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Abstract: The theory of non-resonant optical processes with intrinsic optical nonlinearity, such as
harmonic generation, has been widely understood since the advent of the laser. In general, such
effects involve multiphoton interactions that change the population of each input optical mode or
modes. However, nonlinear effects can also arise through the input of an off-resonant laser beam
that itself emerges unchanged. Many such effects have been largely overlooked. Using a quantum
electrodynamical framework, this review provides detail on such optically nonlinear mechanisms
that allow for a controlled increase or decrease in the intensity of linear absorption and fluorescence
and in the efficiency of resonance energy transfer. The rate modifications responsible for these effects
were achieved by the simultaneous application of an off-resonant beam with a moderate intensity,
acting in a sense as an optical catalyst, conferring a new dimension of optical nonlinearity upon
photoactive materials. It is shown that, in certain configurations, these mechanisms provide the basis
for all-optical switching, i.e., the control of light-by-light, including an optical transistor scheme.
The conclusion outlines other recently proposed all-optical switching systems.

Keywords: nonlinear optics; all-optical switch; absorption; fluorescence; resonance energy transfer;
FRET; second harmonic generation; laser action; optical transistor; multiphoton process

1. Introduction

Nonlinear optics is one of the most remarkable and pervasive fields to emerge from the development
of the laser over 50 years ago. Optically parametric processes, such as second and third harmonic
generation (SHG and THG), are the preeminent means of converting laser output to a shorter wavelength.
The basic theoretical principles of nonlinear optics were rapidly established and consolidated, notably
in an early treatise by Bloembergen in 1965 [1]. More modern introductions to the field include
prominent texts by Jha [2], Sauter [3], He and Liu [4], Shen [5], Sutherland [6], Banerjee [7], Novotny,
Hecht [8], and Boyd [9], among many others.

Conventionally, nonlinear processes involve the concurrent absorption of multiple off-resonant
photons—meaning that the associated rate depends on the square, or a higher order, of the corresponding
input laser intensity. In resonant processes, this typically produces local dipole transitions to a higher
energy (most often electronically excited) state. In non-resonant parametric processes, each fundamental
interaction results in the promotion of the active material to a virtual intermediate state, which then
returns to the ground state via emission into an optical mode or modes that differs, usually in frequency,
from the laser input.

Largely overlooked is the fact that a moderately intense off-resonant laser beam
(~1011–1012 W cm−2) may provide a controlling effect on a resonant process such as fluorescence—acting
as a stimulus with an optical frequency at which the molecule is transparent. In such a case, the
beam is unaltered by the light-matter interactions that occur. To this extent, ‘optical catalyst’ is an
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apt name for the effect, since the beam is unchanged before and after the process. The terms is also
used in a different connection relating to beam splitting. Here, optical catalysts have been extensively
studied [10–13] and suggested as a method for improved performance of continuous–variable quantum
key distribution systems [14]. Moreover, in connection to the photolysis of isolated phenol molecules,
a strong off-resonant infrared electromagnetic field has recently been shown to lower the activation
barrier to photolysis via a dynamic Stark shift [15], signifying a form of optical catalysis whose effect is
also analogous those detailed in this review.

Applying the off-resonant beam to a conventional optically resonant process results in an
unconventional nonlinear optical effect. The outcome is the possibility of an increased or decreased
rate compared to the resonant process without the ancillary beam. The capacity for the stimulus beam
to be under direct experimental control confers numerous advantages, especially compared with the
commonly known capacity of a neighboring surface plasmon to enhance the rate of many optical
processes [16–41]. Moreover, if the resonant process is forbidden by virtue of selection rules or another
symmetry constraint, it is possible that it can become entirely activated by the input beam, since the
resultant nonlinear process may then be allowed. This is the potential basis for an all-optical switch.
Here, the realm of application may extend to control circuitry in signal propagation and waveguide
networks for optical communication [42].

In this review, we first recap on the formulation for conventional nonlinear optics, serving to
introduce a quantum electrodynamical framework that is equally valid for the newer effects that will
be our focus. The approach is concisely illustrated for the process of second harmonic generation
(Section 2). Sections 3 and 4 provide an analysis of the effect of an off-resonant beam on absorption and
fluorescence. These processes are known as laser-modified absorption and fluorescence. It is important
to note that these differ from standard nonlinear optics, in that the laser-modified processes involve a
resonant mode along with the off-resonant beam. Section 5 delivers an overview of optically controlled
resonance energy transfer, which may be interpreted as optical catalysis of energy transfer. It is shown
that this effect has a fundamental connection to the well-established phenomenon of optical binding,
which also involves an off-resonant input beam. The penultimate Section introduces the potential for
all-optical switching based on each mechanism and entertains the possibility of an optical transistor in
a related scheme. The concluding section provides a discussion of the context for deploying these and
other schemes for all-optical switching.

2. Conventional Nonlinear Optics

From the viewpoint of quantum electrodynamics (QED) [43,44], all optical interactions occur
through the annihilation and creation of photons. A central motivation to utilizing the quantized
radiation field over classical wave theory is the ability to account for the spontaneous generation of
new modes of light [45]. This has obvious significance in the field of nonlinear optics, where new
modes of light are invariably produced in processes such as harmonic generation and hyper-Raman
scattering. One principle flaw of using classical wave theory to describe specific nonlinear processes
is that it suggests the ability of generating a second harmonic even at the intensity level of a single
photon. Moreover, for spectroscopic interactions involving quantum transitions, the interplay of
energetics and selection rules based on angular momentum can be understood in no other satisfactory
way. Within the realm of nonlinear optics, there are numerous further reasons why a photon-based
description of nonlinear optical phenomena is advisable over the classical wave picture of light
(described elsewhere [45–47]). For all these reasons, casting light-matter interactions in QED offers
the best route to take in this review to fully develop and describe the mechanisms of nonlinear
optical interaction.

The most suitable Hamiltonian to describe non-relativistic light-matter interactions is the
fully quantized Power–Zienau–Woolley (PZW) multipolar Hamiltonian [48]. Its merits include
gauge-independence, its optical elements being directly cast in terms of electromagnetic fields only,
casting the interactions between light and matter through a Hamiltonian operator Hint as couplings
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between the electromagnetic fields and the multipolar transition moments of the material component.
Furthermore, all electrostatic interactions are mediated by transverse photons, i.e., they are intrinsically
causal and fully retarded. In the dipole-approximation, Hint takes the form

Hint = −ε0

∑
ξ

µi(ξ)d⊥i (Rξ) (1)

where for a molecule ξ positioned at R
ξ

, µ(ξ) is the electric-dipole transition moment operator and
d⊥(Rξ) the electric-displacement field operator: The interaction (1) represents the E1 (electric-dipole)
interaction with the field. Throughout this work, we invoke standard subscript notation, i.e., summation
over indices is implied, such that in Equation (1):∑

i=x,y,z

µid⊥i = µxd⊥x + µyd⊥y + µzd⊥z = µ · d⊥ (2)

The electric-displacement field operator has a standard mode expansion for which each mode
includes two terms: One for a photon annihilation and the other for a photon creation [43]. The explicit
form of the mode expansion is written as

d⊥(Rξ) = i
(
}ckε0

2V

) 1
2 {

eaeik·Rξ −
¯
ea†e−ik·Rξ

}
(3)

where h̄ck and e are the energy and unit polarization vector of a given photon, respectively, and the
overbar denotes its complex conjugate. Moreover, V is the quantization volume, a and a† are the
annihilation and creation operators, respectively, and the phase factors are represented by eik·Rξ .

The time evolution of the system is determined by the Schrödinger equation, approximate
solutions of which are commonly secured with the use of time-dependent perturbation theory [49].
For optical interactions, the energies associated with the interaction Hamiltonian (1) are much smaller in
magnitude than those represented by the matter, typically written for a molecule as Hmol and radiation
(Hrad) Hamiltonians. Light-molecule interactions, through the Hint operator, may thus be seen to effect
perturbations on the eigenstates of Hmol + Hrad and, therefore, lead to transitions between system
states. Although the term ‘transition’ is usually applied to material quantum state transitions, here it
equally applies to changes in the populations of radiation states. The matrix element (or quantum
amplitude) may thus be expanded in powers of the perturbation operator:

M f i =
〈

f
∣∣∣Hint|i〉+

∑
r

〈 f |Hint |r〉〈r|Hint |i〉
Ei−Er

+
∑
r,s

〈 f |Hint |s〉〈s|Hint |r〉〈r|Hint |i〉
(Ei−Er)(Ei−Es)

+
∑
r,s,t

〈 f |Hint |t〉〈t|Hint |s〉〈s|Hint |r〉〈r|Hint |i〉
(Ei−Et)(Ei−Es)(Ei−Er)

+ . . . .
(4)

where r, s, and t are the virtual intermediate system states and E in the energy of the state denoted by
its subscript. Through d⊥(Rξ), Hint applies to one photon-molecule interaction, meaning that the first
term of Equation (4) relates to one photon-molecule interaction, the second term corresponds to two
interactions, etc.

