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Abstract 

In order to learn a new word, young children must bring together processes of 

visual attention, visual looking and learning, visual binding of what is where, and 

processes for coordinating, forming, and updating of word-object links across multiple 

presentations. Recent research has explored the problem of word learning via a cross 

situational paradigm because it enables researchers to investigate how children learn 

words in the context of ambiguous presentations of multiple words and objects extended 

over time.  More recent research has begun to explore the mechanisms at work to support 

successful word learning in these experiments. Through manipulations of word and object 

orders, research has shown that memory and attentional looking are vital components that 

support word learning. The aim of this thesis is to use novel stimuli with tightly controlled 

visual properties to better understand the process of word learning in a cross situational 

paradigm. Overall, the results support two perspectives into cross situational word 

learning; one of gradual learning through attentional looking and association building and 

one of preferential object driven looking (familiar/ novel). These findings were replicated 

across all three of our cross situational studies regardless of procedure and stimuli. 

Although our stimuli with tightly controlled visual properties were difficult to 

discriminate, we do not believe they are the sole cause of our failure to find word learning 

in children as a group. As our experiment on object discrimination, found that participants 

were able to discriminate between the stimuli. Rather we believe our failure find overall 

learning in the cross situational word learning task, despite three near replications, 

suggests that this paradigm may not support robust word learning in infants. Thus, we 

conclude that there is need for more investigation into how individual differences in 

looking dynamics, over the course of training may influence later word learning.   
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Chapter 1: Introduction 

The complexities of word learning 

 Word learning is a complex process that is connected to multiple behaviours, aided 

by various cognitive and perceptual processes, and that develops over time. It can be 

especially hard for young children who have developing cognitive and motor systems and 

relatively little experience with their environment. To fully understand the complexity, 

imagine the day-to-day experiences of a child and their caregiver. While on a walk, a 12-

month-old child and their caregiver pass a yard that has Easter decorations set up. In this 

yard there are brightly coloured eggs spread about, pictures of carrots and flowers, and an 

Easter bunny. The caregiver points to the yard and says, “Oh wow! Look an Easter bunny 

and eggs!” The next couple of days the pair walk past the decorated house and each time 

the caregiver points to the yard and talks about what is there, “Look at the big carrot next 

to the bunny,” “Wow there is a pink tulip and a pink egg,” “Do you think the bunny will 

put some eggs out at our house?”  

 For the child to learn the new word “bunny,” several things must occur. The child 

must find and visually attend to the bunny amongst the highly stimulating decorations in 

the yard. The child also needs to process the auditory stream from their caregiver and 

parse out the individual word: “bunny.” And these two streams of information—visual and 

auditory—need to be coordinated so that the new word is mapped to the bunny rather than 

the carrot or tulip that are also present. Finally, to be able to demonstrate having learned 

the new word, the child must remember the mapping over time and retain the vital 

components to be able to point to the bunny when prompted with the novel name on the 

next walk. This scenario highlights how perceptual, attentional, cognitive, and memory 

processes contribute to, and make word learning such an interesting and complex 

phenomenon.   

 Despite this complexity, children seem to learn words with relative ease and 

surprisingly fast. Research has found children begin to show signs of word recognition as 

early as 6-months-of-age (Bergelson & Swingley, 2012), start producing words at 12-

months, and continue to rapidly develop their vocabularies within the second year 

(Bergelson & Swingley, 2010). Other research has estimated that between 1 and 2 years of 

age, children’s productive vocabulary increases by 300% (Fenson et al., 1994). To explain 

this apparent ease and the rapid pace of early vocabulary development, past research has 

focused on the particular mechanisms that help children overcome the challenges of word 

learning with a focus on biases or constraints that might limit the possible referents 



 

 

2 

 

children consider for new names. For example, research by Markman found that when 

infants are learning new words, they are more likely to assume they refer to the whole 

object as opposed to its parts (e.g., whole object constraint, Markman, 1991). Likewise, 

they will avoid mapping a new word to an object they already know a name for (e.g., 

mutual exclusivity, Markman, 1988). In addition, other research has shown children will 

focus attention on novel objects within a complex scene and upon hearing novel word tend 

to select the novel object as opposed to a familiar object (disambiguation; Carey & Barlett, 

1978; Bion, Borovsky, & Fernald, 2013; Horst, Samuelson, Kucker, & McMurray, 2011). 

 More recently, work has explored the problem of infinite referents; that is, the idea 

that any new word could refer to an infinite number of possible things in the world (Quine, 

1960), through a closer examination of children’s point of view during word learning.  In 

2008, Yoshida and Smith examined children’s visual experience from the child’s point of 

view. The children, 18- to 24-months, wore a small camera on a headband while they 

played in a naturalistic setting with toys and social partners. Yoshida and Smith found that 

even in a cluttered setting, children often have only one or two objects in their view at a 

time.  Additionally, the analyses suggested that children often select a single object to 

attend to and position within view, thereby generating their own visual experience and 

overt shifts of attention. Comparatively, Yu and Smith (2012) found that due to children’s 

short arms and small stature this leads to a limited number of objects within children’s 

view. 

In subsequent studies, researchers have examined the visual correlation of objects 

present from the child’s viewpoint during naming events. Pereira and colleagues (2014) 

found that the more visually dominant an object was at the time a name was provided, the 

more often children were able to select the correct novel object when prompted later at 

test, indicating the object’s label was learned. If the parent named an object while children 

were moving their head to shift their attention to another object, names provided by 

parents were less likely to be learned. It was also the case that sometimes parents did not 

name what the children are attending to. This led to shifts in attention to the named object, 

but also less than optimal learning situations, as children had to change from what they 

were attending to. These studies show that children’s view is more limited and focused 

than previously presumed. Yet, it is children’s sustained attention to objects during 

naming that limits the ambiguity of the naming situation and creates optimal visual 

moments for words to be heard and learning to occur (Yu & Smith, 2012; Pereira, Smith, 

& Yu, 2014).  
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 Prior research investigating visual attention has noted that young children’s 

attention is often stimulus driven such, where children change their looking based on 

movement or changes within the visual field, but predominately infants’ attention is sticky 

(Colombo, 1995; Colombo, 2001; Hood & Atkinson, 1993; Hood, 1995). The increased 

stickiness of attention over time is proposed to be key in the development of sustained 

attention in early childhood (Richards & Cronise, 2000). Taken together with the findings 

from the head mounted camera studies, infants’ sticky attention may be beneficial for 

word learning as it provides more opportunity to receive auditory input and for naming 

events to occur. In addition, this type of attention may benefit word-object mapping with 

regards to time. Research has shown that it takes time to bind a name to an object which 

requires a stable visual representation of the object (Fennell, 2012). As Pereira found, 

children that had one object in view during a naming event retained the word-object 

mapping better than if there was another object in the visual field. The sustained look 

creates more time for the word-object mapping to form indicating that the temporal 

duration in which word learning takes place is another important factor to consider for 

successful word learning to occur.  

 As reviewed above, word learning research suggests that mechanisms and biases 

can help simplify the task of children’s word-learning, but also that word learning events 

in and of themselves are not as cluttered or ambiguous from the child’s point of view as 

might have been thought. By studying how children attend to objects when hearing words, 

we can see how their sticky looking can lead to sustained visual attention, extending the 

time spent looking at an object so that a word is more likely to occur while attention is on 

the object, and thus increasing the opportunity for children to form a word-object 

mapping. This extension of attention is not only important for forming a word-object 

mapping, but also for retention of the mapping.    

 Several studies have shown that children are able to quickly form a word-object 

mapping or ‘fast map’ novel words to novel objects (Baldwin & Markman, 1989; 

Dollaghan, 1985; Fernald, Pinto, Swingley, Weinberg, & McRoberts, 1998; Heibeck & 

Markman, 1987; McGregor, Sheng, & Smith, 2005). This ability has been found in infants 

as young as 17-months of age (Halberda, 2003), with multiple novel items (Wiljinson & 

Mazzitelli, 2003), and 30-month-old infants have been shown to fast map as many as six 

novel names within a single experimental session (Golinkoff et al., 1992). However, 

additional research on fast mapping has suggested that following the initial fast mapping 

event is a period of slow mapping necessary for retention of the word-object mapping 
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(Swingley, 2010; Carey, 1978). During slow mapping children build on the word-object 

mapping created in the fast mapping event over repeated exposures leading to retention. 

The time needed to form and retain word- object mappings has been supported by research 

that has shown lower retention rates of fast mapped words in young children.  

Horst and Samuelson (2008) tested children’s ability to retain fast mapped words 

after a five-minute delay. In the task, children were presented with several known objects 

alongside an unknow novel object. The experimenter allowed the children to visually 

explore the objects before asking for a target object. The study was designed based on the 

idea of mutual exclusivity, for if the child knew the names of the familiar objects and 

asked to get a “modi” or novel worded object, they would choose the novel object, as the 

familiar objects already have corresponding labels. Horst and Samuelson found that 24-

month-old children were able to learn the novel words in the referent selective task, but 

the children’s retention of newly formed word-object mappings after a five-minute delay 

was at chance levels. Horst and Samuelson argued that the poor retention found for the 

novel words may be due to the competition created from the familiar objects in a referent 

selection task.  

To further investigate how competition affected word learning Horst and 

colleagues (2010), designed a follow up study. They tested whether the number of objects 

present on a referent selection task or the number of competitor objects influenced 30-

month-old children’s ability to learn and retain fast-mapped names. The results suggested 

that although the number of competitor objects did not hinder children’s initial word-

object mappings, they did hinder retention, where only participants who saw few 

competitor objects were able to retain the words. Furthermore, results indicated that 

children had often split their attention across the all objects both novel and familiar. This 

research suggests that competition for attention can perturb word-object retention and that 

in order to learn and retain new word-object mappings, children need to spend more time 

and attentional resources focusing on the target.  

In a similar study investigating word retention of fast mapped words, Kucker and 

Samuelson (2012) sought to expanded Horst and Samuelson’s findings through a 

replication with the addition of a familiarization period prior to referent selection. In this 

study, children were familiarized with either the novel names or novel objects to be 

mapped prior to a referent selection task. Kucker and Samuelson (2012) replicated the 

finding that 24-month-old children also could not retain fast mapped words after a short 

five-minute delay. In addition, the results showed that children’s familiarity with the 
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objects, but not the words, affected the word-object link, where a more novel object can 

detract from word learning.  These findings led Kucker, McMurray, and Samuelson (2015, 

see also McMurray, Horst & Samuelson, 2012) to theorize that children are able to form 

initial word-object mappings quickly but that this initial mapping must be revisited 

multiple times subsequently to create a mapping stable enough to support demonstrations 

of retention. Specifically, integrating the word-object mapping into memory requires time 

and multiple exposures.   

 Taken together, children’s short arms, sticky attention, and slow mapping shows 

that word learning is still a very complex issue dealing with visual attention, stimuli 

influences, and extended periods of time. Any study of word learning needs to account for 

how infants attend to different objects in their environment, how they coordinate attention 

between visual and auditory streams, how time affects how the mapping is made and 

retained, and how the novelty and familiarity of objects influence attention to learn words.  

More recently, research has offered a way to understand these aspects of word learning, 

with the study of cross situational word learning.  The design of cross situational word 

learning presents multiple words and objects in an ambiguous context such that the correct 

mappings can only be inferred via compilation of instances experienced over time. This 

paradigm allows researchers to investigate how children’s attention and memory for word-

object mappings change and develop over time.  

 

Cross Situational Word Learning 

 Cross situational word learning proposes that children can learn the names of 

objects over multiple ambiguous exposures, despite moment-to-moment uncertainty as to 

the correct word-object mapping. In laboratory cross situational word learning paradigms, 

several novel objects are presented on a screen, accompanied by novel words. On the first 

presentation of the novel words and referents it is not clear which word corresponds to 

which object. However, after repeated presentations the co-occurrences between the 

objects and their referents becomes more certain as the referents will always be 

accompanied by the matching object. 

 In 2007, Yu and Smith, tested adult word learning in a cross situational paradigm. 

Participants were shown pictures of uncommon objects paired with pseudowords. 

Eighteen word-object pairs were tested in three conditions; 2 x 2 (where each trial 

presented 2 objects and 2 words), 3 x 3, and 4 x 4. The object position and word order 

were randomized, so position and order provided no indication of which object 
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corresponded to which word. Over the course of training, participants saw and heard each 

of the word-object pairs six times. Following training trials, one word was presented 

alongside four objects and participants were asked to select the picture of the object named 

by that word. This test was repeated for all 18 words. Yu and Smith found that adults in all 

three conditions learned the words at above-chance levels with the smaller set sizes 

leading to more word learning. They argued that participants used the statistics of the co-

occurrences between the words and the objects to build associations over the course of 

training and learn the correct word-object mappings indicated at test.  

 A year later, Smith and Yu (2008) tested whether 12-month-old children could 

similarly learn words in a cross situational word learning paradigm. Children were tested 

in a 2 x 2 condition with only 6 word-object pairings. During training infants were 

presented with 30 4-second training slides/trials. The slides presented two novel objects on 

either side of a screen and two novel words were spoken one after the other.  At test one 

word was repeated while two objects were presented on the screen. Smith and Yu (2008) 

found that infants looked significantly more to the object that had most often appeared 

when each word was presented in training, suggesting that infants are also able to learn 

words in the cross situational paradigm.  

 However, the underlying mechanism that enables this learning is under debate. 

Currently, two theories have been proposed to explain cross situational word learning. 

Proponents of association learning suggest that participants track all possible pairings 

across presentations and statistically weigh the most frequent co-occurrences as the correct 

mappings (Kachergis, Yu, & Shiffrin, 2013; Yu, Zhong, & Fricker, 2012). In contrast, 

proponents of hypothesis testing suggest that when exposed to a novel word and multiple 

possible referents, participants create an initial hypothesis as to what the correct word-

object mapping is and either revise or confirm that hypotheses when presented with 

further evidence (Trueswell et al., 2013).  

 Although both of these theories have support in empirical studies, it has also been 

argued that they cannot be distinguished at a mechanistic level because both use the same 

co-occurrence data and account for the same pattern of learning (Smith, Suanda, & Yu, 

2014). Specifically, Smith, Suanda, and Yu argue it is this structure of co-occurrence data 

that enables learners to pick up on the regularities of the underlying correspondences 

through competition and mutual exclusivity, which allows the learner to weed out spurious 

pairings, but does not provide differentiating theoretical data. Smith, Suanda, and Yu 
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(2014) reasoned that a theory integrating processes of visual attention, memory, and 

novelty, as well as how each influence word learning, is needed.   

 The cross situational word learning literature has provided some insight as to what 

contributes to successful word learning events. Yu and Smith (2011) conducted a 

replication of the 2008 cross situational word learning study with the additional use of an 

eye tracker. This study followed the same procedure as Smith and Yu, 2008. Yu and Smith 

(2011) found that 14-month-old children had significantly more looking to the target 

object compared to the distractor object at test, replicating the original word learning 

findings. Analysis of children’s moment-to-moment eye movements during training 

revealed that children who learned more words had distinctly different patterns of looking 

compared to children who learned fewer words. Strong learners had more stable eye 

movements with fewer, but longer fixations. This study suggested that children learn 

words through sustained attention to objects on individual training trials, which gave 

participants more time to hear and map the word onto the object.  

 To further investigate how attention influences word learning, Yu, Zhong, and 

Fricker (2012) set out test whether adults’ attention to word-object pairs affects learning 

and what looking patterns over the course of training lead to successful word learning at 

test in a cross situational study. Their study was composed of three phases. The first phase 

served to familiarize the participants to certain objects before training and test, three 

objects were presented on a screen with the words, “Ready for test.” Participants were 

then informed that they would be learning word-object mappings and given instructions 

for the task. The second and third phases followed the same procedure as Yu and Smith’s 

(2007) 4 x 4 training condition where 4 objects were shown on a screen with 4 

pseudowords spoken. The test was an 18- alternative forced choice test, where all objects 

were presented on the screen at once while names corresponding to the objects were 

played auditorily.   

In order to systematically analyse word learning over the course of training, 

subjects were divided into groups based on how many words they demonstrated having 

learned at test. In the fine-grained eye tracking analysis, Yu and colleagues (2012) found 

that participants, as a group, attended equally to all objects on the screen with similar 

number of fixations and fixation lengths when no words were present. However, 

participants selectively attended to objects differently once they heard a word. After 

hearing a word, participants selectively shifted their attention between the objects and thus 

indicated the word-object mapping they were processing. This selective attention changed 
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over the course of training, such that participants attended to objects they had previously 

looked to after a word was stated, if that object was currently present. If the previously 

attended object was no longer present on the trial, strong learners shifted looking to a 

novel (not previously attended) object, whereas weak learners continued to look at 

previously-attended-to objects. Over the course of training, strong learners were able to 

remember and retain information from previous trials and use that information to guide 

looking. This led strong learners to gradually build statistical evidence for the correct 

word-object mappings. Yu and colleagues contended that word learning requires multiple 

process including memory of the objects along with attention. Their findings reveal that 

word learners were able to control their attention after hearing a word and selectively 

attended to objects that they had begun to build an association for. In addition, strong 

learners were able to remember information from previous trials, such as learned word-

object associations to guide attention to learn more novel word-object mappings.  

An important finding to note is that strong learners often happened to look at the 

object that went with a given word at the start of training by chance. Thus, it could be that 

the difference between strong and weak learners was less a difference in learning ability 

between participants, but rather a difference in the luck of an initial look. By this 

alternative account, strong learners learned more words because over the course of 

training they had more opportunity to confirm and strengthen an initially correct word-

object mappings, whereas weak learners had to overcome initially incorrect word-object. 

The results indicate that selective attention, as opposed to sustained attention, leads to 

greater word learning, suggesting that selective attention may develop over age as memory 

also develops. 

 Memory of objects has been shown to help adult participants learn word-object 

mappings, as they are able to use this prior knowledge to guide attention to form and learn 

words. In order to test how infants’ attention and looking behaviour may be influenced by 

memory constraints of objects’ familiarity and novelty, Smith and Yu (2013) repeated 

their 2008 cross situational word learning study but structured the training trials to test 

local familiarity and novelty effects in 12- and 14-month-old children. In addition, Smith 

and Yu used an eye tracker to track infants’ attention over training. The order of the 30 

training slides was manipulated such that each of the six objects were presented 5 times in 

a row in the same location over six blocks. Therefore, over the course of one block, a 

single word and object were presented in repetition with a more novel object and word. In 

contrast to previous findings (Smith and Yu, 2008; Yu and Smith, 2011), there was no 
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difference in infants’ looking to the target object and distractor object at test, suggesting 

that the local novelty effect disrupted overall learning.  The data suggests that over the 

course of the training trials participants decreased their looking to the repeated objects and 

in turn increased their attention to the novel stimuli leading to less word learning. 

However, there were individual differences between children that led some to learn words 

(strong learners) while others did not (weak learners). A difference between strong and 

weak learners could be seen over the course of training; strong learners gradually 

accumulate to the novel stimuli and increased their looking to the repeated, familiarized 

stimuli, while weak learners continued looking to the novel stimuli throughout training. 

These results suggest that not only does novelty attract infants’ attention, but it detracts 

from word learning. It was only the infants who were able to overcome this “novelty trap” 

and look to the repeating stimuli were able to exhibit word learning.  

These findings appear to support the results of Yu, Zhong, and Fricker (2012), 

showing that attention to a more familiar objects led to greater word learning. Smith and 

Yu (2013) show that strong learners were able to overcome the novelty influence and shift 

their attention to the repeating stimulus which led to word learning. The research suggests 

sustained attention provides more opportunity to hear the word when looking at the right 

object, building up the word-object association. However, children who attend to the 

varying objects become distracted by the novelty and are not able to build up enough time 

with the objects and co-incident words to form the mappings. Therefore, these studies 

suggest that the ability to remember and attend to previously seen objects can strengthen 

word-objects association, while novelty can detract attention and perturb learning word-

object mappings.  

 Vlach & Johnson (2013) sought to extend the research findings of Smith and Yu 

(2013) by testing memory contrasts on 16- and 20-month-old infants’ cross situational 

word learning.  The training trials were presented in block design consisting of 6 learning 

blocks, with half of the object-label pairings presented in immediate succession (massed) 

with the other half distributed across time (interleaved). The results showed that when the 

stimuli were presented in immediate succession both age groups were able to learn the 

pairings. However, only the 20-month-old children learned the word-object mappings 

when the trials were interleaved. The looking analysis revealed that 16-month-old children 

initially attended to objects presented in a massed fashion but over time selectively 

attended to the objects presented in an interleaved fashion. In other words, earlier in the 

experiment these children looked more to items that were presented repeatedly and thus 
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more familiar from trial-to-trial, and later looked more to items that did not repeat often 

and thus were more novel. In contrast, the 20-month-olds did not differ in their looking to 

massed and interleaved objects.  These results suggest that the 16-month-old children were 

not aggregating information from prior presentations. Vlach and Johnson argued this was 

due to novelty seeking behaviour in this younger age group, evidenced by their increase in 

looking to the interleaved object at the end of the learning block compared to looking to 

the massed objects in the first block of learning. The tendency of 16-month-olds to shift 

attention to the novel, interleaved object, resulted in these infants not building enough 

memory of the previously presented word-object mappings to show word learning at test. 

This study highlights not only the role memory plays in cross situational word learning, 

but how attention to objects that are relatively more familiar or novel may thus influence 

word learning.   

 Together the past three studies suggest that attending to similar objects over 

training leads to better word learning at test. Noting while adults are able to selectively 

attend to and remember these familiar objects, infants have a hard time disengaging from 

more novel objects in order to form and retain word-object associations. To further 

investigate how participants’ selective attention may led to better word learning 

Kachergis, Yu, and Shiffrin (2013) allowed word learners to affect the structure of a cross 

situational word learning task through an active versus passive learning paradigm. In an 

active-learning condition, participants controlled what objects they saw and heard (named) 

on the next trial, whereas in a passive-learning condition, participants were given the trials 

a random set order with no repeating presentations. Kachergis et al. found that active 

learners performed better than passive learners; in addition, active learners who repeated 

multiple pairs per trial performed better than ones who repeated only one pair. Kachergis, 

Yu, and Shiffrin (2013) argued that the multiple presentations active learners gave 

themselves limited their working memory load by providing more processing to be 

allocated to form the word- object mappings. Essentially, by repeating multiple pairs with 

a previously unseen or novel pair they were able to practice the repeated pairs, while 

allowing learning for the new pair, engaging mechanisms like mutual exclusivity to aid in 

word learning. This work further supports the previous findings indicating that although 

novelty attracts attention, it subsequently detracts from learning since it does not provide 

repeated information that can help build word-object association.  

 Thus far research has shown that how participants attend to objects can affect their 

ability to learn words. Furthermore, when the order and presentation of the objects are 
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manipulated adults will continue to attend to familiar objects, even when they can control 

the presentations, while children will attend to novel objects. Recent work by Roembke 

and McMurray (2016) has further examined how competition between objects affects 

word learning in a cross situational paradigm.  

Roembke and McMurray tested adults’ ability to learn 8 word-object mappings via 

a cross situational word learning paradigm with altered pairing presentations. Each trial 

presented three objects on the screen with one target word. At the end of each trial 

participants had to click on the object they believed corresponded with the word they 

heard. Over the course of training, each word had a target object (always present when the 

word was stated), a high co-occurrence competitor (that appeared on 60% of trials when 

the word was stated), and a low co-occurrence competitor (that appeared on 40% of trials 

when the word was stated). Participants’ eyes were tracked over the course of the 

experiment to analyse their eye movements. Analysis of eye movements revealed that 

even when adults selected the correct target object on a trial, they still fixated on other 

objects more than chance suggesting adults maintain multiple hypotheses as to the correct 

word-object pairings over the course of training. Specifically, participants fixated the high 

co-occurrence competitor more, compared to the other objects, although this difference 

appeared within the later portion of individual trials. In addition, Roembke and McMurray 

measured the number of encounters with an object and found it to be a significant 

predictor of word-object mapping accuracy, suggesting that increased association leads to 

better word learning.  This work brings the two theories, hypothesis testing and 

association, together, suggesting that both may account for how participants learn words. 

Although this work leaves the debate between the theories unresolved, it provides more 

insight as to how participants attend to objects in a cross situational word learning 

paradigm. 

 Initial research with the cross situational word learning paradigm confirmed that 

infants could learn novel word-object mappings via information compiled over multiple 

ambiguous naming instances. More recent manipulations of the paradigm and tests with 

participants of various ages have provided evidence of the mechanisms that support and 

strengthen word-object mappings, such as sustained and selective attention and those that 

detract from forming word-object mapping, such as objects’ novelty and memory.  
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Outline of Thesis 

  Prior work using the cross situational word learning paradigm has provided 

insights into the necessity of coordinating visual and auditory attention, how novelty and 

familiarity of the referent object influences visual attention and suggests an important role 

for memory processes in shaping learning in this task. The aim of this thesis is to further 

explore the cross situational word learning task, detailing how children’s growing 

representations of the objects are reflected in their looking dynamics, how these looking 

dynamics shape word-object mappings, and how the word-object mapping process builds 

over the course of training and test, so as to use this knowledge to boost children’s 

learning in this task.   

 To achieve this aim, in Experiment 1 we sought to replicate the seminal cross 

situational word learning paradigm of Smith and Yu 2008 with the addition of looking 

measures during training and test. Our goal was to replicate their word learning findings 

and the sustained attention looking dynamics found in Yu & Smith (2011). Our one 

change from the prior study was the use of more controlled stimuli that varied metrically 

in similarity so as to enable manipulation of looking dynamics via changes in the objects 

in subsequent work. However, in Experiment 1, we were unable to find the high rates of 

looking during training or replicate the prior finding of word learning at test. We did, 

however, find similar patterns of looking dynamics to those found by Yu and Smith 

(2011) when we divided our subjects into strong and weak word learners. We additionally 

investigated participants’ looking during training to objects that corresponded to words 

that they later showed learning for versus those they did not evidence having learned, 

which shed more light on how differences in the looking dynamics of strong and weak 

word learners might be related to learning.  

 Since we were unable to replicate in Experiment 1 the overall word learning found 

by Smith and Yu (2008), we decided to run another replication study with fewer 

methodological differences. In Experiment 2, we again did not find similar levels of 

looking during training or overall word learning at test and, further, we did not find a 

difference in looking dynamics between our strong and weak word learners. However, we 

did replicate our Experiment 1 finding of differences in strong and weak learners’ looking 

throughout the course of training to learned and non-learned word-object mappings. This 

finding suggests that children look to all objects similarly (same fixation durations and 

number of fixations) over the course of training, but at test strong learners continue to look 

to objects they had accumulated more time looking at during training and weak learners 
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switch to look at objects they spent little time looking at during training. Therefore, it is 

important to understand how these objects may have led to different types of looking, as 

well as both novelty and familiarity preferences.  

Our objects are quite different from the stimuli used in Smith and Yu’s studies and 

it is possible that this difference is affecting looking behaviour and word learning in our 

experiments. The individual stimuli we used share similar qualities that may not provide 

enough information for the infants to tell individual objects apart, garnering less attention 

and overall lower levels of looking, leading to poorer word-object mappings. Thus, we 

decided to examine the discriminability of our stimuli. We designed a novel test of infant 

discrimination and used it to systematically examine discrimination of our stimuli in 

infants from 12 to 30 months of age. To make sure the new methodology produced viable 

results, in Experiment 3a we tested adults.  We found that adults were able to discriminate 

the objects and that their ability to discriminate systematically increased with larger 

changes in the stimuli. We then tested children in Experiment 3b.  Examination of 

children’s performance in terms of proportion looking for whole trials revealed that 

children’s discrimination of the stimuli was far less robust than the adults’ and was further 

influenced by their age, the degree of change, and the specific stimulus property that was 

changed. The overall pattern of findings was not systematic with regard to age, nor 

changes in the stimuli. Therefore, we reanalysed infant’s looking data using a time course 

analysis to see how their looking changed over the trial. The time course data suggest that 

children were able to discriminate the stimuli, but that this ability was still variable 

depending on children’s age, stimuli properties, and the degree of the change.  

