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We investigate superfluid flow around an airfoil accelerated to a finite velocity from rest. Using
simulations of the Gross–Pitaevskii equation we find striking similarities to viscous flows: from
production of starting vortices to convergence of airfoil circulation onto a quantized version of the
Kutta-Joukowski circulation. We predict the number of quantized vortices nucleated by a given foil
via a phenomenological argument. We further find stall-like behavior governed by airfoil speed, not
angle of attack, as in classical flows. Finally we analyze the lift and drag acting on the airfoil.

The development of flow around an airfoil, see sketch
in Figure 1(a), is a textbook problem in fluid mechanics
[1–3]. Describing this fundamental process has practical
relevance since it provides a route to understanding the
controlled production and release of vorticity from asym-
metric structures. In viscous weakly compressible fluids,
in the subsonic regime, this release occurs through a sub-
tle interplay of inviscid and viscous dynamics.

To address the inviscid, incompressible and two-
dimensional dynamics, one can use the celebrated confor-
mal Joukowski transformation to relate the flow around
an airfoil to the simpler flow past a cylinder. This makes
it possible to readily derive a family of allowed flows,
characterized by the value of the circulation Γ around
the airfoil. All but one of these flows feature a singu-
larity in the velocity at the trailing edge. To avoid this
singularity, the Kutta–Joukowski condition prescribes a
circulation, ΓKJ = −πU∞L sin(α), where L is the airfoil
chord, U∞ the speed and α the angle of attack. It then
follows that the airfoil experiences a lift force per unit
of wingspan given by −ρU∞ΓKJ and will not experience
any drag force.

A major issue with this inviscid theory is that the cir-
culation ΓKJ is prescribed by hand. Replacing the ideal
fluid with an incompressible but viscous fluid and enforc-
ing the no-slip boundary condition gives rise to a bound-
ary layer where the velocity interpolates from zero, on
the surface of the airfoil, to the potential velocity out-
side [1]. Far from the boundary layer, the flow remains
similar to the inviscid case. As the trailing edge is ap-
proached, the high speeds create a pressure gradient that
pulls the boundary layer off the airfoil and into a starting
vortex, generating a circulation ΓKJ around the airfoil
(see Fig. 1(a)). Because the airfoil acquires the same cir-
culation as in the ideal case, its lift remains unchanged,
though the airfoil experiences a nonzero drag due to vis-
cosity [1].

In this Letter we address the physics of flow past an air-
foil in a superfluid. In particular, we ask whether (i) there
exists a mechanism allowing for the generation of a circu-
lation; if so, (ii) whether the Kutta–Joukowski condition

FIG. 1. Generation of circulation: (a) A cartoon showing
the starting vortex produced in a viscous fluid. (b) The phase
field around the airfoil potential. By counting phase jumps
around the airfoil the value of the circulation can be obtained.
A quantized vortex is visible behind the airfoil’s trailing edge.
(c) Left hand - the density field in the full computational
box. The density is rescaled by the superfluid bulk density,
length scales are expressed in units of ξ, quantized vortices
are shown as red dots. A closer view of airfoil is shown on the
right. Relevant airfoil parameters are labeled and the vortex
is circled in red.

holds and finally, (iii) whether the airfoil experiences lift
and/or drag. In order to answer these questions we com-
bine an analytical approach with numerical simulations.
As a model for the superfluid, we consider the Gross–
Pitaevskii equation (GPE) which has been successfully
used to reproduce aspects of both inviscid and viscous
flow, including: the shedding of vortices from a disk [4–
7], an ellipse [8, 9], a sphere [10] and a cylinder [8, 11], the
formation of Von Kármán vortex sheets [5, 12], the emer-
gence of a superfluid boundary layer [13], the dynamics
and decay of vortex loops and knots [14, 15], and the
appearance of classical-like turbulent cascades [16, 17].
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FIG. 2. Vortex emission: (a) Vortices nucleated at the tail and top of a Joukowski airfoil having α = 15◦, λ̃ = 0.1. Here the

width of the foil scales like λ̃L (see SI). The computational box size is 1024ξ × 1024ξ. Tail number reflected by color, top
nucleation by octagon mark. (b) Top three frames are snapshots of the density field for U∞ = 0.260c and L = 325ξ; here
ntail = 2. Bottom frame has U∞ = 0.345c and L = 200ξ. This foil nucleates thrice from tail before nucleating uncontrollably
from top; right shows closer view of top vortices.

The two-dimensional GPE is:

i~
∂ψ

∂t
=

(
− ~2

2m
∇2 + V + g|ψ|2

)
ψ, (1)

where ψ = ψ(x, y, t) is the wave-function of the super-
fluid, ~ is the reduced Planck’s constant, g is the effective
two-dimensional two-body coupling between the bosons
of mass m and V is an external potential. Relevant bulk
quantities are the speed of sound c =

√
gρ∞/m and the

healing length ξ =
√

~2/(2mgρ∞), with ρ∞ the super-
fluid number density at infinity. The healing length is the
length-scale for the superfluid to recover its bulk density
value away from an obstacle; the speed of sound is the
speed of density/phase waves of scales larger than ξ.