Before proceeding further, it is worth commenting on issues that will be the later focus of this
review. Successive terms in the above series are commonly associated with diminishing levels of
effect, such that the leading non-vanishing term contributing to any given effect is the one whose
order equates to the number of photons involved, per interaction. This may seem obvious: It follows
from the linear dependence of Hint on the electric displacement field through Equation (1), and the
linear dependence that the field operator itself has on photon annihilation and creation operators.
So, for example, the theory of single-photon absorption is routinely cast in terms of the leading term
in Equation (4). The next lowest order of perturbation theory that may contribute is the third order,
physically corresponding to the absorption of two photons coupled with the stimulated emission of
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one photon back into the same optical mode (classically, one would recognize this as arising from cos
ωt term in the identity (cos ωt)3 = 1

4 (cos ωt + cos 3ωt).) However, such contributions would normally
be associated with a cubic dependence on the electric field strength, rendering the effect comparatively
insignificant at any intensity below the ultra-high intensity level at which both perturbation theory
and molecules themselves break down. In the next section, we demonstrate how the involvement of
two throughput beams dramatically changes the significance of the third-order term.

First, to briefly provide an indicative example of the use of QED for conventional nonlinear optics,
we derive the quantum amplitude and corresponding rate and radiant intensity of SHG. Second
harmonic generation is a frequency-doubling, three-photon process, fundamentally involving the
pairwise annihilation of input photons of frequency ω (wave-vector k and polarization η) correlated
with the creation of single photons of frequency 2ω (k′, η′). The coherent, linear momentum-conserving
process dictates the relationship 2k = k′ between the input photons and output photon wave-vector.
The matrix element is obtained using third-order perturbation theory, corresponding to the third term
of Equation (4), where the initial state expressed in Dirac ket notation is |imol; irad〉 =

∣∣∣E0; n(k, η)
〉
, and

the final state is
∣∣∣ fmol; frad

〉
=

∣∣∣E0; (n− 2)(k, η), 1(k′, η′)
〉
. Inserting Equation (1) into the third term of

Equation (4), and working through the detailed analysis, delivers the matrix element

M f i = −
i
2

(
hck
ε0V

) 3
2 {

n(n− 1)
} 1

2 e′ie jek

∑
ξ

β
(ξ)

i jk (−2ω;ω,ω) (5)

where, in this specific case, e and e´ are unit polarization vectors of the incident and emitted
photons, respectively. The molecule-level response is denoted by βi jk, the frequency-dependent
hyperpolarizability tensor

βi jk(−2ω;ω,ω) = 1
2
∑
r,s

[{
µ0s

i µ
sr
j µ

r0
k

(E0−Es+2}ω)(E0−Er+}ω) +
µ0s

j µ
sr
i µ

r0
k

(E0−Es−}ω)(E0−Er+}ω)

+
µ0r

j µ
rs
k µ

s0
i

(E0−Es−}ω)(E0−Er−2}ω) +
{
j↔ k

}}]
.

(6)

The rate of SHG for a collection of N molecules is determined from the Fermi rate rule
Γ = 2π}−1ρf

∣∣∣M f i
∣∣∣2, where ρf is the density of final states for the radiation. In terms of the second

harmonic radiant intensity I, we find the result

2}ck
dΓ
dΩ

= I =
I
2
0g(2)k4N2

2π2ε3
0c

∣∣∣∣∣e′ie jek

〈
β
(ξ)

i jk (−2ω;ω,ω)
〉∣∣∣∣∣2 (7)

where I0 is the mean irradiance of the input beam (note its quadratic dependence), g(2) is the degree
of second order coherence, and angular brackets denote the rotational averaging required only if the
sample is a structureless fluid or an isotropic solid. The average of the third-rank hyperpolarizability
tensor is then

〈
βi jk

〉
≈ εi jkελµνβλµν, which produces εi jke′ie jek = 0 on account of contracting the

totally antisymmetric isotropic third-rank Levi-Civita tensor εi jk with the j, k-symmetric polarization
component product. Hence, we secure the well-known result that SHG (and indeed all even-harmonic
generation) is forbidden in randomly oriented or isotropic samples. In all other cases, the result is
readily rewritten in terms of corresponding bulk quantities. Here, the latter implies the use of the
second-order optical susceptibility, χ (-2ω, ω, ω). Second harmonic generation is the simplest nonlinear
optical process, and the methods briefly outlined here form the basis of the analysis that follows [50].

3. Laser-Modified Absorption

In conventional ultraviolet/visible spectroscopy, resonant absorption occurs as molecules are
promoted to allowed electronic excited states, and the resulting absorption spectrum represents an
identifying characteristic of the molecular orbital structures [51]. It transpires that simultaneously



Appl. Sci. 2019, 9, 4252 5 of 18

passing fixed-frequency, off-resonant laser light through the sample in the course of such absorption
measurements may enhance or suppress the efficiency of light absorption differentially in each
absorption band [52]. This concurrent process is shown in Figure 1. As we have seen, conventional
absorption involves a single photon-molecule interaction that corresponds to the first term of Equation
(4). Subjecting the absorbing system to the off-resonant laser beam provides for the additional
involvement of three-photon-molecule couplings, as shown in Figure 2a, involving the third term of
Equation (4). Although this is a higher order term, its contribution to the process need not be insignificant
compared to the one for single-photon absorption. The off-resonant beam is independent of the resonant
beam and, at sufficient intensity, it may exert a comparatively substantial influence even when the
resonant beam is no more intense than is common in absorption spectroscopy. For the laser-modified
process, the resonant absorption couples with elastic forward-scattering of the off-resonant beam, the
latter itself delivering no net absorption or emission: Off-resonant photons are annihilated and created
back into the same radiation mode that, therefore, emerges unchanged.

Before going further, it is important to stress that the selection rules for any three-quantum dipole
transition invariably subsume those for a single-quantum transition, provided that the optical input
and/or output comprises linear polarizations. The converse is, of course, not universally true, being
dependent upon the relative symmetry properties of the associated ground and excited states in each
case. Therefore, when off-resonant radiation becomes involved through a three-quantum transition in a
single-photon absorption process, the result is that transition strengths for each absorption band may be
significantly and individually modified. As we demonstrate, new bands satisfying only three-quantum
selection rules may also appear when the off-resonant beam is sufficiently intense.
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Figure 2. Energy-level diagrams for (a) laser-modified absorption, (b) laser-modified fluorescence
and (c) optically controlled resonance energy transfer. Light blue and red horizontal lines denote
ground-state 0 and excited-state α energy levels of the molecules, respectively, orange dashed lines
represent the off-resonant beam, }ω′, and blue wavy lines are the resonant beam, }ω. Crossed and open
circles are one- and two-photon interactions, respectively, the vertical black arrows denote electronic
transitions and horizontal black line signifies energy transfer from A to B. Without the off-resonant
beam, these diagrams simply depict absorption, fluorescence, and energy transfer. The beam that
is applied concurrently (not step-wise) to these processes, as a result, suffers the annihilation and
creation of one photon into the same radiation mode via virtual intermediate states (not shown). These
depictions avoid the complexities of Feynman diagrams, or state-sequence diagrams, that show the
whole range of interaction sequences necessarily involved [52–54].

