A simple reproducible technique for the retrieval of broken Proximal femoral blades, a technical note and review of literature.

Mohamed A. Imam, Ziad Harb, David Elliot

PII: S0976-5662(19)30751-9

DOI: https://doi.org/10.1016/j.jcot.2019.10.003

Reference: JCOT 923

To appear in: Journal of Clinical Orthopaedics and Trauma

Received Date: 16 January 2019

Revised Date: 8 October 2019

Accepted Date: 9 October 2019

Please cite this article as: Imam MA, Harb Z, Elliot D, A simple reproducible technique for the retrieval of broken Proximal femoral blades, a technical note and review of literature., *Journal of Clinical Orthopaedics and Trauma*, https://doi.org/10.1016/j.jcot.2019.10.003.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019

1	A simple reproducible technique for the retrieval of broken
2	Proximal femoral blades, a technical note and review of
3	literature.
4	
5	Mohamed A. Imam MD PhD FRCS (Tr and Orth) ^{1,2}
6	Ziad Harb FRCS (Tr and Orth) ¹
7	David Elliot FRCS (Tr and Orth) ¹
8	
9	1. Rowley Bristow Orthopaedic Unit, Ashford and St Peter's NHS
10	Trust, Chertsey, UK
11	2. University of East Anglia, Norwich, UK
12	
13	COI: No disclosures to declare
14	Corresponding author: M A Imam
15	Consultant Orthopaedic surgeon, Rowley Bristow Orthopaedic Unit,
16	Ashford and St Peter's NHS Trust, Chertsey, UK
17	
18	Email: Mohamed.imam@aol.com
19	

19

A simple reproducible technique for the retrieval of broken
 Proximal femoral blades, a technical note and review of
 literature.

4

5 Abstract

Despite advances in metallurgy, fatigue failure of hardware in 6 orthopaedics is common especially when a fracture fails to heal. 7 Revision procedures can be difficult, usually requiring removal of 8 intact or broken hardware. Several different methods are usually 9 used to successfully remove the intact or broken hardware. The 10 11 proximal blade fracture is rare and under-reported in the literature. In our tertiary non-union and limb reconstruction unit, we have 12 developed a technique for an easy and quick removal of a broken 13 proximal femoral blades. 14

15

16 Background

17

Despite improvements in metallurgy, implant fatigue is prevalent especially in cases of non-union. Revision is always challenging, and regularly demand the extraction of intact or broken implants. Various described approaches are required to remove broken implants. Hardware removal can profess a challengeable surgical problem in revision trauma surgery. The challenge of the retrieval of broken hardware can considerably prolong operative time and complexity.

25

The use of intramedullary nails is the gold standard for treatment of the proximal and diaphyseal femoral fractures. Nevertheless, the magnitude of bending forces in this region of the femur can often

vield to implant failure before union. Broken proximal femoral blades 29 after femoral interlocking nails are under-reported and a surgically 30 challenging situation. There are different published techniques to 31 32 remove broken locking bolts^{1, 2} which is not the case for removal of broken blade; which is technically challenging. As yet, to the best of 33 our knowledge, only one extraction method has been described to 34 retrieve broken proximal blades³, which is not successful in our 35 experience. In other situations, a broken implant may be encountered 36 surprisingly throughout regular hardware retrieval, this usually 37 happens in the case of nonunion or delayed union of a fracture 38 39 following a fracture. Moreover, Broken blades might happen after a tumor resection or reconstruction in the case of absence of healing. 40 Also, intramedullary femoral nails are used for prophylactic fixation 41 of impending pathologic fracture; the proximal blade might break 42 because of improved patient survival. 43

44

Despite advances in metallurgy, fatigue failure of hardware is 45 common when a fracture fails to heal. Revision procedures can be 46 difficult, usually requiring removal of intact or broken hardware. 47 Several different methods may need to be attempted to successfully 48 remove intact or broken hardware. The proximal blade fracture is 49 rare and under-reported in the literature. We describe an alternate 50 technique; that we have utilised in our tertiary fracture non-union 51 and limb reconstruction unit. We have developed a technique for an 52 53 easy and quick removal of a broken proximal femoral blade. The following tips simplify the process and reduce the operative time 54 55 required.