To understand the superfluid’s dynamics in terms of
hydrodynamic variables, we make use of the Madelung
transformation ψ =

√
ρeiφ. This recasts the GPE into

hydrodynamical equations for the conservation of mass:
∂ρ
∂t +∇ · (ρu) = 0 and momentum:

∂u

∂t
+ (u · ∇)u = ∇

[
− g

m
ρ+

1

m
V +

~2

2m2

∇2√ρ
√
ρ

]
, (2)

where the density and the velocity of the superfluid are
ρ = |ψ|2 and u = (~/m)∇φ, respectively. These equa-
tions are equivalent to the barotropic Euler equations for
an ideal fluid, with the exception of the presence of the
quantum pressure term (the last in eq. (2)), negligible at
scales larger than ξ. Circulation around a path C is given
by Γ =

∮
C
u · dl = ~∆φ/m, where ∆φ is the increment

in φ around C: ∆φ is quantized in units of 2π and so is
the circulation, in units κ = h/m. Quantized vortices are
defined as those points for which the density is zero and
the phase winds by 2π around them. For example, a vor-
tex can be seen in the phase field in Fig. 1(b); the same

vortex also appears circled in red in the density field of
Fig. 1(c).

To mimic the motion of an airfoil we add a poten-
tial V = V [x(t), y] moving with velocity ẋ(t) along the
x direction. Within the airfoil shape, the potential has
a constant value fifty times higher than the superfluid
chemical potential µ = gρ∞, and decays to zero within
a healing length outside. At the beginning of each simu-
lation the potential is accelerated up to a final velocity,
U∞ which is then kept constant. See SI (Supplementary
Information) for details of the numerical scheme.

Soon after the airfoil is set into motion, a vortex is
nucleated from the trailing edge, much like the starting
vortex emitted in classical fluids. Our typical airfoil nu-
cleates more than once; the bottom of Fig. 2(a) displays
an example where three vortices are nucleated from its
trailing edge. The number of vortices emitted depends in
general on the airfoil’s terminal velocity U∞ and length
L, as shown in Fig. 2(b). While most of the simulated air-
foils reach a steady state post-nucleation, in some cases,
highlighted with octagons in Fig. 2(b), the airfoil begins
nucleating from its top after nucleating from the trailing
edge. Once begun, nucleation from the top continues for
the length of the simulation in a manner reminiscent of
the stalling behaviour of a classical airfoil flow.

These results suggest that, just as for real fluids, an air-
foil in a superfluid builds circulation by vortex emission
from its trailing edge. A natural candidate for the mecha-
nism underlying vortex emission is the onset of compress-
ible effects at the tail of the foil [4, 7, 18]. To estimate
this we consider an airfoil moving with constant termi-
nal velocity U∞. At length scales larger than the healing
length, quantum pressure is negligible and the problem
simplifies to a classical inviscid compressible fluid one.
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The usual condition of compressibility is that relative
density variations must be larger than relative speed vari-
ations: |∇ρ|/ρ > |∇ ·u|/u [3]. In the steady flow and ne-
glecting the quantum pressure, eq. (2) is nothing but the
classical Bernoulli equation; ρ(u) = ρ∞+m(U2

∞−u2)/2g,
where ρ∞ is the far field density and U∞ is the far field
velocity in the foil’s frame. Plugging ρ(u) into the com-
pressibility condition, one obtains that compressibility
effects arise when [19]:

3

2

u2

c2
− 1

2

U2
∞
c2
− 1 > 0, (3)

i.e. when the local flow speed is greater than the local
speed of sound. In classical fluids, a dissipative shock
is formed where supersonic flow occurs. On the con-
trary, reaching the compressibility condition in numer-
ous superfluid models leads to the shedding of vortices
[7, 20, 21]. We use this phenomenological criterion to
predict the number of vortices that will nucleate.

We proceed by approximating the velocity of the su-
perfluid u around the foil by the velocity of an ideal fluid,
uideal, around a Joukowski foil of length L, terminal ve-
locity U∞, angle of attack α, with a circulation Γ. See the
SI for a comparison between this approximation and the
simulated flow field. For a circulation Γ 6= ΓKJ , the ideal
flow speed |uideal| increases sharply, eventually diverging
as the sharp tail is approached. We expect this diver-
gence to be cut-off by quantum pressure effects arising
in the healing layer of size ξ. Following [22], we evaluate
uideal at a distance Aξ, where A is a factor of order unity,
and predict vortex nucleation whenever the velocity ex-
ceeds the compressibility criterion of eq. (3). As vortices
are nucleated, the value of Γ increments accordingly by
κ. As Γ approaches ΓKJ the speeds at the tail decrease
and nucleation from the tail ends when enough vortices
have been emitted to reduce speeds at the tail below the
compressibility condition in eq. (3). We stress that, un-
like periodic nucleation of oppositely signed vortices from
symmetric obstacles as in [4, 6, 7, 10, 19, 23], all emitted
vortices have the same sign. Figure 3(a) shows excellent
agreement between our simulation data and this predic-
tion for a value A ∼ 0.55, close to the value 0.57 found
by Rica et al [22] for a sharp corner.

