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Abstract

Background: Human tissue is increasingly being whole genome sequenced as we
transition into an era of genomic medicine. With this arises the potential to
detect sequences originating from microorganisms, including pathogens amid the
plethora of human sequencing reads. In cancer research, the tumorigenic ability of
pathogens is being recognized, for example Helicobacter pylori and human
papillomavirus in the cases of gastric non-cardia and cervical carcinomas
respectively. As of yet, no benchmark has been carried out on the performance of
computational approaches for bacterial and viral detection within host-dominated
sequence data.

Results: We present the results of benchmarking over 70 distinct combinations
of tools and parameters on 100 simulated cancer datasets spiked with realistic
proportions of bacteria. mOTUs2 and Kraken are the highest performing
individual tools achieving median genus level F1-scores of 0.90 and 0.91
respectively. mOTUs2 demonstrates a high performance in estimating bacterial
proportions. Employing Kraken on unassembled sequencing reads produces a
good but variable performance depending on post-classification filtering
parameters. These approaches are investigated on a selection of cervical and
gastric cancer whole genome sequences where Alphapapillomavirus and
Helicobacter are detected in addition to a variety of other interesting genera.

Conclusions: We provide the top performing pipelines from this benchmark in a
unifying tool called SEPATH, which is amenable to high throughput sequencing
studies across a range of high-performance computing clusters. SEPATH provides
a benchmarked and convenient approach to detect pathogens in tissue sequence
data helping to determine the relationship between metagenomics and disease.

Keywords: Metagenomics; Pipeline; Taxonomy; Classification; SEPATH; Cancer;
Pathogens; Bioinformatics; Bacteria; Viral

Background
The estimated incidence of cancer attributed to infection surpasses that of any in-

dividual type of anatomically partitioned cancer [1]. Human papillomavirus (HPV)

causes cervical carcinoma and Helicobacter pylori facilitates gastric non-cardia car-

cinoma induction [2, 3]. The role of HPV in tumorigenesis is understood and has

clinical implications: HPV screening programs have been adopted and several vac-

cines exist, targeting a wide range of HPV subtypes [4]. The amount of whole

genome sequencing data generated from tumor tissue is rapidly increasing with re-
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cent large-scale projects including The Cancer Genome Atlas Program (TCGA) [5],

International Cancer Genome Consortium (ICGC) [6] (including the Pan-Cancer

Analysis of Whole Genomes, PCAWG [7]), Genomic England’s 100,000 Genomes

Project [8] and at least nine other large-scale national sequencing initiatives emerg-

ing [9]. When such samples are whole genome sequenced, DNA from any pathogens

present will also be sequenced, making it possible to detect and quantify pathogens,

as recently shown in cancer by Feng et al. 2019 [10] and Zapatka et al. 2018 [11].

Protocols for these projects do not typically encompass negative control samples

and do not use extraction methods optimized for microbiome analysis, yet careful

consideration of contamination and correlation of output results with clinical data

could generate hypotheses without any additional cost for isolated metagenomics

projects. The scope of potential benefits from analyzing cancer metagenomics is

broad and could benefit multiple prominent research topics including cancer devel-

opment, treatment resistance and biomarkers of progression. It is therefore impor-

tant to consider the performance of pathogen sequence classification methods in the

context of host-dominated tissue sequence data.

Traditionally, the identification of microbiological entities has centered around

culture-based methodologies. More recently, there has been an increase in taxonomic

profiling by using amplicon analysis of the 16S ribosomal RNA gene [12]. Whole

genome sequencing however presents an improved approach that can interrogate

all regions of every constituent genome whether prokaryotic or not, and provides a

wider range of possible downstream analyses. The increasingly widespread use of

whole genome sequencing technologies has resulted in an explosion of computational

methods attempting to obtain accurate taxonomic classifications for metagenomic

sequence data [13]. Typically, these tools rely on references of assembled or partially

assembled genomes to match and classify each sequencing read or assembled contig.

One issue with this approach is that there exists an uneven dispersion of interest

in the tree of life, rendering some clades underrepresented or entirely absent. Fur-

thermore, sequence similarity between organisms and contamination in reference

genomes inhibit the perfect classification of every input sequence [14–16]. A recent

study has shown that the increasing size of databases such as NCBI RefSeq, has

also resulted in more mis-classified reads at species level with reliable classifications

being pushed higher up the taxonomic tree [17]. Because of this species level in-

stability, we initially select to carry out metagenomic investigations at genus level,

prior to investigating lower taxonomic levels, particularly for experiments with low

numbers of non-host sequences.

