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ABSTRACT 

The augmentation of research in graphene based thin films has been of great interest to various 

current industrial stakeholders. This is mainly due to the wide scope of films applications, 

ranging from nanoelectronics to separation membranes. Therefore, establishing a relation 

between graphene based thin film key characteristics and the fabrication operating conditions 

is of high significance. This study entails the successful fabrication of controlled-thickness 

crosslinked graphene oxide (GO) thin films on inexpensive silicon-based glass slide substrates. 

The method of film fabrication used is the dip-assisted layer-by-layer assembly, which has an 

added advantage of step-control of thin film thickness, good film uniformity and continuity. 

The thickness was primarily tuned through the use different sized crosslinkers; a covalent based 
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sub-nanometer sized p-phenylenediamine and an electrostatic based polyethyleneimine on an 

interchangeable assembly with GO. Pre film fabrication, Fourier Transform Infra-Red and X-

Ray Photoelectron Spectroscopy characterizations were carried out to determine the nature of 

interactions between GO and the crosslinkers. Post film fabrication, scanning electron 

microscopy, water contact angle measurements and profilometry analysis were undertaken for 

film continuity, hydrophilicity and thickness measurements respectively. A strong linear trend 

between film thickness of the differently crosslinked films and the number of bi-layers was 

established.  
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1. Introduction 

Thin films are of high importance in various applications, these varies from nanoelectronic 

optical instruments and sensors [1,2] to large scale operations like separation membranes and 

solar cells [3,4]. The effectiveness, durability and ease of operation of thin films in these 

various applications are dependent on their thickness, topographical roughness, continuity and 

homogeneity among other key characteristics [5]. Consequently, controlling the magnitude of 

these key characteristics is essential in thin film fabrication and operation [6].  

From polymers to ceramics different materials have been employed in the fabrication of thin 

films for different purposes [7]. The recently discovered graphene is a great candidate material 

for usage as a thin film precursor because of its 2-dimentionality, mechanical strength and 

electrical properties [7,8]. However, despite its outstanding properties and promise in various 

applications, the use of graphene as a thin film precursor is limited by the material’s lack of 

production scalability without compromising its structure, morphology and properties [9]. Low 

solubility of graphene in polar solvents is also a limitation to its usage as it cannot be easily 

dispersed in polar solvents to dispersions for the fabrication of thin films via solution requiring 

processes [10–13].  

Owing to its ease of fabrication and large scale production scalability, graphene oxide (GO) 

has caught the attention of many researchers as a reasonable graphene alternative in the 

fabrication of thin films for various applications [14–20]. The most notable GO production 



method is the Modified Hummers method, which uses affordable graphite as a precursor raw 

material [21]. Although its mechanical and electrical properties are not as outstanding as those 

of graphene, in some applications like sensors and separation membranes the properties of GO 

are sufficient. This makes it a notable graphene substitute pertaining to these applications [22–

27]. Another key advantage of GO is its containment of oxygenated functional groups; the 

epoxy, hydroxyl and carboxylic groups, which make the material chemically active [28,29]. 

This means that it can be crosslinked with different molecules and thus improving the 

continuity of the GO based films via both vertical and horizontal crosslinking [30]. 

Crosslinking further introduces the ability to control the thickness, roughness and to enhance 

the stability of the fabricated films [14,15,31]. 

Elsewhere different attempts to control film thickness and other key characteristics have been 

employed using various thin film fabrication techniques. For instance Shi-Hongfei et al. used 

spray coating to control film thickness via different spray volumes [32]. Green and Hersam on 

the other hand used solution phase production of graphene films and the thickness was 

controlled by density differentiation [33]. In this study the dip-assisted layer by layer assembly 

technique was entailed to ease the control and modification of key thin-film characteristics on 

a step by step basis. 