As tail nucleation decreases the speed at the tail, the
speed will increase over the top of the foil. Once an airfoil
has finished nucleating from its tail, if ideal flow speeds at
a distance of Aξ from the top are large enough to satisfy
(3), then we predict the airfoil will stall by continuously
emitting vortices from the top. The observed stall-like
behavior is marked by octagons in Figure 3(a); its predic-
tion is represented by the boundary of the colored area.
This marks a radical difference between classical and su-
perfluid flight: stalling in the superfluid is driven by the
flow speed at the top of the foil. In viscous flow stalling
is primarily a function of α. See Figure 4 [24].

Returning to tail nucleation, we make our prediction of

FIG. 3. Nucleation predictions: (a) Plot of tail and top nu-
cleation numbers in U∞ − L parameter space for α = 15◦.
Predictions are stripes in background, white area signifies pre-
dicted top nucleation. All predictions used a cut-off distance
of A = 0.55ξ from the foil. Simulation data is circled in white.
(b) Values of ∆n2 calculated for each simulation in (a) with
their average plotted vs. L/ξ. Errorbars are standard devia-
tion of the mean for the U∞/c values in (a).

FIG. 4. Viscous vs. superfluid flight/stall: (a) Flight of foil in
a viscous fluid at a low angle of attack. (b) Stall at high angle
of attack. (c) Stall in a superfluid at low angle of attack. (d)
Flight at high angle of attack.
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nucleation number analytic by appealing to a Taylor ex-
pansion of uideal at small distance from the tail. Solving
the implicit equation (3) for Γ = nκ, reveals that

(ΓKJ/κ− n)2 ≈ C(α)L/(3ξ) (4)

to first order [25] (See SI for details). Here C is a con-
stant of order one whose value depends on the angle of
attack α. If we define nKJ ≡ ΓKJ/κ to be the number of
vortices the foil would nucleate if it acquired a classical
circulation, we obtain ∆n2 ≡ (nKJ − n)2 = C(α)L/3ξ.
We verify this linear relationship by plotting ∆n2 vs. L/ξ
for our simulations, and find excellent agreement shown
in Figure 3(b).

Having understood the vortex nucleation, we turn our
attention to the force experienced during this process,
namely the lift and drag. The similarity of classical and
superfluid vortex nucleation leads us to suspect that an
airfoil’s lift in a superfluid will be similar to that in a
classical fluid, and thus that the Kutta–Joukowski Lift
Theorem will nearly hold in a superfluid. To calculate
the kth component of the force exerted by the superfluid
on the airfoil one can integrate the stress-energy tensor

Tjk = mρujuk +
1

2
δjkgρ

2 − ~2

4m
ρ∂j∂k ln ρ (5)

around any path S enclosing the airfoil [7]. The results
of this calculation for a particular airfoil’s simulation are
displayed in Fig. 5. We rescale the computed forces by
mρ∞U∞κ, which corresponds to a quantum of lift: the
ideal lift provided by a quantum of circulation.

The computed lift and drag are clearly not quantized.
We attribute this to transient effects, in particular to the
build-up of a dipolar density variation above and below
the foil, as can be seen in the inset of Fig. 5(a). As
discussed in the SI the density dipole, and the emitted
and reflected density wave, lead to contributions to the
lift and drag of the same order of magnitude as the two
spikes seen in Fig. 5(a). To remove these effects we pro-
ceed as follows:far from the foil where speeds are low, we
expect that the compressible piece, uC , of the velocity
field will contain only density/sound waves. As detailed
in the SI, the incompressible component of the velocity
field uI ≡ u−uC , is simply the sum of the ideal velocity
field around the foil, uideal and the velocity fields from
the emitted vortices. Replacing u with uI and using the
density field prescribed by the steady Bernoulli equation,
we recalculate the lift and drag and plot it in Fig. 5(b).
Since this calculation differs from that of lift and drag
on an airfoil in ideal fluid only in that we allowed the
density ρ(uI) to vary in space, it is not surprising that
the lift is now quantized and the drag is nearly zero.

