 

 

Stroke is defined as the presence of rapidly developing focal neurological dysfunction 

of presumed vascular origin [18-20]. This incorporates events due to cerebral 

infarction (which account for over 80% of strokes), primary intracerebral haemorrhage 

(ICH), and subarachnoid haemorrhage [18, 21]. Historically, the definition has also 

included reference to symptom duration. The World Health Organisation (WHO) 

definition, widely used for the last 40 years, states that symptoms should persist for 

over 24 hours or result in death to qualify as stroke [20], with episodes of focal 

neurological deficit resolving before 24 hours traditionally being classified as transient 

ischaemic attack (TIA) [22, 23]. However, the increased use of neuroimaging in the 

investigation of acute stroke and TIA has challenged this notion. Firstly, although non-

contrast computed tomography (CT) is highly sensitive for detecting acute 

haemorrhage, up to 60% of patients with cerebral infarction will have no acute 

ischaemic changes on imaging in the first few hours after onset [24]. Secondly, 

between 30-50% of patients whose symptoms resolve within 24 hours will have 

evidence of restricted diffusion lesions consistent with acute infarction on magnetic 

resonance imaging (MRI) [25]. Consequently, revised ‘tissue-based’ classifications of 

both stroke and TIA have been proposed. They define TIA as a transient episode of 

neurological dysfunction of vascular origin without any acute abnormality on 

neuroimaging [18, 23, 25], whereas stroke is an acute focal neurological deficit with 

radiological evidence of acute infarction or non-traumatic haemorrhage consistent 

with the symptoms, or a clear clinical syndrome of infarction without acutely abnormal 

imaging [24]. Modern definitions also acknowledge that stroke and TIA can affect the 

spinal cord or retina as well as cerebral tissue.  
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2.1.2 Epidemiology 

 

Cerebrovascular disease is a major global health issue. Statistics from the WHO show 

that in 2008 30% of deaths worldwide were attributable to cardiovascular disease, of 

which a third were caused by cerebrovascular disease [1]. In the UK stroke is the fourth 

most common cause of death, accounting for 7% of deaths annually [2], with a 

reported age-standardised incidence of 115-160 events per 100,000 population per 

year [2, 26]. Over 1.2 million people are living with the effects of stroke and over 50% 

of stroke survivors remain dependent on others for assistance with their activities of 

daily living after discharge from hospital [2, 19], making it the third leading cause of 

disability [6]. Consequently, stroke represents a significant burden to the UK economy 

costing around £1.7 billion per annum to the National Health Service (NHS) directly, 

with additional costs, for example of lost productivity, meaning that the overall cost is 

nearer to £9 billion annually [2].  

 

The epidemiology of stroke in the UK has changed in the last 40-50 years. A study of 

stroke incidence in Oxfordshire between 1981 and 2004 demonstrated a decline in 

age-specific incidence in the region of 30% [26]. However, this reduction may have 

plateaued, with the 2010 Global Burden of Disease Study indicating a slower decline of 

approximately 20% in the 20 years since 1990 and little change from 2005 to 2010 

[27]. This change in incidence reflects significant reductions in major cardiovascular 

risk factors in the population, such as smoking rates and hypertension, driven by 

improvements in primary cardiovascular preventative treatments [6, 26]. Stroke 

mortality has also decreased, falling by around 45% from 1990 to 2013, and this is due 

in part to the reduced incidence [6]. However, it is also due to significant 

improvements in acute stroke care, including the introduction of specialist ‘stroke 

units’ for the provision of multidisciplinary care and rehabilitation [3], faster access to 

specialist stroke physician and therapist assessments [28], and the introduction of 

reperfusion therapies for acute ischaemic stroke (initially thrombolysis and more 

recently mechanical thrombectomy) [4, 5]. In contrast, as more people are surviving 

stroke, the disease prevalence has increased by around 30% during this period [27]. 
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The successful impact of advances in acute care and primary prevention strategies are 

mirrored by changes in secondary prevention. Data from the Oxfordshire incidence 

study indicates that in stroke patients with previous TIA significantly greater 

proportions were on secondary prevention treatment in 2004 compared to 1981. This 

includes antihypertensives (around 60% compared to 35%), antiplatelets (around 60% 

compared to 5%), and lipid-lowering medication (around 35% compared to 0%) [26]. 

Estimates of the risk of recurrent stroke are lower in more recent cohorts compared to 

those from over 20 years ago and, whilst this may in part be attributable to 

methodological issues such as the definition of recurrent events, it also demonstrates 

the efficacy of more widespread secondary prevention [29]. Nevertheless, recurrent 

events remain common, with the risk of stroke in the three months following a TIA 

approaching 20% and roughly a 25% cumulative risk of recurrent stroke in the five 

years following a first event [2, 29]. Furthermore, recurrent events tend to be more 

severe, with a mortality rate nearly double that of first events and an increased risk of 

poor functional outcome at 90 days [30, 31]. As a result of this, and the fact that the 

reperfusion therapies are not viable for all patients with acute stroke (around 10% of 

patients in the UK receive thrombolysis [21, 28]), there remains room for improvement 

in the treatment and prevention of stroke and a need for further research to drive this 

improvement. 

 

2.1.3 Pathophysiology 

 

In cases of cerebral infarction there is vessel obstruction leading to reduced blood flow 

which lasts sufficiently long to cause irreversible damage. Multiple mechanisms can 

lead to the obstruction and can be divided according to the Trial of Org 10172 in Acute 

Stroke Treatment (TOAST) classification (Table 1) [32]. Interruption of the blood supply 

results in insufficient oxygen and glucose delivery required for cell metabolism. This 

triggers a cascade of events, including cell membrane disruption characterised by 

potassium efflux and calcium influx, release of glutamate and other toxic substances 

(e.g. free radicals), inflammation with cytotoxic oedema, localised acidosis, and 

ultimately cell necrosis [33, 34]. There may be additional early or late cell damage 

secondary to apoptotic mechanisms triggered by inflammatory cytokines [33]. The 

degree of damage is dependent on the level of reduction in blood flow, with the 
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Table 1: Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification of acute 

ischaemic stroke [32]. 

Classification Criteria 

Large artery 

atherosclerosis 

Clinical findings of a cortical, brainstem, or cerebellar deficit. 

Normal neuroimaging/imaging showing a lesion >1.5cm in 

diameter consistent with symptoms. 

Evidence of occlusion in pre-cerebral arteries (e.g. carotid 

stenosis). 

Cardio-embolism 

As above with evidence of a high-risk source of cardio-

embolism, such as atrial fibrillation or left ventricular 

thrombus. 

Small artery 

occlusion (lacunar) 

Clinical lacunar syndrome. 

Normal neuroimaging/imaging showing a subcortical lesion 

<1.5cm in diameter. 

No evidence of large vessel or cardio-embolic disease. 

Supported by a history of hypertension or diabetes. 

Other determined 

cause 

Other confirmed abnormality on testing, such as vasculitis or 

hypercoagulable state. 

Undetermined 

cause 

One of the following: 

 two or more causes identified; 

 no cause identified; 

 incomplete investigation. 
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lowest flow found in the infarcted core (which is irreversibly damaged) and higher (but 

still abnormal) flows in the surrounding tissue known as the ischaemic penumbra [35]. 

Collateral blood supply to the penumbra contributes to blood flow to this area and 

cells within this region, despite being dysfunctional, remain viable for a short period. 

Salvage of the ischaemic penumbra by restoring perfusion is a key aim in the acute 

treatment of ischaemic stroke.  

 

The mechanism in ICH differs to ischaemic stroke. The most common cause of acute 

bleeding is rupture of a small vessel lipohyalinotic aneurysm secondary to chronic 

hypertensive vascular damage [34, 36, 37]. Other potential causes include, but are not 

limited to, chronic vascular damage due to cerebral amyloid angiopathy, structural 

pathologies like arteriovenous malformation, cavernous haemangioma, or saccular 

aneurysm, and the use of anticoagulant medications [37]. Following the acute bleed 

there is a similar inflammatory and cytotoxic cascade as in ischaemic stroke, but the 

mechanical impact of tissue oedema and the developing haematoma is probably the 

greater source of neuronal damage. Whether there is salvageable penumbral tissue in 

ICH is debated [37]. Currently the immediate goals of treatment are to arrest the 

bleeding and reduce haematoma expansion. 

 

2.2 The Relationship between Stroke and Blood Pressure 

 

2.2.1 Historical Aspects 

 

Hypertension has been recognised as a risk factor for cardiovascular disease for almost 

100 years, yet the medical community did not immediately accept the necessity of its 

treatment. Shortly after the development of the sphygmomanometer in the late 19th 

century American insurance companies began including BP measurement in their 

assessments [38]. By the mid-1920’s they had published reports that linked above 

average BP values with an increased risk of death. In 1928 the term ‘malignant 

hypertension’ was coined for a syndrome of very high BP (>200/100mmHg) and 

retinopathy which was noted to lead to death within months from heart failure, stroke 

or kidney failure unless treatment to lower BP was instigated [39]. However, it would 
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be another 30 years before attitudes to the treatment of so-called ‘benign 

hypertension’ would comprehensively shift. A key event in this process was the 

discovery of chlorothiazide in the late 1950’s [40]. This was the first effective oral 

antihypertensive not hampered by excessive side effects and its discovery started to 

shift the risk-benefit balance in favour of treatment. The second key event was the 

publication, beginning with reports from the Framingham Heart Study [41], of robust 

observational data demonstrating a strong correlation between raised BP and 

subsequent complications such as heart disease, stroke, and kidney failure.  

 

2.2.2 Primary Prevention - Observational Studies 

 

The observational evidence linking hypertension to cardiovascular disease is now 

substantial and the consistency of the evidence strongly suggests a causal relationship. 

Pooled analysis of the data, amounting to over 400,000 participants with an average 

follow-up period of 10 years, demonstrated that in patients with no previous history of 

cardiovascular disease the relationship between BP and cardiovascular risk is direct, 

continuous and linear [9]. Further pooled analysis incorporating additional data 

amounting to nearly one million participants corroborated this [42]. The relationship is 

stronger for stroke than ischaemic heart disease (IHD) or other vascular disease, with a 

reduction in BP of 10/5mmHg conveying a reduction in first ever stroke risk of 

approximately 30% [9, 43]. Although it has been demonstrated that this is not 

consistent across age groups, with larger hazard ratios (HR) for raised BP seen in 

patients under 60 years old compared to those over 80 years old [42], the greater 

incidence of stroke in older age groups means that the absolute benefit of lowering BP 

in these patients is at least similar, if not greater [43]. Interestingly, there does not 

appear to be a threshold at which lower BP is not associated with lower cardiovascular 

risk, although data for BP below 115/75mmHg is limited [9, 42, 43].  

 

2.2.3 Primary Prevention - Randomised Controlled Trials (RCT) 

 

Building on the observational evidence, multiple large and robust RCT have confirmed 

that BP reduction results in a decreased primary cardiovascular risk, in particular 
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stroke risk. Two of the earliest landmark RCT were the Veterans Association (VA) Co-

operative Study and the Hypertension Detection and Follow-up Program (HDFP) study 

[44]. The VA Co-operative Study was the first randomised, placebo controlled, double 

blind trial investigating the treatment of hypertension. 143 men with diastolic BP (DBP) 

between 115-129mmHg and 380 men with DBP between 90-114mmHg were 

randomised to treatment with hydrochlorothiazide (plus reserpine and hydralazine 

added stepwise if necessary) or placebo [45, 46]. For the group with severe 

hypertension the trial was terminated early [45]. After two years follow-up BP in the 

treatment group fell by 43/29.7mmHg and there were only two recorded severe 

complications compared to no change in BP and 27 severe complications in the 

placebo group. The results for the group with mild-moderate hypertension after a total 

of five years follow-up were also positive, but more modest [46]. These results were 

subsequently corroborated by the HDFP study which randomised 10,500 patients with 

DBP between 90-104 mmHg to stepped care or treatment as usual [47]. The stepped 

care group received standardised treatment (diuretic plus reserpine, hydralazine and 

guanethedine added in sequence if necessary) to lower DBP to <90mmHg. Deaths from 

cardiovascular disease were 26% lower in the intervention group, demonstrating the 

benefit of treating patients with mild-moderate diastolic hypertension. The Systolic 

Hypertension in the Elderly Program (SHEP) trial addressed the question of the 

importance of isolated raised systolic BP (SBP) [48]. In this study 4736 patients with 

SBP >160mmHg but DBP <90mmHg were randomised to treatment (chlorthalidone ± 

atenolol) or placebo. Although some patients in the placebo group also received 

antihypertensive therapy with other agents during the trial, over the five-year follow-

up there was a greater reduction in SBP and a 36% lower risk of stroke in the 

intervention group. Systematic review of the major RCT confirms that lowering BP is 

beneficial for reducing the risk of primary cardiovascular disease, especially stroke 

(Tables 2-3) [7, 43, 49]. Furthermore, it is likely that BP reduction is the important 

factor irrespective of the particular therapy used to achieve it [43, 49], although 

whether antihypertensive medicines really are equivalent in relation to stroke will be 

discussed further in this thesis. 
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Table 2: Risk of stroke in selected randomised controlled trials evaluating 

antihypertensive medications vs. placebo [43]. 

Study 

Treatment Arm Placebo Arm Relative Risk ([RR] 

95% confidence 

interval (CI)) 
Events Total Events Total 

ACTION 82 3825 108 3840 0.63 (0.37 to 1.09) 

ACTIVE 1 379 4518 411 4498 0.71 (0.43 to 1.19) 

ADVANCE 215 5569 218 5571 0.96 (0.69 to 1.35) 

ANBPS 13 1721 22 1706 0.59 (0.30 to 1.16) 

Coope 20 419 39 465 0.57 (0.34 to 0.96) 

EUROPA 98 6110 102 6108 0.92 (0.53 to 1.60) 

EWPHE 32 416 48 424 0.68 (0.44 to 1.04) 

FEVER 177 4841 251 4870 0.41 (0.23 to 0.71) 

HDFP 102 5485 158 5455 0.64 (0.50 to 0.82) 

HYVET 51 1933 69 1912 0.79 (0.62 to 1.00) 

MRC older 101 2183 134 2213 0.76 (0.59 to 0.98) 

MRC young 60 8700 109 8654 0.55 (0.40 to 0.75) 

NAVIGATOR 105 4631 132 4675 0.43 (0.17 to 1.08) 

PREVENT 5 417 5 408 0.98 (0.29 to 3.35) 

SHEP 105 2365 162 2371 0.65 (0.51 to 0.83) 

STOP H 30 812 55 815 0.55 (0.35 to 0.85) 

Syst-China 45 1253 59 1141 0.63 (0.41 to 0.97) 

Syst-Eur 47 2398 77 2297 0.58 (0.41 to 0.84) 

TRANSCEND 112 2954 136 2972 0.63 (0.33 to 1.18) 

VA 6 254 23 257 0.26 (0.11 to 0.64) 
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Table 3: Relative risk of stroke per 10mmHg reduction in systolic blood pressure in 

selected randomised controlled trials evaluating intensive vs. less intensive blood 

pressure targets [7]. 

Study 

Intensive BP Target 

Arm 
Control Arm Relative Risk (95% 

CI) 
Events Total Events Total 

ABCD-H 9 237 9 233 0.97 (0.21 to 4.35) 

ACCORD 36 2362 62 2371 0.69 (0.52 to 0.92) 

BBB 8 1064 11 1064 0.75 (0.33 to 1.71) 

HOT 200 12,526 94 6264 1.22 (0.56 to 2.64) 

JATOS 52 2212 49 2206 1.06 (0.71 to 1.58) 

SPRINT 62 4678 70 4683 0.91 (0.70 to 1.19) 

VALISH 16 1545 23 1534 0.49 (0.15 to 1.60) 

 

BP denotes blood pressure; 95% CI, 95% confidence interval.
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2.2.4 Secondary Prevention 

 

It is reported that 50-60% of strokes can be attributed to uncontrolled hypertension, 

making this the most important modifiable risk factor for cerebrovascular disease [49, 

50]. So far I have concentrated on the primary prevention of stroke, but given that 

there are over 20,000 recurrent strokes annually in the UK lowering BP should also 

improve secondary prevention [18, 21]. This view is supported by observational data 

that shows an association between higher BP in the 12 months post-stroke and a 

greater risk of recurrence, and conversely that antihypertensive treatment is 

associated with lower rates of recurrence [50]. Fewer RCT have investigated BP 

lowering for secondary prevention, but both the Post-stroke Antihypertensive 

Treatment Study (PATS) and the Perindopril Protection Against Recurrent Stroke Study 

(PROGRESS) demonstrated a reduced risk of recurrent stroke in the region of 30% with 

intervention compared to placebo [51, 52]. A recent meta-analysis of secondary 

prevention RCT confirmed these reports (Table 4 and Figure 1) and also demonstrated 

that intensive BP lowering is beneficial for secondary prevention [8]. Patients were 

stratified according to the achieved level of SBP (<130mmHg, 130-140mmHg, or 

>140mmHg) and DBP (<85mmHg, 85-90mmHg, or >90mmHg). The risk of recurrent 

stroke was smallest for those in the lowest categories of SBP and DBP, linearly 

increasing with achieved BP level. This analysis supports the findings of the Secondary 

Prevention of Small Subcortical Strokes (SPS3) trial which was a dedicated RCT 

designed to assess the impact of intensive BP lowering on recurrent events after 

lacunar stroke in 3020 patients [53]. SPS3 reported a trend towards reduced rates of 

recurrent stroke in the group treated to target SBP <130mmHg, indicating that 

intensive BP lowering for secondary prevention is likely to be beneficial (Figure 2). 

 

2.2.5 Current Guidelines 

 

It is clear that treatment to lower BP has a beneficial effect on stroke risk (Figure 3) 

and this is reflected in guidelines, with some advocating intensive treatment to a 

target BP of <130/80mmHg [18, 54]. However, this is not a consensus 

recommendation. For example, the American Stroke Association (ASA) and the 
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Table 4: Risk of recurrent stroke in trials of antihypertensive medication vs. placebo. 

Data adapted from the meta-analysis by Katsanos et al. 2017 [8]. 

Study 
Treatment Arm Placebo Arm 

Risk Ratio (95% CI) 
Events Total Events Total 

Carter et al. 7 49 11 48 0.62 (0.26 to 1.47 

Dutch TIA 52 732 62 741 0.85 (0.60 to 1.21 

HOPE 13 500 23 513 0.58 (0.30 to 1.13) 

HSCSG 37 233 42 219 0.83 (0.55 to 1.24) 

Liu et al. 67 762 147 758 0.45 (0.35 to 0.59) 

Marti Masso 

and Lozano 
20 170 18 94 0.61 (0.34 to 1.10) 

PATS 159 2841 217 2824 0.73 (0.60 to 0.89) 

PRoFESS 880 10146 934 10186 0.95 (0.87 to 1.03) 

PROGRESS 307 3051 420 3054 0.73 (0.64 to 0.84) 

SCOPE 5 97 14 97 0.36 (0.13 to 0.95) 

TEST 74 372 69 348 1.00 (0.75 to 1.35) 

Total 1621 18953 1957 18882 0.73 (0.62 to 0.87) 

 

95% CI denotes 95% confidence interval.
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Figure 1: Meta-analysis of the effects of antihypertensive therapy following stroke on 

the risk of fatal and non-fatal recurrence [10].  

 

 

Figure 2: Probability of recurrent stroke, myocardial infarction (MI), or vascular death 

after randomisation in the intensive blood pressure target and standard blood 

pressure target arms of SPS3 [53]. 
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Figure 3: Standardised effects of a 10mmHg reduction in systolic blood pressure on 

cardiovascular outcomes incorporating data from primary and secondary prevention 

trials, and trials of intensive blood pressure lowering. Adapted from Ettehad et al. 2016 

[7]. RR denotes relative risk; 95% CI, 95% confidence interval. 
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European Society of Hypertension (ESH) are more cautious. Firstly, they note that trials 

drawing conclusions about intensive BP targets have not always successfully lowered 

BP beyond standard recommendations [55]. However, this criticism is not true of more 

recent trials, including SPS3 and the Systolic Blood Pressure Intervention Trial (SPRINT), 

which both achieved their pre-stated intensive BP reduction, and successfully showed 

an associated reduction in cardiovascular events and mortality [53, 56]. Secondly, the 

ASA and ESH cite a post-hoc analysis of PROGRESS which suggested that the 

effectiveness of secondary prevention diminished in line with baseline BP level, such 

that participants with baseline SBP <120mmHg gained no additional benefit from 

antihypertensive therapy [55, 57]. However, a meta-analysis of the benefit of 

antihypertensive treatment stratified by baseline BP level, incorporating a mixture of 

low and high-risk hypertensive subjects, contradicts this position [58]. This uncertainty 

relates to the debate about whether the relationship between BP and secondary 

stroke risk is linear or ‘J’ shaped, the latter implying that overly aggressive BP reduction 

could be harmful [59]. This idea has some logical basis given that autoregulatory 

mechanisms to maintain organ perfusion have both a lower and higher functional limit 

and that these limits can shift in the presence of chronic vascular disease [60, 61]. 

Further research into these issues is required and dedicated ongoing trials, such as the 

Stroke in Hypertension Optimal Treatment trial (ESH-CHL-SHOT [62]), should help to 

establish the optimum BP target for secondary stroke prevention. 

 

2.3 Blood Pressure in the Acute Phase of Stroke 

 

2.3.1 The Acute Hypertensive Response 

 

It is common for patients with an acute stroke (either infarct or ICH) to have BP 

>140/90mmHg, with between 60-84% of acute stroke patients found to have BP above 

this threshold within 24 hours of symptom onset [10, 63, 64]. Similar rates are 

reported for patients with acute TIA [65]. Only around half of these patients will be 

known to have hypertension prior to their cerebrovascular event [10, 11], leading to 

the hypothesis that there is an ‘acute hypertensive response’ related to stroke and TIA. 

Whilst the natural history of raised BP in TIA has not been reported, observational data 
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in stroke patients demonstrates that this acutely raised BP can decline without specific 

treatment from around 24 hours to 14 days post-event [11, 63, 66]. This suggests a 

possible stroke specific cause for the observed pattern. Multiple potential mechanisms 

have been suggested, including haematoma expansion in ICH, cerebral oedema and 

raised intracranial pressure, autonomic dysfunction, and abnormal cerebral 

autoregulation [11, 13, 63, 67, 68]. Perhaps the most important of these in ischaemic 

stroke is the latter. As a consequence of disordered cerebral autoregulation, CBF 

becomes dependent on systemic BP and therefore raised BP may be necessary to 

maintain perfusion of the ischaemic penumbra, with low BP potentially causing 

cerebral hypoperfusion and infarct expansion. This idea is supported by a meta-

analysis of observational studies investigating the prognostic impact of raised BP in 

acute stroke that demonstrated raised BP is associated with worse outcomes (either 

death or dependency) [69]. Retrospective review of data from the International Stroke 

Trial corroborated this conclusion and additionally showed that low BP is also a poor 

prognostic factor [70]. Consequently, the management of BP in the acute phase of 

stroke is of clinical interest as appropriate therapeutic intervention could potentially 

improve outcomes for stroke survivors.  

 

2.3.2 Management in Patients Receiving Thrombolysis 

 

For patients who receive thrombolysis raised BP can increase the risk of haemorrhage 

as a treatment complication. Retrospective review of the Third International Stroke 

Trial (IST-3) data showed that a higher baseline BP was associated with an increased 

risk of any early adverse event with an odds ratio (OR) of 1.05 (95% CI 1.01 to 1.09, 

p=0.01) [71]. This was primarily driven by an increased risk of symptomatic ICH (OR 

1.10 [95% CI 1.02 to 1.19, p=0.01]), which was the only other statistically significant 

association. Similarly, retrospective review of the Safe Implementation of Thrombolysis 

in Stroke – International Stroke Thrombolysis Register (SITS-ISTR) found that increased 

BP (measured at baseline, 2 hours post-onset and 24 hours post-onset) was linearly 

associated with an increased risk of symptomatic ICH. Furthermore, they reported a ‘U’ 

shaped relationship between BP level and mortality and 3 month independence [64]. 

As a result of this it is accepted that BP should be lowered to ≤185/110mmHg (the 

upper BP threshold required for inclusion in the first National Institute of Neurological 
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Disorders and Stroke (NINDS) trial) prior to administering thrombolysis and this is 

recommended in stroke guidelines [18, 19, 57]. However, whether to lower BP in 

patients not eligible for thrombolysis, and if so to what target level, is controversial. 

 

2.3.3 Management in Patients not Receiving Thrombolysis 

 

Interestingly, in their review of IST-3 Berge et al. observed that receiving BP lowering 

treatment in the first 24 hours after randomisation to thrombolysis or control resulted 

in a reduced risk of poor functional outcome at six months, irrespective of whether the 

patient received alteplase or placebo (OR 0.78 [95% CI 0.65-0.93, p=0.007]) [71]. The 

decision to give BP lowering treatment was according to local protocols. Participants 

receiving antihypertensives had a higher mean baseline SBP (159.7mmHg compared to 

152.5mmHg), but after 24 hours mean SBP in the groups had converged (147.8 mmHg 

with treatment and 144.1mmHg without). BP lowering treatment was also not 

associated with the development of early neurological deterioration (END) or early 

recurrent ischaemic stroke. However, these findings have not been replicated in RCT 

specifically designed to investigate the effect of lowering BP in the acute phase of 

ischaemic stroke (Table 5).  

 

Of the large dedicated trials the Acute Candesartan Cilexitil Therapy in Stroke Survivors 

(ACCESS) trial was the first, enrolling patients with ischaemic stroke and BP 

>200/110mmHg within 6-24 hours after admission (or >180/105mmHg 24-36 hours 

after admission) [72]. The trial was stopped early due to an increased mortality rate at 

12 months in the placebo group. However, BP was not significantly lowered by the 

intervention compared to control and mortality at 12 months was a secondary 

outcome. Neither of the pre-specified primary outcomes (mortality or functional status 

at three months) were reported, partly due to the recognition that the Barthel Index 

was not a suitable measure of functional outcome. In the Controlling Hypertension and 

Hypotension Immediately Post-Stroke (CHHIPS) trial 179 patients with any stroke and 

SBP >160mmHg were randomised within 36 hours of symptom onset to labetalol, 

lisinopril or placebo [66]. There was no difference in the primary outcome of death or 

dependency (defined as a modified Rankin score (mRS) >3) at 14 days (RR 1.03 [95% CI 

0.80 to 1.33, p=0.82]) despite a definite reduction in SBP (21mmHg with intervention



 

 
 

Table 5: Summary of main published trials of blood pressure lowering treatment in acute ischaemic stroke. Outcome figures presented are mean 

(standard deviation (SD)) or risk (95% CI). 

Trial N Intervention Control 
Treatment 

duration 
ICH eligible Outcome 

Bath 2000 

[73] 
37 

GTN patch within 5 days of 

onset 
Placebo 12 days Yes 

Day 1 BP reduction: 

13.0/5.2mmHg with intervention 

ACCESS 

2003 [72] 
339 

Candesartan, commenced 

24-36 hours after onset 
Placebo 7 days No 

Barthel index at 3 months: 

87.0 (22.9) vs. 88.9 (19.9) 

Eames 

2005 [74] 
37 

Bendroflumethiazide 

within 96 hours of onset 
Placebo 7 days No 

BP at 7 days: 

No significant differences 

Eveson 

2007 [75] 
40 

Lisinopril within 24 hours 

of onset 
Placebo 14 days No 

Change in NIHSS1 at 14 days: 

No significant differences 

CHHIPS 

2009 [66] 
179 

Labetalol or Lisinopril 

within 36 hours of onset 
Placebo 14 days Yes 

mRS ≥4 at 2 weeks  

RR 1.03 (0.80 to 1.33)* 

PRoFESS 

2009 [76] 
1360 

Telmisartan within 72 

hours of onset 
Placebo 2.5 years No 

mRS at 30 days: 

OR 1.03 (0.84 to 1.26) 

SCAST 

2011 [77] 
2029 

Candesartan within 30 

hours of onset 
Placebo 7 days Yes 

a) death/recurrent stroke or MI: HR 1.09 (0.84 to 

1.41) 



 

 
 

b) mRS at 6 months: 

OR 1.13 (0.97 to 1.32) 

CATIS 2013 

[78] 
4071 

Any treatment within 48 

hours of onset to achieve 

BP <140/90mmHg 

Not 

treated 
14 days No 

mRS ≥3 at 14 days or hospital discharge: 

OR 1.00 (0.88 to 1.14) 

RIGHT 

2013 [79] 
41 

GTN patch within 4 hours 

of onset 
No GTN Single dose Yes 

Difference in SBP at 2 hours: 

-18 (30) mmHg with intervention 

ENOS 2014 

[80] 
4011 

GTN patch within 48 hours 

of onset 
No GTN 7 days Yes 

mRS at 90 days: 

OR 1.01 (0.91 to 1.13) 

1National Institutes of Health Stroke Scale (NIHSS) 
*combined active treatment groups vs. placebo 
BP denotes blood pressure; ICH, intracerebral haemorrhage; GTN, Glyceryl trinitrate; NIHSS, National Institutes of Health Stroke Scale; mRS, modified 
Rankin score; MI, myocardial infarction; SBP, systolic blood pressure.
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vs. 11mmHg with placebo, p=0.04), though the trial did not meet its recruitment 

target. The Scandinavian Candesartan Acute Stroke Trial (SCAST) employed a similar 

study design to ACCESS, but with a lower threshold BP for inclusion [77]. Two thousand 

twenty-nine patients with any stroke within 30 hours of symptom onset and with SBP 

>140mmHg were randomised to candesartan or placebo. After seven days of 

treatment mean BP in the intervention group was 5/2mmHg lower. However, this 

difference was not sustained at the six month outcome point, nor was there any 

difference in composite vascular death/non-fatal myocardial infarction (MI)/non-fatal 

stroke (HR 1.09 [95% CI 0.84 to 1.41, p=0.52]). In fact there was a non-significant trend 

towards better six month functional outcome with placebo (OR 1.17 [95% CI 1.00 to 

1.38, p=0.048]). The China Antihypertensive Trial in Acute Ischemic Stroke (CATIS) 

investigated an intensive BP target rather than a specified treatment [78], enrolling 

4071 ischaemic stroke patients with SBP 140-220mmHg within 48 hours of onset. 

Those in the intervention arm had a greater BP reduction in the first 24 hours with the 

difference sustained at seven days. Despite this, there was no difference in the primary 

outcome of death or disability (mRS ≥3) at 14 days, nor was there any difference at 

three months. Finally, the Efficacy of Nitric Oxide in Stroke (ENOS) trial investigated 

glyceryl trinitrate (GTN) as the therapeutic agent [80]. GTN is a nitric oxide donor 

which, as well as having BP lowering properties, may be neuroprotective and inhibit 

apoptosis, thereby reducing ischaemic damage. The trial enrolled 4011 patients with 

any stroke within 48 hours of symptom onset and randomised them to transdermal 

GTN or placebo. As with other trials there was a greater BP reduction with intervention 

but this did not translate to a difference in functional outcome (assessed as the 

distribution of mRS at 90 days). Systematic review of these and additional studies, 

including a total of 17,011 patients, has confirmed the findings of the individual trials 

[11].  

 

Overall, there is no evidence of benefit for lowering BP in hyperacute ischaemic stroke 

and the data from SCAST suggests it may actually be harmful to do so. However, this 

may relate to methodological factors, specifically the timing of treatment initiation. 

Whilst subgroup analysis in CATIS suggested a possible improvement in functional 

outcome in those who commenced treatment >24 hours after symptom onset [78], 
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several trials have shown the opposite. In SCAST there was a non-significant finding 

that those who received treatment <6 hours after symptom onset had an improved 

functional outcome [77]. This was also reported as a statistically significant finding in 

ENOS, where it was a pre-specified secondary outcome [80]. Furthermore, a pilot trial 

for transdermal GTN administered within four hours of stroke onset reported a one 

point favourable shift in mRS at 3 months in the intervention group [79]. Although the 

trial was not powered for this outcome it is a potentially important finding that is being 

further investigated [81]. It is also interesting to note that larger BP reductions have 

been achieved with earlier treatment initiation (mean reduction -16.0/-15.0mmHg for 

patients receiving pre-hospital treatment compared to -7.3/-4.9mmHg for those 

commencing treatment >48 hours after onset) and this may underlie the differences in 

reported outcomes [11].  

 

2.3.4 Management in Patients with Intracerebral Haemorrhage 

 

It is also hypothesised that stroke subtype may be a relevant factor in the acute 

treatment of raised BP. Hypertension is the major risk factor for primary ICH. Chronic 

hypertension is associated with degenerative changes to penetrating arterioles that 

can lead to vessel rupture and haemorrhage, such as lypohyalinosis and Bouchard 

aneurysm formation [36, 37]. Two theories about the risk related to BP immediately 

following ICH have been proposed. Firstly, raised BP may inhibit haemostasis and 

propagate haematoma expansion. Secondly, as in ischaemic stroke, there may be a 

peri-haematomal penumbra that is vulnerable to low BP [82]. The first theory is 

supported by the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage 

Trial (INTERACT) which showed less haematoma expansion 24 hours after symptom 

onset with intensive management of BP (target of SBP <140mmHg) compared to 

standard management (target SBP of <180mmHg) [83]. However, the idea of a 

vulnerable peri-haematomal penumbra is not supported by data from the 

Intracerebral Haemorrhage Acutely Decreasing Arterial Pressure Trial 

(ICH-ADAPT). Using CT perfusion imaging this trial demonstrated that relative CBF in 

the peri-haematomal region is not reduced with intensive BP reduction (SBP 

<150mmHg) compared to standard management (SBP <180mmHg) [84]. Trials of 

intensive vs. standard BP reduction in acute primary ICH are summarised in Table 6.   
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Table 6: Summary of published trials of intensive blood pressure reduction compared 

to standard blood pressure lowering (according to guideline recommendations) in 

acute intracerebral haemorrhage. 

Trial N 
Recruitment 

window 

SBP targets 

(mmHg)* 

Primary 

outcome 
Result 

Koch 2008 

[85] 
42 <8 hours 

<110 vs. 

110-130 

END (NIHSS drop 

≥2 within 48 

hours) 

No significant 

difference 

INTERACT 

2008 [83] 
404 <6 hours 

<140 vs. 

<180 

Haematoma 

growth at 24 

hours 

13.7% vs. 36.3% 

(p=0.04) 

ICH-ADAPT 

2013 [84] 
75 <24 hours 

<150 vs. 

<180 

Perihaematoma 

relative CBF at 2 

hours 

0.86 vs. 0.89 

(p=0.18) 

INTERACT-2 

2013 [86] 
2839 <6 hours 

<140 vs. 

<180 

mRS ≥3 at 3 

months 

OR 0.87 (0.75 to 

1.01), p=0.06 

ATACH-2 

2016 [87] 
1000 <4.5 hours 

110-139 vs. 

140-179 

mRS ≥4 at 3 

months 

RR 1.04 (95% CI 

0.85 to 1.27), 

p=0.72 

*Mean arterial pressure (MAP) in Koch, SBP all other trials 

SBP denotes systolic blood pressure; END, early neurological deterioration; NIHSS, 

National Institutes of Health Stroke Scale; CBF, cerebral blood flow; mRS, modified 

Rankin score; OR, odds ratio; RR, relative risk; 95% CI, 95% confidence interval. 
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The two major trials (The second Intensive Blood Pressure Reduction in Acute Cerebral 

Haemorrhage Trial (INTERACT-2) and the second Antihypertensive Treatment of Acute 

Cerebral Hemorrhage (ATACH-2)) both failed to show a benefit to morbidity and 

mortality (defined as mRS ≥3 or ≥4 respectively) at three months with intensive BP 

lowering compared to standard management [86, 87]. However, in a pre-specified 

secondary outcome, INTERACT-2 did demonstrate a significant favourable shift in mRS 

with intensive BP lowering, suggesting a benefit in terms of functional outcome for 

survivors (OR 0.87 [95% CI 0.77 to 1.00, p=0.04]) [86]. 