The data from Experiment 3 suggest that the stimuli we used for our cross 

situational word learning tasks in Experiments 1 and 2 were unlikely to be the sole cause 

of the low levels of looking and learning we found in those studies. However, we decided 

to rerun the cross situational word learning study using Smith and Yu’ stimuli in an exact 

replication.  In addition, we decided to not only use the traditional overall looking analysis 

but also the time course analysis used in Experiment 3b to get a more detailed view of 

children’s looking during the test procedure.   

Once again, we did not replicate prior findings in terms of overall word learning, 

nor the looking dynamics found during training in the Smith and Yu studies. We did 

however, replicate our prior finding of differences in strong and weak learners looking to 

the learned and non-learned words during training. The findings from the time course 

analysis emphasized how looking to the target object changes within the time course of the 
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test trial. In particular, children look back and forth between the target and distractor, 

rather than just fixating the target (or distractor) for an entire test trial. This looking 

oscillation is potentially driven by preferences or even word learning developed during 

training, but also potentially driven more by intrinsic properties of a two-item preferential 

looking task. The general discussion integrates the findings from the four experiments and 

considers the evidence for whether infants are learning in the cross situational word 

learning paradigm or looking at test is driven by object preferences. Implications for future 

work and the problem with replicability are also discussed. 
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Chapter 2: Replication of Smith & Y, 2008 with Novel Stimuli 

2.2 Experiment 1 

 The aim of Experiment 1 was to replicate the cross situational word learning 

findings of Smith and Yu. The original study conducted in 2008 had both 12-and 14-

month-old children, however in 2011 Yu and Smith replicated these results only using the 

14- month-old age group. Although the reason behind the choice to use only 14- month-

olds in the later study was not stated, it may be due to the fact that 14-month-old children 

showed bigger and more reliable preference for the target than the 12-month-old children 

in the 2008 study. The 2011 study also differed from the 2008 study by adding additional 

analyses to investigate looking patterns that are related to better performance in this task. 

Because we wanted to replicate all of Smith and Yu’s findings and because the 14-month-

olds had such robust results, we decided to only use 14-month-olds for Experiment 1. In 

addition, we used novel stimuli with metrically controlled properties. These objects can be 

manipulated as to create objects that are very distinct in multiple properties or very similar 

within a certain property. Through different object manipulations we can further 

investigate how objects’ properties can shift looking behaviour and possibly word 

learning. Lastly, we increased the test trial length by 2000 ms to 10000 ms see the full 

trajectory of looking throughout test, as well as the effect of words had on looking 

(Twomey & Westermann, 2016, Mather & Plunket, 2010). 

 

2.2.1 Methods 

2.2.1.1 Participants 

The final sample included twenty-three 14-month-old infants (13 males, 10 

females; 13.09-15.20) who were recruited from a Midwest college town in the United 

States through birth records. All infants were from middle class working families that 

spoke English more than 50% of the time. Sample size was pre-determined to be within 

the range of the prior studies, 27 and 18 14-month-old children for Smith and Yu (2008) 

and Yu and Smith (2011), respectively. In our study, an additional five children began the 

experiment but did not finish due to fussiness. An additional 11 infants completed the 

study but did not contribute data because either their average looking during the training 

trials was more than 2 standard deviations below the overall mean (5), or they 

demonstrated a bias to look to the right or left that was +/-  2 standard deviations of the 

total average looking to the right or left (6).  
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2.2.1.2 Stimuli 

Six novel words were chosen from a list of novel words that follow English 

phonological probabilities and were recorded by a female speaker in isolation. Five of the 

six words were the same as those used by Smith and Yu’s (bosa, manu, colat, kaki, and 

regli). The sixth word used by Smith and Yu (gasser) was currently used in another word 

learning study in the lab and was therefore replaced with gake. Six novel objects were 

created to have well-controlled metric shape and colour properties (see Figure 1). The 

shapes were composed of radial frequency components that provide even parametric 

neural spaces without category boundaries (Zahn & Roskies, 1972) and form a 360 degree 

space.  The six stimuli shapes were sampled such that adjacent shapes differed by 60 

degrees. Colours were also sampled from a 360 degree continuous colour wheel such that 

adjacent colours differed by 60 degrees (CIE Lab, 1976). Colour and shape were randomly 

paired to make 6 unique “beastie” objects. Eyes and legs were added to the objects to 

highlight their differences and to increase children’s interest. The stimuli were presented 

on a 37-inch monitor with a white background. The words were presented over the 

monitor’s loudspeaker. The beasties were between 8 to 10 inches in projected size, 

separated on the screen by 20 inches, and subtended an average visual angle of 16 degrees. 

This is the same visual angle of Smith and Yu’s, whose stimuli size ranged from 12 to 14 

inches, separated by 30 inches. 

 
2.2.1.3 Procedure  

Infants were seated on their caregiver’s lap 42 inches from the screen. Eye 

movements were recorded through a front view camera located at the base of the screen, 

directed up towards the infant. An additional back-view camera recorded the screen and 

captured what the infants saw. Caregivers wore blackout sunglasses to obscure their vision 

Figure 1. The six beastie stimuli. 
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throughout the entire procedure and were asked to refrain from pointing to or otherwise or 

drawing their child’s attention to the screen.  

Similar to Smith & Yu (2008), on each of the thirty training slides, two beasties 

were simultaneously presented for 4000 ms. The first word was presented 500 ms after the 

onset of the slide. The second word was presented 500 ms after the offset of the first word. 

All six words were 1000 ms in length. Over the course of the 30 training slides, each of 

the six word-object pairs occurred 10 times. The right/left position and the order of the 

word presentation was randomly determined for each child such that there was no 

meaningful relation between the temporal order of the words or spatial position of the 

objects. In addition, the pairing of names and objects was randomly determined for each 

child.  Each word-object pair co-occurred with every other word-object pair five times in 

the training trials. An attention grabber (picture of a Sesame Street character) appeared in 

the centre of the screen for three seconds before the start of the first training slide and 

every three slides thereafter to maintain attention. The entire training, 30 training slides 

and 10 attention grabber slides, lasted less than three minutes. 

Training was followed by 12 test slides, which were presented for 10000 ms each. 

On each test trial two objects were presented on the screen but, unlike training, only one 

word, repeated four times, was presented. The object with which this word had co-

occurred during training was designated the target. The other object served as the 

distractor. The distractor object was randomly chosen for each test trial. Each of the six 

words were presented twice. The left/right location of the objects, target and distractor, 

was counterbalanced.  

 

2.2.1.4 Data Analysis 

The front and back view camera recordings were time synchronized via DataVyu 

Coding Software (DataVyu Team, 2014). One coder segmented the back-view recordings 

into the 30 training slides and 12 test slides, additionally noting which object was on the 

left and right, as well as which word was presented first and second. Because these coders 

could have learned the word-object mappings over the course of viewing the experiment, 

they did not code looking direction. Rather, a second coder, blind to the correct pairings, 

categorized the direction the infant looked on each trial, frame by frame, as either right, 

left, or off. To check reliability, a random sample of 25% of the frames from both the front 

and back view recordings were coded by two additional coders. Coder agreement was 
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100% for trial time onset and offset, as well as position and identity of the beasties and 

98% for direction of looking.  

Data files extracted from Datavyu listed trial number, trial duration, objects, words 

or trial type (training/ test) and looking direction. Looking direction for both the training 

and test trials was subsequently classified as looks to the target, distracter, or off by 

matching the raw coding to the file used to generate the specific experimental session.  

For data analysis, we ran a series of mixed-effects models using the lmer function 

in the linear mixed-effects package lme4 (Bates, Maechler, Bolker, & Walker, 2015) in R 

(R Core Team, 2016). Using mixed models allows us to estimate simultaneously, but 

separately, the main effects of different variables, as well as random effects. For variables 

with unequal variance we used the Welch correction. 

 

2.2.2 Results 

The purpose of this study was to replicate the cross situational statistical word 

learning results of Smith and Yu (2008) with the metrically controlled novel “beastie” 

objects. In addition, we were interested in investigating how looking during training 

relates to successful word learning (see also Yu and Smith, 2011). Thus, in what follows 

we first compare the descriptive data from training and test trials to Smith and Yu (2008) 

and Yu and Smith (2011), we then evaluate word learning based on looking time to the 

target and distractor at test, and finally individual looking dynamics during training and 

test. 

 

Replication Results 

Training Trials 

On average, infants looked at the right and left sides of each training slide for equal 

durations. Preliminary data analysis indicated infants’ average total looking (sum of right 

and left looking) for the 4000 ms training trials was 3315 ms. Infants spent at least 1000 

ms looking at each object on a training slide on 53% of the trials. They spent at least 500 

ms looking at each object on 77% of the training trials.  Smith and Yu (2008) found that 

infants looked an average of 3040 ms on training trials and looked to both sides (both 

objects) for at least one second on 87% of the slides. Thus, although our infants had a 

longer average total looking time than those in Smith and Yu’s study, they looked to both 

objects for 1s on fewer trials. 
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Test Trials 

Infants looked at each 10000 ms test slide for an average total of 6814 ms. In 

comparison, Smith and Yu (2008) found that infants looked on average 6100 ms to each 

8000 ms test slide. Overall, infants did not look longer to the target (3451 ms) than the 

distractor (3363 ms), t(22)=0.70, p=0.49, as can be seen in Figure 2. At the overall level, 

then, our results do not replicate the findings of Smith and Yu (2008; for a full comparison 

to Smith and Yu see Table 8 in Appendix).  

 
In 2011, Yu and Smith replicated their previous findings of significantly longer 

looking to the target at test. In addition, they investigated infants’ looking patterns during 

training in order to identify what contributed to successful learning. They did this by 

grouping children into strong word learners and weak word learners and comparing their 

looking dynamics during training trials. We followed-in with a similar analysis. 

 

 Training Trials Looking Dynamics 

To examine how looking dynamics during training were related to successful 

learning, Yu and Smith (2011) classified children, not by how many words were learned, 

but overall looking more to the target or distractor at test. Those who spent more time 

looking at the targets were strong word learners, and those who spent more time looking at 

the distractors were weak word learners. Yu and Smith found that 12 of 18 children they 

tested were strong learners by this criterion. Using Yu and Smith’s criterion, 10 of the 23 

infants we tested were strong word learners. Our strong word learners looked significantly 

more to targets overall (3745 ms) than distractors (3270 ms), t(9)=-4.87, p<0.001 and 

showed longer looking to individual targets than distractors for an average of 3.6 out of 6 

Figure 2. Mean looking time to distractor and target per 10000 ms test trial 
(and standard error of the mean). 
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words. The other 13 infants, classified as weak word learners, looked significantly more to 

the distractor overall (3590 ms) than the target (3069 ms), t(12)=5.38, p<0.001 and 

showed longer looking to individual targets than distractors for 2.8 of 6 words.   

With respect to training, Yu and Smith found that that strong and weak word 

learners did not significantly differ in their average looking time during training (M= 2960 

ms for the strong and M= 3070 ms for the weak word learners). However, they did find a 

difference when they calculated average number of attention switches or fixations and 

average length of the longest fixation. Strong learners had fewer fixations (M=2.75) and a 

longer max fixation (M= 1690 ms), compared to weak learners who had more fixations 

(M= 3.82) and a shorter max fixation (M=1210 ms). Yu and Smith concluded that it was 

strong learners’ sustained attention to objects during training that led to the learning 

demonstrated at test. 

 
Similar to Smith and Yu, we found that the average fixation time during training 

did not differ significantly for strong and weak learners, strong learners: M=1418 ms weak 

learners: M=1271 ms, t(18.92)=1.48, p=0.156. Our strong and weak learners did differ in 

their longest fixation during training, strong word learners had significantly longer 

fixations (2261 ms) than weak learners (1984 ms), t(20.91)=2.75, p<0.05. However, there 

Figure 3. Strong and Weak Learner looking to distractor and target at test. 
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was only a marginal difference in the number of fixations, 2.58 v 2.90 for strong and weak 

learners respectively, t(19.16)=-1.97, p=0.06 (see Figure. 3).  

 
We found some indication of a difference in looking dynamics for strong and weak 

learners during training, although it was not as pronounced as that found by Yu and Smith, 

and overall the looking dynamics of our infants are more similar to those of the weak 

learners in Yu and Smith (2011). Nevertheless, at the level of individual word-object pairs 

even the weak word learners showed greater looking to targets compared to distractors for 

some words. Thus, we next examined looking dynamics during training for words that 

infants later evidenced in test that they had learned and did not learn.  

A word was marked as learned by an infant if average looking to the target across 

the two test trials was greater than average looking to the distractor. All six words were 

either marked as learned or non-learned for each participant. For each word, we 

accumulated the amount of time infants looked to the object that was its correct pair for 

each training trial. For example, if child X learned the words “bosa”, “gake”, and “manu” 

by correctly looking longer to the blue, green and magenta objects at test, we totalled all 

child X’s looking to the blue, the green, and the magenta objects (individually) across all 

the training trials. The average of these totals was child’s learned word looking. We did 

the same for the three objects child did not learn to get their non-learned word looking. 

Overall, we found that the average looking time to the correct object during training trials 

was slightly higher for words children later demonstrated having learned at test, however 

(b) 

Figure 4. Looking dynamics during 4000 ms training trials: (a) Mean number of 
fixations for strong and weak learners (and standard error of the mean). (b) Mean 
length of longest fixation for strong and weak learners (and standard error of the 
mean). 
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this difference was not significant, M=2073 ms for learned words, M=2014 ms for non-

learned words, t(22)=0.438, p=0.665, see Figure 5). 

 
Yu and Smith had found changes in looking dynamics over the course of the 30 

training trials that were related to whether infants were strong or weak learners. Thus, we 

examined correct object looking by blocks of training trials for the strong and weak 

learners. This data set is presented in Figure 6. Note that all the data are looking to the 

correct object during training, but the green bars are for words for which at test infants 

looked longer to the object that corresponded to that word at test (our measure of 

learning), whereas the orange bars are for words infants looked longer to the distractor 

object at test. As is clear in the Figure 5, average looking to the correct object declines 

over training blocks for both strong and weak learners and learned versus non-learned 

word-objects. However, it is also clear that there is a difference in the strong and weak 

learners—strong learners have higher average looking to the correct object for their 

learned words from the beginning of training whereas weak learners have higher average 

looking to the correct object for their non-learned words from the beginning of training.  

Figure 5. Mean looking to the correct object per 4s training trials for learned 
and non-learned words (and standard error of the mean).  



 

 

23 

 

 
This was confirmed with a with a mixed-effects model that included word type 

(learned and non-learned), learner type (strong/weak learner), and training trial block (1-

10, 11-20, 21-30) predicting looking time. Likelihood ratio tests indicated that the best 

fitting random effects structure contained random intercepts for subject. The fixed effects 

justified by the data included a two-way interaction of word and learner type and a main 

effect of trial block. There was significantly more looking to the correct object on the first 

ten trials (1-10) than the middle ten (11-20), t(115)=3.75, p<0.001 and more looking to 

the correct object on the middle ten trials (11-20 ) than on the last ten ( 21-30), 

t(115)=4.84, p<0.001. These findings indicate that both the strong and weak learners look 

less to the correct object as training proceeded and suggests participants were habituating 

to these objects over the course of training trials.   

The two-way interaction between word type and learner type was such that strong 

learners looked significantly more to correct objects during training for words that they 

would later demonstrate they had learned whereas weak learners looked more to the 

correct object for words for which they would later fail to demonstrate learning, 

t(115)=4.99, p<0.001.  These results show that during training strong word learners spend 

Figure 6. Mean looking to the correct object per 4s training trials for learned and non-
learned words (and standard error of the mean) by strong and weak leaners.  
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more time looking at objects associated with words they later demonstrated having 

learned, whereas weak learners show the opposite, they look longer to objects paired with 

words they did not show learning for at test.  

 

2.2.3 Discussion 

Overall, we were not able to replicate the word learning found by Smith and Yu in 

our cross situational word learning paradigm. However, we did see similar looking 

dynamics for strong and weak learners; strong word learners had significantly longer max 

fixation length, but only marginally fewer fixations. Although we were not able to 

replicate overall word learning, the looking dynamics found in the strong word learners 

support Smith and Yu’s claim that sustained attention leads to more word learning. Further 

examination of children’s looking dynamics revealed that strong and weak learners have 

different attentional shifts from training to test for objects depending on if they correspond 

to a word that they learned or did not learn. Over the course of training both strong and 

weak learners habituate to the objects regardless of whether they were for learned or non-

learned words and both strong and weak learners accumulated more looking time for some 

objects and less looking time for others. However strong word learners spent more time 

looking to objects that they would go on to show word learning for at test and weak 

learners spent more time looking to objects during training that they would go on to not 

show word learning for at test, and these differences in looking emerged within the first 

block of training trials. At test, then, strong learners continued to look to at objects that 

they accumulated more looking to over the course of training when they corresponded to 

the target word, weak learners instead shifted their looking to more novel objects that 

served as the distractor.  

The looking dynamics suggests that sustained attention found in the strong 

learners’ max fixation length and number of fixations leads to better word learning, 

supporting the findings from Yu and Smith (2011). However, the additional analysis 

investigating looking for learned and non-learned words may also suggest that strong 

learners may have learned more words by happenstance and preferences for previously 

attended objects. Strong word learners started looking to objects that they would go on to 

show word learning for within the first block.  Yu, Zhong, and Fricker (2012) found that 

strong learners happened to select the target objects early in training. They argued that 

starting with the correct mapping allowed strong word learners to build up the correct 

associations during training, whereas weak learners, who happened to select the incorrect 
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objects, needed more time to recover to show word learning at test. Our strong learners 

looking to the objects earlier on may have provided them more time to build the 

associations and at test, they were able to overcome possible novelty preferences and 

continue to look to these objects.   Our weak learners did not necessarily look to incorrect 

objects, but instead spent little time over the course of training looking to objects that 

corresponded with words that would go on to learn, suggesting that their looking at test 

may be more driven by novelty than words. This implies that the differences between 

strong and weak learners may also be due to object preferences, specifically novelty and 

familiarity of the objects, as well as selective attention to these objects over the course of 

training. Preliminary analyses revealed no object effects, i.e. infants as a group did not 

show evidence of a preference for any one of the six objects during training or at test. Yet, 

it is still possible that individual children preferred particular objects and that these 

preferences, rather than learned word associations, drove looking behaviour at test. These 

results suggest the need for more investigation into infants’ object preferences and 

attention to fully understand how children learn words in cross situational word learning.  

  In sum, like Yu and Smith (2011) we do see similar relations between looking 

during training and demonstrations of learning at test, suggesting that examination of 

visual exploration during training as a means to understand the process of cross situational 

word learning is promising. In particular, the fact that strong and weak learners show 

different patterns of looking from the first block of training and that these patterns are 

stable over training is very interesting. However, our failure to replicate the overall 

learning Smith and Yu found undermines strong conclusions. It is possible that this lack of 

replication is due to small differences in the experimental design. For Experiment 2 we 

modified our design to better match that of Smith and Yu (2008) in hopes of replicating 

the overall word learning and the looking dynamics found in the prior work.  

 

2.3 Experiment 2: Replication with moving beasties 

There were several small differences in the procedure of Experiment 1 compared 

to that of Smith and Yu: our objects were stationary whereas theirs jiggled and our test 

length was 2 seconds longer. There were also differences in the participants tested; Smith 

and Yu tested both 12- and 14-month-old children. Thus, we modified these aspects of our 

procedure in Experiment 2 and added a set of 12-month-old participants in a second 

attempt to replicate.  
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2.3.1 Methods 

2.3.1.1 Participants 

Twenty-four 12-month-old infants (10 males, 9 females) and 23 14-month-old 

infants (10 males, 10 females) were recruited from an East college town in the United 

Kingdom via community outreach and a laboratory registry. All infants were from middle 

class working families that spoke English more than 50% of the time. In our study an 

additional 23 children began the experiment but did not finish due to fussiness (12), 

equipment/experimenter error (9), and recruitment error (2). An additional 7 infants 

completed the study but did not contribute data because either their average looking 

during the training trials was more than 2 standard deviations below the overall mean (3), 

or they demonstrated a bias to look to the right or left that was +/-  2 standard deviations 

of the total average looking to the right or left (4). This number of children failing to 

complete or not contributing to analysis is slightly lower than Experiment 1 yet is still 

relatively high. There are several possible reasons for the high number of drops 1) we also 

increased our sample size to double that of Experiment 1, which could lead to a doubling 

of our drop rate, 2) we moved Experiment 2 to a new room in a new lab space, and the 

increase might be accounted for as growing pains leading to more technical and 

experimenter errors. These points notwithstanding relatively high drop rates are in not 

unheard of in developmental literature, nor within even cross situational word learning 

literature. Yu and Smith (2011) reported a drop rate of 30.4%, 14 drops out of 46 

consented participants, Experiment 1 had a higher drop rate at 41%, and Experiment 2 

reported drop rate at 38%. 

 

2.3.1.2 Stimuli 

The novel objects and words used in Experiment 2 were identical to Experiment 1. 

The stimuli were presented on a 42-inch monitor with a white background. The words 

were presented over the monitor’s loudspeaker. The beasties were the same as in 

Experiment 1, between 8 to 10 inches in projected size, separated on the screen by 20 

inches, and had an average visual angle of 16 degrees.  

 

2.3.1.3 Procedure 

The procedure was as described in Experiment 1 with the following three 

modifications to better replicate the procedure of Smith and Yu (2008). First, the beasties 

jiggled on every presentation in both training and test trials to mirror the movements in 
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Smith and Yu’s experiment (Smith, personal communication, 2017). This modification 

was made to better match Smith and Yu’s procedure, with the additional prospect of 

increasing children’s looking to the objects. Second, we also created two set orders of trial 

presentation, as opposed to a unique order per child. The two orders had a different 

random pairing of words to objects. The randomization and counterbalancing of the order 

for both sets followed the same rules as in Experiment 1 and Smith and Yu; each object 

was presented equally often on both sides and paired with the first or second word 

presented an equal number of times. Third, the length of the test trial was decreased from 

10000 ms to 7000 ms, closer to the 8000 ms used by Smith and Yu. The test trial was 

further decreased by 1000 ms as our overall looking times were lower and no pattern was 

revealed through the longer test trial length. Forth, the frequency of attention getters 

during test was increased to be between every test trial, as in Smith and Yu’s study. 

 

2.3.1.4 Data Analysis 

Data analysis was identical to Experiment 1. Coder agreement for the back view 

was 100% and for the front view was 93%. It should be noted, however, that the back-

view coder only coded trial start and stop times, as the two fixed orders were manually 

entered into the Datavyu coding software detailing the objects and words present for each 

trial. 

 

2.3.2 Results 

Training Trials 

On average, infants looked at the right and left sides of each training slide for equal 

durations. Preliminary data analysis indicated average total looking for all 4000 ms 

training trials was 3190 ms for 12-month-olds and 3250 ms for 14-month-olds. Twelve-

month-old infants and 14-month-old infants spent at least 1000 ms looking at each object 

on a training slide on 52% of the trials. Twelve-month-old infants spent at least 500 ms 

looking at each object on 75% of the training trials, and 72% for 14-month-olds. Overall, 

the average looking time was comparable to that found in Smith and Yu, however the 

percentage of looking to each side was lower for children in Experiment 1 than in Smith 

and Yu. 
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Test Trials 

 
On average, infants looked at each 7000 ms test slide for a total of 4877 ms. 

Overall, infants did not show a greater looking to the target (2481 ms) than the distractor 

(2396 ms), t(45)=-0.91, p=0.366, as can be seen in Figure 7. Furthermore, neither age 

group individually showed more looking to the target: 2499 ms v. 2331 ms (target v. 

distractor) looking for the 12-month-olds, t(22)=-1.83, p=0.081 and 2463 ms  v. 2461 ms 

for 14-month-old (target v .distractor) looking, t(22)=-0.01, p=0.992; and (Figure 7).   
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Figure 7. Mean looking time to distractor and target per 7000 ms test trial (and 
standard error of the mean). (a) 12 and 14-month-old combined, (b) 12- and 14-
month-old separate. 
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Figure 8.  Mean looking time to distractor and target per 7000 ms test trial for 12 
and 14-month-old strong and weak learners (and standard error of the mean). 
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Training Trials Looking Dynamics 

The overall test-trial results suggest that the modifications to the procedure to 

better match the procedure of Smith & Yu failed to produce a replication of significant 

cross situational word learning. Nevertheless, we again separated the infants into strong 

and weak learners to investigate the looking dynamics during training. For the 12-month-

old age group there were 17 strong learners and 7 weak learners. The strong word learners 

learned 3.19 words on average and had significantly more looking to the target (2432 ms) 

than the distractor (2066 ms), t(15)=-3.98, p<0.01. The weak learners learned 3.04 words 

on average and had significantly more looking to the distractor (2936 ms) than the target 

(2654 ms), t(6)= 3.92, p<0.01 For the 14-month-old age group there were 14 strong word 

learners and 9 weak word learners. The strong word learners learned 3.6 words on average 

and had significantly more looking to the target (2666 ms) than the distractor (2159 ms), 

t(13)=-4.64, p<0.001. The weak learners learned 3.3 words on average and had 

significantly less looking to the target (2147 ms) than the distractor (2931 ms), t(8)= 4.61, 

p<0.01 (see Figure 8).  

 
 Next, we looked at the looking dynamics during training trials for the strong and 

weak word learners. The average looking on training trials did not differ between 12- and 

14-month-olds:  1151 ms 12-month-old strong learners, 1367 ms 12mo weak learners, 

t(9.64)=-1.93, p=0.083; and 1323 ms strong learners, 1324 ms 14-month-old weak 

learners, t(19.79)=-0.003, p=0.99. There were also no significant differences in max 

fixation length for either the 12-month-old strong (1645 ms) and weak (1906 ms) word 

Figure 9. Dynamics of training trials looking for 12 and 14 moth-old strong and weak 
learners: (a) Mean count of fixations for strong and weak learners per 4000 ms training 
trial (and standard error of the mean). (b) Mean length of longest fixation for strong 
and weak learners per 4000 ms training trial (and standard error of the mean). 
 

(a) (b) 
12mo 14mo

Strong Learner Weak Learner Strong Learner Weak Learner

1.0

1.5

2.0

2.5

3.0

3.5

N
um

be
r o

f F
ix

at
io

ns

12mo 14mo

Strong Learner Weak Learner Strong Learner Weak Learner

0

500

1000

1500

2000

2500

Lo
ok

in
g 

Ti
m

e 
(m

s)



 

 

30 

 

learners, t(12.18)=-1.75, p=0.104, or 14-month-old strong (1760 ms) and weak learners 

(1838 ms), t(20.93)=0.56, p=0.579. Finally, there were no significant differences in the 

number of fixations for either the 12- or 14-month-old learning groups, the 12-month-old 

weak learners generated 2.80 looks on average; the strong learners generated 3.02 looks, 

t(10.42)=0.906, p=0.385. The 14-month-old strong learners generated 2.83 looks and the 

weak learners generated 2.71, t(15.11)=0.60, p=0.559.  Thus, our nearer replication of 

Smith and Yu’s procedure failed to replicate the differences in looking dynamics they 

found and that we had some evidence of in Experiment 1.  

 
As in Experiment 1, we also examined looking to the correct object for learned and 

non-learned words during training trials over blocks for strong and weak learners. For 

strong and weak learners combined, the average looking time to correct objects during 

training for learned words was moderately but non-significantly higher than non-learned 

words, M=2163 ms for learned words, M=2022 ms for non-learned words, t(44)=1.35, 

p=0.1846 (see Figure 10). We used a model with a full factorial combination of word type 

(learned and non-learned), learner type (strong/weak learner), and training trial block (1-

10, 11-20, 21-30) to predict looking time. Likelihood ratio tests indicated that the best 

fitting random effects structure contained random intercepts for subject. The fixed effects 

justified by the data included a two-way interaction of word and learner type and main 

effects for trial block. There was a reliable main effect for trial block, with significantly 

more looking on the 10 middle trials (11-20) than on the last 10 (21-30), t(221)=0.233, 
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Figure 10. Mean looking to the correct object per 4s training trials for learned 
and non-learned words (and standard error of the mean).  



