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Abstract—Active and passive mobile sensing has garnered much
attention in recent years. In this paper, we focus on chronic pain
measurement and management as a case application to exemplify
the state of the art. We present a consolidated discussion on the
leveraging of various sensing modalities along with modular server-
side and on-device architectures required for this task. Modalities
included are: activity monitoring from accelerometry and loca-
tion sensing, audio analysis of speech, image processing for facial
expressions as well as modern methods for effective patient self-
reporting. We review examples that deliver actionable information
to clinicians and patients while addressing privacy, usability, and
computational constraints. We also discuss open challenges in the
higher level inferencing of patient state and effective feedback with
potential directions to address them. The methods and challenges
presented here are also generalizable and relevant to a broad range
of other applications in mobile sensing.

Index Terms—Activity monitoring, affective computing, audio
sensing, behavioral signal processing, chronic pain, face expres-
sion, mobile health, mobile sensing, modular architecture, self-
reporting, smartphones, survey, wearable technology.

I. INTRODUCTION

HE unprecedented spread of smartphone use across the

world has led the development of new mobile systems for
health measurement, analysis and intervention or mHealth [1],
[2]. In this context, the smartphone can be viewed as a multi-
sensor device which serves as a continuous monitor capable of
informing both clinically-relevant inferences with efficacious
and timely patient-feedback. Given the enormity of the number
of potential applications within mHealth, in this paper we fo-
cus on the area of pain management. This choice of pain as a
case study will help to demonstrate open but surmountable chal-
lenges when aiming to implement effective mHealth systems;
we expect that many of the implications for system design are
transferrable to other patient-centric health applications.
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Pain is a complex experiential phenomenon; it has a range
of root causes and can impact and manifest in many domains
such as emotion, cognition, socialization, function as well as
behaviour [3]. Intensity is subjective and as such it is difficult
to tangibly detect in any direct sense. The broadly accepted def-
inition by the International Association for the Study of Pain
is principally a generalized catchall and does little to clarify it
as an objective signal: “an unpleasant sensory and emotional
experience associated with actual or potential tissue damage,
or described in terms of such damage” [4]. Moreover, recent
commentaries state that clinical taxonomies for pain are overall
not well ordered and some even illogical [5]. Having said this,
two known components of pain: negative psychological states
(e.g. anxiety and fear) and resultant pain behavior (e.g. limping,
grimacing, avoidance) [6], [7] have been widely researched in
observation-based behavior studies. The form and characteris-
tics of different pain behavior have more explicit definitions
often containing specific physical terminology [7]-[9]. A par-
ticular type of pain behavior that is regularly assessed in clinical
practice is pain interference, in which activities are disrupted
or avoided due to pain. From a signal processing perspective it
is these outward manifestations of pain behavior, including in-
terference, which are more tangible and convey the expressions
of pain experience and serve as meaningful target for mHealth
systems.

The emergent fields of behavioral signal processing (BSP)
and affective computing (AC) [10], [11] have demonstrated
that complex human behavior and psychological states can be
inferred from multi-modal data, principally from audiovisual
[12] and physiological sensing [13]. Such studies have made
valuable contributions in the understanding of signal processing
and recognition methodologies for inference of human behav-
ior (for an overview of multimodal pain behavior recognition
see [14]). However, there remains systemic challenges when
using mobile systems, challenges that are not apparent in typi-
cal laboratory settings with specialized apparatus and control. In
terms of modalities, highly informative internal bio-signals such
as galvanic skin response, electroencephalography, electromyo-
graphy and heart rate are not directly measured from broadly-
adopted smartphones; and are still relatively poorly measured on
wearables. Also for audiovisual data, artefacts relating to noise,
motion, occlusion or crosstalk cannot easily be controlled and
minimized in unconstrained real word situations. Furthermore,
the reliability and completeness of data streams may also be
less than ideal when using a mobile device, depending on the
condition and habits of the user. On the other hand, these short-
comings only have critical implications for spatiotemporally
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small scale behaviors (e.g. a facial grimace or changes in vocal
pitch or heart rate due to pain conditions); typically the perfor-
mance of such systems have a high dependency on granularity
and data quality. In contrast, for spatiotemporally large scale
behaviors (e.g. the amount and pace of walking, or hours spent
out of the house, on a daily or weekly basis) the aforementioned
shortcomings are of far less concern due to data being drawn
over greater space and timescales.

As mentioned, we focus on pain as a case study. The justifica-
tion for this is in part that spatiotemporally large scale behaviors
are especially relevant to chronic pain (CP). For example, the
tracking of adherence to daily exercise regimes over the span
of weeks or months is valuable information for chronic back
pain rehabilitation [15]. Typically such management regimes
are on-going and self-led with many of the required tasks done
outside of clinical settings and away from health experts. For
such situations, mHealth systems and/or smartphones are a nat-
ural solution as they are habitually carried in close proximity
and are in constant use. This allows for measurements, infer-
ences and feedback to be processed locally, continuously, and
over long periods of time.

However, CP management is multifaceted; it’s success is de-
pendent on a multitude of physical, cognitive as well as socio-
economic factors [16], [17]. Therefore, if one aims to develop a
mHealth system for CP management, there is a particular need to
accommodate a range of patient generated data. In measurement
terms, this means a combination of both active sensing which
requires proactive action from the user (e.g. self-reporting, diary
logging, interactive assessments) and passive sensing (e.g. geo-
locating, activity recognition, audio). Following this, the correct
and efficient parsing of informative descriptors from low level
measurements is required. These descriptors serve as input to
models designed to infer high-level behavioral patterns. Finally,
these inferences can be used for the correct and timely issuance
of feedback and/or interventions that are clear, persuasive and
actionable by the patient or clinician; the effects of which can
then be further measured and the process repeated. We outline
this with a tripartite functional loop: measurement—inference—
management as a basis for system design.