 

2.3.5 Guideline Recommendations 

 

Current stroke guidelines reflect the uncertainty in the evidence base. For ischaemic 

stroke the recommendations for patients receiving thrombolysis have already been 

described, but for all other patients it is felt that BP lowering treatment should only be 

started in the first 24 hours after stroke onset if there is a hypertensive emergency 

with organ damage [18, 19, 57]. Only the ASA specifically mentions an upper BP 

threshold (220/120mmHg) [57]. For patients with ICH it is felt to be safe, and possibly 

beneficial, to aim for intensive BP reduction to a target SBP <140mmHg, provided that 

treatment can be instigated within six hours [18, 88]. Rather than the lack of evidence 

being related to the timing of initiation of treatment, an alternative explanation may 

be that it is not just the absolute BP level that matters in the acute phase of stroke. 

This will be discussed further in subsequent sections of this thesis where I will consider 

the concept of BPV and its relationship with stroke outcomes. 
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2.4 Blood Pressure Monitoring 

 

2.4.1 Office Measurement 

 

Controlling BP for primary and secondary stroke prevention relies on being able to 

accurately measure BP levels and establishing at what level BP treatment is of benefit. 

Whilst distinguishing normotension and hypertension with a specific threshold value is 

somewhat arbitrary due to the normal distribution of BP within the population and the 

continuous relationship between BP and cardiovascular risk, such categorisations are 

clinically useful. Based on the evidence from major trials SBP >140mmHg and/or DBP 

>90mmHg has traditionally been accepted as the point at which treatment benefits 

significantly outweigh any risks. However, the 2017 American Heart Association (AHA) 

guidelines recommend a lower threshold, citing recent evidence from observational 

studies demonstrating increased risks of stroke and coronary heart disease at BP levels 

between 120-139/80-89mmHg [54]. Currently recommended threshold values for 

clinic and out-of-office BP measurement methods are presented in Tables 7-8. 

 

Traditionally BP measurement has been undertaken using a manual 

sphygmomanometer, referred to as ‘office’ or ‘clinic’ BP measurement (CBPM) [89]. To 

ascertain the patient’s ‘usual’ BP repeated measurements on separate occasions are 

recommended as this mitigates against the natural variation in BP attributable to 

factors like change in circadian rhythm or seasonal variation [90]. CBPM is more 

complex than it may appear and its fallibility is recognised. Limitations include poor 

technique (e.g. not allowing the patient to rest several minutes before measuring, 

incorrect cuff size, not positioning the arm level with the heart), taking single 

measurements (often due to time constraints), observer bias, and observer terminal 

digit preference [89]. Furthermore, CBPM may not accurately represent the ‘usual’ BP 

in some patients. White coat hypertension (WCH) exists when the patient’s office BP is 

consistent with a diagnosis of hypertension, yet their out-of-office BP is within the 

normal range. Conversely, masked hypertension (MH) is where office BP is within the 

normal range yet out-of-office BP is consistent with a diagnosis of hypertension. 

Neither of these phenomena can be identified by CBPM alone and both are important  
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Table 7: Definitions of normotension and hypertension based on clinic blood pressure 

measurement from current guidelines [54, 91, 92]. Blood pressure category is defined 

according to the highest value, whether systolic or diastolic. 

 NICE (2011) ESH (2018) AHA (2017) 

SBP 
(mmHg) 

DBP 
(mmHg) 

SBP 
(mmHg) 

DBP 
(mmHg) 

SBP 
(mmHg) 

DBP 
(mmHg) 

Normal <140 <90 <130 <85 <120 <80 

High normal - - 130-139 85-89 120-129 <80 

Grade 1 
hypertension 

≥140 ≥90 140-159 90-99 130-139 80-89 

Grade 2 
hypertension 

≥160 ≥100 160-179 100-109 140-159 90-99 

Grade 3 
hypertension 

≥180 ≥110 ≥180 ≥110 ≥160 ≥100 

SBP denotes systolic blood pressure; DBP, diastolic blood pressure; NICE, National 

Institute for Health and Care Excellence; ESH, European Society of Hypertension; AHA, 

American Hypertension Association. 

 

 

Table 8: Threshold values for grade 1 hypertension based on out-of-office blood 

pressure measurements from current guidelines [54, 91, 92]. 

 NICE (2011) ESH (2018) AHA (2017)* 

Home 
measurement 

≥135/85mmHg ≥135/85mmHg ≥130/80mmHg 

Daytime ABPM ≥135/85mmHg ≥135/85mmHg ≥130/80mmHg 

Night-time ABPM - ≥120/70mmHg ≥110/65mmHg 

24 hour ABPM - ≥130/80mmHg ≥125/75mmHg 

*AHA guidelines also provide out-of-office measurement threshold values for each 

grade of hypertension 

ABPM denotes ambulatory blood pressure measurement; NICE, National Institute for 

Health and Care Excellence; ESH, European Society of Hypertension; AHA, American 

Hypertension Association. 
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as they can lead to over-treatment and under-treatment respectively [93]. 

Consequently, modern hypertension guidelines recommend the additional use of out-

of-office BP measurement to improve diagnostic accuracy and for the monitoring of 

treatment response [54, 91, 92]. 

 

2.4.2 Beat-to-beat Measurement 

 

Continuous (beat-to-beat) BP measurements in the clinic/lab are also possible over 

short periods. Non-invasive methods that measure the finger arterial pressure 

waveform using a cuff with built-in plethysmograph have been available since the 

1980’s, with available validated devices including the Finometer (Finapres®), 

Portapres®, and the Task Force® Monitor [94-96]. Evaluation of these devices has 

shown that they are sufficiently accurate (Table 9), although the standard deviation 

(SD) of SBP with the Finapres® is higher than the Association for the Advancement of 

Medical Instruments’ (AAMI) acceptable limit of 8mmHg, so they may lack the required 

precision for assessment of isolated BP levels. The Finapres®, in comparison with 

invasive arterial measurements, has also been shown to accurately track sudden 

changes in BP and measure variability (defined as SD or spectral analysis) in recordings 

up to 30 minutes long [95, 97], with the Task Force Monitor® being validated against 

the Finapres® for assessment of BPV [96]. Consequently, non-invasive beat-to-beat 

measurement has become established in clinical practice for the assessment of 

syncope and in research for the investigation of BPV [98-101]. 
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Table 9: Accuracy (mean difference (SD)) of blood pressure measurements with the 

Finapres® and the Task Force Monitor® [95, 96]. The Finapres® has been compared to 

both invasive and non-invasive methods and weighted average values are presented. 

The Task Force Monitor® has only been compared against non-invasive devices. 

 Finapres® Task Force Monitor® 

SBP -1.3 ± 9.0 mmHg -1.8 ± 7.6 mmHg 

DBP -2.0 ± 5.1 mmHg -1.8 ± 6.4 mmHg 

 

SD denotes standard deviation; SBP, systolic blood pressure; DBP, diastolic blood 

pressure.
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2.4.3 Out-of-Office Measurement 

 

For out-of-office BP measurement UK guidelines recommend the use of ambulatory BP 

measurement (ABPM) as the first-line method [91]. ABPM involves the use of an 

automated BP monitor, usually over 24 hours, programmed to measure BP at set time 

intervals. The recommended measurement interval varies [54, 91, 92], but to ensure 

the minimum required 14 daytime and seven night-time readings the maximum 

frequency should probably be every 30 minutes [89]. A major advantage of ABPM is 

that night-time measurements are obtained. BP normally falls by around 10-20% at 

night. Those who do not display this pattern are labelled “non-dippers”, this status 

being associated with increased target organ damage and an increased risk of 

cardiovascular events, coronary heart disease, stroke, and death [102, 103]. Indeed, 

night-time BP values and patterns may relate more closely to the risk of cardiovascular 

events than daytime values [104], though not all studies support this [105]. The other 

major advantage of ABPM is that a more accurate ‘usual’ BP is obtained as 

measurements are taken during the patient’s normal activities away from the clinic 

environment, an increased number of measurements are obtained, and technical 

limitations like observer bias/terminal digit preference are eliminated. These factors 

reduce the influence of natural variation in BP measurements and improve the 

reproducibility of the data. Research has shown that this translates to improved 

prediction of cardiovascular risk and a better correlation with target organ damage 

than CBPM [105-107]. Unfortunately, ABPM is significantly more expensive due to the 

equipment cost and the need for supporting software to interpret the data. Its 

interpretation also requires some additional expertise. Perhaps most importantly 

though, not all patients are able to tolerate ABPM and this can limit its practical use.  

 

An alternative to ABPM is home BP measurement (HBPM) (also referred to as self-BP 

measurement), which has become a viable alternative method with the development 

of cheaper, more accurate semi-automated monitors [89]. HBPM is recommended 

alongside ABPM in guidelines for the diagnosis and monitoring of hypertension [54, 91, 

92]. With this technique the patient measures their own BP at home, commonly being 

instructed to take two measurements in the morning and two in the evening for at 
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least three, but preferably seven consecutive days [92]. The mean of all 

measurements, excluding those from day one to allow for acclimatisation, can then be 

used. Like ABPM, HBPM provides an increased number of measurements and can 

identify both WCH and MH. Although it does not provide night-time measurements 

and can be susceptible to some of the same observer bias as CBPM, HBPM is probably 

more tolerable than ABPM and therefore may be more practical for monitoring long-

term control. It is reported that HBPM correlates at least as well as ABPM with 

cardiovascular risk and target organ damage and also out-performs CBPM in this 

respect [106, 108, 109]. 

 

2.4.4 Comparisons of Office and Out-of-Office Measurements 

 

It is known that out-of-office BP levels are not identical to office levels when 

contemporaneous measurements are taken in the same subjects. At a CBPM of 

140/90mmHg the equivalent daytime ABPM value is on average 4/3mmHg lower, 

though this difference increases as BP rises [110]. The current diagnostic threshold for 

daytime ABPM from European guidelines is 135/85mmHg (Table 8) [91, 92]. The 

threshold for HBPM is considered equivalent to daytime ABPM, but it should be noted 

that this has not been as thoroughly investigated [93, 111]. In fact, available data 

regarding their comparison shows inconsistent differences between them (Table 10), 

some of which is attributable to methodological factors, such as the age of study 

participants [112-114]. In terms of diagnosing hypertension, agreement between the 

methods has been reported as between 59% and 82% [115, 116]. When ABPM is used 

as the reference standard, HBPM provides increased sensitivity but reduced specificity 

compared to CBPM (CBPM with threshold >140/90mmHg mean sensitivity 74.6% [95% 

CI 60.7% to 84.8%] and specificity 74.6% [95% CI 47.9% to 90.4%], HBPM with 

threshold >135/85mmHg mean sensitivity 85.7% [95% CI 78.0% to 91.0%] and 

specificity 62.4% [95% CI 48.0% to 75.0%]) [122]. It is possible that CBPM, HBPM and 

ABPM are not interchangeable methods of measuring BP and this will be discussed 

further in a later chapter of this thesis.  
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Table 10: Studies taking contemporaneous blood pressure values from clinic, 

ambulatory, and home measurements for comparison. Mean values for each method 

are presented. 

Study N 
Mean CBPM 

(mmHg) 

Mean ABPM 

(mmHg)† 

Mean HBPM 

(mmHg) 

Denolle 1995 [117] 16 156/91 131/89 128/87 

Juhanoja 2016 [118] 461 132.8/85.2 138.4/85.1 130.0/85.2 

Larkin 1998 [119] 65 127.8/82.7 132.8/81.9 131.4/80.0 

Mancia 1995 [120] 1438 127.4/82.3 123.0/78.7 119.2/74.7 

Nasothimiou 2012* 

[116] 
44 152/86 138/80 144/81 

Nunan 2015 [121] 203 145.0/92.0 133.6/82.6 141.1/87.0 

Sega 1997 [112] 248 147.7/82.9 127.6/77.0 138.2/78.0 

Stergiou 2000 [115] 133 143.2/93.0 139.3/91.1 138.7/89.3 

*patients with clinic resistant hypertension (defined as average CBPM ≥140/90mmHg 

from two visits while on stable treatment with ≥3 antihypertensive drugs for ≥4 weeks. 

†daytime ABPM values reported with the exception of Denolle et al. and Larkin et al. 

who reported 24 hour ABPM values. 

CBPM denotes clinic blood pressure measurement; ABPM, ambulatory blood pressure 

measurement; HBPM, home blood pressure measurement.
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2.5 Blood Pressure Variability 

 

2.5.1 Concept 

 

Hypertension diagnosis and monitoring has traditionally been based on CBPM with a 

manual sphygmomanometer [89]. It has already been noted that, for an individual, BP 

readings obtained using this method will not be exactly the same on separate 

occasions, with some of this difference attributable to natural variation. Factors that 

contribute to this over the short-term include the circadian rhythm (most people’s BP 

is 10-20% lower at night-time) [102, 103, 122], emotional state, behavioural stimuli 

(e.g. caffeine, exercise, smoking), homeostatic mechanisms (e.g. the renin-angiotensin 

system) and the autonomic nervous system [90, 122]. Longer-term fluctuations may be 

attributable to seasonal variation and may also relate to inadequacies in measurement 

technique, changes to antihypertensive treatment, or poor adherence to 

antihypertensive treatment regimens [90, 122]. However, patients may also 

experience ‘episodic hypertension’ whereby, similar to WCH or MH, recorded BP may 

sometimes be within the normal range and sometimes be raised. For example, in 150 

patients with a recent stroke who were not on antihypertensive treatment prior to 

their cerebrovascular event, 87% of patients had at least one recorded SBP >160mmHg 

and 69% had at least two recorded SBP’s <130mmHg in the 10 years preceding their 

stroke [26]. Hypertension guidelines recommend that multiple CBPM are taken over 

several visits to try and establish an individual’s ‘usual BP’ before diagnosing them with 

hypertension, and that CBPM should be corroborated using out-of-office 

measurements [54, 91, 92]. However, recent expert opinion has suggested that this 

variability may be more than just a barrier to establishing an individual’s ‘usual BP’. 

Rather, there is evidence that it is a reproducible measurement that provides 

information about cardiovascular risk [17, 123-125]. 

 

Much of the recent interest in BPV stems from a review article by Rothwell which 

highlighted several observations not fully explained by the currently accepted concept 

of ‘usual BP’ (particularly in relation to stroke) and which suggest that there may be 

additional important factors [126]. One of those factors may be BPV. For example, the 
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predictive value of mean SBP for stroke falls with increasing age despite the fact that 

stroke incidence increases with age and elderly patients benefit from antihypertensive 

treatment. Furthermore, the benefit seen with BP reduction may be greater than 

expected given the level of risk predicted by mean SBP. Secondly, conditions such as 

WCH, MH, and episodic hypertension, which imply that at least sometimes an 

individual’s BP is ‘normal’ yet is also subject to increased variability [127], are 

associated with an increased risk of stroke. Similarly, BP surges seen in the morning as 

part of the usual circadian BP rhythm, or associated with conditions like postural 

hypertension and hypotension, are predictive of stroke but are not associated with 

mean SBP. Finally, data from trials of antihypertensive medications indicates that, 

despite similar reductions in mean BP, not all classes of medications convey an equal 

reduction in stroke risk.  

 

2.5.2 Practical Aspects 

 

Variability can be derived from any of the BP recording methods previously described, 

provided multiple BP measurements are obtained. The main difference between BP 

measurement methods is that they allow the quantification of BPV over different 

timescales according to the gap between measurements. Very short-term variability 

(over seconds to minutes) can be obtained from beat-to-beat BP monitoring. Short-

term variability (over minutes to hours) can be obtained from ABPM or repeated CBPM 

within a single encounter. Medium-term variability (over days to weeks) is best 

assessed using HBPM, but could also be derived from repeated CBPM on consecutive 

days. Finally long-term variability (over months to years), also referred to as visit-to-

visit variability, is usually calculated from repeated CBPM over separate visits, but 

could also be obtained from repeated sets of ABPM or HBPM over time. 

 

Not only can BPV data come from different BP measurement methods over varying 

timescales, it can also be calculated in a number of different ways (Table 11). SD is a 

  



 

53 
 

Table 11: Statistical measures that can be applied to a set of blood pressure 

measurements to derive average values and variability data.  

Measure Abbreviation Description 

Mean  
The sum of all recorded values divided by the 

number of measurements. 

Standard deviation SD 

The square root of the mean of the squared 

difference of all values in the set from the overall 

mean value. 

Coefficient of variation CV 
The standard deviation of a set of recordings 

divided by the mean value and multiplied by 100. 

Variation independent 

of the mean 
VIM 

The standard deviation of a set of recordings 

divided by the mean raised to the power “x”. The 

value “x” is derived by fitting a curve (SD = meanx 

multiplied by a constant) to a plot of SD against 

mean values. 

Maximum-minimum 

difference 
MMD 

The maximum recorded blood pressure minus 

the minimum recorded blood pressure. 

Peak value  
The maximum recorded blood pressure minus 

the mean value of a set of recordings. 

Trough value  
The mean blood pressure from a set of 

recordings minus the minimum recorded value. 

Average successive 

variation 
ASV 

The mean value of the squared difference in 

blood pressure between successive 

measurements. 

Average real variability ARV 

The mean value of the absolute difference in 

blood pressure between successive 

measurements. 
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common statistical method of describing variance in a dataset and is the most 

frequently quoted method of presenting BPV [128]. However, its use for 

demonstrating BPV may be limited. For example, when applied to 24 hour ABPM 

recordings SD may just represent the natural variation between daytime and night-

time BP. This can be overcome by using weighted SD, which takes account of the 

greater number of readings acquired during waking hours [129], but a more intractable 

issue may be that because SD is statistically related to the mean value it may not 

provide useful information over and above mean BP [130, 131]. One approach to 

remove the influence of the mean value is to use the coefficient of variation (CV). A 

more statistically sophisticated method is variation independent of the mean (VIM), 

which employs curve fitting techniques to derive a population specific value which 

removes the influence of mean BP [131]. The maximum-minimum difference (MMD) is 

another simple measure of BP range, describing the maximal change within a 

recording. Peak and trough values can also be used to capture variation in terms of BP 

spikes. Finally, average successive variation (ASV) and average real variability (ARV) are 

methods of deriving variability that account for the time sequence of BP recordings 

within a set. Both may be particularly applicable to data from 24 hour ABPM as they 

avoid the difficulty in accounting for day-night differences that may be encountered 

with the other indices described [132]. 

 

2.5.3 The Prognostic Value of Blood Pressure Variability 

 

Rothwell’s group has published a body of work relating to BPV to complement his 

review article. Other contemporaneous publications include a study demonstrating 

that BPV is a reproducible phenomenon and two papers re-examining the data from 

several RCT [17, 131, 133]. The first of these re-examinations analysed data from the 

UK-TIA trial and three other cohorts designed to validate its findings (European Stroke 

Prevention Study (ESPS-1), Dutch TIA, and Anglo-Scandinavian Cardiac Outcomes Trial-

Blood Pressure Lowering Arm (ASCOT-BPLA)). This analysis demonstrated that visit-to-

visit variability of SBP (adjusted for mean BP) was a stronger predictor of future stroke 

than mean BP (Table 12) [131].  
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Table 12: Systolic blood pressure parameters and their predictive value for stroke (HR 

with 95% CI for the top vs. bottom decile of each parameter) in four cohorts of 

patients with TIA and minor stroke [131]. 

 UK-TIA ESPS-1 Dutch TIA ASCOT-BPLA 

    Atenolol arm Amlodipine arm 

N 1324 1247 3150 1012 999 

Mean  
3.63 (2.41 to 

5.48) 

1.89 (0.96 to 

3.71) 

2.34 (1.41 to 

3.89) 

1.81 (0.89 to 

3.67) 

0.94 (0.36 to 

2.42) 

SD* 
4.84 (3.03 to 

7.74) 

1.78 (1.12 to 

2.62) 

3.35 (1.63 to 

6.87) 

4.29 (1.78 to 

10.36) 

4.39 (1.68 to 

11.50) 

CV* 
3.82 (2.54 to 

5.73) 

2.22 (1.52 to 

3.22) 

3.41 (1.62 to 

7.19) 

3.51 (1.56 to 

7.93) 

3.25 (1.32 to 

8.00) 

VIM* 
3.27 (2.06 to 

5.21) 

1.86 (1.28 to 

2.69) 

1.83 (0.76 to 

4.39) 

3.96 (1.66 to 

9.43) 

3.57 (1.38 to 

9.19) 

*Adjusted for mean SBP 

HR denotes hazard ratio; 95% CI, 95% confidence interval; TIA, transient ischaemic 

attack; SD, standard deviation; CV, coefficient of variation; VIM, variation independent 

of the mean.
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Variability from ABPM was also predictive of future stroke independent of mean BP, 

but less so than visit-to-visit variability. The second analysed data from the ASCOT-

BPLA and Medical Research Council (MRC) trials to investigate the differential effects 

of antihypertensive medication classes on stroke risk, showing that the difference in 

stroke risk may be accounted for by differences in BPV [133]. In the wake of these 

publications other groups have sought to replicate and extend these findings. Studies 

relating to the prognostic value of BPV will be summarised here and the relationship 

between BPV and antihypertensive drug classes will be revisited. 

 

2.5.4 Markers of Organ Damage 

 

Various studies have reported positive associations between BPV and markers of 

damage to the kidneys, brain, and heart. Regarding renal damage, short-term BPV is 

positively associated with the presence of microalbuminuria and proteinuria in 

patients with hypertension [134-136]. Regarding the brain, short-term and long-term 

BPV are both associated with increased signs of cerebrovascular small vessel disease 

on neuroimaging [137, 138], with long-term variability also positively associated with 

the presence of cerebral micro-haemorrhages [138]. This may translate into an 

association with cognitive impairment and dementia as increased BPV has been linked 

to worse scores on cognitive screening in cross-sectional and longitudinal analyses 

[139-146]. Finally, in terms of cardiac organ damage the evidence is inconsistent with 

varying reports about the relationship between BPV and left ventricular mass [134, 

136, 147]. 

 

2.5.5 Cardiovascular Events and Mortality 

 

Several studies have questioned the finding of Rothwell’s group that BPV is an 

independent cardiovascular risk factor, with post-hoc review of at least three large 

datasets suggesting that increased BPV does not provide prognostic information over 

that of mean BP levels [148-150]. Analysis of a general population cohort 

demonstrated that baseline BPV, defined as the between-visit VIM from two visits with 

a 2-4 week interval, did not predict all-cause mortality, cardiovascular events, or stroke 
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events over a median follow-up of 12 years (HR 1.00 [95% CI 0.91-1.10], 1.05 [0.96-

1.15], 1.13 [0.88-1.46] respectively) [148]. In a second general cohort, variability 

derived as the root mean square error (an estimate of variation around a regression 

line for BP values recorded over time), from a minimum of six visits over two years, did 

not predict all-cause mortality over a median follow-up of 12.9 years (HR for the top 

quartile of variability 1.09 [95% CI 0.95-1.25]) [149]. Finally, in a post-hoc analysis of 

the Syst-Eur trial, increased VIM of systolic visit-to-visit variability, from visits every 

three months over two years, did not predict all-cause mortality, combined fatal and 

non-fatal cardiovascular events, or stroke events after adjustment for mean BP (HR per 

one SD increase in variability 0.95 [95 % CI 0.82-1.10], 0.92 [0.80-1.05], 1.03 [0.83-1.27] 

respectively) [150]. However, analysis of the US Veteran’s database, which represents 

the largest reported cohort (N=2,865,157), supports Rothwell et al. Over a median 

follow-up of eight years the HR for total mortality, coronary heart disease events, and 

stroke events were all incrementally higher with quartiles of SD of systolic visit-to-visit 

variability (e.g. HR for all-cause mortality in the top quartile 1.80 [95% CI 1.78-1.82]) 

[151]. Several meta-analyses also demonstrate that long-term BPV is an independent 

cardiovascular risk factor, predicting all-cause mortality, cardiovascular mortality, 

incident cardiovascular events, and stroke events (Figure 4) [14, 128, 152, 153]. 

Although there is less data regarding medium and short-term variability, both are 

probably also independent risk factors for all-cause mortality [128]. 

 

2.5.6 Potential Inconsistencies 

 

A criticism of studies reporting that increased BPV is an independent cardiovascular 

risk factor is that they have enrolled populations with a higher baseline cardiovascular 

risk and therefore the results may not be generally applicable. Whilst it is true that the 

negative studies described in the previous section are either based on general 

population cohorts or patients with hypertension but no additional cardiovascular 

disease, the impact of study population heterogeneity may not be significant. This is 

because when the predictive value of increased visit-to-visit variability was assessed in 

groups stratified by baseline cardiovascular risk according to European guidelines it  
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Figure 4: Forest plots showing the association of visit-to-visit systolic blood pressure 

variability (as standard deviation) with outcomes [14]. HR denotes hazard ratio; 95% 

CI, 95% confidence interval; CHD, coronary heart disease; CVD, cardiovascular disease. 
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was found that increased variability predicted cardiovascular events irrespective of 

baseline risk [154]. Other methodological issues may go further towards explaining 

some of the inconsistency in the evidence. Presently there is no consensus as to the 

optimum way to derive BPV [90, 155, 156], therefore, studies have used different 

approaches in terms of BP measurement protocols and have defined variability with a 

multitude of statistical methods. The latter may be less important because, although it 

can inhibit direct comparisons of data, for visit-to-visit variability from repeated clinic 

BP measurements BPV values from different indices are strongly correlated [157]. 

However, with reference to the former, BP measurement protocols have not only 

differed in terms of the BP measurement method used, but also with respect to the 

number and timing of measurements obtained. For example, HBPM has not always 

been undertaken for the same number of consecutive days and visit-to-visit variability 

may be taken from different numbers of visits spread over variable study durations. 

These aspects of BP measurement have been shown to influence BPV values when 

calculated as SD [130]. Although perhaps not relevant to short-term variability from 

ABPM, medium-term variability is influenced by the number of consecutive days on 

which BP is measured and the number of readings per day, with two sets of duplicate 

measurements for three consecutive days probably the minimum required to assess 

variability [158]. Similarly, the number of visits used influences visit-to-visit variability 

[159]. It is not clear if this also applies to other BPV indices, but the predictive value of 

BPV from several metrics increases with the number of BP measurements available 

[131], with one study suggesting that a minimum of four visits are necessary to 

calculate visit-to-visit variability with sufficient accuracy [123]. At least two of the 

previously described negative trials are likely to have been influenced by the BP 

measurements obtained. In the study by Schutte et al. between-visit variability was 

calculated from just two visits with 2-4 weeks between them [148]. Gao et al. 

retrospectively collected clinic BP data and so, whilst there was no standardised 

protocol, it is likely that only a single BP measurement was obtained at each visit [149]. 

 

In addition to the fact that measurement factors may influence BPV values and their 

prognostic relevance, there is evidence that variability values from different 

measurement methods are not strongly related. Correlations between 24 hour ABPM 
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variability and repeated CBPM variability in hypertensive patients (either untreated or 

on stable therapy) are either weak or non-significant [157, 160], as are correlations 

between beat-to-beat BPV and variability from 24 hour ABPM and HBPM [134]. 

Considering that natural BPV over different timescales has different influencing factors 

the same may be true for pathological BPV. Consequently, BPV as it is currently 

understood and discussed in the literature may not be a singular concept and the same 

pathological processes may not be elucidated by all measures of variability. 

 

Finally, in addition to these potential methodological issues, interpretation of the data 

is inhibited by the lack of established ‘normal’ values for BPV. Some studies have 

demonstrated increased variability in the study population compared to control 

subjects [13, 100, 161], but data to suggest how much of a difference is significant is 

limited. Two studies reporting long-term variability as CV found different levels of 

variability that may explain their inconsistent findings. Rothwell et al. reported average 

CV of SBP values of 9% and found a positive association between visit-to-visit 

variability and risk of recurrent stroke [131]. In contrast, Veloudi et al. found that 

increased visit-to-visit variability was not associated with target organ damage, but 

they reported average CV of SBP values of 7% [147]. This difference is in keeping with 

the findings from the only study that has attempted to establish BPV thresholds using 

outcome data [162]. In a general population cohort followed-up for approximately 10 

years, participants were separated into deciles of BPV, with variability calculated as CV 

from HBPM conducted over four consecutive days. The risk of cardiovascular events 

and mortality was increased for those participants with CV of SBP >11%, suggesting 

that this may be a threshold value. Clearly further research is needed to establish the 

limits of ‘natural’ variability in order to properly establish the relevance of pathological 

BPV. 
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2.6 Pathological Mechanisms Underlying Blood Pressure Variability 

 

2.6.1 Arterial Stiffness 

 

At present the pathophysiological mechanisms underlying BPV are undetermined. 

Several factors have been associated with BPV, but the majority of studies have been 

cross-sectional and so unable to prove a causal relationship. Perhaps most frequently 

discussed is the association between BPV and arterial stiffness. BP is not consistent 

throughout the arterial system. Although DBP and mean arterial pressure (MAP) 

remain relatively unchanged from the aorta to the peripheries, SBP increases with the 

distance from the heart. This is because peripheral arteries are less elastic than the 

aorta resulting in so-called “amplification” of BP [163]. Two theories are often cited to 

explain this. The pulse wave model hypothesises that the arterial pressure waveform is 

a composite of a forward travelling wave generated by left ventricular contraction and 

a reflected wave generated by tapering of arterial size and the associated reduction in 

arterial wall compliance [164]. The reflected wave augments systolic pressure with the 

effect diminishing as it travels further back towards the central vessels. The 

Windkessel model proposes that the elastic properties of the central arteries allows 

them to act as a reservoir that fills in systole and empties in diastole [165]. This 

elasticity buffers some of the pressure generated by left ventricular contraction and 

the buffering effect diminishes further down the arterial tree. Increased arterial 

stiffness can theoretically both reduce the capacity of central arteries to act as a buffer 

and increase the amplification of BP by enhancing the reflected wave, which in turn 

can increase BP and its variability. Several markers of arterial stiffness are measurable, 

with the gold standard considered to be carotid-femoral pulse wave velocity (c-fPWV) 

[166]. Studies show that increased short and long-term BPV are both positively 

correlated with reduced aortic distensibility in general adult populations [167, 168]. In 

hypertensive adults they are also positively correlated with c-fPWV [136, 169, 170]. 

Similarly, increased long-term BPV both predicts and is predicted by increased 

brachial-ankle pulse wave velocity [171, 172]. Whether change in BPV correlates with 

change in arterial stiffness is unclear with two studies reporting same directional 

change in BPV and arterial stiffness over time [173, 174], but another finding no 

association [147]. Furthermore, increased BPV may be associated with endothelial 
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dysfunction [175]. Therefore, whether increased arterial stiffness causes increased BPV 

or vice versa, or whether both influence each other in a vicious circle remains to be 

elucidated. 

 

2.6.2 Autonomic Dysfunction and Cardiac Baroreceptors 

 

Another potential mechanism underlying BPV is autonomic dysfunction. It is known 

that syndromes characterised by abnormal BP changes, such as postural hypotension, 

can be associated with conditions that can cause dysautonomia, such as Parkinson’s 

disease and Diabetes Mellitus. Short-term BPV from 24 hour ABPM is increased in 

diabetic hypertensive patients compared to non-diabetic hypertensives suggesting that 

this may be another clinical manifestation of diabetic autonomic neuropathy [176]. 

The BP volatility associated with autonomic dysfunction could be mediated by 

impairment of cardiac baroreceptors, which are a major determinant of short-term BP 

regulation [177-179]. Cardiac baroreceptors are stretch receptors, stimulated by 

changes in BP, located in the carotid sinus, aortic arch, and right atrium. Afferent 

signals to the central nervous system, via the glossopharyngeal and vagus nerves, are 

co-ordinated in the nucleus tractus solitaries, but multiple other central areas are 

involved in processing. Efferent sympathetic and parasympathetic outputs modulate 

heart rate, cardiac output, and peripheral vascular tone resulting in homeostatic 

alteration of BP. Baroreflex failure can result in a number of syndromes characterised 

by BP fluctuations, such as volatile hypertension and malignant vagotonia [178, 180]. 

Damage anywhere along the baroreceptor feedback pathway can potentially result in 

reduced baroreceptor function or baroreflex failure, including, for example, damage to 

central processing areas by stroke [181, 182]. Consequently, reduced baroreceptor 

sensitivity (BRS) may be particularly relevant to increased BPV post-stroke. 
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2.7 Blood Pressure Variability Post Stroke 

 

2.7.1 Short and Medium-term Variability 

 

The evidence suggests that in hypertensive individuals longer-term BPV, and to a lesser 

extent shorter-term, is predictive of cardiovascular events and mortality, with the 

strongest prognostic relationship possibly between increased BPV and stroke risk. This 

may also suggest a prognostic relationship with recurrent stroke. Additionally, given 

the theoretical link between central nervous system damage, BRS dysfunction, and 

BPV described in the previous section, increased BPV post-stroke may have an impact 

on outcomes. Furthermore, if we consider that cerebral autoregulation is disrupted in 

acute stroke [13, 183], resulting in CBF becoming dependent on systemic BP, then this 

question becomes more pertinent. In theory, if cerebral autoregulation is unable to 

maintain CBF within the normal limits (i.e. MAP 60-150mmHg [12]), then any increases 

in systemic BPV could result in cerebral hypo or hyper-perfusion. The consequences of 

the former could be tissue hypoxia, particularly in the under-perfused ischaemic 

penumbra, and infarct expansion. The consequences of the latter could be additional 

endothelial damage and blood-brain barrier disruption leading to secondary 

haemorrhage and/or cerebral oedema. Several studies have attempted to address 

these gaps in the knowledge base. 

 

Studies of the impact of BPV post-stroke have investigated variability in different 

phases following the cerebrovascular event. In these studies the hyper-acute phase 

has generally been defined as the first 24 hours after symptom onset, the acute phase 

as days 1-3 or 1-7 post-event, and the subacute phase as beyond one week. Studies 

show that increased systolic BPV measured over hours in both the hyper-acute and 

acute phases after ischaemic stroke is associated with an increased risk of 

haemorrhagic transformation in patients receiving thrombolysis [184-186]. Increased 

day-to-day systolic variability over the first three days post-event is also associated 

with an increased risk of haemorrhagic transformation in patients not receiving 

thrombolysis [187]. Furthermore, increased systolic BPV measured over hours during 

the same period after ischaemic stroke is associated with an increased risk of END 

[188, 189]. In terms of stroke recovery there is no evidence to show that increased 
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variability in the hyper-acute and acute phases is related to early functional outcome 

(defined as two weeks post event) [190]. However, with a few exceptions [98, 191, 

192], studies investigating the impact of increased systolic variability on functional 

outcome after three months show that increased variability is associated with an 

increased risk of poor outcome (Table 13). Meta-analysis of seven studies reinforces 

these positive findings, indicating that BPV within the first 72 hours after stroke onset 

affects outcomes (OR per 10mmHg increase in SD of SBP 1.2 [95% CI 1.1-1.3, 

p=0.0004]) [15]. There is also emerging evidence that increased variability from HBPM 

in the three months post-event is associated with an increased risk of stroke 

recurrence [16], and one study has also reported an increased risk of post-stroke 

cognitive impairment at 12 months [193]. 

 

2.7.2 Beat-to-Beat Variability 

 

The majority of studies have utilised multiple ward BP measurements to derive BPV, 

thereby investigating short or medium-term variability. Beat-to-beat variability has not 

been extensively studied, but there is evidence to show that in patients with ischaemic 

stroke SD of SBP is increased in the first 72 hours post-event compared to control 

subjects [100]. Whilst the SD of beat-to-beat SBP was not associated with long-term 

outcome or stroke subtype (according to the Oxford Community Stroke Project (OCSP) 

classification) in the study by Dawson et al., the SD of beat-to-beat DBP was related to 

the risk of poor functional outcome in this cohort (OR 1.33 [95% CI 1.1-1.7, p<0.03]) 

[98]. Furthermore, in a study from the OXVASC database both SD and CV of beat-to-

beat SBP recorded within six weeks of a cerebrovascular event (TIA, ischaemic stroke, 

or ICH) was predictive of recurrent stroke [200]. This suggests that, whilst the current 

evidence is limited, very short-term BPV post-stroke may be relevant to stroke 

recovery as well as long-term cardiovascular health. 