The aforementioned methods are relatively costly in comparison to the dip-assisted layer-by-

layer assembly [34]. The basis of this fabrication method is an interchangeable attachment of 

two or more materials on a layer-by-layer basis. The attachment can either be predominantly 

covalent based or electrostatic based depending on the nature and chemistry of the materials 

being assembled [14,15]. The layer-by-layer technique gives frameworks of controlled 

thickness through the use of different sized crosslinkers and operating conditions [35]. 

Specifically, dip-assisted layer-by-layer assembly offers cost effectiveness and ease of scale up 

to mass production as important advantages. The key operating conditions in dip assisted layer-

by-layer assembly are the immersion time, number of assembly cycles together with the 

immersion and withdrawal speeds [36]. 

Consequently, this study intended to demonstrate the fabrication of controlled thickness 

crosslinked GO films on affordable silicon-based glass slides to demonstrate the effectiveness 

of the dip assisted layer-by-layer assembly in controlled thin film thickness production. As 

such, two types of crosslinkers, a sub-nanometer sized covalent based p-phenylenediamine 

(PPD) and an electrostatic based polyethyleneimine (PEI) were used with GO. In specificity, 

this work aimed at evaluating the correlation between immersion times (1 and 5 minutes), 



number of bi-layers (1, 5, 10 and 20) significant thin film characteristics like; film thickness, 

continuity and hydrophilicity.  

2. Experimental Section 

2.1 Materials 

GO powder (product code C889/GOB019/Pw2) was purchased from Graphenea Co, Spain. 

The crosslinkers; PPD powder (99 % product code: P6001) and 50 % aqueous solution of PEI 

(product code: 03880) were both purchased from Sigma, Aldrich, UK. The films were 

fabricated on silicon-based substrates (CAT.NO.7101, 1.0-1.2mm thick) purchased from 

Fisher Scientific, UK.  1M of potassium hydroxide (KOH) prepared from KOH powder 

(product code: P/5640/53) used for substrate pre-treatment was purchased from Fisher 

Scientific, UK as well.  

 

2.2 Study of interaction between GO and crosslinkers 

Prior to thin-film fabrication it was significant to determine the plausibility of GO – crosslinker 

interaction. The key to this was to firstly verify the presence of notable functional groups in 

GO and the crosslinkers and secondly to determine predominant interaction nature between 

GO and each of the crosslinkers. 

Following preparation of the 0.5 mg/ml aqueous GO dispersion and 2.0 mg/ml of PPD and PEI 

aqueous solutions, each crosslinker was separately reacted with GO (1:1 ratio,) for 1 and 5 

minutes. The reaction time was controlled by a pH switch after the designated reaction times 

through the addition of 99 % sulphuric acid (Product code: 07208, Sigma Aldrich, UK), which 

resulted in the protonation of the reacting entities, hence rendering them unreactive [37,38]. 

The reacted samples were then centrifuged using a Bio-fuge Primo Heraeus centrifuge for 10 

minutes at 6000 rpm with thorough rinsing through a repetitive replacement of the supernatant 

with distilled water to remove the unreacted crosslinker and GO excess material. 

The four centrifuge residue samples were then collected for Fourier Transform Infra-Red 

(ATR-FTIR PerkinElmer) and X-Ray Photoelectron Spectroscopy (Kratos Ultra-DLD XPS 

System (K-Alpha+) characterizations to verify GO-crosslinker interactions. For XPS 

characterizations wide-scan spectra in the binding energy range of approximately 0–1000 eV 

were obtained to identify the elements present on the surfaces of the GO and the reacted 

entities. Additionally, high resolution spectra were obtained. Five peaks emerged when the C1s 



peak was curve fitted, corresponding to C graphitic (Binding energy, BE, = 284.3–284.4 eV), 

C-O epoxide/C-OH (BE = 285.6–285.7 eV), C=O carbonyl (BE = 286.9-287.0), the band at 

288.9 attributed to COOH carboxyl groups as well as the π-π* shake-up signal (290.8 eV) 

typical for sp2- hybridized carbon. It is worth it to mention that at these binding energies there 

is an overlap of oxygen and nitrogen functionalities, specifically between C(epoxy) and C=N 

and among C=O and C-N [39–41]. 