In conclusion we analysed the mechanisms responsi-
ble for vortex nucleation from an airfoil and its conse-
quent acquired lift in a two-dimensional superfluid. On
the one hand, we find results reminiscent of the classi-
cal theory of airfoils; with the emission of vortices at

FIG. 5. Evolution of lift and drag: (a) Non-dimensional lift
(dotted line) and drag (solid line) experienced by the airfoil
throughout simulation with U∞ = 0.29c, L = 325ξ, α = 15.0◦,
and λ̃ = 0.1. Inset shows an exaggerated density field around
the airfoil. Included are the integration contours for comput-
ing the force. (b) Non-dimensional lift (dotted line) and drag
(solid line) experienced by the airfoil using uI and ρ(uI). A
grid is overlaid to demonstrate the quantization of the lift,
the steps coincide with vortex nucleation. Lift and drag were
not computed on a contour if a vortex was within 8ξ.

the trailing edge governed by the elimination of the sin-
gularity predicted by inviscid flow. On the other hand,
a marked departure from classical flow is found in the
stalling behavior. Accelerated hydrofoils and wings have
recently been used to create vortices of arbitrary shape
in classical fluids [26, 27], a technique which might gen-
eralize to superfluids, offering a potentially powerful new
procedure in superfluid manipulation, vortex generation,
and observation of quantized lift – a measurement origi-
nally attempted in 4He by Craig & Pellam [28] to demon-
strate the quantization of circulation, later detected by
Vinen using a different setup [29]. Among the vari-
ous superfluid experimental realizations, some have re-
cently started to address questions on vortex nucleation
and manipulation using moving obstacles including cold
atomic gases [21, 23, 30–33] and quantum fluids of light
[34, 35]. Details of each experimental realization will
differ: 3d effects need to be considered for non quasi-
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two-dimensional BECs, the rotons’ emission instead of
vortex shedding might be important in 4He, and out-of-
equilibrium exciton-polariton systems will require mod-
elling to consider intrinsic forcing and damping terms.
The time is right for superfluid flight!

∗ Current address: Department of Physics, 77
Massachusetts Ave, Cambridge, MA 02139;
swmusser@mit.edu
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INCOMPRESSIBLE IDEAL FLOW AROUND A
JOUKOWSKI AIRFOIL

In this section we review salient features of the theory
of two-dimensional irrotational, incompressible inviscid
fluid around an airfoil. In order to generate the airfoil
we consider the Joukowski transformation, a conformal
map that takes off-center circles to airfoil shapes. It is
given by

Z(z) = z +
a2

z
. (1)

If we consider the off-centre circle of radius a + λ
parametrized by θ ∈ [0, 2π), that is z(θ) = −λ+(a+λ)eiθ,
its Joukowski transform will be an airfoil whose width
will depend on the choice of λ. This procedure is demon-
strated in Figure 1(a), where we call the z-plane the cir-
cle plane and the Z-plane the airfoil plane, due to this
mapping.

The top and tail of the airfoil occur respectively at
θ = π and at θ = 0, or alternatively, at z = −(a + 2λ)
and at z = a. Therefore, the Joukowski airfoil has length

L = 4a
[
1 + (λ/a)

2
]

+O
[
(λ/a)

3
]

(2)

and width scaling like 3
√

3λ ∼ (3
√

3/4)(λ/a)L (provided
λ� a) [1]. We denote the non-dimensional λ/a as λ̃ for
use in the main text.

Because Laplace’s equation prescribing two-
dimensional irrotational, incompressible inviscid flow is
invariant under conformal mapping, we can understand
this flow around an airfoil by first solving it for a circular
impenetrable object and then mapping it to an airfoil
via the Joukowski transformation. The problem of a
circular impenetrable object possessing a circulation Γ
and moving in a steady flow with a horizontal velocity at
infinity U∞ can be completely solved [1]. The solution
relies on defining the complex potential w = φ + iψ,
an analytic function of the complex variable z = x + iy
where φ and ψ are respectively the velocity potential and
the stream function of the irrotational incompressible
flow. The velocity components u and v are directly
computed as

dw

dz
=
∂φ

∂x
+ i

∂ψ

∂x
= u− iv

= U∞

(
1− a2

z2

)
− iΓ

2πz
.

(3)

FIG. 1. Joukowski Map: (a) A demonstration of a circle, with
center z = −λ = −0.1 and radius a + λ = 1.1, mapping to
the symmetric foil under the Joukowski transformation. The
point z = a = 1 in the circle plane maps to the airfoil’s tail,
Z = 2a, in the airfoil plane, as shown by the red dot. (b) A
demonstration that under the inverse Joukowski map, z(Z), a
circle of radius r centered on the tail of the airfoil maps back
to a semicircle of radius

√
ra centered at z = a, provided√

r/a � 1. Here a = 1 and r = 0.09, so
√
r/a = 0.3 was

relatively large. Despite this the resulting image is still nearly
a semicircle.