 

 

31 

 

p<0.05. As in Experiment 1, this suggests participants looked less to the correct object 

over the course of training trials. There was also a reliable two-way interaction between 

word type and learner type with strong learners looking significantly more to the targets 

for what would be the learned versus non-learned words compared the weak learners, 

t(223)=4.92, p<0.001. Again, the lack of interaction with block suggests the possibility 

that infants who later show more learning of novel word-object mappings begin looking to 

targets more at the very start of the experiment, whereas weak learners look longer to 

objects paired with words they did not show learning for at test.  

 
2.3.3 Discussion 

 Experiment 2 was designed to bridge the differences in procedure between 

Experiment 1 and Smith and Yu’s prior work to see if we could replicate the overall levels 

of cross situational word learning Smith and Yu found. Despite changing the images to 

jiggle during training, we did not find a significant increase in total looking time during 

training in this experiment compared to Experiment 1, Experiment 1 M= 3315 ms and 

Experiment 2 M=3196 ms, t(63)=1.45, p=0.152. Likewise, we did not find significant 

differences in looking to the target and distractor at test despite the shortening of the test 
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Figure 11. Mean looking to learned and non-learned words (and standard error of the 
mean) per 4 s training trial (and standard error of the mean). 
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trial length. Experiment 2 also did not replicate the strong/weak looking dynamics of 

maximum fixation length nor number of fixations found in Yu and Smith and Experiment 

1. It did show similar word learning for strong learners and looking dynamics of learned 

and non-learned words for strong and weak learners. Together, the results from 

Experiment 2 may indicate that differences in fixation lengths and numbers of fixations 

between strong and weak learners might not be a robust predictor of successful learning. 

Rather, overall accumulated looking time to objects during training, as seen in our analysis 

of the learned and non-learned word looking results, might be more promising, as they 

replicated similar findings in Experiment 1.  

Yu and Smith (2011) argue that long looks allow the children to hear the 

corresponding word and form the associations between the object they are attending to and 

the word. At test, the target word then promotes looking to the target object in a top down 

influence on word learning. Our results from infants looking to learned and non-learned 

word-objects from Experiments 1 and 2 may further support this argument. Although our 

strong learners did not have significantly longer max fixation lengths, they accumulated 

more looking time with the objects corresponding with the words they would go on to 

show they had learned. This additional time may help these infants to hear the 

corresponding words and form mapping. At test, the target word promotes their continual 

looking to the same objects. Thus, the continued looking to the same set of objects over 

the course of training and onto test that strong word learners demonstrate may be a 

different form of sustained attention to that of long max fixation and less fixation within 

individual trials. In contrast, weak learners also accumulate more looking to a set of 

objects during training. The difference is, they did not carry this visual attention on to test 

and instead start to look at the distractor objects that they have accumulated less looking to 

and are therefore more novel. In this way then, our weak learners are similar to the weak 

learners in Smith and Yu (2013) who seemed to get captured by the novelty of the varying 

objects.  

An interesting issue is how it is that the strong learners happened to look at the 

right objects from the start. Strong learners look significantly more to the objects they will 

go on to show word learning for with in the first block, which continues throughout block 

2 and 3. Weak learners on the other hand to not have a significant difference in looking to 

learned and non-learned word-objects until the second block and carries over onto the 

third block.  Essentially strong learners may have gotten lucky or by happenstance looked 

to a set of objects in block 1 and may have picked up on the associated words. Over the 
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course of training they continued looking to these objects building up the associations 

between the words and the objects. However weak learners may have started looking to 

incongruent word-object mappings. This resulted in them building weak word-object 

associations that they could not recover from and thus led to lower levels of word learning.   

It is also possible that differences in children’s looking to objects that correspond 

to learned and non-learned words is due to preferences for some objects over others. 

Preferences for particular objects could bias looking, in helpful or unhelpful ways during 

training, leading to the formation of correct (or incorrect) associations. However, 

preferences could also bias performance at test, and thus test performance may not 

indicate word learning.  The strong learners continue looking to objects at test that they 

preferred to look at during training and weak learners switch their looking to more novel 

objects at test. This pattern of looking results in more looking to the target object for 

strong learners and more looking to the distractor object for weak learners. As we noted, it 

is possible that strong learners have learned the word-object mappings and at test their 

looking is driven by the target word, however, it may also be the case that strong word 

learners’ early object preferences present as word learning and weak learners’ object 

preferences present as poor word learning. 

Research has shown that children often look to and prefer novel objects, which has 

been shown to help children learn new words (Kucker, 2014), while hindering word 

learning for others (Yu &Smith, 2013). The cross situational word learning task is 

designed in a way where all objects and words are presented for equal amounts of time 

during training and thus are all are equally novel and/or familiar to the children. Over the 

course of training children’s attention to these words and objects should provide them with 

the opportunity to build associations or propose a mapping then then confirm or reject the 

proposed word-object mapping (hypothesis testing) over more exposures. Yet, when 

children do not attend to all objects equally and instead attend more to a subset of objects 

this leads some objects to be more novel and other more familiar regardless of the equal 

exposure time provided by the task structure. The results from looking to learned and non-

learned words show that children are preferring and actively shifting their attention to a 

subset of objects indicating a preference during training. However, this looking preference 

is not driven by the objects, as there were no significant object effects, indicating that the 

looking toward the objects is driven by individual differences within the participants. It is 

possible that the difference between strong and weak learners is that weak leaners like 

novelty. After nearly 4 minutes of looking time accumulated to a set of objects weak 
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learners became habituation to these objects and switched to look at the more novel 

objects regardless of target word at test, whereas strong learners carry their object 

preferences over to test.  

These issues notwithstanding, there is one remaining difference between our study 

and that of Smith and Yu that might explain our failure to replicate overall and play into 

infant’s demonstration of preferences for some objects over others--our stimuli. In 

particular, our beastie stimuli are far more similar as a group than the stimuli used by 

Smith and Yu. We saw habituation to the objects in Experiment 1, and overall, we are not 

getting as much looking as Smith and Yu. This suggests that the beastie stimuli might be 

too similar, which leads to less looking and might not generate the visual exploration 

necessary for word learning. The beasties are novel objects with metrically controlled 

properties, designed to be manipulated to test infant’s attention. They were also designed 

to be as discriminable as possible with the largest degree separations for shape and 

colour—but these may not be enough for infants to discriminate them. Thus, in the next 

set of experiments, we asked what size of change in the components of the beasties are 

necessary for infants to evidence that they discriminate them.  
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Chapter 3: Object Perception and Discrimination in a new paradigm 

 

3.1 Background of object discrimination  

 The results from Experiments 1 and 2 are concerning, in that we did not replicate 

the word learning found in Smith and Yu, nor did we find similar looking times despite 

our attempts to replicate key aspects of their methodology. However, we did find some 

levels of word learning in about half the children from both experiments and age groups. 

The looking dynamics found in both Experiments 1 and 2 indicate that children who show 

word learning at test, strong learners, and children who do not show word learning at test, 

weak learners, have similar looking dynamics (max fixation length and number of 

fixations) during training. When we analyse what words children learn at test, we see that 

their looking during training to these learned and non-learned word-objects differ. Over 

the course of training strong word learners look more to objects they show word learning 

for at test and weak learners look more to objects they do not show word learning for. The 

looking dynamics of the strong word learners lends support to Smith and Yu’s hypothesis 

that sustained attention and looking during training leads to better word learning, as strong 

learners accumulated more time during target to objects, they would go to show word 

learning for at test, but does not refute preference driven looking.  

 Experiments 1 and 2, as well as previous cross situational word learning studies, 

highlight how important accumulating lots of looking time and long bouts of looking to 

objects over the course of training is for word learning. And the discrepancy in our results 

compared to those of Smith and Yu’s is, aside from word learning, in overall lower 

looking times throughout our experiments. The design of Experiment 2 sought to increase 

infants’ looking by jiggling the beasties and shortening test duration to reflect Smith and 

Yu’s methodology. The results found in Experiment 2 instead indicated the same low 

levels of looking as Experiment 1 and further discrepancies between our results and those 

of Smith and Yu, as we did not find the difference they report between the strong and 

weak learners in max fixation length or number of fixations. Thus, here we investigate the 

properties of the remaining difference in our methodology—our stimuli. 

 The beastie objects were chosen as the stimuli for the cross situational word 

learning experiments because they afford the possibility of systematically manipulating 

their shape, colour and orientations in a continuous fashion. This would thereby allow us 

to create stimulus sets that we knew differed in specific ways, for example having colours 
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that differed by 15 degrees. Once we replicated and identified how the looking dynamics 

contributed to word learning, it was our plan to then manipulate the beasties in ways to 

shift attention, increase or decrease object novelty, and ultimately lead to a better 

understanding of the word-object mapping process. 

The specific six beasties used in our initial cross situational experiments were 

chosen to be maximally different in colour and shape with maximal, given the need for 6 

objects, 60 degree separations on both dimensions for nearest neighbours. We made sure 

the beasties were around the same size as the novel objects used in Smith and Yu and 

maintained the same visual angle when presented in the experiments. However, one of the 

biggest differences between our beastie stimuli and the stimuli used by Smith and Yu is 

the overall similarity within the set beastie objects. Unlike Smith and Yu, whose objects 

were fairly diverse, the beasties all have similar features: cloud like bodies, rounded 

outlines, with legs and eyes. It is possible that despite the differences in colour and shape, 

the beasties were perceived to be from the same category and overall not distinct enough 

for children to map to six different words. It also may be that the features of the beasties 

were too similar to generate interest, attention, and thus the longer looking times needed 

for the formation of robust mappings. Thus, we decided to examine infants’ ability to 

discriminate the colour and shape changes in the beasties. In addition, we decided to also 

look at discrimination of orientation changes in these same stimuli as that is the third 

dimension, we could have varied, in an effort to fully understand how children perceived 

and discriminated the beastie objects.  

 

3.1.2 Review previous object and discrimination literature 

Early research on infant object discrimination has found that young infants are able 

to discriminate objects with changes along various dimensions using simple paradigms 

that are based on same different judgements, habituation, and paired visual comparison. In 

one of the first studies to investigate infant object discrimination through generalized 

habituation, McGurk (1972) found that infants as young as 6 months of age can 

discriminate simple line drawings that change in orientation and form. Infants between 3 

and 12 months of age, were habituated to objects that either held a constant form and 

orientation, a constant form with a variable orientation, or a variable form with a constant 

orientation. There were four familiarization trials each presented for 20-seconds. 

Following habituation infants were shown a violation trial which depicted objects that 

changed from the familiarization object in either form or orientation. The results suggest 
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that when orientation and form where held constant infants dishabituated to the object that 

changed in form. When the objects’ form was held constant and orientation varied, infants 

dishabituated to the stimulus that had a change in form. Lastly, when form varied and 

orientation was held constant, infants dishabituated to the object that changed in 

orientation. This research suggested that infants are able to discriminate objects that 

change in both form and orientation as young as 6-months of age. Subsequent research on 

object discrimination has used variants of this familiarization and violation procedure. 

Three years later Cornell (1975) modified the procedure to test 4- to 5-month old 

infants’ discrimination of pattern and orientation of patterns. Cornell presented a pair of 

identical images for 1-minute to familiarize infants, followed by a two test trials where 

one of the objects changed. The location of the change stimulus differed across test trials 

to prevent any form of side bias. The change stimulus changed in either pattern, 

orientation, or both pattern and orientation. The Cornell found that infants preferred to 

look at the stimulus that changed either in orientation or pattern over the previously 

familiarized stimulus suggesting that young infants can perceive changes in orientation 

and pattern in a visual paired comparison paradigm.  

In 1979, four years later, Schwartz and Day further expanded the habituation 

familiarization and novel test trials to investigate orientation and shape perception in 2- to 

3-month-olds. Infants were habituated to a single object over the course of 8 

familiarization trials that lasted 20-seconds each. Following habituation, infants were 

given a short intertrial interval of 5 seconds, which was immediately followed by four 20-

second test trials each separated by 5 seconds each. Then four test trials first presented the 

habituated stimulus, followed by two trials with a novel stimulus that varied on either 

shape or orientation, and then a novel object that varied on both orientation and shape. The 

stimuli consisted of simple geometric shapes of line and dot drawings. The results 

revealed that infants dishabituated more to the objects that changed in shape than 

orientations, but also that infants dishabituated to the orientation change compared to the 

habituated objects. These findings suggest that although infants can perceive and 

discriminate a change in orientation, they are quicker to notice the shape change. 

The reviewed studies show that infants under 12 months are able to discriminate 

changes in shape and orientation objects through different habituation methods and stimuli 

types. Early discrimination research into the colour dimension similarly used a variant of 

the habituation procedure. In 1986, Bornstein and colleagues tested 3- to 4-month-old 

infants’ colour vision and hue discrimination. Infants were habituated to a hue over the 
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course of 15 15-second trials. Following habituation, a 7.5-second intertrial interval 

proceeded test trials. Test trials consisted of 9 15-second trials where infants were shown 

three trials of the habituated colour hue, three trials of a colour hue change consistent with 

adult colour boundaries (blue, red, yellow), and three trials with in-between colour 

boundaries (blue-green, green-yellow, yellow-red). Infants were additionally tested on one 

wavelength, two wavelengths within the same hue category, and two wavelengths from 

different hue categories. The results show that infants dishabituated on adult colour 

boundaries and had a fast rate of dishabituation for single or two wavelengths within the 

same category, suggesting that young infants are able to discriminate colours and do so 

according to adult perceived boundaries.  

These early lines of research suggest that young infants are able to discriminate 

shape, orientation and colour changes to simple objects at fairly young ages.  Even though 

more recent work has examined infant discrimination of colour (Pilling et al., 2003; 

Zemach et al., 2007; Skelton et al. 2017), orientation(Moore & Johnson, 2008), and shape 

changes (Mareschal et al., 2003), the majority of these studies still use and rely largely on 

the procedures and stimuli designed in the reviewed work, such as habituation and paired 

visual comparison with the use of similar stimuli. Although the discrimination literature 

uses similar tasks to test discrimination, the studies differs greatly on trial length ranges 

from 15 seconds to 60 seconds.  The differing lengths of the trial times presents the issue 

as to what is the best timing for a discrimination procedure. Having short trial lengths may 

not provide infants with enough time to encode the stimuli and having longer trial lengths 

may make it difficult to remember stimuli presented on previous trials. Research has found 

that effective comparison and categorization of items requires visual short-term memory 

as sensory memory is stored within short-term memory, and visual short-term memory is 

therefore needed for the online processing of visual information (Ross-Sheehy, Oakes, & 

Luck, 2003). Therefore, any trial more than 30 seconds would exceed the limits of short-

term memory and would tax children’s ability to discriminate between the stimuli and 

across trials. In addition to the timing issue, these experiments often used simple 

geometric shapes or line drawings, that primarily focus on a specific dimension. We need 

a task that would enable us to test multiple object features and more complex objects.  

The ultimate goal of this new discrimination task is to determine whether infants in 

the age-range tested in Experiments 1 and 2 can discriminate the beasties. However, rather 

than simply examining the discrimination of the six beasties used in Experiments 1 and 2, 

we decided to look at discrimination along each of the three dimensions at multiple levels 
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of degree of change to get a more complete picture of infant’s perceptual abilities. We 

were also interested in whether this discrimination ability changes over development and 

whether it varies by the stimuli properties., i.e., are older children better at discriminating 

smaller changes in the beastie objects or different dimensions. Thus, we test participants’ 

ability to detect changes in the colour, shape, and orientation of the beasties at varying 

degrees. We will sample beasties every 15 degrees from a continuous property wheel up to 

60 degrees in for colour and shape and every 9 degrees for orientation order to make 

inferences about the cross situational word learning stimuli. This will then tell us whether 

our beastie stimuli are too similar and cannot be discriminated at the current metrics and 

possibly the cause for our overall lower looking times and non-replication. With this set of 

experiments, we should be able to identify what properties and what degree separation 

children need to see beasties as distinct objects. 

 

Discrimination task 

We wanted to design a discrimination task that would engage sensory or short-term 

memory, be able to test multiple properties, and more complex objects and enable 

examination of how the discrimination ability changes over development. Such a task 

would require a short trial length. Eschman and Ross-Sheehy (2019) recently designed 

such a task to test visual working memory. Their task was designed to overcome the 

methodological issues present in prior object discrimination work, specifically studies 

using long trial lengths which would exceed the limits of short-term memory. The task is 

composed of five parts; 1) a perceptual mask or attention getter, 2) a 1 second memory 

array, 3) 500 ms retention interval, 4) a 3 second test array, and 5) a reward movie 

presented on the side of the changed stimulus. This task still uses several of the measures 

used in object discrimination literature but was developed to engage visual perception and 

short-term memory. The task uses a visual paired comparison procedure where stimuli 

tested are presented on the right and left of the screen for the infant to compare. The 

memory array serves as a familiarization trial presenting the stimuli prior to a change. The 

retention interval engages memory and consolidation. The test array serves as the test trial 

engaging novelty where one of the two stimuli has changed, and the reward reinforces 

looking to the change side. Using this new paradigm, we should be able to test if children 

are able to detect the change in the beastie stimuli by their looking to the change side on 

the test array.  
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Since this is a relatively new task being applied to test object discrimination as 

opposed to working memory, we decided to first test adults. This serves three purposes. 

First, to check the validity of the testing measure on discrimination of the beastie stimuli. 

Second, adults could help us to see if the degree changes are discriminable or if there is a 

particularly harder or easier dimension to discriminate. Lastly, adults will provide us with 

initial information as to whether the beasties can be discriminated; if adults cannot tell the 

beasties apart, arguably infants will not be able to either.  

 

3.2 Experiment 3a: Adult Discrimination 

3.2.1 Methods 

3.2.1.1 Participants 

Forty- three participants (20 males; 18-33 years) were recruited from the 

University of East Anglia departmental subject pool. All participants had normal or 

corrected to normal hearing and vision, and none reported colour blindness. Informed 

consent was obtained in accordance with university and APA ethical standards. 

Participants received £8 for their participation. 

 

3.2.1.2 Stimuli 

A Dell computer running Experiment Builder (SR- Research, Ontario, Canada) 

presented the experiment on a 42-inch monitor at a distance of 100 centimetres. An 

EyeLink 1000 plus remote tracker was used. The eye tracking camera was located at the 

base of the monitor on a small stand at a distance between 600 to 700 centimetres. The eye 

tracker was set for monocular, focused on the right eye and tracked gaze position using 

pupil and corneal reflections of an infrared light source. Eye position was maintained 

using a target sticker, allowing the eye tracker to relocate the eye as the participant moved 

or blinked. The tracker’s sampling rate was 500 Hz. There were two additional cameras, 

one located at the bottom of the monitor to record the participant’s face, and one located at 

the back of the room to record the experiment as it was presented on the monitor.  

The stimuli consisted of 44 novel objects called “beasties.” The beasties were 

constructed in Matlab and Microsoft PowerPoint to have well-controlled metric properties. 

The body shapes were defined by radial frequency components (Zahn & Roskies, 1972) 

that provide an evenly parameterized similarity space without category boundaries that is 

well localized neutrally. A second dimension was added via equidistant colours sampled 

from a 360 degree continuous colour space (CIE Lab, 1976), and a third by rotating each 
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shape around its major axes of elongation. Because these stimuli are also used with 

children, eyes and legs were added for interest. The set of beasties used for Experiment 3a 

and 3b can be found in the Appendix. 

Three sets of beastie stimuli were created to examine discrimination of shape, 

colour and orientation differences. Stimuli within each set differed only on the examined 

dimension and were all the same on the other two dimensions. Within each set, adjacent 

stimuli differed by 15 degrees resulting in 18 shape and 18 colour stimuli. The orientation 

set contained only 8 stimuli, however, because the shapes were symmetrical and thus 

orientations beyond 90 degrees become mirror images and differed by 9 degrees. Beasties 

ranged from 12 to 18 cm in height and width and had a visual angle between 6 and 10 

degrees.  

Each trial consisted of a sequence of two arrays. Each array contained two 

beasties; one presented 25 cm to the right of midline, the other 25 cm to the left. The 

experiment computer sent messages specifying trial information (e.g., start and end of a 

trial, stimulus information) to the eye tracking computer which recorded these along with 

the gaze position data. These codes allowed for the integration of participants’ gaze data 

with the stimulus information for later analysis. 

 

3.2.1.3 Procedure 

Participants were tested in a small experimental room. Adult participants were 

tested using the same procedure as child participants and thus the experiment began with a 

short video of Elmo’s World. During this video, the experimenter placed the tracking 

sticker on the participants’ forehead. To calibrate the eye tracker, participants were shown 

a looming black and white geometric object at five points of the screen (middle, top, 

bottom, right, left). The experimenter viewed an image of the gaze position relative to the 

target and indicated when the participant was looking at the target. This procedure mapped 

raw eye position data to the camera image data and thereby mapped gaze position to the 

stimulus presentation.  

The experiment comprised 72 trials separated into 6 blocks of 12 trials. Each block 

included a trial at each of the four discrimination steps (shape and colour: 15, 30, 45, 60 

degrees; orientation: 9,18, 27, 36 degrees) for each of the three dimensions (colour, shape, 

and orientation). Each trial was composed of five parts: 1) a gaze-contingent attention 

grabber, 2) a memory array, 3) a retention interval, 4) a test array, and 5) a movie reward 

(Figure 12). All five parts were presented on a dark grey background. The attention 
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grabber was a gaze contingent looming rainbow star and the movie reward was a novel 

dancing animal. Once participants looked to the star it disappeared, and the memory array 

appeared. This array contained two identical beasties, one on the right and another on the 

left of midline. The memory array was followed by a retention interval with a blank grey 

screen. This was followed by the test array in which one of the two beasties had changed. 

The test array remained for 3000 ms, after which a 7000 ms reward video of a dancing 

animal played on the side of the changed beastie. The order of dimensions and step sizes, 

as well as the particular stimulus used in the memory array, were all randomized and 

counterbalanced for each participant. Each stimulus occurred in the memory array exactly 

once across the experiment. Adults did 72 trials with one of the two retention intervals 

(250 or 500 ms), before doing an additional 72 trials with the other retention interval. 

Which retention interval subjects saw first was randomly determined and the 72 trials 

were counterbalanced for target side. 

 
3.2.1.4 Data Analysis 

Raw eye position data was organized into fixations, saccades, and blinks using 

Data Viewer (SR- Research, Ontario, Canada). For analysis, raw eye data was further 

extrapolated to create Areas of Interest (AOI). A separate AOI, each 400 by 400 pixels, 

surrounded each beastie. The AOIs were 50% bigger than the stimuli to allow for 

calibration error and drift in the eye tracker. Interest area reports for the memory and test 

arrays provided looking time and number of fixations for each AOI, switches between 

Figure 12. Sequence of events in each trial.  

Time (ms)

Attention Getter
(Gaze contingent) 

Memory Array
(1000ms) 

Retention Interval
(250/500ms) 

Test Array
(3000ms) 

Reward Video
(7000ms) 
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AOIs and average pupil dilation. Each trial was broken into five individual segments that 

defined the key events. Our metric for discrimination was greater looking to the change 

side on the 3-second test array. Therefore, we created a variable called side which coded 

whether a look was to the changed side or the no change side of the array.   

Our main questions were: 1) at what degree of difference were adults able to 

discriminate stimuli from each dimension, 2) did this differ by dimension, and 3) did 

retention interval length influence discrimination ability. To answer these questions, we 

ran a series of mixed-effects models using the lmer function in the linear mixed-effects 

package lme4 (Bates, Maechler, Bolker, & Walker, 2015) in R (R Core Team, 2016). 

Using mixed models allows us to estimate simultaneously, but separately, the main effects 

of different variables, as well as random effects. For example, we can estimate the main 

effect of dimension and step on looking time and any interactive effects between 

dimension and step, while controlling for random effects such as those related to subjects. 

Degrees of freedom and p values for all main effects and interactions were obtained from 

the lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2013).  

Our initial model predicted looking time, defined as the total amount of time spent 

looking within an AOI, during the test array as a function of our main variables of interest: 

side (change, no change), dimension (shape, colour, orientation), step size (shape and 

colour: 1- 15°, 2-30°, 3-45°,4- 60° & orientation: 1- 9°, 2-18°, 3-27°,4- 36°), and retention 

interval (250  ms v. 500 ms). We also examined effects of trial number, block, change side 

(left v. right), memory stimulus, change stimulus (which particular stimulus object 

changed), and gender. All hypothesized predictor variables were added into the model 

which was then simplified using log-likelihood tests. All continuous predictors were 

centred, and dimension, step, and change look were effect coded. Visual inspection of the 

data suggested that discrimination was influenced by step size, getting better with 

increasing steps, and dimension, such that colour and orientation were similar, but both 

differed from shape. Thus, dimension was coded to compare colour and orientation to 

shape, step was coded to compare subsequent steps to each other (e.g., step 1 to 2, 2 to 3, 

and step 3 to 4), and side was coded to compare change to no change. A preliminary 

analysis revealed no effect or interactions of trial number, block, side of change (left v. 

right), memory stimulus, or change stimulus. This analysis also revealed a significant 

effect of gender. Follow-up analyses with this factor included revealed that females looked 

longer to changes for the colour set in particular. However, because the overall pattern of 
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findings with respect to the main variables of interest did not differ for females and males, 

and because it is not clear that the gender difference has implications for our main 

questions of interest, we report data from analyses without this factor. The results from the 

analyses including gender are included in the Appendix. 

Follow-up analyses examined performance for each of the three dimensions 

individually. In addition, to examine the relation between patterns of looking during 

encoding and discrimination, we ran a second set of analyses investigating whether 

looking to both objects or sampling both objects on the memory and test array led to better 

discrimination, along with examining the location of participant looking.  

 

3.2.2 Results 

To examine our main questions, what degree of difference is needed for adult 

discrimination of shape, colour and orientation changes, and is this different across 

dimensions and/or retention intervals, we included a full factorial combination of 

dimension, step, side, and retention interval predicting looking time during the test array. 

Data exploration and log likelihood tests indicated that the best fitting random effects 

structure contained random intercepts for subject. The fixed effects justified by the data 

included a three-way interaction of side, dimension, and step. Retention interval was not 

found to be a contributing factor and was removed from the model. The results can be 

found in Table 1. 

 
Table 1 Main model t statistics 
Effects Variables t- statistic 
Main Effect Side: Change t (1927.99)=50.40*** 

 
Two-Way Side by Dimension 

Change: Colour by Shape 
Change: Orientation by Shape 
 

Side by Step 
Change: 1 by 2 
Change: 2 by 3 
Change: 3 by 4 
 

 
t (1927.57)=10.72*** 
t (1927.18)=10.22*** 
 
 
t (1927.38)=-12.49*** 
t (1927.60)=-13.03*** 
t (1927.47)=-9.35*** 

Three-Way Side by Dimension by Step t (1927.10)=-2.85** 
 

Note. *p<.05. ** p<.01. ***p<.001. 
 

These results show that adults were able to discriminate the beasties across all 

three dimensions on the first step, 15 degrees for shape and colour and 9 degrees for 

orientation, and discrimination improved as step increased. The results also show that 
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although adults could detect the change side in all dimensions, adults looked significantly 

more to the change side in colour and orientation compared to shape.  Although the 

comparison between the dimensions is informative, we are not necessarily interested in 

testing if a certain degree change is the same across dimensions, instead we are interested 

in whether children can tell the difference when degree changes occur within a dimension, 

thus, we looked at the data for each dimension separately.  

 
 

Analysis of individual dimensions  

For the colour dimension, likelihood ratio tests indicated that the best fitting 

random effects structure contained random intercepts for subject and the fixed effects 

justified by the data included a two-way interaction of side and step. There was a reliable 

main effect of change look, such that participants looked longer to the side (change side), 

t(582.99)=34.56, p<0.001. There was a reliable two-way interaction for side by step, 

whereby participants looked significantly less to the change side for step 1 compared to 

Figure 13. Looking to the change and no change side by dimension and 
step size in adult participants. 
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step 2 t(580.35)=-6.89, p<0.001, step 2 compared to step 3 t(580.87)=-7.58, p<0.001, and 

step 3 compared to step 4, t(581.02)=-4.55, p<0.001.  