Although we address pain as an over-arching application do-
main, there still remains a wide range of sub-domains even
within CP conditions. Each sub-domain has specific clinical
and technical requirements and therefore a comprehensive dis-
cussion of all potential systems for every pain condition would
be cumbersome, repetitive and out of the scope of this discus-
sion. Therefore to efficiently illustrate requirements and chal-
lenges from a systems perspective, we highlight within the fol-
lowing (Section II) example cases of different sensing modali-
ties, with inference to a relevant behavioral outcome and how
this inference can be used for management; each following the
measurement—inference—management process. Section II ends
with examples of modular software platforms that are critical
to take multiple sensing streams from measurement to meaning
in a reusable and evolvable manner. Section III discusses open
challenges for higher level inferencing, including temporal con-
siderations, and an overview of potentially useful advances in
pattern recognition. Also discussed are factors in improving the

usability and persuasiveness from a user’s perspective. Finally,
we conclude in Section IV.

II. SIGNALS AND SIGNAL SPECIFIC PROCESSING

We focus on physical activity, acoustics, image capture, and
self-reporting as four foundational data streams. While it is
known that other signals are also indicative of pain and pain
related emotions such as physiological data [18] and that other
mobile devices are gaining in both penetration and range of
sensing modalities (e.g. the Empatica E4 Wristband which mea-
sures blood volume pulse, heart rate variability, galvanic skin
response and peripheral skin temperature); the methodologies
and approaches we review should provide a template for their
handling and the integration of future data streams from mobile
apps and wearable devices.

A. Physical Activity

The continued monitoring of physical activities away from
clinical settings is essential for understanding progress in pain
reduction, management, and healing, whether it be in the con-
text of post-treatment follow up, or long term physiotherapy
[19]-[21]. Such monitoring was traditionally achieved through
specialized wearable devices [22], [23], or special-purpose in-
struments deployed in clinical environments [24]. However, ac-
tivity tracking on broadly deployed smartphones has become
a popular and affordable alternative. The broad adoption and
inherent utility of smartphones for end-users means that for
many day to day measurements, no additional devices need
to be purchased, carried, or forgotten by the user [25]-[27].
Consumer wearables in the form of fitness trackers and smart
watches have similar advantages and typically transmit data via
the smartphone. The activity sensors embedded in wristbands
and phones are largely identical, and so much of this section’s
discussion is applicable to both.

Smartphone-based activity tracking typically uses the contin-
uous data collected by the phone’s accelerometer to determine
mobility states. The standard set of states are: sedentary (or
stationary), walking, running, or in vehicle. In addition, the
location information captured by the phone’s GPS or derived
from WiFi signals is often used to infer the locational context
in which the activities were taking place. There is also the po-
tential for further contextualization to the standard states from
low level sensor data that has implications for pain manage-
ment. The degree of incline of a particular route taken can be
determined using either topographical information from maps
or from accelerometer and barometer values. This informs the
understanding of difficulty level and energy expenditure of a
route; the type of surface on a high incline path whether it is
stepped or a smooth slope will also have a bearing on difficulty
and could potentially be inferred from the inertial and baromet-
ric readings. This further contextual information is important
for musculoskeletal conditions where posture and speed are rel-
evant factors. Also for speed and step count inference GSM
traces can also be utilized [28]. However, such detections are
currently not done with standard commercial systems.
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Case Example: An Activity Based App for Rheumatoid Arthri-
tis (RA): RA is characterized by episodes of flaring of joint
inflammation. Identifying flares early and minimizing their in-
tensity and duration is important for long term management
because each episode of flare contributes to further joint dam-
age. In day to day management patients struggle to understand
what environmental and behavioral factors contribute to the
triggering and duration of flares. While directly and contin-
uously measuring pain is not currently possible, proxies for
pain can be found in their physical function and daily activi-
ties [29]. In the following, we describe a four-stage inference
algorithm from which raw sensor data generates high-level be-
havioral information that is useful in RA management. This
algorithm has been deployed in an open-sourced activity track-
ing app, called Mobility [30]. The clinical validity of the de-
rived measures is currently being evaluated within RA, as well
as in other orthopedic contexts such as surgical recovery. As
the validation proceeds and is refined over time for various
populations and disease states, there will be a need to mod-
ify and tune the specific derived measures, further motivat-
ing the need for modular architectures such as those described
later.

Stage 1-Instantaneous mobility state inference: a decision tree
generated using the C4.5 algorithm was developed to classify
tri-axial accelerometer data collected over a short period of
time into a set number of mobility states. For example, it is
common to extract descriptive features from accelerometer
data from a 1 second window sampled every minute to de-
termine the mobility state for that minute. Commonly used
features include variance of the acceleration magnitudes and
the Fourier coefficients of the acceleration magnitudes [31].
The classifier is typically pre-trained with a large number of
labeled training data collected from multiple users. More re-
cent smartphone operating systems, however, have made the
instant-based mobility state inference function available as a
system application programming interface (API), and the use
of these APIs are usually recommended as they are able to
leverage special built-in hardware for more efficient continu-
ous sensing (e.g. iPhone’s M7 motion sensing chip) than an
app running in the application-level can achieve.

Stage 2—Activity segmentation: the instantaneous mobility states
inferred by Stage 1 are, however, not particularly useful in
themselves. Durational context needs to be added, for ex-
ample, compared to the information: John was walking at
6:01 AM, the information: John walked for 15 minutes from
home to subway station from 6:00 AM to 6:15 AM is more
meaningful in understanding the user’s behavior. At this stage,
a segmentation algorithm is developed to segment a series of
mobility states into activity segments, each of which repre-
sents a period of time in which the user maintains a mobility
state. However, one important requirement is to take into ac-
count the potential errors and uncertainty contained in Stage
I’s output. For example, signals of being in a vehicle that
slows down momentarily for a stop sign could be mistakenly
classified as sedentary rather than its true state, in vehicle.
The segmentation algorithm needs to take the uncertainty

into account and infer the activities that are consistent with
the user’s real behavior.