56

57 Methods

58 CASE REPORT

59 Surgical Technique

60 Broken proximal blades often are identified on preoperative 61 radiographs (Figure 1), although it can also occurs during the 62 primary surgery. The patient is positioned on a radiolucent table and 63 standard draping was used.

64

The original incision is utilised for the proximal blade hole; the incision is extended proximally and distally by two cm. Surgical dissection is extended down to the bone after splitting the vastus lateralis muscle; using the image intensifier the proximal blade is identified. Maintaining a stringently subperiosteal plane, the vastus intermedius and medialis origin are lifted subperiosteally and two curved Hohmann retractors are introduced to aid in retraction.

72

73 Under the guidance of the image intensifier, the lateral accessible 74 fragment of the proximal blade is retrieved followed by the removal 75 of the nail. An initial attempt to pull the remaining broken medial 76 part of the proximal blade was undertaken without success especially 77 that the fracture was not united.

78

A 4mm tap is used (Figure 2) to engage in the central tunnel of the spiral blade. The tap is then rotated clockwise into the tunnel in the blade screw (Figure 3) and it was advanced in the centre of the tunnel. Subsequently, the tap was pulled out with the broken medial part of the blade (Figure 4a). As the fracture was not united, a proximal femoral blade plate was used to fix the fracture (Figure 4a). 85 **Discussion**:

The breakage of the proximal blade in femoral nails is techniqually 86 challenging³. As yet, to the best of our knowledge, our technique has 87 not been described elsewhere. We report a cost-effective, 88 reproducible, bespoke and safe technique that is effective in our 89 experience. Usually the proimal blade failure happens in cases of non 90 union, thus, pulling on the broken medial part is unsuccessful. It is 91 92 mandatory to remove the medial broken part so as to undertake revision fixation of the non-united fracture. 93

94

Compared with other implants, cephalomedullary nails provide 95 biomechanical superiority due to their shorter lever arms and 96 reduced deforming forces^{4, 5}. Intramedullary nails are the preferred 97 surgical option for the management of proximal femoral fractures, 98 especially in the case of closed reduction procedure⁴⁻⁶. Additionally, 99 intramedullary nailing is correlated with reduced soft tissue injury, 100 reduced blood loss, and decreased infection rates and wound 101 complications⁴⁻⁶. Ma et al⁶ published decreased blood loss and 102 decreased the length of hospitalisation. Besides, they reported no 103 significant difference in the rate of fixation failure between the 104 intramedullary nails to dynamic hip screw. Thus, femoral 105 intramedullary nailing is regularly utilised to treat unstable geriatric 106 trochanteric hip fractures^{7,8}. 107

108

109 On the other hand, several complications might develop in the 110 intraoperative and postoperative periods with the use of 111 intramedullary nails. The reported complications include cut 112 out/back out of the blade and non-union of the fracture⁸⁻¹². There are

reported complications in the literature; these include cut out/back 113 out of the blade and non-union of the fracture. The complications for 114 utilising cephalomedullary nails' fixation for proximal femoral 115 fracture also include shortening, malrotation, malunion, non-union 116 and implant failure or malposition. Proximal blade failures are 117 under-reported in the literature^{9, 12-23}. Hypothetically, this risk can be 118 avoided by satisfactory reduction before nail insertion, precise 119 assembly of the implant and frequent check of components using 120 121 fluoroscopic views.

122

123 The complication rate of proximal femoral nails that requires 124 revision ranges from 3% to 28% in the literature^{3-5, 8, 9, 16, 19-22, 24-30}.

Paraschou et al²¹ reported outcomes of 257 trochanteric fractures 125 managed with intramedullary nailing. they reported two malunions, 126 one nonunion, one screw cut out and one screw migrated medially. 127 Also, they reported that 2 out of 275 distal locking screws were 128 misplaced using a commercially prepared jig. Fogagnolo et al⁵ found 129 mechanical failures in 23.4% patients; Akan et al³¹ reported 10% 130 mechanical failure in a cohort of 80 patients, while Boldin et al³² 131 reported a complication rate of mechanical failure 21.8% in 55 132 patients treated with intramedullary nails compared to 4.6% only by 133 Simmermacher et al⁸. Although the rate of implant failure is variable 134 in different studies^{4-6, 8, 20, 26, 31, 32} but this might be because of the 135 variability in the clarity of the definition of failure. It is reported to be 136 137 around 5%, 2% to 10% with Sliding Hip screws, 2% to 12% with lag screw Cephalomedullary nails, and 1% to 8% with blade 138 Cephalomedullary nails^{7-9, 33, 34}. In the meantime, the implant-related 139

140 complication rate of basicervical fracture in previous studies showed
141 remarkable variations.^{24, 28}.