For the orientation dimension, likelihood ratio tests indicate that the best fitting 

random effects structure contained random intercepts for subject. The fixed effects 

justified by the data included a two interaction of side and step. There was a reliable main 

effect of change side, such that participants looked significantly longer to the change side, 

t(585.43)= 33.71, p<0.001. There was also a reliable two-way interaction for side by step 

whereby  participants looked significantly less to the change side for steps 1 compared to 

step 2 t(584.46)=-8.61, p<0.001, step 2 compared to step 3 t(585.49)=-7.41,p<0.001, and 

step 3 compared to step 4 t(585.45)=-4.77, p<0.001.  

For the shape dimension, the likelihood ratio tests indicated that the best fitting 

random effects structure contained random intercepts for subject and the fixed effects 

justified by the data included a two-way interaction of side and step. There was a reliable 

main effect of side, such that participants looked significantly longer to the change side, 

t(595.00)=13.65, p<0.001. There was a reliable two-way interaction of side by step such 

that participants looked less to the change side for step 1 compared to step 2, t(595.00)=-

5.19, p<0.001, step 2 compared to step 3, t(595.00)=-6.86, p<0.001, and step 3 compared 

to  step 4, t(595.00)=-6.64, p<0.001. 

The individual dimension models were all consistent with the overall model in 

showing that participants were able to discriminate the smallest changes tested and that 

looking to the changed stimulus increased with larger step changes.  Overall these results 

suggest that the answer to main questions are 1) adults can discriminate the smallest 

change tested on all three dimensions, 2) changes in shape appear to be harder to 

discriminate than changes in colour or orientation, and 3) the retention interval did not 

influence discrimination. These results, though informative, do not tell us what 

information in the visual arrays adults use to discriminate the objects. To examine this 

issue, we looked at the patterns of visual exploration during the memory array and test 

array.  

 

Visual exploration 

Visual exploration was characterized in terms of a number of variables, 

specifically whether adults sampled images on both the memory and test array, as well as 

looking in different areas of interest (AOI). Sampling coded dichotomously whether 

participants looked at both the right and left sides of the memory array. We believe that 
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sampling of the images on either array might help the participant gather featural 

information about the beasties and then use that information to discriminate at test. To 

examine what parts of the stimuli might best inform discrimination, we created two new 

interest areas to examine looks to the top and bottom diagonal halves of the beasties. This 

was based on our intuition that the addition of the legs to the stimuli meant that the bottom 

region around the legs might be particularly useful in identifying changes in the shape and 

orientation of the stimuli as a reference point. Having two areas thus provides a means of 

examining how looks to the bottom, compared to other parts of the stimuli, support 

discrimination and whether this is different across the three dimensions.  

Our main questions for our analysis of visual exploration were 1) does looking to 

both images on the memory array, sampling, lead to differences in looking to the change 

v. no change side of the test array, 2) does sampling the test array lead to differences in 

looking to the change v. no change side of the test array 3) does looking to the top or 

bottom half of the beastie relate to differences in test array looking. Sampling was effect 

coded to compare participants who did not look to both sides on the memory array to those 

who did. 

 

Sampling Images during Memory Array 

 

To examine the relationship between sampling and discrimination, we created a 

model that predicted looking on the test array from side, sampling on the memory array, 

dimension and step. Log likelihood tests indicated that the best fitting random effects 

structure contained random intercepts for subject and the fixed effects justified by the data 

included a four-way interaction of side, sampling, dimension, and step. The full results of 

Table 2 Sampling memory array model t statistics 
Effects Variables t- statistic 
Main Effect Sampling: unsampled t (2877.39)=-3.63*** 

 
Two-Way Sampling by Side: Sampled | Change side t(2801.58)=6.15*** 
Three-Way Sampling by Side by Step 

1 by 2 
2 by 3 
3 by 4 

 

 
t (2799.81)=-3.63*** 
t (2800.53)=-4.08*** 
t (2801.05)=-3.99*** 
 

Four-Way Sampling by Side by Step by Dimension 
 

t(2799.39)=-1.99* 

Note. *p<.05. ** p<.01. ***p<.001. 
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the memory array sampling model can be found in Table 2. These results show that 

although there is more looking on unsampled trials, sampling is related to significantly 

more looking to the change at test. There was a significant three-way interaction whereby 

trials that were sampled had more looking to the change side across step.  Lastly, there 

was a significant four-way interaction between sampling, side, step, and dimension. To 

investigate the four-way interaction, we examined the colour, shape, and orientation 

dimensions separately. For the colour, shape, and orientation dimensions, log likelihood 

tests indicated the best fitting model contained a random effect of subject and fixed effects 

for side, step, and sampling. 

 
For the shape dimension, there was a significant main effect of side, such that 

participants had significantly more looking to the change side, t(901.99)=8.66, p<0.001. 

There was also a significant main effect of sampling, such that participants looked more 

on unsampled trials, t(967.41)=-2.44, p<0.05. There was a significant two-way interaction 

between side and sampling, such that participants looked more to the change side if they 

had sampled on the memory array, t(902.44)=4.79, p<0.001. Lastly, there was a 
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for sampled and unsampled trials, across the three dimensions. 
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significant three-way interaction between side, sampling, and step, with a significant 

increase in looking to the change side for sampled trials from step 1 to 2, t(901.27)=2.71, 

p<0.01, step 2 to 3, t(901.82)=3.41, p<0.001, and step 3 to 4, t(902.99)=3.46, p<0.001. 

There was no significant difference between looking to the change side for unsampled 

trials, t(275.62)=1.80, p=0.74. These results suggest that although participants spent more 

time looking on unsampled trials, sampling of the memory array was significantly related 

to participants’ ability to discriminate the shape changes. In addition, this effect was also 

seen across step sizes, indicating that sampling aided in perception of smaller degree 

changes in the shape of the beasties.  

For the colour dimension, there was a significant main effect of side, with was 

significantly more looking to the change side, t(879.34)=30.71, p<0.001. There was also a 

significant main effect of sampling, whereby participants had significantly more looking 

on unsampled trials, t(942.72)=-2.43, p<0.05. Lastly, there was a significant two-way 

interaction, such that participants looked more to the change side when they had sampled 

both sides of the memory array, t(876.62)=3.60, p<0.001. There was no effect of step.  

Similar to the shape dimension model, the colour model results suggest that sampling of 

the memory array significantly increased participants’ looking to the change side despite 

participants looking more on unsampled trials. However, there was no interaction with 

step suggesting that sampling of the memory array did not additionally help participants to 

see smaller changes in colour. 

For the orientation dimension, there was a significant main effect of side, such that 

participants had more looking to the change side, t(883.14)=33.25, p<0.001. There was 

also a significant main effect of sampling, whereby participants looked significantly more 

on unsampled trials, t(952.14)=-2.42, p<0.05. There was a significant two-way interaction, 

such that participants looked significantly more to the change side for sampled trials, 

t(880.18)=2.30, p<0.05. Lastly, there was a significant three-way interaction between 

sampling, side, and step, whereby participants had significantly more looking to the 

change side on sampled trials from step 1 to 2, t(876.44)=-3.06, p<0.01, step 2 to step 3, 

t(876.72)=-2.35, p<0.05, and step 3 to step 4, t(878.28)=-2.60, p<0.01. The orientation 

model echoed similar findings from the shape and colour sampling models, in that 

participants’ discrimination was improved on trials in which they sampled the memory 

array despite looking more on unsampled trials. In addition, on sampled trials there was an 

increase in looking to the change as step increased, suggesting that sampling helped 

participant see smaller changes in the stimuli.   
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Overall, these results demonstrate that sampling both images on the memory array 

resulted in greater discrimination of the test array. Participants who sampled both images 

showed increases in looking to the changed side as step increased, but the largest 

difference was seen for the shape dimension. Given that the shape changes of these stimuli 

appear harder to discriminate compared to the colour and orientation changes, these results 

suggest that sampling both memory images is a critical predictor of discrimination. These 

results are particularly interesting because the images on the memory array are identical 

and there was significantly less looking on trials that were sampled compare to unsampled 

trials. Therefore, it may not be that sampling the memory array in and of itself aides in 

discrimination, but the process and pattern of looking that matters. Specifically, sampling 

the images requires participants to look to both of the images or both sides of the screen. 

Developing this type of looking to one object and then the other on the memory array may 

encourage participants to continue this pattern on the test array. However, this theory rests 

upon whether sampling on the test array also increases participants’ looking to the change 

side and discrimination of the objects. If sampling images on the test array significantly 

improves discrimination, then it can be argued that sampling on the memory helped to 

develop this pattern of looking back and forth. However, if not sampling images on the 

memory array leads to more looking to the change side then it could be that sampling of 

the memory array provided a strong memory of the images allowing the participants to 

quickly detect the change and caused no need to sample the images. Therefore, we next 

looked at sampling on the test array in relation to discrimination ability.   

 

 Sampling Images during Test Array 

Since there was a relationship found between sampling the images on the memory 

array, we sought to see if there would be a relationship between sampling on test and 

looking to the change side. Log likelihood tests indicated that the best fitting random 

effects structure contained random intercepts for subject and the fixed effects justified by 

the data included a four-way interaction of side, sampling, dimension, and step. The full 

results of the sampling model can be found in Table 3. The results suggest that although 

trials that were unsampled had more overall looking, trials that were sampled had more 

looking to the change side. The results also suggested that there was more looking for 

trials that were sampled for shape as opposed to colour. There was a significant three-way 

interaction whereby trials that were sampled had more looking to the change side across 

step.  Lastly, there was a significant four-way interaction between sampling, side, and 
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step. To investigate the four-way interaction, we examined the colour, shape, and 

orientation dimension separately.  For the shape, colour, and orientation dimensions, 

loglikelihood tests indicated the best fitting model contained a random effect of subject 

and fixed effects for side, step, and sampling. 

 
Table 3 Sampling test array model t statistics 
Effects Variables t- statistic 
Main Effect Sampling: Not sampled t (2543.16)=-30.72*** 

 
Two-Way Sampling by Side: Sampled | Change side 

Sampling by Dimension: Sampled | Colour by shape 
t(2522.81)=12.91*** 
t(2496.03)=-2.47* 

Three-Way Sampling by Side by Step 
1 by 2 
2 by 3 
3 by 4 

Sampling by Side by Dimension 
                                 Colour by Shape 
                                 Orientation by Shape 

 
t (2497.74)=-3.43*** 
t (2493.90)=-4.42*** 
t (2490.74)=-2.79*** 
 
t (2492.99)=3.97*** 
t (2489.31)=2.99** 
 

Four-Way Sampling by Side by Step by Dimension 
 

t(2492.18)=-2.37* 

Note. *p<.05. ** p<.01. ***p<.001. 
 

For the shape dimension, there was a significant main effect of side, such that 

participants had significantly more looking to the change side, t(786.78)=7.83, p<0.001. 

There was also a significant main effect of sampling, such that participants looked 

significantly more on unsampled trials, t(807.70)=-16.86, p<0.001. There was a significant 

two-way interaction between side and sampling, whereby participants had more looking to 

the change side for sampled trials, t(902.44)=4.79, p<0.001. There was a significant two-

way interaction between sampling and side, where participants had more looking to the 

change side for test trials that were sampled, t(769.08)=2.05, p<0.05. Lastly, there was a 

significant three-way interaction between side, sampling, and step, such that participants 

had a significant increase in looking to change for sampled trials from step 2 to 3, 

t(762.91)=-2.24, p<0.05, and step 3 to 4, t(763.35)=-2.27, p<0.05. These results revealed 

that participants had overall more looking on trials that they did not sample the images, 

but they had more looking to the change side on sampled trials suggesting that sampling 

the images on the test array significantly increase participants’ ability to discriminate the 

object on the shape dimension. Sampling also increased looking to the change side as step 

increased suggesting sampling aides in the discrimination of changes in degree within the 

shape dimension.  
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For the colour dimension, there was a significant main effect of side, such that 

participants had significantly more looking to the change side, t(852.75)=14.12, p<0.001. 

There was a significant main effect of sampling of the test array, such that participants had 

significantly more looking on unsampled test trials, t(862.91)=-19.01, p<0.001. There was 

a significant two-way interaction between side and sampling of the test array such that 

participants had more looking to the change side on test trials that were sampled, 

t(854.66)=10.40, p<0.001. Lastly, there was a significant three-way interaction between 

side, sampling, and step, such that participants had a significant increase in looking to 

change for sampled trials from step 1 to 2, t(833.85)=-2.61, p<0.01, step 2 to 3, 

t(816.27)=-2.35, p<0.05, and step 3 to 4, t(811.39)=-2.26, p<0.05. These results suggest 

that sampling the test array aides in discrimination of the colour dimension and at all of 

the degree steps within the colour dimension.  

For the orientation dimension, there was a significant main effect of side, such that 

participants had significantly more looking to the change side, t(846.59)=16.31, p<0.001. 

There was a significant main effect of sampling of the test array, such that participants had 
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Figure 15. Looking time to the change and no change side on the test array for 
sampled and unsampled trials, across the three dimensions 
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significantly more looking on unsampled test trials, t(857.91)=-18.73, p<0.001. There was 

a significant two-way interaction between side and sampling of the test array, such that 

participants had more looking to the change side on test trials that were sampled, 

t(847.05)=9.88, p<0.001. Lastly, there was a significant three-way interaction between 

side, sampling, and step, such that participants had a significant increase in looking to 

change for sampled trials from step 1 to 2, t(822.01)=-3.79, p<0.001 and step 2 to 3, 

t(815.05)=-3.62, p<0.001. The orientation test array sampling model results suggest that 

sampling the images on the test array aided participants ability to discriminate the 

orientation dimension and changes in degree within the dimension. However, there was no 

difference in looking on the sampled of unsampled trials for the 45-and 60-degree 

changes, suggesting sampling only helps discrimination of the orientation smaller changes 

in stimuli. 

The results from the sampling of the memory and test array show that trials on 

which participants looked to both sides of the array resulted in more looking to the change 

side, i.e. they were better able to discriminate the change in the beastie. It is important to 

note that participants were not told that the images on the memory were identical and the 

images on the test array were different, nor that this was a change detection task. 

Participants looking back and forth on the memory array may be an indicator that when 

two objects are present, they will likely look back and forth regardless if it is the memory 

array or test array. The percentage of trials on which sampling occurred on both the 

memory and test array was 74% of trials for all participants and was fairly even across 

dimension (colour: 72%, orientation: 73%, and shape: 77%), suggesting that participants 

were more likely to sample the test array if they had sampled the memory array. These 

findings show that participants do sample on the majority of trials and do so fairly evenly 

across dimension. The sampling behaviour found on the memory may be a simple pattern 

of behaviour that they carry throughout the trials. However, it is the sampling on the test 

array which may make it easier to detect the differences, leading to quicker and longer 

looking to the change side.  These analyses of sampling show that the way in which 

participants distributed their looks, can lead to better discrimination. Next, we investigated 

whether location of looking to the stimuli affected discrimination.  
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Top and Bottom Area of Interest Looking 

 
To answer our third question about how visual exploration relates to 

discrimination:  does looking to the top or bottom half of the beastie relate to differences 

in test array looking, we created two new areas of interest (AOI). These new AOIs divided 

the beasties into a top half that included the eyes and the bottom half that included the legs 

(see Figure 16).  We examined visual exploration with a model that included side, 

dimension, step, and AOI (top v bottom). Log likelihood tests indicated that the best 

fitting random effects structure contained random intercepts for subject and the fixed 

effects justified by the data included a four-way interaction of side, dimension, step, and 

AOI. 

Figure 16. Area of interest (AOI) draw around an orientation dimension. (a) top 
half of interest area, (b) bottom half of interest area. 

(a) 
 (b) 
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There was a main effect of AOI, were there was more looking in the bottom AOI, 

t(3572.71)=5.21, p<0.001. There was a significant two-way interaction between 

dimension and area of interest were there was less looking to the top AOI for shape 

compared to colour, t(3559.27)=-6.33, p<0.001 and shape compared to orientation, 

t(3559.04)=-9.97, p<0.001. Lastly, there was a significant four-way interaction between 

side, dimension, step, and AOI, t(3558.60)=2.92, p<0.01. The four-way interaction 

indicated there was a significant difference between the colour and the shape dimension. 

Visual examination of the data suggests the shape dimension was driving the interaction; 

thus, we investigated the shape dimension separately.  

The shape model included side, step, and AOI (top and bottom). Log likelihood 

tests indicated that the best fitting random effects structure contained random intercepts 

for subject and the fixed effects justified by the data included a three-way interaction of 

side, step, and AOI. There was a main effect of side, with significantly more looking to the 

change side, t(1095.06)=9.11, p<0.001. There was a main effect of AOI, with more 

looking to the bottom AOI, t(1126.98)=17.11, p<0.001. There was a two-way interaction 

Figure 17. Looking time to the change and no change side on all three 
dimensions for the interest areas bottom and top 
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of side and AOI, with significantly less looking to change for the top AOI, t(902.44)=-

4.79, p<0.001. Additionally, there was a significant three-way interaction between side, 

step and AOI, with a significant increase in looking from step 2 to step 3 for the change 

side, t(1091.95)=-2.60, p<0.01 and 3 to 4, t(1094.46)=-3.03, p<0.01 in the bottom AOI. 

 
These results suggest that where participants look at the beastie may influence their 

discrimination ability, especially for the shape dimension. For shape trials, participants 

that looked to the bottom AOI had greater looking to the change side. It may be that this 

area contained more information as to the shape change by maximizing the degree of 

change for the shape properties of the beasties body, as it had the straight legs to compare 

against (see Figure 18). For the other dimensions, this may not have been a vital area to 

help with discrimination, as colour was distributed equally across the beastie so it did not 

matter participants looked at the top or the bottom and for the orientation dimension, the 

top area of interest may be as informative as the bottom half. 

 

3.2.3 Discussion 

We found that adults are able to discriminate even small changes in the colour, 

orientation, and shape of the beasties, although changes in shape were clearly not 

discriminated as well as changes in the other dimensions. In addition, participants looked 

more to the change side as step increased or as the objects became more dissimilar. 

Further, discrimination was predicted by sampling of both images on the memory array 

and looking to the bottom of the stimulus images. Specifically, sampling both images on 

the memory and test arrays was related to increases in looking to the change side. We 

believe sampling both memory array images helped participants to verify the differences 

when a beastie was changed on the test array of the objects leading to better change 

detection. Looking more to the bottom half of the beasties promoted change detection for 

Figure 18. Shape beasties separated by 30-degrees (step2). Red circle 
indicates legs as points of reference to see shape change. 
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the shape dimension, which was the most difficult overall. Overall, the adult data suggest 

the beasties objects are discriminable and this task is viable in assessing this 

discrimination. We also found that sampling of the objects on both the memory and test 

array and looking to the bottom AOI for the shape dimension further aides in 

discrimination.    

 

3.3 Experiment 3b: Children 

The adult discrimination data show that the beastie objects are discriminable based 

on their colour, orientation, and shape, and that detection of changes increases as the 

changes increase in step (degree of change increase). These results suggest that the 

beasties used in the cross situational word learning studies of Experiments 1 and 2 would 

be discriminable as the closest neighbours in shape and colour among those stimuli 

differed by 60 degrees, or 4 steps. However, we cannot conclusively say children in the 

cross situational word learning task were able to discriminate the beastie objects, as 

children and infants perceive the world and objects different to that of adults (Smith, 

1989). Therefore, in order to rule out the beasties as a cause for the non-replication of 

cross situational word learning in Experiments 1 and 2 we test children in the object 

discrimination task.  

 

3.3.1 Methods 

3.3.1.1 Participants 

One hundred and sixty infants (80 males) were recruited from a Southeast college 

town in England via community outreach and a participant registry. Eleven infants were 

excluded from the final sample due to fussiness (3) and technical/ experimenter error (8). 

Data from 9 additional infants were excluded from analyses for not completing at least 24 

trials or two blocks of trials. The final sample consisted of 140 infants (71 males), in four 

age groups: 42 12-15-month-olds (21males), 32 17-20-month-olds (17males), 32 22-25-

month-olds (14males), and 35 27-30-month-olds (19 males). All infants were from middle 

class working families that had normal or corrected to normal hearing and vision. None of 

the infants’ parents reported a family history of colour blindness. Participants received a 

toy and a t-shirt for their participation. 

 

3.3.1.2 Stimuli 

The apparatus and stimuli were the same as Experiment 3a. 
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3.3.1.3 Procedure 

The procedure was identical to Experiment 3a, with the exceptions that participants 

were seated on their caregiver’s lap in front of the monitor and infants only saw one 

experimental set (72 trials) with the 500 ms retention interval.  The trials separated into 6 

blocks of 12 trials. Each block included a trial at each of the four discrimination steps 

(shape and colour: 1- 15°, 2-30°, 3-45°,4- 60° & orientation: 1- 9°, 2-18°, 3-27°,4- 36°) 

for each of the three dimensions (colour, shape, and orientation). Most infants did not get 

through all 72 trials. On average infants were able to get through of 56 trials (12-15mo: 55 

trials, 17-20mo: 56 trials, 22-25mo: 59 trials, 27-30mo: 54 trials), with an average of 19 

trials per dimension. 

 

3.3.1.4 Data Analysis 

Our two main questions remain the same; 1) at what degree of difference were 

infants able to discriminate stimuli from each dimension, 2) did this differ by dimension. 

To answer these questions, we ran a series of mixed-effects models using the lmer 

function in the linear mixed-effects package lme4 (Bates, Maechler, Bolker, & Walker, 

2015) in R (R Core Team, 2016). In addition, we were also interested in whether 

discrimination ability differed across age, thus, age group was added to the analysis. Age 

groups, a categorical variable, was effect coded to compare 12- to 15-month-olds to 17- to 

20-month-olds, 17- to 20-month-olds to 22-to 25-month-olds, and 22-to 25-month-olds to 

27-to 30-month-olds. 

Our initial model predicted looking time, defined as the total amount of time spent 

looking within an AOI, during the test array as a function of our main variables of interest: 

side (change, no change), dimension (shape, colour, orientation), step size (shape and 

colour: 1- 15°, 2-30°, 3-45°,4- 60° & orientation: 1- 9°, 2-18°, 3-27°,4- 36°), and age 

group (12-15mo, 17-20mo, 22-25mo, 27-30mo). All hypothesized predictor variables 

were added into the model which was then simplified using log likelihood tests. All 

continuous predictors were centred, and dimension, step, and side were effects coded. 

Visual inspection of the data suggested that discrimination was influenced by step size, 

getting better with increasing steps, and dimension, such that colour and orientation were 

similar, but both differed from shape. Thus, dimension was coded to compare colour and 

orientation to shape, step was coded to compare subsequent steps to each other (e.g., step 
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1 to 2, 2 to 3, and step 3 to 4), and side was coded to compare change to no change. A 

preliminary analysis revealed no effect or interactions of trial number, block, change side 

(left v. right), memory stimulus, change stimulus, or gender. 

 

3.3.2 Results 1 

 Data exploration and log likelihood tests indicated that the best fitting random 

effects structure contained random intercepts for subjects and stimuli. The fixed effects 

justified by the data included a two-way interaction of side and dimension, 

f(3187.20)=4.81, p=0.008 and a three-way interaction of side, step and age group, 

f(3186.90)=3.08, p=0.001. There was a reliable main effect side, with more looking to the 

change side, t(3187.08)=2.92, p<0.01. There was a significant two-way interaction 

between side and dimension with more looking to the change side for the colour 

dimension compared to the shape dimension, t(3186.90)=2.81, p<0.01. There was a 

reliable two-way interaction between side and age group, with significantly more looking 

to the change side for the 22-25-month age group compared to the 27-30-month age 

group, t(3187.29)=2.06, p<0.05. Lastly, there was a significant three-way interaction 

between side, step, and age group, with significantly more looking to the change side for 

the 22-25-month age group compared to the  27- 30-month age group for step 4 compared 

to step 3, t(3187.25)=-2.67, p<0.05. Taken together these results suggest that children are 

able to discriminate the beasties overall. However, this discrimination varies between the 

dimensions and age groups. Step also appears to affect discrimination of the beasties as it 

relates to age groups. To in order to fully understand further investigate the effects of 

dimension and age group, we will examine these separately.  
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Analysis of individual dimensions  

For the all three dimensions, log likelihood tests indicated the best fitting model 

only included random effects for subject. For the shape dimension, log likelihood tests 

suggested the best fitting model contained fixed effects for only side, however there was 

not a significant effect of looking to the change side, t(968.11)=-0.36, p=0.72. This 

suggests that participants did not discriminate the beastie objects based on the changes in 

the shape dimension. 

For the colour dimension, log likelihood tests indicated the best fitting model 

included a three-way interaction between side, step, and age group. There was a 

significant main effect of side, such that participants looked more to the change side, 

t(969.53)=4.55 p<0.001. There was a significant three-way interaction between side, step, 

and age group, such that 22- 25-month-old children spent more time looking to the change 

side on step 2 compared to step 1, t(968.56)=-2.28, p<0.05. The colour results suggest that 

children are able to discriminate the beastie objects as they looked significantly longer to 

the change side. The three-way effect between side, step, and age suggest that the 22 -25-

Figure 19. Looking to the change and no change side by dimension and step size 
across age group in child participants  
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month-old children were better at detecting the change in the colour dimension as step as 

the degree of change increased from 15 to 30 degrees.   

For the orientation dimension, log likelihood tests indicated the best fitting model 

included a three-way interaction between side, step, and age group. There was no 

significant main effect of side, t(971.01)=1.43, p=0.15, indicating that children were not 

able to discriminate the orientation changes in the beasties, overall. However, there was a 

significant two-way interaction between side and step, such that participants had a 

significant increase in looking to the change side as step increased from 2 to 3, t(971.32)=-

2.01, p<0.05 and a two-way interaction between side and age group, such that participants 

had significantly more looking to the change side for 22-25-month-olds compared to 27-

30-month-olds, t(971.10)=2.26, p<0.05. In addition, there were two significant three-way 

interactions between side, step, and age groups, where 17-20-month-olds looked more to 

the change side as step increased from step 2 to 3, t(972.32)=2.91, p<0.01 and step 3 to 4, 

t(970.89)=2.51, p<0.05. Although the results did not indicate overall discrimination on the 

orientation dimension, it appears depending on age and step children were able to 

discriminate the beasties within the orientation dimension. In particular, 22-25-month-olds 

are able to discriminate changes in the orientation of the beasties and children are better 

able to discriminate as step increase from 2 to 3. These results indicate that older children 

and larger steps are needed to be able to discriminate differences in the orientation of 

objects. These results are interesting as the oldest age group and last step change are not 

discriminated, which should be the easiest step. However, we did find that as step 

increased and the degree of change became larger 17-20-month-old children were better 

able to discriminate the orientation objects. 

The individual dimension analysis results revealed children were not able to 

discriminate on the shape dimension but were able to discriminate on the colour and 

orientation dimension.  It should be noted that 22-25-month-old children discriminated 

regardless of step, but 17-20-month-old needed larger step changes to discriminate the 

change. Therefore, some of these effects might have been driven by the middle two age 

groups (17-20 mo & 22-25 mo), thus we are going to investigate age groups separately to 

identify age related effects of discriminate of the beasties.   
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Analysis of individual age groups 

 
For the youngest and oldest age group, 12-15-month-olds and 27-30-month-olds, 

log likelihood tests indicated the best fitting model contained random effects for subject 

and fixed effects for side. For 12-15-month-olds and 27-30-month-olds, there was no 

significant main effect of side, t(952.89)=1.60, p=0.11 and t(772.34)=-0.34, p=0.73. The 

best fitting model for children aged between 17-20-month-olds contained random effects 

for subject and fixed effects for dimension, step, and side, with a two-way interaction 

between side and step and a two-way interaction between side and dimension. There was a 

significant two-way interaction between side and dimension, where participants had 

significantly more looking to the change side for colour than shape, t(731.97)=2.68, 

p<0.01. There was a significant two-way interaction between side and step, where 

participants had significantly more looking to the change side for step 2 compare to step 1, 

t(731.89)=-2.04, p<0.05, step 3 compare to step 2, t(731.89)=-2.19, p<0.01  and step 4 

compared to step 3, t(731.92)=-2.89, p<0.01.  The best fitting model for participants aged 

between 22-25-months, contained random effects for subject and fixed effects for 

dimension, step, and side, with a two-way interaction between side and step. The model 

revealed a main effect for side, such that participants looked longer to the change side, 
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Figure 20. Looking to the change and no change side across age groups 
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t(730.15)=2.81, p<0.01 and a main effect for dimension, where participants looked longer 

on trials that contained orientation dimension changes compared to trials with shape 

changes, t(730.09)=2.95, p<0.01 and looked longer on trials that contained shape changes 

compared to trials with colour changes, t(730.13)=-2.25, p<0.05. These age results show 

that the middle two age groups were able to discriminate the beasties objects, whereas the 

youngest and oldest age groups were not. The middle two age groups did better as step 

increased, which was not seen for the youngest and oldest age group. The participants in 

the 17-20-month-old age range were able to discriminate objects in the colour dimension.  

