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Abstract

I propose an estimation strategy for the stochastic time-varying risk premium1

parameter in the context of a time-varying GARCH-in-mean (TVGARCH-in-2

mean) model. A Monte Carlo study shows that the proposed algorithm has good3

finite sample properties. Using monthly excess returns on the CRSP index, I4

document that the risk premium parameter is indeed time-varying and shows5

high degree of persistence.6
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1. Introduction7

Asset pricing theories suggest that riskier assets should demand higher ex-8

pected returns. Using Merton’s (1973) theoretical framework, the conditional9

expectation of the market excess returns reads10

E
(
rmt+1 | Ft

)
− rft = λtV ar

(
rmt+1 | Ft

)
, (1)

where rmt+1 and rft are the returns on the market portfolio and risk-free asset,11

Ft is the market-wide information available at time t, and λt is the coefficient12

of relative risk aversion defined as the elasticity of marginal value with respect13

to wealth. Most studies assume the risk-return trade-off is constant over time14

and linear in the variance, which is usually associated with the reasons behind15

mixed empirical evidences when estimating the risk-return trade-off (Linton16

and Perron (2003), Brandt and Wang (2010), Christensen, Dahl, and Iglesias17

(2012), among others). To address this issue, I adopt the time-varying GARCH-18

in-mean (TVGARCH-in-mean) model in the spirit of Anyfantaki and Demos19

(2016) which allows λt to be a time-varying stochastic process and put forward20

a feasible estimation strategy for λt (see references in Anyfantaki and Demos21

(2016) for variants of the TVGARCH-in-mean models). Specifically, I com-22

bine Giraitis, Kapetanios, and Yates’s (2013) time-varying kernel least squares23

estimator with Linton and Perron’s (2003) semiparametric iterative approach24

to estimate the time-varying risk premium coefficient. A Monte Carlo study25

shows that the proposed algorithm has good finite sample properties. Using the26

excess returns of the Center for Research on Security Prices (CRSP) index, I27

document that the risk premium parameter is indeed time-varying, alternating28

positive (statistically significant) and nonsignificant values over time.29

2. The time-varying GARCH-in-mean30

The generic TVGARCH-in-mean(p,q) is defined as:31

rt = λtσt + εt, (2)

εt = σtηt, (3)

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i, (4)

ε2t = ψ0 + ut +

∞∑
i=1

ψiut−i, (5)

where ηt is an independent and identically distributed (iid) zero mean process32

with unit variance; σt is a latent conditional standard deviation; (5) is the33

MA(∞) representation of the conditional variance equation; ut = ε2t − σ2
t is a34

martingale difference sequence process; φ = (ω, α1, ..., αp, β1, ..., βq)
′

collects the35

free parameters in (4); and ψi := %i (φ) i = 1, 2, ... are deterministic functions36
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of the elements in φ. Similarly as in Giraitis, Kapetanios, and Yates (2013),37

the time-varying risk premium parameters are assumed to evolve smoothly over38

time, so that it satisfies a local stability condition in the form of sups:‖s−t‖≤h ‖39

λt + λs ‖2= Op (h/t).40

Estimating the free parameters in (2) and (4) by maximum-likelihood is not41

a feasible alternative, as the class of TVGARCH-in-mean(p,q) models involves42

two unobserved processes: λt and εt. Anyfantaki and Demos (2016) address43

this issue in the context of the time-varying EGARCH(1,1)-in-mean model.44

Specifically, their work differs from mine in two ways. First, they parameterize45

the conditional variance as an EGARCH(1,1) model and, most importantly, λt46

as a stationary AR(1) process. By contrast, λt in (2) is assumed to satisfy47

sups:‖s−t‖≤h ‖ λt+λs ‖2= Op (h/t), which encompasses the case of the driftless48

random walk process considered in Chou, Engle, and Kane (1992). Second,49

while I propose a kernel-based nonparametric method to estimate the time-50

varying risk premium parameter, Anyfantaki and Demos’s (2016) estimation51

strategy is based on Bayesian methods (Markov chain Monte Carlo (MCMC)52

likelihood based estimation procedure).53

I combine Linton and Perron’s (2003) iterative semiparametric estimator54

with Giraitis, Kapetanios, and Yates’s (2013) kernel-based least squares frame-55

work to estimate the free parameters θ = (λ, φ)
′
, where λ = (λ1, .., λT )