The rate of laser-modified absorption, if no other mechanism were to be allowed, has a purely
quadratic dependence on the intensity of the off-resonant beam. We return to the significance of this
possibility under special conditions in Section 6. More commonly, however, the rate equation also
includes a term representing a larger contribution to the total rate. This relates to the cross term
(quantum interference) of the quantum amplitudes for conventional and laser-modified one-photon

absorption. This is determined from the Fermi rate expression as Γabs ∼

∣∣∣∣M(1)
f i + M(3)

f i

∣∣∣∣2, where M(1)
f i

and M(3)
f i are the quantum amplitudes for the leading first-order (single-photon) and third-order

(laser-modified) interaction processes, respectively. The interference effects depend on the relative
phases of the first- and third-order amplitudes. A similar phase produces an enhanced absorption
rate (denoted by a common sign for M(1)

f i and M(3)
f i ) and dissimilar phases provide a decreased rate

(opposite signs). The quantum amplitude for one-photon absorption, M(1)
f i , is well-known [43], and the

one for laser-modified absorption, M(3)
f i , is given by [52]

M(3)
f i = ink′k

1
2

(
}c

2ε0V

) 3
2

eie′ je′kβα0
i jk(−ω

′;ω′,ω) (8)

Here, the resonant photon energy is }ck ≡ }ω and e denotes the corresponding polarization vector.
When the same symbols carry a prime, they refer to the separately controllable throughput beam.
In this formulation, the latter can accommodate arbitrary polarization. Once again, the overbar denotes
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complex conjugation (signifying a polarization state that is effectively reflected in the equator of a
Poincaré sphere). The quasi-hyperpolarizability βα0

i jk(−ω
′;ω′,ω) has a similar form to Equation (6), but

now involves both resonant and non-resonant beams and the real, excited state α. Once again, the order
of indices in the tensor correlates with the order of frequency arguments—the explicit form is given
in [52]. Through deployment of the explicit expression for M(1)

f i and M(3)
f i , the rate for laser-modified

one-photon absorption, Γabs, emerges as

Γabs =
( πρI

c}ε0

)
eie j

[
µ
(0)α0
i µ

(0)α0
j + (I′/cε0)µ

(0)α0
i µ

(2)α0
j (ω′)

+
(
I′2/4c2ε2

0

)
µ
(2)α0
i (ω′)µ

(2)α0
j (ω′)

]
,

(9)

in which I = n}c2k/V is the irradiance of the absorbing resonant beam and I’ is the throughput
laser irradiance. It is the second term (linear in I’) that signifies a quantum interference of the two
amplitudes. This represents the leading correction to the one-photon absorption rate. Equation (9)
affords a re-interpretation of earlier expression: One-photon absorption (independent of the off-resonant
beam) relates to an effective excitation dipole whose zeroth order is labeled µ(0)α0

≡ µα0, and the
contribution that is quadratic in the electric field (linear in the intensity) of the off-resonant beam is
µ
(2)α0
i (ω′) ≡ e′ je

′

kβ
α0
i jk(−ω

′;ω′,ω) . The former signifies direct resonant absorption, while the latter a
nonlinear amendment comprising the off-resonant radiation of frequency ω′ (corresponding to elastic,
forward scattering). The off-resonant beam thus effects a modification of the excitation dipole moment
via µ(2)α0(ω′). The size of the correction term, which can enhance or diminish the spectral intensity of
each absorption band, depends on both the intensity of the off-resonant ancillary beam and its fixed
frequency. If the fixed frequency lies anywhere in the wings of an absorption band as depicted by
Figure 3a,b, from a different (preferably higher) frequency region than the range of the linear absorption
measurements, then the associated near-resonance enhancement of the quasi-hyperpolarizability tensor
may contribute many further orders of magnitude enhancement to the significance of laser-modified
effects.
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Figure 3. Positions of potential resonance levels for laser-modified single-photon processes of absorption
(a,b) and fluorescence (c,d). For simplicity, the off-resonant beam is not shown. In each instance,
the vertical black arrow shows the overall transition, and green dotted arrows together denote a
sequence for one of the interaction permutations approaching one or more resonances; a purple dotted
line indicates a one-photon resonance level and a purple dashed line indicates a two-photon resonance;
grey dotted lines indicate an energetically forbidden resonance: (a) single-photon absorption of optical
frequency ω, with off-resonant frequency ω´ > ω; (b) as in (a), with ω´ < ω; (c) single-photon emission
at frequency ω, with off-resonant frequency ω´ > ω; (d) as in (c), with ω´ < ω.

It is interesting that excitation of a molecule to a metastable state, i.e., one that is one-photon
forbidden by orbital symmetry properties, may become possible by input of the off-resonant beam,
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since the resulting three-photon mechanism for access to a conventionally symmetry-unfavorable
state could then become allowed [55]. This enables a population of a ‘dark’ state—a transition that
would otherwise be improbable. For such an effect to occur would, however, demand the levels of
intensity routinely associated with three-photon absorption measurements. In another connection
with multiphoton absorption, it is also noteworthy that an off-resonant beam can alter the rate of
two-photon absorption through a fourth-order perturbation effect [52].

4. Laser-Modified Fluorescence

Following electronic excitation of a molecule—and in the absence of phosphorescence arising
from inter-system crossing—there are usually two major relaxation routes: One is fluorescent emission,
the subject of this section, and the other is energy transfer to a second ‘acceptor’ molecule (discussed
in Section 5). Since, in terms of quantum electrodynamics, light emission is simply time-reversed
absorption, the passing of off-resonant laser light of sufficient intensity through an excited molecular
system can evidently enhance or suppress the fluorescent emission in an analogous fashion to its effect
on absorption. When no light is present, i.e., when the resonant radiation responsible for the initial
excitation has left the system, fluorescence once again involves a single photon-molecule interaction
that relates to the first term of Equation (4). However, this is not the case when the system is irradiated
by the off-resonant beam. Here again, three concerted photon-molecule couplings arise, as shown by
Figure 2(b), corresponding to the third term of Equation (4). This contrasts with stimulated emission,
which involves the delivery of radiation with a frequency that must match the fluorescence.

The intensity of fluorescence (power per unit solid angle [46]), I(Ω), is the Fermi emission rate
multiplied by the energy of a fluorescent photon, }ck, so that the leading contributions are given by [54]

I(Ω) =
(

ck4

8π2ε0

)
eie j

[
µ
(0)0α
i µ

(0)0α
j + (I′/cε0)µ

(0)0α
i µ

(2)0α
j (ω′)

+
(
I′2/4c2ε2

0

)
µ
(2)0α
i (ω′)µ

(2)0α
j (ω′)

]
,

(10)

which can be interpreted as emission associated with the effective fluorescence-decay (second-order)
transition moment µ(2)0αi (ω′) ≡ e′ je′kβ0α

i jk(ω ;−ω′,ω′) , where the explicit form of the hyperpolarizability
βi jk is similar to that of laser-modified absorption [56]. Again, it is the quantum interference term
(the second one, linearly dependent on I’) that represents the leading correction to the emission intensity
without the throughput beam. The term that is quadratically dependent on I’ relates to a special
condition that we return to in Section 6. Most often, it will prove negligible compared to the first
two terms in Equation (10). Nonetheless, for both terms involving I’, pre-resonance enhancement is
again possible: Judicious choice of wavelength for the throughput beam may enhance the magnitude
of the second-order transition moment through its dependence on the dispersion properties of the
pseudo-hyperpolarizability tensor. This possibility is shown in Figure 3c,d.

A quantity known as the fluorescence anisotropy, r, is an important element in many fluorescence
studies. This is determined from the general expression r =

(
I‖ − I⊥

)
/
(
I‖ + 2I⊥

)
, where I‖ and I⊥ are

fluorescence intensities measured through polarizers oriented parallel and perpendicular, respectively,
to the polarization of the excitation beam. When the laser-modified interaction comes into play, the
effect on the fluorescence anisotropy becomes significantly more intricate, but it may be simplified to
an experimentally tractable form based on a two-level approximation. Under such conditions, it has
been shown that the following expression for the anisotropy arises [56]

r =
3cos2φ− 1 + (KI′/cε0)

(
cos2φ− 1

)
5 + (KI′/7cε0)(20− 11cos2φ)

(11)

where φ is the angle between the absorption and emission transition moments, the former relating to
the resonant laser beam that induces excitation prior to the fluorescence, and the hyperpolarizability
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has been simplified to K
∣∣∣µ0α

∣∣∣3 for calculational convenience (the dipole moments cancel out in r).
For the limiting case when I = 0, i.e., the off-resonant beam is absent, the well-known expression [57]
r = (1/5)

(
3cos2φ− 1

)
is recovered.

The modification of individual molecular emission rates is measurable in more than one other
respect. An aspect that is principally of spectroscopic interest is the associated change in the decay
lifetime, signifying the kinetics of ensemble photophysics. Once again, the capacity to controllably
modify this parameter, itself the direct focus in fluorescence lifetime imaging (FLIM) studies for
example [58], affords another dimension to resolve differences between chemically distinct fluorophores
in close proximity, especially in cases where the corresponding extent of emission spectrum overlap
fails to permit speciation by wavelength alone.