The results from the child participant data were far less robust than the adults 

suggesting that infants had a harder time discriminating the beastie objects. In particular, 

there is evidence that the infants were able to discriminate colour changes overall, with 

more looking to the change side. However, there was no evidence that the infants were 

able to discriminate changes in the shapes of the beasties. The orientation dimension 

model results show that participants did not discriminate changes in the orientation of the 

beasties overall, but certain age groups were able to discriminate depending on step size. 

In particular, 22-25-month-old children were able to discriminate the orientation objects 

and 17-20-month-old children were able to discriminate the orientation objects for step 3 

and 4, which were the largest change on degrees.  Lastly, the age analyses suggested the 

youngest age group, 12-15mo-olds and oldest age group, 27-30-month-old children, were 

not able to discriminate the beasties, whereas the middle age groups, 17-20mo-olds and 

22-25-month-olds were able to discriminate. In addition, 17-20-month-olds were better 

able to discriminate as step increased in all four step changes. Overall these results show 

that children find colour easier to discriminate relative to shape and orientation, but as 

children get older and as the objects have greater degrees of change this enables younger 

children to discriminate and all ages to discriminate changes in the orientation of the 

stimuli. We next examined the visual exploration of the children participants, as we did 

with adults.   

 

Follow up Models (Visual exploration) 

In adults, we found that sampling on the memory and test array was related to 

more looking to the change side and that looking with in the bottom AOI was related to 

higher rates of looking to change side for the shape dimension. Therefore, we examined 

how children’s patterns of sampling of the memory and test array and AOI looking were 

related to discrimination performance.  Sampling was coded dichotomously to indicate 
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whether participants looked at both the right and left sides of the memory array. For 

adults, discrimination performance on the shape dimension was related to having looked at 

the bottom portion of the beastie. We examined whether children showed a similar effect, 

although we thought it possible that the fact the eyes of the Beastie were in the top AOI 

might draw their attention.  

Our main questions were the same as in the prior investigation with adults: 1) does 

looking to both images on the memory array, sampling, lead to differences in looking to 

the change v. no change side of the test array, 2) does sampling lead to differences in 

looking to the change v. no change side of the test array 3) does looking to the top or 

bottom half of the beastie relate to differences in test array looking. Sampling was effect 

coded to compare participants who did not look to both sides on the memory or test array 

to those who did. 

 

Sampling Images during Memory Array 

The model predicted looking on the test array from side, sampling on memory 

array, dimension and step. Log likelihood tests indicated that the best fitting random 

effects structure contained random intercepts for subject and the fixed effects justified by 

the data included a two-way interaction between dimension and sampling of the memory 

array. This two- way interaction between dimension and sampling was significant, where 

was significantly more looking on unsampled trials in the orientation dimension, 

t(3414.13)=-2.85, p<0.01 (see Figure 21).  

 

Figure 21. Looking time to sampled and unsampled trials, across the three 
dimensions on the memory array. 
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Overall, these results indicate that sample on the memory did not affect looking to 

the change side on the test array or discrimination ability in children as it did with adult 

participants. It also appears that sampling had no effect on looking depending on age or 

step change. The only variable that sampling interacted with was dimension and in 

particular overall looking to the orientation dimension. On average children sampled the 

memory array 53% of the time, this also did not vary across dimension (colour:58%, 

orientation: 52%, shape: 49%) or age group (12-15mo: 55%, 17-20mo: 55%, 22-

25mo:50%, 27-30mo:53%). If infants are not significantly sampling the memory this may 

be an earlier indicator that they are not building visual exploration patterns of looking 

back and forth that will aide in discrimination on the test array and therefore lead to less 

overall discrimination of the beasties. In the adult analysis, sampling of the memory was 

related to looking at the change side on the test array, arguably because sampling of the 

memory array created a pattern of visual exploration that carried through on to the test 

array. Therefore, we also investigated if sampling on the test array was related to 

discrimination.  

 

Sampling Images during Test Array 

 To answer the second question, does looking to both images on the test array lead 

to differences in looking to the change versus no change side of the test array, we created a 

model that predicted looking on the test array from side, sampling on test array, dimension 

and step. Log likelihood tests indicated that the best fitting random effects structure 

contained random intercepts for subject and the fixed effects justified by the data included 

one three-way interaction of side, sampling, and dimension and another three-way 

interaction of dimension, age group, and sampling. There was a significant main effect of 

sampling of the test array, such that participants looked more on sampled test trials than 

unsampled test trials, t(4755.44)=-14.38, p<0.001. There was a significant two-way 

interaction between sampling and dimension, with significantly more overall looking on 

sampled trials for the colour dimension compared to the shape dimension, 

t(2888.95)=3.59, p<0.001. There was a significant two-way interaction between sampling 

and age group, where 27-30-month-olds had less overall looking compared to 22-25-

month-olds on unsampled trials, t(4740.47)=-3.06, p<0.01. There was a significant three-

way interaction between side, dimension, and sampling on test trials, such that participants 

looked more to the change side on sampled trials for the colour dimension, 

t(4695.13)=2.66, p<0.01. There was an additional significant three-way interaction 
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between dimension, age group, and sampling, such that 22-25-month-olds looked more 

sampled trials for the orientation dimension, t(4690.61)=-2.61, p<0.01. 

 
 Although we did not see much in terms of sampling on the memory array, 

sampling on the test array provided more insight into the how looking behaviours of the 

children related to discrimination. On average children sampled the test array 61% of 

trials, which is an increase from their average sampling of the memory array. The 

percentage did not vary much across age (12-15mo: 60%, 17-20mo: 59%, 22-25mo:63%, 

27-30mo:63%), but did across dimension (colour:70%, orientation: 60%, shape: 57%) 

with colour having the highest percentage of sampling. The model suggested that 

sampling on the test array was related to discrimination (looking to change side) as it 

interacted with dimension. The overall model indicated that infants looked significantly 

more to the change side for the colour dimension when the infants had sampled both test 

images. This may mean that sampling the test images does help children to identify the 

changed object, at least for colour. Participants that sampled the test array had 

significantly more looking for the colour dimension trials, which was previously found to 

be discriminated by child participants in the overall proportion analysis and was the 

dimension which had the highest proportion of sampling. In adult participants there was a 
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Figure 22. Looking time to change and no change side by sampled and unsampled 
trials, across the three dimensions on the test array. 
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relationship found between sampling of the test images and discrimination. It may be that 

this same relationship is evident in children, particularly for the colour dimension, but as 

discrimination results were far less robust than that of adults this relationship may be 

weaker.  There was also some evidence that sampling the test images varied depending on 

dimension and age. The interaction of sampling of the test images with age, the results 

revealed the oldest age group, 27-30-month-olds, had significantly less overall looking 

compared to 25-27-month-olds on sampled test trials. From our previous age group 

analysis, we found that 25-27-month-olds were able to discriminate the beastie objects, 

unlike the oldest participants, 27-30-month-olds. Together these results suggest there may 

be a relationship between sampling of the test images and discrimination as there was with 

adult participants, however unlike adult participants, the child data indicated that it is less 

robust and may vary by age and dimension. Next, we tested whether the location of where 

participants looked is related to change side looking. 

 

Areas of Interest: Top/Bottom 

To examine the relation between looking to particular areas of the stimuli and 

discrimination we created a model that included change look, dimension, step, and AOI 

(top and bottom). Log likelihood tests indicated that the best fitting random effects 

structure contained random intercepts for subject and the fixed effects justified by the data 

included a four-way interaction of side, dimension, step, and AOI and a two-way 

interaction between age group and AOI. There was a main effect of AOI, were there was 

more looking in the top AOI, t(5972.21)=-5.61, p<0.001. There was a significant two-way 

interaction between looking to the change side and area of interest with more looking to 

the change side for the top AOI, t(5944.91)=-3.84, p<0.001. There is a significant two-

way interaction between AOI and age group, with significantly more looking to the top 

AOI for 22-25-month-olds compared to 27-30-month-olds, t(5966.07)=-2.28, p<0.05. 

There was a significant two-way interaction between AOI and dimension, where there was 

more looking to the top AOI for colour, t(5945.28)=-6.89, p<0.001 and orientation, 

t(5944.82)=-12.93, p<0.001 compared to shape. There were two three-way interactions: 

between looking to the change side, step, and AOI, such that participants significantly 

decreased looking to the change side within the top AOI for step 3 to compared to step 2, 

t(5944.09)=-4.02, p<0.001, and for step 4 compared to step 3, t(5944.35)=-4.78, p<0.001. 

There was a significant three-way interaction between side, dimension, and AOI, such that 

participants had more looking to the change side that fell within the top AOI for the colour 
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dimension compared to the shape dimension, t(5943.74)=4.21, p<0.001. There was a 

significant three-way interaction between AOI, step, and dimension, with more looking 

within the top AOI for orientation compared to shape for step 3 compared to step 2, 

t(5944.14)=-2.63, p<0.01 and step 4 compared to step 3, t(5944.42)=-3.53, p<0.001. 

Lastly, there was a significant four-way interaction between side, dimension, step, and 

AOI. To investigate this interaction the shape dimension was analysed separately, as it 

significantly differed from both colour and orientation.  

 

 
The shape model included change side, step, and AOI (top and bottom). Log 

likelihood tests indicated that the best fitting random effects structure contained random 

intercepts for subject and the fixed effects justified by the data included a three-way 

interaction of change look, step, and AOI. There was a main effect of AOI, with more 

looking to the bottom AOI, t(1846.75)=11.70, p<0.001. There was a significant two-way 

interaction between AOI and side, such that participants looked more to the change side 

within the top AOI, t(1821.33)=-5.94, p<0.001. There was a significant three-way 

interaction between side, step and AOI, there was a significant increase in looking to the 
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change side within the bottom from step t to 1 to 2, t(1815.68)=-2.03, p<0.05, step 2 to 3, 

t(1815.79)=-4.83, p<0.001 and 3 to 4, t(1818.38)=-7.73, p<0.001.   

These analyses reveal that the relation between looking to specific parts of the 

stimuli and discrimination depends on the dimension tested. Overall, children looked more 

to the top half of the stimuli, which contains the beastie’s eyes. This fits with literature 

suggesting children prefer to look at faces and face-like features (Cassia, et al, 2004; 

Johnson, et. al., 1991). This preference was seen for the colour and the orientation 

dimensions. For the orientation dimension this preference has no effect on discrimination, 

but it did affect discrimination for the colour dimension. For the colour dimension, 

participants had an increase in looking to the change side for the top half of the beastie 

stimuli as step changed from 1 to 2 or the degree of change increased from 15-degrees to 

30-degrees. Looking in the top half may have aided participants in discriminating the 

colour dimension, but this may not be a strong pattern as it only happened for one step. 

The looking pattern for the shape dimension was the complete opposite.  

For shape trials, participants preferred to look to the bottom half of the beasties, 

which contained the leg features. This preference was also related to discrimination, as 

infants looked more to the top portion of the changed stimulus overall except for the 

greatest degree of change, 60 degrees or step 4. In this case, infants looked more overall to 

the bottom portion of beasties but looking to the bottom only added in discrimination for 

the easiest or biggest step change. The results from the adults suggested that looking to the 

bottom half of the beasties was related to more looking to the change side. As we argued 

with the adult participants, the bottom AOI, which contained the leg features, could 

provide a point of reference to help see the shape change (see Figure 18). However, there 

is a large difference between that of children and adults, adults were able to discriminate 

changes in the beasties across all three dimensions and with even the smallest step, 

whereas children did demonstrate significant discrimination overall. Taken together, 

children did replicate some looking effects of adults with more looking in the bottom AOI 

for shape, but this is again tempered by differing discrimination rates; children may have 

overcome their preference to look at face features for shape, but not enough to gain the 

benefits and discriminate. 

 

3.3.3 Discussion 

Children’s ability to discriminate the beasties was far less robust and systematic 

than that of the adults. Although, overall children looked more to the change side of the 
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test array, possibly indicating discrimination, discrimination did not improve as the degree 

of change between the objects increased, as it did with adults. When each dimension was 

examined separately, it was found that colour was the only dimension that had longer 

looking to the change side, whereas shape and orientation did not, although depending on 

age and step children were able to discriminate orientation object. As for age, children in 

the youngest and oldest age groups (12-15mo and 27-30mo) did not have significantly 

more looking to the change side. In contrast, the middle two age groups (17-20mo and 22-

25mo) were able to discriminate the beasties, but the patterns of discrimination ability 

across age and step did not gradually increase.   

 When we investigated children’s visual exploration, we did not see the same robust 

patterns we saw in the adult data. Sampling of the memory array did not have any impact 

on discrimination at test, but there was an effect of whether infants sampled the test array. 

Children who sampled the test array for the colour dimension looked more to the change 

side. The sampling behaviour in and of itself was different for age group and dimension, 

however neither influenced looking to the change side. These results suggest it is 

beneficial for the children to sample the beasties on the test array, but only this was only 

beneficial for the colour dimension.  

Lastly, the analysis of what part of the stimuli children looked at revealed that 

adults and children had a similar pattern. Children looked at the top of the beasties more, 

arguably because that contained the eyes. It may be that since the top half had the eyes, it 

kept children’s interest, which resulted in better encoding of the colour stimuli and thus 

more discrimination. Children also preferred to look at the top of the beasties on the 

orientation trials, however in this case there was not a significant interaction with change 

side and thus their looking to the top half did not result in better discrimination. This may 

be because orientation was a dimension that was overall harder to discriminate or because 

the top half of the beasties did not provide any additional information aide in 

discrimination. For shape trials, children looked at the bottom more than the of the top of 

the beasties. However, this did not appear to result in reliable discrimination, and 

numerically looking to the change side was higher when children looked more at the top 

of the stimuli suggesting that looking to the bottom AOI did not support discrimination 

ability as it did with adults.  

 Overall, these results do not provide strong support for the claim that children are 

able to discriminate the differences in the beastie stimuli. The fact that they looked more 

overall to the changing side is encouraging, but we did not see this uniformly across 
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dimensions, nor did we see a systematic improvement with increasing stimulus changes or 

age. With this said, children did evidence some ability to discriminate changes in the 

colour of the beasties. Given that colour was one of the two features of the beasties that 

differed among the six stimuli used in the cross-sectional word learning studies, there is 

then some possibility they could tell the stimuli apart.  

 However, it is also possible that the weak and unsystematic nature of our findings 

in this experiment results from our use of total accumulated looking across the entire test 

array (3000 ms) as our dependent measure. It may be that not having a fixation stimulus 

prior to the test array, resulted in children starting the test array already looking to and 

accumulating time on a beastie, only for them to switch to the preferred beastie, thus 

evening out their looking time. Given that children and infants of this age can make 

between 3 to 4 fixations in this amount of time, it is possible that a cumulative measure 

such as ours masks important information about infants looking dynamics.  

  Therefore, we reran the child participant data through Eyetracking R (Dink & 

Ferguson, 2015) to identify if there were more systematic underlying looking patterns that 

developed over the time course of the trials that might have been lost through our previous 

analysis. With this said, we do not believe the previous analysis was incorrect, but 

moreover we believe that some of the looking patterns might be lost when preforming a 

higher-level analysis combining all individual looks. We also do not believe adults need to 

be ran in this type of analysis as there looking patterns were quite robust.   

 

3.3.4 Results 2 

Analysis 

 Children’s time course data was extracted out of Dataviewer. This data is the 

moment to moment record of where children are looking sampled every 2 ms. The time 

course data provides a more detailed account of what children are doing over the course of 

the trial. Data was then analysed in the Eyetracking R package (Dink J, Ferguson B., 

2015) and through the use of logistic mixed effects models with R package glmmPQL. 

The following analysis examines the proportion of time infants spent looking at the 

change side divided by the total looking to either side during each 2 ms bin of the 3000 ms 

test array trial. Data from each dimension was investigated individually with models that 

included random effects for subject with fixed effects for step and age group. In addition, 

we created a new variable called first look, that coded whether an infant was looking at the 

change side versus the no change side at the start of the trial. We reasoned that if infants 
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can detect the change in a stimulus, their pattern of looking over the course of the trial will 

be different depending on where they were looking at the start of the trial. Infants who 

start the trial looking at the no change side should be more likely to switch to look at the 

change side, whereas infants who are already looking at the change side should be more 

likely to maintain looking to that side. First look was included as a fixed effect and all 

fixed factors were effects coded. 

 The shape and orientation data follow a curved trend with one peak; therefore, the 

time course data was modelled using a second order (quadratic) orthogonal polynomial. 

The data for the colour dimension follows a curved trend with two peaks, thus it was 

modelled with a third order (cubic) orthogonal polynomial. The shape and orientation 

models examine children’s fixation patterns over time point one (linear) and time2 

(quadratic), while examining the effects of step, age group, and first look location on 

patterns of fixation. The colour model examines children’s fixation patterns over time 

point one (linear), time2 (quadratic), and time3 (cubic), examining the effects of step, age 

group, and first look location on patterns of fixation.  
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 The previous analysis of overall looking to the change and no change sides for the 

shape dimension suggested that children did not look significantly longer to the change 

side compared to the no change side. These results indicated that children were unable to 

discriminate the beasties based on the shape dimension regardless of age group or degree 

of change (step).  However, the time course data (see Figure 24), reveal a more complex 

pattern of looking that suggests over the trial time children are making significant shift to 

the change side indicating signs of discrimination. In addition, the time course data 

suggests that where the infants were looking at the start of the trial does influence their 

looking pattern.  

 Children who were looking to the change when the test array started gradually 

shifted to look at the no change side by around a 1000 ms. However, over the remaining 

2000 ms it appears as though they shift their looking back to the change side and possibly 

once more to the no change side. Children who start their first look in the no change side 

show the opposite pattern. They gradually shift to the change side by around 1000 ms 

Figure 24. The time course of fixations for each of the Step changes (1,2,3,4) during 
the test array, separated by first look location (change side v. no change side) for all 
four age groups (12-15mo, 17-20mo, 22-25mo, 27-30mo). The dotted line indicates 
chance looking at 50%.  
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followed by a look back to the no change side and possibly a last shift to the change side. 

Although both groups show a similar trend of looking back and forth between the change 

side and no change side, where they started had a significant effect on their proportion 

looking to the target. The model coefficients show that children who start the trial looking 

to the change side had significantly more looking to the change side, as opposed to 

participants who first looked to the no change side.  The effect of first look can be seen 

around the 2000 ms time point, when both groups of children shift their looking, children 

who started looking at the change side return to look at the change side and the children 

who started looking to the no change side return to look to the no change. This suggests 

that due to the oscillating nature of children’s looking (shifting back and forth) the 

location where you start at the beginning of the trial may end up accumulating more 

looking time if the trial ends before they have shifted back to the other AOI.   

In addition to the effect of first look location, the model coefficients suggest that 

there are also main effects for age group and step, as well as interactions between the all 

three factors. For age group, 22-25-month-old children had a significantly higher 

proportion of looking to the change side. These participants started to look more to the 

change side around the 1000 ms time point and continued to maintain looking to this side 

of the array until the end of the trial. For step, participants shift to look at the change side 

significantly more with the 30-degree change (step2). For this degree of change, 

participants began to shift their looking to the change side around 750 ms and did not 

decrease or shift their looking to the no change side until the end of the trial.  

 The model coefficient for the interaction between age group and step revealed that 

12- 15-month-old children had a significant decrease in looking to the change side for a 

15-degree change (step 1) compared to 17-20month-old, whose looking trajectory 

remained relatively flat with the step 1 change. In contrast, 22-25month-old children 

showed significantly more looking to the change side when the beasties changed by 30-

degrees (step 2). They began to look to the change side around 750 ms and continued to 

increase their looking throughout the trial. Although older, the 27-30-month children only 

showed a significantly increase in looking to the change side with the larger change of 45-

degrees (step 3).  

The interaction between first look and age group, reveals that 22-25-month-old 

participants who started the test array looking to the change side had significantly more 

looking to the change side over the course of the trial compared to both their younger (17-

20mo) and older (27-30mo) counterparts. The interaction between first look and step was 
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caused by a significant increase in looking to the change side with a 30-degree (step 2) 

change compared to a 15-degree (step 1) change for participants who started the test array 

looking at the change side. However, this increase in looking to the change side was not 

seen with the larger step changes. Also, participants who started their first look to the 

change side looked more to the change side for 45-degree (step 3) compared to a 60-

degree (step 4) change.  

The model coefficient for the three-way interaction revealed three effects of step, 

age group, and first look. First, 17-20-month-old children who started the trial on the 

change side showed a significant increase in looking to the change side for the lowest step 

change of 15-degrees around 1500 ms and continued in this trajectory until 2800 ms. 

Second, 22-25-month-old children who started the trial on the change side showed a 

significant increase in looking to the change side for a 30-degrees step change (step 2) 

around 1500 ms and continued in this trajectory until the end of the trial. Third, 27-30-

month-old children who started the trial on the change side showed a significant increase 

in looking to the change side for a 45-degrees step change (step 3) around 1100 ms and 

continued in this trajectory until 2500 ms.  

Overall the shape dimension time course results show that children did have 

significant shifts in their looking to the change indicating that they were able to 

discriminate the shape changes in the beasties. Although the shifts in looking to the 

change side did vary by age, step, and where children were looking at the start of the test 

array, as children get older and with larger changes, children looked more to the change 

side. In addition, because children’s looking trajectories included around three shifts 

between looks to the change and no changes side, if they started on the change side, they 

accumulated more time looking to the change side.   

Table 4.  Time course analysis model coefficients for the shape dimension  
 
Fixed Effects Shape Estimates SE t p 
First Look 
ot1: First Look 
ot2: First Look 

1.32 
-6.14 
8.52 

0.02 
0.14 
0.1 

55.90 
-42.70 
55.90 

<0.001 
<0.001 
<0.001 

Step:1 by 2 
         2 by 3 
         3 by 4 
ot1: 1 by 2 
        2 by 3 
        3 by 4 
ot2: 1 by 2 
        2 by 3 
        3 by 4 

-0.01 
0.06 
-0.02 
0.23 
-0.03 
0.22 
-0.41 
0.12 
0.26 

0.02 
0.02 
0.02 
0.12 
0.12 
0.12 
0.13 
0.13 
0.12 

-0.37 
3.77 
-0.83 
1.92 
-0.28 
1.91 
-3.18 
0.91 
2.06 

0.712 
<0.001 
0.409 
0.055 
0.781 
0.056 
<0.01 
0.362 
<0.05 

Age Group:12-15mo by 17-20mo 
                    17-20mo by 22-25mo 
                    22-25mo by 27-30mo 
ot1: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 

-0.04 
-0.09 
0.14 
-0.15 
-0.43 
0.65 

0.06 
0.07 
0.07 
0.32 
0.35 
0.35 

-0.57 
-1.36 
2.05 
-0.45 
-1.22 
1.84 

0.572 
0.178 
<0.05 
0.650 
0.222 
0.065 
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ot2: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 

-0.13 
-0.03 
-0.03 

0.29 
0.31 
0.32 

-0.45 
-0.09 
-0.10 

0.654 
0.927 
0.917 

First Look: Step: 1 by 2 
         First Look: 2 by 3 
        First Look: 3 by 4 
ot1: First Look: 1 by 2 
        First Look: 2 by 3 
        First Look: 3 by 4 
ot2: First Look: 1 by 2 
        First Look: 2 by 3 
        First Look: 3 by 4 

-0.02 
0.15 
-0.16 
0.04 
0.35 
-0.21 
0.15 
0.14 
-0.10 

0.41 
0.41 
0.40 
0.25 
0.25 
0.24 
0.26 
0.27 
0.26 

-0.48 
3.69 
-4.15 
0.15 
1.42 
-0.85 
0.57 
0.52 
-0.38 

0.628 
<0.001 
<0.001 
0.88 
0.16 
0.39 
0.57 
0.61 
0.70 

First Look: Age Group:12-15mo by17-20mo 
         17-20mo by 22-25mo 
         22-25mo by 27-30mo 
ot1: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 
ot2: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 

0.02 
-0.15 
0.33 
0.33 
0.86 
-1.11 
-1.27 
0.41 
0.67 

0.04 
0.04 
0.04 
0.23 
0.25 
0.26 
0.24 
0.27 
0.28 

0.47 
-3.70 
7.76 
1.43 
3.43 
-4.23 
-5.29 
1.54 
2.42 

0.64 
<0.001 
<0.001 
0.152 
<0.001 
<0.001 
<0.001 
0.125 
<0.05 

Age Group 12-15mo by 17-20mo: Step 1 
Age Group 12-15mo by 17-20mo: Step 2 
Age Group 12-15mo by 17-20mo: Step 3 
Age Group 17-20mo by 22-25mo: Step 1 
Age Group 17-20mo by 22-25mo: Step 2 
Age Group 17-20mo by 22-25mo: Step 3 
Age Group 22-25mo by 27-30mo: Step 1 
Age Group 22-25mo by 27-30mo: Step 2 
Age Group 22-25mo by 27-30mo: Step 3 
ot1: Age Group 12-15mo by 17-20mo: Step 1 
        Age Group 12-15mo by 17-20mo: Step 2 
        Age Group 12-15mo by 17-20mo: Step 3 
        Age Group 17-20mo by 22-25mo: Step 1 
        Age Group 17-20mo by 22-25mo: Step 2 
        Age Group 17-20mo by 22-25mo: Step 3 
        Age Group 22-25mo by 27-30mo: Step 1 
        Age Group 22-25mo by 27-30mo: Step 2 
        Age Group 22-25mo by 27-30mo: Step 3 
ot2: Age Group 12-15mo by 17-20mo: Step 1 
        Age Group 12-15mo by 17-20mo: Step 2 
        Age Group 12-15mo by 17-20mo: Step 3 
        Age Group 17-20mo by 22-25mo: Step 1 
        Age Group 17-20mo by 22-25mo: Step 2 
        Age Group 17-20mo by 22-25mo: Step 3 
        Age Group 22-25mo by 27-30mo: Step 1 
        Age Group 22-25mo by 27-30mo: Step 2 
        Age Group 22-25mo by 27-30mo: Step 3 

-0.09 
0.004 
0.04 
0.001 
-0.08 
-0.15 
0.03 
0.16 
-0.06 
-0.11 
-0.06 
0.54 
0.48 
0.31 
-0.49 
-0.56 
0.60 
-0.89 
-0.45 
-0.06 
-0.13 
0.28 
-0.43 
0.19 
-0.32 
0.16 
0.11 

0.03 
0.03 
0.03 
0.04 
0.03 
0.03 
0.04 
0.04 
0.03 
0.19 
0.20 
0.19 
0.21 
0.21 
0.21 
0.22 
0.21 
0.20 
0.20 
0.20 
0.20 
0.22 
0.22 
0.22 
0.24 
0.24 
0.22 

-2.88 
0.12 
1.30 
0.04 
-2.22 
-4.55 
0.70 
4.30 
-174 
-0.61 
-0.31 
2.85 
2.24 
1.46 
-2.40 
-2.48 
2.67 
-4.26 
-2.28 
-0.31 
-0.67 
1.26 
-1.91 
0.89 
-1.35 
0.66 
0.47 

<0.01 
0.906 
0.193 
0.972 
<0.05 
<0.001 
0.483 
<0.001 
0.082 
0.545 
0.758 
<0.01 
<0.05 
0.144 
<0.05 
<0.05 
<0.01 
<0.001 
<0.05 
0.760 
0.504 
0.209 
0.056 
0.373 
0.178 
0.508 
0.638 

First Look:Age Group 12-15mo by 17-20mo: Step 1 
                  Age Group 12-15mo by 17-20mo: Step 2 
                  Age Group 12-15mo by 17-20mo: Step 3 
                  Age Group 17-20mo by 22-25mo Step 1 
                  Age Group 17-20mo by 22-25mo: Step 2 
                  Age Group 17-20mo by 22-25mo: Step 3 
                  Age Group 22-25mo by 27-30mo: Step 1 
                  Age Group 22-25mo by 27-30mo: Step 2 
                  Age Group 22-25mo by 27-30mo: Step 3 
ot1: First Look: Age Group 12-15mo by 17-20mo: Step 1 
        First Look: Age Group 12-15mo by 17-20mo: Step 2 
        First Look: Age Group 12-15mo by 17-20mo: Step 3 
        First Look: Age Group 17-20mo by 22-25mo: Step 1 
        First Look: Age Group 17-20mo by 22-25mo: Step 2 
        First Look: Age Group 17-20mo by 22-25mo Step 3 
        First Look: Age Group 22-25mo by 27-30mo: Step 1 
        First Look: Age Group 22-25mo by 27-30mo: Step 2 
        First Look: Age Group 22-25mo by 27-30mo: Step 3 
ot2: First Look: Age Group 12-15mo by 17-20mo: Step 1 
        First Look: Age Group 12-15mo by 17-20mo: Step 2 
        First Look: Age Group 12-15mo by 17-20mo: Step 3 
        First Look: Age Group 17-20mo by 22-25mo: Step 1 
        First Look: Age Group 17-20mo by 22-25mo: Step 2 
        First Look: Age Group 17-20mo by 22-25mo: Step 3 
        First Look: Age Group 22-25mo by 27-30mo: Step 1 
        First Look: Age Group 22-25mo by 27-30mo: Step 2 
        First Look: Age Group 22-25mo by 27-30mo: Step 3 

-0.25 
0.09 
0.12 
0.22 
-0.12 
0.07 
0.14 
0.01 
-0.31 
0.90 
-0.22 
-0.48 
0.29 
0.94 
0.31 
0.42 
0.04 
-0.97 
0.78 
-1.17 
0.70 
-0.30 
0.44 
-0.64 
-0.93 
0.22 
0.23 

0.06 
0.07 
0.06 
0.07 
0.07 
0.07 
0.08 
0.07 
0.07 
0.39 
0.40 
0.39 
0.43 
0.43 
0.43 
0.47 
0.45 
0.43 
0.41 
0.42 
0.41 
0.46 
0.46 
0.45 
0.49 
0.48 
0.46 

-3.89 
1.36 
1.88 
3.12 
-1.66 
0.96 
1.83 
0.15 
-4.40 
2.34 
-0.55 
-1.21 
0.66 
2.17 
0.73 
0.90 
0.08 
-2.27 
1.92 
-2.81 
1.69 
-0.67 
0.96 
-1.42 
-1.90 
0.45 
0.51 

<0.001 
0.175 
0.060 
<0.01 
0.097 
0.335 
0.067 
0.884 
<0.001 
<0.05 
0.581 
0.226 
0.508 
<0.05 
0.467 
0.368 
0.935 
<0.05 
0.054 
<0.01 
0.091 
0.506 
0.339 
0.155 
0.058 
0.655 
0.613 
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“ot” refers to the orthogonal time terms, such that ot1 refers to the linear term and ot2 the quadratic 

 

The previous results of the analysis of overall looking for the orientation 

dimension suggested that children did not show a significant difference in looking to the 

change and no change sides of the test array. However, interactions between side, step, 

and age groups revealed that at certain ages (17-20mo and 22-25mo) and larger step 

changes (step 3-27 degrees and step 4-36 degrees) did result in more looking to the 

change, and thus some ability to discriminate changes in the orientation of the stimuli.  