In the airfoil plane the velocity can be calculated from
the complex velocity potential W (Z) = w[z(Z)] and eq.
(3), where z(Z) is the inverse of the Joukowski transfor-
mation. The velocity components U and V , expressed
for simplicity in the circle plane variable z, result in

dW

dZ
= U − iV

= eiα
U∞

[
e−iα −

(
a+λ
z+λ

)2

eiα
]
− iΓ

2π(z+λ)

1− a2/z2
,

(4)

where α is the angle of attack of the airfoil with respect to
the horizontal uniform flow at infinity U∞. Then uideal =
U x̂ + V ŷ.
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ANALYTIC ESTIMATION OF NUCLEATION
NUMBER

In the main text we began our phenomenological pre-
diction of vortex nucleation from the foil by approximat-
ing the velocity of the superfluid u around the foil by the
velocity of an ideal fluid, uideal, around a Joukowski foil
of length L, terminal velocity U∞, angle of attack α, with
a circulation Γ. Though this is indeed an approximation,
Figure 2 reveals it is a relatively sound one, at least a
couple of healing lengths from the foil.

In the main text we predicted that a foil would nucleate
when uideal breached the compressibility condition

3

2

|uideal|2
c2

>
1

2

U2
∞
c2

+ 1, (5)

at a cut-off distance of σ = 0.55ξ from the tail. This pre-
diction was done numerically. Here we derive an analytic
condition by expanding |uideal|2 on a cut-off circle of ra-
dius r ∼ ξ � L around the tail of the foil in the airfoil
plane. We can parametrize the circle by θ, Z = 2a+reiθ.
Transforming this back to the circle plane, as shown in
Figure 1(b), gives us

z(Z = 2a+ reiθ) = a

[
1 +

√
r

a
eiθ/2 +

1

2

r

a
eiθ + · · ·

]
,

(6)
roughly a semicircle or radius

√
ra centered on z = a.

Using the expression (4) for uideal and (2) to put a in
terms of L, we then have

|uideal|2 =
1

4

L

r
U2
∞ sin2(α)

(
1− Γ

ΓKJ

)2

+O
(√

L

r

)
,

(7)
where ΓKJ = −4π(a + λ)U∞ sin(α) ≈ −πU∞L sin(α) is
the value of the circulation for which there is no velocity
divergence at the tip, r = 0.

We want to solve the implicit equation (5) for Γ = κn,
replacing the inequality with an equality, where we use
the expansion (7). Here n is the number of vortices that
we expect the given foil to nucleate. Since the right hand
side of (5) is of order one this means Γ must be chosen
so that |uideal|2/c2 is of order one also. The expansion
(7) then reveals (1 − Γ/ΓKJ)2 ∼ r/L for small r � L.
We therefore write (1 − Γ/ΓKJ)2 = f · r/L, where f
is some order one function. Substituting this back into
|uideal|2 and keeping the first order terms in r/L then
makes (5) into self-consistency equation for f . Solving
this for f = L/r(1 − κn/ΓKJ)2 and manipulating will
give us the expression

∆n2 ≡ (ΓKJ/κ− n)2 =
1

3
C(α,U∞, λ)

L

ξ
, (8)

where C(α, 0, 0) = r/ξ and is slowly varying for the val-
ues of U∞ we considered.

FIG. 2. Approximation Justification: Demonstration that u
approaches uideal with increasing distance from airfoil. Sam-
pling |u−uideal|/U∞ on equidistant contours around the air-
foil reveals the difference is largest near the tail and top of
the airfoil.

We treat C(α,U∞, λ) ≈ C(α) as a fitting parameter.
For a fixed value of L we simulate a number of foils having
different values of U∞. An example for α = 15◦ can
be seen in the ensemble of foil simulations pictured as
white outlined dots in Figure 3(a) and (b). For each of
these foils we can use the measured number of vortices
nucleated from their tail, n, to compute ∆n2 for each
L/ξ, averaging out ∆n2’s fluctuations in U∞. Plotting
this averaged ∆n2 vs. L/ξ then allows us to find the
fitting parameter C(α), with its associated error. Such a
fit can be seen in Figure 3(b) of the main text.

Figure 3 allows us to compare predicted nucleation
numbers from this analytic prediction with the more
exact numerical scheme discussed in the paper. The
stripes in Figure 3(b) were generated by first fitting a
value of C from the ∆n2 vs. L/ξ plot, and then letting
n = round(ΓKJ/κ −

√
CL/3ξ) be the predicted nucle-

ation number. Note that the rounding restricts n to be
an integer, allowing for the discrete jumps from stripe
to stripe. The agreement for tail nucleation number is
very good between the numerical and analytical meth-
ods, with the analytic approximation even reflecting the
data slightly better.