It is significant that the input of the off-resonant beam can also alter the near-field spatial distribution
of the fluorescent emission [59,60]. Via the nonlinear couplings, the emitted electromagnetic field has
an increasingly ‘directed’ character, i.e., a propagation behavior typically observed in the far-field,
as the intensity of the off-resonant beam increases. The phenomenon, therefore, offers the ability to
optically control the near-field distribution of fluorescence. Contour maps illustrating the effects of the
off-resonant beam on the emission field are provided in Figure 4. It is interesting to note the possibility
of using the actively controllable effect we have described either instead of, or in conjunction with,
other passive schemes for achieving highly directed output. The virtues of plasmonic enhancement
and phased-array nanoantennas for directed emission have recently received prominent interest (see,
for example, [61–64]).Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 19 
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Figure 4. Contour maps of the fluorescence rate, against x and y (both over the range −100 nm,
100 nm) with z = 40 nm, from a light-emitting molecule at the source to a detector positioned in the
x,y-plane. Here, the input intensity of the off-resonant beam is: (a) 3 × 1011 W cm−2, (b) 1 × 1012 W
cm−2, (c) 2 × 1012 W cm−2, and (d) 3 × 1012 W cm−2. The darker the shade of blue, the higher the rate.
The right-hand diagram shows the model geometry, which involves the source A and detector B at a
separation R, while r is the distance of the detector from the z-axis. The input beam, with a Gaussian
profile, propagates upward along the z-axis. The beam waist parameter w = 500 nm, transition dipole
magnitude is 5 D, and both the source and detector bandgap = 0.3 eV. Modified from the original image
in [60].

5. Optically Controlled Resonance Energy Transfer

Resonance energy transfer (RET) is the transport of the electronic excitation between electronically
distinct molecular components, commonly designated donor A and acceptor B [65–70]. Analogous to
the effects of laser-modified absorption and fluorescence, an off-resonant beam of sufficient intensity
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is able to increase or reduce the rate of such energy transfer. Again, the key equations are derived

in the form of a Fermi rate expression, but this time via Γret ∼

∣∣∣∣M(2)
f i + M(4)

f i

∣∣∣∣2 where M(2)
f i and M(4)

f i
are the quantum amplitudes for the second-order (single-photon emission at A and single-photon
absorption at B, i.e., RET) and fourth-order interaction processes (optically controlled RET, also called
laser-assisted RET, or LARET), respectively. In detail, optically controlled RET is the process whereby
energy transfer proceeds with concurrent absorption of an off-resonant beam at A and re-emission at
B (and vice-versa). RET intrinsically involves the emission and annihilation of a virtual photon [71].
Thus, four photon-molecule interactions are involved overall, as shown in Figure 2c, and the precise
form of the associated quantum amplitude is accordingly secured from the fourth term in Equation (4).
In the near field, where RET is most commonly measured, the quantum amplitude of the laser-modified
process is given by [72,73]

M(4)
f i =

(
I′

2ε0c

)
eielV jk(0, R)

(
α

0α(A)
i j (−ω′)α

0β (B)
lk (ω′) + α

0β (B)
i j (−ω′)α

0α(A)

lk (ω′)
)

(12)

where -αij is a transition polarizability, β is an excited state of B (for simplicity, denoted α in Figure 2c)
and V jk(0, R) is the dipole-dipole coupling tensor, which acquires the form of its static limit in the
near-field. The rate of optically controlled resonance energy transfer is found from Equation (12) and
the matrix element, M(2)

f i , for conventional RET [43], to give

Γret = V jk(0, R)Vmn(0, R)
[
µ

0α(A)
j µ

0β (B)
k µ

0α(A)
m µ

0β (B)
n + (I′/cε0)eielµ

0α(A)
m µ

0β (B)
n

×

(
α

0α(A)
i j (−ω′)α

0β (B)
lk (ω′) + α

0β (B)
i j (−ω′)α

0α(A)

lk (ω′)
)
+ . . .] .

(13)

Here, the first term is the rate of RET as it occurs without the input beam, and the second term
is the quantum interference between RET and optically controlled RET. The latter term, linear in the
irradiance of the off-resonant laser beam, is the leading correction to the transfer rate when the laser
beam is present.

One of the ancillary benefits of using a QED framework to elicit theory is that its uniform
systematization of interactions often enables the recognition and identification of connections between
what might otherwise be considered entirely unrelated effects. Here, for example, it emerged that
optically controlled resonance energy transfer is closely related in its fundamental mechanism to the
well-known optomechanical phenomenon known as optical binding [74–85]. The latter process again
involves an off-resonant laser beam that can increase (or decrease) an existing effect. In the case of
molecules, it produces a laser-induced optical force at levels that can extend significantly beyond that
of the Casimir–Polder force [86–90] (whose effects pervade any system of neutral molecules). Since,
in the case of optical binding, the initial and final molecular states are identical ground states, i.e.,
the excited states α and β do not arise, a force is determined rather than a rate [91]. However, in terms
of quantum electrodynamics, the mathematics and the mechanisms are similar. Our very recent review
on the latest research on optical binding at the nanoscale can be found elsewhere [92].

6. All-Optical Switching

The possibility of all-optical switching—in which light is controlled by light—is apparent when a
forbidden optical process becomes allowed when subjected to an off-resonant optical input. At the
molecular level, this will usually be either one-photon absorption, fluorescence, or resonance energy
transfer. For example, a potential set-up (discussed below) based on the latter is shown in Figure 5.
All these prospects provide a basis for an all-optical switch since the throughput and absence of
the off-resonant signal results in the activation and deactivation of the optical process, respectively.
All-optical switching based on dipole transition properties has the distinct advantage of ultrafast
operation, compared to most electronic or even optomechanical mechanisms. Moreover, in the ultrafast
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regime, it is possible to entertain switching that is sustained throughout the duration of an input pulse,
rather than requiring the activating input to act as a trigger for a state that will persist beyond the input.
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Figure 5. Depiction of optically controlled resonance energy transfer (RET). (a) Energy transfer from an
excited donor in the upper array of quantum dots to its partner below (spacer material not shown).
The transition dipoles lie in the respective planes and are mutually perpendicular. (b) Before off-resonant
beam enters the system, no energy transfer occurs from the excited quantum dot (red circle) to its
partner (green circle). (c) On input of the off-resonant beam, energy is transferred from the donor
(blue circle) to the acceptor.

When an optical process without the input beam is forbidden, either by the polarization geometry,
or by virtue of selection rules, it is notable that both the first and second (interference) terms in
Equations (9), (10), and (13) are null. In each case, only the final nonlinear term remains. As discussed
earlier, molecules of relatively high symmetry may frequently possess electronic excited states that
are accessible by three-quantum, but not single-quantum, transitions. Notably, the selection rules
for an electric octupole transition still subsume those for a simple electric dipole [93]. However,
in systems where each component of the sample has a common, fixed, orientation—as, for example,
in a nematic liquid crystal—then it is possible to arrange experimental conditions such that any specific,
single-photon allowed process will be precluded using linearly polarized resonant input whose
polarization vector is orthogonal to the conventional transition dipole. Then, the same transition may
be allowed through non-zero, off-diagonal components of the transition quasi-hyperpolarizability. This
represents a straightforward geometric configuration for effectively switching on or off the associated
transition, a simple instance of all-optical switching.

Resonance energy transfer can also be prohibited either by a suitable geometric configuration,
in which the transition dipole moments of the donor and acceptor and the displacement vector are
mutually orthogonal, or by a one-photon symmetry-forbidden electronic transition in the donor or
acceptor. To develop an all-optical switch model, using the concepts of the last section, the case of a
pair of parallel two-dimensional square-lattice arrays has been studied—with one a donor array and
the other an acceptor array, each comprising a set of equally spaced, identical, and optically distinct
antennas. The donor species are chemically dissimilar from the acceptors to preclude back-transfer [94],
and the two arrays were constructed so that each constituent of the donor array corresponds to a
component within the acceptor array. The effective capacity for energy transfer from an emitter in the
donor array (assumed at the origin) to be directed to its designated partner in the acceptor array can be
quantified by comparing it to the summed efficiencies for transfer to all other molecules within either
array, i.e., the cross talk. Presuming typical values for the variables, the aspect ratio (where r is the
distance between the arrays and l is the lattice constant) can be 0.3 for I′= 1 × 1012 W cm−2 or 0.06 for
1 × 1010 W cm−2 to achieve transfer losses less than 5%. This demonstrates that the irradiance of the
off-resonant beam is a major contributing factor in the destination of the donor excitation [53].