142

The removal of broken blade can be technically challenging, yet, a 143 crucial step in revision surgery, especially that they occur in cases of 144 non union where refixation is planned. Preoperative planning is 145 mandatory to make sure that the required removal instruments are 146 available. Trauma surgeons should be knowledgeable of accessible 147 instruments and possible techniques to remove broken blade in 148 theatres as assuming the unexpected would prevent failure. There 149 are multiple reports on the use of conversion to total hip arthroplasty 150 for failed proximal fixations of intertrochanteric fractures, which 151 would be another successful option^{26, 30, 35, 36}. The removal of broken 152 implants is a challenging task^{2, 3}. There is a variation in the metal 153 breakage rate, in orthopaedic surgery, between elective and trauma 154 work – ranging from 0.3 to 7.9 per 1,000 cases respectively³⁷. There 155 are various techniques in the literature described for removal of 156 broken locking bolts^{2, 37}, broken drill bits, broken interlocking 157 screws³⁸, broken cannulated screws³⁹ and broken intramedullary 158 nails^{1, 37}. 159

160

As yet, to the best of our knowledge, only one extraction method has
been described to retrieve broken proximal blades³, which may fail.
Stover et al³ reported a surgical technique that entails connecting
a T handle to the reverse threaded conical extraction bolt, from the
AO broken screw extraction bolt, after locking it to the spiral blade.
This has failed in our experience as there is no room for striking the

blade like the described case in this study especially when displacedmedially.

169

170 In conclusion, there is not a single removal technique that is 171 extensively successful, the surgeon should be aware of various 172 different techniques to remove broken blades. The described 173 technique is successful in our hands and reproducible in our 174 experience.

175

176 Disclosure: All authors report no conflicts of interests.

177

178

179

180 **References**

181

Hak DJ, McElvany M. Removal of broken hardware. *J Am Acad Orthop Surg.* 2008;16:113-120.
 Imam MA Harb 7 Elliott D. An inneurative bespeke technique for the

 184
 185
 Imam MA, Harb Z, Elliott D. An innovative bespoke technique for the retrieval of broken distal locking bolts. *Ann R Coll Surg Engl.* 2018:1-2.

186 3. Stover MD, Lin I, Bosse MJ. Removal of a broken Synthes proximal spiral
187 blade. *J Orthop Trauma*. 1998;12:190-191.

- Banan H, Al-Sabti A, Jimulia T, Hart AJ. The treatment of unstable,
 extracapsular hip fractures with the AO/ASIF proximal femoral nail
 (PFN)--our first 60 cases. *Injury*. 2002;33:401-405.
- Fogagnolo F, Kfuri M, Jr., Paccola CA. Intramedullary fixation of
 pertrochanteric hip fractures with the short AO-ASIF proximal femoral
 nail. *Arch Orthop Trauma Surg.* 2004;124:31-37.
- Ma KL, Wang X, Luan FJ, et al. Proximal femoral nails antirotation, Gamma nails, and dynamic hip screws for fixation of intertrochanteric fractures of femur: A meta-analysis. *Orthopaedics & traumatology, surgery & research : OTSR*. 2014;100:859-866.
- Aktselis I, Kokoroghiannis C, Fragkomichalos E, et al. Prospective
 randomised controlled trial of an intramedullary nail versus a sliding hip
 screw for intertrochanteric fractures of the femur. *Int Orthop.*201 2014;38:155-161.

Simmermacher RK, Ljungqvist J, Bail H, et al. The new proximal femoral
nail antirotation (PFNA) in daily practice: results of a multicentre clinical
study. *Injury.* 2008;39:932-939.