Computational tools for metagenomic classification can be generalized into either

taxonomic binners or taxonomic profilers [13]. Taxonomic binners such as Kraken

[18, 19], CLARK [20] and StrainSeeker [21] attempt to make a classification on

every input sequence whereas taxonomic profilers such as MetaPhlAn2 [22, 23] and

mOTUs2 [24, 25] typically use a curated database of marker genes to obtain a

comparable profile for each sample. This generally means that taxonomic profil-

ers are less computationally intensive in comparison to binners but may be less

e↵ective with low amounts of sequences. Although there is a large number of tools
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available purely for sequence classification, at the time of writing there is a lim-

ited selection of computational pipelines available that process data optimally with

high-throughput and produce classifications from raw reads with all appropriate

steps including quality control. Examples of these include PathSeq [26–28] which

utilizes a BLAST [29] based approach and IMP [30] which utilizes MaxBin [31] for

classification.

Community driven challenges such as CAMI (Critical Assessment of Metagenome

Interpretation) provide one solution to independently benchmark the ever-growing

selection of tools used for metagenomic classification [13]. CAMI provides a useful

starting point for understanding classification tools on samples with di↵ering com-

plexity, but it is unlikely to provide an accurate comparison for more niche areas of

taxonomic classification such as ancient microbiome research [32] or for intra-tumor

metagenomic classification dominated by host sequences.

Classifying organisms within host tissue sequence data provides an additional

set of challenges. In addition to the limitations in tool performance there is also a

low abundance of pathogenic sequences compared to the overwhelming proportion

of host sequence data as well as high inter-sample variability. Cancer sequences

are also known to be genetically heterogeneous and unstable in nature providing

a further cause for caution when classifying non-host sequences and rendering the

accurate removal of host reads di�cult [33–35].

Here we present and discuss the development of SEPATH, template computational

pipelines designed specifically for obtaining classifications from within human tissue

sequence data and optimized for large WGS studies. This paper provides rationale

for the constituent tools of SEPATH by analyzing the performance of tools for

quality trimming, human sequence depletion, metagenomic assembly and classifi-

cation. We present the results of over 70 distinct combinations of parameters and

post-classification filtering strategies tested on 100 simulated cancer metagenomic

datasets. We further assess the utility of these pipelines by running them on a

selection of whole genome cancer sequence data. We analyze a selection of sam-

ples from cervical cancer, where it is expected that Alphapapillomavirus will be

frequently identified, and gastric cancer where it is expected that Helicobacter will

be identified. A selection of ten pediatric medulloblastoma samples is also analyzed

for which it is expected that not many if any taxa at all will be identified due to

the historically noted sterility of the brain, although this is currently a subject of

debate within the scientific community [36].

Results
The process of obtaining pathogenic classifications from host tissue reads can be

broken down into a few key computational steps: sequence quality control, host

sequence depletion and taxonomic classification. For these computational steps,

a series of tools and parameters were benchmarked on simulated metagenomes

(see methods). These genomes emulate empirical observations from other can-

cer tissue sequence data [11], with the percentage of human reads ranging from
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87% to >99.99%. Genomes from 77 species were selected as constituents for the

metagenomes [37]. These species were identified from Kraal et al. 2014 [38] with

additional bacterial species associated with cancer e.g. Helicobacter pylori [2] (see

additional file 1 for a full description of each simulation).

Human Sequence Depletion

A large proportion of sequence reads from tumor whole genome sequencing datasets

are human in origin. It is essential to remove as many host reads as possible - firstly,

to limit the opportunity for misclassification and secondly, to significantly reduce

the size of data thereby reducing the computational resource requirement.

Three methods of host depletion were investigated on eleven simulated datasets

(2x150bp Illumina reads). Two of these methods were k -mer based methods: Kon-

taminant [39, 40], and BBDuk [41]. The third method involved extracting unmapped

reads following BWA-MEM [42] alignment, an approach that is facilitated by the

likelihood that data will be available as host-aligned BAM files in large scale ge-

nomic studies. BWA-MEM is used as a baseline and parameters were set to be as

preservative as possible of any potential non-human reads.