′
. This56

method consists of recursively updating estimates of σt and ut on each itera-57

tion, and then computing estimates of λ and φ. To this end, consider moment58

conditions based on (2) and (5),59

E [σt (rt − λtσt)] = 0, for each t = 1, 2, ..., T, (6)

E [ztut] = 0, with zt :=

∂

(
ψ0 +

q̄∑
i=1

ψiut−i

)
∂φ

, (7)

where (7) is truncated at some lag-order q̄ with q̄ > p+q+1. Notably, (7) holds60

because ut is a martingale difference sequence and zt is a function of lagged61

values of ut. It follows that estimating θ by the standard generalized method of62

moments (GMM) using the moments defined in (6) and (7) is not operational,63

as zt and σt are latent variables. Using Linton and Perron’s (2003) approach,64

rewrite (6) and (7) using estimates of σt and ut obtained at some j iteration,65

E [σj,t (rt − λj+1,tσj,t)] = 0, for each t = 1, 2, ..., T, (8)

E [zj,tuj+1,t] = 0, (9)

where σj,t and zj,t denote the filtered estimates of σt and zt based on θ̂j , and66

uj+1,t = ε2j,t − ψj+1,0 −
q̄∑
i=1

ψj+1,iuj,t−i with ε2j,t = (rt − λj+1,tσj,t)
2
. While the67

finite sample counterpart of (9) is given by the usual sample mean, computing68

the sample counterpart of (8) is less obvious. The work of Giraitis, Kapetan-69

ios, and Yates (2013) suggests the use of local kernels to construct operational70
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sample counterparts of (8). In turn, a feasible moment condition based on (8)71

reads72

K−1
t

T∑
τ=1

kt,τσj,τ

(
rτ − λ̂j+1,tσj,τ

)
= 0, for each t = 1, 2, ..., T, (10)

where kt,τ = K ((t− τ) /H) denotes a kernel function such that K(x) ≥ 0 for73

any x ∈ R is a continuous bounded function with a bounded first derivative and74 ∫
K(x)dx = 1; H is the bandwidth parameter satisfying H = o (T/ ln (T )) as75

H → ∞; and Kt =
∑T
τ=1 kt,τ . Notably, writing the moment conditions as in76

(10) is consistent with previous studies in the time-varying parameter literature77

which maximizes kernel weighted log-likelihood functions (see Robinson (1989),78

Giraitis, Kapetanios, Wetherilt, and Žikeš (2016), among others).79

I use the fact that (10) is exactly identified for each t, and hence estimates80

of λt can be obtained independently of φ. In turn, estimates of θ are computed81

iteratively by a two-step procedure. The first step consists of solving (10) for82

each t, while the second step mimics the work of Linton and Perron (2003) and83

consists of estimating φ using the sample counterpart of (9). In practise, the84

kernel-based iterative estimator is as follows:85

Step 1: Choose starting values λ̂
0

and φ̂0, such that φ̂0 satisfies the second-86

order stationarity conditions of the GARCH(1,1) model. Using θ̂0,t =87 (
λ̂0, φ̂0

)′
, compute recursively

{
σ2

0,t

}T
t=1

, and {u0,t}Tt=1 from (2)-(5).88

Step 2: Given
{
σ2

0,t

}T
t=1

, calculate89

λ̂1,t =

(
T∑
τ=1

kt,τσ
2
0,τ

)−1
T∑
τ=1

kt,τσ0,τrτ , for each t = 1, 2, .., T. (11)

Step 3: Solving the sample counterpart of (9) is equivalent to estimate φ̂1 by90

nonlinear least squares. Calculate91

φ̂1 = arg min
φ̂1

T∑
t=1

{(
rt − λ̂1,tσ0,t

)2

− ψ̂1,0 −
q̄∑
i=0

ψ̂1,iu0,t−1−i

}2

. (12)

Step 4: Update recursively
{
σ2

1,t

}T
t=1

and {u1,t}Tt=1 based on θ̂1.92

Repeat steps 2-4 j times until θ̂j converges. Convergence occurs when93 ∥∥∥λ̂j − λ̂j−1

∥∥∥
2
≤ ε and

∥∥∥φ̂j − φ̂j−1

∥∥∥
2
≤ ε, with ε set to 10−5. Parameters on94
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the jth iteration are given by:95

λ̂j,t =

[
T∑
τ=1

kt,τσ
2
j−1,τ

]−1
T∑
τ=1

kt,τσj−1,τrτ , for each t = 1, 2, .., T, (13)