 

2.3 Thin film fabrication procedure 

To fabricate the GO – crosslinked films, the glass slide substrates were pre-treated, first by 

hydroxylation through immersion in 1M KOH for 30 minutes to instigate a negative charge 

onto the slides though the formation of hydroxyls [42]. This was followed by thorough rinsing 

with deionized water and drying. The hydroxylated slides were subsequently immersed in a 

positively charged 2.0 mg/ml aqueous PEI for 5 minutes in order to instigate a positive charge 

on the glass slides [43]. The positively charged glass slides were then rinsed in deionized water 

and then dried before dip-assisted layer-by-layer assembly, which commenced with immersion 

in the negatively GO dispersion (Figure 1). 

A rotary dip-coater device (Nadetech Innovations, Spain) (ND-R 11/2, S/N: 522016) was used 

to fabricate the films on an automated interchangeable dipping basis between GO and the 

crosslinkers (Figure 1). This process was done with rinsing of the glass slides in deionized 

water and drying prior to each immersion in either GO or the crosslinker. The dispersion of the 

GO nanosheets was enhanced by a 2-hour pre-fabrication sonication in a bath type sonicator 

(Ultrawave limited, Hz – (50-60)). The films were fabricated under different dip-coating 

conditions i.e. 1, 5, 10 and 20 bi-layers and 1- and 5-minutes immersion times (see 

nomenclature in Table 1). Based on previous experience [15,22], other dip-assisted layer by 

layer operating conditions like the immersion and withdrawal speeds were kept constant at 

2400 mm/min. 



 

Figure 1. Dip-assisted layer by layer fabrication technique schematic. 

 

Table 1. Nomenclature of the fabricated films at different immersion times and bi-layers.  

 Number of bi-layers 

Immersion time 

(min) 

1 5 10 20 

1 GO-X-1’1 GO-X-1’5 GO-X-1’10 GO-X-1’20 

5 GO-X-5’1 GO-X-5’5 GO-X-5’10 GO-X-5’20 

Key: X = PEI or PPD. 

 

2.4 Post film fabrication characterizations 

The fabricated film surface coverage and homogeneity were characterised by means of a 

scanning electron microscope (SEM). The water contact angle measurements were 

subsequently recorded with a DMK 31BF03 camera and the angles were processed by image j 

software (1.50i/ Java 1.6.0) (Public Domain, BSD-2). To enhance the reliability of the results, 

an average of 10 contact angle measurements was taken. Pure water drops were introduced to 

the films in different positions from two different fabrication sets of the same film type. The 

thickness of the films on the other hand was evaluated by a Bruker DektakXT Profiling System 

GO 

0.5 mg/ml

Deionised 

water

Crosslinker

2.0 mg/ml

Deionised 

water

.
.

.
.

Pre-treated glass slide 

substrate

5 bi-layers crosslinked 

film post assembly

 Where the 

immersion and 

withdrawal 

speed were kept 

constant

Drying

Drying

Rinsing

Rinsing

CrosslinkingImmersion in GO

1)

2)

3)

4)



(Stylus Profiler), Bruker’s Vision64 software was then used to analyse the film thickness. 

Similarly, the reliability of the thickness results was enhanced by taking an average of 10 

thickness measurements and noting the standard deviations of each recorded thickness in error 

bars. 

3. Results and discussion 

3.1 Nature of interaction between GO and the crosslinkers 

Primarily, the nature of interaction between GO and the crosslinkers was determined and 

confirmed. This was significant as it is a precursor to intra(horizontal) and inter(vertical) sheet 

crosslinking during film fabrication [30].  

The FTIR characterizations confirm the presence of oxygen containing functionalities in GO. 

For instance, the O-H presence was verified by the absorption band at around 3340 cm-1, while 

the band at 1726 cm-1 is attributed to the C=O stretching of ketone, carboxylic and/or ester 

groups (Figure 2). Furthermore, the peak at 1616 cm-1 corresponds to C=C stretching vibrations 

and the band at 1060 cm-1 can be assigned to C-O (epoxy) groups [44–48]. 