Looking at the time course data (see Figure 25), suggest changes in looking is influences 

depending on where children were looking at the start of the trial. 

 
 

 Children who were looking to the change side of the test array at the start, had a 

gradually shifted to look at the no change side around an 1800 ms. Over the remaining 

1500 ms it appears they shifted their looking back to the change side, generating two shifts 

in looking. Conversely, children who started the test array looking to the no change side, 

Change No_Change

12−15m
o

17−20m
o

22−25m
o

27−30m
o

0 1000 2000 3000 0 1000 2000 3000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Time

Pr
op

or
tio

n 
lo

ok
 to

 c
ha

ng
e 

si
de

Step
1
2
3
4

Orientation Dimension

Figure 25. The time course of fixations for each of the Step changes (1,2,3,4) 
during the test array, separated by first look location (change side v. no change 
side) for all four age groups (12-15mo, 17-20mo, 22-25mo, 27-30mo). The dotted 
line indicates chance looking at 50%.  
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gradually shifted to the change side, also around 1800 ms, followed by a look back to the 

no change side. Both groups show a similar trend of looking back and forth between the 

change side and no change side, but with opposite patterns. The model coefficients 

indicate that children who start the trial looking to the change side had significantly more 

looking to the change side, as opposed to participants who first looked to the no change 

side.   

 In addition, the model coefficients suggest that there is also a main effect step, 

along with interactions between age and step, step and first look, as well as a three-way 

interaction. For step, participants looked significantly less to the change side for a 9-

degree change (step1) in the orientation dimension compared to an 18-degree change 

(step2). Over the time course, participants showed more looking to the no change side for 

step 1. This looking trajectory continues until 2100 ms, when participants gradually 

increased their looking to the change side.  

 The model coefficients for the interaction between age group and step revealed 

that 12-15-month-old children had a significant increase in looking to the change side for 

an 18-degree change (step 2) compared to 17-20-month-olds. In contrast, 17-20-month-old 

children showed a significant decrease in their looking to the change side with a 9-degree 

change (step1), but significant increase in their looking for a 36-degree change, indicating 

that they could not discriminate the orientation changes until the largest step change. The 

22-25-month-old children showed significantly less looking to the change side when the 

beasties changed by 18-degrees (step 2), but significantly increased their looking to the 

change side over the course of the trial for a 27-degree step change.  These results indicate 

that over the course of the trial some age groups are able to detect the change in 

orientation, but often need a larger degree (step) change to shift their looking to the change 

side.  

The interaction between first look and step revealed that children who started the 

test array looking at the no change side had a slower rate of shifting to the change side for 

the 9-degree step change. This effect indicates that children had a harder time 

discriminating the smallest degree changes for orientation.  The interaction between first 

look and age group, reveals that 27-30-month-old participants who started the test array 

looking to the change side had a significantly slower rate of shifting their looking 

throughout the course of the trial. This suggests that 27-30-month-olds were not only 

slower to shift their looking to the no change side, but also took longer to shift their 

looking back to the change side.  
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Several effects drove the three-way interaction between step, age group and first 

look. For the youngest age group, 12-15-month-old participants, those who started the test 

array looking to the change side a had significant increase in looking to the change side for 

a 9-degree change (step 1) occurring around 2000 ms. Conversely, 12-15-month-old 

participants who started the test array looking to the no change side, had a significant 

increase in looking to the change side for an 18-degree change (step 2) around 1600 ms.  

This result suggests that 12-15-month-old children who start looking at the no change side 

may need a larger step size to notice the orientation change compared 12-15-month-old 

children who started on the change side. The 22-25-month-old children who started the 

trial looking to the change side showed a significant shift in looking back to the change 

side for a 9-degrees change (step 1). Their 22-25-month-old counterparts who started the 

trial looking to the no change side, however, had a higher rate of shifting their looking to 

the change side for a 27-degree change (step 3) over the trial. The three-way results show 

how children’s looking over the course of the trial can shift depending on the step of 

change and the age range of the participants. Some children are able to shift to the change 

side fairly quickly with a smaller step change, where as other children need a larger degree 

(step 4) change to push their looking to the changed object.  

Overall, the time course results for the orientation dimension showed children were 

able to discriminate the orientation changes in the beasties. As with the shape dimension, 

children who started the test array looking to the change side showed higher rates of 

discrimination. Yet, even some of the children who started the test array looking at the no 

change side were able to shift their looking to the change side over time, especially on 

trials that included larger degree (step) changes in orientation.  However, while there were 

significant differences in the looking behaviours for the different age groups; these were 

not systematic enough to conclude that older children discriminate at higher rates than 

younger children, suggesting there is not an age related difference in discrimination ability 

for the orientation beasties between 12- 30-month-old children.   

Table 5.  Time course analysis model coefficients for the Orientation dimension 
Fixed Effects Orientation Estimates SE t p 
First Look 
ot1: First Look 
ot2: First Look 

1.31 
-6.75 
8.50 

0.02 
0.14 
0.15 

57.57 
-48.32 
57.53 

<0.001 
<0.001 
<0.001 

Step:1 by 2 
         2 by 3 
         3 by 4 
ot1: 1 by 2 
        2 by 3 
        3 by 4 
ot2: 1 by 2 
        2 by 3 
        3 by 4 

-0.05 
0.005 
0.02 
0.64 
0.30 
-0.29 
0.27 
0.30 
-0.52 

0.02 
0.02 
0.02 
0.12 
0.12 
0.12 
0.12 
0.12 
0.13 

-2.74 
0.24 
1.28 
5.43 
2.64 
-2.45 
2.15 
2.49 
-4.15 

<0.01 
0.808 
0.202 
<0.001 
<0.01 
<0.05 
<0.05 
<0.05 
<0.001 
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Age Group:12-15mo by 17-20mo 
                    17-20mo by 22-25mo 
                    22-25mo by 27-30mo 
ot1: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 
ot2: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 

0.06 
0.01 
0.01 
-0.66 
0.22 
0.02 
-0.10 
0.18 
0.003 

0.04 
0.05 
0.05 
0.33 
0.35 
0.35 
0.27 
0.28 
0.28 

1.41 
0.16 
0.26 
-1.98 
0.62 
0.05 
-0.38 
0.62 
0.01 

0.161 
0.875 
0.793 
<0.05 
0.534 
0.962 
0.705 
0.537 
0.993 

First Look: Step: 1 by 2 
         First Look: 2 by 3 
        First Look: 3 by 4 
ot1: First Look: 1 by 2 
        First Look: 2 by 3 
        First Look: 3 by 4 
ot2: First Look: 1 by 2 
        First Look: 2 by 3 
        First Look: 3 by 4 

0.07 
-0.12 
0.04 
-0.43 
0.12 
0.01 
-0.06 
-0.82 
0.51 

0.04 
0.04 
0.04 
0.24 
0.24 
0.24 
0.25 
0.25 
0.26 

1.71 
-3.14 
1.13 
-1.80 
0.51 
0.04 
-0.22 
-3.28 
2.01 

0.086 
<0.01 
0.258 
0.072 
0.610 
0.966 
0.823 
<0.001 
<0.05 

First Look: Age Group:12-15mo by17-20mo 
         17-20mo by 22-25mo 
         22-25mo by 27-30mo 
ot1: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 
ot2: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 

-0.01 
0.07 
0.10 
1.22 
-0.48 
-0.55 
-0.43 
-0.37 
0.14 

0.04 
0.04 
0.04 
0.23 
0.24 
0.24 
0.24 
0.26 
0.25 

-0.22 
1.69 
2.65 
5.39 
-1.96 
-2.29 
-1.81 
-1.46 
0.54 

0.830 
0.090 
<0.01 
<0.001 
<0.05 
<0.05 
0.071 
0.146 
0.587 

Age Group 12-15mo by 17-20mo: Step 1 
Age Group 12-15mo by 17-20mo: Step 2 
Age Group 12-15mo by 17-20mo: Step 3 
Age Group 17-20mo by 22-25mo: Step 1 
Age Group 17-20mo by 22-25mo: Step 2 
Age Group 17-20mo by 22-25mo: Step 3 
Age Group 22-25mo by 27-30mo: Step 1 
Age Group 22-25mo by 27-30mo: Step 2 
Age Group 22-25mo by 27-30mo: Step 3 
ot1: Age Group 12-15mo by 17-20mo: Step 1 
        Age Group 12-15mo by 17-20mo: Step 2 
        Age Group 12-15mo by 17-20mo: Step 3 
        Age Group 17-20mo by 22-25mo: Step 1 
        Age Group 17-20mo by 22-25mo: Step 2 
        Age Group 17-20mo by 22-25mo: Step 3 
        Age Group 22-25mo by 27-30mo: Step 1 
        Age Group 22-25mo by 27-30mo: Step 2 
        Age Group 22-25mo by 27-30mo: Step 3 
ot2: Age Group 12-15mo by 17-20mo: Step 1 
        Age Group 12-15mo by 17-20mo: Step 2 
        Age Group 12-15mo by 17-20mo: Step 3 
        Age Group 17-20mo by 22-25mo: Step 1 
        Age Group 17-20mo by 22-25mo: Step 2 
        Age Group 17-20mo by 22-25mo: Step 3 
        Age Group 22-25mo by 27-30mo: Step 1 
        Age Group 22-25mo by 27-30mo: Step 2 
        Age Group 22-25mo by 27-30mo: Step 3 

0.18 
0.09 
-0.10 
-0.16 
-0.02 
0.03 
-0.01 
-0.18 
0.12 
-0.03 
0.38 
-0.37 
-0.23 
0.37 
0.36 
0.22 
-0.82 
0.10 
0.61 
-1.01 
-0.23 
-0.02 
-0.64 
1.03 
-0.51 
0.82 
-0.21 

0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.19 
0.19 
0.19 
0.20 
0.20 
0.20 
0.21 
0.20 
0.20 
0.20 
0.19 
0.21 
0.21 
0.21 
0.21 
0.22 
0.21 
0.21 

5.80 
2.85 
-3.28 
-4.63 
-0.70 
1.00 
-0.40 
-5.57 
3.59 
-0.14 
2.05 
-1.93 
-1.13 
1.80 
1.77 
1.06 
-4.18 
0.49 
3.04 
-5.18 
-1.13 
-0.07 
-2.98 
4.80 
-2.36 
3.96 
-1.00 

<0.001 
<0.01 
<0.01 
<0.001 
0.486 
0.332 
0.695 
<0.001 
<0.001 
0.887 
0.041 
0.054 
0.257 
0.073 
0.076 
0.289 
<0.001 
0.622 
<0.01 
<0.001 
0.259 
0.944 
<0.01 
<0.001 
<0.05 
<0.001 
0.316 

First Look:Age Group 12-15mo by 17-20mo: Step 1 
                  Age Group 12-15mo by 17-20mo: Step 2 
                  Age Group 12-15mo by 17-20mo: Step 3 
                  Age Group 17-20mo by 22-25mo Step 1 
                  Age Group 17-20mo by 22-25mo: Step 2 
                  Age Group 17-20mo by 22-25mo: Step 3 
                  Age Group 22-25mo by 27-30mo: Step 1 
                  Age Group 22-25mo by 27-30mo: Step 2 
                  Age Group 22-25mo by 27-30mo: Step 3 
ot1: First Look: Age Group 12-15mo by 17-20mo: Step 1 
        First Look: Age Group 12-15mo by 17-20mo: Step 2 
        First Look: Age Group 12-15mo by 17-20mo: Step 3 
        First Look: Age Group 17-20mo by 22-25mo: Step 1 
        First Look: Age Group 17-20mo by 22-25mo: Step 2 
        First Look: Age Group 17-20mo by 22-25mo Step 3 
        First Look: Age Group 22-25mo by 27-30mo: Step 1 
        First Look: Age Group 22-25mo by 27-30mo: Step 2 
        First Look: Age Group 22-25mo by 27-30mo: Step 3 
ot2: First Look: Age Group 12-15mo by 17-20mo: Step 1 
        First Look: Age Group 12-15mo by 17-20mo: Step 2 
        First Look: Age Group 12-15mo by 17-20mo: Step 3 

0.13 
-0.23 
-0.02 
-0.21 
0.11 
0.04 
0.15 
-0.01 
-0.17 
1.42 
-1.52 
0.84 
0.50 
-0.01 
-0.59 
-0.16 
2.59 
-1.01 
1.30 
-1.74 
0.38 

0.06 
0.06 
0.06 
0.07 
0.07 
0.07 
0.07 
0.07 
0.07 
0.39 
0.38 
0.40 
0.42 
0.42 
0.41 
0.42 
0.40 
0.41 
0.41 
0.40 
0.42 

2.02 
-3.71 
-0.30 
-3.08 
1.68 
0.64 
2.21 
-0.13 
-2.50 
3.69 
-3.99 
2.11 
1.19 
-0.03 
-1.42 
-0.39 
6.45 
-2.49 
3.19 
-4.39 
0.91 

<0.05 
<0.001 
0.764 
<0.01 
0.093 
0.520 
<0.05 
0.894 
<0.05 
<0.001 
<0.001 
<0.05 
0.235 
0.972 
0.155 
0.698 
<0.001 
<0.05 
<0.01 
<0.001 
0.365 
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        First Look: Age Group 17-20mo by 22-25mo: Step 1 
        First Look: Age Group 17-20mo by 22-25mo: Step 2 
        First Look: Age Group 17-20mo by 22-25mo: Step 3 
        First Look: Age Group 22-25mo by 27-30mo: Step 1 
        First Look: Age Group 22-25mo by 27-30mo: Step 2 
        First Look: Age Group 22-25mo by 27-30mo: Step 3 

-1.21 
0.78 
-0.32 
-0.21 
0.59 
-1.04 

0.44 
0.44 
0.43 
0.44 
0.42 
0.43 

-2.78 
1.79 
-0.74 
-0.48 
1.39 
-2.42 

<0.01 
0.074 
0.460 
0.631 
0.166 
<0.05 

“ot” refers to the orthogonal time terms, such that ot1 refers to the linear term and ot2 the quadratic 

 
In the first set of results, colour unlike the other two dimensions (shape and 

orientation), did have a significant effect overall looking to the change side suggesting 

children were able to discriminate. The colour dimension time course data also differed 

from the shape and orientation dimensions, as it followed a curve with two peaks, as 

opposed to one peak. The time course data indicated that children shifted their looking 

more often, generating three shifts in looking over the 3000 ms trial. The modelling of the 

time course data reveals how looking changes for age group and step contributed to 

discrimination of the colour beasties, in addition to where infants were looking at the start 

of the trial. 
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Figure 26. The time course of fixations for each of the Step changes (1,2,3,4) during 
the test array, separated by first look location (change side v. no change side) for all 
four age groups (12-15mo, 17-20mo, 22-25mo, 27-30mo). The dotted line indicates 
chance looking at 50%.  
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The model coefficients reveal main effects of first look and step, but no main 

effect of age group. For first look, children who started the test array looking to the change 

side, had significantly more looking to the change side over the course of the trial 

compared to children who started the test array looking to the no change side. These 

children had a gradual decrease in their looking to the change side, as they switched from 

the change side to the no change side around 1400 ms, they then shifted their looking back 

to the change side were they continued to look until about 2500 ms, there was then a final 

shift to the no change side, which continued till the test array offset. The children who 

started the test array looking to the no change side showed the exact opposite pattern; a 

gradual shift to the change side till about 1400 ms, shift back to no change side around 

2500 ms, and a final shift to the change side till the reminder of the test array.  

The main effect of step revealed children had a significant increase in looking to 

the change side for a 45-degree change (step 3). For this step 3 change, participants 

significantly shifted their looking to the change side around 500 ms from the onset of the 

test array, indicating that participants were able to detect the 45-degree change in colour. 

The interaction between step and first look revealed a difference in discrimination 

depending on where participants were looking at the start of the test array. Children who 

started the test array looking to the change side had a significant shift in looking back to 

the change side for the smallest step change (15-degrees), whereas children who started 

the test looking to the no change side had a significant shift in looking to the change side 

for the largest step change (60-degrees). These results suggest that beginning the test array 

looking to the change side may help you to discriminate smaller degree changes, whereas 

starting the trial looking to the no change side participants require a larger degree change 

to discriminate the colour beasties. 

The model coefficients found an interaction of first look and age group. This 

interaction suggests children who start the test array looking at the change side had 

quicker shifts in looking to the no change side and then back to the change side for the 

youngest age group (12-15mo). This effect may further support the idea that where 

children start the test array affects their looking trajectory over the time course. In 

particular, starting on the change side has been found to increase discrimination for 

smaller degree changes and four younger children.  

As for age and step the model coefficients revealed several interactions. The 12-

15-month-old children had more looking to the change side on a 15- degree step change 

compared to 17-20-month-old children over the trial time. However, 17-20-month-old had 
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significantly more looking to the change side over the course of the trial for a 45-degree 

step change. It is interesting that 12-15-month-old are able to notice the change at a 

smaller step size compare to their older counter parts who need a larger step size to show a 

significant shift in looking to the change side. The 17-20-month-old children also has less 

looking on step 1 (15-degrees) compared to 22-25-month-old who showed pattern of 

increased looking to the change side for a 15-degree step change over the trial time. The 

last interaction between step and age group reveals that 22-25-month-old children have 

less looking to the change side over the course of the trial for a 30-degree change. The 

results for the age and step indicate that as children get older does not necessarily mean 

they are able to detect smaller step changes than their younger peers.  

The model coefficients suggested that there were significant effects found within 

the three-way interaction between step, age group and first look. The 17-20-month-old 

children had a faster shift in their looking for 15-degree step change for those who started 

the trial looking on the change side, where as 17-20-month-old children had faster shift in 

their looking for a 60-degree change. This effect mirrored the interacted found between 

first look and step where starting the trial on the no change side had a faster shift change in 

looking to the change side for a 60-degree change. The next effect found that carried over 

the pattern of looking found for 17-20-month-olds showing that 22-25-month-olds had a 

slower rate of change in looking to the 60-degree change compared to 17-20-month-olds. 

Although 22-25-month-olds rate of looking to the 60-degree change was less than 17-20-

month-olds, within this age group this 60-degree change had a faster rate of looking 

compare to the smallest step change of 15-degrees and compared to the oldest age group 

27-30-month-olds. This suggest that they are able to discriminate the 60-degree colour 

change but shift their looking to the change side slower than 17-20-month-old children, 

but yet faster than 27-30-month-olds.  

The three-way results show how children’s looking over the course of the test 

array can shift depending on the size of the change and the age range of the participants. 

Some children are able to shift to the change side fairly quickly with a smaller step 

change, where as other need a larger step change to push there looking to the changed 

object. It is also interesting that some of the effect found in the two-interaction were also 

seen within the three-way interaction, specifically children who start the test array on the 

no change side had significant shifts to the change side when the step change was larger. It 

might be possible that the colour changes are easier for the children to notice as from the 

original overall looking analysis colour was the only dimension to have significantly more 
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looking to the change side. Therefore, because this dimension was easier for children to 

discriminate it could be why we see children in the time course analysis significantly shift 

their looking to the change side despite starting the test array on the no change side.  

Overall the colour dimension time course results reaffirmed children’s ability to 

discriminate the colour changes in the beasties. As with the previous two dimensions, it 

was beneficial for children who started the trial looking to the change side, however for 

larger step changes children who started on the no change side were able to shift their 

looking suggesting they recognized the colour change. Similar to the shape and orientation 

findings children’s looking varied by step and age group. The time course of their looking 

did not follow a singular pattern where older children discriminated or looked to the 

change side more. The age effect or lack thereof may suggest that there is no age 

difference between our groups and that 12-months to 30-months is not a large enough 

difference to see age effects. 

 

Table 6.  Time course analysis model coefficients for the Colour dimension 
 
Fixed Effects Colour Estimates SE t p 
First Look 
ot1: First Look 
ot2: First Look 
ot3: First Look 

1.10 
-8.60 
9.13 
-7.50 

0.02 
0.17 
0.16 
0.16 

48.04 
-50.08 
58.12 
-46.98 

<0.001 
<0.001 
<0.001 
<0.001 

Step:1 by 2 
         2 by 3 
         3 by 4 
ot1: 1 by 2 
        2 by 3 
        3 by 4 
ot2: 1 by 2 
        2 by 3 
        3 by 4 
ot3: 1 by 2 
        2 by 3 
        3 by 4 

0.02 
-0.09 
0.00003 
-0.12 
-0.80 
-0.67 
-0.20 
0.30 
0.29 
-0.72 
0.05 
0.32 

0.02 
0.02 
0.02 
0.14 
0.14 
0.14 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 

1.22 
-4.47 
0.002 
-0.85 
5.58 
-4.76 
-1.47 
2.31 
2.27 
-5.36 
0.39 
2.38 

0.221 
<0.001 
0.999 
0.393 
<0.001 
<0.001 
0.141 
<0.05 
<0.05 
<0.001 
0.698 
<0.05 

Age Group:12-15mo by 17-20mo 
                    17-20mo by 22-25mo 
                    22-25mo by 27-30mo 
ot1: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 
ot2: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 
ot3: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 

-0.03 
0.06 
-0.04 
-0.23 
0.70 
0.05 
0.20 
-0.01 
0.21 
-0.31 
0.69 
-0.05 

0.04 
0.05 
0.05 
0.31 
0.33 
0.33 
0.30 
0.31 
0.32 
0.26 
0.30 
0.30 

-0.60 
1.37 
-0.82 
-0.74 
2.13 
0.15 
0.64 
-0.04 
0.65 
-1.18 
2.49 
-0.19 

0.547 
0.173 
0.414 
0.462 
<0.05 
0.882 
0.523 
0.966 
0.516 
0.236 
<0.05 
0.852 

First Look: Step: 1 by 2 
         First Look: 2 by 3 
        First Look: 3 by 4 
ot1: First Look: 1 by 2 
        First Look: 2 by 3 
        First Look: 3 by 4 
ot2: First Look: 1 by 2 
        First Look: 2 by 3 
        First Look: 3 by 4 
ot3: First Look: 1 by 2 
        First Look: 2 by 3 
        First Look: 3 by 4 

0.19 
0.06 
-0.11 
-0.32 
-0.27 
-0.54 
0.65 
0.72 
-0.21 
0.58 
1.25 
-0.34 

0.04 
0.04 
0.04 
0.29 
0.29 
0.29 
0.27 
0.27 
0.26 
0.27 
0.27 
0.27 

4.88 
1.53 
-2.94 
-1.09 
-0.92 
-1.88 
2.40 
2.68 
-0.80 
2.14 
4.60 
-1.26 

<0.001 
0.126 
<0.01 
0.277 
0.359 
0.060 
<0.05 
<0.01 
0.0424 
<0.05 
<0.001 
0.208 
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First Look: Age Group:12-15mo by17-20mo 
         17-20mo by 22-25mo 
         22-25mo by 27-30mo 
ot1: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 
ot2: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 
ot3: 12-15mo by 17-20mo 
        17-20mo by 22-25mo 
        22-25mo by 27-30mo 

0.14 
-0.06 
0.08 
-0.26 
0.18 
0.40 
-0.50 
0.13 
0.83 
1.31 
-0.8 
-0.69 

0.04 
0.04 
0.04 
0.28 
0.29 
0.31 
0.26 
0.27 
0.28 
0.26 
0.27 
0.28 

3.70 
-1.61 
1.93 
-0.94 
0.62 
1.29 
-1.95 
0.49 
2.84 
5.05 
-0.30 
-2.42 

<0.001 
0.109 
0.054 
0.349 
0.535 
0.196 
0.052 
0.636 
<0.01 
<0.001 
0.761 
<0.05 