φ̂j = arg min
φ̂j

T∑
t=1

[[
rt − λ̂j,tσj−1,t

]2
− ψ̂j,0 −

q̄∑
i=0

ψ̂j,iuj−1,t−1−i

]2

. (14)

Finally, three inputs are still necessary to implement the above algorithm: the96

kernel function, the bandwidth parameter H, and the truncation lag q̄. As in97

Giraitis, Kapetanios, and Yates (2013), three kernel functions are used: the98

Epanechnikov, Gaussian, and flat kernels. The choice of H follows from the99

Monte Carlo study conducted in Section 3.1, while q̄ is chosen to be proportional100

to ln (T ), (Dufour and Jouini (2005)).101

Asymptotic theory for the Quasi-Maximum Likelihood (QMLE) estimator in102

the GARCH-in-mean models is yet to be fully established. Conrad and Mammen103

(2016) give an important step forward and prove the asymptotic distribution104

of the QMLE estimator for the simple GARCH(1,1)-in-mean. As discussed in105

Linton and Perron (2003), the semiparametric GARCH-in-mean models offer106

additional complications compared to the standard GARCH-in-mean models,107

and hence rigorous inference is still not available. Similar difficulties arise in108

the TVGARCH-in-mean specification. In turn, this note follows Linton and109

Perron’s (2003) approach as it briefly discusses the general conditions required110

for consistency and asymptotic normality; uses the wild bootstrap to conduct111

inference; and adopts a Monte Carlo study to assess the finite sample properties112

of the proposed iterative estimator.113

The concept of asymptotic contraction mapping (ACM) developed in Do-114

minitz and Sherman (2005) is useful to guide the discussion on the asymptotic115

properties of the kernel iterative estimator. If a collection is an ACM, then it116

will have a unique fixed point that depends on the sample characteristics and117

hence the iterative procedure converges.2 While the two-step procedure given118

in (13) and (14) is seen as the sample mapping, (8) and (9) are their popula-119

tion counterpart. Consistency and asymptotic normality require the population120

mapping to be an ACM, which implies, under some uniform convergence condi-121

tions, that the sample mapping is also an ACM and hence has an unique fixed122

point (regardless of the initial values). Combining Theorem 4 in Dominitz and123

Sherman (2005) with Giraitis, Kapetanios, and Yates’s (2013) results, estimates124

of λt are expected to be
√
H consistent and asymptotically normally distributed,125

and estimates of φ are expected to be consistent and asymptotically normally126

distributed at the usual
√
T rate.127

2See Dominitz and Sherman, 2005, p. 841 for a formal definition of the ACM.
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3. Numerical illustrations128

3.1. Monte Carlo129

I simulate data from (2)-(4) where p = q = 1, ηt is normally distributed with130

zero mean and variance equal to one, and λt follows a bounded random walk131

process (see detailed discussion in the online Supplement). The sample size and132

the number of replications are set to 2,000 and 1,000, respectively.133

Table 1 displays the results for the kernel-based iterative estimator computed134

with alternative bandwidth choices and the Epanechnikov, Gaussian, and flat135

kernels. Results are reported in terms of the root mean squared error (RMSE)136

and pointwise correlation between λt and the kernel-based estimates. The best137

choices of bandwidth parameters, in terms of minimizing the RMSE, are H =138

T 1/2 and H = T 6/10. These are also the bandwidths that deliver the highest139

pointwise correlation (about 0.85) between the kernel-based estimates and the140

true latent time-varying risk premium parameter. All combinations of kernel141

methods and bandwidth parameters deliver unbiased estimates of φ = (ω, α, β)
′

142

(apart from H = T 2/10). Finally, convergence rates are greater than 98% for all143

specifications, suggesting that (8) and (9) are ACMs.144

3.2. Empirical results145

I use excess returns of the CRSP value-weighted index aggregated on a146

monthly basis. Figure 1 plots monthly estimates of λt and their 90% wild147

bootstrap confidence bands from a TVGARCH(1,1)-in-mean model with band-148

width H = T 6/10 (see the Supplement material for a Monte Carlo study showing149

that the wild bootstrap produces valid inference). Not surprisingly, likewise the150

semiparametric GARCH-in-mean models, the empirical confidence bands are151

relatively wide, which reflects the difficulties associated with estimating the risk-152

return trade-off (Linton and Perron (2003) and Christensen, Dahl, and Iglesias153