Our predictions for top nucleation in Figure 3(b) were
also addressed differently than they were in the numerical
scheme of (a). Due to the lack of velocity divergence at
the top of the foil making a simple analytic prediction of
stalling is difficult. Thus we stuck to numerical methods;
if Γ = κn, for n predicted by the analytic approach,
caused speeds at the top to be large enough that they
satisfied (5) then we predicted the foil would stall. A cut-
off length was not included in this computation, unlike
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FIG. 3. Approximation Comparison: (a) Numerically pre-
dicted nucleation number vs. simulation nucleation numbers
in U∞ − L parameter space, for α = 15◦. A cut-off distance
of A = 0.55ξ was used to do these numerics. (b) Approx-
imately predicted nucleation numbers also for α = 15◦. A
fitting value of C(15◦) = 0.271 was used. (c) A plot of α vs.
C(α). A suggestive linear fit is included.

in the numerical approach. Not adding the cut-off length
meant we predicted stalling to occur for smaller values of
U∞ and L, as can be seen in Figure 3(b), more accurately
reflecting the simulation data.

Figure 3(c) shows a plot of the various fitting parame-
ters C(α) for α = 10◦, 12◦, 15◦. A linear trend might be
suggested by the data. However, it is difficult to measure
values below 10◦, as the foil speeds must be increased in
order to see any nucleation at these angles of attach. But

increasing the foil speeds means the foils have less time
to reach a steady state post-nucleation before they reach
the opposing end of the simulation box.

FLIGHT AT HIGH ANGLE OF ATTACK

FIG. 4. The final phase and density field of a foil with U∞ =
0.15c, L = 300ξ, α = 30◦, λ̃ = 0.1. The foil has nucleated
three times by the time the simulation halts and the vortices
are highlighted by red dots in the full phase and density fields
on the left-hand side. There is no quantum stalling as no
vortices have been nucleated from the top

In the main text we discussed the possibility of super-
fluid flight at very high angles of attack, provided the
speed of the foil was small enough. An example of this
can be seen in Figure 4, which displays the phase and
density field at the end of a simulation with α = 30◦.
The speed of this foil was decreased to U∞ = 0.15c, much
smaller than the speeds of the simulated foils at α = 15◦,
in order to avoid higher fluid speeds at the top and the
consequent quantum stalling that would cause.

We can then see a clear difference between foil flight in
superfluids and in viscous fluids as no foil is able to fly
at this high an angle of attack in viscous fluids without
traveling at supersonic speeds. This difference was not as
clear when observing nucleation from the tail, as nucle-
ation there is dominated by the inviscid Kutta-Joukowski
criterion in both the superfluid and viscous case. In con-
trast, inviscid flow speeds do not diverge at the top of
the foil and thus stalling behavior is instead dominated
by boundary layers in the viscous case and by high speeds
in the superfluid case. This allows for the strikingly dif-
ferent phenomenon of flight at angles of attack around
30◦ in superfluids.
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THE NUMERICAL INTEGRATION

In our simulations we non-dimensionalize the Gross–
Pitaevskii equation by rescaling lengths in terms of the
healing length ξ, times using ξ/c where c is the speed of
sound and the superfluid density in terms of the density
at infinity ρ∞ that we set equal to unity. We consider a
two-dimensional computational box having uniform grid
points 2048 × 2048 and spacing ∆x = ∆y = ξ/2. This
spacing is chosen to have the best compromise for the
large computational box size Lx = Ly = 1024ξ and to
resolve sufficiently well the healing layer occurring about
the quantized vortex core and the about the airfoil ex-
ternal potential.

The airfoil itself has its outline generated in the follow-
ing way: an off-centred circle is mapped to a symmetric
airfoil via the Joukowski transformation (1), the resulting
airfoil outline is then rotated to an angle of attack α with
the horizontal, and finally it is scaled to be the chosen
length and placed on the left-hand side of the computa-
tional box, with its tail 50ξ from the left-hand wall and
with its centre in the centre of the box’s height. For most
of our simulations we took α = 15◦. The airfoil length
is taken between 150ξ and 350ξ, fitting inside the com-
putational box with plenty of room to spare. Once the
outline is generated we use the python matplotlib pack-
age path to assign grid points a value of zero if they fall
outside the airfoil, and a value of fifty times the chem-
ical potential µ = gρ∞ if they fell inside the airfoil. A
small amount of Gaussian smoothing was added to the
potential to avoid any sharp edge which may cause fast
oscillations (Runge’s phenomenon) and cause eventually
unwanted sound generation during the evolution: this
is done using the Python module scikit-fmm to mea-

sure distance from the airfoil and then apply Gaussian
smoothing with a width of 0.25ξ. Values larger than this
had negligible effects on unwanted sound generation. We
also generate an external confining potential to trap the
superfluid into the computational box. The box potential
has a value of two hundred times the chemical potential
at the very edge, and decays to zero 5ξ away from the
edge. Its decay is governed by a smooth exponentially-
decaying function. This potential serves to confine the
superfluid, and also reflects any incident sound/density
waves.