A well-known technique that can incorporate this uncertainty
is hidden Markov models (HMM) [32]. HMM is a generative
probabilistic model in which a sequence of observable vari-
ables X is generated by a sequence of internal hidden states Z
using an emission probability function. In this case, mobility
states inferred in Stage 1 are taken as the observable vari-
ables X and assume they were generated by the user’s true but
unobservable activity states Z. Uncertainty in Stage 1’s infer-
ence results is encoded in the emitting probability function
P(z|z), and the Baum—Welch algorithm is used to infer the
maximum likelihood of activity states Z. Then, a sequence
of consecutive activity states Z that have the same maximum
likelihood state will form an activity segment.

Stage 3—Location association and correction: at this stage each
activity segment is associated with the location data based on
the collection time and conduct error correction. A location
data point is composed of longitude, latitude, and sometimes
includes accuracy. Both GPS-captured and WiFi-enabled lo-
cation data are known to have ~10 to 40 meters of error [33],
[34]. For different activities, different approaches are used to
improve the location accuracy. For non-stationary activities,
such as walking or in vehicle, a Kalman filter is used along
with a map-matching technique to snap location points to the
streets that the user was most likely on [35]. For stationary
activities, the mostly likely location at which the user stayed
can be inferred by taking the median values of the latitude
and longitude among all the location samples [36].

Stage 4-Summarization: finally, statistics for a users’ activi-
ties that are known to be relevant to the well-being or to a
certain disease are computed. Say et al. [29] shows that for
RA management, the majority of rheumatologists they inter-
viewed identified 1) time spent walking, 2) time away from
the house, and 3) gait speed as most useful in defining the
level of RA disease activity. Rheumatologists preferred a sim-
ple, visual format that demonstrates trends over days, weeks,
or months, which can help them make better management
decisions and ultimately result in decreasing permanent joint
damage.

Based on these insights, the above-mentioned statistics are
computed in daily, weekly, and monthly bases and are presented
as a calendar with a color coded index per day derived from
a weighted sum of the above three factors using weightings
suggested by rheumatologists to indicate the importance each
factor (see Fig. 1).

B. Acoustics

Nonverbal characteristics from speech can strongly convey a
speaker’s psychological and emotional state [37] as well as other
more nuanced social expressions (e.g. sarcasm [38]). There has
been extensive work in the understanding of descriptors that
can be derived from modulation, spectral characteristics and
also energy based measures that can be indicative of stress [39],
[40], emotion [41] or even depression [42]. In the context of
pain such indicators are valuable. Clearly, stressful utterances,
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Fig. 1. Calendar view with the daily color coded mobility index for RA man-
agement. As described above the clinical validity of this measures is undergoing
evaluation within RA and other orthopedic contexts.

interjections and exclamations can be indicators of acute pain
episodes.

However, a more interesting contribution from leveraging au-
dio data is in monitoring at a larger temporal scale which has im-
plications for long term CP management. Underlying negative
psychological states such as stress, anxiety or depression [43]
are well understood to have negative consequences in CP man-
agement [44]; such is the case that psychosocial treatments such
as cognitive behavioral therapy (CBT) are a prevalent course
of action [45]. Particular manifest behaviors such as rumination
and catastrophization [46] are of interest in this context and are
often vocally expressed. In the following example we demon-
strate how passively acquired audio streams from smartphone
microphones can deliver such high level inferences, in this ex-
ample by the logging of stressful situations. We must note here
that since acoustic processing methods within smart-phone de-
ployed systems are particularly prone to privacy breaches, this
leads to the preference to locally process signals that contain in-
telligible data. This in turn then necessitates methods with low
demand on the battery which would require the use of the least
computationally expensive methods. This method in the follow-
ing is designed to take into account of this trade-off. However,
there remains a research opportunity in the utilization of more
sophisticated detection techniques [47], [48] into a mobile ap-
plication.

Case Example: Detection of Stressful Situations from Voice

for CP Management:
Stage 1-Noise detection: the first stage is the detection of noise

in the sense of any significant level of sound. This is an
essential first stage in the passive monitoring to retain only
non-silent segments of the data. Simple thresholding on the
root-mean-square values over a window of raw audio data are
applied to differentiate the segments of noise versus silence
[49].

Stage 2—Human speech detection: following this a further clas-
sification between as human voice or noise caused by an-
other source is required. To this end, three simple features:
(1) number of auto-correlation peaks, (2) non-initial auto-
correlation peak, and (3) relative spectral entropy to robustly
detect presence of human voice in audio streams [50] are used
(Fig. 2). Moreover, the same three features can be retained
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Fig.2. (a) Amplitude values for 5 second recording of audio. (b) Spectrogram
of the recording with blue lines showing inferred segments of human voice.

to compute important prosody information regarding pitch
and speaking rate [51]. This is important to note in terms of
privacy. Previous research shows that the reconstruction of
verbal information requires at least pitch and 2 harmonics,
thus in using the above three features verbal content remains
anonymous but prosody can be inferred [51]. In addition to
being privacy sensitive, these features are computationally
efficient and can work robustly to recognize voice in acousti-
cally noisy environments [50]. This method has been used in
several embedded and mobile phone systems [30], [52] and
deployed in systems across several real world studies. These
studies have demonstrated the inference of face-to-face con-
versation quality [53], social networks [51], [54] as well as
social isolation and depressive symptoms [43] which all have
implications for long term pain management.