The next goal would be the optical control of a 2D-distributed binary coding—where 1 and
0 denote excited and unexcited molecules, respectively—by manipulating the excitation transfer
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from multiple molecules in the donor (input) array to their partners in the acceptor (output) array.
In other words, the binary pattern on the donor array is controllably transferred to the acceptor array,
signifying parallel processing capability [95]. The output array is then ‘read’ by detection of the
emission that follows the relaxation of the acceptors. Another all-optical binary system is conceivable
via a combination of laser-modified absorption and fluorescence. When conventional absorption and
fluorescence cannot undergo linear engagement, i.e., transitions to the electronic excited state are
one-photon forbidden by symmetry, nonlinear activation of the process may be possible on input of
the off-resonant beam. This all-optical switching principle could lead to the intriguing possibility that
binary data is controllably written, through laser-modified absorption, to a molecule with a metastable
state and read using the analogous laser-modified emission technique. Such a device will again be
confined to the realm of ultrafast processing, in which a temporary data register of a few nanoseconds
is sufficiently long-lived. It is noteworthy that the contour maps of Figure 4 also show all-optical
switching in that, if the probe is positioned on the z-axis, no emission is detected when the off-resonant
beam is off, but emission is activated at any interval when the beam is switched on.

Another feasible scheme is an optical transistor, based on the principle that the off-resonant beam
can optically control the amount of stimulated emission from a three-level lasing material pumped
just below its threshold. A model analysis demonstrates that an input beam of sufficient intensity
modifies the amplification kinetics of the active medium and thereby enhances laser output [96]. For a
constant pumping rate, at a level indicated by the dotted vertical line (see Figure 6), the system operates
below threshold when the input beam is absent. On introduction of the beam with an irradiance
approaching 2 × 1011 W cm−2, output may climb by approximately 14 orders of magnitude, rising to
16 orders if the input intensity is doubled—a phase transition feature that is typical of a laser operating
at and above threshold. The beauty of this scheme is that its operation is not limited to any specific
material. To summarize, the feasibility of conferring optical nonlinearity upon photoactive materials
leads to mechanistic features with a range of potential applications, such as all-optical switching and
transistor action.
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7. Discussion

The primary discoveries associated with the off-resonant modification of optical processes
were entertained in connection with their potential deployment in spectroscopic and photophysical
measurements. At the simplest level, additional control is afforded by the capacity to vary the intensity,
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polarization, wavelength, and even pulse duration of the off-resonant beam, representing an expanded
parameter space for experimentation. Although it has yet to receive detailed analysis, it is not only
the intensity of individual bands in a spectrum that may exhibit change under suitable conditions:
A modification to line-shapes may also be anticipated.

The possibility of achieving all-optical switching now represents one of the more recently attractive
propositions for application. Although the speed of ultrafast communications and computer processing
continues unabated, they have until now still been essentially subject to Moore’s Law. For many
years, it has been known that the long-sought goal of all-optical switching has the capacity to
revolutionize telecommunications and computing, since the relatively slow and energetically inefficient
opto-electronic conversions that form bottlenecks in present technology can be circumvented. Therefore,
unsurprisingly, numerous implementation strategies have been proposed, some of which are now
briefly discussed.

One technique involves the optical control of the refractive index of a material, so that a
secondary beam travelling though the medium can be modified in speedily reversible manner [97].
Closely related are systems that exploit electromagnetic induced transparency [98–100], in which
a material becomes transparent within a narrow range of the absorption spectrum. Similar
all-optical switching arrangements are based on Mach–Zehnder interferometry [101,102]. Other
schemes make use of semiconductor nanoparticles [103–105], nanoplasmonic waveguides [106–109],
fiber Bragg gratings [110–112] or nanocavities in photonic crystals to strongly enhance optical
nonlinearities [113,114]. Moreover, based on irradiation of rubidium vapor, there is a development
that uses counter-propagating laser beams to induce an optical pattern that rotates on application
of a switching laser [115]. Compared to the approach we describe, many of these methods suffer
the disadvantage of requiring optical structures and configurations substantially larger than typical
molecular dimensions. Moreover, although there are indeed other specifically molecule-based methods,
such as several based on the photocycle of bacteriorhodopsin [116,117], their speed is significantly
constrained by the kinetics of state interconversion, each with a finite (typically picosecond) lifetime.
The progress of these and many other all-optical systems have been discussed in two excellent
reviews [118,119]. It is still clear, at present, that no single scheme has been adopted as the one that
will be useful in a practicable device in the near future.

The prospect we have identified of controlling resonance energy transfer without requiring
a microcavity [120] is most likely to involve all-optical switching implemented in a synthetic
heterostructure. Building such a device requires exploitation of the recent advances in the construction
of quantum dot arrays—see, for example, [121,122]—here, with juxtaposed arrays sandwiching an
optically transparent spacer layer. Technical realizations are expected to implement the most suitable
nanofabrication method, such as dip-pen nanolithography. The advantage of such a system is its viable
operation at short ultraviolet/visible wavelengths without the use of expensive, non-standard optical
elements. Above all, it offers a high-information density and ultrafast response with high repetition
rate and high efficiency. The initial work on optical transistor action, based on the optical control
of fluorescence, may also break ground for the broader development of novel all-optical methods.
Such opportunities are not limited to device applications. They offer clear advantages over molecular
switches since their operation does not require atomic motion, and the switching times are much
faster since they are comparable to excited state decay. It is hoped that, with the ongoing progress
of optoelectronics, a new generation of optical devices tailored for telecommunications and IT will
emerge in the near future.

Author Contributions: The contributions of each author to this Review—including writing, equation and figure
production, reviewing, drafting and proof-reading – is: D.S.B. 40%, D.L.A. 35% and K.A.F. 25%. The original
research was by D.S.B. and D.L.A.

Funding: K.A.F. is funded by the Leverhulme Trust under the Grant Number ECF-2019-398.

Acknowledgments: K.A.F. would like to thank the Leverhulme Trust for funding through a Leverhulme Early
Career Fellowship.



Appl. Sci. 2019, 9, 4252 14 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bloembergen, N. Nonlinear Optics, 4th ed.; World Scientific: Singapore, 1996.
2. Jha, S.S. Perspectives in Optoelectronics; World Scientific: Singapore, 1995.
3. Sauter, E.G. Nonlinear Optics; Wiley: New York, NY, USA, 1996.
4. He, G.; Liu, S.H. Physics of Nonlinear Optics; World Scientific: Singapore, 2000.
5. Shen, Y.R. The Principles of Nonlinear Optics; Wiley: New York, NY, USA, 2002.
6. Sutherland, R.L. Handbook of Nonlinear Optics, 2nd ed.; Dekker: New York, NY, USA, 2003.
7. Banerjee, P.P. Nonlinear Optics: Theory, Numerical Modeling, and Applications; Dekker: New York, NY, USA,

2003.
8. Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2006.
9. Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: New York, NY, USA, 2008.
10. Lvovsky, A.I.; Mlynek, J. Quantum-optical catalysis: Generating nonclassical states of light by means of

linear optics. Phys. Rev. Lett. 2002, 88, 250401. [CrossRef] [PubMed]
11. Hu, L.-Y.; Wu, J.-N.; Liao, Z.; Zubairy, M.S. Multiphoton catalysis with coherent state input: Nonclassicality

and decoherence. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 175504. [CrossRef]
12. Hu, L.; Liao, Z.; Zubairy, M.S. Continuous-variable entanglement via multiphoton catalysis. Phys. Rev. A

2017, 95, 012310. [CrossRef]
13. Zhou, W.; Ye, W.; Liu, C.; Hu, L.; Liu, S. Entanglement improvement of entangled coherent state via

multiphoton catalysis. Laser Phys. Lett. 2018, 15, 065203. [CrossRef]
14. Ye, W.; Zhong, H.; Liao, Q.; Huang, D.; Hu, L.; Guo, Y. Improvement of self-referenced continuous-variable

quantum key distribution with quantum photon catalysis. Opt. Express 2019, 27, 17186–17198. [CrossRef]
[PubMed]

15. Hilsabeck, K.I.; Meiser, J.L.; Sneha, M.; Harrison, J.A.; Zare, R.N. Nonresonant photons catalyze
photodissociation of phenol. J. Am. Chem. Soc. 2019, 141, 1067–1073. [CrossRef] [PubMed]

16. Cushing, S.K.; Li, J.; Meng, F.; Senty, T.R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A.D.; Wu, N. Photocatalytic activity
enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134,
15033–15041. [CrossRef] [PubMed]