(2012)). I find that the risk premium parameter is indeed time-varying, with λ̂t154

assuming both positive (generally significant) and negative (insignificant) val-155

ues. This finding sheds light on the mixed evidence on the risk-return literature156

regarding the sign and significance of the risk premium parameter. Addition-157

ally, in periods where λ̂t is statistically significant, market volatility is low. On158

contrary, when λ̂t is not statistically significant, market volatility is high. This159

indicates that identification of the risk premium parameter is problematic in160

periods of high volatility (Rossi and Timmermann (2010)).161

4. Conclusion162

I introduce a kernel-based iterative estimator that combines the estimators in163

Giraitis, Kapetanios, and Yates (2013) and Linton and Perron (2003) to estimate164

the stochastic time-varying risk premium parameter in the TVGARCH(1,1)-in-165

mean model. The Monte Carlo study shows that the kernel-based estimator166

presents a good finite sample performance. I investigate the time-varying risk167

premium for the CRSP index and find strong evidence that λt is indeed time-168

varying.169
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Table 1: Finite sample performance of the kernel-based iterative estimator

λt RMSE Mean
Bandwidth - H Kernel RMSE Corr ω α β ω α β

T 2/10 Epanechnikov 0.39 0.60 0.01 0.03 0.10 0.02 0.07 0.84
T 2/10 Gaussian 0.25 0.71 0.01 0.02 0.06 0.01 0.05 0.88
T 2/10 Flat 0.36 0.61 0.01 0.02 0.07 0.01 0.06 0.86

T 3/10 Epanechnikov 0.26 0.72 0.01 0.02 0.05 0.01 0.05 0.88
T 3/10 Gaussian 0.18 0.81 0.01 0.02 0.05 0.01 0.05 0.89
T 3/10 Flat 0.24 0.73 0.01 0.02 0.05 0.01 0.05 0.89

T 4/10 Epanechnikov 0.18 0.80 0.01 0.02 0.05 0.01 0.05 0.90
T 4/10 Gaussian 0.13 0.86 0.01 0.02 0.06 0.01 0.05 0.90
T 4/10 Flat 0.17 0.81 0.01 0.02 0.05 0.01 0.05 0.90

T 5/10 Epanechnikov 0.13 0.86 0.01 0.02 0.05 0.01 0.05 0.90
T 5/10 Gaussian 0.11 0.88 0.01 0.02 0.05 0.01 0.05 0.90
T 5/10 Flat 0.13 0.86 0.01 0.02 0.05 0.01 0.05 0.90

T 6/10 Epanechnikov 0.12 0.88 0.01 0.02 0.06 0.01 0.05 0.89
T 6/10 Gaussian 0.13 0.86 0.01 0.02 0.06 0.01 0.05 0.89
T 6/10 Flat 0.12 0.86 0.01 0.02 0.06 0.01 0.05 0.89

T 7/10 Epanechnikov 0.13 0.85 0.01 0.02 0.05 0.01 0.05 0.90
T 7/10 Gaussian 0.16 0.79 0.01 0.02 0.05 0.01 0.05 0.90
T 7/10 Flat 0.15 0.81 0.01 0.02 0.05 0.01 0.05 0.90

T 8/10 Epanechnikov 0.17 0.77 0.01 0.02 0.05 0.01 0.05 0.89
T 8/10 Gaussian 0.21 0.68 0.01 0.02 0.05 0.01 0.05 0.89
T 8/10 Flat 0.19 0.67 0.01 0.02 0.05 0.01 0.05 0.89

RMSE accounts for root mean squared error; Corr is the pointwise correlation between λt and
λ̂t; λt is defined as a bounded random walk process with upper and lower bounds given by
0.90 and -0.90, respectively; and φ = (0.01, 0.05, 0.9)′.
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Figure 1: Time-varying risk premium estimation and conditional standard deviation
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The left-hand-side, center and right-hand-side graphs display estimates of λt with the
Epanechnikov, Gaussian, and the flat kernel functions, respectively. Estimates of λt and the
90% confidence intervals are on the left axis. The bandwidth parameter is equal to H = T 6/10.
The conditional standard deviation is in light blue on the right axis. I perform 1000 replica-
tions in the bootstrap algorithm. The shaded areas account for the recession periods from the
National Bureau of Economic Research (NBER).
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