Stage 3—Speaker identifier: once human voice is detected, it

must be determined whether the voice came from the phone
user. In Lu ef al. [55], a Gaussian mixture model (GMM)
based universal background model of all speakers is pre-
computed, the voice of the phone carrier is opportunistically
sensed from phone conversations, and a model for the phone
carrier’s voice is learnt that is different from the universal
background model. Subsequently, the learnt model is used to
detect the phone carrier’s voice. At this stage features such as
mel-frequency cepstral coefficients where the verbal content
can potentially be reconstructed are needed. Therefore all
processing is done locally and all privacy-violating features
are discarded save for the output.

Stage 4-Stress detection: if a detected human voice is that of the

phone carrier the detection of stress is invoked. The following
characteristics typify stress: the distribution of spectral energy
switches to higher frequencies. Also, speaking rate and vari-
ability in pitch increases whereas pitch jitter decreases. A
recent study showed a non-linear speech production model,
based on a Teager Energy profile, can capture stressfulness
in noisy outdoors situations. A GMM based classifier uti-
lized these changes as features for both indoor and outdoor
application [56]. Also, to account for idiosyncrasies during
stressful conditions. A small amount of individual data can
be used to calibrate personalized models. It was found that



966 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 10, NO. 5, AUGUST 2016

classifier accuracy improved by 8% if 2 minutes of labeled
data is provided by the individual. Similar to stage 3, privacy
violating features are discarded once the classification output
has been obtained.

Stage 5-Logging: the number of stress occurrences can be
logged giving a passive indicator of stress frequency with
respect to time and location. Such continuous psychological
monitoring gives a rich source of information for CBT sug-
gested for CP management. Since the log is updated only
when the prior 4 stages are invoked on demand, the compu-
tational overhead is minimized.

In other health related applications, the use of acoustic data in
this way to infer higher level information about a user is not with-
out precedent. Using similar privacy sensitive acoustic features
there have been attempts to infer mental state or well-being with
acoustics. These systems use acoustic data within multimodal
frameworks using synchronous data from other smartphone sen-
sors [43], [57]-[59]. Going forward, this suggests that the use of
acoustic data for complex applications such as pain management
would be one component within a multimodal frameworks.

C. Facial Expressions

An important and observable modality that can reflect internal
state is facial expression. The prevalence of imagers from our
laptops to our lampposts has greatly increased the availability
of facial imagery as a source of data about an individual’s state.
Studies show that facial expressions during acute pain had a
high level of consistency and repetition even when elicited by
different stimulating modalities [60]. Moreover, a finding by
Kappesser & de C. Williams [61] showed that a specific pain
face can be distinguishable from faces expressing other negative
emotions.

There have been numerous works in the automation of pain
face recognition by way of analyzing video imagery from
BSP/AC studies. An early example is [62], where face shape
features were used with artificial neural networks to classify
images of subjects’ faces in a normal mood versus images taken
from a pain inducing task. Lucey ef al. [63] publically released
the widely used UNBC-McMaster shoulder pain dataset which
contains videos of patients with shoulder pain and a tempo-
rally concurrent pain score based on the Prkachin and Solomon
pain intensity score [64]. Several subsequent studies in auto-
mated recognition followed [65]-[67], which utilize a range of
image features from active appearance models based features,
tracked anatomical points [68], discrete cosine transforms and
local binary pattern [69] features with support vector machines
(SVM) to classify pain faces. Sikka et al. [70] addressed the
drawback labelling pain expressions at a sequence level leading
to temporal uncertainties in terms of onset and end. The authors
proposed a multi-segment multi-instance learning framework to
determine expressive subsequences within super-sequences that
contain pain expression. The same authors extend the machine
vision capability beyond adults by demonstrating successful
recognition of pain expression in postoperative children [71].
Finally, interesting findings by Bartlett et al. showed machine
vision methods outperforming human observers in distinguish-

ing real versus fake expression of pain [72], [73], this has im-
portant implications in the reliability of future ubiquitous pain
monitoring systems.

Although much work has been done in the wider machine
vision communities, to our knowledge there are no smartphone
based systems designed to detect facial expressions of pain and
only a few smartphone based systems for face expressions in
general. This is primarily due to the difficulties acquiring usable
imagery from mobile devices from real world situations. Motion
artifacts, out of plane head rotations, various lighting conditions
and occlusions add to the difficulty with smartphones. In addi-
tion, power and computational constraints add to the challenge
of locally processing if needed and the temporal concurrence
of when images are captured with the onset of pain experiences
cannot be guaranteed. Additionally, the effect of acting for the
camera also generates a further confound, though as mentioned
above acted and natural pain expressions can be automatically
differentiable.

However, all of the aforementioned difficulties are only prob-
lematic if we consider single images or videos in isolation. If
multiple instances taken over a long periods are analyzed collec-
tively a broader perspective can be gained and could lend support
to the inference of spatiotemporally large scale behaviors. For
example, studies have shown that factors such as social isolation
[74] are linked to physical pain and can be detrimental to CP
management [75] and factors into CBT [45]. A number of rele-
vant quantities can be extracted from images that are descriptive
of social isolation. Emotional expressions from the user’s face
[12] can be detected and augmented to further contextual factors
such as scene type detection [76], the number of people in the
image and even the overall mood of the group of people in the
image [77]. These measures can be further augmented to other
relevant data such as usage of social networking apps, number of
calls or instant messages made or received to construct an index
for social isolation. Also, the use of further data modalities such
as audio which could aid in reducing ambiguities in situational
context and could also aid in identifying the true number of peo-
ple present. In principle, a longitudinal analysis of trends in the
index of social isolation can be used to feedback into CBT. The
staged processing described in earlier sections could also be ap-
plied to expression extraction from images. The onset of more
widespread implementation is bolstered by emerging systems
such as in Suk et al. who proposed an initial framework for real
time locally processed mobile use demonstrated the successful
classification of seven affective states [78]. The recently released
Affdex software development kit could facilitate the implemen-
tation of such analyses along with new datasets that contain real
world ecologically valid datasets such as the AM-FED dataset
[79].