 

 
 

Table 13: Summary of studies investigating the impact of increased blood pressure variability on outcomes after stroke. 

Study N Patient Cohort BP measurement method 
BPV 

index* 
Outcome OR (95%CI)

†
 P value 

Yong 2008 

[184] 
793 

Ischaemic stroke within 6 hours of 

onset, thrombolysis vs. placebo 

(post-hoc analysis of ECASS-II) 

Ward BP as per protocol (x37 

over 24 hours) 
ASV SBP 

Functional independence at 3 

months (mRS 0-1) 

Thrombolysed: 

0.57 (0.35-0.92) 

 

Placebo: 0.41 

(0.22-0.76) 

Not 

reported 

Endo 2013 

[194] 
527 

Ischaemic stroke receiving 

thrombolysis (Samurai registry) 

Ward BP as per standard 

treatment (x7 over 24 hours) 

MMD 

SBP 

Functional independence at 3 

months (mRS 0-1) 
0.88 (0.77-0.99) <0.05 

Liu 2016 [185] 461 
Ischaemic stroke receiving 

thrombolysis 

Ward BP as per standard 

treatment (x1 per hour for 24 

hours) 

ASV SBP 
Functional independence at 3 

months (mRS 0-1) 
0.25 (0.14-0.45) <0.05 

Kellert 2017 

[186] 
16,434 

Ischaemic stroke receiving 

thrombolysis (SITS database) 

Ward BP as per standard 

treatment (minimum x3 over 24 

hours) 

ASV SBP 
Functional independence at 3 

months (mRS 0-2) 
0.94 (0.90-0.98) 0.002 

Bennett 2018 

[195] 
182 

Ischaemic stroke receiving 

thrombectomy 

Ward BP as per standard 

treatment (x38 over 24 hours) 
ASV SBP 

Ordinal shift in mRS after 3 

months 
2.63 (1.47-4.70) 0.001 

Chung 2018 

(hyper-acute 

phase) [196] 

386 
ICH within 2 hours of onset (post-

hoc analysis of FAST-MAG) 

Ward BP as per protocol (x6 0-6 

hours after onset) 
CV SBP 

Functional independence at 3 

months (mRS 0-2) 

Top quintile of 

BPV: 4.78 (2.00-

11.40) 

<0.001 

Chung 2018 

(acute phase) 

[196] 

386 
ICH within 2 hours of onset (post-

hoc analysis of FAST-MAG) 

Ward BP as per protocol (x11 0-

24 hours after onset) 
CV SBP 

Functional independence at 3 

months (mRS 0-2) 

Top quintile of 

BPV: 4.97 (1.93-

12.84) 

<0.001 



 

 
 

Zhang 2018 

[192] 
542 

Ischaemic stroke admitted within 

24 hours of onset 

24 hour ABPM (set to measure 

BP at 2 hourly intervals) 
CV SBP 

Poor functional outcome at 3 

months (mRS ≥3) 

CV ≥ median 

value: 1.07 (0.71-

1.59) 

Not 

reported 

De Havenon 

2016 [197] 
215 

Anterior circulation ischaemic 

stroke 

Ward BP as per standard 

treatment (median 34 measures 

over 120 hours) 

CV SBP 

Ordinal shift in mRS after 3 

months per 10mmHg 

increase 

3.16 (1.25-7.94) 0.02 

Wang 2017 

[198] 
873 

Ischaemic stroke admitted within 

24 hours of onset 

Ward BP as per standard 

treatment (x6 per day for 7 days) 
CV SBP 

Poor functional outcome at 3 

months (mRS ≥2) 

Top quintile of 

BPV: 2.02 (1.52-

2.53) 

0.001 

Fukuda 2015 

(acute phase) 

[199] 

2566 

First ischaemic stroke admitted 

within 24 hours of onset (Fukuoka 

stroke registry) 

Ward BP as per standard 

treatment (x3 days 1-3 post 

onset) 

CV SBP 
Poor functional outcome at 3 

months (mRS ≥3) 

Top quartile of 

BPV: 0.91 (0.66-

1.24) 

0.54 

Fukuda 2015 

(subacute 

phase) [199] 

2566 

First ischaemic stroke admitted 

within 24 hours of onset (Fukuoka 

stroke registry) 

Ward BP as per standard 

treatment (x1 days 4-10 post 

onset) 

CV SBP 
Poor functional outcome at 3 

months (mRS ≥3) 

Top quartile of 

BPV: 1.63 (1.20-

2.22) 

0.002 

Dawson 2000 

[98] 
92 

Ischaemic stroke within 10 days of 

onset 
Beat-to-beat BP for 10 minutes SD SBP 

Poor functional outcome at 3 

months (mRS ≥3) 
1.07 (0.9-1.2) 0.29 

*For studies reporting multiple BPV indices the largest effect is presented. 

†Adjusted for confounding variables, including baseline BP and NIHSS. 

BP denotes blood pressure; BPV, blood pressure variability; OR, odds ratio; 95% CI, 95% confidence interval; ASV, average successive variation; SBP, systolic blood 

pressure; mRS, modified Rankin score; MMD, maximum-minimum difference; ICH, intracerebral haemorrhage; CV, coefficient of variation; ABPM, ambulatory 

blood pressure measurement; SD, standard deviation.
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2.7.3 Limitations of the Evidence 

 

As with studies on the prognostic relevance of BPV to the risk of cardiovascular events 

discussed previously, some of the inconsistencies in the evidence for the impact of BPV 

post-stroke probably relate to methodological issues. For example, the method of BP 

measurement used, the number of measurements obtained, and the timescale 

encompassing and between measurements. In particular, the timing of measurements 

in relation to stroke onset may be important, with studies suggesting that increased 

variability may naturally decrease to a degree after the acute phase, similar to the 

pattern seen with mean BP described in section 3.1 [100, 189]. The degree of 

variability observed in different studies may also explain differences in reported 

outcomes. For example, in their negative study Tziomalos et al. observed a CV of SBP 

of 6% in the first 72 hours after admission, whereas Chung et al. found a CV of SBP of 

11% to be associated with END and Wang et al. found a CV of SBP >11% to be 

associated with poor three month outcome [188, 191, 198]. Again, this is in keeping 

with the limited data regarding BPV threshold values [162]. Of course, interpretation of 

the evidence should be done in the context of its strengths and weaknesses. With that 

in mind, it should be noted that the majority of these studies have been either post-

hoc analyses of trial data, or retrospective reviews of registry data or unselected 

secondary care cohorts. A major limitation of these designs is that BP measurements 

have not necessarily been standardised and, where they have, have not necessarily 

been designed to adequately capture variability. It could be argued that this is 

advantageous as it represents “real world” data, but further research based on 

specifically designed prospective trials would undoubtedly be beneficial to further 

investigate the impact of BPV post-stroke. Having said that, the available evidence 

(which includes a small but robust meta-analysis) is certainly intriguing and invites the 

question as to whether BPV might be a therapeutic target in addition to mean BP. 
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2.8 Differential effects of Antihypertensive Medication Classes on Blood Pressure 

Variability 

 

2.8.1 Studies on Long-term Variability 

 

As alluded to in section 2.5.3, evidence suggests that not all antihypertensive 

medications are equal with respect to their effect on stroke risk reduction, and these 

differential effects may be class effects. One potential explanation for this is that not 

all antihypertensive medications have an equal effect on BPV as suggested by Rothwell 

et al. in their post-hoc analysis of the ASCOT-BPLA and MRC trials (Table 14) [133]. In 

both of these trials there was an unexpected difference in stroke risk between the 

treatment arms (calcium channel blocker (CCB) vs. beta blocker in ASCOT-BPLA and 

thiazide diuretic vs. beta blocker in MRC), with both suggesting an increased stroke risk 

in the beta blocker arm. In ASCOT-BPLA visit-to-visit variability was greater in those 

treated with a beta blocker compared to a CCB. Moreover, this difference was able to 

account for the difference in stroke risk, whereas the between-group difference in 

mean BP was not. In MRC the findings were similar, with increased visit-to-visit 

variability in the beta blocker arm, but no effect on visit-to-visit variability seen in the 

thiazide diuretic arm.  

 

Rothwell et al. have also performed a systematic review, incorporating 398 

antihypertensive trials, to further explore the potential effects of different medication 

classes on BPV [201]. As individual BPV data was not routinely reported interindividual 

variance (the variance within the whole treatment group) was assessed as a surrogate. 

The review found that visit-to-visit variability of SBP was reduced by CCB, and to a 

lesser extent non-loop diuretics, but was increased by beta blockers and drugs 

inhibiting the renin-angiotensin system. The greatest increase in variability was seen in 

those treated with beta blockers. Furthermore, in keeping with their previous findings, 

increased BPV in this analysis was associated with an increased risk of stroke. 
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Table 14: Visit-to-visit variability of systolic blood pressure by treatment arm from the 

ASCOT-BPLA and MRC studies. Data presented are mean (SD) [133]. 

 ASCOT-BPLA MRC 

Atenolol arm 
Amlodipine 

arm 
Atenolol arm Diuretic arm 

Mean (mmHg) 141.8 (13.0) 139.1 (11.1) 156.6 (12.1) 151.2 (12.1) 

SD (mmHg) 13.42 (5.77) 10.99 (4.79) 14.38 (5.34) 11.64 (4.39) 

CV (%) 9.41 (3.78) 7.87 (3.23) 9.18 (3.33) 7.69 (2.77) 

VIM (units) 13.13 (5.21) 11.14 (4.52) 14.55 (5.31) 11.98 (4.38) 

ASV (mmHg) 13.79 (6.50) 11.28 (5.32) 14.71 (5.65) 12.40 (5.09) 

 

SD denotes standard deviation; CV, coefficient of variation; VIM, variation independent 

of the mean; ASV, average successive variation.
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Further work looking at visit-to-visit variability with individual patient data has been 

conducted in the wake of this systematic review. A post-hoc analysis of ALLHAT was 

able to compare angiotensin converting enzyme inhibitors (ACEI), CCB and thiazide-like 

diuretics. Systolic visit-to-visit variability (defined as SD, ARV, and SD independent of 

the mean (a statistically similar method to VIM)) was significantly increased with ACEI 

compared to both other medication classes [202]. Similarly, in a retrospective review 

of a large primary care database Smith et al. were able to assess the impact of all 

major antihypertensive classes on visit-to-visit variability, finding that variability was 

reduced with non-loop diuretics and CCB, but increased with beta blockers and ACEI or 

angiotensin receptor blockers (ARB) [203]. In contrast, in a substudy of the Losartan 

Intervention For Endpoint reduction in hypertension (LIFE) trial, which compared 

losartan with atenolol, it was reported that there was no significant difference in 

systolic visit-to-visit variability between the treatment arms [204]. However, the 

majority of participants in this study took other antihypertensive medications in 

addition to their investigational product, with most taking a CCB. Also, variability was 

only defined as SD. Both of these factors could have confounded the results. 

 

When considering long-term BPV, it would be reasonable to suggest that the degree of 

variability could be influenced by factors other than medication effects. One such 

factor could be medication adherence, which is known to be problematic in patients 

with hypertension [205, 206]. Two studies have investigated the impact of medication 

adherence on visit-to-visit variability. Although both are post-hoc analyses and data on 

adherence was self-reported, both found that whilst poor adherence was associated 

with increased visit-to-visit variability, it was not able to account for the link between 

increased BPV and increased cardiovascular risk [207, 208]. 

 

2.8.2 Studies on Short-term Variability 

 

A few studies have investigated the effect of different antihypertensive medication 

classes on short-term BPV, measured either with ABPM or HBPM. In a small study of 

valsartan vs. amlodipine daytime systolic BPV from ABPM (defined as SD and CV) was 

increased with the former compared to the latter [209]. Similarly, in a post-hoc 
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subgroup analysis of the Natrilix SR Versus Candesartan and Amlodipine in the 

Reduction of Systolic Blood Pressure in Hypertensive Patients (X-CELLENT) study, after 

three months treatment with candesartan, amlodipine, or indapamide, BP was 

reduced in all groups whereas BPV (defined as ARV) was only reduced in the 

amlodipine and indapamide groups [210]. Another study reported on the SD of 24 

hour ABPM in a larger cohort, observing that systolic variability was increased with 

beta blockers, decreased with both CCB and thiazide-like diuretics, but not affected by 

renin-angiotensin inhibitors [211]. Post-hoc analysis of the Hypertension Objective 

Treatment Based on Measurement by Electrical Devices of Blood Pressure 

(HOMED-BP) study measured the impact of CCB or renin-angiotensin inhibitors on the 

variability of HBPM two to four weeks after treatment initiation [212]. No difference 

was reported between the two groups, but the study was limited as only a small 

number of BP measurements were obtained (one in the morning and one in the 

evening for five days). Finally, in the only study to focus on a population with 

cerebrovascular disease, Webb et al. investigated the impact on variability of HBPM of 

antihypertensive medication changes (either dose increases or medication additions) 

in patients with a recent ischaemic stroke [213]. They reported that the addition or 

increase in dose of a CCB or diuretic reduced BPV compared to the same changes using 

an ACEI. 

 

2.8.3 Studies on Combination Therapy 

 

Given that many patients with hypertension will require multiple medications to 

achieve good BP control [214-216], whether these apparent class effects persist when 

antihypertensive therapies are combined could be of clinical relevance. Again, 

Rothwell and colleagues have examined this question, conducting a systematic review 

of 97 trials [217]. As with their previous systematic review interindividual BPV was 

used as a surrogate measure of individual BPV. The results were in keeping with the 

data regarding antihypertensive monotherapy, with systolic BPV being reduced by the 

addition of a CCB to the antihypertensive regimen, and less so by the addition of a 

diuretic, but increased by the addition of a beta blocker. In the same systematic review 

they also analysed trials comparing high and low doses of the same antihypertensive 
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class, finding that higher doses of CCB further reduced BPV, with the opposite for beta 

blockers, and no difference for other antihypertensive classes. 

 

2.8.4 Potential Explanations for Antihypertensive Class Effects on Blood Pressure 

Variability 

 

The various classes of BP lowering medications exert their antihypertensive effects via 

different mechanisms and consideration of these mechanisms may provide some 

theoretical explanation of their effects on BPV. Dihydropyridine CCB (e.g. amlodipine) 

cause smooth muscle relaxation, which leads to peripheral vascular dilatation and a 

reduction in peripheral vascular resistance [133, 211]. Thiazide-like diuretics reduce 

peripheral vascular resistance via increased excretion of sodium and water, but also 

have vasodilatory effects, with the latter more likely to be the mechanism for long-

term BP reduction [218, 219]. Both of these medication classes could consequently 

increase arterial compliance, which may reduce arterial stiffness and BPV. Notably, 

concurrent reductions in c-fPWV and BPV have been demonstrated with CCB therapy 

[220], though whether there is a causal link is unproven. Conversely, beta blockers 

primarily exert their antihypertensive effect through negative chronotropic activity, 

with less cardio-selective agents causing peripheral vasoconstriction, meaning they 

could be expected to have the opposite effect on arterial stiffness and, as a result, BPV 

[133, 211]. Finally, ACEI and ARB lower BP by inhibiting aldosterone release, altering 

sodium and water excretion, with relatively little effect on peripheral vascular tone. 

 

Caution must be taken in interpreting the available evidence as the majority has been 

generated from post-hoc analyses of trials of antihypertensive medications that were 

designed to assess the medication’s effects on overall BP, not BPV [221]. These trials 

are heterogeneous in terms of the particular medications studied, length of follow-up, 

and methods of BP measurement among other things, which could confound any 

further analysis. It should also be noted that interindividual BPV is a surrogate marker, 

although it is reported that within-individual BPV accounts for up to 40-60% of the 

variability within a group [131, 133]. Having said that, the weight of evidence is 

compelling and, as previously stated, warrants further investigation with dedicated 

primary trials. Findings to date suggest that available antihypertensive medications 
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may have an effect on BPV as well as overall BP and so theoretically these treatments 

could be used to target BPV therapeutically. Furthermore, given the apparent impact 

of BPV in acute ischaemic stroke this patient group could potentially benefit from such 

treatment. The final part of this thesis will be concerned with a feasibility RCT 

investigating the reduction of BPV in acute ischaemic stroke. 
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3 Methodology 

 

This chapter describes the general materials and methods in this thesis. Any chapter 

specific methodology, including methods for statistical analysis, are described in that 

chapter.  

 

3.1 Trials Contributing Data to this Thesis 

 

Data for this thesis have been generated from four clinical trials, each of which is 

summarised, including my involvement. All trials were registered (ISRCTN registry) and 

full details are freely available online. The protocols for SERVED Memory and CAARBS 

have been published, as have the main findings from TEST-BP [222-224]. 

 

3.1.1 Trial of the Effectiveness and cost effectiveness of Self-monitoring and Treatment of 

Blood Pressure in secondary prevention following stroke or TIA (TEST-BP) 

(http://www.isrctn.com/ISRCTN86192648) 

 

TEST-BP was an RCT investigating the benefit of HBPM, with and without guided self-

management of antihypertensive treatment, in patients with a recent stroke or TIA. I 

was directly involved in participant follow-up, data management, and data analysis for 

this trial. Participants were adults (>18 years old) who had experienced a TIA, 

ischaemic stroke or primary ICH of mild/moderate severity (defined as National 

Institutes of Health Stroke Scale (NIHSS) score <15), who needed antihypertensive 

therapy for secondary stroke prevention (at the discretion of their clinician but based 

on UK guidelines), and were willing to self-monitor their own BP and adjust their 

treatment with study team clinician guidance if necessary. Exclusion criteria were a 

history of atrial fibrillation (AF), life expectancy less than six months due to terminal 

illness or end-stage chronic disease, diagnosed dementia or cognitive impairment, and 

not currently receiving or expected to commence antihypertensive therapy. Enhanced 

CBPM was undertaken as part of the screening procedure. 

 

http://www.isrctn.com/ISRCTN86192648
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Participants were recruited from the inpatient and outpatient stroke services at the 

Norfolk and Norwich University Hospital (NNUH) between 72 hours and 12 weeks after 

the qualifying cerebrovascular event. At enrolment they were randomised in a 1:1:1 

ratio to one of three study arms: treatment as usual (standard BP management by 

their General Practitioner (GP)), self-monitoring only (HBPM with treatment decisions 

managed by their GP), or self-monitoring and self-management (HBPM with 

telemonitoring of results to the trial team and self-managed treatment, guided by the 

trial clinician). Study measurements, including 24 hour ABPM and beat-to-beat BP 

measurements, were taken at baseline and after a follow-up period of six months. 

Participants in the HBPM intervention groups performed self-monitoring at six weeks, 

three months, and five months post-randomisation. 

 

The main aim of the trial was to determine whether HBPM with or without guided self-

management of BP treatment resulted in lower BP levels and better control than usual 

care in hypertensive patients with a recent stroke or TIA. The primary outcome 

measure was difference in ambulatory SBP at six months, with 48 participants per 

group required to detect a difference in mean daytime ambulatory SBP of 6mmHg, 

with a power of 0.8 at the 5% significance level, assuming SD of 10.3mmHg for daytime 

ABPM [225]. 

 

3.1.2 Feasibility study of Screening and Enhanced Risk management for Vascular Event 

related Decline in Memory (SERVED Memory) 

(http://www.isrctn.com/ISRCTN42688361) 

 

SERVED Memory was a feasibility RCT investigating the impact of enhanced monitoring 

and target driven treatment of vascular risk factors on post-stroke cognitive 

impairment. My roles in this trial included participant recruitment, data acquisition at 

baseline and follow-up, data management, and data analysis. Participants were adults 

(>18 years old) with a clinically or radiologically confirmed TIA or stroke (infarct or 

primary ICH), recruited within eight weeks of the qualifying cerebrovascular event. 

Patients were excluded if they had a formal diagnosis of dementia documented in their 

past medical history, a life expectancy less than one year, and if they did not wish, or 

http://www.isrctn.com/ISRCTN42688361
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were unable to complete a cognitive screening test (Montreal Cognitive Assessment 

(MoCA)). 

 

Participants were recruited from the inpatient and outpatient stroke services at NNUH. 

At enrolment they were stratified according to their baseline MoCA score and placed 

into one of three study arms. Patients with normal cognition (defined as MoCA ≥26) 

were allocated to an observational group [226]. This group received standard care, did 

not undergo any enhanced monitoring of their vascular risk factors, and had repeat 

cognitive screening after 12 months with the aim of providing data about the natural 

history of the development of post-stroke cognitive impairment. Patients with a MoCA 

score consistent with mild cognitive impairment (defined as MoCA 20-25 [226, 227]) 

were randomised in a 1:1 ratio to a control group or intervention group. Both groups 

underwent enhanced vascular risk factor measurement at baseline and after 12 

months follow-up. Vascular risk factors targeted included BP (assessed with enhanced 

CBPM, 24 hour ABPM, and beat-to-beat BP measurement) and serum cholesterol in all 

individuals. Where applicable control of diabetes (assessed with serum HbA1C), and 

adequacy of anticoagulation (being prescribed a direct oral anticoagulant, or INR 2.5-

3.0 if on warfarin) and heart rate control (target 60-80 beats per minute) in 

participants with AF were also targeted. In the interim the control group received usual 

care with no intervention by the study team, whereas those in the intervention group 

saw the trial team at three monthly intervals for additional risk factor assessment, with 

results and recommendations for interventions if necessary from these visits being 

passed to their GP for action. Patients with a MoCA score <20 were excluded from the 

trial. 

 

The primary objective of the study was to determine the feasibility of recruiting 

patients with signs of early cognitive decline, but no dementia, into the trial and to 

assess adherence to the proposed intervention. The trial also aimed to provide data 

about the incidence of post-stroke cognitive impairment, the potential benefit of the 

intervention in terms of preventing cognitive decline, and help inform the necessary 

sample size for a future potentially definitive trial. 
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3.1.3 Blood Pressure Variability – definition, natural history, and prognosis following 

acute stroke (BPV observational study) (http://www.isrctn.com/ISRCTN86821598)  

 

The BPV observational study was a prospective cohort study to investigate BPV in 

patients with an acute stroke/TIA. In this trial I participated in patient recruitment, 

follow-up, and data management. The cohort comprised adult patients with an acute 

stroke/TIA recruited within 48 hours of symptom onset. Patients with pre-event mRS 

>3, life expectancy <3 months, AF, and those required to take a beta blocker were 

excluded.  

 

Participants were recruited from the inpatient and outpatient stroke services at NNUH 

and Leicester Royal Infirmary, and the outpatient stroke services at the John Radcliffe 

Hospital in Oxford. Alongside the collection of clinical data, baseline BP was measured 

using multiple methods (beat-to-beat BP, enhanced CBPM, 24 hour ABPM) to provide 

data on BPV over various timeframes. Participants were then followed-up at five points 

over 12 months, either by telephone (providing outcome data only), or in person (with 

BP measurements being repeated on these occasions). The main aims of the trial were 

to describe the natural history of BPV after stroke/TIA, determine the optimal 

measurement method for both patients and clinicians/researchers, and provide data 

relating to the prognostic relevance of BPV after stroke/TIA. 

 

3.1.4 A Calcium channel or Angiotensin converting enzyme inhibitor/Angiotensin receptor 

blocker Regime to reduce Blood pressure variability in acute ischaemic Stroke (CAARBS): a 

feasibility trial (http://www.isrctn.com/ISRCTN10853487) 

 

CAARBS was an open label, feasibility RCT investigating the effect of two classes of 

standard antihypertensive medications on BPV in patients with ischaemic stroke or 

TIA. I was involved in the design and setup of this trial, including writing the protocol 

and gaining regulatory approvals, and acted as trial co-ordinator. At the NNUH site I 

also undertook participant recruitment and data acquisition. Finally, I was responsible 

for data management and was involved in the data analysis for this trial. Participants 

were adults with a first episode TIA or mild/moderate ischaemic stroke (NIHSS <10) 

who also required antihypertensive therapy for secondary stroke prevention (in 

http://www.isrctn.com/ISRCTN86821598
http://www.isrctn.com/ISRCTN10853487
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accordance with current guidelines [18]). Full inclusion and exclusion criteria are 

detailed in Table 15. 

 

Participants were recruited from the inpatient and outpatient stroke services at NNUH 

and Leicester Royal Infirmary, and the outpatient stroke services at the John Radcliffe 

Hospital in Oxford. At enrolment, they were randomised using a computer generated 

protocol with block design in a 1:1 ratio, to treatment with a dihydropyridine CCB or an 

ACEI/ARB, with the choice of medication from within the randomly allocated class at 

the discretion of the treating clinician. Follow-up data were obtained at three weeks 

and three months post-randomisation. Titration of antihypertensive medication to try 

and achieve secondary prevention target BP was allowed during follow-up, including 

the use of additional antihypertensive medications provided they were not of the class 

from the opposite intervention arm. 

 

The primary objectives of the trial were the assessment of feasibility and safety. This 

included recruitment and retention rates, compliance with trial treatment and BP 

measurements, and differences in adverse event rates between the trial arms. The 

exploratory primary outcome measure was three month mRS, with pre-specified 

exploratory secondary outcome measures including early (three week) and late (three 

month) differences in mean BP and BPV, and late differences in cognition (assessed 

using a cognitive battery including MoCA, Albert’s line test, and the Motor Neuron 

Disease Behavioural Instrument (MiND-B)). 

 

3.2 Consent 

 

All participants chose to take part in the research trials of their own volition. Eligible 

patients were provided with a participant information sheet relevant to the trial for 

which they were being considered. After having the opportunity to read the 

information sheet and ask questions about the trial, those who were willing to take 
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Table 15: Inclusion and exclusion criteria for CAARBS. 

Inclusion criteria Exclusion criteria 

Age >18 years old 
Known contra-indication to proposed 

investigational medical products 

First-ever clinically definite TIA or 

ischaemic stroke (NIHSS<10) 

Definite indication for a specific 

antihypertensive 

BP >130/80mmHg Pre-event mRS >3 

Within 72 hours of symptom onset Life expectancy <3 months 

Able to comply with antihypertensive 

treatment and BP measurements 
Atrial fibrillation 

 Unable to take oral medication 

 
Participation in another investigational 

drug trial 

 
Currently, or planning to become 

pregnant 

 

TIA denotes transient ischaemic attack; NIHSS, National Institutes of Health Stroke 

Scale; BP, blood pressure; mRS, modified Rankin score.
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part provided written informed consent before any study specific procedures were 

conducted. Proxy consent was not used in any of the trials. 

 

3.3 Regulatory Approvals 

 

All of the trials received ethical approval prior to commencement: 

 TEST-BP was approved by the Research Ethics Committee East of England – 

Norfolk (REC No. 11/EE/0147); 

 SERVED Memory was approved by the East of England Cambridge Research 

Ethics Committee (REC No. 15/EE/0061); 

 BPV observational study was approved by the London – South East Research 

Ethics Committee (REC No. 13/LO/0979); 

 CAARBS was approved by the London – Central Research Ethics Committee 

(REC No. 17/LO/1427).  

CAARBS was also approved by the Medicines and Healthcare products Regulatory 

Agency (EudraCT number 2017-002560-41) prior to receiving full Health Research 

Authority approval. Local approval was provided by the relevant Research and 

Development Office at all sites involved in the trials prior to their commencement.  

 

3.4 Power Calculations 

 

For the purposes of this thesis the analyses of data from TEST-BP, SERVED Memory, 

and the BPV observational study are post-hoc exploratory analyses of outcomes not 

specified at the conception of the trials. Therefore, although TEST-BP was powered for 

its primary outcome as described in section 3.1.1, power calculations for the analyses 

in this thesis were not performed. For CAARBS the primary objectives were the 

assessment of feasibility, including rates of recruitment, measurement of changes in 

BPV over three months follow-up, compliance with trial interventions, and safety of 

trial interventions. However, the trial was designed with the potential to detect a 

difference between the treatment arms as a pre-specified secondary outcome. If a 

sample of 150 patients (64 per group allowing for a 15% drop-out rate) was achieved 

this would have an 80% power at the 5% significance level of detecting an 8mmHg 
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difference in systolic BPV, assuming a mean systolic BPV SD of 14.97mmHg in the CCB 

arm and 16.95mmHg in the ACEI/ARB arm [201]. 

 

3.5 Data Collection 

 

3.5.1 Clinical Information 

 

Clinical data were collected through direct questioning to the participant and from 

review of their medical notes. Data collected included demographic information (age, 

gender, height and weight, smoking and alcohol history), past medical history, drug 

history, and relevant family history, details of the qualifying cerebrovascular event (the 

diagnosis and results of neuroimaging), and the results of routine investigations 

(including blood tests, electrocardiogram (ECG), carotid ultrasound, and further 

neuroimaging where applicable). For participants in the BPV observational study and 

CAARBS all routine ward or clinic BP measurements were recorded at baseline. 

 

3.5.2 Enhanced Clinic Blood Pressure 

 

Enhanced CBPM was undertaken in all of the studies, as part of eligibility screening in 

TEST-BP, and at baseline and follow-up visits in the other trials. I define enhanced 

CBPM as a set of three clinic/ward-based BP measures taken on the same occasion 

using a semi-automated oscillometric BP monitor (Omron 705IT, Omron Healthcare UK 

Ltd., Milton Keynes, UK) that can be used to provide an average BP reading and within-

visit BPV data. The Omron 705IT monitor is approved by the British Hypertension 

Society (BHS) and has been validated against BHS and AAMI criteria [228]. Monitors 

were regularly checked for accuracy using a greenlight reference monitor. 

Measurements were taken using an appropriately sized cuff with the patient seated, 

after a period of five minutes rest, with at least a one minute gap between readings in 

accordance with guideline recommendations [91, 229]. In the BPV observational study 

and CAARBS, two sets of enhanced CBPM measurements were recorded at each visit, 

with a gap of at least 10 minutes between sets.  
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3.5.3 Ambulatory Blood Pressure Monitoring 

 

Ambulatory monitoring in these studies was undertaken using a Spacelabs 90207 

monitor (Spacelabs Healthcare Ltd. (UK), Hertford, UK) which has been validated 

against BHS and AAMI criteria [230]. Monitoring was done over 24 hours in all studies 

except CAARBS, where only daytime ABPM was performed. Daytime was defined as 

between 0700-2200 hours with night-time conversely defined as 2200-0700 hours. 

Arm circumference was measured prior to device fitting to ensure the use of an 

appropriately sized cuff. In keeping with guideline recommendations [91], monitors 

were programmed to measure BP at 20 minute intervals during the daytime and 

hourly overnight in order to provide a minimum number of 14 daytime measurements 

and seven night-time measurements. 

 

3.5.4 Home Blood Pressure Measurement 

 

In studies collecting HBPM data (TEST-BP) participants received face-to-face, written, 

and audiovisual instruction on how to measure their own BP from a member of the 

research team. The protocol for self-monitoring was in concordance with guideline 

recommendations [91], with participants being instructed to take two measurements, 

with a gap of two minutes between them, in the morning and the evening for seven 

consecutive days. The target was for 75% of readings (i.e. ≥21 readings) to be 

completed for a set of HBPM to be considered valid. Participants were instructed to 

take measurements in the non-dominant arm, in a seated position, after a period of 

five minutes rest. They were also instructed to take measurements prior to 

antihypertensive medications or meals. In TEST-BP participants randomised to self-

monitoring only used an Omron 705IT monitor, whereas participants randomised to 

self-monitoring with self-management were provided with a different monitor (A&D 

UA-767PBT, A&D Instruments Ltd., Abingdon, UK) with the facility to telemonitor 

readings directly to the trial team. The UA-767PBT monitor is also BHS approved and 

has been validated against BHS and AAMI criteria [231]. Readings from the first day of 

recording were discarded prior to analysis. 
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3.5.5 Beat-to-beat Blood Pressure Measurement 

 

Non-invasive beat-to-beat BP recordings of 10 minutes duration were taken using the 

middle finger of the unaffected hand and an appropriately sized cuff in accordance 

with manufacturer guidance. The recording length was chosen to try to ensure that a 

minimum of five minutes valid data was available after inspection and the removal of 

artefacts. Participants were positioned supine with their arm supported at the level of 

the heart for the duration of the recording, with ECG leads attached to quantify heart 

rate by monitoring the R-R interval. A Task Force® Monitor (APC Cardiovascular Ltd, 

Southport, UK) was used in TEST-BP and SERVED Memory to obtain a single 10 minute 

recording. These participants also had a brachial oscillometric BP cuff of appropriate 

size fitted to the opposite arm to provide systemic BP calibration readings throughout 

the recording. In the BPV observational study and CAARBS recordings were made using 

the Finapres® MIDI device (Finapres Medical Systems, Enschede, The Netherlands), 

with two recordings per visit obtained in the former study and three in the latter. The 

servo adjust mechanism of the Finapres® MIDI was disabled during the recording 

period to prevent artefacts in the data, but was re-applied prior to each 10 minute 

recording for calibration. Recordings from the Finapres® MIDI were manually 

calibrated to systemic BP at the point of data inspection using a CBPM taken 

immediately prior to the recording. As previously described in section 2.4.2, both of 

these devices have been validated for the measurement of very short-term changes in 

BP and the assessment of BPV [95-97]. 

 

Both devices measure arterial BP in the finger using the “volume-clamp” method 

described by Penaz [232]. The finger cuff is inflated until the built-in plethysmograph 

detects maximal finger arterial pulsation. Finger volume is then calculated and changes 

in the cuff pressure on a beat-to-beat basis monitored (which equate to changes in 

arterial pressure). The analogue output from the devices was recorded onto a 

dedicated computer with an analogue-to-digital signal converter and appropriate 

software. Task Force® Monitor outputs were recorded using the standard bespoke 

software. Finapres® MIDI outputs were recorded using specially designed software 

(Professor Ronney Panerai, Medical Physics, University of Leicester) which was also 

used for the initial data processing as described in section 3.6. 
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3.5.6 Tools for Stroke Subtype and Severity 

 

Data on stroke severity were collected using two common scales. The NIHSS is a 

graded neurological examination designed for use in clinical trials as a rapid method 

for assessing the extent of stroke impairment. The examination tests a range of 

potential deficits due to stroke including, but not limited to, motor weakness, visual 

field defects, language, and ataxia. The scale has since been simplified and the 

modified version has been widely adopted in clinical practice as a reproducible tool 

that correlates with functional outcomes [233]. The mRS is probably the most 

frequently used scale for judging outcomes in stroke research. It is a simple validated 

scale that assesses whether the patient is functionally independent with activities of 

daily living or requires some level of assistance due to residual stroke symptoms, with 

reference to their pre-stroke functional ability [234]. 

 

As already described in section 2.1.3 and Table 1, another commonly used 

classification of stroke subtypes is by the pathophysiological TOAST classification [32]. 

This tool was used in the BPV observational study and CAARBS at baseline data 

collection. However, a limitation of the TOAST classification is that it cannot be applied 

until thorough investigations have been completed. An alternative is the OCSP 

classification (Table 16), which was employed in all of the trials described. The OCSP is 

a clinical classification which divides patients according to the vascular territory 

involved in the stroke (anterior or posterior circulation) and, for anterior circulation 

strokes, the extent of the territory involved, based on the pattern of clinical findings 

[235]. The different OCSP categories correlate with outcomes in terms of the risk of 

short and long-term mortality and the likelihood of functional recovery. 

 

3.6 Data processing 

 

I processed data from TEST-BP, SERVED Memory, and CAARBS, whereas the research 

fellow in Leicester (Karen Appiah) processed data from the BPV observational study. 