All methods retained the majority of bacterial reads (median of >99.9% bacte-

rial reads retained for all conditions; additional file 2: Fig. S1), but the number of

human reads remaining in each dataset varied (Figure 1). Using default parameters

BBDuK and Kontaminant retained a median of 15.4 million reads, compared to

259 million from BWA-MEM with intentionally lenient filtering parameters. We

investigated BBDuK further, establishing default BBDuK performance following

BWA-MEM depletion which demonstrated no tangible di↵erence in human read re-

moval (Figure 1A). BBDuK parameters were also adjusted from the default setting

of a single k -mer match to the reference database (Figure 1B-C). It was found that

removing a read when 50% or more of the bases have k -mer matches to the human

reference (MCF50) provided an approach that removed near identical proportions

of human and bacterial sequences to the default parameters.

In an attempt to capture k -mers specific of cancer sequences, a BBDuK database

was generated containing human reference genome 38 concatenated with coding

sequences of all cancer genes in the COSMIC database [43]. With the additional

cancer sequences, a near identical performance was obtained when compared with

just the human reference database (Figure 1B-C). Therefore, including extra can-

cer sequences did not alter the retention of pathogen derived reads, providing an

opportunity for increased human sequence removal on real data without sacrificing

bacterial sensitivity. To investigate using a BBDuK database capturing a higher

degree of human sequence variation, we also investigated the inclusion of additional

human sequences from a recent analysis into the African ’pan-genome’ [44]. Includ-

ing these extra sequences removed slightly more bacterial reads but was a very

minor e↵ect (Figure 1C).
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Taxonomic Classification - Bacterial Datasets

We compared the performance of six di↵erent taxonomic classification tools by

applying them after filtering and host-depletion on 100 simulated datasets. Per-

formance was measured in terms of presence/absence metrics at the genus level:

positive predictive value (PPV/precision), sensitivity (SSV/recall) and F1 score

(the harmonic mean of precision and recall). Sequences were classified using three

taxonomic profilers (mOTUs [25], MetaPhlAn2 [22, 23] and Gottcha [45]) and three

taxonomic binners (Kraken [18], Centrifuge [46] and Kaiju [47]) (Figure 2 A-C).

In our analysis, Kraken and mOTUs2 delivered the best median genus F1 of 0.90

(IQR=0.083) and 0.91 (IQR=0.10) respectively. With median genus PPV scores of

0.97 (IQR=0.084), 0.95 (IQR=0.080) and median genus sensitivity scores of 0.86

(IQR=0.123), 0.88 (IQR=0.126) for Kraken and mOTUs2 respectively.

Kraken utilizes over 125 times the RAM requirement of mOTUs2 (Figure 2D;

median 256GB vs 2GB RAM for Kraken and mOTUs2 respectively; p = 2.2x10�16

Mann-Whitney U test); Kraken was ran with the database loaded into RAM to

improve runtime. Historically, alignment based taxonomic classification tools have

been slow, but by using the reduced 40 marker gene database, mOTUs2 has much

lower run times. CPU time was on average marginally higher for mOTUs2 compared

to Kraken (Figure 2D), but we noticed the elapsed time was actually lower (data

not shown).

Bacterial Proportion Estimation

Analyzing population proportions can provide a deeper understanding of microor-

ganism community structure. Therefore, it is important to assess the performance

of tools in predicting proportions. For each true positive result from the top per-

forming pipelines using Kraken and mOTUs2, the output number of reads was

compared against the true number of reads in the simulations (figure 3). The mO-

TUs2 pipeline obtained accurate rankings of read estimates (R2 = 0.91; Spearman’s

rank-order correlation) whereas our Kraken pipeline predicted the number of reads

with a Spearman’s rank-order correlation value of R2 = 0.69.

Bacterial Classification Following Metagenomic Assembly

The data above demonstrates that mOTUs2 and Kraken have comparable per-

formances. However, Kraken, in contrast to mOTUs2, can classify non-bacterial

sequences. When ran on raw reads, Kraken typically requires post-classification fil-

tering strategies in order to obtain high performance [25] (additional file 3: Fig. S2).

Post-classification filtering involves applying criteria to remove low quality classi-

fications from taxonomic results. Applying a metagenomic assembly algorithm to

quality-trimmed non-host reads might provide a rapid filtering approach that re-

duces the need for read-based thresholds.