D. Self-Reports as Signals

Self-report data are somewhat different from the signals pre-
viously discussed not only because intentional action is required
from the individual to contribute data, but also because the data
generated exists at a higher semantic level from inception. As
such, rather than discussing stages of processing of self-report
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data, we share insight on modern self-report techniques and
considerations.

The goal of much work in sensing is to reduce or remove the
need for user input in data collection systems. While great strides
have been made in sensing and detecting patient state, we are
not yet in a position to collect all of the data relevant to the pain
patient and clinician using passive techniques. Some aspects of
behavior, such as detecting whether a patient struggles to button
their shirt in the morning, is technically possible but not broadly
and affordably deployable given current technology, though we
can imagine it becoming so in the future. Then there are cases
where we are able to sense the behavior but not fully understand
the context without input, such as a case where a patient walks
more slowly to work. In this case, it is not known whether this
is because of pain, another ailment, or simply commuting with
a friend or colleague who walks more slowly.

The current standards for reporting the level of pain one is
experiencing are pain scales and maps. Pain thermometers and
pain faces (e.g. Iowa faces of pain) remain the most widely
used and do translate well to digital experiences [80]. There
have been several adaptations and improvements on user input
for these assessments [81]. Pain maps are basic digital maps of
the human body that allow patients to document/describe the
location and nature of pain. It should also be pointed out that
the assessment of pain is quite complex (due to variability in
individual pain thresholds, diagnosis, chronic versus acute, and
so on), and the community is not fully in agreement on how best
to do so [82].

Like other data streams discussed in this paper, we consider
self-report to be largely if not exclusively temporal. Data are
collected at a specific time and those data represent a certain
time span. Unlike most sensed data, however, the time data is
collected and the time span the data ‘cover’ are often substan-
tially different in two important dimensions:

Timeliness of data. Self-report data are out of necessity a
form of recall, with the patient recounting experiences that have
occurred in the past. While a goal of self-report is often to reduce
the amount of time between data collection and the recalled
experience, practically there is a great deal of variability in
these time lags. For example, data may be requested from a
patient about an event as it is detected, but the patient may not
respond for several hours or even days.

Time span of the data. A single self-report data point maybe
reflect a narrow point in time, such as an emotional response
to a stimulus or level of pain experienced. Such measurements
are often referred to as measures of state. On the other hand,
the patient may be asked to report data in such a manner that
a longer time span is recalled, such as emotional state over the
past year, or even irrespective of time span, such as a patient’s
personality type. Such measurements are referred to as trair.
[83].

Self-report originated as one of the main forms of data trans-
fer between patient and clinician, but the advent of modern
medicine relegated it to completing forms and sharing symp-
toms as precursors to testing. More recently, mobile devices
have led to a resurgence of self-reported data through a class
of techniques labeled ecological momentary assessment (EMA)
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Fig. 3. Example screenshots from PAM (left) prompting the self-report of
emotional state using representative images and YADL (right) prompting selec-
tion of difficult daily activities as a proxy to pain level.

in which patients are polled for information, typically using
abbreviated versions of gold standard clinical and behavioral
assessment forms, frequently and in sifu [84]. The central ar-
gument for the use of EMA is that while the data may yet be
subject to interpretation and distortion, the effects of recall bias
and error can be mitigated by timeliness of surveillance [85]. To
further address recall bias a method was proposed by Rahman
et al. [86] where EMA queries are presented with the addition
of contextual information about the time, location activity and
acoustic state of the user during the time in question: confex-
tual recall. This allows for the EMA activation time to be more
flexible, the results the study showed improved recollection of
stress levels compared to when no context was given.

Self-report and EMA have continued to evolve beyond simply
asking patients standardized questions. The large touch screens
on current generation mobile devices have afforded more inter-
active, visual methods for assessing patients. These methods are
often employed to mirror and simplify ‘pen and paper’ assess-
ments rather than simply translate them to digital. The photo-
graphic affect meter (PAM), for example, asks patients to reflect
on their emotional state by choosing from a series of emotion-
ally representative images (see Fig. 3 left). Responses take a
few seconds to complete and are calibrated to and correlate with
the 20-item PANAS, widely considered the gold standard for
measurement of emotional state [87].

Another approach to self-report has been to find more straight-
forward and answerable representations of complex or difficult
behaviors or experiences. Pain level, for example, is notoriously
difficult to measure reliably, so many clinicians focus on pain
interference or activities of daily living (ADLSs) to assess what
patients are or are not able to do as a result of the pain they
experience. This can serve as both an adequate proxy for pain
levels and a more direct approach to treating the patient to return
to normal and desired activities. In a variant of ADLs, a system
called YADL (your activities of daily living) [88] was designed
to allow patients to rapidly and intuitively sort through photos



968 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 10, NO. 5, AUGUST 2016

Fig. 4.
pain.

Prototype of Keppi—tangible and portable self-reporting device for

of common activities to document which are easy or difficult for
them as a result of their pain. A daily version of YADL presents
patients with only those images they have selected as difficult,
prompting them to choose which have been hard for them on
that particular day, or which they avoided because of anticipated
pain (see Fig. 3 right). Such an approach allows for an improve-
ment on the traditional means of assessing ADLs along with
more fine-grained, frequent data on patient experience. YADL
is currently undergoing validation, as with the mobility index
mentioned above, the modular design of YADL will allow it to
be tuned and adapted to particular populations and disease states.

An alternative modality for self-reporting which does not
rely on visual prompts or stimuli are tangible interfaces. Such
methods may for some be a more intuitive way to convey an
internalized level of pain. By leveraging the gripping action as
a natural gestural response when pain is experienced, a small
lightweight squeezable stick Keppi [89] designed to be con-
tinuously carried by the user has been developed (see Fig. 4).
The device consists of a conductive foam based, force-sensitive
resistor covered in soft rubber with embedded signal condition-
ing, an ARM Cortex-M0 microprocessor, and BlueTooth low
energy. Although still in a developmental phase an in-lab feasi-
bility study showed participants were able to consistently map
pressure to four stratified levels of potential pain as well was
match a dynamic visual cue when given visual feedback of the
pressure value. Further real world evaluation and miniaturiza-
tion of this device with pain participants is in process.