17. Gonzaga-Galeana, J.A.; Zurita-Sánchez, J.R. A revisitation of the Förster energy transfer near a metallic
spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of
the unbounded medium. (3) The impact of the local density of states. J. Chem. Phys. 2013, 139, 244302.
[CrossRef] [PubMed]

18. Schleifenbaum, F.; Kern, A.M.; Konrad, A.; Meixner, A.J. Dynamic control of Förster energy transfer in a
photonic environment. Phys. Chem. Chem. Phys. 2014, 16, 12812–12817. [CrossRef]

19. Li, J.; Cushing, S.K.; Meng, F.; Senty, T.R.; Bristow, A.D.; Wu, N. Plasmon-induced resonance energy transfer
for solar energy conversion. Nat. Photonics 2015, 9, 601. [CrossRef]

20. Ghenuche, P.; Mivelle, M.; de Torres, J.; Moparthi, S.B.; Rigneault, H.; Van Hulst, N.F.; García-Parajó, M.F.;
Wenger, J. Matching nanoantenna field confinement to FRET distances enhances Förster energy transfer rates.
Nano Lett. 2015, 15, 6193–6201. [CrossRef] [PubMed]

21. Konrad, A.; Metzger, M.; Kern, A.M.; Brecht, M.; Meixner, A.J. Controlling the dynamics of Förster resonance
energy transfer inside a tunable sub-wavelength Fabry–Pérot-resonator. Nanoscale 2015, 7, 10204–10209.
[CrossRef] [PubMed]

22. Tumkur, T.U.; Kitur, J.K.; Bonner, C.E.; Poddubny, A.N.; Narimanov, E.E.; Noginov, M.A. Control of Förster
energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials. Faraday Discuss. 2015, 178,
395–412. [CrossRef] [PubMed]

23. Bidault, S.; Devilez, A.; Ghenuche, P.; Stout, B.; Bonod, N.; Wenger, J. Competition between Förster resonance
energy transfer and donor photodynamics in plasmonic dimer nanoantennas. ACS Photonics 2016, 3, 895–903.
[CrossRef]

24. de Torres, J.; Ferrand, P.; Colas des Francs, G.; Wenger, J. Coupling emitters and silver nanowires to achieve
long-range plasmon-mediated fluorescence energy transfer. ACS Nano 2016, 10, 3968–3976. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.88.250401
http://www.ncbi.nlm.nih.gov/pubmed/12097076
http://dx.doi.org/10.1088/0953-4075/49/17/175504
http://dx.doi.org/10.1103/PhysRevA.95.012310
http://dx.doi.org/10.1088/1612-202X/aaba4f
http://dx.doi.org/10.1364/OE.27.017186
http://www.ncbi.nlm.nih.gov/pubmed/31252932
http://dx.doi.org/10.1021/jacs.8b11695
http://www.ncbi.nlm.nih.gov/pubmed/30571915
http://dx.doi.org/10.1021/ja305603t
http://www.ncbi.nlm.nih.gov/pubmed/22891916
http://dx.doi.org/10.1063/1.4847875
http://www.ncbi.nlm.nih.gov/pubmed/24387365
http://dx.doi.org/10.1039/C4CP01306A
http://dx.doi.org/10.1038/nphoton.2015.142
http://dx.doi.org/10.1021/acs.nanolett.5b02535
http://www.ncbi.nlm.nih.gov/pubmed/26237534
http://dx.doi.org/10.1039/C5NR02027A
http://www.ncbi.nlm.nih.gov/pubmed/25988852
http://dx.doi.org/10.1039/C4FD00184B
http://www.ncbi.nlm.nih.gov/pubmed/25803206
http://dx.doi.org/10.1021/acsphotonics.6b00148
http://dx.doi.org/10.1021/acsnano.6b00287


Appl. Sci. 2019, 9, 4252 15 of 18

25. Poudel, A.; Chen, X.; Ratner, M.A. Enhancement of resonant energy transfer due to an evanescent wave from
the metal. J. Phys. Chem. Lett. 2016, 7, 955–960. [CrossRef]

26. Marocico, C.A.; Zhang, X.; Bradley, A.L. A theoretical investigation of the influence of gold nanosphere size
on the decay and energy transfer rates and efficiencies of quantum emitters. J. Chem. Phys. 2016, 144, 024108.
[CrossRef]

27. Wubs, M.; Vos, W.L. Förster resonance energy transfer rate in any dielectric nanophotonic medium with
weak dispersion. New J. Phys. 2016, 18, 053037. [CrossRef]

28. Higgins, L.J.; Marocico, C.A.; Karanikolas, V.D.; Bell, A.P.; Gough, J.J.; Murphy, G.P.; Parbrook, P.J.;
Bradley, A.L. Influence of plasmonic array geometry on energy transfer from a quantum well to a quantum
dot layer. Nanoscale 2016, 8, 18170–18179. [CrossRef]

29. Bujak, Ł.; Ishii, T.; Sharma, D.K.; Hirata, S.; Vacha, M. Selective turn-on and modulation of resonant energy
transfer in single plasmonic hybrid nanostructures. Nanoscale 2017, 9, 1511–1519. [CrossRef]

30. Murphy, G.P.; Gough, J.J.; Higgins, L.J.; Karanikolas, V.D.; Wilson, K.M.; Garcia Coindreau, J.A.;
Zubialevich, V.Z.; Parbrook, P.J.; Bradley, A.L. Ag colloids and arrays for plasmonic non-radiative energy
transfer from quantum dots to a quantum well. Nanotechnology 2017, 28, 115401. [CrossRef] [PubMed]

31. Steele, J.M.; Ramnarace, C.M.; Farner, W.R. Controlling FRET enhancement using plasmon modes on gold
nanogratings. J. Phys. Chem. C 2017, 121, 22353–22360. [CrossRef]

32. Akulov, K.; Bochman, D.; Golombek, A.; Schwartz, T. Long-distance resonant energy transfer mediated by
hybrid plasmonic-photonic modes. J. Phys. Chem. C 2018, 122, 15853–15860. [CrossRef]

33. Asgar, H.; Jacob, L.; Hoang, T.B. Fast spontaneous emission and high Förster resonance energy transfer rate
in hybrid organic/inorganic plasmonic nanostructures. J. Appl. Phys. 2018, 124, 103105. [CrossRef]

34. Eldabagh, N.; Micek, M.; DePrince, A.E.; Foley, J.J. Resonance energy transfer mediated by metal-dielectric
composite nanostructures. J. Phys. Chem. C 2018, 122, 18256–18265. [CrossRef]

35. Glaeske, M.; Juergensen, S.; Gabrielli, L.; Menna, E.; Mancin, F.; Gatti, T.; Setaro, A. PhysicaPlasmon-assisted
energy transfer in hybrid nanosystems. Phys. Status Solidi Rapid Res. Lett. 2018, 12, 1800508. [CrossRef]

36. Roth, D.J.; Nasir, M.E.; Ginzburg, P.; Wang, P.; Le Marois, A.; Suhling, K.; Richards, D.; Zayats, A.V. Förster
resonance energy transfer inside hyperbolic metamaterials. ACS Photonics 2018, 5, 4594–4603. [CrossRef]

37. Wu, J.-S.; Lin, Y.-C.; Sheu, Y.-L.; Hsu, L.-Y. Characteristic distance of resonance energy transfer coupled with
surface plasmon polaritons. J. Phys. Chem. Lett. 2018, 9, 7032–7039. [CrossRef]

38. Zurita-Sánchez, J.R.; Méndez-Villanueva, J. Förster energy transfer in the vicinity of two metallic nanospheres
(dimer). Plasmonics 2018, 13, 873–883. [CrossRef]

39. Olivo, J.; Zapata-Rodríguez, C.J.; Cuevas, M. Spatial modulation of the electromagnetic energy transfer by
excitation of graphene waveguide surface plasmons. J. Opt. 2019, 21, 045002. [CrossRef]

40. Bohlen, J.; Cuartero-González, Á.; Pibiri, E.; Ruhlandt, D.; Fernández-Domínguez, A.I.; Tinnefeld, P.;
Acuna, G.P. Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the moderate
quenching regime. Nanoscale 2019, 11, 7674–7681. [CrossRef] [PubMed]

41. Wang, Y.; Li, H.; Zhu, W.; He, F.; Huang, Y.; Chong, R.; Kou, D.; Zhang, W.; Meng, X.; Fang, X.
Plasmon-mediated nonradiative energy transfer from a conjugated polymer to a plane of graphene-
nanodot-supported silver nanoparticles: An insight into characteristic distance. Nanoscale 2019, 11, 6737–6746.
[CrossRef] [PubMed]

42. Wang, Z.; Glesk, I.; Chen, L.R. An integrated nonlinear optical loop mirror in silicon photonics for all-optical
signal processing. APL Photon. 2018, 3, 026102. [CrossRef]

43. Craig, D.P.; Thirunamachandran, T. Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule
Interactions; Dover Publications: Mineola, NY, USA, 1998.