The most significant functional groups present in the PPD spectrum are related to amine 

groups. Three bands between 3400-3000 cm-1 indicate the presence of primary amines [45–

47]. Additionally, the spectral bands at 1630 cm-1 and 1516 cm-1 have been correlated with –

N-H deforming vibrations [52,53]. Finally, the band at 1250 cm-1 identifies the occurrence of 

–C-N bonds in aromatic amines [49,54] and the –N-H wagging vibrations are distinguished by 

the sharp peak at 832 cm-1 [51].  

The GO-PPD reacted entities illustrate that the characteristic triplet of primary amines in the 

3400-3000 cm-1 region disappears at 1 and 5 minutes reaction times (Figure 2) and there is a 

small but very clear peak at 1510 cm-1 assigned to -N-H bend [51,53]. These two facts suggest 

the existence of secondary amines [51], which consequently points to an epoxy ring opening 

reaction between GO and PPD at both reaction times [36] (Figure 3). 

 



 

Figure 2. FTIR characterization spectra for the GO-PPD interactions after 1 and 5 minutes of 

reaction and the GO and PPD spectra. 

 

Figure 3. The epoxy ring opening reaction between PPD and GO 

 

The indication of the epoxy ring opening is further supported by the attenuation of the epoxy 

band at 1060 cm-1 (Figure 2), which is in agreement with the XPS results shown in Table 2, 

where a reduction in the epoxide proportion of the GO-PPD reacted entities (37% GO vs 26% 

GO-PPD) is evident. Additionally, the reacted entities show the formation of a –C-N band at 

5001000150020002500300035004000

T
ra

n
sm

it
ta

n
c
e
 (

a
.u

.)

Wavenumber (cm-1)

-C-N -C-O(Epoxy)-N-H

Primary 

amines

GO

PPD

GO-PPD-1min

GO-PPD-5min

Epoxide group in GO



~1220 cm-1 [49,54], which is also reflected in the XPS results, where the C=O/C-N content 

increases from 1.2% up to 15.7% at 5 minutes reaction time. 

Given the presence of different functional groups it is also most likely that other minor 

interactions like van der Waals forces and hydrogen bonding are occurring [29]. Structurally, 

GO, in some areas where the oxygenated functional groups are not present, contains aromatic 

lattices and since PPD contains a benzene ring another possible interaction between GO and 

PPD is via the 𝜋 −  𝜋 interactions [55,56]. 

 

Table 2. Surface chemistry of GO and GO-crosslinker reacted entities. 

  GO GO-PPD 

reacted 1 

min 

GO-PPD 

reacted 5 

min 

GO-PEI 

reacted 1 

min 

GO-PEI 

reacted 5 

min 

C1s (at.%) 71.2 70.1 67.5 67.5 61.9 

O1s (at.%) 27.4 27.6 29.9 23.0 26.6 

S1s (at.%) 1.4 1.6 1.6 2.6 3.0 

N1s (at.%) --- 0.7 1.0 6.9 8.5 

Csp2+Csp3(%) 58.5 57.8 51.9 58.2 52.3 

C(epoxy)/C-OH/C=N (%) 37.1 26.9 25.7 35.7 35.4 

C=O/C-N (%) 1.2 9.3 15.7 2.0 8.0 

COOH (%) 3.2 5.0 6.3 4.1 4.1 

π-π* (%) 0.0 1.0 0.4 0.0 0.2 

 

On the other hand, PEI (Figure 4) contains a large amount of primary and secondary amine 

groups as well, which are evident in the region between 3400 cm-1 and 2900 cm-1 and by the 

strong –N-H band at around 1640 cm-1 (Figure 5) [47, 48, 53]. The band at 1460 cm-1 

corresponds to the –CH2 bending [51] and it can be also detected in the reacted entities (Figure 

5).  