Raw BP data from clinic, ABPM, HBPM, and beat-to-beat BP measurements using the 

Task Force® Monitor were exported directly to Excel where the data were inspected 

for completeness, outlying values, and artefacts. Raw beat-to-beat BP data recorded 
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Table 16: The Oxford Community Stroke Project (OCSP) Classification [235]. 

Subtype Criteria 

Total anterior 

circulation stroke 

(TACS) 

All of: 

 Motor and/or sensory deficit of at least two of the 

face/arm/leg 

 Homonymous visual field defect 

 Higher cerebral dysfunction (e.g. aphasia, 

dyscalculia, visuospatial disorder) 

Partial anterior 

circulation stroke 

(PACS) 

One of: 

 Two out of three components of the TACS subtype 

 Higher cerebral dysfunction alone 

 Motor-sensory deficit that is more restricted than 

the LACS subtype (e.g. confined to one limb) 

Lacunar stroke (LACS) 

One of the following lacunar syndromes which correlate 

with occlusion of a single deep penetrating artery at 

strategic locations: 

 Pure motor stroke 

 Pure sensory stroke 

 Motor-sensory stroke 

 Ataxic hemiparesis 

 Dysarthria with clumsy hand 

Posterior circulation 

stroke (POCS) 

Any of: 

 Ipsilateral cranial nerve palsy and contralateral 

motor and/or sensory deficit 

 Bilateral motor and/or sensory deficit 

 Disorder of conjugate eye movement 

 Cerebellar dysfunction with ipsilateral long tract sign 

 Isolated hemianopia or cortical blindness 
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using the Finapres® MIDI were initially processed using specially designed software 

(Professor Ronney Panerai, Medical Physics, University of Leicester). This software 

allowed for the visualisation of the arterial waveform and heart trace, and was used to 

assess the quality of the recording and remove artefacts before the data was exported 

to Excel for further processing using the same method as for Task Force® Monitor 

recordings.   

 

The average values and variability of SBP and DBP for each valid recording were 

calculated using formulae embedded in the Excel worksheet. For the SBP and DBP of 

each recording the mean, SD, CV, ARV, maximum BP, minimum BP, and MMD were 

calculated as described in section 2.5.2 and Table 11, though for enhanced CBPM this 

was limited to the mean, SD, and CV due to the small number of measurements. For 

clinic BP data, variability was derived from all available readings from each visit. For 

ABPM data, BPV was derived for the whole 24 hour recording and also separately for 

daytime and night-time periods of the recording where available. For HBPM data, BPV 

was derived from all readings from days 2-7. For beat-to-beat recordings, the BPV 

formulae were applied to full recordings and also separately to each 10 minute interval 

where multiple recordings were made. 
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4 Blood Pressure Differences Between Home Monitoring and Daytime Ambulatory Values 

and their Reproducibility in Hypertensive Stroke and TIA Patients 

 

 

4.1 Declaration 

 

The study presented in this chapter has been published elsewhere as a jointly 

authored paper [236]. I devised the study and jointly designed the statistical analysis 

plan along with Dr Allan Clark, carrying out all statistical analyses myself. I authored 

the paper and the co-authors reviewed it prior to submission for publication. The co-

authors were Professor Myint and Professor Potter (co-investigators for TEST-BP which 

provided the data for the study), and Dr Allan Clark (statistician for TEST-BP). Although 

the paper has been amended for this thesis some parts, particularly the results section, 

remain substantively similar to the published version. 

 

4.2 Introduction 

 

In terms of both primary and secondary stroke prevention hypertension is one of, if 

not the most important modifiable risk factor [8, 43]. However, rates of achieving 

target BP post-stroke are suboptimal [237]. The diagnosis of high BP and monitoring 

response to antihypertensive treatment relies on having access to reliable methods 

that provide accurate and reproducible BP measurements. The traditional 

standardised method has been CBPM using a manual sphygmomanometer, yet this 

method may be undermined by factors such as poor technique, unconscious observer 

bias, terminal digit preference, and BPV [89, 90]. Whilst taking multiple CBPM values at 

successive visits may counter some of these limitations, CBPM alone is unlikely to 

provide an accurate BP in all patients (e.g. those with WCH or MH) [93]. Therefore, the 

use of out-of-office BP monitoring, using either ABPM or HBPM, is recommended to 

improve the accuracy of hypertension diagnosis and support management [54, 91, 92, 

238]. ABPM is held to be the “gold standard” technique by some [91, 156], but use of 

HBPM has become more widespread following the emergence of evidence that its use 
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can improve BP control [239]. However, uncertainties remain about the effectiveness 

of HBPM in patients with cerebrovascular disease [240]. 

 

Using the same diagnostic and monitoring threshold values for CBPM and out-of-office 

BP measurements is considered inappropriate. The guideline threshold for the upper 

limit of normal BP from daytime ABPM is <135/85mmHg [91, 92], based on 

comparisons demonstrating that for a CBPM of 140/90mmHg the equivalent daytime 

ABPM readings are on average 4/3mmHg lower [110]. HBPM is ascribed the same 

threshold value as daytime ABPM, but some studies suggest this is incorrect [241, 

242]. It is acknowledged that there is less evidence comparing HBPM with CBPM than 

is the case for ABPM [156], but also there are limited direct comparisons of HBPM with 

ABPM as the reference standard. Studies that have tried to address this gap have 

reported inconsistent findings, have not assessed the consistency of any differences 

between ABPM and HBPM, and have not enrolled high-risk patients (e.g. those with 

cerebrovascular disease) [106, 113-116, 121, 243]. Given the rising interest in BPV, 

particularly in relation to higher risk cardiovascular patient groups, there is a need to 

better establish the equivalence of BP measurement techniques as this could help with 

the standardisation of assessments for variability. 

 

4.3 Hypothesis 

 

This study aimed to investigate, using trial participants with a recent cerebrovascular 

event, whether differences exist between BP values obtained with daytime ABPM and 

HBPM. The hypothesis being tested was that the two measurement methods would 

not be equivalent in this patient group. If differences between daytime ABPM and 

HBPM were found, then the study also aimed to assess the reproducibility of these 

differences and explore related factors. 

 

4.4 Methods 

 

Data for this analysis comes from the TEST-BP trial, the methodology for which has 

been published elsewhere and is described in section 3.1.1 [223]. The methodology 
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specific to this analysis is summarised here. Participants in TEST-BP were adults with a 

recent stroke or TIA who also required antihypertensive treatment as part of their 

stroke secondary prevention management. Those randomised to one of the two home 

monitoring intervention groups who provided complete BP data (defined as baseline 

enhanced CBPM taken as the mean of three readings, ≥14 daytime ABPM readings at 

both baseline and six month follow-up, and ≥21 readings from HBPM performed at six 

weeks and five months post-randomisation) were considered eligible for this 

secondary analysis. HBPM data from the second recording period (three months after 

randomisation) were not used in this analysis. BP data was collected as described in 

sections 3.5.2 to 3.5.4. Participants had their medication history checked by the study 

nurse at each visit along with assessment of treatment compliance using a self-report 

questionnaire (Hill-Bone compliance scale). Anyone whose antihypertensive 

medications were altered between BP recordings that were planned for comparison in 

this analysis were excluded. Participants with ICH were also excluded. 

 

Outcomes for this analysis were the comparison of mean SBP and DBP from the 

baseline daytime ABPM readings with the first (six week) HBPM readings, the follow-

up ABPM readings with the last (five month) HBPM readings, and the CBPM readings 

with both the baseline daytime ABPM and first HBPM readings. 

 

4.5 Statistical Analysis 

 

SPSS version 23.0 was used for data analysis. Excluded participants were compared to 

those included using either a two-sample Student’s t-test for normally distributed 

continuous variables, a Mann-Whitney U test for non-normally distributed continuous 

variables, or a chi-squared test for categorical variables. For each measurement 

method mean SBP and DBP were calculated along with SD. Comparison of the mean 

difference in SBP and DBP between measurement methods as described above was 

based on paired Student’s t-tests. As the two intervention groups used different home 

monitors (as described in section 3.5.4), BP differences for each group were initially 

analysed separately, and subsequently pooled once it was apparent that the results of 

individually tested outcomes were comparable. Sensitivity and specificity of the 

diagnostic accuracy of HBPM was assessed against daytime ABPM as the reference 
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standard using the kappa statistic. A diagnostic threshold for hypertension of 

≥135/85mmHg was taken for both methods [54, 91, 92]. The limits of agreement in 

measuring SBP and DBP, according to Bland and Altman’s method, were derived for 

contemporaneous ABPM and HBPM recordings as defined previously [244]. To 

investigate variables that might predict individual variance in SBP or DBP difference 

from ABPM and HBPM exploratory univariate analyses were undertaken. These were 

initially descriptive, using scatter plots for continuous variables and box and whisker 

plots for categorical variables. Where descriptive analyses suggested possible 

relationships they were further explored with formal testing, using Pearson’s 

correlation for continuous variables and independent samples t tests for categorical 

variables. The potential predictor variables tested were age, gender, body mass index 

(BMI), baseline clinic BP, being on antihypertensive treatment, history of diabetes, 

diagnosis (TIA or stroke), baseline mRS, baseline cognition (assessed using MoCA 

score), and the number of measurements from daytime ABPM and HBPM. 

 

4.6 Results 

 

Ninety-nine participants were randomised to one of the two trial intervention arms 

and were therefore eligible for inclusion in this analysis. Nineteen of them were 

excluded, 11 because their antihypertensive therapy was altered in between BP 

monitoring periods that were compared, and eight because they returned an 

insufficient number of HBPM measurements from one or both of the recordings. This 

left 80 participants for analysis. Demographics of those included and are presented in 

Table 17. There were no significant differences between the groups. 

 

Mean CBPM SBP and DBP values were the highest, followed by HBPM values and then 

daytime ABPM values (Table 18). The difference in mean BP values from HBPM and 

daytime ABPM were consistent across both comparisons (Figure 5), were similar for 

both trial groups, and were unrelated to the HBPM device that was used (Table 19). 

Medication adherence judged by self-assessment was good at baseline and follow-up 

(median Hill-Bone score 9.0 [IQR 1.0] for both periods). 
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Table 17: Demographic data. Data presented are mean (SD) or frequency (%). Alcohol 

use and mRS are presented as median (IQR).  

  Included Excluded 

N  80 19 

Age (years)  74.1 (10.3) 75.4 (8.8) 

Gender Male 53 (66.3%) 12 (63.2%) 

BMI (kg/m2)  28.6 (5.3) 26.8 (2.1) 

Smoking status 

Never 36 (45.0%) 6 (31.6%) 

Ex-smoker 40 (50.0%) 13 (68.4%) 

Current smoker 4 (5.0%) 0 (0.0%) 

Alcohol (units/week)  4.0 (14.0) 4.0 (12.0) 

Diagnosis Stroke 27 (33.8%) 5 (26.3%) 

OCSP classification 

LACS 9 (33.3%) 4 (80.0%) 

PACS 9 (33.3%) 1 (20.0%) 

TACS 1 (3.7%) 0 (0.0%) 

POCS 8 (29.6%) 0 (0.0%) 

Baseline mRS (stroke only)  1.0 (1.0) 1.0 (1.0) 

Past medical history 

TIA 51 (63.7%) 15 (78.9%) 

Stroke 33 (41.3%) 7 (36.8%) 

IHD 20 (25.0%) 4 (21.1%) 

Diabetes 17 (21.3%) 5 (26.3%) 

Hypertension 58 (72.5%) 14 (73.7%) 

On antihypertensive therapy  75 (93.8%) 17 (89.5%) 

Antihypertensive use by class 

ACEI 52 (65.0%) 10 (52.6%) 

ARB 11 (13.8%) 4 (21.1%) 

Beta blockers 15 (18.8%) 6 (31.6%) 

CCB 33 (41.3%) 9 (47.4%) 

Thiazide-like 

diuretics 
14 (17.5%) 4 (21.1%) 

SD denotes standard deviation; mRS, modified Rankin score; IQR, interquartile range; BMI, 

body mass index; OCSP, Oxford Community Stroke Project; LACS, lacunar stroke; PACS, partial 

anterior circulation stroke; TACS, total anterior circulation stroke; POCS, posterior circulation 

stroke; TIA, transient ischaemic attack; IHD, ischaemic heart disease; ACEI, angiotensin-

converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel blocker. 
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Table 18: Mean (SD) group systolic and diastolic blood pressure from each 

measurement method. 

Measurement 

method 

Number of 

measurements 
Mean SBP (mmHg) Mean DBP (mmHg) 

Baseline CBPM 3 (0) 150.8 (20.2) 85.1 (11.8) 

Baseline daytime 

ABPM 
38.1 (9.1) 133.5 (13.7) 76.4 (8.5) 

HBPM at six weeks 27.3 (1.4) 140.1 (15.8) 78.5 (8.7) 

HBPM at five 

months 
26.8 (3.1) 134.7 (13.7) 76.2 (9.7) 

Daytime ABPM at 

six months 
37.2 (8.4) 127.6 (12.2) 74.2 (9.2) 

SD denotes standard deviation; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; CBPM, clinic blood pressure measurement; ABPM, ambulatory blood 

pressure measurement; HBPM, home blood pressure measurement. 

 

 

Figure 5: Mean differences in blood pressure for head-to-head comparisons of out-of-office 

measurement methods. Error bars are 95% confidence intervals. P values represent paired 

Student’s t-tests comparing the difference between measurement methods. ABPM denotes 

ambulatory blood pressure measurement; HBPM, home blood pressure measurement; SBP, 

systolic blood pressure; DBP, diastolic blood pressure. 
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Table 19: Mean differences in systolic and diastolic blood pressure between home and 

daytime ambulatory blood pressure measurements at different time-points according 

to intervention group and type of home monitor used. Data presented are mean (SD) 

or mean (95% CI). P values represent independent samples t-tests to investigate the 

mean difference in blood pressure between the two groups. 

 

Home 

monitoring 

only 

(N=42) 

Home 

monitoring 

with guided 

self-

management 

(N=38) 

Mean 

difference 

between 

groups 

P value 

Baseline daytime 

ABPM vs. first HBPM 

SBP (mmHg) 

-7.6 (14.4) -5.5 (12.6) 
-2.1 

(-8.1 to 4.0) 
0.49 

Baseline daytime 

ABPM vs. first HBPM 

DBP (mmHg) 

-1.5 (8.9) -2.8 (8.1) 
1.3 

(-2.5 to 5.1) 
0.50 

Follow-up daytime 

ABPM vs. last HBPM 

SBP (mmHg) 

-8.1 (11.2) -5.9 (10.9) 
-2.2 

(-7.1 to 2.7) 
0.38 

Follow-up daytime 

ABPM vs. last HBPM 

DBP (mmHg) 

-1.1 (7.0) -2.9 (7.4) 
1.8 

(-1.4 to 5.0) 
0.27 

SD denotes standard deviation; 95% CI, 95% confidence interval; ABPM, ambulatory 

blood pressure measurement; HBPM, home blood pressure measurement; SBP, 

systolic blood pressure; DBP, diastolic blood pressure.
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The limits of agreement for ABPM vs. HBPM for the first comparison of SBP were -33.0 

to 19.9mmHg and for the second comparison were -28.7 to 14.5mmHg (Figure 6). For 

DBP the limits of agreement were -18.8 to 14.5mmHg and -16.1 to 12.2mmHg 

respectively. For the whole cohort the differences in mean SBP and DBP were 

consistent across both comparisons, however, this was not the case for individual 

participants. For the difference in SBP between daytime ABPM and HBPM the mean 

change over time was 11.0 ± 8.3mmHg (range 0.65 to 43.3mmHg), and the mean 

change for DBP was 6.5 ± 5.1mmHg (range 0.21 to 19.8mmHg) (Figure 7). Exploratory 

analyses for variables that might predict the differences between daytime ABPM and 

HBPM values did not reveal any clear significant relationships. Descriptive testing 

suggested possible relationships with being on antihypertensive treatment and 

baseline clinic SBP (Figures 8-9), but further testing of the latter showed only a weak 

correlation (r=-0.25, p=0.02) that was not consistent across both comparisons. Further 

testing of the former was not possible due to the small number of participants (N=5) 

who were not taking antihypertensive medications.  

 

Taking a diagnostic threshold value for hypertension of ≥135/85mmHg for both 

methods and using daytime ABPM as the reference standard, HBPM had a diagnostic 

sensitivity of 76.1% and specificity of 55.9% (k=0.36, p=0.004) when comparing the 

first set of readings. Using the second set of readings provided consistent data, with 

HBPM having a diagnostic sensitivity of 70.8% and specificity of 55.4% (k=0.22, 

p=0.03). At baseline, 46/80 (57.5%, 95% CI 46.3-67.9%) participants were classified as 

having uncontrolled hypertension according to daytime ABPM readings and at follow-

up the rate was 24/80 (30.0%, 95% CI 20.0-40.3%). Using HBPM readings, 50/80 

(62.5%, 95% CI 52.5-72.7%) were classified as uncontrolled hypertension on the first 

recording and 42/80 (52.5%, 95% CI 41.7-63.6%) on the second recording. 

Classification of hypertension status was the same according to both methods in 54/80 

(67.5%, 95% CI 57.8-77.8%) participants at the first recording period (35 uncontrolled 

hypertension and 19 controlled hypertension) and 48/80 (60.0%, 95% CI 49.4-71.6%) 

at the second recording period (17 uncontrolled hypertension and 31 controlled 

hypertension).  
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Figure 6: Bland-Altman plots to show the limits of agreement for within-individual 

blood pressure recorded by ambulatory blood pressure measurement (ABPM) and 

home blood pressure measurement (HBPM). Thick lines show the mean difference, 

dotted lines the 95% confidence interval for the mean difference, and dashed lines the 

limits of agreement (± 2 SD). A shows systolic blood pressure (SBP) comparing baseline 

ABPM and the first HBPM. B shows SBP comparing outcome ABPM and the last HBPM. 

C shows diastolic blood pressure (DBP) comparing baseline ABPM and the first HBPM. 

D shows DBP comparing outcome ABPM and the last HBPM. SD denotes standard 

deviation. 
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Figure 7: Histograms to show the change in the blood pressure difference recorded by 

daytime ambulatory and home blood pressure measurement from the first to the 

second comparison for individuals. A shows the change in systolic blood pressure 

(SBP). B shows the change in diastolic blood pressure (DBP). 
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Figure 8: Box and whisker plots showing the difference in blood pressure between baseline 

daytime ambulatory blood pressure measurement and the first home blood pressure 

measurement according to whether individuals were taking antihypertensive treatment. A is 

the difference in systolic blood pressure (SBP). B is the difference in diastolic blood pressure 

(DBP).

A 

B 



 

 
 

98 

 

 

  

Figure 9: Scatter plots showing mean clinic systolic blood pressure (SBP) at baseline plotted 

against the difference in SBP from daytime ambulatory blood pressure measurement (ABPM) 

and home blood pressure measurement (HBPM). Fit lines and r values represent Pearson’s 

correlation between the two values. A is the SBP difference from the first comparison. B is the 

SBP difference from the second comparison.
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4.7 Discussion  

 

These data show that in a population with a recent cerebrovascular event there are 

significant differences in BP measurements obtained from daytime ABPM compared to 

HBPM, with the former approximately 7/2mmHg lower than the latter on average. This 

difference was consistent across two recording periods several months apart. Although 

the average difference between the measurement methods was reproducible, the 

limits of agreement were wide and for individuals the difference between the methods 

was not consistent over time. This suggests that BP values obtained using daytime 

ABPM cannot be used to infer values from HBPM, and vice versa, meaning that the 

methods may not be interchangeable. Additionally, the difference recorded was large 

enough that it could be clinically important, considering a reduction in SBP in the order 

of 10mmHg might reduce the risk of stroke by as much as 30% [9, 43]. The difference 

might also influence patient management, potentially causing discordant treatment 

decisions depending on which method is used to confirm diagnosis or monitor 

treatment response. In this group, using the same threshold value for both methods 

(≥135/85mmHg) resulted in a mismatch in classification of hypertension status in 

26/80 (32.5%) participants at baseline and 32/80 (40.0%) at follow-up, which is not an 

insignificant proportion. Unfortunately, in the exploratory analysis no predictive 

factors for the observed measurement differences were demonstrated, with the 

possible relationship with clinic SBP likely to be a chance finding. 

 

CBPM has been used as the reference standard to assess both ABPM and HBPM [110, 

245], but fewer studies have directly compared both out-of-office methods. Of those 

that have, not all have used an HBPM protocol consistent with current guidelines. 

Several studies have reported findings consistent with this analysis. A randomised 

controlled trial investigating the benefit of HBPM in hypertensive adults recruited from 

primary care reported a difference of -3.1/+0.7mmHg between daytime ABPM and 

HBPM at follow-up, though this was not formally investigated [246]. Similarly, 

differences between daytime ABPM and HBPM ranging from -5 to -7mmHg for SBP and 

-1 to -4mmHg for DBP have been reported in three cross-sectional studies that 

recruited either treated or untreated hypertensive adults [106, 116, 121]. Comparable 

limits of agreement have also been reported elsewhere [247]. Conversely, equivalence 
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between daytime ABPM and HBPM has been reported in one study on untreated 

hypertensive adults [115]. Importantly, none of these studies performed repeated BP 

measures to investigate the reproducibility of any differences.  

 

The age of included participants could at least in part account for differences in the 

literature, and may partly explain the results of this analysis, as there is evidence that 

the difference between the two methods may alter across age groups [113, 114]. It is 

reported that daytime ABPM values are higher than HBPM values in children, but with 

increasing age the two values converge and may cross over at around 60 years. That 

age was not a predictive factor for the difference between the two methods in this 

cohort might be due to the narrow age range of included participants. Nevertheless, as 

many people experience their first cerebrovascular event at older ages the difference 

remains relevant. Alternatively, being on antihypertensive treatment (which is more 

likely with increasing age) may relate to the difference between the two methods [106, 

248]. This could be because morning HBPM measurements are routinely taken prior to 

medications, thereby capturing BP at the trough of antihypertensive activity. These 

‘trough values’ might be less influential to mean values from daytime ABPM than 

HBPM due to the increased number of measurements acquired per day. Similarly, 

increased BPV in an individual might also account for differences between 

measurement methods with varying numbers of readings. Greater BPV could 

potentially increase mean values from HBPM relative to daytime ABPM due to there 

being fewer measurements to contribute to the average, resulting in the differences 

seen here. Importantly, the recent cerebrovascular event is unlikely to have 

confounded BP readings from participants in this study as it has been demonstrated 

that patients with previous stroke are able to accurately measure their own BP [249]. 

 

In terms of diagnostic accuracy at a threshold value of ≥135/85mmHg, a sensitivity of 

86% and specificity 62% has been reported for HBPM assessed against daytime ABPM 

as reference, which is in keeping with the findings of this analysis [243]. Whether these 

values are sufficiently high is at least in part a matter of judgement. However, one 

other study has suggested, as suggested here, that the difference may have important 

clinical consequences at an individual patient level by showing that despite both 

daytime ABPM and HBPM diagnosing the same proportion of a cohort with MH, it was 



 

101 
 

not the same people that were diagnosed by both methods. In fact, almost half of 

those diagnosed with MH by daytime ABPM were not according to HBPM [250]. The 

question of the equivalence and diagnostic accuracy of out-of-office BP measurement 

methods may also be relevant when considering the measurement of BPV. Firstly, 

there is evidence that BPV increases linearly with mean BP [130, 251]. Therefore, if 

different methods are not interchangeable with respect to measuring BP it may also be 

the case that they differ in their measurement of BPV, perhaps simply because 

recorded mean BP may be higher, or perhaps because different aspects of an 

individual’s BP profile are captured. Secondly, although threshold values for variability 

are yet to be established, if threshold values for absolute BP differ between 

measurement methods it might also be expected that BPV thresholds will not be 

equivalent. It will therefore be important to assess whether BPV values from different 

measurement methods are in agreement, and, if not, what level of BPV is of relevance 

for each method. 

 

These data, and the wider literature, support the assertion that daytime ABPM and 

HBPM are not interchangeable methods of BP measurement, despite the 

recommendation in hypertension guidelines that the same threshold values should be 

used for both methods [91, 229]. It therefore follows that, in an individual, the 

diagnosis of raised BP and the follow-up of response to antihypertensive treatment 

should not be based on a mix of out-of-office measurements using these different 

methods. Choosing which method to utilise may come down to questions of cost, ease 

of use and interpretation, and patient preference, all of which may favour HBPM over 

ABPM. However, if accuracy of measurement is the primary concern then it is likely 

that ABPM will be the method of choice. Firstly, the threshold values for raised BP as 

they apply to ABPM have been more clearly established than for HBPM. Secondly, 

ABPM is less prone to measurement and reporting bias because the patient takes no 

role in acquiring readings. Thirdly, a greater number of BP readings are obtained when 

using ABPM, with the further addition of nighttime readings when recording is 

performed over 24 hours. For these reasons, and also because it is likely that improved 

accuracy will be important for the measurement of BPV, it is my opinion that at 

present ABPM should be favoured over HBPM where both modalities are available. 

 



 

102 
 

A strength of this study is that it was possible to compare values from daytime ABPM 

and HBPM at two different times in the same population, thereby providing data about 

the consistency of the difference between the two methods and allowing 

consideration of the reproducibility of this difference. It was also the first study, to the 

best of my knowledge, to compare and assess the limits of agreement between 

daytime ABPM and HBPM in a population with cerebrovascular disease. However, the 

study is not without its limitations. Firstly, whilst I argue that selecting a high-risk 

population is a strength of the study, it does also limit the generalisability of the 

findings. Secondly, this is a post-hoc analysis with a relatively small sample size and so 

should be interpreted with caution, as it was not powered to assess the stated 

outcomes. Thirdly, the findings could be influenced by methodological factors, such as 

the short time lag between measurements that were compared, the use of two 

different home BP monitors, or patients being on antihypertensive treatment. With 

regard to the former this is not a unique feature of this study, with other studies 

comparing measurements taken up to 4-6 weeks apart [114, 116, 121], and I have tried 

to mitigate the impact of the latter two potential issues through the statistical analysis 

approach and participant selection. 

 

4.8 Summary 

 

 Significant differences exist between BP values from daytime ABPM and HBPM, 

despite guidelines recommending the same threshold values for both methods. 

 Differences were not consistent between individuals suggesting that daytime 

ABPM and HBPM are not interchangeable. 

 The difference might be clinically important given its magnitude and the 

potential to result in over or under-treatment of patients depending on which 

measurement method is used. 

 The difference also has implications for the measurement of BPV as, if different 

measurement methods are not equivalent in their assessment of absolute BP, it 

might reasonably be expected that they will also be at variance in their 

assessment of BPV. 
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 It is my opinion that ABPM should be favoured over HBPM as this method is 

likely to provide the most accurate estimation of a patient’s BP and its 

variability. 
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5 A Comparison of Beat-to-beat Blood Pressure Variability with Variability Derived from 

other Blood Pressure Measurement Methods in Patients with Cerebrovascular Disease 

 

 

5.1 Introduction 

 

BPV, as opposed to mean BP level, has been proposed as a potential explanatory factor 

for gaps in the established theory of BP as a cardiovascular risk factor [126]. Evidence 

is accumulating to suggest that BPV is a cardiovascular risk factor independent of mean 

BP [128, 152, 153]. Increased BPV may also be associated with adverse outcomes after 

acute ischaemic stroke [98], its relevance being related to the reliance of CBF on 

systemic BP in the face of disordered cerebral autoregulation post stroke [13]. In the 

previous chapter it was demonstrated that there are discrepancies between commonly 

used out-of-office BP measurement methods in quantifying mean BP in patients with a 

recent ischaemic cerebrovascular event. This may have implications for the 

measurement of BPV, as variability from different measurement methods may also be 

discordant in this patient group. At present there is a lack of consistency in how BPV is 

defined in the literature, with no consensus on the optimal approach to measurement 

and calculation, and a lack of evidence as to whether treatment that reduces BPV is of 

value [90, 155, 156].  

 

One factor in this lack of consistency is that BPV can be measured over different 

timescales depending on the BP measurement method used. Potential timescales 

range from the very short-term (over seconds to minutes) using beat-to-beat BP 

monitoring, through the short-term (minutes to hours) and medium-term (hours to 

days) using ABPM and HBPM respectively, up to the long-term (months to years) 

usually derived from repeated CBPM over time. All timescales of BPV have been shown 

to predict cardiovascular risk [128, 131, 200, 252-254], but studies suggest that their 

prognostic relevance may not be equal [90, 131, 155]. Furthermore, the few studies 

that have made direct comparisons of different timescales of variability indicate that 

they are not closely correlated. Comparisons reported to date include within-visit or 

visit-to-visit clinic BPV over eight weeks with 24 hour or daytime ABPM and HBPM 
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[160], daytime ABPM with HBPM and visit-to-visit clinic BPV over four weeks [118], 

and beat-to-beat BPV with 24 hour ABPM and HBPM [134].  

 

Beat-to-beat BPV is increased in acute ischaemic stroke [100]. Furthermore, the 

evidence that BPV is associated with stroke outcome relates to short-term BPV 

measured over minutes or hours [15]. Beat-to-beat BPV may therefore be of particular 

importance in this patient group. However, beat-to-beat BP measurement is not 

routinely used in clinical practice, with guideline recommended methods, such as 

CBPM, ABPM and HBPM, being more commonplace [91, 92]. Consequently, only one 

study comparing timescales of BPV has included beat-to-beat measurements [134]. 

This study enrolled untreated hypertensive adults without any cerebrovascular disease 

and did not assess whether beat-to-beat BPV has any relationship with other shorter-

term BPV measurements (i.e. within-visit clinic BPV, or within-hour BPV calculated 

from ABPM measurements). Investigation of this would be useful to determine if these 

alternative measurements could be used as a surrogate for beat-to-beat BPV 

measurement.  

 

5.2 Hypothesis 

 

Using data from the TEST-BP trial, the aim of this analysis was to compare beat-to-beat 

BPV with variability from other measurement methods with the intention of assessing 

comparisons not previously reported, and making these comparisons in a cohort of 

patients with cerebrovascular disease. The hypothesis being tested is that BPV values 

calculated over different timescales will not have significant inter-relationships and will 

not provide interchangeable data. 

 

5.3 Methods 

 

Data for this analysis comes from the TEST-BP trial, which was a trial of BP self-

monitoring and guided self-management in patients with a recent stroke or TIA. The 

general methodology for TEST-BP is described in section 3.1.1 and has been published 

elsewhere [223]. The methodology specific to this secondary analysis is described here. 
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Eligible participants were subjects from TEST-BP who had a complete set of baseline BP 

data, including enhanced CBPM with three readings, daytime ABPM with ≥14 readings, 

and beat-to-beat measurement with a recording duration of ≥ 5minutes after data 

cleaning, all of which were recorded at the same visit. An additional subgroup of 

participants who undertook HBPM six weeks after the baseline visit was also included. 

Participants with BP data that was incomplete according to these criteria or who were 

diagnosed with ICH were excluded. Participants were excluded from the subgroup if 

they provided <21 HBPM readings or if their antihypertensive medications were 

altered between the baseline visit and the HBPM recording period at six weeks. 

 

BP measurements from the baseline visit have been used in this analysis, along with 

the first set of HBPM measurements taken at six weeks for the subgroup. BP 

measurements for each method were taken as described in sections 3.5.2 to 3.5.5. 

Mean and variability values for SBP and DBP from each BP measurement method were 

calculated as described in section 3.6. In addition to variability over the whole daytime 

period, within-hour BPV was calculated from ABPM recordings. For each hourly period 

with at least two valid measurements the mean, SD, CV, ARV and MMD of these 

measurements were calculated, with the arithmetic means of these calculated values 

representing within-hour mean and BPV values. 

 

Outcomes for this analysis were the comparison of beat-to-beat BPV indices with the 

same index from other contemporaneous measurement methods, including CBPM, 

daytime ABPM, and HBPM, and the assessment of their limits of agreement. 

 

5.4 Statistical Analysis 

 

Data were analysed using SPSS version 25.0. Scatter plots were constructed to visually 

assess the relationship between each BPV index from beat-to-beat measurements with 

the same BPV index from other measurement methods. BPV data were not normally 

distributed; therefore formal testing of correlations between BPV indices from 

different measurement sets was undertaken using Spearman’s rho. Conversely, mean 

BP measurements were normally distributed and so were formally compared using 

Pearson’s correlations.  Correlations were considered weak if r or rs=0.10-0.29, 
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moderate if r or rs=0.30-0.49, and strong if r or rs=>0.50 [255]. Further exploration of 

the relationships between beat-to-beat BPV and variability from other measurement 

methods was conducted where there was a suggestion of a positive relationship. This 

was done using Bland and Altman’s method for assessing the limits of agreement 

between tests [244]. The mean value for both methods was plotted against the 

difference between them, with reference lines added to the plot to show the mean 

difference and two standard deviations either side of the mean. Outliers were 

excluded to ensure that the differences between methods were normally distributed 

(p>0.05 using the Kolmogorov-Smirnov test correlated against a histogram of the data 

with distribution curve). Due to weak or moderate correlations between the mean 

values and the differences, the latter were plotted as ratio data rather than absolute 

values. As this was an exploratory analysis no adjustments for multiple testing were 

made, with p<0.05 considered statistically significant. 

 

5.5 Results 

 

One hundred and thirty three participants from the trial had complete baseline BP 

data, with a subgroup of 82 providing valid HBPM data in addition to the baseline 

measurements. Demographic data for the full cohort and the HBPM subgroup is 

presented in Table 20.  

 

Mean SBP and DBP, and median values for BPV indices from each measurement 

method for the whole cohort and the HBPM subgroup are displayed in Tables 21-22. 

BPV values from within-hour ABPM appeared to be more closely matched to beat-to-

beat BPV than other methods. The exception to this was ARV, where values from 

within-hour ABPM were more closely matched to daytime ABPM, with ARV from beat-

to-beat measurements different to all other methods.  

 

Mean SBP and DBP from each method was moderately or strongly correlated with the 

corresponding mean value from beat-to-beat BP (r=0.33-0.62, p<0.01 for all 

correlations). However, correlations between BPV indices were either weak or non-

significant, with the exception of ARV of DBP from daytime ABPM and HBPM with 

beat-to-beat measurement which showed moderate correlations (rs=0.32 and 0.34  



 

108 
 

Table 20: Demographic data. Data presented are mean (SD) for normally distributed 

continuous variables, median (IQR)* for non-normally distributed continuous variables, 

and frequency (%) for categorical variables. 

  All HBPM subgroup 

N  133 82 

Age (years)  73.7 (9.9) 74.9 (9.6) 

Gender Male 86 (64.7%) 55 (67.1%) 

BMI (kg/m2)  28.7 (5.0) 28.5 (4.8) 

Smoking status 

Never smoked 53 (39.8%) 33 (40.2%) 

Ex smoker 74 (55.6%) 46 (56.1%) 

Current 

smoker 
6 (4.5%) 3 (3.7%) 

Alcohol 

(units/wk)* 
 4.0 (16.0) 5.0 (16.0) 

Diagnosis Stroke 41 (30.8%) 26 (24.4%) 

NIHSS (stroke 

patients only)* 
 3.0 (2.5) 2.0 (2.0) 

OCSP 

classification 

LACS 17 (41.5%) 11 (42.3%) 

PACS 16 (39.0%) 8 (30.8%) 

TACS 1 (2.4%) 1 (3.8%) 

POCS 7 (17.1%) 6 (23.1%) 

Past medical 

history 

TIA 93 (69.9%) 56 (68.3%) 

Stroke 52 (39.1%) 33 (40.2%) 

IHD 28 (21.1%) 20 (24.4%) 

Diabetes 35 (26.3%) 20 (24.4%) 

Hypertension 98 (73.7%) 63 (76.8%) 

On 

antihypertensive 

therapy 

 124 (93.2%) 76 (92.7%) 

No. of 

antihypertensives 
 1.7 (0.9) 1.7 (1.0) 

Antihypertensive ACEI 78 (58.6%) 50 (61.0%) 
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use by class ARB 22 (16.5%) 14 (17.1%) 

Beta blockers 34 (25.6%) 18 (22.0%) 

CCB 54 (40.6%) 31 (37.8%) 

Thiazide-like 

diuretics 
23 (17.6%) 15 (18.3%) 

 

SD denotes standard deviation; IQR, interquartile range; HBPM, home blood pressure 

measurement; BMI, body mass index; NIHSS, National Institutes of Health Stroke Scale; 

OCSP, Oxford Community Stroke Project; LACS, lacunar stroke; PACS, partial anterior 

circulation stroke; TACS, total anterior circulation stroke; POCS, posterior circulation 

stroke; TIA, transient ischaemic attack; IHD, ischaemic heart disease; ACEI, angiotensin 

converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel 

blocker. 
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Table 21: Average baseline blood pressure and blood pressure variability parameters 

from each measurement method in the full cohort. Mean systolic and diastolic blood 

pressure are presented as mean (SD). Systolic and diastolic variability values are 

presented as median (IQR). 