44. Salam, A. Molecular Quantum Electrodynamics. Long-Range Intermolecular Interactions; Wiley: Hoboken, NJ,
USA, 2010.

45. Grynberg, G.; Aspect, A.; Fabre, C. Introduction to Quantum Optics: From the Semi-Classical Approach to
Quantized Light; Cambridge University Press: Cambridge, UK, 2010.

46. Andrews, D.L.; Allcock, P. Optical Harmonics in Molecular Systems; Wiley-VCH: Weinheim, Germany, 2002.
47. Andrews, D.L.; Bradshaw, D.S. Introduction to Photon Science and Technology; SPIE Press: Bellingham, WA,

USA, 2018.
48. Andrews, D.L.; Jones, G.A.; Salam, A.; Woolley, R.G. Quantum Hamiltonians for optical interactions. J. Chem.

Phys. 2018, 148, 040901. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/acs.jpclett.6b00119
http://dx.doi.org/10.1063/1.4939206
http://dx.doi.org/10.1088/1367-2630/18/5/053037
http://dx.doi.org/10.1039/C6NR05990B
http://dx.doi.org/10.1039/C6NR08740J
http://dx.doi.org/10.1088/1361-6528/aa5b67
http://www.ncbi.nlm.nih.gov/pubmed/28140370
http://dx.doi.org/10.1021/acs.jpcc.7b07317
http://dx.doi.org/10.1021/acs.jpcc.8b03030
http://dx.doi.org/10.1063/1.5052350
http://dx.doi.org/10.1021/acs.jpcc.8b04419
http://dx.doi.org/10.1002/pssr.201800508
http://dx.doi.org/10.1021/acsphotonics.8b01083
http://dx.doi.org/10.1021/acs.jpclett.8b03429
http://dx.doi.org/10.1007/s11468-017-0583-4
http://dx.doi.org/10.1088/2040-8986/ab0ab9
http://dx.doi.org/10.1039/C9NR01204D
http://www.ncbi.nlm.nih.gov/pubmed/30946424
http://dx.doi.org/10.1039/C8NR09576K
http://www.ncbi.nlm.nih.gov/pubmed/30907396
http://dx.doi.org/10.1063/1.5013618
http://dx.doi.org/10.1063/1.5018399
http://www.ncbi.nlm.nih.gov/pubmed/29390804


Appl. Sci. 2019, 9, 4252 16 of 18

49. Atkins, P.W.; Friedman, R.S. Molecular Quantum Mechanics; Oxford University Press: Oxford, 2011.
50. Andrews, D.L.; Bradshaw, D.S.; Forbes, K.A.; Salam, A. A guide to quantum and semiclassical electrodynamics

in modern optics. J. Opt. Soc. Am. B submitted 2019.
51. Hollas, J.M. Modern Spectroscopy; Wiley: Chichester, UK, 2004.
52. Bradshaw, D.S.; Andrews, D.L. Laser-modified one- and two-photon absorption: Expanding the scope of

optical nonlinearity. Phys. Rev. A 2013, 88, 033807. [CrossRef]
53. Bradshaw, D.S.; Andrews, D.L. Optically controlled resonance energy transfer: Mechanism and configuration

for all-optical switching. J. Chem. Phys. 2008, 128, 144506. [CrossRef]
54. Bradshaw, D.S.; Andrews, D.L. All-optical control of molecular fluorescence. Phys. Rev. A 2010, 81, 013424.

[CrossRef]
55. Andrews, D.L.; Bradshaw, D.S. Optically tailored access to metastable electronic states. Chem. Phys. Lett.

2013, 590, 235–238. [CrossRef]
56. Bradshaw, D.S.; Andrews, D.L. Mechanism for optical enhancement and suppression of fluorescence. J. Phys.

Chem. A 2009, 113, 6537–6539. [CrossRef]
57. Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic: New York, NY, USA, 1999.
58. Valeur, B.; Berberan-Santos, M.N. Molecular Fluorescence: Principles and Applications, 2nd ed.; Wiley-VCH:

Weinheim, Germany, 2013.
59. Bradshaw, D.S.; Andrews, D.L. The control of near-field optics: Imposing direction through coupling with

off-resonant laser light. Appl. Phys. B 2008, 93, 13–20. [CrossRef]
60. Bradshaw, D.S.; Andrews, D.L. Laser conferral of a directed character to near-field energy transfer. Laser Phys.

2009, 19, 125–128. [CrossRef]
61. Curto, A.G.; Volpe, G.; Taminiau, T.H.; Kreuzer, M.P.; Quidant, R.; van Hulst, N.F. Unidirectional emission of

a quantum dot coupled to a nanoantenna. Science 2010, 329, 930–933. [CrossRef] [PubMed]
62. Lin, J.; Mueller, J.P.B.; Wang, Q.; Yuan, G.; Antoniou, N.; Yuan, X.-C.; Capasso, F. Polarization-controlled

tnable directional coupling of surface plasmon polaritons. Science 2013, 340, 331–334. [CrossRef] [PubMed]
63. Laux, F.; Bonod, N.; Gérard, D. Single emitter fluorescence enhancement with surface lattice resonances.

J. Phys. Chem. C 2017, 121, 13280–13289. [CrossRef]
64. Sun, Y.-Z.; Feng, L.-S.; Bachelot, R.; Blaize, S.; Ding, W. Full control of far-field radiation via photonic

integrated circuits decorated with plasmonic nanoantennas. Opt. Express 2017, 25, 17417–17430. [CrossRef]
[PubMed]

65. van der Meer, B.W.; Coker, G.; Chen, S.Y.S. Resonance Energy Transfer: Theory and Data; VCH: New York, NY,
USA, 1994.

66. Andrews, D.L.; Demidov, A.A. Resonance Energy Transfer; Wiley: Chichester, UK, 1999.
67. May, V. Charge and Energy Transfer Dynamics in Molecular Systems; John Wiley & Sons: Hoboken, NJ, USA,

2008.
68. Medintz, I.; Hildebrandt, N. Förster Resonance Energy Transfer: From Theory to Applications; Wiley-VCH:

Weinheim, Germany, 2013.
69. Salam, A. The unified theory of resonance energy transfer according to molecular quantum electrodynamics.

Atoms 2018, 6, 56. [CrossRef]
70. Jones, G.A.; Bradshaw, D.S. Resonance energy transfer: From fundamental theory to recent applications.

Front. Phys. 2019, 7, 100. [CrossRef]
71. Andrews, D.L.; Bradshaw, D.S. The role of virtual photons in nanoscale photonics. Ann. Phys. 2014, 526,

173–186. [CrossRef]
72. Allcock, P.; Jenkins, R.D.; Andrews, D.L. Laser assisted resonance energy transfer. Chem. Phys. Lett. 1999,

301, 228–234. [CrossRef]
73. Allcock, P.; Jenkins, R.D.; Andrews, D.L. Laser-assisted resonance-energy transfer. Phys. Rev. A 2000, 61,

023812. [CrossRef]
74. Thirunamachandran, T. Intermolecular interactions in the presence of an intense radiation field. Mol. Phys.

1980, 40, 393–399. [CrossRef]
75. Burns, M.M.; Fournier, J.-M.; Golovchenko, J.A. Optical binding. Phys. Rev. Lett. 1989, 63, 1233–1236.