In the GO-PEI reacted samples there is no disappearance of the band at 1060 cm-1, hence no 

indication of the epoxy ring opening reaction (see Figure 5). This is in accordance with the 

XPS results (Table 2) that show a constant percentage of epoxy groups regardless the reaction 

time (37.1 % in the GO vs 35.7 %-35.4 % in the reacted entities). Moreover, pH of GO 

suspension and PEI solution were 5.2 and 8.3 respectively, at these pH values both compounds 

have significant ionization and opposite charges [43,57], which supports the claim that their 

interaction is predominantly an electrostatic based one. 



 

Figure 4. PEI monomer (branched ethyleneimine) 

 

 

Figure 5. FTIR characterization spectra for the GO-PEI interactions after 1 and 5 minutes of 

reaction and the GO and PEI spectra 

 

3.2 Film continuity analysis 

Very good uniformity and homogeneity across the thin films can be observed in the pictures 

shown in Figure 6. The darkening of the glass slides indicates that coating and material 

assembly increase with the number of bi-layers and the immersion time in both sets. Uniform 
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thickness of the coatings is to an extent confirmed by the homogeneous change in surface 

colour after all the different number of coating cycles.  

 

Figure 6. Camera pictures of the crosslinked thin films. 

 

As it can be seen in further detail in Figure 7, excellent continuity coverage is achieved from 

the very first layer. Some wrinkles can be observed on the surface due to the folding of the GO 

nanosheets (Figure 7).  
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Figure 7. SEM images of the crosslinked thin films. A) GO-PPD 1’1; B) GO-PPD 1’20; C) 

GO-PEI 1’1; D) GO-PEI 1’20 

 

3.3 Thin film hydrophilicity 

Hydrophilicity is among the significant thin film characteristics. High film hydrophilicity can 

be of sentimental value or a limitation depending on the intended application of the fabricated 

films. For instance in surface coating lower film hydrophilicity is required while in water 

purification and desalination higher hydrophilicity is preferred [43,58]. Film hydrophilicity 

was evaluated by measurements of the water contact angles of the fabricated films (Figure 8). 

As aforementioned, 10 measurements in different positions from two differently fabricated 

films under the same operating conditions were undertaken and the average contact angle and 

standard deviations were noted.  



  

Figure 8. Water contact angles for the crosslinked films. 

 

The general hydrophilicity trend shows that the water contact angle increases as the number of 

bi-layers increases. A notable decrease in hydrophilicity is observed from the first bi-layer to 

the 10th for both crosslinkers and eventually a gradual decrease from the 10th bi-layer to the 

20th is observed at both immersion times for both crosslinkers (Figure 8). 

The more hydrophobic nature of the crosslinkers in comparison to GO is the likely cause for 

the observed decrease in hydrophilicity of the fabricated films as the number of bi-layers and 

immersion time increases, owing to increased crosslinker accumulation fabrication. 

Larger contact angles were recorded for the PPD crosslinked films in comparison to the PEI 

crosslinked films, which is due to the hydrophobic aromatic ring structure of the PPD monomer 

[59]. This is in agreement with the recorded magnitudes for the individual compounds 

(68.2°±6.8° for PPD; 57.3°±4.3° for pure PEI) and therefore proving the influence of the 

characteristics of the crosslinkers onto the overall hydrophilicity of the fabricated films. At 5 

min deposition time and 20 bi-layers the contact angles reach the values of the pure crosslinkers 

or even exceed it in the case of the PEI (64.2°±9° vs 57.3°±4.3°). This fact could be attributed 

to the reducing properties of PEI [60]. 
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30.1º  4.2º 42.0º  5.2º 56.8º   3.6º  

36.2º  7.3º 52.1º  6.7º 58.3º  5.9º 64.2º  9º 

59.3º   6.3º  



3.4 Film thickness analysis 

The essentiality of ease of control of the thickness of the active layers cannot be understated in 

optimising device performances. 