E. Modular System Architecture

In the previous sections the contribution of individual sig-
nals and modalities were discussed. However, mHealth systems
will be most effective in specific disease contexts and across
contexts if they incorporate multiple active and passive data
streams. Adopting a modular system architecture is critical in
order to address the system complexity associated with hetero-
geneous and variable data-stream inputs. A modular architecture
will allow these systems to be adapted as new apps and device
capabilities appear, to be tailored to particular needs and popu-
lations, and to serve as a building block for other health related
applications. Moreover, as particular signal processing meth-
ods improve, they can more readily be evaluated and integrated
into modular systems. We provide two examples of modular

system architectures in this section, one optimized for mobile
device processing, and the second for server side processing.
It is worth noting here that though we focus here on modular
systems, another interesting yet under-investigated line of re-
search in mHealth is the use of advances in data compression.
Since power consumption is a limiting factor where local pro-
cessing is often required, efficiency is desirable both in terms
of transmission energy conservation [90] and the codification of
the various aforementioned signals to reduce data size.

1) SAINT: Scalable Sensing and Inference Toolkit: Each
passive sensor data type generates a large volume of raw data
whose transmission can tax bandwidth and battery resources.
Moreover, these data may require local processing to address
privacy concerns, e.g., detecting the presence of a human voice
[91]. However, itis challenging to run the sensing and signal pro-
cessing in real-time on resource constrained mobile phones. A
poorly written signal processing algorithm may consume large
amounts of CPU cycles and be a significant drain on the battery.
Similarly if intermediate storages during raw sensor recording
or signal processing are not cleaned then the system can be out
of memory easily for high data rate sensor streams (e.g., audio
or video).

To this end, the open-source sensing and inference toolkit
SAINT was developed [92] that can assist sensor data collection
and signal processing inside the phone. In SAINT APIs to col-
lect 30 different raw sensor traces and processed data-streams
are provided. SAINT tackles these challenges with time- and
memory-efficient implementations of its sensing and processing
libraries. Fast signal processing algorithms were implemented
in native layers (i.e., not on a virtual machine) with low
time-complexity [93]. The implementations are also tested over
multiple deployments and were found to be stable and battery
efficient. In addition to fast and memory efficient implementa-
tions, SAINT also provides admission control and duty-cycling
for demanding signal processing tasks to further reduce battery
usage. Admission control allows for on-demand triggering
of signal processing, e.g. speaker or stress recognitions are
only triggered when there is human voice in audio data.
Duty-cycling on the other hand saves battery by periodically
sampling data streams to approximate a human behavior signal.
For example, running activity recognition at 10 second intervals
can approximate the subject’s total level of physical activity
fairly accurately.

The modular design enables reuse and extension of SAINT’s
built-in sensing and inference capabilities. At its core, SAINT
uses a publish-subscribe [94] or pub-sub pattern. In a pub-sub
pattern, publishers produce data for which subscribers listen. An
intermediate event bus or broker manages subscription and data
transfer among publisher and subscribers (Fig. 5). Subscribers
register for specific publisher data to the broker; publishers then
send data directly to the broker, and the broker relays the infor-
mation to registered subscribers. Inside SAINT, any existing raw
sensor or derived stream is a publisher. A new derived stream
can be created in three steps: (1) registering as subscribers to
necessary publishers, (2) performing necessary computation on
the publisher data to create the new derived stream, and (3) mak-
ing the derived stream available as a publisher for later reuse.
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Fig. 5. The architecture of SAINT sensing and inference framework. SAINT
provides a unified bus interface to share data across sensing and inference
modules. Client applications can connect with SAINT to receive sensed and
inferred data.

For instance, a new sleep detector could use the presence of
movement, location, human voice, and phone charging status
from SAINT to detect if a person is sleeping, then make the
output of this detector available for other components to use.
Furthermore, registering to existing publishers and making the
new derived stream data available can be easily implemented.

Another benefit of the pub-sub structure is the centralization
of sensing and processing that reduces redundancy in compu-
tation. In SAINT, if multiple subscribers want the same pub-
lisher’s data, then the publisher just produces the data once and
the broker relays the information to each subscriber, reducing
redundancy. For example, if a sleep and stress detector both
run on the phone and want to know if human voice is detected,
SAINT detects human voice from audio data once and relays
the information to the sleep and stress detectors.

2) Lifestreams: The ultimate goal of many novel data col-
lection techniques described previously is to enable robust and
actionable behavioral indicators that can be used to characterize
a patient’s baseline, and then to identify significant variations,
trends and shifts in specific behaviors or symptoms that are
relevant to an individual’s health. However, making sense and
acting on these multi-dimensional, heterogeneous data streams
requires iterative and intensive exploration of the data sets, and
development of customized analysis techniques that are appro-
priate to the health domain of interest. Lifestreams is a modular
and extensible open-source data analysis stack that runs on the
server and is designed to accelerate the development and refine-
ment of sense making techniques [34].