MetaSPAdes [48] was employed on high quality non-human reads from 100 sim-

ulated datasets. An F1-score of 0.83 was obtained without any read threshold,

which was an improvement over Kraken on raw reads without any filtering strate-

gies (F1=0.54), but lower than Kraken with filtering (F1=0.9). The F1-score was
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increased to 0.89 when a requirement for a minimum of five classified contigs for

classification was applied (Figure 4A). Filtering out contigs with lower coverage

made little di↵erence on performance with the parameters tested. (additional file

4: Fig. S3, additional file 5: Fig. S4).

Filtering these datasets by number of contigs is non-ideal, as it would remove

classifications from taxa that assembled well into a small number of contigs. An

evolution of Kraken, KrakenUniq [19] was run on these contigs to further illuminate

the relationship between taxa detection and more advanced metrics than Kraken

1, including the coverage of the clade in the reference database and the number of

unique k -mers (Figure 4D, additional file 6: Fig. S5). This analysis reveals that on

our challenging datasets, no set of filtering parameters could obtain perfect perfor-

mance. Upon investigation of a single dataset, it was observed that 13 out of 17,693

contigs assigning to di↵erent genera were responsible for false positive classifications

resulting in a drop of PPV to 0.83 (additional file 7: Fig. S6). These contigs were

extracted and used as input for NCBI’s MegaBLAST with standard parameters.

Of the thirteen false positive contigs, three were correctly reclassified, three were

incorrectly classified, and the remaining seven obtained no significant hits. This

highlights that these contigs may su↵er from mis-assembly or non-uniqueness that

is not improved by use of a tool with a di↵erent approach.

Taxonomic Classification - Viral Datasets

We established the performance of viral classification in the presence of bacterial

noise by spiking a selection of our host-bacterial datasets with 10,000 viral reads

for each ten species. As mOTUs2 does not make viral classifications, Kraken was

run on either quality trimmed reads or contigs following metaSPAdes [48] assembly

(see Methods). Kraken correctly identified 8/10 virus species from reads as input

with post-classification filtering. When using contigs and no filtering strategies,

7/10 species were detected with no viral false positive results (Figure 5B). Filtering

by minimum number of contigs removed the majority of viral classifications. The

e↵ect of filtering on viral species classification was not reflected in classification of

bacterial genera (Figure 5A).

Bacterial Consensus Classification

Using distinct methods of classification and combining the results has been shown

to improve metagenomic classification performance [49]. The Kraken/mOTUs2

pipelines outlined here were compared with the BLAST [29] based PathSeq [27, 28]

on a reduced selection of eleven simulated bacterial datasets (Figure 6). A smaller

selection of datasets was used due to local resource limitations in terms of stor-

age and computational time of aligning our simulations to the human genome to

produce the required input for PathSeq. It was found that using an intersection

of classifications between any two tools obtained a perfect median PPV score but

caused a small drop in sensitivity and resulted in similar F1-scores compared with

using single tools. Sensitivity increased to 0.905 when using a consensus approach

between all three tools (whereby only classifications made by 2/3 tools is taken

as true). This rise in sensitivity for the consensus approach resulted in a median

genus level F1-score of 0.95; which was a better score than any other single tool or

intersection of two tools.



Gihawi et al. Page 7 of 17

Real Cancer Whole Genome Sequence Data

SEPATH pipelines using Kraken and mOTUs2 were ran on quality trimmed, hu-

man depleted sequencing files (figure 7). Kraken identified Alphapapillomavirus to

be present in 9/10 cervical squamous cell carcinoma samples, with a high average

number of sequencing reads compared to other taxa (figure 7A). interestingly, Tre-

ponema was identified as present in two samples by both techniques (taxa detected

in � 3 samples displayed in figure 7B) and both tools report high quantitative mea-

sures. This may well represent an interesting diagnostic finding, although follow up

would be required to ascertain the clinical utility. In stomach cancer, both mOTUs2

and Kraken identified Helicobacter in 4 and 5 samples respectively as anticipated,

Kraken reported Lymphocryptovirus in 6/10 samples with a high number of reads

in addition to a variety of other genera (Figure 7C). Despite human read depletion,

care should be taken to ensure the true positive nature of Lymphocryptovirus as

has been reported [50, 51]. It is noteworthy that the classification is not prominent

in either cervical cancer or medulloblastoma and has previously been associated

with gastric oncogenesis [3, 52].