Age Group 12-15mo by 17-20mo: Step 1 
Age Group 12-15mo by 17-20mo: Step 2 
Age Group 12-15mo by 17-20mo: Step 3 
Age Group 17-20mo by 22-25mo: Step 1 
Age Group 17-20mo by 22-25mo: Step 2 
Age Group 17-20mo by 22-25mo: Step 3 
Age Group 22-25mo by 27-30mo: Step 1 
Age Group 22-25mo by 27-30mo: Step 2 
Age Group 22-25mo by 27-30mo: Step 3 
ot1: Age Group 12-15mo by 17-20mo: Step 1 
        Age Group 12-15mo by 17-20mo: Step 2 
        Age Group 12-15mo by 17-20mo: Step 3 
        Age Group 17-20mo by 22-25mo: Step 1 
        Age Group 17-20mo by 22-25mo: Step 2 
        Age Group 17-20mo by 22-25mo: Step 3 
        Age Group 22-25mo by 27-30mo: Step 1 
        Age Group 22-25mo by 27-30mo: Step 2 
        Age Group 22-25mo by 27-30mo: Step 3 
ot2: Age Group 12-15mo by 17-20mo: Step 1 
        Age Group 12-15mo by 17-20mo: Step 2 
        Age Group 12-15mo by 17-20mo: Step 3 
        Age Group 17-20mo by 22-25mo: Step 1 
        Age Group 17-20mo by 22-25mo: Step 2 
        Age Group 17-20mo by 22-25mo: Step 3 
        Age Group 22-25mo by 27-30mo: Step 1 
        Age Group 22-25mo by 27-30mo: Step 2 
        Age Group 22-25mo by 27-30mo: Step 3 
ot3: Age Group 12-15mo by 17-20mo: Step 1 
        Age Group 12-15mo by 17-20mo: Step 2 
        Age Group 12-15mo by 17-20mo: Step 3 
        Age Group 17-20mo by 22-25mo: Step 1 
        Age Group 17-20mo by 22-25mo: Step 2 
        Age Group 17-20mo by 22-25mo: Step 3 
        Age Group 22-25mo by 27-30mo: Step 1 
        Age Group 22-25mo by 27-30mo: Step 2 
        Age Group 22-25mo by 27-30mo: Step 3 

0.12 
-0.08 
-0.04 
-0.07 
-0.02 
0.06 
-0.09 
-0.07 
-0.04 
-1.10 
0.06 
0.41 
0.63 
-1.18 
0.55 
0.88 
0.47 
-0.69 
1.48 
-1.45 
-0.29 
0.09 
0.43 
-0.36 
-1.68 
0.89 
-0.22 
-0.79 
0.50 
0.07 
-0.28 
-0.28 
0.41 
0.97 
-0.01 
-0.32 

0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.04 
0.03 
0.03 
0.23 
0.24 
0.22 
0.24 
0.25 
0.24 
0.28 
0.25 
0.24 
0.21 
0.22 
0.21 
0.22 
0.23 
0.23 
0.25 
0.23 
0.22 
0.22 
0.22 
0.21 
0.23 
0.23 
0.23 
0.25 
0.24 
0.23 

3.77 
-2.44 
-1.25 
-2.16 
-0.55 
1.90 
-2.40 
-2.20 
-1.09 
-4.75 
0.27 
1.85 
2.63 
-4.77 
2.27 
3.20 
1.88 
-2.86 
6.93 
-6.68 
-1.39 
0.42 
1.91 
-1.61 
-6.72 
3.88 
-0.99 
-3.67 
2.26 
0.35 
-1.24 
-1.21 
1.74 
3.92 
-0.03 
-1.38 

<0.001 
<0.05 
0.212 
0.031 
0.585 
0.058 
0.016 
0.028 
0.0275 
<0.001 
0.787 
0.065 
<0.01 
<0.001 
<0.05 
<0.01 
0.061 
<0.01 
<0.001 
<0.001 
0.163 
0.673 
0.056 
0.107 
<0.001 
<0.001 
0.320 
<0.001 
<0.05 
0.729 
0.217 
0.228 
0.082 
<0.001 
0.977 
0.167 

First Look:Age Group 12-15mo by 17-20mo: Step 1 
                  Age Group 12-15mo by 17-20mo: Step 2 
                  Age Group 12-15mo by 17-20mo: Step 3 
                  Age Group 17-20mo by 22-25mo Step 1 
                  Age Group 17-20mo by 22-25mo: Step 2 
                  Age Group 17-20mo by 22-25mo: Step 3 
                  Age Group 22-25mo by 27-30mo: Step 1 
                  Age Group 22-25mo by 27-30mo: Step 2 
                  Age Group 22-25mo by 27-30mo: Step 3 
ot1: First Look: Age Group 12-15mo by 17-20mo: Step 1 
        First Look: Age Group 12-15mo by 17-20mo: Step 2 
        First Look: Age Group 12-15mo by 17-20mo: Step 3 
        First Look: Age Group 17-20mo by 22-25mo: Step 1 
        First Look: Age Group 17-20mo by 22-25mo: Step 2 
        First Look: Age Group 17-20mo by 22-25mo Step 3 
        First Look: Age Group 22-25mo by 27-30mo: Step 1 
        First Look: Age Group 22-25mo by 27-30mo: Step 2 
        First Look: Age Group 22-25mo by 27-30mo: Step 3 
ot2: First Look: Age Group 12-15mo by 17-20mo: Step 1 
        First Look: Age Group 12-15mo by 17-20mo: Step 2 
        First Look: Age Group 12-15mo by 17-20mo: Step 3 
        First Look: Age Group 17-20mo by 22-25mo: Step 1 
        First Look: Age Group 17-20mo by 22-25mo: Step 2 
        First Look: Age Group 17-20mo by 22-25mo: Step 3 
        First Look: Age Group 22-25mo by 27-30mo: Step 1 
        First Look: Age Group 22-25mo by 27-30mo: Step 2 
        First Look: Age Group 22-25mo by 27-30mo: Step 3 

-0.26 
0.05 
0.12 
0.11 
-0.02 
-0.27 
0.12 
-0.09 
0.18 
0.09 
-0.22 
0.73 
2.75 
-2.58 
0.16 
-4.38 
1.57 
2.53 
-1.62 
0.47 
-0.85 
-0.47 
-1.56 
0.91 
3.36 
-0.04 
-0.97 

0.06 
0.07 
0.06 
0.07 
0.07 
0.07 
0.07 
0.07 
0.07 
0.50 
0.50 
0.45 
0.50 
0.51 
0.50 
0.55 
0.51 
0.49 
0.43 
0.44 
0.42 
0.45 
0.46 
0.46 
0.51 
0.47 
0.46 

-4.05 
0.79 
1.85 
1.61 
-0.23 
-4.02 
1.59 
-1.28 
2.64 
0.19 
-0.45 
1.60 
5.63 
-5.08 
0.32 
-7.85 
3.09 
5.12 
-3.74 
1.05 
-2.02 
-1.04 
-3.37 
1.98 
6.64 
-0.09 
-2.11 

<0.001 
0.430 
0.064 
0.107 
0.816 
<0.001 
0.112 
0.201 
<0.01 
0.853 
0.652 
0.109 
<0.001 
<0.001 
0.747 
<0.001 
<0.01 
<0.001 
<0.001 
0.292 
0.043 
0.298 
<0.001 
<0.05 
<0.001 
0.927 
<0.05 
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ot3: First Look: Age Group 12-15mo by 17-20mo: Step 1 
        First Look: Age Group 12-15mo by 17-20mo: Step 2 
        First Look: Age Group 12-15mo by 17-20mo: Step 3 
        First Look: Age Group 17-20mo by 22-25mo: Step 1 
        First Look: Age Group 17-20mo by 22-25mo: Step 2 
        First Look: Age Group 17-20mo by 22-25mo: Step 3 
        First Look: Age Group 22-25mo by 27-30mo: Step 1 
        First Look: Age Group 22-25mo by 27-30mo: Step 2 
        First Look: Age Group 22-25mo by 27-30mo: Step 3 

1.22 
-0.95 
0.68 
0.22 
1.07 
-0.68 
-1.86 
-0.48 
0.84 

0.44 
0.45 
0.43 
0.46 
0.47 
0.48 
0.50 
0.48 
0.47 

2.80 
-2.12 
1.58 
0.47 
2.27 
-1.44 
-3.74 
-1.00 
1.80 

<0.01 
<0.05 
0.113 
0.638 
0.023 
0.151 
<0.001 
0.320 
0.072 

“ot” refers to the orthogonal time terms, such that ot1 refers to the linear term and ot2 the quadratic 

 

3.3.5 Discussion 2 

The time course data provided a more detailed picture of how children’s looking 

changed over the course of the test array compared to the results from overall looking 

times to the change and no change side. As suspected, not having a fixation stimulus did 

result in some infants looking to the change side, and others to the no change side when 

the test array appeared. The time course data did reveal that children’s looking behaviour 

oscillates back and forth between the change and no change side over the time course of 

the test array regardless of where the infants looking began. Despite the fact that looking 

does oscillate, the time course models’ results suggest significantly more looking to the 

change side for all three dimensions indicating that children were able to detect changes in 

the shape, orientation, and colour, of the beasties contrary to the overall looking results 

found in Experiment 3a. Through the analysis of the time course data, we found that 

where children are looking at the start of the test array influences their looking to the 

change and no change side throughout the test array trial. In particular, children that 

started on the change side tend to have more time to looking to the change side compared 

to children who started on the no change side. The effect of this first look was further 

mediated by the age of the children and the degree of change found in the separate 

analysis of the dimensions.   

The shape dimension model suggested that participants were able to detect the 

change in the beastie at a 30-degree change (step 2) and that 22-25-month-old children 

were better able to detect the shape changes compared to 27-30-month-old children. The 

orientation model also found that children were able to detect the change in the beastie at 

an 18-degree change (step 2) but found no effect of age. The colour model suggested that 

participants required a larger degree of change, 45-degrees (step 3), to detect the change 

than shape and orientation models. The colour model also suggests no effect of age. 

Although first look, step, and age interacted together to find that younger and older ages 

able to detect differing degrees of change, these effects did not follow a pattern indicative 

of age growth suggesting the older age group did not out preform the younger age groups.  
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The results from the time course analysis with the addition of the variable first 

look, revealed some interesting dynamics of children’s looking in the discrimination task 

that was missed in the first set of analyses. These results provided a clearer and more 

detailed picture of what children were doing moment to moment and how their looking 

shifted over time, between dimension, step, and age. However, a central goal of these 

experiments was to identify whether the beastie objects were distinct enough for children 

to tell apart, especially for children age 12-14-months and for beasties that changed in 

colour and shape at 60-degree change. The major concern with using these stimuli was 

that the beasties were not generating similar attention and looking times as the Smith and 

Yu stimuli. Taken together the child discrimination data from both analyses suggest that 

the beasties are not highly discriminable objects. Although we had some promising results 

suggesting that children from 12-30-months on average had more looking and had 

significant shifts to the change side indicating some levels of discrimination, the results 

were neither uniform nor systematic across age and step. As for dimension, children were 

able to detect changes in colour, but orientation and shape results suggested lesser 

discrimination. Therefore, while these results lead some support that the beastie objects 

are somewhat discriminable, the objects used for the cross situational experiments with 

children between 12-14-month-of-age may be too similar overall and insufficient to 

generate the looking needed for word learning.  
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Chapter 4: Visual dynamics of cross situational word learning, Exact replication of 

Smith and & Yu, 2008 

 

4.1 Experiment 4 

Although adults could clearly discriminate the beasties, children had a harder time 

doing so. Analysis of children’s looking over the time course of the discrimination trials 

provides some indication that children do perceive the differences in the beasties. 

Nevertheless, for our final attempt to replicate the cross situational word learning findings 

we contacted Linda Smith and Chen Yu and asked to have a video copy of their stimuli. In 

Experiment 4, we used the video they sent us to conduct an exact replication of Smith and 

Yu (2008) and Yu and Smith (2011) with the additional use of an eye tracker. 

 

4.1.1 Methods 

4.1.1.1 Participants 

Twenty-two 12-month-old infants (14 males, 8 females) and 30 14-month-old 

infants (14 males, 17 females) were recruited from a Southeast college town via 

community outreach and a lab registry. All infants were from middle class working 

families that spoke English more than 50% of the time. In our study 40 children began the 

experiment but did not finish due to fussiness (23) or equipment failure (13), parental 

interference (2), and recruitment error (2). An additional 8 infants completed the study but 

did not contribute data because either their average looking during the training trials was 

more than 2 standard deviations below the overall mean (3), or they demonstrated a bias to 

look to the right or left that was +/-  2 standard deviations of the total average looking to 

the right or left (5). The fact that our drop rate was still relatively very high, especially in 

terms of the number of infants fussing out suggest that while our beastie stimuli may not 

be highly discriminable, the task itself may be the issue here. Likewise, the number of 

drops due to low looking rates or biases is also indicative of general task difficulties. 

Lastly, although some of the drops can be attributed to testing failure, Experiment 4 had 

the highest drop rate and was conducted with the use of Smith and Yu stimuli. 

 

4.1.1.2 Stimuli 

The six novel words used were identical to experiments 1 and 2. The six novel 

objects, however, were replaced with those used in Smith and Yu’s study (2008) and Yu 
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and Smith (2011). These objects were drawings of novel shapes, each with a unique and 

bright colour (see Figure 27). The stimuli were presented on a 42 -inch monitor with a 

white background. The words were presented over the monitor’s loudspeaker. The stimuli 

were between 8 to 10 inches in projected size, separated on the screen by 15 inches, and 

had an average visual angle of 16 degrees.  

 
4.1.1.3 Procedure 

A Dell computer running Experiment Builder (SR- Research, Ontario, Canada) 

presented the experiment on a 42-inch monitor at a distance of 100 centimetres. An 

EyeLink 1000 plus remote tracker was used. The eye tracking camera was located at the 

base of the monitor on a small stand at a distance between 600 to 700 centimetres. The eye 

tracker had a monocular focus affixed to the right eye and tracked gaze position using 

pupil and corneal reflections of an infrared light source. Eye position was maintained 

using a target sticker, allowing the eye tracker to relocate the eye as the participant moved. 

The tracker’s sampling rate was 500 Hz. There were two additional cameras, one located 

at the bottom of the monitor to record the participant’s face, and one located at the back of 

the room to record the experiment as it was presented on the monitor. 

Infants were seated on their caregivers’ lap 42 inches from the screen. Caregivers 

wore blackout sunglasses, which obscured their vision throughout the entire procedure, 

and were asked to refrain from pointing to or otherwise or drawing their child’s attention 

to the screen. The experiment began with a short video of Elmo’s World. During this 

video, the experimenter placed the tracking sticker on the participants’ forehead. Once the 

sticker was in position the calibration procedure began. Participants were shown a 

looming black and white geometric object at five points of the screen (middle, top, 

bottom, right, left) to map raw eye position data to the camera image data and thereby map 

Figure 27. The six novel objects used in Experiment 3. 
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gaze position to the stimulus presentation. Following successful calibration, the 

experiment started. 

The structure and duration of training and test trials was the same as Smith and Yu, 

2008 and Yu and Smith, 2011. There were thirty training slides. Each slide presented two 

of the novel objects for four seconds. The first word was presented 500 ms after the onset 

of the slide. The second word was presented 500 ms after the end of the first word. All six 

words were 1000 ms in length. Over the course of the 30 training slides, each of the six 

word-object pairs occurred 10 times. Each word-object pair co-occurred with every other 

word-object pair five times in the training trials. During training trials an attention grabber 

(picture of a Sesame Street character) appeared in the centre of the screen for four 

seconds* before the start of the first training slide and every three slides thereafter to 

maintain attention. 

Training was followed by 12 test slides, which were presented for 8000 ms each. 

On each test trial two objects were presented on the screen, but unlike training, only one 

word, repeated four times, was presented. The first spoken iteration of the word occurred 

at 500 ms, the second at 2000 ms, the third at 4500 ms, and the fourth at 6000 ms. The 

object with which this word had co-occurred during training was designated as the target. 

The other object served as the distractor. Each of the six words were presented twice.  

There were two sets of experimental slides with different presentation orders and 

different word-object pairs. The first set was identical to order in the video from Smith and 

Yu. This second order was organized according to Smith and Yu’s (2008) procedure, with 

the right and left position of the objects, order of names, with the target word and location 

of the objects selected randomly such that each object appeared equally often on both 

sides and each word was stated first and second equally often.  

An attention grabber (picture of a Sesame Street character) appeared in the centre 

of the screen for four seconds* and was repeated three times before the start of the first 

training slide. It then was repeated every slide for the first four training slides. The 

attention getter then appeared every three slides in training thereafter to maintain attention. 

For test, attention getters appeared every other slide until the completion of the study. 
* It should be noted that Smith and Yu (2008) report the length of the attention getter video as three seconds, 

however upon review of the video we found the length to be four seconds. Therefore, we extend the length 

of the attention getter to replicate that of the video received from Smith and Yu (2008). Also see Table 8 in 

the appendix for a direct comparison of the experiment details.  
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4.1.1.4 Data Analysis 

Raw eye position data from the eye tracker was broken down into events such as 

fixations, saccades, and blinks using Data Viewer (SR- Research, Ontario, Canada). For 

analysis, trials were segmented from attention getters that were defined by message-based 

training trials and test trials start and end times. Similar to Yu and Smith (2011), areas of 

interest (AOIs) were created by splitting the screen into left and right sides, which 

contained each object. These large interest areas accounted for calibration error and drift 

in the eye tracker. Interest area reports for the training and test trials provided dwell time 

and number of fixations for each AOI, switches between AOIs and average pupil dilation. 

 

4.1.2 Results 1 

To examine our direct replication of Smith and Yu (2008) and Yu and Smith 

(2011), we first compare the descriptive data from training and test trials to Smith and Yu 

(2008) and Yu and Smith (2011). We then look at overall learning, and finally, individual 

looking dynamics on training and test. 

 

Training Trials 

On average, infants looked at the right and left sides of each training slide for equal 

durations. Preliminary data analysis indicated average total looking for all 4000 ms 

training trials was 3010 ms for 12-month-olds and 3074 ms for 14-month-olds. Infants 

spent at least 1 second looking at each object on a training slide on 41% of the trials for 

12-month-olds and 50% for 14-month-olds. Twelve -month-old infants spent at least 500 

ms looking at each object on 68% of the training trials and 75% for 14-month-old infants. 

Our results are similar to that of Smith and Yu’s (2008) average of 3040 ms on training 

trials, however our percentage of infants who spent at least 500 ms looking at each object 

is still low compared to their 87%.  
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Test Trials 

 
On average, infants looked at each 8-second test slide for a total of 4635 ms for 12-

month-olds and 4939 ms for 14-month-olds. Overall, infants did not look more to the 

target (2363 ms) than the distractor (2447 ms), t(51)=0.89, p=0.379 (Figure 28). When 

separated, 12-month-olds did not show a greater difference in looking time to the target 

(2302 ms) than the distractor (2333 ms), t(21)=0.206, p=0.838. Likewise, the 14-month-

olds did not show a greater looking to the target (2408 ms) than the distractor (2531 ms), 

t(29)=0.998, p=0.326, as can be seen in Figure 28. 
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Figure 28.  Mean looking time to distractor and target per 8000 ms test trial (and 
standard error of the mean). (a) 12 and 14-month-old data combined, (b) data for 
12- and 14-month-olds separated. 

(a) (b) 
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We again separated the participants into strong and weak learners to investigate 

their looking dynamics. There were 12 12-month-old strong word learners and 10 weak 

word learners. The 12-month-old strong learners learned an average of 3.85 words, 

whereas the weak learners learned 1.99 words. The strong learners had significantly more 

looking to the target (2478 ms) than the distractor (2062 ms), t(11)=-2.96, p<0.05, with the 

weak learners having significantly more looking to the distractor than the target (2660 ms 

v 2092 ms for distractor and target respectively), t(9)= 3.34, p<0.01. There were 16 strong 

14-month-old word learners and 14 weak word learners. The 14-month-old strong learners 

learned an average of 3.50 words; the weak word learners learned 2.05 words. Strong 

learners had significantly more looking to the target (2553.02 ms) than the distractor 

(2192.30 ms), t(15)=-3.98, p<0.001, and the weak learners had significantly more looking 

to the distractor (2917 ms) than the target (2243), t(13)= 5.17, p<0.001. 
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Figure 29.  Mean looking time to distractor and target per 7000 ms test trial for 12- 
and 14-month-old strong and weak learners (and standard error of the mean). 
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The average training trial looking time for 12-month-old strong learners (1751 ms) 

and weak learners (1582 ms) did not differ significantly, t(18.04)=1.52, p=0.147. 

Likewise, average training trial looking time for the 14-month-old strong learners (1629 

ms) and weak learners (1641 ms) also did not differ significantly, t(24.78)=-0.143, 

p=0.887. There was also no significant difference for either age group with regards to max 

fixation length. The 12-month-old strong learners averaged of 2266 ms and the weak 

learners averaged 2022 ms t(17.96)=1.71, p=.1045. The 14-month-old strong learners 

(2095 ms) had similar max fixation length as the weak learners (2115 ms), t(23.72)=-

0.193, p=0.848. The 12-month-old strong learners did have fewer fixations (M=2.97) than 

the weak learners (M= 3.17), t(19.93)=-0.799, p=0.434. Whereas, the 14-month-old strong 

learners had more fixations (M= 3.63) than the weak learners (M=3.23), although not 

significantly more, t(26.44)=1.45, p=0.160. 
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Figure 30. Training trial looking dynamics of training: (a) Mean count of fixations 
for strong and weak learners per 4000 ms training trial (and standard error of the 
mean). (b) Mean length of longest fixation for strong and weak learners per 4000 ms 
training trial (and standard error of the mean) 
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Lastly, we investigated looking differences to learned and non-learned words over 

training. Overall, there was no significant difference in looking between the learned 

(M=2051 ms) and non-learned (1877 ms) words, t(51)=1.67, p=0.10. The final model 

included fixed effects for word type (learned/non-learned), trial block, and learner type 

(strong/weak) with an interaction between word type and learner type and random effects 

for subject. Age group was removed from the model as log likelihood tests found it was 

not a significant contributor to the model. There was a significant effect of trial block such 

that there was more looking on the first ten trials (1-10) than the middle ten trials (11-20), 

t(260)=2.24, p<0.05 and more looking on the middle ten trials than the last ten trials (21-

30), t(260)=2.37, p<0.05 indicating habituation. There was also a main effect of word 

type, with more looking to learned words than non-learned words, t(260)=2.47, p<0.05. 

Lastly, there was a significant two-way interaction between learner type and word type, 

where strong learners had significantly more looking to the learned words than the non-

learned words compared to weak learners, t(260)=7.55, p<0.001, however the lack of 

Figure 31. Mean looking to the correct object per 4s training trials for learned 
and non-learned words (and standard error of the mean).  
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interaction with trial block suggests that this difference was evident from the beginning of 

the study.   

 

4.1.3 Discussion 

Similar to Experiment 2, we did not find evidence of word learning even when 

using Smith and Yu’s stimuli. In addition, we did not find differences in the looking 

dynamics of the strong and weak learners. This study used the exact same stimuli, 

procedure, and even added an eye tracker to accurately measure infants’ looking 

behaviour, as in Yu & Smith (2011). Our hope was that the amount of looking time infants 

demonstrated in this study would be similar to the amounts of overall looking Smith and 

Yu found previously, and that this would lead to stronger word learning. However, 

Experiment 3 had the least amount of looking during training: M= 3315 ms, 3196 ms and 

3048 ms, for Experiments 1, 2 and 3 respectively, and significantly less than Experiment 1 

(see Figure 33), t(66)=3.28, p<0.01 and also the highest drop rate. Thus, the changes in 

procedure and the new stimuli did not increase looking and possibly lead to lower levels 
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Figure 32. Mean looking to learned and non-learned words (and standard error of the 
mean) per 4 s training trial (and standard error of the mean). 
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of looking. In addition, as both Experiments 1 & 2 had higher levels of look than 

Experiment 4, suggesting that our stimuli were not the cause of lower looking levels.  

 
As for the looking dynamics between the strong and weak learners, we once again 

failed to replicate the looking dynamics in Yu and Smith (2011). There was no significant 

difference in max fixation length, nor number of fixations on training trials for strong and 

weak learners in both the 12- and 14-month-old age groups. While the 12-month-olds 

trended toward similar looking dynamics as the children in Yu and Smith, with strong 

learners having fewer fixations with longer fixation lengths, the 14-month-old age group 

did not show similar trends. These results, taken together with those of Experiments 1 and 

2, suggest that these looking dynamics, such as max fixation length and number of 

fixations during training are not a clear predictor of learning at test. In contrast, we did 

find a consistent pattern of looking to the objects associated with learned versus non-

learned words for strong and weak learners across Experiments 1, 2, and 4. From the 

beginning of training, strong learners look more to objects that match words they evidence 

learning of at test while weak learners look more to objects that match the words they do 

not evidence having learned, and both groups show significant habituation. As we argued 

prior in chapter 2, this pattern suggests children’s learning of words may be related to how 

they preferentially look and attend to objects, which is possibly shaped by familiarity and 

novelty preference, as well as what objects they look to when the study starts.  

Experiment 4, as well as the prior cross situational experiments, were designed to 

replicate cross situational word learning in 12-and 14-month-olds. Once replicated, we 

planned to find what looking patterns led to successful cross situational word learning and 

develop ways to manipulate children’s looking to increase word learning. However, we 
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Figure 33. Average looking time across all three experiments. 
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found that regardless of the age group, test trial length, or stimuli used, children as a group 

did not show evidence of reliable, above-chance looking to the target object at test. In 

addition, we found that children’s word learning in the task may be related to looking 

driven by preferences for particular objects over others as indicated by learned and non-

learned word-object looking dynamics. Yet before we completely close the book on 

learning words in the cross situational paradigm, we decided to examine at the time course 

data in Eyetracking R. Past research has noted gaze data (time course data) is a rich source 

for developmental research and it accounts for the complex moment to moment eye 

movements (Yu, Yurovsky, Xu, 2012). In our own time course analysis of the beasties 

stimuli in Experiment 3, we were able to see attentional shifts that provided additional 

information as to infants looking dynamics.   

 

4.1.4 Data Analysis 2 

 Time course data was extracted out of Dataviewer. Data was then analysed in the 

R package Eyetracking R and through the use of logistic mixed effects models with R 

package glmmPQL. The following analysis examines infants’ test trial looking through 

proportions of looking to the target object divided by the total proportion of looking to 

both the target and distractor objects. Data was cleaned in that trials where participants did 

not fixate on the screen for more that 70% of the test trial duration were removed to 

reduce noise within the data set (removing 224 trials). The model included random effects 

for subject with fixed effects for age group. In addition, we created a new variable called 

first look, which is the location of the eyes at the start of the test array (target /distractor), 

which was included as a fixed effect, as we did for the time course analysis in the 

discrimination studies. We believe that their pattern of looking over the course of the trial 

will be different depending on where they were looking at the start of the test trial. If they 

have learned the word-object mappings, infants who start the trial looking to the distractor 

object should switch to look to the target once they hear the target word, whereas infants 

who are already looking to the target object should maintain looking to that object. All 

fixed factors were effects coded and fitted with an optimal random effects structure. 

 The data follow a curved trend with three peaks; therefore, the time course data 

was modelled using forth order (quartic) orthogonal polynomials. The model examines 

children’s gaze data over time (linear), time2(quadratic), time3 (cubic), and time4(quartic) 

while examining the effects of age group and first look location on patterns of fixation.  

 



 

 

99 

 

4.1.4 Results 2 

 The results from the model (Table 7) indicate that there was a significant effect of 

first look location for the target object and an interaction with the linear, quadratic, cubic, 

and quartic polynomial terms. These results suggest overall proportion looking to the 

target and the overall time course of their looking during the trial is mediated by where 

infants begin looking on the test array. Participants who looked first to the distractor, do 

not look to the target at levels greater than chance, but do show some segments of 

significant looking to the distractor around the time of the second, third, and fourth word 

presentations (2000, 4500, and 6000 ms). However, participants who looked first to the 

target object maintain looking to that object at greater than chance levels throughout the 8s 

test trials. Further, these participants show increases in the proportion looking to the target 

around the second, third- and fourth-word presentations (2000, 4500 and 6000 ms) word 

onset, and at the end of the trial (Figure 34).  