Lifestreams runs on top of mobile data collection systems,
such as Ohmage or SAINT [92], [30]. It processes the raw or
intermediate data provided by these tools with a multi-layer
analysis stack, depicted in Fig. 6, consisting of the following:
1) feature extraction, 2) feature selection, 3) inference, and 4)
visualization. Each layer consists of modules that process the
data provided by the lower layer, and then send the result to the
next layer up. From the input data streams, the feature extraction
layer computes various statistics, such as daily min/max, aver-
age, or the weights of the principal components derived from
a set of measurements. The feature compression and selection
layer leverages techniques, such as cross-entropy or correlation
analysis, and the domain experts’ input to select or compose
the features that are most relevant to the analysis goal. Then,
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Fig. 6. Lifestreams stack, data enters from the lowest level and is success-
fully filtered, aggregated and analyzed to produce actionable visualizations for
patients and clinician.

the inference layer uses the selected features to detect patterns
and trends with correlation estimation, and change detection
algorithms [95]. Finally, the visualization layer uses different
visualization methods to make the inferred patterns or trends
actionable for the end user. Lifestreams was found to be use-
ful as a tool for the research coordinators to quickly navigate
through the data and provide visual aids to guide the discus-
sion with participants during interview sessions. Its extensible
design allows it to be easily extended to support different stud-
ies exploring various new data streams and transfer to other
domains

III. OPEN CHALLENGES IN INFERENCING AND FEEDBACK

So far we have highlighted, through examples, state of the
art methods and tools to achieve the measurement-inference-
management loop. However, in this section we discuss further
factors that are important but either underutilized or remain
unresolved. These challenges are most conspicuous when con-
sidering inference and management. In this section we discuss
these factors, as well as advances from related studies that have
a bearing on future directions.

A. Accounting for Temporal Patterns

The presence of a circadian rhythm in the experience and
perception of pain is well understood. This relates to a variety
of chronobiological factors such as daily variations in endor-
phin and encephalin concentrations in the pain processing parts
of the brain. The review by Junker & Wirz summarizes [96]
several studies that include both naturally occurring as well as
experimenter induced pain. The studies within showed specific
and consistent times of the day when pain perception tended
to peak depending on the cause. Investigations in using smart-
phone technology as a way to monitor daily rhythms have been
recently investigated for sleep applications. Most studies have
focused on sleep pattern inference by utilizing app usage, charg-
ing, screen unlocking, along with an ambient light detector and
audio streams to detect sleep durations and quality [97]-[99].
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Recently, Abdullah et al. [100] demonstrated that by using peri-
ods of smartphone non-use, sleep patterns can be inferred using
a rule-based algorithm which accurately matched with ground
truth from a sleep journal. With the combination of such sleep
measures, along with the domain knowledge of the effects of
circadian rhythm on specific types of pain, there is great poten-
tial for more closely personalized and more timely issuances of
interventions for pain management in a daily cycle.

As we have discussed pain conditions with high levels of
chronicity require long term management and therapy. Also
over enough time, persistent negative psychological states can
emerge. It has been shown that, given enough data from long
periods, such mental states can be detected. With data spanning
2 weeks Saeb et al. [101] demonstrated the use of movement,
activity and phone use derived descriptors to infer depression
severity levels by way of supervised learning, resulting in an
accuracy 86.5%. Over a 10 week period, Wang et al. [57] inves-
tigated correlations between mental well-being measures: de-
pression, stress, flourishing and loneliness scores with tracked
information relating to conversation, activity and sleep. Such re-
sults demonstrate progress toward inferences on low frequency
changes in mental state or even traits which are ultimately nec-
essary for CBT related management. Longer period factors such
as climate and seasonality have yet to be leveraged in this regard
but are readily measurable if studies of this time length are done.

B. Advances in Pattern Recognition

In mobile sensing, a common paradigm to generate predic-
tive models is supervised learning [27]. Although a widely used
and powerful approach, there remains two critical dependencies.
The first is the generation of good features from raw sensor data
and the second is the truthfulness of labelled states or behav-
ioral categorizations. Given that there is no standard method to
optimally engineer features, a handcrafting approach is often
done using expert domain knowledge, intuition, or other prior
experimentation. For lower level inferences good descriptors
can be readily determined. However, it is often the case that ab-
stract higher level inferences (such as ‘anxiety’) are desirable,
but such tasks would require complex feature engineering and
are difficult to map, often leading to poorly performing mod-
els. Moreover, such abstract labels have loose definitions or are
ambiguous to people and thus difficult to assign correctly when
creating a training set.

In light of this, we point to the increasingly popular paradigm
of deep learning [102], [103], which has the capacity to learn
feature representations and map low level data to highly abstract
categories in a less handcrafted way. However, to date, this has
mostly been demonstrated with large unimodal datasets in other
application domains. That said, Martinez & Yannakakis [104]
proposed a convolutional neural network framework designed
to fuse combinations of continuous and discrete 1 dimensional
physiological signals with differing sample rates to successfully
infer 6 abstract affective states (anxiety, frustration, fun, relax-
ation, challenge and excitement). Such a method naturally lends
itself to the high level behavioral inferences needed for pain
management and from the assortment of 1 dimensional signals

acquired from mobile sensing. Notably, in this case from the use
of wearable devices that can extract such physiological signals.
The drawback is the high computational expense in the training
and use of highly parametric models, which may not be able to
deliver timely output for intervention.

A further significant challenge when dealing with human
mobile sensing is the high degree of idiosyncrasy within the data
streams. In recent years generalizable methods to capture latent
structures in behavioral routine from mobile data have been
proposed; such structures could be used as personal baselines
from which anomalous behavior could be inferred. Early work
by Eagle & Pentland [105] proposed a method to establish eigen-
representations of behavior from mobile data to model structures
in day to day routine. This method was effective in modelling the
idiosyncratic patterns in a personal routine as well as generating
a way to find similarities between groups of people. However,
this approach relies on rich, densely-sampled high quality data
which cannot be realistically acquired in real world sensing. To
this end, Zheng et al. [106] proposed a collaborative filtering
model to overcome sparsity in a single user’s data based on the
intuition that many users follow similar behavior patterns; of
course this is dependent on the availability of multiple users’
data.