 Enhanced 

CBPM 
Beat-to-beat BP Daytime ABPM 

Within-hour 

ABPM 

Mean SBP 

(mmHg) 
152.1 (19.3) 131.9 (16.3) 135.1 (14.0) 134.9 (14.0) 

Mean DBP 

(mmHg) 
83.7 (12.0) 81.0 (12.7) 76.1 (8.9) 76.0 (9.0) 

SD SBP  

(mmHg) 
5.4 (3.7) 5.4 (2.9) 13.2 (5.1) 6.3 (2.2) 

SD DBP  

(mmHg) 
2.9 (3.3) 4.2 (2.3) 8.9 (3.1) 4.4 (1.4) 

CV SBP  

(%) 
3.7 (2.4) 4.1 (2.1) 9.7 (3.5) 4.6 (1.4) 

CV DBP  

(%) 
3.5 (3.4) 5.2 (2.6) 11.6 (4.7) 5.8 (2.1) 

ARV SBP 

(mmHg) 
- 1.5 (1.0) 9.4 (3.0) 10.1 (3.1) 

ARV DBP 

(mmHg) 
- 1.1 (0.8) 7.1 (2.3) 7.0 (2.6) 

MMD SBP 

(mmHg) 
- 32.5 (21.6) 58.0 (24.0) 33.8 (20.3) 

MMD DBP 

(mmHg) 
- 26.8 (16.9) 46.0 (13.5) 23.8 (12.7) 

 

CBPM denotes clinic blood pressure measurement; BP, blood pressure; ABPM, 

ambulatory blood pressure measurement; SBP, systolic blood pressure; DBP, diastolic 

blood pressure; SD, standard deviation; CV, coefficient of variation; ARV, average real 

variability; MMD, maximum-minimum difference.
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Table 22: Average baseline blood pressure and blood pressure variability parameters 

from each measurement method in the home blood pressure measurement subgroup. 

Mean systolic and diastolic blood pressure are presented as mean (SD). Systolic and 

diastolic variability values are presented as median (IQR). 

 
Enhanced 

CBPM 

Beat-to-beat 

BP 

Daytime 

ABPM 

Within-hour 

ABPM 
HBPM 

Mean SBP 

(mmHg) 
151.2 (19.6) 132.9 (17.0) 135.0 (13.6) 134.9 (13.3) 141.7 (16.6) 

Mean DBP 

(mmHg) 
84.4 (11.6) 81.6 (12.5) 76.4 (8.3) 76.3 (8.4) 77.8 (8.4) 

SD SBP 

(mmHg) 
5.4 (4.1) 5.4 (2.7) 13.2 (5.4) 6.3 (2.3) 11.2 (4.4) 

SD DBP 

(mmHg) 
3.1 (3.3) 4.0 (2.4) 9.1 (3.1) 4.3 (1.3) 6.2 (2.8) 

CV SBP  

(%) 
3.8 (2.4) 4.2 (2.2) 9.6 (3.3) 4.7 (1.5) 8.0 (3.0) 

CV DBP  

(%) 
3.8 (3.2) 5.0 (2.9) 11.5 (4.5) 5.7 (1.8) 8.3 (3.0) 

ARV SBP 

(mmHg) 
- 1.5 (1.0) 9.2 (3.2) 9.9 (3.6) 11.2 (5.2) 

ARV DBP 

(mmHg) 
- 1.0 (0.9) 7.1 (2.3) 7.0 (2.5) 6.0 (3.1) 

MMD SBP 

(mmHg) 
- 33.0 (23.3) 58.5 (23.8) 32.7 (21.8) 47.0 (19.3) 

MMD DBP 

(mmHg) 
- 26.5 (19.1) 44.5 (14.3) 23.9 (12.1) 25.0 (12.0) 

 

CBPM denotes clinic blood pressure measurement; BP, blood pressure; ABPM, 

ambulatory blood pressure measurement; HBPM, home blood pressure measurement; 

SBP, systolic blood pressure; DBP, diastolic blood pressure; SD, standard deviation; CV, 

coefficient of variation; ARV, average real variability; MMD, maximum-minimum 

difference.
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respectively, p<0.01 for both correlations) (Tables 23-24). Correlations between beat-

to-beat BPV and within-hour ABPM variability parameters were not stronger than 

correlations with variability from other methods. The Bland-Altman analyses of the 

relationship between beat-to-beat and within-hour ABPM systolic BPV (Figure 10) 

showed a large bias for ARV of SBP (mean difference -142.82% (95% confidence 

interval -146.53% to -139.11%), but not for SD (mean difference -11.60% (95% 

confidence interval -19.04% to -4.16%), CV (mean difference -9.08% (95% confidence 

interval -16.29% to -1.87%), or MMD (mean difference -0.73% (95% confidence 

interval -9.67% to 8.20%). However, the limits of agreement were wide ranging for all 

measures of systolic BPV (SD = -96.61% to 73.41%, CV = -91.50% to 73.34%, ARV = -

184.39% to -101.25%, MMD = -102.83% to 101.37%). The analyses comparing beat-to-

beat with daytime ABPM systolic BPV (Figure 11) and beat-to-beat with HBPM systolic 

BPV (Figure 12) showed a moderate to large bias and wide ranging limits of agreement 

for all BPV indices. Findings for DBP were similar to those for SBP (Figures 13-15). 

Further comparison of beat-to-beat BPV and within-visit clinic BPV was deemed not 

appropriate. 

 

5.6 Discussion 

 

These data show that there is no evidence of significant relationships between BPV 

from beat-to-beat BP measurements and within-visit variability from enhanced CBPM. 

They also show that, despite apparent similarities between the average values 

obtained with beat-to-beat and within-hour ABPM BPV measurements, which are not 

present between beat-to-beat and other methods of assessing BPV, these two 

methods of measuring BPV are not closely correlated. Furthermore, the limits of 

agreement between the two methods are wide ranging, suggesting that they are not 

interchangeable methods of measuring BPV. When assessing beat-to-beat with 

daytime ABPM and beat-to-beat with HBPM the correlations were also weakly 

significant at best, with even more wide ranging limits of agreement and marked bias 

in the mean differences between these methods.  
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Table 23: Correlations for systolic blood pressure and variability between beat-to-beat 

and other blood pressure measurement methods. Correlations are based on the full 

cohort, except those with home blood pressure measurements which are based on the 

subgroup only. Correlations are Pearson’s r for mean values and Spearman’s rho for 

BPV values. *p<0.05 **p<0.01. 

Comparator Mean SD CV ARV MMD 

Enhanced 

CBPM 
0.50** 0.04 -0.01 - - 

Daytime ABPM 0.35** 0.26** 0.23** 0.23** 0.17 

Within-hour 

ABPM 
0.33** 0.20* 0.20* 0.25** 0.11 

HBPM 0.50** 0.20 0.17 0.27* 0.20 

SD denotes standard deviation; CV, coefficient of variation; ARV, average real variability; 

MMD, maximum-minimum difference; CBPM, clinic blood pressure measurement; ABPM, 

ambulatory blood pressure measurement; HBPM, home blood pressure measurement. 

 

 

Table 24: Correlations for diastolic blood pressure and variability between beat-to-

beat and other blood pressure measurement methods. Correlations are based on the 

full cohort, except those with home blood pressure measurements which are based on 

the subgroup only. Correlations are Pearson’s r for mean values and Spearman’s rho 

for BPV values. *p<0.05 **p<0.01. 

Comparator Mean SD CV ARV MMD 

Enhanced 

CBPM 
0.62** 0.06 0.02 - - 

Daytime ABPM 0.57** 0.27** 0.28** 0.32** 0.18* 

Within-hour 

ABPM 
0.55** 0.17 0.21* 0.29** 0.13 

HBPM 0.55** 0.28* 0.28* 0.34** 0.29** 

SD denotes standard deviation; CV, coefficient of variation; ARV, average real variability; 

MMD, maximum-minimum difference; CBPM, clinic blood pressure measurement; ABPM, 

ambulatory blood pressure measurement; HBPM, home blood pressure measurement. 



 

 
 

 

  

  
Figure 10: Bland-Altman plots to show the limits of agreement for short-term within-individual systolic blood pressure variability (BPV) from beat-to-beat blood pressure 
measurement and within-hour ambulatory blood pressure measurement. Thick lines show the mean difference, dotted lines the 95% confidence interval for the mean 
difference, and dashed lines the limits of agreement (± 2 SD). A shows BPV assessed as standard deviation (SD). B shows BPV assessed as coefficient of variation (CV). C 
shows BPV assessed as average real variability (ARV). D shows BPV assessed as maximum-minimum difference (MMD). 



 

 
 

  

  
Figure 11: Bland-Altman plots to show the limits of agreement for short-term within-individual systolic blood pressure variability (BPV) from beat-to-beat blood pressure 

measurement and daytime ambulatory blood pressure measurement. Thick lines show the mean difference, dotted lines the 95% confidence interval for the mean 

difference, and dashed lines the limits of agreement (± 2 SD). A shows BPV assessed as standard deviation (SD). B shows BPV assessed as coefficient of variation (CV). C 

shows BPV assessed as average real variability (ARV). D shows BPV assessed as maximum-minimum difference (MMD). 



 

 
 

  

  
Figure 12: Bland-Altman plots to show the limits of agreement for short-term within-individual systolic blood pressure variability (BPV) from beat-to-beat blood pressure 

measurement and home blood pressure measurement. Thick lines show the mean difference, dotted lines the 95% confidence interval for the mean difference, and 

dashed lines the limits of agreement (± 2 SD). A shows BPV assessed as standard deviation (SD). B shows BPV assessed as coefficient of variation (CV). C shows BPV 

assessed as average real variability (ARV). D shows BPV assessed as maximum-minimum difference (MMD). 



 

 
 

 

 
Figure 13: Bland-Altman plots to show the limits of agreement for short-term within-individual diastolic blood pressure variability (BPV) from beat-to-beat blood 

pressure measurement and within-hour ambulatory blood pressure measurement. Thick lines show the mean difference, dotted lines the 95% confidence interval for 

the mean difference, and dashed lines the limits of agreement (± 2 SD). A shows BPV assessed as standard deviation (SD). B shows BPV assessed as coefficient of 

variation (CV). C shows BPV assessed as average real variability (ARV). D shows BPV assessed as maximum-minimum difference (MMD). 



 

 
 

 

  
Figure 14: Bland-Altman plots to show the limits of agreement for short-term within-individual diastolic blood pressure variability (BPV) from beat-to-beat blood 

pressure measurement and daytime ambulatory blood pressure measurement. Thick lines show the mean difference, dotted lines the 95% confidence interval for the 

mean difference, and dashed lines the limits of agreement (± 2 SD). A shows BPV assessed as standard deviation (SD). B shows BPV assessed as coefficient of variation 

(CV). C shows BPV assessed as average real variability (ARV). D shows BPV assessed as maximum-minimum difference (MMD). 



 

 
 

  

  
Figure 15: Bland-Altman plots to show the limits of agreement for short-term within-individual diastolic blood pressure variability (BPV) from beat-to-beat blood 

pressure measurement and home blood pressure measurement. Thick lines show the mean difference, dotted lines the 95% confidence interval for the mean difference, 

and dashed lines the limits of agreement (± 2 SD). A shows BPV assessed as standard deviation (SD). B shows BPV assessed as coefficient of variation (CV). C shows BPV 

assessed as average real variability (ARV). D shows BPV assessed as maximum-minimum difference (MMD). 
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No previous studies have investigated the relationships between beat-to-beat BPV and 

very short-term or short-term BPV derived from within-visit enhanced CBPM or a 

within-hour analysis of daytime ABPM. However, a few other studies have presented 

detailed comparisons of variability from other BP measurement methods, with findings 

that are in keeping with this analysis. In a cohort of adults with stable hypertension 

(N=108, 15% with established coronary heart disease or cerebrovascular disease) clinic 

BP from eight weekly visits, 24 hour ABPM, and HBPM over three days were carried 

out, with BPV calculated as SD, CV, and ARV from each set of measurements [160]. 

From the HBPM data variability was assessed over the whole measurement period and 

over a series of shorter periods (daily variability and variability within each day’s 

morning and evening measurements only). Correlations between all measures of BPV 

were found to be either weak or non-significant. Similarly, in a larger cohort 

incorporating healthy adults and adults with stable hypertension but no established 

cardiovascular or cerebrovascular disease (N=461) BPV calculated as SD, CV, ARV, 

MMD, and VIM from clinic BP over four weekly visits, daytime ABPM, and HBPM over 

four days were all either weakly correlated or not correlated [118]. Two additional 

studies have presented correlations with beat-to-beat BPV. In a cohort of untreated 

hypertensive adults without established cardiovascular or cerebrovascular disease 

(N=256) Wei et al. demonstrated weak or non-significant correlations in ARV, MMD, 

and VIM from beat-to-beat BP, 24 hour ABPM, and HBPM over seven days [134]. 

Similarly, in a cohort of adults with a recent stroke or TIA (N=472) Webb et al. showed 

only weak correlations in CV from beat-to-beat BP, daytime ABPM, and HBPM [200].  

 

As suggested by the results of the previous chapter these results may be related to 

discrepancies in BP values obtained from the different measurement methods. 

However, it may also be the case that different timescales of BPV have different 

underlying physiological or pathophysiological mechanisms. Whilst the underlying 

mechanisms of BPV have not been fully established, there is evidence that very short-

term BPV is associated with reduced cardiac BRS in both the acute and chronic phases 

after ischaemic stroke [13, 67, 68, 256]. Furthermore, previous work using this cohort 

has demonstrated that reduced BRS and heart rate variability (HRV) were predictors 

for increased beat-to-beat BPV following a cerebrovascular event [257]. Conversely, 
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medium and long-term BPV are associated with markers of arterial stiffness [167, 170, 

174], yet beat-to-beat variability has an uncertain relationship with these factors [134, 

258]. Whilst the parameter chosen to calculate BPV may not matter (different 

parameters derived from the same set of measurements are strongly correlated 

regardless of the BP measurement method used [118, 157, 259]), it seems the 

timescale over which it is measured may be important. This is reflected by the 

inequalities in prognostic relevance to cardiovascular events that the different 

timescales of BPV provide [128, 131, 200, 252-254]. Ultimately, BPV may not be a 

singular concept and work to establish which measures are most relevant to different 

patient groups is required. 

 

Strengths of this study include that it provides a comprehensive comparison of beat-

to-beat BPV with variability from other BP measurement methods, using a variety of 

commonly reported BPV indices, some of which have not previously been reported. 

Furthermore, to the best of my knowledge, it is the first study to compare beat-to-beat 

BPV with an analysis of very short-term variability from ABPM (i.e. within-hour 

variability). In using the Bland-Altman method to compare different timescales of BPV, 

I have been able to provide a level of insight into their relationships that has not been 

present in previous studies. However, several important limitations to the study 

deserve mention. Firstly, as TEST-BP was an interventional trial with the aim of 

improving BP control after stroke the gap between the first HBPM used in this analysis 

and the other baseline BP measurements may limit comparisons with that 

measurement method as BP levels could have altered in the interim, thereby affecting 

variability. However, by excluding participants whose antihypertensive treatment was 

altered between the two measurement periods the design of the analysis should have 

mitigated the impact of this limitation. Secondly, with the majority of participants 

being on antihypertensive therapy, but being prescribed agents from diverse classes it 

is possible that the results were influenced by treatment. However, as the Bland-

Altman analyses compared within-individual BPV measurements, and change in BPV 

over time was not an outcome measure, I would argue that antihypertensive 

treatment is unlikely to have had an impact. Furthermore, in the study by Abellan-

Huerta et al. participants were also on antihypertensive therapy [160]. Thirdly, the 

findings may not be generalizable to patients without cerebrovascular disease. 
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However, they are consistent with other studies that have included both patients with 

and without previous stroke, and if beat-to-beat BPV is particularly relevant to patients 

with cerebrovascular disease as previously suggested then this may actually be a 

positive aspect of the study. 

 

5.7 Summary 

 

 There appears to be little relationship between BPV derived from beat-to-beat 

BP recordings and any other BP measurement method. 

 The initial data suggested that there might be a relationship between beat-to-

beat variability and within-hour variability, but further analysis using Bland and 

Altman’s technique demonstrated very wide limits of agreement, indicating any 

relationship was insufficient for the latter to be a surrogate for the former. 

 It seems plausible that shorter and longer-term BPV are not a singular 

phenomenon. 

 The inclusion of beat-to-beat assessment of BPV in future research is 

recommended, along with further work to clarify which timescales of BPV are 

most relevant to cardiovascular risk and outcomes after stroke.
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6 Associations Between Blood Pressure Variability and Stroke Severity or Subtype in 

Patients with a Recent Ischaemic Stroke 

 

 6.1 Declaration 
 

I would like to acknowledge the contribution of Karen Appiah, research fellow in 

Leicester, to this chapter. Her work in processing the data from the BPV observational 

study helped to make this work possible. 

 

6.2 Introduction 

 

In the preceding experimental chapters the focus of this thesis has been on the 

measurement of BPV following an ischaemic cerebrovascular event. I will now turn my 

attention to investigating the potential of BPV as a therapeutic target in this patient 

group. In acute ischaemic stroke, the area of under-perfused penumbral tissue 

surrounding the core infarct is vulnerable to changes in CBF, with reduced blood flow 

potentially leading to infarct expansion and increased blood flow resulting in 

haemorrhagic change or cerebral oedema [35]. Due to disruption of cerebral 

autoregulatory mechanisms post stroke, CBF becomes more dependent upon systemic 

BP [13, 183]. Consequently, variability in systemic BP could influence CBF and overall 

infarct volume. BPV is increased in acute ischaemic stroke [100], and similar patterns 

may be seen in chronic stroke patients [256]. Furthermore, evidence is accumulating 

that increased BPV is associated with early clinical deterioration [188, 189], secondary 

haemorrhagic transformation [187], and poor long-term functional outcomes in 

ischaemic stroke patients [197-199]. Consequently, interest has arisen in whether BPV 

may be a therapeutic target in patients with stroke and, if so, which patients might 

benefit from these treatments.  

 

In addition to abnormal BPV, autonomic dysfunction has been demonstrated in acute 

ischaemic stroke. HRV and cardiac BRS are two measureable indicators of autonomic 

function, both of which are reduced post-stroke [179, 181, 182]. As with BPV, these 

changes may persist into the chronic phase [256]. Although it remains a topic of 
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debate, there is some evidence that autonomic functions may be lateralised within the 

central nervous system, with sympathetic activity being focused in the right cerebral 

hemisphere and parasympathetic activity focused in the left [63, 179]. Therefore, the 

degree of HRV and cardiac BRS reduction may differ depending on which cerebral 

hemisphere is involved. Given the role of cardiac baroreceptors in the regulation of 

systemic BP, the cerebral hemisphere affected by stroke may also influence the degree 

of BPV, though this is yet to be established. 

 

Should BPV prove to be a viable therapeutic target it would be useful to know whether 

all patients with ischaemic stroke would benefit equally from such treatment, or 

whether it would be prudent to focus on treating certain groups of patients? To that 

end, it would be of relevance to know if there are differences in BPV amongst 

subgroups of ischaemic stroke patients, but presently this has not been investigated. It 

could be expected that patients with more severe ischaemic stroke might also exhibit 

greater BPV due to the larger extent of damage to cerebral tissue, and the potential for 

a larger penumbra that might necessitate greater adjustments in systemic BP to 

maintain adequate CBF. Furthermore, we might anticipate that there will be 

differences in the degree of BPV between patients with left hemisphere and right 

hemisphere lesions due to associated imbalances in autonomic BP regulation.  

 

6.3 Hypothesis 

 

The aim of this study was to investigate potential relationships between BPV and 

stroke severity (according to commonly applied clinical tools) and affected cerebral 

hemisphere. Data from three cohorts including subjects with a recent ischaemic stroke 

have been pooled to test two hypotheses. Firstly, that differences will exist in BPV 

values across participants with a range of stroke severity, with the expectation that 

BPV values will be greater in those with a higher NIHSS score or more disabling stroke 

according to the OCSP classification. Secondly, that BPV values will not be the same in 

participants with unilateral left hemisphere or right hemisphere infarcts. 
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6.4 Methods 

 

Combined data from participants recruited to TEST-BP, SERVED Memory, and the BPV 

observational trial was used to generate the database for this study. The general 

methodologies for these trials are described in sections 3.1.1 to 3.1.3, with TEST-BP 

and SERVED Memory having also been published elsewhere [222, 223]. The 

methodology specific to this analysis is described here. Eligible subjects were 

participants in any of the above trials with a diagnosis of ischaemic stroke who had 

complete baseline BP data, incorporating enhanced CBPM with three measurements 

and daytime ABPM with ≥14 readings. A subgroup of these participants who also had 

baseline beat-to-beat BP measurement with a recording duration of ≥5 minutes after 

data cleaning was also included in the analysis. Participants with BP data that was 

incomplete according to these criteria or who were diagnosed with TIA or ICH were 

excluded. 

 

All baseline BP measurements were recorded as outlined in the general methodology 

chapter; enhanced CBPM as described in section 3.5.2, daytime ABPM as described in 

section 3.5.3, and beat-to-beat BP as described in section 3.5.5. For each set of BP 

measurements average and variability values for SBP and DBP were calculated as 

described in section 3.6. Stroke severity was assessed using the NIHSS score at baseline 

and the OCSP classification, both of which are described in section 3.5.6. The involved 

cerebral hemisphere was inferred from any lateralising clinical features of the stroke 

and any positive findings on cerebral imaging investigations where applicable and was 

classified as “left” or “right”. If there were no lateralising features or positive findings 

on neuroimaging then the participant was not categorised as having a unilaterally 

involved hemisphere and was excluded from the testing of the second hypothesis. 

 

Outcomes for this analysis were the separate assessment of relationships between 

BPV derived from each of the three measurement methods described above with (i) 

stroke severity according to baseline NIHSS score, (ii) stroke severity according to OCSP 

classification, and (iii) stroke subtype according to the affected cerebral hemisphere. 
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6.5 Statistical Analysis 

 

Data were analysed using SPSS version 25.0. Assessment of median NIHSS score by 

OCSP classification was based on a Kruskal-Wallis test. All BP and BPV variables were 

visually assessed for normality by constructing histograms with overlaid distribution 

curves and formally tested using the Kolmogorov-Smirnov test (p>0.05 deemed 

consistent with normal distribution). Mean SBP and DBP values were normally 

distributed, but BPV data from all measurement methods were not. Therefore, a 

logarithmic transformation was applied to these variables prior to any statistical 

testing. This transformation resulted in normalisation of the variables. The results of 

any testing on transformed variables have been back-transformed for presentation. 

Initial exploratory univariate analyses were undertaken to assess the relationship 

between BPV variables and each measure of stroke severity or subtype. The 

relationship between BPV and NIHSS was assessed using Pearson’s correlations. 

Correlations were considered weak if r=0.10-0.29, moderate if r=0.30-0.49, and strong 

if r=>0.50 [255]. The relationship between BPV and OCSP classification was assessed 

using one-way ANOVA with the BPV parameter as the dependent variable and OCSP 

classification as the grouping variable. Post-hoc testing was carried out where any 

between-group differences were identified in the model as a whole. The relationship 

between BPV and affected hemisphere was assessed using independent samples t 

tests, with ‘affected hemisphere’ as the bivariate grouping variable and the BPV 

parameter as the dependent variable. Where univariate analyses suggested significant 

relationships further multivariate analyses were conducted using a regression model, 

with the BPV parameter as the dependent variable, adjusted for differences between 

the trial cohorts and factors known to influence BPV [130, 251, 260]. Independent 

variables used in the model in addition to those tested with univariate analysis 

included time from stroke onset to baseline measurement, age, gender, mean BP 

(from the relevant BP measurement method), past medical history of hypertension, 

and past medical history of diabetes. 
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Table 25: Demographic data. Data presented are mean (SD) for normally distributed 

continuous variables, median (IQR)* for non-normally distributed continuous variables, 

and frequency (%) for categorical variables. 

  All 
Beat-to-beat 

subgroup 

N  181 67 

Age (years)  70.6 (11.0) 71.0 (10.3) 

Gender Male 134 (74.0%) 49 (73.1%) 

BMI (kg/m2)  28.5 (5.5) 29.5 (6.1) 

Smoking 

Never 71 (39.2%) 31 (46.3%) 

Ex smoker 90 (49.7%) 34 (50.7%) 

Current smoker 19 (10.5%) 2 (3.0%) 

Alcohol (units/wk)*  4.0 (12.0) 4.0 (16.0) 

NIHSS*  3.0 (4.0) 3.0 (2.0) 

OCSP classification 

LACS 60 (33.7%) 24 (35.8%) 

PACS 78 (43.8%) 29 (43.3%) 

TACS 6 (3.4%) 1 (1.5%) 

POCS 34 (19.1%) 13 (19.4%) 

Affected hemisphere Left 80 (55.2%) 44 (66.7%) 

Past medical history 

TIA 19 (10.7%) 13 (19.4%) 

Stroke 78 (43.6%) 53 (79.1%) 

IHD 23 (12.8%) 9 (13.4%) 

Diabetes 34 (19.0%) 19 (28.4%) 

Hypertension 105 (58.7%) 44 (65.7%) 

No. on 

antihypertensive 

treatment 

 118 (65.2%) 55 (82.1%) 

No. of 

antihypertensives* 
 1.0 (2.0) 1.0 (1.0) 

Antihypertensive use 

by class 

ACEI 60 (33.1%) 33 (49.3%) 

ARB 25 (13.8%) 11 (16.4%) 
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Beta blockers 24 (13.3%) 14 (20.9%0 

CCB 57 (31.5%) 29 (43.3%) 

Thiazide-like 

diuretics 
15 (8.3%) 9 (13.4%) 

SD denotes standard deviation; IQR, interquartile range; BMI, body mass index; NIHSS, 

National Institutes of Health Stroke Scale; OCSP, Oxford Community Stroke Project; 

LACS, lacunar stroke; PACS, partial anterior circulation stroke; TACS, total anterior 

circulation stroke; POCS, posterior circulation stroke; TIA, transient ischaemic attack; 

IHD, ischaemic heart disease; ACEI, angiotensin converting enzyme inhibitor; ARB, 

angiotensin receptor blocker; CCB, calcium channel blocker. 
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Table 26: Average baseline blood pressure and variability parameters. Clinic and 

ambulatory blood pressure data are for the full cohort. Beat-to-beat data are for the 

subgroup only. Mean systolic and diastolic blood pressure are presented as mean (SD). 

Systolic and diastolic variability values are presented as median (IQR). 

 
Enhanced CBPM Daytime ABPM 

Beat-to-beat 

BP 

Mean SBP (mmHg) 151.4 (21.6) 138.1 (16.8) 135.1 (18.8) 

Mean DBP (mmHg) 83.7 (12.6) 78.9 (10.8) 81.7 (15.0) 

SD SBP (mmHg) 5.8 (4.1) 12.4 (5.6) 6.5 (4.5) 

SD DBP (mmHg) 3.4 (3.0) 8.7 (3.3) 4.7 (3.2) 

CV SBP (%) 4.0 (2.5) 9.1 (3.8) 5.1 (3.4) 

CV DBP (%) 4.2 (3.8) 11.2 (5.0) 6.0 (4.5) 

ARV SBP (mmHg) - 8.9 (2.8) 2.1 (2.1) 

ARV DBP (mmHg) - 6.8 (2.8) 1.5 (1.3) 

CBPM denotes clinic blood pressure measurement; ABPM, ambulatory blood pressure 

measurement; BP, blood pressure; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; SD, standard deviation; CV, coefficient of variation; ARV, average real 

variability.
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Figure 16: Box and whisker plot showing distribution of National Institutes of Health 
Stroke Scale (NIHSS) scores across different Oxford Community Stroke Project 
classification groups. LACS denotes lacunar stroke; PACS, partial anterior circulation 
stroke; TACS, total anterior circulation stroke; POCS, posterior circulation stroke. 

 

 

Table 27: Correlations between baseline National Institutes of Health Stroke Scale 

score and mean blood pressure and variability indices from clinic, daytime ambulatory, 

and beat-to-beat measurements. Values presented are Pearson’s r. *p<0.01. 

 Enhanced CBPM Daytime ABPM Beat-to-beat BP 

Mean SBP -0.02 0.10 0.02 

SD SBP 0.10 -0.24* 0.06 

CV SBP 0.11 -0.28* 0.05 

ARV SBP - 0.09 0.15 

Mean DBP -0.08 0.05 -0.04 

SD DBP 0.12 -0.20* 0.01 

CV DBP 0.14 -0.21* 0.02 

ARV DBP - 0.06 0.03 

CBPM denotes clinic blood pressure measurement; ABPM, ambulatory blood pressure 

measurement; BP, blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; 

SD, standard deviation; CV, coefficient of variation; ARV, average real variability.
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Table 28: Summary of results from multivariate testing for the relationship between 

National Institutes of Health Stroke Scale (NIHSS) score and blood pressure variability 

from daytime ambulatory blood pressure measurement. Independent variables 

entered in the model were time from symptom onset to measurement, age, gender, 

mean blood pressure, past medical history of hypertension, past medical history of 

diabetes, and NIHSS. 

Dependent 

variable 

R2 F (df) P value Standardised beta 

coefficient for 

NIHSS 

P value 

SD SBP 0.135 
3.27  

(8, 168) 
0.002 -0.26 0.001 

CV SBP 0.139 
3.39 

 (8, 168) 
0.001 -0.26 <0.0001 

SD DBP 0.058 
1.30  

(8, 168) 
0.25 - - 

CV DBP 0.117 
2.77  

(8, 168) 
0.007 -0.19 0.01 

 

SD denotes standard deviation; SBP, systolic blood pressure; CV, coefficient of 

variation; DBP, diastolic blood pressure.
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6.6 Results 

 

Demographic data for the full cohort and the subgroup is presented in Table 25. 

Average BP and BPV values for each measurement method are displayed in Table 26. 

Mean BP values from CBPM were greater than both daytime ABPM and beat-to-beat 

measurements, with BPV values also differing depending between measurement 

methods. Median NIHSS score was not the same across OCSP classification groups 

(p<0.0001), with LACS<PACS<TACS and POCS similar to LACS (Figure 16). There were 

no significant correlations between baseline NIHSS score and mean SBP or DBP from 

any BP measurement method. Correlations between baseline NIHSS score and BPV 

parameters were all non-significant apart from weak negative correlations with SD and 

CV of SBP and DBP from daytime ABPM (Table 27). In linear regression models with 

these BPV parameters from daytime ABPM as the dependent variables, NIHSS 

remained a significant independent variable in all models except for SD of DBP (Table 

28). None of the other independent variables in the model were statistically significant. 

 

There were no significant between-group differences for mean SBP or DBP on one-way 

ANOVA testing with OCSP classification as the grouping variable for any of the BP 

measurement methods. Mean BPV parameters by OCSP grouping for each BP 

measurement method are presented in Figures 17-19. For clinic and beat-to-beat BPV 

there were no significant between-group differences. For daytime ABPM the one-way 

ANOVA testing suggested significant between-group differences for SD and CV of SBP 

(p=0.002 and p=0.001 respectively), and SD and CV of DBP (p=0.01 and p=0.03 

respectively). However, following post-hoc testing only significant between-group 

differences for SD and CV of SBP remained, with variability higher in patients with LACS 

compared to PACS and TACS, and lower variability in patients with TACS than POCS 

(Table 29). These significant between-group differences remained on multivariate 

testing, with the exception of difference in SD of SBP between participants with LACS 

or TACS (Table 30). There were no significant differences in mean BP or any BPV 

parameter between participants with left hemisphere stroke compared to right 

hemisphere stroke, with the exception of mean SBP from beat-to-beat BP 

measurements (Tables 31-33).
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Figure 17: Histograms showing mean blood pressure variability from enhanced clinic blood 
pressure measurement by Oxford Community Stroke Project classification of ischaemic 
stroke. Error bars are 95% confidence intervals. P values are from a one-way ANOVA to 
assess for between-group differences across the whole group. A shows standard deviation 
(SD) of systolic blood pressure (SBP). B shows SD of diastolic blood pressure (DBP). C shows 
coefficient of variation (CV) of SBP. D shows CV of DBP. LACS denotes lacunar stroke; PACS, 
partial anterior circulation stroke; TACS, total anterior circulation stroke; POCS, posterior 
circulation stroke. 
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Figure 18: Histograms showing mean blood pressure variability from daytime ambulatory 

blood pressure measurements by Oxford Community Stroke Project classification of 

ischaemic stroke. Error bars are 95% confidence intervals. P values are from a one-way 

ANOVA to assess for between-group differences across the whole group. A shows standard 

deviation (SD) of systolic blood pressure (SBP). B shows SD of diastolic blood pressure (DBP). 

C shows coefficient of variation (CV) of SBP. D shows CV of DBP. E shows average real 

variability (ARV) of SBP. F shows ARV of DBP. LACS denotes lacunar stroke; PACS, partial 

anterior circulation stroke; TACS, total anterior circulation stroke; POCS, posterior circulation 

stroke.
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Figure 19: Histograms showing mean blood pressure variability from beat-to-beat blood 

pressure measurements by Oxford Community Stroke Project classification of ischaemic 

stroke. Error bars are 95% confidence intervals. P values are from a one-way ANOVA to 

assess for between-group differences across the whole group. A shows standard deviation 

(SD) of systolic blood pressure (SBP). B shows SD of diastolic blood pressure (DBP). C shows 

coefficient of variation (CV) of SBP. D shows CV of DBP. E shows average real variability 

(ARV) of SBP. F shows ARV of DBP. LACS denotes lacunar stroke; PACS, partial anterior 

circulation stroke; POCS, posterior circulation stroke.
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Table 29: Post-hoc testing from the one-way ANOVA for between-group differences in 

systolic blood pressure variability from daytime ambulatory blood pressure 

measurements according to Oxford Community Stroke Project grouping. Differences 

are expressed as ratios (95% CI).  

 Difference in SD 

SBP 

P value Difference in CV 

SBP 

P value 

LACS vs. PACS 1.15 (1.01 to 1.32) 0.04 1.17 (1.03 to 1.34) 0.01 

LACS vs. TACS 1.44 (1.03 to 2.01) 0.03 1.53 (1.10 to 2.13) 0.01 

LACS vs. POCS 0.99 (0.85 to 1.18) 1.00 1.04 (0.88 to 1.22) 0.95 

PACS vs. TACS 1.25 (0.90 to 1.74) 0.31 1.30 (0.94 to 1.81) 0.16 

PACS vs. POCS 0.87 (0.74 to 1.02) 0.10 0.88 (0.75 to 1.04) 0.19 

TACS vs. POCS 0.69 (0.49 to 0.98) 0.04 0.68 (0.48 to 0.96) 0.02 

 

95% CI denotes 95% confidence interval; SD, standard deviation; SBP, systolic blood 

pressure; CV, coefficient of variation; LACS, lacunar stroke; PACS, partial anterior 

circulation stroke; TACS, total anterior circulation stroke; POCS, posterior circulation 

stroke.
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Table 30: Summary of results from multivariate testing for the relationship between 

Oxford Community Stroke Project (OCSP) classification and blood pressure variability 

from daytime ambulatory blood pressure measurements. Independent variables 

entered in the model were time from symptom onset to measurement, age, gender, 

mean blood pressure, past medical history of hypertension, past medical history of 

diabetes, and OCSP classification. 