205	9.	Barton TM, Gleeson R, Topliss C, Greenwood R, Harries WJ, Chesser TJ. A
206		comparison of the long gamma nail with the sliding hip screw for the
207		treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a
208		prospective randomized trial. <i>J Bone Joint Surg Am.</i> 2010;92:792-798.
209	10.	Flores SA, Woolridge A, Caroom C, Jenkins M. The Utility of the Tip-Apex
210		Distance in Predicting Axial Migration and Cutout With the Trochanteric
211		Fixation Nail System Helical Blade. J Orthop Trauma. 2016;30:e207-211.
212	11.	Li H, Wang O, Dai GG, Peng H. PFNA vs. DHS helical blade for elderly
213		patients with osteoporotic femoral intertrochanteric fractures. <i>Eur Rev</i>
214		Med Pharmacol Sci. 2018:22:1-7.
215	12.	Wang C, Wang O. Helical blade compression failure occurred during PFNA
216		implantation: A rare case and ingenious solution. <i>Medicine (Baltimore)</i> .
217		2019;98:e16584.
218	13.	Li H, Wang H, Zhang Y, Zhou J, Yuan F. [The migration of helical blade and
219		the tip apex distance value in cephalomedullary nail for geriatric
220		intertrochanteric fractures]. Zhonaguo Xiu Fu Chona Jian Wai Ke Za Zhi.
221		2019:33:1234-1238.
222	14.	van Leur IPH, Jakma TSC, Willemsen SP, Punt BJ, Trochanteric Fixation
223		Nail(R) with Helical Blade Compared with Femoral Neck Screw for
224		Operative Treatment of Intertrochanteric Femoral Fractures. <i>Hip Pelvis.</i>
225		2019;31:48-56.
226	15.	Albareda J. Laderiga A. Palanca D. Paniagua L. Seral F. Complications and
227		technical problems with the gamma nail. <i>Int Orthop.</i> 1996;20:47-50.
228	16.	Heinz T, Vecsei V. [Complications and errors in use of the gamma nail.
229		Causes and prevention]. <i>Chirurg.</i> 1994;65:943-952.
230	17.	Hesse B, Gachter A. Complications following the treatment of trochanteric
231		fractures with the gamma nail. Arch Orthop Trauma Surg. 2004;124:692-
232		698.
233	18.	Huang H, Xin J, Ma B. Analysis of complications of intertrochanteric
234		fracture treated with Gamma 3 intramedullary nail. Int J Clin Exp Med.
235		2014;7:3687-3693.
236	19.	Lyddon DW, Jr. The prevention of complications with the Gamma Locking
237		Nail. Am J Orthop (Belle Mead NJ). 1996;25:357-363.
238	20.	Pascarella R, Cucca G, Maresca A, et al. Methods to avoid gamma nail
239		complications. Chir Organi Mov. 2008;91:133-139.
240	21.	Pascarella R, Fantasia R, Maresca A, et al. How evolution of the nailing
241		system improves results and reduces orthopedic complications: more
242		than 2000 cases of trochanteric fractures treated with the Gamma Nail
243		System. <i>Musculoskelet Surg.</i> 2016;100:1-8.
244	22.	Rosenthal RE. Prevention of complications with the gamma nail. Am J
245		Orthop (Belle Mead NJ). 1996;25:729.
246	23.	Schupfner R, Kasmann LT, Wagner W, Schulz AP. Complications in
247		Treatment of 31-A Fractures with Trochanteric Gamma Nail (TGN) Versus
248		Gamma3 Nail (G3N) - A Review of 217 Cases. Open Orthop J. 2016;10:389-
249		395.
250	24.	Chen CY, Chiu FY, Chen CM, Huang CK, Chen WM, Chen TH. Surgical
251		treatment of basicervical fractures of femura prospective evaluation of
252		269 patients. J Trauma. 2008;64:427-429.