Another paradigm which can address the problem of gaps
in data and/or idiosyncratic variability is multi task learning
(MTL) [107]. Simultaneous supervised learning is applied to
a set of different but related classification or regression tasks.
For example, data from a user from two different weeks can
be used to infer a behavior for each week where some data
maybe missing one of the weeks. Learned parameters common
to both tasks (weeks) can be leveraged to bolster the accu-
racy of the partial week when compared to training two models
separately. Similarly this can be done in terms of different peo-
ple as tasks thus accounting for commonalties or differences
between people. Romera-Paredes et al. [108] recently showed
this capability with facial expressions of pain as well as with
electromyographic signals by exploiting the transfer learning
property in MTL. In a similar study, these authors also show an
improvement in the recognition of pain face expression using
OrthoMTL [109] which assumes features that describe iden-
tity are unrelated (orthogonal) to features that describe pain
expression. In essence this method calibrates to each person by
simultaneously learning on identity features and pain expres-
sive features a separates them. In principle this can applied to
data from any modality or combination of modalities as long
as this is consistent between tasks. Moreover, advances in MTL
show the learning process is equivalent to a single convex opti-
mization process [110], as such there is potentially fewer pro-
cess iterations when compared to repeatedly training multiple
models.

Finally, it is worth noting here that a major barrier to the
advancement in predictive modelling is the availability of data
or lack thereof. However, in terms of spatiotemporally small
scale behaviors in pain expression a new extensive multi-
modal dataset called EmoPain was recently released [14]. It
explicitly addresses this requirement gap for chronic back pain.
Contained within are: high resolution face imagery, surface
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electromyography, acoustics and whole body motion capture
Two sets of pain labels are included, based on facial expression
and known body motion based behaviors [7], the authors set
baseline modelling frameworks for each label set using detected
facial points with SVM classifiers for pain face recognition and
speed and posture based features with Random Forest models
for the body behaviors. Public datasets for large scale behaviors
are still very rare due to the challenges of de-identification,
especially for a dataset with patient information.

C. Feedback to Users

Interfacing with the user once inputs, measurements, and in-
ferences have been made is dependent on the type and nature of
the required management. Currently, there are numerous com-
mercial pain management mobile apps which are principally
designed for specific functions, including self-monitoring, pain
intensity tracking, information provision, medication manage-
ment, and relaxation training. However, there remains a lack
of traction with users. Recent reviews [111], [112] and com-
mentaries [113], [114] unanimously suggest a lack of clinical
engagement and regulation in the development of such software,
and efficacious claims are underpinned by little evidence. More-
over, the apps relating to CP self-management are still relatively
simplistic in how they account for cognitive behavioral factors
which are essential for persuasive and effective interfacing.

Some commercial products such as Habit Changer is de-
scribed as utilizing cognitive behavioral components within the
management strategy but details are not provided. Some newer
products such as the WebMD PainCoach enables the user to
monitor pain, set and track activity goals and generates related
messages. These new systems are promising in terms of personal
monitoring, but future versions call for further functionality in
using this information to effectively respond to episodes of de-
motivation which are ultimately at the root of poor progress
[115].

In terms of general applications, mobile systems can be cat-
egorized in three groups in terms of feedback strategy: (1) ag-
gregation of data into summary statistics, often augmented with
attractive visualizations. For instance, Ubifit [116] or BeWell
[117] which uses background wallpaper to show overall physi-
cal activity, social interaction and sleep. This is often purposed
for goal setting or gentle priming towards the goal [118], (2) vi-
sualization of data which relies on the users to self-explore and
reflect on the data [119], [120] and (3) the delivery of generic
recommendations that are globally applicable or are tailored to
specific subgroups based on demographics, culture or lifestyle
[121], [122]. However, these strategies do not make use of any
in-depth analysis and may not only miss potential opportunities
to effectively intervene, but may also fail to deliver effective
feedback that is actionable and relevant to the individual.

That said, increased persuasiveness in a real world deploy-
ment has been demonstrated. Rabbi et al. [123] proposed a con-
text driven food and exercise suggestion engine MyBehavior.
In this system text based suggestions which are perceived to be
low effort and familiar to each user are generated based on both
passive and actively sensed data. Such perceptions of familiarity

and low effort increases the likelihood of actualization accord-
ing to behavioral theory [124]. Results over 10-week user trials
show significant increases in adoption when compared to ran-
domly issued suggestions. Similar persuasive feedback would
be of great benefit for musculoskeletal pain for example where
avoidance and demotivation to do regular exercise is a prevalent
problem.

An interesting direction in spatiotemporally small scale feed-
back is the sonification of patient’s movements during physio-
therapy [115]. Common motion related traits are self-guarding
movement and a reduction in proprioception. Sound feedback
exploits the tight links between the auditory and motor parts the
brain. Singh et al. [125] proposes a design framework: Go-with-
the-flow for sonified wearable systems for CP exercising. Initial
results indicate an impact on body awareness, increased motiva-
tion to reach exercise targets, and positive gains in compensatory
motion and self-efficacy.

Ultimately, all patient sensing has the purpose of informing
decisions and actions. The focus of this review is on the capture
and processing of relevant data sources to inform user feed-
back but in the end effectively closing critical feedback loops
for health will depend on effective ways of presenting to and
interacting with the end user/patient.

IV. CONCLUSION

Patient centric data streams will increasingly inform disease
management and diagnosis. They will be used to contextualize
and personalize patient response to treatment and to build ap-
plications that support patients in their own self-management.
In this review we focused on the use case of pain measurement
and management because it has broad applicability, significant
implications for both clinical outcomes and patient quality of
life, and because mobile data streams can fill a significant gap in
current approaches to measurement. While today’s technology
is ready to be put to use to improve pain measurement and man-
agement, there remain challenges and opportunities for further
research.

The greatest short term challenges are to develop the evi-
dence base for these approaches and to address usability and
relevance for both patient and clinician. In addition, a modular
data architecture is critical to promote the inclusion of new data
sources (applications and devices) and the adaptation to new
and specialized users (conditions and demographics) over time.
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