 
Although there was no main effect of age group nor an interaction with any of the 

orthogonal terms, there was an interaction of age group and first look location that also 
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interacted with the cubic and quartic polynomial terms. This suggests that there were 

significantly more 12-month-old participants who started their first look towards the target 

object. In addition, 12-month-olds who looked first to the target showed a significantly 

higher proportion of looks to the target in the later segments of the trial.  Overall these 

results suggest that children who start the test trial looking to the target object maintained 

a higher proportion of looking to the target object throughout the trial despite the cyclical 

(back and forth) nature of their looking. Twelve-month-olds who started the test trial 

looking to the target object maintained a higher proportion of looking to the target object 

compared to 14-month-olds who also started the trial looking to the target object and 12-

month-olds who started the test trial looking to the distractor object. Although these results 

would suggest that 12-month-olds demonstrated more word learning than the 14-month-

olds, the 14-month-olds who started the test trial looking to the distractor object had a 

significant shift in looking to the target object, where 12-month-olds only had minor shifts 

in looking regardless of their first look location. The results suggest that 12-month olds 

have more sticky attention and maintain their looking over the time course, whereas 14-

month-olds shift their looking more to the target and distractor objects, possibly indicating 

there is more driving their attention than stickiness.  
Table 7. Time course analysis model coefficients  
Fixed Effects  Estimate SE t value pr(>|t|) 
First Look: Target- Distractor 

ot1: First Look: Target- Distractor 
ot2: First Look: Target- Distractor 
ot3: First Look: Target- Distractor 
ot4: First Look: Target- Distractor 

0.25 
-1.56 
1.37 
-1.63 
1.15 

0.02 
0.14 
0.14 
0.15 
0.14 

15.98 
-10.81 
9.42 
-11.24 
8.03 

<0.001 
<0.001 
<0.001 
<0.001 
<0.001 

Age Group: 12mo-14mo 
ot1: Age Group 12mo-14mo 
ot2: Age Group: 12mo-14mo 
ot3: Age Group: 12mo-14mo 
ot4: Age Group: 12mo-14mo 

0.11 
-0.16 
0.02 
-0.77 
-0.59 

0.07 
0.56 
0.52 
0.59 
0.52 

1.56 
-0.29 
0.04 
-1.31 
-1.13 

0.126 
0.769 
0.968 
0.190 
0.260 

First Look: Age Group 
ot1: First Look: Age Group 
ot2: First Look: Age Group 
ot3: First Look: Age Group 
ot4: First Look: Age Group 

0.06 
-0.14 
-0.04 
0.58 
-0.32 

0.02 
0.14 
0.14 
0.15 
0.14 

3.71 
-0.95 
-0.26 
3.96 
-2.20 

<0.001 
0.341 
0.797 
<0.001 
<0.05 

“ot” refers to the orthogonal time terms, such that ot1 refers to the linear term, ot2 the 
quadratic, ot3 the cubic, and ot4 the quartic 

 

4.1.5 Discussion 2 

The time course data provided a new perspective on children’s looking dynamics 

to the target and distractor objects at test in the cross situational word learning paradigm. 

The temporal patterns found in the time course data reveal that children are constantly 

shifting their looking between the target and distractor objects throughout the test trial, but 
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more so for the 14-month-olds. Although we did not see an overall difference in pattern 

based on age, we did see one based on where children started their first look, as well as an 

interaction between age and first look location. As we suspected, children who looked first 

to the target object generated a higher proportion of looks to the target throughout the trial 

and more so compared to children who started the test trial looking to the distractor object. 

The results indicate that over the course of the trial participants accumulate more time 

looking to the object they look at first when the trial starts. With this said, the infants did 

shift their looking over the course of the trial, with some shifts co-occurring to the onsets 

of the word, suggesting that that the words possibly pushed some children to look to the 

target. drove the change in looking. Therefore, although the analysis does not provide 

clear support for the conclusion that overall children had learned the word-object 

mappings, there remains the possibility that words are driving some children to look to the 

target object indicating word learning.  

It is somewhat surprising that 12-month-old children who started looking to the 

target object had more looking to the target overall than their 14-month-old counterparts. 

This is particularly interesting, as previous findings from Yu and Smith (2011) and others 

(Vlach & Johnson, 2013) tend to show that older children generate significantly more 

looking to the target object than their younger counterparts. In most developmental 

literature, age tends to be a significant factor with children improving as they get older. 

Although it is not unheard for younger children to perform better depending on the task, in 

the cross situational literature this has not been the case. This age discrepancy between our 

findings and the cross situation word learning literature may be another fault of the task.  

In addition, the non-replication of overall word learning in Experiments, 1, 2, and 4, along 

with the non-replication in Experiments 2 and 4 of the relation between training trial 

looking dynamics and stronger learning performance, we believe speaks more to the 

failure of the task to account for how children learn words than a failure of our 

experiments. To further this point, the large number of drops due to fussiness, low looking 

levels, and side biases regardless of testing time, attention grabbers, and stimulus used 

leads us to believe infants around this age range may not be suitable to test in this 

procedure. In addition, if the experiment cannot be completed by large numbers of 

participants, it is safe to assume that the participants kept in the study may not be a true 

representation of how children look, attend, and possibly learning in a cross situational 

word learning task. With all the reservations about the task said, the looking dynamics of 

learned and non-learned word-objects found across all three cross situational experiments 



 

 

102 

 

provides an interesting insight into how children’s looking behaviour may relate to 

learning word- object mappings.  
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Chapter 5: General Discussion 

5.1 Overview 

We began this study in the hopes of increasing our understanding of how visual 

exploration during naming relates to word learning. Prior work by Yu and Smith had 

suggested that differences in looking dynamics over training, in particular sustained 

attention as measured by fewer, longer looks to objects during training, was related to 

overall learning in the cross situational word learning task. The idea is that this pattern of 

stable looking enables infants more time to look at the objects while hearing the words, 

which, over time, allows them to form strong word-object associations. In contrast, infants 

who shift attention back and forth between the objects do not gain the valuable time 

looking at the objects when the words are presented. This leads to weaker associations and 

often with the incorrect pairing between the object and the word (Yu & Smith, 2011). 

However, our three experiments suggest this relationship is not robust. Although we found 

evidence of fewer fixations with longer looking bouts being related to more learning in 

Experiment 1, this effect was not replicated in Experiments 2 or 4. Rather, in those studies 

strong and weak learners had similar max fixation length and number of fixations. If this 

type of sustained attention is a vital component to cross situational word learning, we 

should have seen a more consistent finding among number of fixations and max fixation 

length. The fact that we did not indicates that either this pattern is not as fundamental or 

there are other patterns of behaviour that account for word learning. This idea fits with the 

fact that Yu, Zhong, and Fricker (2012) did not find sustained attention leads to successful 

word learning in a cross situational word learning study with adults, but instead found 

selective attention to previously seen objects was critical. Adults were able to remember 

previously seen word-object pair that then further drove looking to these pairs, allowing 

them to accumulate more time to form and retaining the word-object mappings. It may be 

that sustained attention leads to selective as both lead to accumulating more time looking 

to objects over training. Thus, sustained attention may not be the only mechanism leading 

to strong word learning, but possibly is related to other looking dynamics such as time 

accumulated with objects over training.   

More concerning, perhaps, is the fact that across our three experiments we failed to 

replicate the overall finding of word learning in the cross situational paradigm. In all three 

studies infants, as a group and separated by age, showed equal looking to the target and 

distractor at test. Notably, Smith and Yu have replicated their original (2008) finding of 

cross situational word learning in two other studies with infants and an adult study; in 
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2011 and 2013 they found overall word learning in 12- to 14-month-old old infants, along 

with looking dynamics that led to better learning outcomes, and in 2007 they found that 

adults show robust word learning in a variety of cross situational word learning conditions. 

Furthermore, dozens of prior studies have demonstrated word learning in variants of the 

cross situational word task learning with children (Akhtar & Montague, 1999; Suanda, 

Mugwanya, & Namy, 2014) and adults (Truewells, et al., 2013; Gillette, Gleitman, 

Gleitman, & Lederer, 1999; Suanda & Namy, 2012). Notably, however, the Smith and Yu 

studies are the only studies demonstrating cross-situational word learning in children at 

12-months, and our Experiment 4 was a veridical replication of Smith and Yu (2008) 

including use of their stimuli via video.  

Furthermore, it is well known that non-replications are harder to find in the 

literature (Francis, 2012; Maxwell, 2015; Schmidt & Oh, 2016; Perone, 2019) due to 

publication bias and the replicability crisis. Two recent poster presentations report studies 

with failures to replicate cross situational word learning in 18-month-old (Verde, Antovich 

& Graf-Estes, 2019) and 5-year-old (Benitez & Lalani, 2019) children. We believe it is 

likely that similar failures to replicate cross situational word learning with infants exist but 

have gone unpublished, leading the literature to show predominately studies with word 

learning success.  

At the very least, then, it is clear that infant, and perhaps toddler, word learning 

from cross situational word learning paradigms is a not robust effect. To further this point, 

the large number of drops due to fussiness found in Experiments 1,2, and 4 may also speak 

to the effects found and the paradigm of cross situational word learning. Since several 

children were unable to complete the task despite changes in trial length and stimuli used 

suggesting that this paradigm may be too taxing for this age range. That said, we believe 

there may be useful information to be gained via further examination of the relation 

between visual attention and exploration during training and how this relates to test 

performance. In particular, this thesis did consistently find a relation between looking 

during training and test performance at the level of looking to objects associated with 

learned and non-learned words for strong and weak learners. Specifically, we found that 

strong learners looked more to the objects that matched words that they went on to 

demonstrate having learned at test and weak learners looked more to objects that matched 

words they did not demonstrating having learned at test. This effect was evident in the first 

block of training and is particularly striking as it suggests greater looking to the objects 

that corresponded to learned words may be present at the at the start, rather than 
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developing over the course, of training. As we noted earlier in chapters 2 and 4, looking to 

objects that correspond to words that strong learners indicate word learning for at test may 

have occurred by happenstance. However, the continued looking to these same objects 

over training suggests two possibilities for what is driving looking dynamics and two 

different conclusions about learning in this paradigm. One possibility is of association 

learning through sustained attention and one of object preferences where infants did not 

truly learn the word- object mappings. 

Similar to canalization (Gottlieb, 1991), it may be that strong and weak learners 

start the experiment with the same experience and knowledge; however, it is only when 

they make their first look do they start down the path that leads to strong or weak word 

learning. Along this line of reasoning, strong word learners start the experiment simply 

looking to one object, maybe due to individual preference, and through this long bout of 

looking they gather several bits of information, such as the its associated word/s. Over 

multiple presentations they keep looking to the object, slowing building the word- object 

association. Once they have this word-object mapping, they may then start to look to other 

objects, slowly accumulating more looking time and enabling time to hear the 

corresponding word. Then at test, upon hearing a word, they look toward the object they 

associated with that word during training, indicating word learning.  

The second possibility presents a similar story based on the same looking data. 

Strong and weak learners both start the experiment with the same knowledge and 

information and looking more to a selective number of objects. Over the course of training 

both strong and weak learners continue looking the same objects trial after trial, 

accumulating looking time. At test strong learners continue their preferential looking 

regardless of the word present, but it just so happens that the target object is the preferred 

object leading to more looking time. Weak learners, however, at test switch their looking 

to objects they have yet to accumulate a lot of looking time for. That is, it is possible that 

the difference between strong and weak learners is that at test learners continue to look to 

the objects they have preferred throughout training, while weak learners demonstrate a 

preference to switch to novel things at test.  Although we would like to conclude that what 

drives the looking differences at test is indicative of word learning, both possibilities are 

derived from the same learned and non-learn word-object looking data. These results were 

consistent across all three of our studies, ages, and stimuli suggesting that these looking 

dynamics are a robust effect.  
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The time course analysis provided more insight into infants’ looking patterns 

during the test trials. This analysis suggests that younger infants (12-month-olds) tend to 

have stickier attention, whereas older infants shift back and forth more often. The shifts in 

attention do not perfectly map onto the onset of the words, i.e. there is not always a shift in 

looking to the target object after a word onset, however this suggests that infant looking 

may not be driven by the word-object association. The time course analysis did detail 

where infants start the trial looking matters, in that first look can further shape looking 

during the rest of the trial. In fact, infants that started looking to the target object were able 

to accumulate more time despite some looking to the distractor at time points. However, 

infants who start looking to the distractor objects do not build up enough looking time to 

the target over the test trial.  

The results from the child discrimination study further supported the findings that 

where you start the trials looking can affect looking throughout the trial. Children who 

started looking to the change side on the test array, accumulated more looking time to the 

change beasties, indicating higher levels of discrimination. Although this effect of first 

look varied depending on the dimension, step, and age of the child, as there were 

significant shifts to the change side indicating that there were levels of discrimination of 

the beastie objects.  

 

5.3 Future Directions 

 The results of the current thesis provided a new perspective of how attention and 

preference can shape looking and possibly learning in a cross situational word learning 

paradigm. Although these topics of attention and preference are not new to the field of 

word learning nor cross situational word learning, this thesis provided a relatively new 

interpretations and analyses of children’s looking in a cross situational experiment, to 

which there is more to be explored. The results from Experiments 1 and 2 suggest that 

infants as a group did not show evidence word learning, but individuals who appeared to 

have learned some of the mappings could be found. These strong learners maintained 

attention to objects throughout training that they would go on to demonstrate having 

learned the words for at test. We could not conclude from our experiments if this was 

sustained attention and association learning or simply object preference, but for both 

accounts the difference in strong and weak learners may have started from the very first 

trial of the experiment. The time course data in Experiment 4, indicating that where infants 

start the trial looking can shape and affect looking throughout the trial, with infants who 
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start the test trial looking at the target object end the trial with more overall looking to the 

target object. This experiment also provided some evidence that 12-month-olds have 

stickier attention than 14-month-olds who shift their attention more. Although from our 

experiments we could not conclude whether infants’ looking and attention suggested 

learning or object preference, we believe that future work could.  

We suggest future work should test the constraints of this paradigm to ensure its 

validity of a task.  As we discussed, our cross situational experiments had a large number 

of drops suggesting the task is difficult for 12 to 14-month-olds to complete. Although, 

Smith and Yu were able to find word learning in this group using 6 word-objects pairs, 

this may be too many word-objects for this age range. We suggest limiting the number of 

word- object pairs to a set of four to test if more children would be able to complete the 

task and possibly show higher levels of word learning.  

Future work will also need to identify whether infants’ looking over training and at 

test is indicative of word learning, which can be achieved through a different experimental 

designs and analyses. In order to test if infants’ looking is driven more by objects than 

words, experimenters could simply remove words at test. If infants’ looking to objects in a 

test without words show similar looking dynamics to infants who heard words at test this 

would suggest words are not driving looking. Another study design to test whether 

looking is object or word driven could vary the object pairings at test based on looking in 

training. This line of work could discover if children could overcome object preference 

and look to the target word-object. An example test trial could pair a highly attended 

object as a distractor with a low attend object as the target. If children have learned the 

word for the highly attended object they should look more to the target object, but if object 

preference drives their looking they would continue to attend to the distractor.  

An alternative route for future research would be to perform time course analyses 

on the patterns of looking during the training trials, specifically focusing on how the onset 

of words during training influences looking behaviour. During training two objects are 

presented along with two words. Some research (Yu, et al., 2012), in addition to our own, 

has shown that participants start attending to certain objects more than others very early in 

training, possibly forming an early word-object mapping. Researchers could track looking 

over training, to see whether looking changes when the words come on or if it remains 

stable. In addition, it would be important to examine whether there are differences in the 

influence of words during the early relative to the later parts of training. For example, Yu 

and colleagues found that adults shift their attention to objects after the onset of the word. 
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Therefore, if children are learning these mappings we should see a trajectory where 

children shift to the target object over training if they are learning the mapping. Although, 

Smith and Yu (2013), did look at the time course analysis after the onset of the word it 

was done on the varying versus repeating data. This study was particularly designed to test 

novelty effects, and this changes the structure of the object and possibly the looking 

dynamics. Therefore, it would be interesting to see how the looking trajectory would occur 

as infants are able to shift their attention creating novel or familiar object preferences or 

word-object mappings. Lastly, if research does indeed find sustained attention and few 

shifts between objects leads to higher levels of word learning, future work can guide 

children’s attention by highlighting objects to draw infant’s attention thus supporting 

longer looking bouts and thus more word learning.   

 

5.4 Conclusion  

This thesis has explored the role of attention and object preferences in influencing 

looking in a cross situational word learning paradigm. Although our results cannot 

conclude that children can learn words via a cross situational experiment, we instead can 

conclude that children’s attention and preferences led to differences in looking dynamics, 

which possibly support and enable word learning. This work opens up many avenues for 

further study into object preferences and visual attention and memory on infant word 

learning and cross situational word learning.      
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Appendix 
 
Table 8 Lists comparisons across cross situational experiments 
 Smith & Yu, 

2008 
Yu & 
Smith, 
2011 

Exp 1 Exp 2 Exp 3 

Methods Participants 
Age 

12 & 14mo 14mo 14mo 12 & 14mo 12 & 14mo 

 Number 28, 12mo (13 
males) 
Mean:12.07 
Range:11.17-
13.0 
 
27, 14mo (14 
males) 
Mean:14.12 
Range: 14.2-
15.14 
 

 
 
 
 
 
18, 14mo 
(10 males) 
Mean: 
14.20 
Range: 
N/A 

 
 
 
 
 
23, 14mo (13 
males) 
Mean: 14.38 
Range:13.09-
15.20 
 

24, 12mo (12 
males) 
Mean:12.09 
Range:11.14-
12.95 
 
23, 14mo (10 
males) 
Mean: 14.27 
Range:13.18-
15.05 

22, 12mo (17 
males) 
Mean:11.70 
Range:11.04-
13.01 
 
30, 14mo (14 
males) 
Mean: 14.88 
Range:13.90-
15.48 
 

 Attention 
grabbers 

3 s* 3 s*  3 s 
 

3 s 
 

4 s 

Coding  Frame-by-
frame 

Eye-
tracker 

Frame-by-
frame 

Frame-by-
frame 

Eye-tracker 

Object/Object 
Movement  

Novel 
Shapes/ 
Jiggle 

Novel 
Shapes/ 
Jiggle 

Beasties/ 
Static 

Beasties/ 
Jiggle 

Novel 
Shapes/ 
Jiggle 

Training 
Trials 

Number of 
Trials and 
length 

30 trials 
4 s       

30 trials 
4 s     

30 trials 
4 s 

30 trials 
4 s           

30 trials 
4 s    

Number 
of 
words 

2 words 2 words 2 words 2 words 2 words 

Average 
Looking 
/Ratio 

12mo:  
3.27s /0.82 
 

 
 
 
 
3.02s /0.75 
S: 2.96s 
/0.74 
W: 3.07s 
/0.77 

 
 
 
 
3.32s /0.83 
S: 3.37s 
/0.84 
W: 3.27s 
/0.82 

12 mo: 3.16s 
/0.79 
S: 3.07s 
/0.77 
W:3.36s 
/0.84 

12 mo: 3.03s 
/0.76 
S: 2.84s 
/0.79 
W:3.15s 
/0.71 

14 mo: 3.04s 
/0.76 
 

14 mo: 3.24s 
/0.81 
S: 3.26s 
/0.81 
W:3.20s 
/0.80 

14 mo: 3.07s 
/0.77 
S: 3.08s 
/0.77 
W:3.06s 
/0.76 

Percent 
looking to 
both sides for 
1000 ms 

87% N/A  
 
53% 
 

12mo: 52% 
 

12mo: 41% 
 

14mo: 52% 14mo: 50% 

Average 
Number of 
Fixations 

N/A  
 
 
 
3.28  
S: 2.75  
W:3.82 

 
 
 
 
2.74 
S: 2.58 
W: 2.90  

12mo:2.91 
S:3.02 
W:2.80 

12mo:3.07 
S:2.97 
W:3.17 
 

14 mo:2.78 
S:2.83 
W:2.71  

14 mo:3.43 
S:3.63 
W:3.23 

Max Fixation 
Length 

N/A  
 
 

 
 
 

12mo:1.78s 
S:1.65s 
W:1.91s 

12mo:1.78s 
S:2.27s 
W:2.01s 
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1.45s 
S: 1.69 s 
W: 1.21s  

2.12s  
S:2.26s 
W:1.98s  

14mo 1.80s 
S:1.76s 
W:1.84s 

14mo 2.11s 
S:2.11s 
W:2.12s 

Test 
Trials 

Number of 
Trials and 
length 

12 trials, 8s 12 trials, 
8s 

12 trials, 10s 12 trials, 7s 12 trials, 8s 

Number 
of 
words 

4 times** 
 

4 times** 
 

4 times 
 

4 times 4 times 

Average 
Looking 
(seconds) and 
Ratio 
 
 

12mo:  
5.60s /0.7 

 
 
 
 
5.92 s/0.74 

 
 
 
 
6.81 s/ 0.68 

12mo: 
4.83s /0.69 
 

12mo: 
4.64s /0.52 
 

14mo: 
6.10s /0.76 

14mo:  
4.92s /0.70 

14mo:  
4.94 s /0.62 

Target/ 
Distractor 
Looking 

12 mo 
T: 3.20s /D: 
2.40s 
 
 

 
 
 
 
 
 
 
 
 
 
T: 3.25s/ 
D: 2.67s 
 

 
 
 
 
 
 
 
 
 
 
T: 3.45s /D: 
3.63s 
S:  
T:3.75s /D: 
3.27s  
W: 
T: 3.07s /D: 
3.59s   

12 mo 
 T: 2.50s /D: 
2.33s  
S: 
T: 2.43s /D: 
2.07s  
W: 
 T: 2.65s 
/D:2.94s  

12 mo 
 T: 2.32s /D: 
2.43s  
S: 
T: 2.55s /D: 
2.19s  
W: 
 T: 2.09s/ 
D:2.66s  

14 mo  
T: 3.60s/ D: 
2.50s 

14 mo 
T:2.46s 
/D:2.46s 
S:  
T:2.67s 
/D:2.16s 
W:  
T:2.15s 
/D:2.93s 

14 mo  
T:2.43s 
/D:2.58s 
S:  
T:2.61s 
/D:2.24s 
W: 
 T:2.24s 
/D:2.92s 

Word 
Learning 

Number of 
words 
learned 
(Number of 
children) 

4 words  
 
 

 
 
 
 
 
 
 
 
 
 
 
3.5 words  
 
S: N/A 
(12) 
W: N/A 
(6) 
 
6 words 
(0) 
5 words 
(4) 
4 words 
(6) 
3 words 
(4) 

 
 
 
 
 
 
 
 
 
 
 
3.13 words 
 
S: 3.6 words 
(10) 
W:2.77words 
(13) 
 
 
 
 
 
6 words (0) 
5 words (0) 
4 words (7) 
3 words (12) 
2 words (4) 

12mo: 3.22 
words 
 
S: 3.88words 
(17)  
W:2.57 
words (7) 
 
6 words (1) 
5 words (3) 
4 words (8) 
3 words (8) 
2 words (3) 
1 word (1) 

12mo: 2.90 
words 
 
S: 3.75words 
(12)  
W:1.90 
words (10) 
 
6 words (0) 
5 words (3) 
4 words (4) 
3 words (8) 
2 words (3) 
1 word (4) 

14mo: 2.93 
words 
 
S: 3.64 (13) 
W: 2.22 (9) 
 
 
 
6 words (0) 
5 words (3) 
4 words (5) 
3 words (9) 
2 words (2) 

14mo: 2.79 
words 
 
S: 3.50words 
(16)  
W: 
2.07words 
(14) 
 
6 words (0) 
5 words (1) 
4 words (8) 
3 words (11) 
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* Cited at 3 seconds, but inspection of the video revealed to be 4 second in length 
** Cited to repeat 4 times, but inspection of the video reveal words repeated between 4 to 7 times 

 
 

 
 
  

2 words 
(1) 
1 word (2)  

1 word (0)  1 word (3)  2 words (5) 
1 word (5)  

Figure 35. (a) The 18 images used for the colour beasties, sampled from the continuous 
colour wheel every 15-degrees. (b) The 18 images used for the shape beasties, sampled 
from the continuous shape wheel every 15-degrees, (c) The 8 images used for the 
orientation dimension beasties, sampled from the continuous orientation wheel every 9-
degrees.  
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Adult Discrimination model with gender 

There was a reliable main effect for change look, indicating that participants 

looked significantly longer on the change compared to the non-change side; 

t(9861)=71.10, p<0.001. There was also a reliable main effect of dimension, such that that 

participants looked longer to both the colour and orientation changes than the shape 

changes; t(9840)=3.44, p<0.001and t(9838)=2.30, p<0.05, for colour v. shape and 

orientation v shape respectively. Lastly, there was a main effect of step, such that a step 1 

(15°) change received less looking than a step 2 (30 °) change, t(9840)=-3.93, p<0.001.  

There was a reliable two-way interaction of change look and dimension. 

Participants looked significantly longer on the change side with the colour and orientation 

sets compared to shape set; t(9841)=14.91, p<0.001,  t(9840)=13.92, p<0.001, 

respectively. There was a reliable two-way interaction of change look by step. Participants 

looked significantly less for step 1 compared to step 2, t(9843)=-17.55, p<0.001, step 2 

compared to step 3, t(9839)=-3.11, p<0.01, and step 3 compared to  step 4, t(9840)=7,87, 

p<0.001. There was a reliable two-way interaction for change look and gender, such that 

males had significantly less looking to change side than females, t(9861)=-3.70. p<0.001. 

A reliable three-way interaction emerged between change look, dimension, and 

step, t(10236)=2.42, p<0.05, as well as, change look step and gender, t(10236)=3.61, 

p<0.001. Lastly, there was a reliable four-way interaction between change look, 

dimension, step, and gender, t(10237)=-3.40, p<0.001. These interactions were unpacked 

by examining the two-way interactions between change look and step, and three-way 

interactions for change look, step, and gender, for each dimension (Colour, Orientation, 

and Shape). 

 For colour, there was a reliable two-way interaction for change look and gender, 

where males had significantly less looking to change side than females, t(3298)=-2.70. 

p<0.01. In addition, there was a reliable three-way interaction for change look step and 

gender, t(3272)=-3.40, p<0.001. This interaction was further investigated by examining 

the two-way interaction for change look and step by males and females. Both males can 

females had significantly looking to the change side, t(1514)=33.35, p<0.001 and 

t(1817)=41.34, p<0.001, respectively. In addition, both males and females had a 

significant two-way interaction for change look and step, where there was significantly 

less looking to change side for step 1 compared to step 2, males: t(1494)=-9.32, p<0.001, 

females: t(1812)=-5.25, p<0.001, step 2 to step 3, males: t(1493)=-8.49, p<0.001, females: 
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t(1812)=-6.29, p<0.001, and step 3 to step 4, males: t(1488)=-4.96, p<0.001, females: 

t(1810)=-2.92, p<0.01.  

 For orientation, there was no significant effect of gender.  

 For shape, there was a reliable three-way interaction for change look, step and 

gender, t(3725)=2.19, p<0.05. This interaction was unpacked by examining the two-way 

interaction for change look and step for males and females. Both males can females had 

significantly looking to the change side, t(1608)=10.50, p<0.001 and t(1959)=14.14, 

p<0.001, respectively. In addition, both males and females had a significant two-way 

interaction for change look and step, where there was significantly less looking to change 

side for step 1 compared to step 2, males: t(1605)=-4.36, p<0.001, females: t(1958)=-5.45, 

p<0.001, step 2 to step 3, males: t(1606)=-3.86, p<0.001, females: t(1959)=-8.42, p<0.001, 

and step 3 to step 4, males: t(1606)=-4.29, p<0.001, females: t(1959)=-7.19, p<0.001. 

Including gender into the main model found similar result to that of the main 

model, where participants were able to discriminate across all dimensions and this ability 

increase with step. However, with the inclusion of gender, it was found that female 

participants performed better than that of their male counterparts by spending more time 

looking to the change side. This could be seen in the colour and shape dimensions, as well 

as across gender. 
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Figure 36. Looking to the change and no change side by dimension for adult female 
participants. 
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Figure 37. Looking to the change and no change side by dimension for adult male 
participants. 