[CrossRef] [PubMed]
76. Burns, M.M.; Fournier, J.-M.; Golovchenko, J.A. Optical matter: Crystallization and binding in intense optical

fields. Science 1990, 249, 749–754. [CrossRef] [PubMed]

http://dx.doi.org/10.1103/PhysRevA.88.033807
http://dx.doi.org/10.1063/1.2894319
http://dx.doi.org/10.1103/PhysRevA.81.013424
http://dx.doi.org/10.1016/j.cplett.2013.10.067
http://dx.doi.org/10.1021/jp901830w
http://dx.doi.org/10.1007/s00340-008-3144-x
http://dx.doi.org/10.1134/S1054660X09010058
http://dx.doi.org/10.1126/science.1191922
http://www.ncbi.nlm.nih.gov/pubmed/20724630
http://dx.doi.org/10.1126/science.1233746
http://www.ncbi.nlm.nih.gov/pubmed/23599488
http://dx.doi.org/10.1021/acs.jpcc.7b04207
http://dx.doi.org/10.1364/OE.25.017417
http://www.ncbi.nlm.nih.gov/pubmed/28789234
http://dx.doi.org/10.3390/atoms6040056
http://dx.doi.org/10.3389/fphy.2019.00100
http://dx.doi.org/10.1002/andp.201300219
http://dx.doi.org/10.1016/S0009-2614(98)01427-4
http://dx.doi.org/10.1103/PhysRevA.61.023812
http://dx.doi.org/10.1080/00268978000101561
http://dx.doi.org/10.1103/PhysRevLett.63.1233
http://www.ncbi.nlm.nih.gov/pubmed/10040510
http://dx.doi.org/10.1126/science.249.4970.749
http://www.ncbi.nlm.nih.gov/pubmed/17756787


Appl. Sci. 2019, 9, 4252 17 of 18

77. Milonni, P.W.; Shih, M.L. Source theory of the Casimir force. Phys. Rev. A 1992, 45, 4241–4253. [CrossRef]
78. Dapasse, F.; Vigoureux, J.M. Optical binding force between two Rayleigh particles. J. Phys. D Appl. Phys.

1994, 27, 914–919. [CrossRef]
79. Milonni, P.W.; Smith, A. van der Waals dispersion forces in electromagnetic fields. Phys. Rev. A 1996, 53,

3484–3489. [CrossRef]
80. Chaumet, P.C.; Nieto-Vesperinas, M. Optical binding of particles with or without the presence of a flat

dielectric surface. Phys. Rev. B 2001, 64, 035422. [CrossRef]
81. Nieto-Vesperinas, M.; Chaumet, P.C.; Rahmani, A. Near-field photonic forces. Philos. Trans. R. Soc. A 2004,

362, 719–737. [CrossRef]
82. Mohanty, S.K.; Andrews, J.T.; Gupta, P.K. Optical binding between dielectric particles. Opt. Express 2004, 12,

2746–2753. [CrossRef]
83. Bradshaw, D.S.; Andrews, D.L. Optically induced forces and torques: Interactions between nanoparticles in

a laser beam. Phys. Rev. A 2005, 72, 033816. [CrossRef]
84. Dholakia, K.; Zemanek, P. Gripped by light: Optical binding. Rev. Mod. Phys. 2010, 82, 1767–1791. [CrossRef]
85. Bowman, R.W.; Padgett, M.J. Optical trapping and binding. Rep. Prog. Phys. 2013, 76, 026401. [CrossRef]

[PubMed]
86. Casimir, H.B.G.; Polder, D. The influence of retardation on the London-van der Waals forces. Phys. Rev. 1948,

73, 360–372. [CrossRef]
87. Buhmann, S.Y.; Knöll, L.; Welsch, D.-G.; Dung, H.T. Casimir-Polder forces: A nonperturbative approach.

Phys. Rev. A 2004, 70, 052117. [CrossRef]
88. Przybytek, M.; Jeziorski, B.; Cencek, W.; Komasa, J.; Mehl, J.B.; Szalewicz, K. Onset of Casimir-Polder

retardation in a long-range molecular quantum state. Phys. Rev. Lett. 2012, 108, 183201. [CrossRef] [PubMed]
89. Salam, A. Non-Relativistic QED Theory of the van der Waals Dispersion Interaction; Springer: Cham, Switzerland,

2016.
90. Passante, R. Dispersion interactions between neutral atoms and the quantum electrodynamical vacuum.

Symmetry 2018, 10, 735. [CrossRef]
91. Bradshaw, D.S.; Andrews, D.L. Interparticle interactions: Energy potentials, energy transfer, and nanoscale

mechanical motion in response to optical radiation. J. Phys. Chem. A 2013, 117, 75–82. [CrossRef]
92. Forbes, K.A.; Bradshaw, D.S.; Andrews, D.L. Off-resonance nanophotonics: From optical binding and

induced self-assembly to all-optical switching. Nanophoton 2019. submitted.
93. Scholes, G.D.; Andrews, D.L. Damping and higher multipole effects in the quantum electrodynamical model

for electronic energy transfer in the condensed phase. J. Chem. Phys. 1997, 107, 5374–5384. [CrossRef]
94. Andrews, D.L.; Rodríguez, J. Resonance energy transfer: Spectral overlap, efficiency, and direction. J. Chem.

Phys. 2007, 127, 084509. [CrossRef]
95. Bradshaw, D.S.; Andrews, D.L. All-optical switching between quantum dot nanoarrays. Superlatt. Microstruct.

2010, 47, 308–313. [CrossRef]
96. Andrews, D.L.; Bradshaw, D.S. Off-resonant activation of optical emission. Opt. Commun. 2010, 283,

4365–4367. [CrossRef]
97. Taghinejad, M.; Cai, W. All-optical control of light in micro- and nanophotonics. ACS Photonics 2019, 6,

1082–1093. [CrossRef]
98. Bajcsy, M.; Hofferberth, S.; Balic, V.; Peyronel, T.; Hafezi, M.; Zibrov, A.S.; Vuletic, V.; Lukin, M.D. Efficient

all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 2009, 102, 203902. [CrossRef]
[PubMed]

99. Lee, M.-J.; Chen, Y.-H.; Wang, I.C.; Yu, I.A. EIT-based all-optical switching and cross-phase modulation
under the influence of four-wave mixing. Opt. Express 2012, 20, 11057–11063. [CrossRef] [PubMed]

100. Clader, B.D.; Hendrickson, S.M.; Camacho, R.M.; Jacobs, B.C. All-optical microdisk switch using EIT.
Opt. Express 2013, 21, 6169–6179. [CrossRef] [PubMed]

101. Kumar, S.; Singh, L. Proposed new approach to design all optical AND gate using plasmonic based
Mach-Zehnder interferometer for high speed communication. Proc. SPIE 2016, 9884, 98842D.

102. Wang, B.; Xiong, L.; Zeng, Q.; Chen, Z.; Lv, H.; Ding, Y.; Du, J.; Yu, H. All-optical Mach–Zehnder interferometer
switching based on the phase-shift multiplication effect of an analog on the electromagnetically induced
transparency effect. Opt. Eng. 2016, 55, 067104. [CrossRef]

http://dx.doi.org/10.1103/PhysRevA.45.4241
http://dx.doi.org/10.1088/0022-3727/27/5/006
http://dx.doi.org/10.1103/PhysRevA.53.3484
http://dx.doi.org/10.1103/PhysRevB.64.035422
http://dx.doi.org/10.1098/rsta.2003.1343
http://dx.doi.org/10.1364/OPEX.12.002746
http://dx.doi.org/10.1103/PhysRevA.72.033816
http://dx.doi.org/10.1103/RevModPhys.82.1767
http://dx.doi.org/10.1088/0034-4885/76/2/026401
http://www.ncbi.nlm.nih.gov/pubmed/23302540
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRevA.70.052117
http://dx.doi.org/10.1103/PhysRevLett.108.183201
http://www.ncbi.nlm.nih.gov/pubmed/22681072
http://dx.doi.org/10.3390/sym10120735
http://dx.doi.org/10.1021/jp310061h
http://dx.doi.org/10.1063/1.475145
http://dx.doi.org/10.1063/1.2759489
http://dx.doi.org/10.1016/j.spmi.2009.10.017
http://dx.doi.org/10.1016/j.optcom.2010.06.047
http://dx.doi.org/10.1021/acsphotonics.9b00013
http://dx.doi.org/10.1103/PhysRevLett.102.203902
http://www.ncbi.nlm.nih.gov/pubmed/19519028
http://dx.doi.org/10.1364/OE.20.011057
http://www.ncbi.nlm.nih.gov/pubmed/22565728
http://dx.doi.org/10.1364/OE.21.006169
http://www.ncbi.nlm.nih.gov/pubmed/23482185
http://dx.doi.org/10.1117/1.OE.55.6.067104


Appl. Sci. 2019, 9, 4252 18 of 18

103. Piccione, B.; Cho, C.-H.; van Vugt, L.K.; Agarwal, R. All-optical active switching in individual semiconductor
nanowires. Nat. Nanotechnol. 2012, 7, 640. [CrossRef]
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