The thickness characterizations results show a strong linear correlation between film thickness 

and the respective number of bilayers at each of the immersion times for both sets of 

crosslinked films (Figure 9).  

It is important to highlight that due to the thin thickness of the 1 bilayer films, especially those 

deposited at 1 min immersion time, it was necessary to fabricate them on a silicon wafer, as 

the roughness of the glass slides was overly and therefore it was not possible to have an accurate 

thickness measure for those specific samples.  

Displayed in Figure 9 are the thickness results of the two sets of crosslinked films at both 

immersion times and different bilayer cycles. The results are very repeatable and 1 bilayer thin 

films at 1 min immersion are very close to the resolution of the equipment. 



 

Figure 9. Thickness measurements of the cross-linked thin films. 

 

A general linear trend due to the additional material accumulation as the immersion time and 

the number of bilayers increases is evident. Nevertheless, for the PEI-crosslinked films the 

thickness magnitude is much higher than that of the PPD thin films (one order of magnitude) 

as it can be seen in Figure 9. For instance, the PPD crosslinked films at 1 minute immersion 

time the thickness rises from 3 nm to 21 nm as the number of bi-layers increases from 1 to 20 

bilayers, while it increases from 6 nm to 29 nm when the immersion time is increased to 5 min.  



These values are relatively close to the theoretical expected step increase of 1.5 nm per bi-layer 

[58]. 

On the other hand, PEI crosslinked films thickness increases is from 5 nm to 92 nm (1 min 

dipping) and from 13.9 nm to 330 nm (5 min immersion time). Theoretically, since PEI is a 

polymer and therefore with varying chain lengths, the expected step increase for the PEI 

crosslinked films cannot be predicted with absolute certainty [61]. In both cases however a 

strong linear progression with the increasing number of bi-layers is observed. 

The varying magnitude of increase in film thickness regarding the two crosslinkers is mainly 

due to the differences in the sizes of the crosslinkers, as PPD is a much smaller molecule while 

PEI is a bigger polymer with long branched chains and thus resulting in higher thickness as the 

number of bi-layers increases [61]. This further supports the claim that the thickness of the 

crosslinked films is majorly due to vertical inter layer crosslinking as evidenced by the fact that 

the bigger the crosslinker the higher the increase in film thickness magnitude. 

The immersion time also has a significant impact on the thickness of the obtained films. In the 

case of PEI, increasing the immersion time from 1 minute to 5 minutes results in films three 

times thicker and between 1.5 and 2 times for PPD-crosslinked films. As such, selection of the 

interlayer crosslinker and the deposition parameters is key to fine-tuning and modification of 

the thickness of dip-assisted layer by layer assembled thin films. 

The importance of the study is on the fact that the GO films can be easily fine-tuned to specific 

characteristics required in particular industrial operations. This makes the fabrication process 

economically efficient and viable. Furthermore, the successful fabrication of the different 

crosslinked thin films on glass slides highlights that various substrates including porous ones 

can be employed and as such the films can have different applications ranging from sensors to 

separation membranes and not solely in lab scale research applications. The study verifies the 

significance of both inter and intra layer crosslinking in altering the significant properties of 

GO based thin films. This further opens a possibility for the use of other different sized 

crosslinkers and polymers in fine tuning significant thin film characteristics via the dip-assisted 

layer-by layer-assembly. 

 

4.0 Conclusions 

In summation it was successfully demonstrated that crosslinked GO films with step-controlled 

thickness and hydrophilicity could be fabricated in a facile manner by means of dip-assisted 



layer-by-layer assembly. Good film homogeneity was also achieved. The thickness was 

successfully controlled through the use of different sized crosslinkers and operating conditions 

of the dip-assisted layer-by-layer method; the immersion time and the number of assembly 

cycles. It was observed that different crosslinkers have different impact on thickness 

progression as both the number of bi-layers and immersion time increase. This is advocated to 

the differences in size and nature of the crosslinkers entailed. Interpolation to fabrication 

operating conditions to obtain a specific characteristic can be thus be easily carried out.  
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