Having established the external potentials we create
the initial wave-function by setting its absolute value to√
ρ =

√
ρ∞ = 1 outside of the airfoil and edge poten-

tial, and
√
ρ = 0 inside of the airfoil and edge potential.

As the GPE is invariant over overall phase translations,
the phase field is initially set to zero everywhere, so that
the initial wave-function is real valued. In order to find
the ground-state of the GPE with the airfoil steady, we
numerically integrate the GPE forward under imaginary
time, keeping the chemical potential fixed. The numeri-
cal scheme for advancing in imaginary time is the same
as the one described below to integrate in physical time.
The GPE is first broken into two parts using a stan-
dard split-step method [2]: the Laplacian operator L is
solved exactly in Fourier space, while the nonlinear op-
erator N and the external potentials’ operator Va and
Vb, corresponding to the airfoil and the confining box
respectively, are integrated in physical space. The time-
step ∆t is chosen to be smaller than the fastest linear
wave period resolved in the computational box, here we
chose ∆t < 0.1∆x2. Assuming periodic boundary con-
ditions and using spectral decomposition the numerical
integration can be summarized as

ψ(r, t+ ∆t) = FFT−1
{

FFT [ψ(r, t)]× exp(−i L̃∆t)
}
× exp

[
−i (N + Vb) ∆t− i

∫ t+∆t

t

Va dt
]

+O(∆t2) , (9)

where FFT and FFT−1 are respectively the (discrete) di-
rect and inverse Fast Fourier Transforms, L̃ is the Lapla-
cian operator represented in Fourier space, i.e. equal to
the linear dispersion relation. Note that due to the split-
ting, the nonlinear operator N is constant within each
time-step as is the external box potential operator Vb;
on the contrary the external airfoil potential operator Va
is time-dependent if the airfoil moves, hence one has to
perform a time integral at each time step (last term in
the equation above).

The numerical integration was performed on GPUs
using the Python package PyOpenCL to allow access to
the OpenCL parallel computation API from Python. The
Python package Reikna was also used for its implemen-

tation of the FFT on GPUs. Additionally the function
locate from the Python package trackpy was used to
count and track the vortices via the density depletion
they caused.

The details of the airfoil operator’s time dependence
are reported in what follows. All the airfoils considered
in our work were firstly accelerated towards the right-
hand side of the computational box as a rigid body with a
constant acceleration of a = c2/(700ξ) until they reached
their chosen terminal velocity U∞. This acceleration
value was chosen to be large enough so that the airfoils
had plenty of room to move at their terminal velocity
before nearing the right-hand side of the computational
box, but small enough to not cause large sound/density
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waves or any numerical instability. Once the airfoils
reached their chosen terminal velocity they moved at this
velocity until their top was 75ξ from the right-hand side
of the computational box, at which point the simulation
was halted. The time integral of the airfoil’s external op-
erator in eq. (9) becomes remarkably easy noticing that,
due to the spectral decomposition, the motion of the air-
foil potential results in a simple translation in Fourier
space that reads

Va[x−x(t)] = FFT−1
{

FFT(V0
a)× exp[−ikxx(t)]

}
(10)

where V0
a ≡ Va(x, y, t = 0) is the airfoil potential at the

initial conditions. For our purposes:

x(t) =

{
1
2at

2 for 0 ≤ t ≤ U∞/a
U∞t− U2

∞
2a for t ≥ U∞/a

.

By combining this last expression with eq. (10) we can
therefore express the time integral in eq. (9) in a closed
form in terms of complex error functions and exponen-
tials, and integrate in time the GPE with a moving airfoil.

SOUND AND HELMHOLTZ DECOMPOSITION

In the main text Figure 5(a) shows large spikes in the
lift and drag that drown out the contribution assumed
to come from the development of circulation via emis-
sion of vortices. The supplementary movies demonstrate
that the magnitude of the lift and drag is heavily in-
fluenced by long wavelength fluctuations in the density
field that build-up prior to the initial vortex nucleation
and are emitted as a density wave after this nucleation.
The first spike in both the lift and drag coincides with
such a build-up, while the second spike coincides with
the emitted wave’s return after bouncing off the walls of
the simulation box. We demonstrate that such a density
wave will indeed generate spikes in the lift and drag of
about the order of magnitude seen in Figure 5(a).

Consider density fluctuations of the form

δρ(t, r) = ερ∞ exp

(
− (n̂ · r′ − ct)2

2w2

)
where r′ = r−u∞t,

and u∞ is the flow field at infinity. These solutions de-
scribe a density wave of small amplitude ερ∞ traveling
with speed c in the n̂ direction, in the frame of the box.
The density wave will have width of about w � ξ in the
n̂ direction, and will extend the whole length of the box
in the n̂⊥ direction, roughly the form the density wave
seen in the movie has when it impinges on the foil af-
ter bouncing off the walls of the box. The wavepacket
that produces such a density fluctuation will be of long
wavelength, i.e. k � 1/ξ, and is therefore within the
linear dispersion range, maintaining its shape during its
motion.