Dependent 

variable 

Independent 

variable 

R2 F (df) P value Standardised 

beta 

coefficient 

for OCSP 

classification 

P value 

SD SBP 

LACS vs. 

PACS 
0.17 

3.19 

(8, 

128) 

0.003 0.25 0.003 

LACS vs. 

TACS 
0.18 

1.56 

(8, 56) 
0.16 - - 

TACS vs. 

POCS 
0.39 

2.33 

(8, 29) 
0.05 -0.40 0.01 

CV SBP 

LACS vs. 

PACS 
0.12 

2.19 

(8, 

128) 

0.03 0.26 0.002 

LACS vs. 

TACS 
0.24 

2.25 

(8, 56) 
0.04 0.38 0.003 

TACS vs. 

POCS 
0.50 

3.62 

(8, 29) 
0.01 -0.36 0.01 

*standardised beta coefficient 

SD denotes standard deviation; SBP, systolic blood pressure; LACS, lacunar stroke; 

PACS, partial anterior circulation stroke; TACS, total anterior circulation stroke; POCS, 

posterior circulation stroke; CV, coefficient of variation. 
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Table 31: Mean blood pressure and variability from enhanced clinic blood pressure 

measurement and differences between participants with left or right hemisphere 

infarct. Average values for each hemisphere are mean (SD). Differences for mean 

blood pressure are absolute differences. Differences for mean variability are ratios 

(95% CI). 

 Left Right Difference with 95% 

CI (left vs. right) 

P value 

Mean SBP 150.7 (21.6) 150.9 (22.2) -0.25 (-7.5 to 7.0) 0.95 

SD SBP 5.0 (2.1) 5.3 (2.0) 0.94 (0.76 to 1.19) 0.61 

CV SBP 3.4 (2.0) 3.6 (2.0) 0.95 (0.76 to 1.18) 0.61 

Mean DBP 82.8 (13.4) 84.7 (11.9) -1.90 (-6.1 to 2.3) 0.37 

SD DBP 2.9 (2.2) 3.4 (2.0) 0.87 (0.68 to 1.12) 0.27 

CV DBP 3.6 (2.2) 4.0 (2.0) 0.90 (0.71 to 1.14) 0.37 

SD denotes standard deviation; 95% CI, 95% confidence interval; SBP, systolic blood pressure; 

CV, coefficient of variation; DBP, diastolic blood pressure. 

 

Table 32: Mean blood pressure and variability from daytime ambulatory blood 

pressure measurement and differences between participants with left or right 

hemisphere infarct. Average values for each hemisphere are mean (SD). Differences 

for mean blood pressure are absolute differences. Differences for mean variability are 

ratios (95% CI). 

 Left Right Difference with 95% 

CI (left vs. right) 

P value 

Mean SBP 137.1 (17.3) 136.8 (16.2) 0.36 (-5.2 to 5.9) 0.89 

SD SBP 12.3 (1.3) 12.3 (1.4) 1.00 (0.91 to 1.10) 0.98 

CV SBP 9.1 (1.3) 9.1 (1.4) 0.99 (0.91 to 1.10) 0.98 

ARV SBP 9.1 (1.3) 9.2 (1.3) 0.99 (0.91 to 1.09) 0.87 

Mean DBP 78.3 (12.5) 78.3 (9.2) -0.06 (-3.6 to 3.5) 0.98 

SD DBP 8.4 (1.3) 8.7 (1.3) 0.97 (0.89 to 1.05) 0.42 

CV DBP 10.9 (1.3) 11.2 (1.3) 0.97 (0.89 to 1.07) 0.53 

ARV DBP 6.8 (1.3) 6.7 (1.3) 1.02 (0.92 to 1.13) 0.69 

SD denotes standard deviation; 95% CI, 95% confidence interval; SBP, systolic blood pressure; 

CV, coefficient of variation; ARV, average real variability; DBP, diastolic blood pressure. 
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Table 33: Mean blood pressure and variability from beat-to-beat blood pressure 

measurement and differences between participants with left or right hemisphere 

infarct. Average values for each hemisphere are mean (SD). Differences for mean 

blood pressure are absolute differences. Differences for mean variability are ratios 

(95% CI). 

 Left Right Difference with 95% 

CI (left vs. right) 

P value 

Mean SBP 131.6 (18.7) 141.7 (16.7) -10.16 (-19.6 to -0.7) 0.04 

SD SBP 6.4 (1.7) 7.7 (1.7) 0.83 (0.64 to 1.09) 0.18 

CV SBP 5.0 (1.7) 5.5 (1.6) 0.90 (0.69 to 1.18) 0.45 

ARV SBP 2.2 (1.8) 2.9 (2.3) 0.77 (0.52 to 1.16) 0.21 

Mean DBP 78.9 (15.4) 85.9 (13.0) -6.94 (-14.6 to 0.7) 0.08 

SD DBP 4.6 (1.6) 5.1 (1.7) 0.91 (0.70 to 1.16) 0.45 

CV DBP 5.9 (1.7) 6.0 (1.7) 1.00 (0.75 to 1.33) 0.98 

ARV DBP 1.6 (2.0) 1.6 (2.1) 0.89 (0.62 to 1.28) 0.54 

SD denotes standard deviation; 95% CI, 95% confidence interval; SBP, systolic blood 

pressure; CV, coefficient of variation; ARV, average real variability; DBP, diastolic blood 

pressure. 
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6.7 Discussion 

 

These data show that there are significant associations between short-term BPV 

derived from daytime ABPM and stroke severity defined by NIHSS and OCSP 

classification. Furthermore, the associations are independent of mean BP. Although 

the correlations between short-term BPV and NIHSS were relatively weak, the 

relationship indicated that BPV was increased in participants with lower NIHSS scores. 

Similarly, BPV was greater in participants with lacunar stroke compared to those with 

PACS or TACS, which is consistent with the relationship with NIHSS as the data also 

indicated that these participants had lower NIHSS scores. This would be expected as in 

an individual with LACS fewer of the domains tested by the NIHSS are clinically 

affected, as has been reported in other ischaemic stroke cohorts [261]. The findings 

also suggested that BPV might be increased in POCS compared to partial or total 

anterior circulation stroke, although a significant difference was only demonstrated 

with TACS. This could also be consistent with the inverse correlation between BPV and 

NIHSS as, similar to those with LACS, patients with POCS tend to have lower NIHSS 

scores as the scale does not capture POCS symptoms as well as those of partial or total 

anterior circulation stroke [262]. The findings are somewhat surprising as they are at 

odds with the hypotheses that were tested and the wider literature, which suggests 

that increased BPV is predictive of poor outcomes following stroke whereas patients 

with LACS tend to have a good prognosis. Potential explanations for this discrepancy 

are discussed in the following paragraph, yet it remains that the findings are 

potentially of relevance. This is because if BPV is proven to be a valid therapeutic 

target after stroke to improve outcomes and/or prevent recurrent stroke, they suggest 

that any such treatments may be most beneficial in patients with apparently less 

severe forms of ischaemic stroke. The data showed no significant associations between 

short-term or very short-term BPV and the cerebral hemisphere affected by ischaemic 

stroke, however this grouping may have been overly simplistic. It may be necessary to 

analyse relationships with ischaemic stroke affecting specific cerebral areas (e.g. the 

insular cortex) within each hemisphere, but this was not possible in this analysis. 
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That the findings of this analysis were not in keeping with the proposed hypotheses 

regarding the relationship between BPV and stroke severity could be related to the 

population studied. Firstly, this group consisted of mostly of patients with mild to 

moderate stroke symptoms (median NIHSS 3.0 [IQR 4.0]) and contained a limited 

number of patients with TACS classification (N=6). Furthermore, those patients with 

TACS were at the milder end of the spectrum for this classification as none of the trials 

that provided data for this analysis allowed inclusion of participants via proxy consent. 

Consequently, the study population may not be fully representative of the general 

stroke population in terms of stroke severity and stroke type, and may not have 

provided an accurate assessment of the degree of BPV in those with more severe 

ischaemic stroke. Secondly, the classification of severity was based on clinical 

presentation as opposed to radiological findings. Although an experienced stroke 

physician confirmed the clinical diagnoses, it is possible that some patients categorised 

as LACS may have had larger infarcts if it had been possible to confirm all diagnoses 

with MRI or other cerebral imaging. Thirdly, the proportion of participants who were 

recruited after a recurrent cerebrovascular event was higher than might be expected 

in the general stroke population (43.6% with a previous stroke, rising to above 50% if 

previous TIA is also included). If raised BPV can persist into the chronic phase post-

stroke [256], then this could have influenced the findings. Finally, although the findings 

did reach statistical significance there remains the possibility that they are due to 

chance. This potential explanation should be considered given that there are very 

limited reports in the literature for comparison. Having said that, the only other study 

to report on BPV in relation to OCSP classification is consistent with the findings of this 

analysis. In a small study of cerebral autoregulation in patients with acute ischaemic 

stroke (N=56, recruited within 72 hours of onset) Eames et al. showed that SD of SBP 

derived from beat-to-beat BP monitoring was greater in patients with LACS as opposed 

to PACS, TACS, and POCS [13]. To the best of my knowledge there have been no 

studies of BPV differences by OCSP classification using variability derived from BP 

measurement methods other than beat-to-beat measurement. However, one study 

has reported that increases in short-term BPV from repeated CBPM were greatest in 

patients with ischaemic stroke due to small vessel occlusion according to the TOAST 

classification [189]. Conversely, there is conflicting data regarding the relationship 

between BPV and NIHSS. A review of 2566 subjects with a first-episode ischaemic 
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stroke, recruited within 24 hours of onset, found that diastolic BPV from days 1-3 post-

event increased by quartile of baseline NIHSS, yet there was a non-significant trend for 

systolic BPV to reduce by quartile in the same cohort [199]. Other studies of BPV in the 

acute phase of ischaemic stroke have reported no significant relationship between BPV 

and baseline NIHSS [186, 198, 263]. However, none of these studies has used ABPM to 

derive BPV, which could account for the different findings of this analysis. 

 

Another slightly surprising aspect of the data from this analysis that may necessitate 

further caution in the interpretation of the findings relates to the mean BP and 

variability levels as measured by the different methods (Table 26). Firstly, that mean 

BP as recorded by CBPM was higher than that from daytime ABPM is not surprising. 

Nonetheless, the difference found was greater than is suggested by the literature 

[110]. This may be partly explained by the presence of some degree of white coat 

effect within the study population; however as other members of the research team 

collected some measurements I cannot guarantee that there was not some variation in 

practice (e.g. leaving insufficient time between clinic readings, or using a cuff of 

incorrect size) that may have introduced measurement bias. Secondly, as opposed to 

the findings in this study, it might be expected that beat-to-beat BP measured at the 

finger would be higher than CBPM measured at the brachial artery due to increasing 

arterial stiffness with distance from the aorta. However, the age of the study 

population may partly explain this finding as arterial stiffness alters with ageing and so 

the effect of BP amplification due to arterial stiffness throughout the arterial tree will 

also alter. Alternatively, the influence on peripherally measured BP of the reflected 

pressure wave may not be so great when the BP is measured at the most distal point 

(i.e. the finger), leading to a lower reading at this point than in the brachial artery. A 

final consideration is also the accuracy of beat-to-beat BP measurement devices. 

Although they have been shown to be accurate for tracking changes in BP, they may 

not be sufficiently accurate to measure mean BP due to the SD of measurements [95]. 

Indeed, limits of agreement up to ±17mmHg for SBP have been reported in direct 

comparison of the Finapres® with brachial CBPM [264]. Thirdly, any differences in BPV 

values between the different methods are likely due to a combination of the number 

of readings obtained and the time between measurements (particularly where BPV is 

derived using ARV). 
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No other studies have previously looked at the relationship between BPV and the 

cerebral hemisphere affected by ischaemic stroke. However, autonomic dysfunction 

post-stroke has been investigated. Evidence for the lateralisation of functions is mixed, 

with some studies demonstrating altered HRV and BRS in right-sided lesions, but 

others the opposite [179, 181, 182]. As suggested above, differentiating left vs. right 

alone may be an oversimplification. Damage to the insular cortex in particular has 

been implicated in post-stroke autonomic dysfunction [265], therefore it may be the 

affected region(s) within the hemisphere rather than the hemisphere itself which is of 

importance. This level of detail was not available for this cohort and so it was not 

possible to classify participants beyond the level of the involved hemisphere. Had it 

been possible to do so, it may have resulted in larger between-group differences in 

BPV. Despite this, it is worth highlighting that the differences in beat-to-beat BPV 

between left and right hemisphere lesions, although not reaching statistical 

significance, were larger than differences in BPV derived from other measurement 

methods. This may add weight to the idea that there is a stronger relationship 

between very short-term BPV and autonomic function/dysfunction than variability 

over longer timescales, and might further suggest that beat-to-beat BP measurement 

is the most appropriate method for investigating BPV in relation to autonomic function 

post-stroke.  

 

If, as suggested by this study, there is a genuine relationship between increased BPV 

and LACS, then no inference regarding causality can be made on the basis of the cross-

sectional analysis conducted here. However, there may be plausible reasons to suggest 

that increased BPV is more likely to cause LACS than other stroke subtypes, or vice 

versa. It is a subject of debate as to whether lacunar stroke is distinct from other 

stroke subtypes as a pathophysiological entity [266]. Comparison of risk factor profiles 

in ischaemic stroke subtypes indicates that LACS are less likely to be associated with 

previous IHD, a determined cardio-embolic source, or carotid stenosis [267]. It has also 

been proposed that atherothrombotic or embolic vessel occlusion may not be the only 

mechanism to cause LACS, rather endothelial damage and breakdown of the blood-

brain barrier may be a distinct causal mechanism [268]. Alternatively, cerebral tissue 

supplied by chronically damaged small vessels may be vulnerable to injury due to 
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vessel spasm and subsequent reductions in CBF in the context of disordered cerebral 

autoregulation [266]. Increased BPV could theoretically play a part in these alternative 

pathological processes, either causing small vessel endothelial damage by generating 

pulsatile haemodynamic stresses [269, 270], or by reducing CBF below critical levels 

sufficient to cause ischaemia in the context of this chronic small vessel damage. 

Conversely, it may be hypothesised that LACS could cause increased BPV by virtue of 

the involvement of subcortical structures. For example, damage to the thalamus has 

been implicated, with one study demonstrating autonomic dysfunction manifesting as 

reduced HRV following stroke affecting this region [271]. This analysis may not support 

this latter idea however, as if autonomic function is more involved in the regulation of 

very short-term BPV it might be expected that subjects with LACS would demonstrate 

increased beat-to-beat, as opposed to ambulatory BPV. 

 

The major positive aspect of this study is its novelty, it being the first, to my 

knowledge, to assess the relationship between OCSP classification of ischaemic stroke 

and BPV assessed as within-visit BPV from enhanced CBPM and BPV from daytime 

ABPM. It is also the first assessment of the association between BPV and affected 

stroke cerebral hemisphere. In addition, the study has also shed further light on the 

relationship between beat-to-beat BPV and stroke classification, which has previously 

only been sparsely reported. Several important limitations to the study also deserve 

mention, some of which have been discussed in detail above. Firstly, as a post-hoc 

exploratory analysis of trial data it was not powered to investigate the stated 

outcomes. Secondly, as a cross-sectional analysis no conclusions can be drawn about 

any potential causal relationship between increased BPV and stroke severity. Thirdly, 

there were some unexpected differences in BP values obtained using the different 

measurement methods and measurement bias cannot be excluded as a potential 

cause for these differences. Fourthly, there were some differences between the three 

trial cohorts that were pooled for this analysis, most notably the time from the 

qualifying stroke to the baseline assessment. In particular, although it was adjusted for 

in the multivariate analyses and not shown to be a significant predictive factor, this 

aspect could have confounded the relationship between BPV and NIHSS score, possibly 

reducing the effect seen as some participants (in TEST-BP and SERVED Memory) were 

recruited several weeks after their qualifying event. Fifthly, approximately two thirds 
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of participants were on antihypertensive treatment, including some who were on beta 

blockers. If there are class effects of antihypertensive medications on BPV as discussed 

in section 2.8, then this may have influenced the findings. However, those on different 

treatment regimens were evenly distributed across groups that were compared (e.g. 

different OCSP classification), and the study did not assess change in BPV over time, 

thereby minimising the potential impact of medications. Finally, it was only possible to 

analyse beat-to-beat BPV in a subgroup of patients, as this data was unavailable for 

participants in the BPV observational study. This limited the sample size and could 

increase the possibility of type two error in relation to the analysis of very short-term 

variability in this study. 

 

6.8 Summary 

 

 BPV is associated with severity of ischaemic stroke, with greater increases in 

variability associated with lacunar stroke as opposed to partial or total anterior 

circulation stroke. 

 This suggests that any interventions designed to reduce BPV following 

ischaemic stroke may be most beneficial for patients with lacunar stroke. 

 Furthermore, this relationship may support the concept that lacunar stroke, as 

a pathophysiological entity, is not identical to other stroke subtypes. 

 Although this study did not demonstrate a relationship between BPV and the 

affected cerebral hemisphere, this may be due to methodological limitations of 

the analysis. 

 These findings were at odds with the hypotheses being tested and so further 

work to corroborate them and investigate differences in BPV relating to 

subtypes of stroke, would be valuable, particularly as and when a consensus on 

measuring BPV in patients with stroke is achieved. This could help inform 

research into treatments aimed at reducing BPV post stroke. 
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7 The Influence of Antihypertensive Medication Class on Baseline Blood Pressure 

Variability in Patients with a Recent Stroke or TIA 

 

 7.1 Declaration 
 

I would like to acknowledge the contribution of Karen Appiah, research fellow in 

Leicester, to this chapter. Her work in processing the data from the BPV observational 

study helped to make this work possible. 

 

7.2 Introduction 

 

BPV is increased in patients with acute ischaemic stroke [100], and this increase may 

persist into the chronic phase post stroke [256]. Furthermore, raised BPV may not be 

benign, being associated with adverse outcomes following ischaemic stroke [197-199], 

risk of recurrent stroke [200], and cardiovascular risk in general [128]. These 

assertions, coupled with the findings of the previous chapter which suggested BPV may 

be related to stroke severity, have raised interest in identifying treatments that have 

the potential to reduce BPV in addition to mean BP levels. Whether all established 

antihypertensive treatment classes might fulfill both goals to the same extent has been 

questioned, as a retrospective review of antihypertensive drug trials suggests this may 

not be the case [133]. In particular, beta blockers appear to be less effective at 

reducing the risk of stroke events compared to other antihypertensive classes. One 

potential explanation for this observation is that different antihypertensive drug 

classes do not all equally alter BPV, an explanation that is supported by data 

demonstrating that beta blockers may actually increase BPV [201, 203, 211]. 

Conversely, CCB and, to a lesser extent, thiazide-like diuretics seem to reduce BPV, 

with ACEI and ARB possibly neutral or increasing BPV. These potentially different class 

effects on BPV, if proven, might relate to differing class effects on vascular smooth 

muscle, with the classes that exert vasodilatory effects being those that also reduce 

BPV. 
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Hypertension guidelines recommend using an ACEI or ARB as the first-line treatment 

for patients under 55 years of age, and using a CCB or thiazide-like diuretic in patients 

over 55 years of age or of Afro-Caribbean ethnicity for primary prevention [91]. 

Recommendations for secondary prevention are the same in UK stroke guidelines [18], 

but American stroke guidelines suggest that thiazide-like diuretics (alone or in 

combination with ACEI) may be the most appropriate first-line therapy regardless of 

patient age [57]. In patients at high-risk of, or with established cardiovascular disease 

ACEI and ARB have become established treatments due to their inhibitory effects on 

atherosclerotic processes, and data suggest they may also have protective effects 

against stroke in addition to BP reduction [59]. However, data from major stroke 

secondary prevention trials question their value, suggesting that thiazide-like diuretics 

may be more effective [51, 52]. Limited evidence from systematic reviews and meta-

analyses supports this, indicating that treatment with thiazide-like diuretics as 

opposed to other antihypertensive classes may convey the lowest risk of recurrent 

stroke [8, 272]. The mechanism for this is unclear, but may be related to vasodilation 

rather than natriuretic activity, as that is the likely mechanism for long-term BP 

reduction with this medication class [219, 273].  

 

Whether any particular antihypertensive medication class should be preferred for 

secondary prevention post stroke, or whether it is simply BP lowering per se which is 

the important factor remains a subject of debate. The growing evidence relating to 

antihypertensive class effects on BPV is likely to fuel that debate. Furthermore, it 

seems to cast further doubt on whether drugs that inhibit the renin-angiotensin 

system are the most appropriate choice in this patient group. Crucially, with respect to 

the relevance of BPV to this debate there have been no dedicated prospective trials 

investigating the impact of antihypertensive medication class on BPV, and most 

retrospective analyses have focused on long-term visit-to-visit BPV rather than shorter 

timeframes of variability.  

 

7.3 Hypothesis 

 

This study aimed to add to the evidence base by exploring potential class effects of 

antihypertensive medications on shorter-term BPV in patients with established 
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cerebrovascular disease. Using data pooled from three trials that recruited patients 

with a recent ischaemic stroke or TIA, including some from a dedicated cohort study 

designed to investigate BPV post-stroke, it investigated if there are differences in 

short-term and very short-term baseline BPV in patients taking an ACEI or ARB based 

antihypertensive regimen as opposed to a CCB based regimen (either alone or in 

combination) with both groups compared separately to a control group. The 

hypothesis being tested is that BPV will be greater compared to control in those taking 

an ACEI or ARB than in those taking a CCB, irrespective of the BP measurement 

method used to derive BPV. 

 

7.4 Methods 

 

Combined data from participants recruited to TEST-BP, SERVED Memory, and the BPV 

observational trials were used to generate the database for this study. The general 

methodologies for these trials are described in sections 3.1.1-3.1.3, with TEST-BP and 

SERVED Memory having also been published elsewhere [222, 223]. The methodology 

specific to this analysis is described here. Eligible patients were participants in any of 

the above trials with a diagnosis of ischaemic stroke or TIA who were on at least one 

medication for hypertension at the time of baseline assessment. Participants also 

needed to have complete enhanced CBPM and daytime ABPM with ≥14 readings from 

the baseline assessment. A subgroup of these participants who also had baseline beat-

to-beat BP measurement with a recording duration of ≥5 minutes after data cleaning 

was also included in the analysis. Participants who were not on antihypertensive 

treatment, who were diagnosed with ICH, or whose BP data were incomplete were 

excluded. 

 

All baseline BP measurements were recorded as outlined in the general methodology 

chapter; enhanced CBPM as described in section 3.5.2, daytime ABPM as described in 

section 3.5.3, and beat-to-beat BP as described in section 3.5.5. For each set of BP 

measurements average and variability values for SBP and DBP were calculated as 

described in section 3.6. Medication history, including drug name (but not dose) was 

assessed by the study nurses at the baseline visit and corroborated using the medical 

notes. Participants taking an ACEI, an ACEI or ARB, or a dihydropyridine CCB were 
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grouped for comparison with a control group (consisting of participants taking any 

antihypertensive medication from classes other than the class being tested) as they are 

the most commonly prescribed classes of antihypertensive in UK clinical practice. 

These groups were also selected for consistency with the methodology of the 

feasibility trial presented in the subsequent experimental chapter. Participants taking 

an ARB were grouped with those taking an ACEI due to the similarities in mechanism of 

action and because the number of participants taking that medication class was too 

small to test independently. Treatment compliance at baseline was assessed in TEST-

BP using the Hill-Bone compliance questionnaire and in SERVED Memory using the 

eight-item Morisky Medication Adherence Scale, but was not assessed in the BPV 

observational trial. 

 

Outcomes for this analysis were the assessment of differences in systolic and diastolic 

BPV from enhanced CBPM, daytime ABPM, and beat-to-beat measurements in 

participants taking antihypertensive monotherapy or combination therapy. Groups 

tested were (i) ACEI vs. control; (ii) ACEI or ARB vs. control; (iii) CCB vs. control. 

 

7.5 Statistical Analysis 

 

Data were analysed using SPSS version 25.0. All BP and BPV variables were visually 

assessed for normality by constructing histograms with overlaid distribution curves 

and formally tested using the Kolmogorov-Smirnov test (p>0.05 deemed consistent 

with normal distribution). Mean SBP and DBP values were normally distributed, but 

BPV data from all measurement methods were not. Therefore a logarithmic 

transformation was applied to these variables prior to any statistical testing. This 

transformation resulted in normalisation of the variables. The results of any testing on 

transformed variables have been back-transformed for presentation. Initial exploratory 

univariate analyses were undertaken to assess any differences in BPV between those 

participants taking the medication of interest compared to a control group as 

described above. Testing was first restricted to participants taking antihypertensive 

monotherapy and then expanded to participants on combination therapy. Univariate 

testing was based on independent samples t tests, using whether the participant was 

taking the medication class of interest as a bivariate grouping variable and the BPV 
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parameter as the dependent variable. Where univariate testing suggested significant 

between-group differences (p<0.05 taken as the level for statistical significance) then 

further multivariate testing using a regression model was carried out, with the BPV 

parameter as the dependent variable, adjusted for differences between the trial 

cohorts and factors known to influence BPV [130, 251, 260]. Independent variables 

used in the model in addition to those tested with univariate analysis included time 

from stroke onset to baseline measurement, age, gender, mean BP, past medical 

history of hypertension, and past medical history of diabetes. 

 

7.6 Results 

 

Data from 238 participants were pooled for this analysis, with 142 participants making 

up the subgroup with valid beat-to-beat BP measurements as this data was not 

available for participants in the BPV observational trial. Demographic data for the full 

cohort and the subgroup is presented in Table 34. The majority of patients were taking 

an ACEI either alone or in combination, followed by CCB as the second most commonly 

prescribed antihypertensive medication class (Table 35). Fewer participants were 

taking an ARB than an ACEI, but this proportion was still greater than the proportion of 

participants taking a beta blocker or thiazide-like diuretic. Alpha blockers were the 

least commonly prescribed antihypertensive medication class. 

 

Results including participants taking a combination of antihypertensive medications 

were the same as results for testing restricted to those on antihypertensive 

monotherapy. The former are presented as this approach incorporated a larger sample 

size. There were no differences in mean SBP or mean DBP values between any of the 

designated testing groups compared to control, regardless of the method used to 

measure BP (Table 36). 
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Table 34: Demographic data. Data presented are mean (SD) for normally distributed 

continuous variables, median (IQR)* for non-normally distributed continuous variables, 

and frequency (%) for categorical variables. 

  All 
Beat-to-beat 

subgroup 

N  238 142 

Age (years)  73.3 (9.7) 73.6 (9.8) 

Gender Male 159 (66.8%) 97 (68.3%) 

BMI (kg/m2)  28.5 (5.1) 28.9 (5.1) 

Smoking 

Never smoked 99 (41.6%) 60 (42.3%) 

Ex smoker 118 (49.6%) 76 (53.5%) 

Current smoker 21 (8.8%) 6 (4.2%) 

Alcohol (units/wk)*  4.0 (14.0) 4.0 (16.0) 

Diagnosis 
TIA 123 (51.7%) 88 (62.0%) 

Stroke 115 (48.3%) 54 (38.0%) 

OCSP classification 

(stroke only) 

LACS 36 (31.9%) 20 (37.0%) 

PACS 51 (45.1%) 24 (44.4%) 

TACS 4 (3.5%) 1 (1.9%) 

POCS 22 (19.5%) 9 (16.7%) 

NIHSS (stroke only)*  3.0 (3.0) 2.5 (3.0) 

Past medical history 

TIA 103 (43.6%) 87 (61.3%) 

Stroke 85 (35.7%) 60 (42.3%) 

IHD 47 (19.7%) 31 (21.8%) 

Diabetes 52 (21.8%) 36 (25.4%) 

Hypertension 185 (77.7%) 112 (78.9%) 

No. of 

antihypertensives* 
 1.0 (1.0) 2.0 (1.0) 

 

SD denotes standard deviation; IQR, interquartile range; BMI, body mass index; OCSP, 

Oxford Community Stroke Project; LACS, lacunar stroke; PACS, partial anterior 

circulation stroke; TACS, total anterior circulation stroke; POCS, posterior circulation 

stroke; TIA, transient ischaemic attack; IHD, ischaemic heart disease.
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Table 35: Proportions of participants taking each class of antihypertensive medication 

(as monotherapy or in combination). 

 All Subgroup 

Monotherapy Combination Monotherapy Combination 

ACEI 60 (47.6%) 130 (54.6%) 34 (53.1%) 85 (59.9%) 

ARB 17 (13.5%) 46 (19.3%) 7 (10.9%) 25 (17.6%) 

Alpha blocker 3 (2.4%) 20 (8.4%) 0 (0.0%) 10 (7.0%) 

Beta blocker 12 (9.5%) 54 (22.7%) 8 (12.5%) 42 (29.6%) 

CCB 31 (24.6%) 101 (42.4%) 15 (23.4%) 62 (43.7%) 

Thiazide-like 

diuretic 
3 (2.4%) 35 (14.7%) 0 (0.0%) 24 (16.9%) 

 

ACEI denotes angiotensin converting enzyme inhibitor; ARB, angiotensin receptor 

blocker; CCB, calcium channel blocker.
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Table 36: Differences in mean enhanced clinic, daytime ambulatory, and beat-to-beat 

systolic and diastolic blood pressure between the defined testing groups and control. 

Data presented are mean (SD) or difference (95% CI). P>0.05 for all differences. 

 Antihypertensive medication regimen grouping 

ACEI Control ACEI or 

ARB 

Control CCB Control 

Enhanced 

CBPM SBP 

(mmHg) 

151.0 

(20.5) 

152.6 

(21.2) 

152.0 

(21.7) 

151.1 

(18.5) 

151.8 

(18.7) 

151.7 

(22.3) 

Difference 1.6 (-3.8 to 6.9) -0.9 (-7.0 to 5.2) -0.2 (-5.6 to 5.2) 

Enhanced 

CBPM DBP 

(mmHg) 

83.9 (12.3) 83.5 (12.0) 83.4 (12.3) 84.5 (11.7) 82.9 (11.4) 84.2 (12.6) 

Difference -0.4 (-3.5 to 2.7) 1.1 (-2.5 to 4.6) 1.3 (-1.9 to 4.4) 

Daytime 

ABPM SBP 

(mmHg) 

135.1 

(15.6) 

136.1 

(16.6) 

135.4 

(15.6) 

135.9 

(17.1) 

136.8 

(14.8) 

134.7 

(16.8) 

Difference 1.0 (-3.1 to 5.1) 0.5 (-4.2 to 5.2) -2.1 (-6.3 to 2.0) 

Daytime 

ABPM DBP 

(mmHg) 

77.3 (9.7) 77.0 (10.4) 76.8 (10.0) 78.1 (10.1) 76.3 (8.4) 77.8 (11.0) 

Difference -0.4 (-2.9 to 2.2) 1.3 (-1.6 to 4.2) 1.5 (-1.0 to 4.0) 

Beat-to-beat 

SBP  

(mmHg) 

134.0 

(18.3) 

131.0 

(16.0) 

133.6 

(17.7) 

130.2 

(16.5) 

130.7 

(17.1) 

134.5 

(17.6) 

Difference -3.0 (-8.9 to 2.9) -3.4 (-10.4 to 3.5) 3.8 (-2.0 to 9.7) 

Beat-to-beat 

DBP  

(mmHg) 

82.1 (13.2) 79.8 (13.7) 81.4 (13.7) 80.3 (12.5) 80.0 (13.2) 82.1 (13.5) 

Difference -2.4 (-6.9 to 2.2) -1.2 (-6.5 to 4.2) 2.1 (-2.4 to 6.6) 

SD denotes standard deviation; 95% CI, 95% confidence interval; ACEI, angiotensin converting 

enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel blocker; CBPM, 

clinic blood pressure measurement; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; ABPM, ambulatory blood pressure measurement.
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Figure 20: Histograms showing mean blood pressure variability from enhanced clinic 

blood pressure measurement in participants on medications from different 

antihypertensive classes compared to control. Error bars are standard deviation (SD). P 

values are based on independent samples t tests for the difference between each active 

group and control. A shows SD of systolic blood pressure (SBP). B shows SD of diastolic 

blood pressure (DBP). C shows coefficient of variation (CV) of SBP. D shows CV of DBP. 

ACEI denotes angiotensin converting enzyme inhibitor; ARB, angiotensin receptor 

blocker; CCB, calcium channel blocker.
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Figure 21: Histograms showing mean blood pressure variability from daytime 

ambulatory blood pressure measurement in participants on medications from 

different antihypertensive classes compared to control. Error bars are standard 

deviation (SD). P values are based on independent samples t tests for the difference 

between each active group and control. A shows SD of systolic blood pressure (SBP). B 

shows SD of diastolic blood pressure (DBP). C shows coefficient of variation (CV) of 

SBP. D shows CV of DBP. E shows average real variability (ARV) of SBP. F shows ARV of 

DBP. ACEI denotes angiotensin converting enzyme inhibitor; ARB, angiotensin receptor 

blocker; CCB, calcium channel blocker.
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Figure 22: Histograms showing mean blood pressure variability from beat-to-beat 

blood pressure in participants on medications from different antihypertensive classes 

compared to control. Error bars are standard deviation (SD). P values are based on 

independent samples t tests for the difference between each active group and control. 

A shows SD of systolic blood pressure (SBP). B shows SD of diastolic blood pressure 

(DBP). C shows coefficient of variation (CV) of SBP. D shows CV of DBP. E shows 

average real variability (ARV) of SBP. F shows ARV of DBP. ACEI denotes angiotensin 

converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel 

blocker.
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With regard to BPV measures, there were no significant differences between any of 

the designated testing groups and control, with the exception of daytime ABPM ARV of 

DBP for CCB vs. control (mean difference ratio 1.12 [95% CI 1.03 to 1.21], p=0.01), with 

this difference not remaining after multivariate testing (Figures 20-22). Although not 

statistically significant, the findings for daytime ABPM variability indicated a pattern of 

increased BPV compared to control for ACEI and ACEI or ARB, and decreased BPV for 

CCB compared to control.  

 

7.7 Discussion 

 

This cross-sectional analysis did not demonstrate significant differences in mean BP or 

BPV in patients with a recent ischaemic cerebrovascular event who were taking 

antihypertensive medication regimens based on different drug classes, regardless of 

the method used to measure BP. However, there was a possible opposing trend in 

systolic BPV from daytime ABPM for renin-angiotensin inhibitors and CCB compared to 

control, with variability possibly increased in the former and decreased in the latter. 

Whilst this may be a chance finding, it might also be that it is a genuine difference and 

that the study is hindered by an insufficient sample size. Post hoc power calculations 

indicate that the required sample size to detect a difference in SD of SBP with 80% 

power at the 5% significance level would be N=522, assuming a SD of 10.5 ± 4.9mmHg 

for CCB and 12.2 ± 5.8mmHg for ACEI [202]. Assuming the same effect size, the power 

of this sample to detect a genuine difference was between 0.57 and 0.68 depending on 

the comparison. The negative findings may also relate to another aspect of the study 

methodology. Rather than with cross-sectional analysis, differences in BPV attributable 

to antihypertensive medications might be better investigated with changes in 

variability over time. Thirdly, it is possible that medication dose as well as class is 

relevant to levels of BPV, with one study showing that change in variability from 24 

hour ABPM was reduced in patients taking high doses of ACEI or CCB, but not low 

doses (high dose defined as 20mg of enalapril or lercanidipine, low dose defined as 

10mg) [274]. Due to the available data it was not possible to account for dose in this 

study. The results also suggested that the trends in BPV in different groups, if genuine, 

might not be the same for variability from CBPM and daytime ABPM. This difference 
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may be explained by differences in mean BP seen from CBPM and daytime ABPM 

measurements. Mean values in the latter were consistent with controlled 

hypertension, whereas they were raised in the former. This suggests a possible white 

coat effect in this cohort, which could have confounded the results. 