Journal Pre-proof

253	25.	Hak DJ, Bilat C. Avoiding varus malreduction during cephalomedullary
254		nailing of intertrochanteric hip fractures. Arch Orthop Trauma Surg.
255		2011;131:709-710.
256	26.	Harrington P, Nihal A, Singhania AK, Howell FR. Intramedullary hip screw
257		versus sliding hip screw for unstable intertrochanteric femoral fractures
258		in the elderly. <i>Injury.</i> 2002;33:23-28.
259	27.	Koyuncu S, Altay T, Kayali C, Ozan F, Yamak K. Mechanical failures after
260		fixation with proximal femoral nail and risk factors. Clin Interv Aging.
261		2015;10:1959-1965.
262	28.	Massoud EI. Fixation of basicervical and related fractures. Int Orthop.
263		2010;34:577-582.
264	29.	Williams WW, Parker BC. Complications associated with the use of the
265		gamma nail. <i>Injury.</i> 1992;23:291-292.
266	30.	Yang Z, Liu H, Xie X, Tan Z, Qin T, Kang P. Total Hip Arthroplasty for Failed
267		Internal Fixation After Femoral Neck Fracture Versus That for Acute
268		Displaced Femoral Neck Fracture: A Comparative Study. J Arthroplasty.
269		2015;30:1378-1383.
270	31.	Akan K, Cift H, Ozkan K, Eceviz E, Tasyikan L, Eren A. Effect of
271		osteoporosis on clinical outcomes in intertrochanteric hip fractures
272		treated with a proximal femoral nail. <i>J Int Med Res.</i> 2011;39:857-865.
273	32.	Boldin C, Seibert FJ, Fankhauser F, Peicha G, Grechenig W, Szyszkowitz R.
274		The proximal femoral nail (PFN)a minimal invasive treatment of
275		unstable proximal femoral fractures: a prospective study of 55 patients
276		with a follow-up of 15 months. <i>Acta Orthop Scand.</i> 2003;74:53-58.
277	33.	Stern R, Lubbeke A, Suva D, Miozzari H, Hoffmeyer P. Prospective
278		randomised study comparing screw versus helical blade in the treatment
279		of low-energy trochanteric fractures. <i>Int Orthop.</i> 2011;35:1855-1861.
280	34.	Shin YS, Chae JE, Kang TW, Han SB. Prospective randomized study
281		comparing two cephalomedullary nails for elderly intertrochanteric
282		fractures: Zimmer natural nail versus proximal femoral nail antirotation
283		II. Injury. 2017;48:1550-1557.
284	35.	McKinley JC, Robinson CM. Treatment of displaced intracapsular hip
285		fractures with total hip arthroplasty: comparison of primary arthroplasty
286		with early salvage arthroplasty after failed internal fixation. J Bone Joint
287	26	<i>Surg Am.</i> 2002;84:2010-2015.
288	36.	Zhang X, Liu Y, Ren K, Liu J, Zhu B, Sun Z. [Secondary total nip arthropiasty
289		for osteonecrosis of femoral nead after failed internal fixation of femoral
290		neck fracturej. Znongguo Xiu Fu Chong Jian Wal Ke Za Zhi. 2010;24:257-
291	27	201. Dries MV Melley C. Colon MC. Syttem A. Diskette DM. The rate of
292	37.	Price MV, Molloy S, Solan MC, Sutton A, Ricketts DM. The rate of
293		Instrument breakage during orthopaedic procedures. Int Orthop.
294	20	2002;26:185-187.
295	38.	Chounan DK, Sharma S. "Push back" technique: A simple method to
290 207		remove broken arm bit from the proximal femur. <i>World J Urthop.</i>
29/	20	2013;0:04/-049. Williama DL Kungan KM A new technique for the removed of a busilier
270 200	39.	williams KL, Kunzru KM. A new technique for the removal of a broken
299		camulated screw. <i>Injury.</i> 1995;26:59-60.
300		

Journal Pre-proof				
301				
302				
303	FIGURES LEGEND			
304				
305	Figure 1: Broken femoral blade held in the medial femoral cortex.			
306	Figure 2: Size 4 mm standard tap is used			
307	Figure 3: The tap is rotated clockwise into the tunnel in the proximal			
308	blade and subsequently pulling on the drill bit retrieves the broken			
309	part.			
310	Figure 4. A) Successful removal of the broken blade. B) revision			
311	fixation of the non-united fracture using proximal femoral blade			
312	plate.			
313				
	Journal			