The corresponding linearized stress Tjk obtained by
keeping terms of order ε and dropping the constant zeroth
order term gives

δTjk =εmρ∞c
2Ajk exp

(
− (n̂ · r′ − ct)2

2w2

)

Ajk ≡
(u∞
c

)
j

(u∞
c

)
k

+
(u∞
c

)
j
nk + nj

(u∞
c

)
k

+ δjk,

where we have dropped terms of O(ξ2/w2). The dom-
inant term in Ajk is the δjk term, which arises due to
fluctuations in pressure and is accompanied by Doppler
shifting terms that are non-zero but sub-dominant.

To calculate the force we choose the region Ω to be
a large box with side length L that has one of its sides
perpendicular to the direction of travel of the pulse, and
take the pulse to be incident on this box at the time we
compute the force. Then the force becomes

Fk ≈ εLmρ∞c2A1k,

provided L2 � w2. Since A1k is of order one, this means
that we expect the non-dimensional force to be on the
order

Fk
mρ∞U∞κ

≈ ε Lc
2

U∞κ
= ε

1

2π
√

2

L

ξ

c

U∞
. (11)

The magnitude of ε can be eyeballed from the supple-
mentary movie that shows such a density fluctuation,
however we estimate its magnitude with a more exact
computation aimed at removing sound waves from the
velocity and density field.

Though close to the foil’s top and tail, where speeds are
high, compressibility effects are essential features of the
superfluid flow, far from the foil, where speeds are low,
the compressibility of the fluid will be due to transient
sound wave effects. Thus removing sound waves, at least
far from the foil where our contours for computing lift
and drag are located, will be mathematically equivalent
to removing the compressible parts of the velocity field.
We know by the Helmholtz theorem that we can write
the superfluid velocity field in the region outside the foil
as u = uI +uC , where uI is the incompressible piece and
uC is the compressible (or curl-free) piece. It is rather
simple to find uI with reasonable boundary conditions,
as we now argue.

In the frame of the foil

(1) the velocity field uideal is the unique one that:

(a) is incompressible,

(b) goes to U∞x̂ at infinity,

(c) gives the foil the right circulation,

(d) and is such that uideal · n̂ = 0 on the surface
of the foil, i.e. treats the foil as impenetrable.
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FIG. 5. Sound waves in velocity and density: (a) The magni-
tude of the compressible velocity uC obtained from subtract-
ing uideal and the point vortex velocity fields from u. The
peaks in |uC/|U∞ are due to long wavelength sound waves.
(b) The magnitude of density fluctuations. The density fluc-
tuations are peaked in the same places |uC |/U∞ is, and cor-
respond to the same sound waves.

(2) If we now add the vortices and take uI = uideal +
uvortices, then uI will still satisfy (a),(b),(c) in the
frame of the foil. In this case uI · n̂ = uvortices ·
n̂, which is not generically zero, but will quickly
approach zero as the vortices move away from the
foil.

(3) Writing uI = uideal+uvortices automatically ensures
that ∇×uC = 0, since the only curl in the velocity
field outside the foil arose from the point vortices.

Thus we expect that the incompressible piece of the su-

perfluid velocity field outside the foil will be approxi-
mated by the sum of the ideal velocity field around the
foil and the velocity fields arising from the point vortices.
Figure 5(a) reveals that the remaining compressible ve-
locity does describe well the long wavelength sound waves
that exist in the simulation box.

To remove the soundwaves from the density field as
well as the velocity field we consider

ρ(uI) = ρ∞

(
1 +

1

2

U2
∞
c2
− 1

2

u2
I

c2

)
,

which is the density field prescribed by the steady
Bernoulli equation assuming a velocity field given by uI .
This allows us to not only calculate the lift and drag with
sound waves removed, but also to estimate the magni-
tude ε of density fluctuations by examining the size of
|ρ − ρ(uI)|/ρ∞ far from the foil. In the density fluctua-
tion peak visible in the upper left hand corner of Figure
5(b) the density fluctuations have a magnitude of about
ε ∼ 0.05. Then from (11) we expect the non-dimensional
force on the foil in Figure 5(a) of the main text to be on
the order of 6.5. This is indeed the same order as the
excess second spikes in the lift and drag curves in Fig-
ure 5(a). Thus this order of magnitude estimate for the
contribution of long wavelength density waves to the lift
and drag felt by the foil demonstrates the consistency of
our approach for mathematically removing sound waves.

As a final note, both panels of Figure 5 show two waves
passing the front of the foil. These are shock waves that
were emitted during both nucleations and they propagate
along the foil, later reflecting off the walls of the box.
However, their magnitude is much less than the large
density wave that builds up during the acceleration of
the foil and they do not significantly influence the lift
and drag.
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