 

No other study results of the effect of antihypertensive medication class on BPV are 

directly comparable with those presented here. Either they have derived BPV over a 

different timeframe, or they have not included patients with cerebrovascular disease. 

However, although the trends in BPV from daytime ABPM seen in this study were not 

statistically significant, they are in keeping with those reported elsewhere. In a larger 

cross-sectional analysis of short-term BPV in patients with treated hypertension 

(N=2780, 10% with previous stroke), the SD of SBP from daytime ABPM was lower in 

participants taking a CCB (mean difference -0.22 ± 0.12mmHg) and higher in those 

taking an ACEI (mean difference 0.20 ± 0.15mmHg) or ARB (mean difference 0.40 ± 

0.18mmHg) compared to control (defined the same as in this study) [211]. SD of DBP 

was also reduced in the CCB group, but was unchanged in the ACEI and ARB groups. In 

the only other study to recruit patients with a recent cerebrovascular event (N=288), 

Webb et al. demonstrated a 4% reduction in systolic residual CV from HBPM 1-2 weeks 

after starting or increasing the dose of a CCB, but only a 1% reduction with a new or 

increased dose of ACEI/ARB [213]. Similarly, post hoc analysis of the X-CELLENT trial 

(N=496 with hypertension but no previous cerebrovascular or coronary heart disease) 

showed that the SD of SBP from daytime ABPM was significantly reduced after three 

months of treatment with CCB compared to placebo (-1.1mmHg [95% CI -1.9 to -0.3]), 

but not with ARB (-0.6mmHg [95%CI -1.4 to 0.3]) [210]. Finally, similar results are 

reported for long-term BPV, with a post hoc analysis of the Antihypertensive and Lipid-

Lowering Treatment to Prevent Heart Attack (ALLHAT) trial indicating that systolic SD 

of visit-to-visit variability over 28 months of follow-up was lower in those treated with 

amlodipine compared to lisinopril (10.5mmHg [95% CI 10.3 to 10.7] vs. 12.2mmHg 

[95% CI 12.0 to 12.4]) [202]. Conversely, Asayama et al. reported no difference in the 

change in systolic VIM from HBPM between antihypertensive medication regimens 

after 2-4 weeks of monotherapy (N=2484 with no previous cardiovascular disease) 

[212]. However, the HBPM protocol used in the trial was not consistent with guideline 
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recommendations, requesting only a single BP measurement in the morning and 

evening for five consecutive days, which could have influenced the variability data. 

 

The mechanisms through which CCB (and thiazide-like diuretics) might reduce BPV 

have not been proven, but it is suggested that the effect may be mediated by vascular 

smooth muscle relaxation and vasodilation; ACEI and ARB having relatively little effect 

on vascular tone compared to CCB and thiazide-like diuretics [133, 211, 218, 219, 273]. 

In an RCT comparing treatment with a CCB or thiazide-like diuretic in addition to an 

ARB (N=207), Matsui et al. showed a greater reduction in the SD of SBP from HBPM 

after six weeks treatment in the CCB group [220]. Furthermore, they demonstrated 

that the reduction in BPV in the CCB group was independently associated with a 

concurrent reduction in c-fPWV. An alternative mechanism for the reduction in BPV 

may be modulation of the autonomic nervous system, specifically via increased cardiac 

BRS. A small study of the effect of lacidipine on 24 hour BPV in adults with 

hypertension and diabetes (N=10) found that BPV was reduced with four weeks of 

treatment compared to placebo, and was also associated with improved BRS [275]. 

This finding was replicated in the larger X-CELLENT trial, where the reduction in BPV 

observed in the CCB group was at least partly related to a reduction in HRV, indirectly 

suggesting a concomitantly increased BRS [210]. Interestingly, beta blockers have also 

been shown to increase cardiac BRS [276], yet they do not seem to effect BPV in the 

same way as CCB. Perhaps the effect on BRS seen with CCB, but not beta blockers, is 

due to increased activity of stretch receptors located in the aortic arch as a result of 

reduced arterial stiffness, and this combination of reduced arterial stiffness and 

increased BRS is important for the reduction of BPV. 

 

Strengths of this study include that it assessed BPV from a variety of BP measurement 

methods and is the only study, to the best of my knowledge, to investigate any 

differential effects of antihypertensive medication classes on beat-to-beat BPV. 

However, it also has limitations that require mention. As already discussed, the sample 

size may have been insufficient to detect statistically significant differences and it was 

not possible to stratify the analysis according to medication dose in addition to class. 

As it was only possible to investigate beat-to-beat variability in a subgroup these 

results in particular may be undermined by the small sample size. Furthermore, 
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although compliance was assessed in two of the trials providing data, it was not 

assessed in the BPV observational study. Similarly, it cannot be excluded that 

participants may have recently commenced antihypertensive therapy or had a recent 

dose adjustment prior to enrolment in any of the trials. Consequently, any effect on 

baseline BPV may be underestimated. Finally, participants on combinations of 

antihypertensive therapy were included in both the investigative and control groups; 

therefore any effect on BPV may not be entirely attributable to the medication class in 

question. However, other studies have shown that any medication class effects on BPV 

persist when the relevant medications are used in combination and so this approach is 

justifiable [217, 220, 277]. 

 

7.8 Summary 

 

 This study did not show significant differences in baseline BPV compared to 

control for participants taking an ACEI/ARB or CCB based antihypertensive 

medication regimen. 

 However, the study probably lacked sufficient statistical power to demonstrate 

a difference and may have been limited by the use of a cross-sectional analysis. 

 The trends seen for variability from daytime ABPM were comparable with 

those reported elsewhere. 

 Prospective, randomised trials to assess the impact of different 

antihypertensive medications on BPV post stroke would be valuable. 
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8 A Calcium channel or Angiotensin converting enzyme inhibitor/Angiotensin receptor 

blocker Regime to reduced Blood pressure variability in acute ischaemic Stroke (CAARBS): 

A Feasibility Trial 

 

8.1 Introduction 

 

In the preceding chapter, although the analysis did not demonstrate any significant 

differences in baseline BPV between patients taking an ACEI/ARB or a CCB compared 

to control, the argument remains that there is a need for prospective trials 

investigating the possibility of treating BPV post stroke. Following an acute ischaemic 

stroke BP levels are frequently above the accepted threshold value for hypertension of 

140/90mmHg [91, 92], even when there is no prior history of hypertension [10, 11]. 

The causes of this, often transient, increase are probably multifactorial, but one 

possibility is that it is a protective physiological response to maintain CBF to the 

ischaemic penumbra in the face of dysfunctional cerebral autoregulatory mechanisms 

[13, 63]. This explanation is supported by data demonstrating a spontaneous BP 

decrease in many patients, usually between 4-14 days after stroke onset [11, 63]. 

However, data from major stroke trials also indicates that raised BP in the acute period 

is associated with a poor prognosis [69]. In fact, the relationship between BP in the 

acute phase and both short and long-term mortality and morbidity from ischaemic 

stroke from observational studies is probably ‘U’ shaped, with the optimal BP level in 

the region of 150mmHg systolic [70]. Despite this, trials investigating the treatment of 

raised BP in acute ischaemic stroke have not shown any benefit to BP reduction [11], 

even if treatment is administered within 1-2 hours of symptom onset [278], with one 

trial reporting that it is possibly harmful [77]. Consequently, the management of raised 

BP in acute stroke remains uncertain, with guidelines suggesting that it is unlikely to be 

beneficial to start or continue treatment in the first few days after symptom onset 

unless there are adverse features related to accelerated hypertension or the patient 

has had thrombolytic therapy [18, 19, 57]. 

 

That trials of BP lowering in acute ischaemic stroke have shown no benefit may be 

because it is BPV rather than absolute BP level which is the important factor [126]. BP 

fluctuations may damage the vulnerable ischaemic penumbra, with drops in BP causing 
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hypoperfusion and infarct expansion, and spikes in BP causing increased oedema and 

haemorrhagic transformation. This may at least partly explain why the relationship 

between BP and stroke outcome appears to be ‘U’ shaped, and a growing body of 

evidence that BPV is a cardiovascular risk factor independent of mean BP also supports 

the theory [14, 128, 152, 153]. Furthermore, research has demonstrated that BPV is 

also increased in acute ischaemic stroke [100], is associated with adverse outcomes 

[98, 197-199], and is associated with the risk of recurrent stroke [200]. Whether BPV is 

a potential target for therapeutic intervention has not yet been tested. There are 

reports that some classes of routinely used antihypertensive medications can reduce 

BPV in addition to mean BP [133, 202, 209], but the evidence presented is either from 

observational cohorts or retrospective post-hoc analyses of trial data, and so cannot 

be said to be conclusive. Interestingly, some of these reports also indicate that not all 

commonly used antihypertensive medication classes effect BPV equally, despite 

lowering mean BP to a similar degree. CCB and thiazide-like diuretics are consistently 

reported to lower BPV, whereas beta blockers increase it, with renin-angiotensin 

inhibitors variably reported to be neutral or also increase BPV [201, 203, 211]. There is 

a need for prospective randomised trials to further investigate these reported effects. 

Furthermore, if lowering BPV is possible and it is the case that certain medication 

classes are more effective than others, it needs to be established whether lowering 

BPV following the acute period conveys any benefit in terms of morbidity and 

mortality after stroke.  

 

8.2 Hypothesis 

 

This study aimed to test the hypothesis that conducting a trial assessing the effect of 

two commonly used classes of antihypertensive medication on BPV in patients with a 

recent ischaemic cerebrovascular event in the subacute period was feasible. 

Specifically, the ability to recruit and retain trial subjects, the feasibility of measuring a 

change in BPV from baseline to three months post-event, compliance with the trial 

procedures, and the safety/side-effect profile of the intervention. Exploratory 

secondary aims were the assessment of functional and cognitive outcomes at three 

months to estimate potential differences between the intervention arms, which may 

help with the planning of a future definitive trial.  
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8.3 Trial Setup and Management 

 

I authored the protocol for the trial in conjunction with the investigators, Professor 

Tom Robinson, Professor John Potter, and Professor Peter Rothwell between 

November 2016 and May 2017. Following sponsor review by the University of 

Leicester, I applied for ethical approval on 25th July 2017 (IRAS ID 216241) and this was 

granted by the London – Central Research Ethics Committee on 25th September 2017 

(REC No. 17/LO/1427) after interview. As this was a clinical trial with investigational 

medicinal products I also applied for approval from the Medicines and Healthcare 

products Regulatory Agency, which was granted on 21st September 2017 (EudraCT 

number 2017-002560-41). Local Research and Development Department approval was 

provided for each trial site prior to sponsor green light approval to commence the trial. 

Recruitment for the trial opened on 3rd January 2018 in Leicester, 19th February 2018 in 

Norwich, and 26th March 2018 in Oxford. 

 

During the recruitment phase several amendments were made to the trial. A 

substantial amendment to the eligibility criteria was implemented on 11th September 

2018 in order to try and improve recruitment. This amendment increased the window 

of eligibility from <72 hours from symptom onset, to <7 days. Two non-substantial 

amendments were also made. The first was required to produce specific 

correspondence letters to the GP for use at the Oxford site to reflect that they were 

only recruiting participants from the outpatient clinic. This amendment was 

implemented on 20th March 2018. The second was required in order to extend the trial 

beyond the original end date and was implemented on 20th November 2018. This was 

done so that the trial could complete the originally planned duration of 15 months (12 

months recruitment with a further 3 months for follow-up) despite unexpected delays 

in the setup process. 

 

Oversight of the trial was conducted by the Trial Management Group, consisting of 

myself and Professor’s Tom Robinson, John Potter, and Peter Rothwell, meeting at 

minimum three monthly intervals. A separate Independent Trial Steering Committee 

was convened consisting of the trial management group, the trial statistician, 

independent clinicians (Professor Marcus Flather, Professor David Werring, and Dr 
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Kneale Metcalf), and a representative of the funding body (Kate Holmes). The Trial 

Steering Committee met at six monthly intervals following the commencement of the 

trial and provided independent advice to the Trial Management Group. In addition, a 

Data Safety Monitoring Committee consisting of further independent clinicians and an 

independent statistician also met at six monthly intervals to advise the Trial 

Management Group and Trial Steering Committee regarding any arising ethical or 

safety issues that might require adjustment to, or early termination of, the trial.  

 

8.4 Methods 

 

CAARBS was a multi-centre, open-label, randomised parallel group controlled 

feasibility trial. The methodology of the trial is described in detail in section 3.1.4 and 

has also been published in full elsewhere [224]. In brief, eligible patients were aged 

≥18 years with a first-episode TIA or mild/moderate ischaemic stroke (NIHSS <10), 

presenting within 72 hours of symptom onset (subsequently amended to within seven 

days of symptom onset), and requiring antihypertensive therapy for secondary stroke 

prevention (defined as repeated CBPM >130/80mmHg). Patients were excluded from 

the trial if they had a known contraindication to the proposed investigational medicinal 

products, clinically required treatment with a specific class of antihypertensive, had a 

pre-event mRS >3, life expectancy <3 months, or AF. Patients presenting to both the 

inpatient and outpatient stroke services at participating sites (outpatient services only 

in Oxford) were screened for eligibility by the trial nurse or Clinical Research Fellow. In 

accordance with local protocols, patient’s pre-existing antihypertensive therapy was 

stopped or suspended by the clinical team at admission and new antihypertensive 

therapy was not commenced (as part of the trial or otherwise) until at least 48 hours 

after symptom onset unless clinically indicated. All diagnoses were reviewed by two 

experienced stroke physicians to confirm eligibility. Eligible patients willing to 

participate in the trial provided written informed consent prior to being randomised in 

a 1:1 ratio using a computer generated protocol in blocks of four, to treatment with 

either a dihydropyridine CCB or an ACEI/ARB. Each trial site had a unique 

randomisation table and managed the randomisation process locally to simplify the 

process. Intervention groups were defined according to antihypertensive class, with 
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the choice of medication from within the randomly allocated class at the discretion of 

the treating clinician.  

 

At the baseline consultation clinical information was collected as described in section 

3.5.1. BP data were collected using enhanced CBPM as described in section 3.5.2, 

daytime ABPM as described in section 3.5.3, and beat-to-beat BP as described in 

section 3.5.5. In addition, stroke severity was recorded using the tools described in 

section 3.5.6 and participants completed a cognitive battery based on the MoCA as a 

screening test enhanced with the Albert’s line test for inattention and the MiND-B for 

frontal lobe cognitive symptoms. Participants also completed the Geriatric Depression 

Scale to exclude depression as a potential confounding factor for reduced cognitive 

assessment scores. An interim follow-up visit was completed after 21 ± 7 days, at 

which time treatment compliance was assessed with a tablet count and a self-rating 

scale [279], and enhanced CBPM and beat-to-beat BP measurements were repeated. 

Participants were asked to report any treatment side effects and those in the 

ACEI/ARB group had blood taken to check their renal function as a safety measure, as 

per routine clinical practice. The final follow-up visit was completed after 90 ± 14 days, 

at which time treatment compliance assessment, all baseline BP measurements, 

assessment of stroke severity and functional recovery, and the cognitive battery were 

repeated. 

 

The primary outcome measure for the trial was the assessment of rates of recruitment 

and retention, including reasons for exclusion. Secondary feasibility outcomes were (i) 

change in BPV from baseline to follow-up by intervention arm; (ii) rates of treatment 

compliance and discontinuation by intervention arm; (iii) completion rates of BPV 

measurements; (iv) serious adverse event rates by intervention arm. In addition, 

secondary exploratory outcomes were (i) difference in mean BP at day 21 and day 90 

by intervention arm; (ii) difference in BPV at day 21 and day 90 by intervention arm; 

(iii) mRS at day 21 and day 90 by intervention arm; (iv) difference in MoCA score at day 

90 by intervention arm. 

 

The primary objective of CAARBS was the assessment of the feasibility of recruitment, 

retention, compliance, and the safety of the trial. However, a sample size calculation 
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pre-hoc was performed to estimate the number of participants required to detect a 

potential difference in BPV between the treatment arms. Assuming a mean systolic 

BPV SD of 14.97mmHg in the CCB arm and 16.95mmHg in the ACEI/ARB arm [201], a 

sample of 150 patients (64 per group allowing for a 15% drop-out rate) was estimated 

to be required to detect an 8mmHg difference in systolic BPV with 80% power at the 

5% significance level.  

 

8.5 Statistical analysis 

 

Data were analysed using SPSS (version 25.0). Only descriptive analyses were 

undertaken, in keeping with the CONSORT recommendations for reporting pilot and 

feasibility trials [280], as the required sample size for detecting a between-group 

difference in BPV described above was not achieved. Screening and management logs 

were assessed to determine the proportion of patients screened that were eligible for 

the trial, the proportion of eligible patients that were recruited, and the proportion of 

participants that completed follow-up. Reasons for ineligibility were recorded and 

assessed. Also, when offered, reasons for eligible patients declining to participate and 

reasons for participants withdrawing from the trial were recorded and assessed. All 

exploratory variables were assessed for normality. Normally distributed variables are 

presented as mean (SD) and non-normally distributed variables are presented as 

median (IQR). For the descriptive analysis of change in BPV from baseline to follow-up 

the mean (SD) absolute change for each intervention arm is described. 

 

8.6 Results 

 

Recruitment for the trial commenced on 3rd January 2018 and continued until 31st 

December 2018, with all follow-up completed three months post-randomisation. A 

total of 2321 patients were screened across the three sites, 14 (0.6%) of whom were 

eligible and consented to participate in the trial (Figure 23). A breakdown of screening 

and recruitment by site is shown in Table 37. Of those screened, 2264 (98.1%) were 

ineligible, with 1858 (81.7%) having a single reason for exclusion recorded on the 

screening log and 463 (18.3%) having multiple reasons recorded. The most common 
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reasons for patients being deemed ineligible were recurrent stroke/TIA (N=496 

[21.4%]), non-stroke diagnosis (N=453 [19.5%]), and concurrent AF (N=431 [18.5%] 

Table 38). Patients presenting outside of the designated timeframe was also a 

prominent reason for ineligibility when screening against the initial window of <72 

hours from symptom onset (N=314 [19.4%]). However, following the substantial 

amendment to the eligibility criteria described above, late presentation became a less 

frequent reason for exclusion (N=46 [6.6%]). With a few exceptions, the main reasons 

for exclusion were similar across all three sites (Figure 24). Non-stroke diagnosis was a 

more frequent reason for exclusion at the Leicester site as medical outliers on the 

stroke ward were included in screening numbers. Presenting beyond 72 hours from 

symptom onset was a greater problem in Oxford where screening and recruitment for 

the trial was exclusively outpatient based. In Norwich a proportion of patients were 

excluded as their pre-event antihypertensive therapy was not suspended at the point 

of admission to the stroke services. 

 

In addition to those patients who were excluded, a further 43 (1.9%) met the eligibility 

criteria but did not want to participate in the trial. Patients who declined to participate 

in the trial were not obliged to provide a reason for their decision and not all offered 

an explanation for their choice. However, several patients stated that they felt unable 

to commit the time to attend trial visits (N=7) or did not wish to travel to the hospital 

for additional appointments (N=3), despite the offer of reimbursement for travel costs. 

Two patients also stated that they did not like the idea of being randomly assigned to a 

medical treatment.  
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Figure 23: CAARBS CONSORT flow diagram. CCB denotes calcium channel blocker; 

ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; BP, 

blood pressure; GP, general practitioner. 

Assessed for eligibility (n=2321) 
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Allocated to CCB arm (n=6) 
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 Did not receive allocated intervention 

as BP <130/80mmHg (n=1) 

Lost to follow-up (given CCB by GP) 

(n=1) 

Discontinued intervention (n=1) 
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Table 37: CAARBS screening and recruitment data by participating site. 

 Norwich Leicester Oxford 

Screened 1249 803 269 

Excluded 1241 800 266 

Ineligible 1225 774 265 

Randomised 
CCB 4 1 1 

ACEI/ARB 4 2 2 

Lost or withdrawn 4 0 1 

Completed follow-up 4 3 2 

CCB denotes calcium channel blocker; ACEI, angiotensin converting enzyme inhibitor; 

ARB, angiotensin receptor blocker. 

 

 

Figure 24: Histogram showing rates of each reason for exclusion of ineligible patients 

by trial site. BP denotes blood pressure; mRS, modified Rankin scale; TIA, transient 

ischaemic attack; ICH, intracerebral haemorrhage; NIHSS, National Institutes of Health 

Stroke Scale. 
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Table 38: Reasons for exclusion of patients screened for the trial who did not meet the 

eligibility criteria. Data presented are frequency (%). 

Reason for exclusion Frequency 

Age <18 years 3 (0.1%) 

Non-stroke diagnosis 453 (19.5%) 

Late presentation >72 hours from symptom 

onset 
314 (19.4%)* 

>7 days from symptom onset 46 (6.6%)** 

BP <130/80mmHg 145 (6.2%) 

Unable to consent 120 (5.2%) 

Contraindication to the intervention 51 (2.2%) 

Unable to take oral medication 110 (4.7%) 

Clinical need for urgent antihypertensive therapy or 

treatment with specific antihypertensive class 
43 (1.9%) 

Pre-event mRS >3 67 (2.9%) 

Life expectancy <3 months 19 (0.8%) 

Atrial fibrillation 431 (18.6%) 

Participating in another investigational drug trial 40 (1.7%) 

Pregnant 1 (0.04%) 

Previous stroke/TIA 496 (21.4%) 

ICH 183 (7.9%) 

Usual antihypertensive therapy not suspended 97 (4.2%) 

NIHSS ≥10 119 (5.1%) 

Deemed inappropriate to approach for research by clinical 

team due to co-morbidities 
83 (3.6%) 

*Out of 1619 patients screened before the eligibility criteria were amended 

**Out of 702 patients screened after the eligibility criteria were amended 

BP denotes blood pressure; mRS, modified Rankin scale; TIA, transient ischaemic 

attack; ICH, intracerebral haemorrhage; NIHSS, National Institutes of Health Stroke 

Scale. 
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Randomised participants were evenly split between the two intervention groups in the 

context of the small sample size. Baseline characteristics are displayed in Table 39. 

Two participants (both from the Norwich site) were withdrawn as “screening failures” 

and provided no baseline data as their initial BP was >130/80mmHg, but repeated 

measurements at the baseline consultation were below this threshold value for 

secondary prevention treatment. Therefore, it was felt to be unethical for them to 

continue in the trial. One participant withdrew from the CCB arm of their own choice 

(they felt unable to commit the time required for follow-up visits), one participant was 

withdrawn from the ACEI/ARB arm by the trial team as they were commenced on a 

CCB by another clinical team in addition to their trial medication, and one participant 

from the ACEI/ARB arm discontinued treatment due to side effects and withdrew from 

the trial. Apart from this single treatment discontinuation there were no other major 

side effects and no serious adverse events recorded in either intervention arm. 

 

Completion rates of CBPM and beat-to-beat BP measurements were good across all 

study visits, with all completed readings judged to be valid (Table 40). However, 

completion rates of daytime ABPM measurements were lower, in part due to a 

software failure at the Leicester site meaning no ABPM recordings were possible in 

their participants, and in part due to participants refusing this method (N=2). 

Furthermore, of the completed daytime ABPM measurements, only 6/13 (46.2%) 

provided ≥14 readings and were considered valid for analysis. Compliance with trial 

treatment according to the self-rating questionnaire was good, with 8/9 (88.9%) of 

participants who completed the trial indicating compliance ≥80%. However, tablet 

count was unsuccessful at assessing compliance as participants often failed to bring 

their medication to follow-up visits, being completed in only 5/18 (27.7%) 

consultations.  
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Table 39: Baseline characteristics of randomised participants. Data presented are 

mean (SD) or frequency (%), except alcohol consumption which is median (IQR). 

 CCB ACEI/ARB 

N  5 7 

Age (years)  74.8 (4.2) 64.9 (9.1) 

Gender Male 4 (80.0%) 4 (57.1%) 

Ethnicity White-British 4 (80.0%) 6 (85.7%) 

BMI (kg/m2)  28.2 (4.6) 27.1 (5.8) 

Smoking Never smoked 2 (40.0%) 2 (28.6%) 

Ex-smoker 3 (60.0%) 2 (28.6%) 

Current smoker 0 (0.0%) 3 (42.8%) 

Alcohol (units/wk)  5 (17.5) 14 (26.5) 

Diagnosis TIA 3 (60.0%) 3 (42.9%) 

Stroke 2 (40.0%) 4 (57.1%) 

Past medical 

history 

Hypertension 3 (60.0%) 1 (14.3%) 

Diabetes 1 (20.0%) 0 (0.0%) 

IHD 0 (0.0%) 0 (0.0%) 

Mean enhanced 

CBPM (mmHg) 

SBP 163.6 (17.3) 152.7 (14.5) 

DBP 81.8 (5.9) 83.1 (6.5) 

SD enhanced CBPM 

(mmHg) 

SBP 8.4 (5.2) 6.8 (5.3) 

DBP 5.6 (3.0) 6.0 (3.4) 

CV enhanced CBPM 

(%) 

SBP 4.9 (2.6) 4.5 (3.4) 

DBP 7.0 (3.9) 7.2 (4.0) 

Mean beat-to-beat 

BP (mmHg) 

SBP 156.6 (5.7) 151.0 (11.9) 

DBP 79.8 (7.1) 82.6 (6.1) 

SD beat-to-beat BP 

(mmHg) 

SBP 9.9 (3.9) 9.2 (5.5) 

DBP 5.2 (2.2) 5.1 (2.4) 

CV beat-to-beat BP 

(%) 

SBP 6.3 (2.5) 6.0 (2.6) 

DBP 6.6 (2.6) 6.3 (3.0) 

CCB denotes calcium channel blocker; ACEI, angiotensin converting enzyme inhibitor; ARB, 

angiotensin receptor blocker; BMI, body mass index; TIA, transient ischaemic attack; IHD, 

ischaemic heart disease; CBPM, clinic blood pressure measurement; SBP, systolic blood 

pressure; DBP, diastolic blood pressure; SD, standard deviation; CV, coefficient of variation; BP, 

blood pressure.
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Table 40: Completion rates of each blood pressure measurement method. 

 Enhanced CBPM Beat-to-beat BP Daytime ABPM 

Baseline 12/12 (100.0%) 11/12 (91.7%) 7/12 (58.3%) 

21 days 9/10 (90.0%) 9/10 (90.0%) - 

90 days 9/9 (90.0%) 8/9 (88.9%) 6/9 (66.6%) 

CBPM denotes clinic blood pressure measurement; BP, blood pressure; ABPM, 

ambulatory blood pressure measurement. 

 

Table 41: Mean blood pressure and variability from enhanced clinic blood pressure 

measurement at day 21 and day 90 by intervention arm. Data presented are mean (SD) 

with change from baseline being the absolute difference in the mean values. 

 CCB ACEI/ARB 

SBP DBP SBP DBP 

Mean BP 

(mmHg) 

21 days 151.8 (4.1) 74.2 (2.5) 137.1 (13.0) 77.5 (9.9) 

Change from 

baseline 
-11.8 -7.6 -15.6 -5.6 

90 days 128.6 (10.1) 72.6 (4.1) 130.9 (17.9) 75.5 (8.2) 

Change from 

baseline 
-35.0 -9.2 -21.8 -7.6 

SD 

(mmHg) 

21 days 5.2 (1.5) 3.4 (1.0) 6.2 (2.9) 4.6 (2.7) 

Change from 

baseline 
-3.2 -2.2 -0.6 -1.4 

90 days 5.1 (2.1) 4.3 (2.2) 3.9 (1.7) 3.1 (1.7) 

Change from 

baseline 
-3.3 -1.3 -2.9 -2.9 

CV (%) 

21 days 3.4 (0.9) 4.5 (1.2) 4.6 (2.3) 5.8 (2.8) 

Change from 

baseline 
-1.5 -2.5 0.1 -1.4 

90 days 4.0 (1.7) 5.8 (2.7) 3.1 (1.5) 4.3 (1.6) 

Change from 

baseline 
-0.9 -1.2 -1.4 -2.9 

SD denotes standard deviation; CCB, calcium channel blocker; ACEI, angiotensin converting 

enzyme inhibitor; ARB, angiotensin receptor blocker; SBP, systolic blood pressure; DBP, 

diastolic blood pressure; BP, blood pressure; CV, coefficient of variation.
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Table 42: Mean blood pressure and variability from beta-to-beat blood pressure 

measurement at day 21 and day 90 by intervention arm. Data presented are mean (SD) 

with change from baseline being the absolute difference in the mean values. 

 CCB ACEI/ARB 

SBP DBP SBP DBP 

Mean BP 

(mmHg) 

21 days 142.0 (7.4) 68.1 (1.3) 127.4 (14.8) 71.7 (11.4) 

Change from 

baseline 
-14.6 -11.7 -23.6 -10.9 

90 days 136.4 (3.7) 71.5 (6.2) 137.5 (27.5) 75.8 (8.9) 

Change from 

baseline 
-20.2 -8.3 -13.5 -6.8 

SD 

(mmHg) 

21 days 9.7 (4.0) 4.9 (2.5) 8.6 (4.6) 4.0 (1.7) 

Change from 

baseline 
-0.2 -0.3 -0.6 -1.1 

90 days 6.2 (3.0) 2.8 (1.4) 8.7 (5.9) 3.9 (2.7) 

Change from 

baseline 
-3.7 -2.4 -0.5 -1.2 

CV (%) 

21 days 6.7 (2.4) 7.2 (3.6) 6.6 (2.6) 5.7 (1.7) 

Change from 

baseline 
0.4 0.6 0.6 -0.6 

90 days 4.5 (2.1) 3.8 (1.8) 6.0 (2.9) 4.9 (2.9) 

Change from 

baseline 
-1.8 -2.1 0.0 -1.4 

SD denotes standard deviation; CCB, calcium channel blocker; ACEI, angiotensin converting 

enzyme inhibitor; ARB, angiotensin receptor blocker; SBP, systolic blood pressure; DBP, 

diastolic blood pressure; BP, blood pressure; CV, coefficient of variation.
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Enhanced CBPM and beat-to-beat mean BP and BPV were reduced at 90 days 

compared to baseline in both trial arms (Tables 41-42), and the reductions seen were 

similar. There were also no apparent differences in functional or cognitive outcome 

between the intervention arms. In the CCB arm median (IQR) mRS was 0.0 (0.0) at day 

21 and 0.0 (1.0) at day 90, and mean (SD) MoCA score was 23.5 (2.7). In the ACEI/ARB 

arm mRS was 1.0 (0.8) at day 21 and 1.0 (1.0) at day 90, and MoCA score was 23.6 

(3.7). 

 

8.7 Discussion 

 

Recruitment for this trial was difficult owing to the high rate of ineligibility of patients 

who were screened (98.1%), this being an issue across all three trial sites. The trial did 

not meet its pre-specified recruitment target and consequently it must be concluded 

that in its current form it would not be feasible to scale up this study design to attempt 

a definitive RCT. The main reasons for patient ineligibility were having a previous 

stroke or TIA, having a non-stroke diagnosis, presenting outside of the window of 

eligibility, and having concurrent AF. Amending the inclusion criteria to extend the 

window of eligibility markedly reduced the number of patients excluded for this 

reason, but this did not translate into a major increase in recruitment. However, that 

the major reasons for exclusion were similar across all sites suggests that a future trial 

could be successful if the eligibility criteria were modified more comprehensively.  

 

A proportion of patients who are ultimately diagnosed with a stroke mimic must be 

accepted, but there are other criteria that could be adapted. Firstly, the findings 

suggest that retaining the extended window of eligibility could be helpful. Not only 

could it directly increase patient eligibility at the point of presentation to stroke 

services, it may also allow time for patients who would be too unwell to participate in 

the first 72 hours post event (e.g. if they are nil by mouth) to recover sufficiently for 

inclusion. Secondly, although increased BPV may persist into the chronic phase post-

stroke [256], there is the potential for large gains if patients with a previous stroke are 

included. The use of minimisation criteria to ensure equal numbers of first and 

recurrent stroke patients in each trial arm, or pre-specified analysis plans to offset 
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their inclusion, such as planned subgroup analysis of patients with first-ever stroke or 

adjustment for previous stroke in statistical testing, could be employed to ensure the 

accuracy of results. Thirdly, as it is accepted that most patients require multiple agents 

in order to achieve BP control [214-216], it may be necessary to include patients on 

additional antihypertensive medications other than the investigational medicinal 

products. Again it is likely that this would need to be accounted for with techniques 

such as pre-specified subgroup analysis or adjustment in statistical testing. A 

treatment escalation algorithm would need to be devised to minimise the risk of 

unintentional intervention group crossover during follow-up (which may need to be 

longer than in this trial), whilst allowing for treatment intensification in order to 

achieve secondary prevention BP targets. Finally, as beat-to-beat BPV is increased in 

patients with AF compared to control [281], and beta blockers are frequently used as 

part of a rate control treatment strategy for AF [282], the potential for data 

confounding by including participants with AF may outweigh any benefit of improved 

recruitment. However, automated oscillometric BP measurement devices have been 

shown to be reliable in AF provided multiple measurements are taken as per guideline 

recommendations [92, 283]. Therefore, if any future trial used BPV derived from 

enhanced CBPM or ABPM to judge the impact of the intervention, rather than beat-to-

beat BPV, it may be possible to include these patients. Further safeguarding could be 

achieved by specifying data validation criteria for patients with AF, for example by 

stating an acceptable range for HRV across BP measurements used to derive BPV that 

would minimise the impact of uncontrolled AF on the BP data. 

 

Although, owing to the findings of the primary trial outcome, the trial was considered 

not to be feasible in its current format, there were some positives amongst the 

secondary feasibility outcomes. These findings must be interpreted in the context of 

the small sample size, but they may give grounds for cautious optimism. Firstly, 

retention in the trial was reasonable, with 9/14 (64.3%) randomised participants 

completing three-month follow-up. Secondly, compliance with the intervention and 

with BP measurements was good, with the reduced rate of completed daytime ABPM 

measurements mainly due to a technical issue at one of the trial sites. Thirdly, there 

were no major safety issues in either trial arm and only one participant discontinued 

treatment due to side effects. Fourthly, although it was not possible to draw any 
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conclusions about differences between the intervention arms in terms of BPV 

reduction, functional outcomes, or cognitive outcomes, a reduction in BPV was 

demonstrated over the three-month follow-up period. This indicates that if sufficient 

numbers of participants could be recruited, it should be possible to detect a 

differential effect of different antihypertensive medication classes on BPV if one exists. 

Further work is now required to estimate the reduction in BPV that is attributable to 

each intervention as this will be required to estimate the necessary sample size in a 

future trial, and has not been adequately established in this patient group. 

 

There are no directly comparable trials for the results of this study and so, even though 

insufficient data were obtained for the secondary exploratory outcomes, its novelty 

and merits should be noted. Firstly, it should be highlighted that the primary objective 

of investigating feasibility was achieved, and this represents a strength of the study 

design and underlines the value of conducting preliminary trials such as this one. 

Secondly, the data gathered has also allowed for recommendations to be made that 

may improve recruitment if a future trial is pursued. Thirdly, the trial has proven the 

concept that it is possible to measure a change in BPV in the months following an 

ischaemic cerebrovascular event, indicating that a future trial with modified eligibility 

criteria could successfully test the hypothesis that BPV reduction will not be equal 

between groups treated with different antihypertensive medication classes. The trial 

also has limitations that are worthy of consideration. Firstly, only a small proportion of 

eligible patients who declined to take part in the trial offered a reason for their 

decision and this represents a missed opportunity for improving the trial design. 

Secondly, owing to the small sample size limited data regarding participant retention 

and reasons for withdrawal were obtained. Obtaining more data in both of these areas 

would have been useful for judging the feasibility of any similar future trial. Thirdly, it 

was not possible to demonstrate a differential effect on BPV between the two 

intervention arms. In part this was due to the small sample size, but it cannot be 

excluded that the use of antihypertensive agents in some participants prior to their 

recruitment in the trial could have influenced their BPV as recorded in the trial. 

Unfortunately, as it is accepted standard care to treat raised BP for secondary stroke 

prevention it would not be ethical to incorporate a complete washout period into the 
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trial design. Therefore, follow-up in any further trials may need to be prolonged, or 

previous antihypertensive use may need to be adjusted for in the statistical analysis. 

 

8.8 Summary 

 

 With the current design this RCT must be deemed not feasible owing to the 

large proportion of patients screened who were not eligible for inclusion. 

 However, the trial did demonstrate that it is possible to measure a change in 

BPV over three months post stroke and compliance with trial procedures by 

those recruited was good. 

 The main reasons for ineligibility were similar across trial sites, suggesting that 

modifying the eligibility criteria may allow for improved recruitment in any 

similar future trial. 

 Modifications including a longer window of eligibility following symptom onset, 

including patients with previous stroke/TIA, and allowing for patients who 

require multiple antihypertensive agents should be considered. 

 It may also be possible to include patients with AF, though this would probably 

depend on the method(s) chosen to measure BPV and would require careful 

data collection and inspection to minimise the risk of confounding. 
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9 General Discussion 

 

As summarised in chapter two of this thesis, the idea that an individual’s BP can vary 

from reading to reading, even when multiple readings are taken concurrently, is not 

new. Multiple factors can contribute to this variability, some of which are natural (e.g. 

circadian rhythm or emotional state) or situational (e.g. WCH or MH) [90], yet an 

increasing body of evidence has emerged indicating that BPV may also be pathological. 

Early suggestions that BPV may not be a benign phenomenon came from work by 

Rothwell et al. where limitations to the accepted concept of “usual BP” were noted 

[126], and secondary analyses of several major stroke trials showed that long-term 

visit-to-visit variability (after adjustment for mean BP levels) was a stronger predictor 

of recurrent stroke than mean BP [131]. Further work in the wake of these publications 

has shown that increased BPV is associated with markers of damage to multiple organ 

systems, for example microalbuminuria and proteinuria [134-136], cerebral small 

vessel disease and micro-haemorrhages [137, 138], and left ventricular hypertrophy 

[136]. Furthermore, several meta-analyses of reports on the prognostic significance of 

BPV indicate that increased long-term variability is an independent risk factor for 

mortality, coronary heart disease, and stroke [14, 128, 152, 153]. The same is probably 

also true of short-term variability, though the evidence is less robust [128]. It should be 

noted that analyses of the prognostic significance of BPV have used statistical 

adjustment for mean BP levels. This illustrates that it is not possible to consider BPV in 

isolation from mean BP. Firstly, both are measured using the same device(s) and 

(where the device is programmed to take multiple measurements) at the same time. 

Secondly, the two measurements are linked, with data indicating that BPV has a 

positive linear relationship with mean BP [130, 251]. Thirdly, although BPV is an 

independent cardiovascular risk factor, the application of this in clinical practice is 

likely to be in combination with the prognostic information provided by mean BP. In 

other words, the prognostic value of BPV is likely to be additive to that of mean BP 

rather than separate. Finally, it may be that both are altered by the same 

interventions, though the extent to which antihypertensive medications alter BPV is 

uncertain. In relation to ischaemic stroke, it has been suggested that BPV may be of 

particular relevance, with the ischaemic penumbra theoretically vulnerable to 

fluctuations in BP in the context of abnormal cerebral autoregulation and a possible 
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pathophysiological link with post stroke autonomic dysfunction [13, 181]. Compared to 

controls, BPV is increased in patients with ischaemic stroke [100]. Furthermore, 

increased BPV in this patient group is associated with adverse clinical features, such as 

secondary haemorrhagic transformation and END [185-189], and worse long-term 

functional recovery as assessed by mRS at three months [98, 197-199]. However, the 

literature on BPV is complicated by heterogeneity in terms of BPV measurement and 

calculation, a lack of understanding as to whether alternative measurement methods 

and timescales of BPV are equivalent or if any one method is superior, and a lack of 

established “normal” values for BPV.  

 

The aims of this thesis were to further the investigation of BPV in patients with 

ischaemic cerebrovascular disease with specific regard to: (i) its measurement and 

calculation, and (ii) its potential as a therapeutic target following an ischaemic 

cerebrovascular event. In summary, the experimental chapters presented in this thesis 

have indicated the following with regard to these aims. Firstly, there were significant 

differences in mean BP values as assessed by daytime ABPM and contemporaneous 

HBPM in patients with a recent ischaemic stroke or TIA, which has implications for the 

measurement of BPV using these methods. Mean daytime ABPM values were in the 

order of 7/2mmHg lower than HBPM values and this difference was consistent over 

time, but not reproducible within individuals. Secondly, there were no significant 

relationships between different timescales of BPV as assessed by comparison of BPV 

values derived from beat-to-beat BP measurements and those derived using other 

methods. This was the case even when the difference between timescales was small 

(i.e. within-hour daytime ABPM data compared with beat-to-beat BP data) and 

suggests that different BPV measurements are not interchangeable. Thirdly, there 

were significant relationships between ischaemic stroke severity, as measured by 

NIHSS or OCSP classification, and baseline short-term BPV derived from daytime 

ABPM, indicating increased BPV in patients with LACS compared to other stroke 

subtypes. However, similar relationships were not demonstrated for short-term BPV 

from enhanced CBPM or beat-to-beat BPV, and no relationship between BPV and 

affected cerebral hemisphere was demonstrated. Fourthly, there were no significant 

differences in baseline BPV for patients with a recent ischaemic stroke or TIA treated 

with a CCB or ACEI/ARB based antihypertensive regimen compared to controls. 
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However, this study did show a possible, but non-significant contrasting effect on 

short-term BPV from daytime ABPM for those treated with a CCB or ACEI/ARB. Finally, 

to test whether different classes of antihypertensive medication alter BPV to varying 

degrees, a feasibility RCT was developed to compare the effects of a CCB or ACEI/ARB 

based antihypertensive regimen on BPV following an acute ischaemic stroke or TIA. 

However, the trial design as tested was proven to be unfeasible due to the high rate of 

patient ineligibility, which resulted in poor recruitment. However, participant retention 

in the trial was acceptable and the interventions were safe. Furthermore, the trial 

demonstrated that it is possible to determine a change in BPV in the months following 

an acute ischaemic cerebrovascular event. These findings will now be discussed 

further, taking the two broad aims in turn, with consideration given to how gaps in the 

evidence have been addressed, and any implications for future research on this topic. 

 

9.1 Studies Investigating the Measurement of Blood Pressure Variability Post 

Stroke 

 

As summarised above, chapters four and five were concerned with the measurement 

of BP and BPV following a recent ischaemic stroke or TIA. Chapter four investigated 

differences in the measurement of mean BP between alternative out-of-office 

measurement methods, namely daytime ABPM and HBPM. Chapter five investigated 

the relationships between very short-term BPV from beat-to-beat BP measurements 

and variability derived over longer timescales from more commonly used BP 

measurement methods. For the adequate treatment of hypertension to be possible we 

must first understand the relevance of raised BP to future cardiovascular events, and 

second, establish the threshold value at which the benefit of intervention outweighs 

the risk/side effects of treatment. Both of these factors rely on having an accurate and 

reproducible method for measuring BP. Furthermore, these same factors apply when 

considering the clinical importance of BPV and it is unlikely that BPV can be considered 

in isolation from BP. At present there is no standardised methodology for measuring 

BPV and the threshold values of variability for increased cardiovascular risk, including 

risk of first or recurrent stroke, have not been established [90, 155, 156]. Even in the 

treatment of mean BP levels, which is widely accepted in comparison to the idea of 

targeting treatment at BPV, there remains uncertainty about the optimum target 
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value, especially for prevention of recurrent stroke and cognitive decline [55, 62, 284, 

285], and debate about which measurement method represents the gold standard 

[156]. This uncertainty is reflected in recent guideline updates, with the AHA now 

recommending treatment at a lower threshold value than European guidelines [54, 91, 

92]. Although all major guidelines agree that 135/85mmHg is the equivalent out-of-

office BP value (measured by either daytime ABPM or HBPM) for a CBPM of 

140/90mmHg, the AHA countenance that the difference is dependent on BP level, with 

no difference at a CBPM of 130/80mmHg or below and an increased difference with 

greater CBPM values [54, 91, 92]. That ABPM values tend to be lower than CBPM 

values is widely accepted [110]. However, the limited number of direct comparisons of 

ABPM and HBPM suggest that out-of-office methods may not be equivalent [112, 116, 

118, 120, 121]. Clearly these discrepancies in BP measurement, if accurate, have 

implications for the treatment and monitoring of BP for both primary and secondary 

disease prevention, and the same may be true of BPV. 

 

Evidence suggests that BPV is related to mean BP, with two studies indicating a linear 

positive relationship whereby BPV increases alongside mean BP level [130, 251]. A 

third study has suggested that the relationship may be ‘U’ shaped, with variability 

increasing either side of SBP in the range 120-140mmHg, though there was stronger 

evidence for the increase above SBP 140mmHg than below 120mmHg [286]. 

Therefore, discrepancies in the measurement of mean BP level are likely to have 

implications for the measurement of BPV, and by extension its treatment. If mean BP 

values obtained from different measurement methods are not equivalent, then we 

may expect variability derived using different methods to differ also, even before 

considering other methodological differences that may impact BPV measurement, 

such as the number of BP readings acquired and the time between readings. In 

addition, threshold values for the prognostic relevance of BPV may differ across 

measurement methods, as do threshold values for mean BP.  

 

Chapter four of this thesis established that there are discrepancies in BP measurement 

between two commonly used methods for measuring out-of-office BP, for the first 

time demonstrating that a discrepancy exists in high-risk patients with a history of 

ischaemic cerebrovascular event. The findings were that daytime ABPM values were 
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on average 7/2mmHg lower than contemporaneous HBPM values, which is at odds 

with guideline recommendations. This difference was consistent over a six-month 

period, however, there were wide limits of agreement between the two methods 

indicating a large variance in their disagreement at an individual level. Furthermore, 

the difference for individuals was not reproducible over time. Overall the findings 

suggest that daytime ABPM and HBPM are not interchangeable methods of measuring 

BP and values from one cannot be used to infer values from the other. Rather, they 

may be better considered complementary methods of BP measurement [111]. Given 

the relationship between BP and BPV, it follows that daytime ABPM and HBPM are also 

unlikely to be interchangeable methods of measuring BPV and this assertion is 

supported by reports comparing BPV derived from the two methods [118, 160]. The 

findings from chapter four add to the existing evidence base regarding the equivalence 

(or otherwise) of daytime ABPM and HBPM, and are in agreement with the majority of 

similar studies that have enrolled lower risk populations [106, 112, 116, 121, 247]. 

However, there is inconsistency in the data, with other studies reporting no 

differences [115, 119], or daytime ABPM values greater than HBPM [118, 120]. Most of 

the studies to date, including the one presented in this thesis, are limited by relatively 

small sample size and may lack the necessary statistical power to reach a definite 

conclusion. The study by Mancia et al. is larger than the others, but is limited by the 

use of an HBPM protocol that is not consistent with guideline recommendations, being 

based on just two measurements taken on consecutive days [120]. Consequently, 

additional research is likely to be necessary to clarify this issue. 

 

The study in chapter five demonstrated similar discrepancies between different 

timescales of BPV measurement in the same population. From comparison of the raw 

BPV values from different measurement methods it was clear that they were not the 

same, regardless of the technique of calculation. Further analysis demonstrated that 

there were no meaningful correlations between beat-to-beat and the other timescales 

of BPV assessed, and the agreement between methods was poor. The relationship 

between beat-to-beat and within-hour BPV was closer than for other comparisons, but 

the level of agreement remained insufficient to suggest that they could be considered 

equivalent. Beat-to-beat BPV has not previously been thoroughly compared with other 

timeframes of variability, despite evidence indicating that it may be of particular 
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prognostic significance post stroke regarding recovery and recurrent events [15, 98, 

200], perhaps because beat-to-beat BP measurement is less commonly used in clinical 

practice. The findings of this chapter were in keeping with the existing literature. 

Although limited evidence suggests that the different statistical methods used to 

calculate BPV are strongly correlated when applied to the same set of BP 

measurements [157, 259], the same is not true of different timescales of BPV [118, 

134, 160, 200]. All timescales of variability appear to be predictive of cardiovascular 

risk [128, 131, 200, 252-254], yet their prognostic value may not be equal [90, 131, 

155]. Therefore, uncertainties remain about the clinical value and application of BPV. It 

is possible that all timescales of BPV are prognostically relevant, but that threshold 

values for abnormal variability differ according to the timescale of measurement (as 

threshold values for hypertension differ according to the method of measurement). 

Alternatively, it is also possible that BPV over different timescales is not a singular 

phenomenon, representing different underlying pathophysiological processes [134, 

167, 170, 174, 256, 258], and that some timescales may be more relevant in certain 

patient groups than others. To further our understanding of this issue, additional 

research is required to establish which (if any) measurement of BPV is the most 

relevant to clinical outcomes as this will help with standardisation of BPV 

measurement and facilitate more robust research regarding therapeutic intervention 

targeted at BPV. How this might be achieved will be discussed further below. 

 

9.2 Studies Investigating the Therapeutic Intervention in Blood Pressure Variability 

Post Stroke 

 

Chapters six to eight investigated the potential of BPV as a therapeutic target following 

an ischaemic cerebrovascular event. Chapter six was primarily concerned with the 

question of who to treat, looking to see if there were relationships between BPV and 

stroke severity or affected cerebral hemisphere, whereas chapters seven and eight 

focussed on the possibility of using existing antihypertensive medications to reduce 

BPV. The findings from the previous experimental chapters indicated that different 

methods of measuring BP and BPV post stroke are not equivalent. Therefore, these 

studies incorporated multiple methods of measurement to see if any findings were 

consistent across timescales of BPV. There is currently a paucity of evidence 
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investigating the effect of treatments to reduce BPV post stroke/TIA. However, there is 

a growing body of data indicating that increased BPV in, both the acute and subacute 

periods following an ischaemic cerebrovascular event, is associated with clinical signs 

of poor prognosis, such as haemorrhagic transformation [184-187], or END [188, 189], 

and poor long-term functional outcome [98, 192, 194-199]. Importantly, it remains 

unclear whether interventions to reduce BPV would be beneficial in all patients with 

an ischaemic stroke, or what treatments would be most effective at reducing BPV. 

 

Chapter six aimed to address the question of whether all patients with a recent 

ischaemic cerebrovascular event might benefit equally from treatment to reduce BPV 

by investigating whether there are relationships between baseline BPV and stroke 

severity, or the cerebral hemisphere affected by the ischaemic event. The study found 

that there were significant relationships, independent of mean BP, between short-

term BPV from daytime ABPM and both NIHSS and OCSP classification. The 

relationships were consistent and, perhaps surprisingly, suggested that BPV was 

greater in patients with lower NIHSS and a classification of LACS. Interestingly there 

were no relationships demonstrated for BPV derived from enhanced CBPM or beat-to-

beat BP measurements. Furthermore, no relationships between BPV and the affected 

cerebral hemisphere were found. The findings regarding BPV and stroke severity were 

consistent with the only other study to have reported on BPV in relation to OCSP 

classification, which also indicated that baseline BPV was greater in patients with LACS 

than PACS, TACS, or POCS [13]. As previously discussed in section 6.7, it is not possible 

to prove a causal relationship between LACS and increased BPV based on this cross-

sectional analysis. It may be the case that having a lacunar infarct leads to increased 

BPV, but it is also possible that increased BPV may be more likely to cause lacunar as 

opposed to larger infarcts. This is possibly as a result of pulsatile haemodynamic stress 

on cerebral small vessels [269, 270], which could cause endothelial damage or 

vasospasm resulting in critically reduced CBF and/or blood-brain barrier dysfunction 

leading to stroke [266, 268]. These findings raise two interesting questions. Firstly, 

would treatment aimed at reducing BPV post stroke have the greatest potential 

benefit in patients with lacunar stroke? Secondly, would treatment aimed at reducing 

BPV for primary stroke prevention result in greater reductions in the rate of lacunar 

stroke compared to cortical stroke? The negative result in terms of affected 
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hemisphere may be due to a methodological issue with the study. Whilst there is 

debate that central nervous system input to autonomic function may be lateralized 

[63, 179][63, 180][63, 179][63, 180][63, 180][63, 176][63, 180][63, 180][63, 180][63, 

180][63, 180][63, 179][63, 180][63, 180][63, 180][63, 180][63, 180][63, 180][63, 

180][63, 180], it is likely that specific regions within each hemisphere, for example the 

insular cortex are relevant rather than the whole hemisphere itself [265]. It was not 

possible to classify participants in this cohort based on the cerebral regions involved in 

their ischaemic stroke beyond the left or right hemisphere due to the data that was 

available. Therefore, it is possible that this study was not adequately designed to 

demonstrate relationships between BPV and stroke location and further investigation 

of this is advised. 

 

Given that the results of chapter six indicated an inverse relationship between 

increased BPV and stroke severity, and the findings from other studies demonstrating 

a link between increased BPV post stroke and adverse outcomes, the question of how 

BPV could be mitigated is pertinent. In chapter seven the possibility of differential 

effects on baseline BPV, post ischaemic stroke or TIA, of two commonly used classes of 

antihypertensive medications (CCB or ACEI/ARB) was investigated compared to 

control. This analysis was based on existing, but limited evidence of a possible 

difference in effect on BPV from different antihypertensive medication classes, with 

CCB reported to lower BPV and ACEI/ARB reported to be neutral or possibly increase 

BPV [201, 203, 211]. These two medication classes were also chosen for comparison as 

they are recommended first-line agents for the treatment of hypertension [91], and 

both have a role in secondary stroke prevention treatment. There is evidence that 

vasodilatory antihypertensives may be particularly effective for preventing recurrent 

stroke [219, 273], which supports the use of CCB (and thiazide-like diuretics) in this 

population. Similarly, there is evidence that ACEI/ARB can inhibit atherosclerotic 

processes [59], which suggests they may have benefits to stroke and cardiovascular 

disease risk in addition to BP lowering. Although this study did not show any 

differences in BPV when a CCB based regimen and an ACEI/ARB based regimen were 

separately compared to control, it did suggest a non-significant contrasting trend for 

the two groups in short-term BPV from daytime ABPM. The trend suggested that BPV 

was reduced compared to control in those participants taking a CCB whereas it was 
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increased in those taking an ACEI or ARB. This is consistent with the existing literature. 

I have already discussed that the analysis may have lacked sufficient statistical power 

to demonstrate a difference in the two comparison groups, and with beat-to-beat BPV 

only being recorded in a subgroup of participants this would have had a greater impact 

on this aspect of the study. Also, the use of a cross-sectional design, looking only at 

baseline BPV and not change in BPV over time, may have limited my ability to detect a 

difference. This design was chosen due to the constraints of the available data, with 

different follow-up periods in the trials that provided data preventing a coherent 

analysis of change in BPV over time, but pooling data from the three trials felt to be 

necessary in order to increase the sample size. Despite the overall negative findings of 

the study in chapter seven, the consistency of the findings from this and the preceding 

experimental chapter suggest that ABPM may be the most appropriate measurement 

technique for future investigations of BPV post stroke. Overall, there remains a need 

for dedicated prospective trials to investigate the use of existing antihypertensive 

medications to reduce BPV following stroke, and in other patient groups.  

 

The CAARBS feasibility trial, described in chapter eight, attempted to address this gap. 

To the best of my knowledge it is the only prospective RCT investigating interventions 

to reduce BPV following ischaemic stroke. Unfortunately, this feasibility trial 

highlighted various issues that might hinder a definitive RCT if the protocol as initially 

proposed were scaled up, the main issue being the high rate of patient ineligibility with 

the chosen inclusion/exclusion criteria. However, there was some encouragement that 

a further trial could be successful as the retention rate of successfully randomised 

participants was reasonable, compliance with the treatment interventions and BP 

measurements was generally good, and the interventions were shown to be safe. 

Furthermore, descriptive analysis of the BPV data indicated that it was possible to 

measure a change in BPV over three months following an ischaemic cerebrovascular 

event, and there did appear to be a difference in the change in BPV between the two 

trial arms (though this was not formally tested). To be viable any future trial would 

clearly need to have modified eligibility criteria, yet as this remains a significant gap in 

the evidence regarding BPV and ischaemic stroke it is my opinion that it would be 

worth pursuing. 
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9.3 Future Research Directions 

 

The findings from this thesis have advanced our understanding of the measurement of 

BP and BPV post stroke, have provided useful insights into how to further investigate 

the potential treatment of BPV, and indicate that certain subgroups of ischaemic 

stroke patients may particularly benefit from this treatment if proven to be successful. 

Uncertainties remain regarding the equivalence of out-of-office BP measurement 

methods, the optimum method for measuring BPV, and whether established 

antihypertensive medications might also be directed against BPV. Consequently, 

further research into these questions is necessary. With regard to the equivalence of 

daytime ABPM and HBPM in the assessment of mean BP, further large-scale direct 

observational comparisons taking ABPM as the reference standard may be useful. 

Likewise, further direct comparisons of different timescales of BPV may be helpful. This 

could be achieved with a large-scale cross-sectional cohort study, though without 

follow-up data over at least three months it would not be able to incorporate long-

term visit-to-visit variability, which probably requires a minimum of four visits to be 

calculated accurately [123]. Ideally the cohort would recruit participants across a range 

of ages, with a balanced mix of gender and ethnicity, a mixture of higher/lower risk 

cardiovascular profiles, and treated/untreated for hypertension as these are factors 

which may influence differences between daytime ABPM and HBPM or BPV 

measurements [106, 113, 114, 130, 238, 251, 287]. This would also improve the 

generalisability of any findings. Alternatively, an independent patient data meta-

analysis of existing studies may be another method to investigate differences between 

daytime ABPM and HBPM, though there may be insufficient studies to apply this 

method to the question of equivalence of BPV over different timescales. Whilst this 

may be quicker and more cost-effective than a de novo cohort study, it may be 

hindered by study heterogeneity. In particular, the lack of standardisation of BP 

measurement across existing studies and the use of HBPM protocols not consistent 

with current guidelines could make statistical meta-analysis difficult.  

 

Rather than further cross-sectional comparisons, it may be more meaningful to 

generate outcome driven data for mean out-of-office BP and different timescales of 

BPV. Specifically, it would be useful to establish threshold values at which the risk of 
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cardiovascular disease events begins to rise, this need being echoed by the European 

Society of Hypertension statement on BPV [156]. One study has addressed this for 

HBPM [241], but outcome driven data for both ABPM and HBPM in the same cohort 

has not been acquired. Similarly, only one study has addressed this for BPV, using 

medium-term variability derived from HBPM [118]. Whilst it is possible that 

retrospective analyses of existing cohort or registry data may be able to fulfill this 

need, they may be limited by the number of potential participants available with good 

quality baseline data from both ABPM and HBPM, and they are unlikely to provide 

data for beat-to-beat BPV. Therefore, despite the obvious difficulties of the lengthy 

required follow-up for identification of cardiovascular events and the cost of such long-

term follow-up, a prospective observational trial would probably generate more 

accurate and robust data. When reported, the primary outcomes from the BPV 

observational trial will address some of these issues in a population with stroke. Once 

it is clarified whether a particular timescale and/or statistical calculation for BPV has 

greater prognostic value, then it will be possible to provide guideline 

recommendations on the measurement of BPV for research and clinical practice, 

thereby standardising the approach. 

 

Whether the relationship between increased BPV and lacunar stroke reported in this 

thesis is genuine, and whether there is evidence that lacunar stroke is a causal factor 

for increased BPV, could also be investigated in a further large-scale cohort study, 

provided a sufficient case-mix of stroke subtypes was recruited. Alternatively, it could 

also be addressed as a secondary outcome in a future prospective RCT investigating 

the possible treatment of BPV post stroke. The latter option would provide the 

advantage that longitudinal BPV could also be assessed in addition to baseline and 

there would be standardisation of BP treatment, which would minimise the impact of 

this as a confounding factor. To investigate a possible reverse causal relationship 

between lacunar stroke and BPV it may be simplest to retrospectively review registry 

data, first identifying patients with a variety of stroke subtypes and then looking back 

to see identify any between-group differences in variability preceding the qualifying 

stroke event. This may be limited to CBPM measurements (either within-visit or visit-

to-visit variability over time), but could be sufficient to demonstrate the possibility of a 

relationship. Ultimately, this may remain a secondary question until it is proven that it 
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is possible to reduce BPV with treatment, and that this treatment has an impact on 

clinical outcomes in addition to reducing mean BP, hence pursuing the option of 

performing a secondary analysis of a future prospective RCT may be the most sensible. 

 

As previously mentioned, it is my belief that a further prospective RCT to investigate 

the effect of existing antihypertensive medications on BPV post stroke would be of 

value. The experience of CAARBS indicates that any such trial would certainly need 

modified eligibility criteria. However, if these criteria were altered to retain a longer 

window of eligibility post symptom onset, allowed the inclusion of patients with 

recurrent stroke and possibly also AF, and allowed for the inclusion of patients on 

multiple antihypertensive agents, then there is the potential to substantially improve 

patient eligibility. The employment of minimisation criteria to ensure balanced trial 

arms and statistical adjustment for factors which may confound any effect on BPV of 

the chosen intervention would be necessary, with or without the pre-specification of 

subgroups for analysis (e.g. analysing patients with first vs. recurrent stroke 

separately). Using the same intervention arms for comparison remains reasonable, as 

CCB and ACEI/ARB are the most commonly used antihypertensive drug classes and so 

this will maximise the clinical relevance of any findings. Also, until such time as it is 

proven that one particular method of measuring BPV has greater prognostic value than 

others, or the measurement of BPV is standardised, it would remain advisable to 

employ multiple BP measurement techniques in any future trial. Finally, it was a 

secondary aim of CAARBS to try and establish estimates of intervention effect size that 

could be used to calculate the necessary sample size for a future definitive trial. 

Unfortunately this was not possible due the limited number of participants recruited 

and so it remains a crucial step in planning any further trials of this nature. To that end 

a further feasibility study may be required, which would have the advantage of being 

able to test the modifications to the inclusion/exclusion criteria suggested above. 

Alternatively, if sufficient funding could be secured, it may be possible to pursue a 

definitive RCT immediately, but with an embedded pilot study to allow for further 

adjustments of the recruitment target or eligibility criteria if necessary. 
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Appendix B - National Institutes of Health Stroke Scale (NIHSS) 
 

 
Category 

 
Score/Description 

Date/Time 
Initials 

1a Level of         Consciousness 
(Alert, drowsy, etc) 

0 = Alert 
1 = Drowsy 
2 = Stuporous 
3 = Coma 

 

1b LOC Questions 
(Month, age) 

0 = Answers both correctly 
1 = Answers one correctly 
2 = Incorrect 

 

1c LOC Commands 0= Performs both correctly 
1= Performs 1 correctly 
2= Performs none correctly 

 

2  Best Gaze 
(Eyes open – patient follows examiner’s finger 
or face 

0 = Normal 
1 = Partial gaze palsy 
2 = Forced deviation 

 

3 Visual Fields 
(introduce visual stimulation/threat to pts 
visual field quandrants) 

0 = No visual loss 
1 = Partial hemianopia 
2 = Complete hemianopia 
3 = bilateral hemianopia (Blind) 

 

4 Facial Paresis 
(Show teeth, raise eyebrows and squeeze eyes 
shut) 

0 = Normal 
1 = Minor 
2 = Partial 
3 = Complete 

 

5a Motor Arm - Left 
5b Motor Arm – Right 
(elevate arm to 90º if patient is sitting, 45º if 
patient supine 

0 = No drift 
1 = drift 
2 = Can’t resist 
gravity 
3 =No effort 
against gravity 
4 = No 
movement 

 
Left 

 

 
Right 

 

6a Motor Leg - Left 
6b Motor Leg – Right 
(elevate arm to 90º if patient is sitting, 45º if 
patient supine 

0 = No drift 
1 = drift 
2 = Can’t resist 
gravity 
3 = 
4 =  

 
Left 
 

 

 
Right 

 

7 Limb Ataxia 
(finger-nose, heel down shin) 

0 = No ataxia 
1 = Present in one limb 
2 = Present in two limbs 

 

8 Sensory 
(Pinprick to face, arm, trunk and leg – 
compare side to side 

0 = Normal 
1 = Partial loss 
2= Severe loss 

 

9 Best Language 
(Name item, describe a picture & read 
sentences) 

0 = No aphasia 
1 = Mild to moderate aphasia 
2 = Severe aphasia 
3 = Mute 

 

10 Dysarthria 
(Evaluate speech clarity by patient: repeating 
listed words) 

0 =  Normal articulation 
1 =  Mild to moderate slurring of words 
2 = Near to unintelligible or worse 
X = Intubated or other physical barrier 

 

11 Extinction & Inattention 0 =  No neglect 
1 =  Partial neglect 
2 =  Complete neglect 

 

                                                                                   TOTAL SCORE  
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Appendix C – Modified Rankin Scale (mRS) 

 

 
 

Provided by the Internet Stroke Center — www.strokecenter.org 

MODIFIED Patient Name: ___________________________  

RANKIN Rater Name: ___________________________  

SCALE (MRS) Date: ___________________________  

 

Score Description 
 

0 No symptoms at all 

 

 

1 No significant disability despite symptoms; able to carry out all usual duties and activities 

 

 

2 Slight disability; unable to carry out all previous activities, but able to look after own affairs 

without assistance 

 

 

3 Moderate disability; requiring some help, but able to walk without assistance 

 

 

4 Moderately severe disability; unable to walk without assistance and unable to attend to own bodily 

needs without assistance 

 

 

5 Severe disability; bedridden, incontinent and requiring constant nursing care and attention 

 

 

6 Dead 

 

 

TOTAL (0–6): _______ 
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Appendix D – Consent forms for trials contributing data to this thesis 

 

 

 

 

 

Dr Phyo Kyaw Myint 

Consultant Stroke Physician 

Gunthorpe Acute Stroke Unit 

 

 

CONSENT FORM– PERSON WITH STROKE/TIA 

 

Title: TEST-BP: Trial of the Effectiveness and cost effectiveness of Self-
monitoring and Treatment of Blood Pressure in secondary prevention following 
Stroke or Transient Ischaemic Attack (TIA)  

 

Name of Chief Investigator: Dr Phyo Kyaw Myint  

                Please initial box 

 

1. I confirm that I have read and understand the information sheet  
 dated ---------------(Version …….) for the above study, have had the  

 opportunity to ask questions and had these answered satisfactorily.  

 

2. I understand that my participation is voluntary and that I am free to  
 withdraw at any time, without giving any reason, without my medical  

 care or legal rights being affected. 

 

3. I understand that sections of any of my medical notes may be looked 

  at by responsible individuals from the Norfolk & Norwich Hospital or from  

  regulatory authorities where it is relevant to my taking part in research.     

 I give permission for these individuals to have access to my records held 

 in NHS hospital/GP surgery and/or private health provider. 

 

4. I understand that a researcher will periodically contact me, arrange to  

Participant Trial Number:  Initials:  

Date of Birth:  
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 visit at home and ask me to fill in a number of questionnaires.   

 

5. I agree to my GP being informed of my participation in the study. 

 

 

6. I understand that I may receive a number of home visits from a nurse  

 to help me to be able to use BP monitors. 

 

7. I understand that, I may be invited to take part in an interview about how  

 I have found my treatment and what impact it has had on me and  

 give my permission for this to be audio recorded. If I am interviewed agree  

 to my anonymous quotations being used for the project report and publications. 

 

8. I agree to take part in this study.     

 

________________________ ________________

 ____________________ 

Name of Participant  Date Signature 

 

 

 

 

_________________________ ________________

 ____________________ 

Researcher   Date 

 Signature 

Original stored in Central Study File; 1 copy for the patient; 1 for filing in the participant’s medical records 
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Prof John Potter 

Professor of Ageing and Stroke Medicine 

Older People’s Medicine 

Protocol reference : Version 3 
Ethics Approval Reference: 15/EE/0061 
Patient Identification Number for this trial:  
Patient Hospital Identification Number: 

 

PARTICIPANT CONSENT FORM  

 

Trial title: SERVED Memory: Feasibility study of Screening & Enhanced Risk 

  Management for Vascular Event related Decline in Memory 

Short Title:  SERVED Memory 

 

Name of Principal Investigator: Prof John Potter  

                Initial each box 

 

3. I confirm that I have read and understand the information sheet  
 dated _________ (Version …….) for the above study and have had the  

 opportunity to ask questions and had these answered satisfactorily.  

 

4. I understand that my participation is voluntary and that I am free to  
 withdraw at any time, without giving any reason, without my medical  

 care or legal rights being affected. 

 

3. I understand that sections of any of my medical notes may be looked 

  at by responsible individuals from the Norfolk & Norwich Hospital or from  

  regulatory authorities where it is relevant. I give permission for these 

 individuals to have access to my records held in NHS hospital/GP surgery 

 and/or private health provider. 
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4. I understand that a researcher will periodically contact me to arrange 

  hospital visits and will ask me to fill in a number of questionnaires.   

 

5. I agree to my GP being informed of my participation in the study. 

 

 

6. I understand that I my GP will be informed of my cognition status and will 

 be informed of any vascular risk factors that I may have . 

 

 

7.I agree to take part in the SERVED Memory study. 

     

 

________________________ ________________

 ____________________ 

Name of Participant  Date Signature 

 

 

 

_________________________ ________________

 ____________________ 

 

Researcher   Date 

 Signature 

Original stored in Central Study File; 1 copy for the patient; 1 for filing in the participant’s medical records 
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PARTICIPANT CONSENT FORM 

VERSION 1.0, DATED 30 JANUARY 2017  

 

 

A Calcium channel or Angiotensin converting enzyme inhibitor 

/Angiotensin receptor blocker regime to reduce Blood pressure variability 

in acute ischaemic Stroke (CAARBS): A Feasibility Trial 

 

 

Participant ID:________ 

 

 

Please initial each box 

 

1. I confirm that I have read and understand the Participant Information Sheet 
Version 1.1, dated 03 May 2017 for the above study, and have had the 
opportunity to ask questions. 

 

2. I understand that my participation is voluntary and that I am free to withdraw 
at any time, without giving reason, without my medical care or legal rights 
being affected. 
 

3. I understand that my GP will be informed about my participation in this 
study, and by signing this consent form I am granting permission for this. 
 

4. I understand that relevant sections of my data collected during the study may 
be looked at by responsible individuals from the study team, the sponsor, NHS 
Trust or from regulatory authorities, where it is relevant to taking part in this 
research. I give permission for these individuals to have access to my records. 

 

5. I understand that participating in this study will involve me being prescribed 
medication with the intention of lowering my blood pressure. 

 

 

6. I understand that my data will be transferred to the University of Leicester and  
the University of East Anglia for analysis.  

 

 

 

7. I agree to take participate in this research study. 
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____________  ____________  ____________ 

Patient   Date    Signature 
 

____________  ____________  ____________ 

Researcher   Date    Signature 

 
(File: 1 copy for patient, 1 copy for researcher, 1 copy for hospital notes) 

 



 

 
 

217 

Appendix E – Regulatory approvals for CAARBS 
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