In both cervical and gastric cancer, expansion of these pipelines to larger datasets

would help to characterize the role of many other reported genera. Medulloblastoma

samples are expected to be mostly sterile and this is well reflected with only very low

number of genera at low read counts (number of genera: total reads in all samples 75 :

11,213,997, 102 : 16,269,893, 27 : 138,712 for cervical, gastric and medulloblastoma

respectively.). Kraken appears to be more sensitive; making a greater number of

classifications overall and classifying the same taxa as present in a higher number

of samples than mOTUs2.

SEPATH Template Pipelines

The top performing algorithms and parameters for each of the stages have been

combined in a unifying template pipeline implemented in snakemake [53]: SEPATH

(Figure 8, https://github.com/UEA-Cancer-Genetics-Lab/sepath_tool_UEA).

SEPATH provides three blocks of functionality: 1) Conversion of host-aligned BAM

files to FASTQ files that is intentionally preservative of pathogenic reads; 2) mO-

TUs2 bacterial classification ran on trimmed and filtered sequencing reads; 3)

Kraken ran on quality trimmed reads or metagenomic assembled contigs. All blocks

can be run together or separately and uses either BAM of FASTQ input files. All

software dependencies for SEPATH can easily be installed via conda.

Discussion
We have demonstrated pipelines for detecting bacterial genera and viral species

in simulated and real whole genome sequence data from cancer samples. These

pipelines perform well in terms of sensitivity & PPV and utilize computational

resources e↵ectively. The two top performing classification tools, Kraken and mO-

TUs2, have very di↵erent underlying mechanics despite achieving similar perfor-

mance. Kraken builds a database by minimizing and compressing every unique

k -mer for each reference genome. Kraken begins analysis by breaking down each

input read into its constituent k -mers and matching each of these to the user gen-

erated reference database. The sequence is classified probabilistically by the leaf in

https://github.com/UEA-Cancer-Genetics-Lab/sepath_tool_UEA
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the highest weighted root to leaf path in a taxonomic tree [18]. In comparison to

Kraken, mOTUs2 uses a highly targeted approach by analyzing 40 universal phylo-

genetic bacterial marker genes for classification. Overall mOTUs2 uses 7726 marker

gene based operational taxonomic units (mOTUs). Classifications are obtained by

an alignment to this database using BWA-MEM with default parameters [25, 42].

mOTUs2 has been developed with quantitative abundance in mind. It intuitively

estimates the proportion of sequences estimated to originate from unknown taxa

(denoted by ’-1’ in mOTUs2 reports) and adjusts abundance values from detected

clades accordingly to account for this. Kraken read distribution can be improved

by using a Bayesian framework to redistribute the assigned reads using Bracken

[54]. A comparison of relative abundance between mOTUs2 and Bracken was car-

ried out during the production of mOTUs2 as reported in Milanese et al. 2019

[25]; which demonstrated that mOTUs2 appeared to provide more accurate predic-

tions. We therefore recommend our Kraken pipelines for accurate representations

of presence/absence and suggest that using abundance weighted �-diversity met-

rics from these pipelines should be interpreted with caution. A further caveat of

the assembly-kraken pipeline is that it requires successful metagenomic assem-

bly. Whilst MetaSPAdes worked well on our simulations, idiosyncrasies of di↵ering

technologies and datasets may hinder successful assembly. In this event we would

recommend running Kraken classification on quality trimmed and human depleted

sequencing reads without assembly.

The data in this paper supports use of mOTUs2 for quantitative bacterial mea-

surements, which together with the high classification performance on simulated

data suggests that both binary and non-binary �-diversity measures would be rep-

resentative of the true values of the dataset; suggesting a conferred accuracy in bac-

terial community profiling. Furthermore, mOTUs2 di↵ers to current methods that

rely purely on bacterial reference sequences by incorporating data from metagenome

assembled genomes, suggesting that mOTUs2 captures a di↵ering scope of classi-

fications to our Kraken database, which was developed using reference genomes.

Although both tools are state-of-the-art at the time of writing, they are likely to

contain biases in terms of what they are able to classify, which pertains to previous

sequencing e↵orts of the sampling site. The human gut microbiome for example is

currently believed to be better characterized than other body sites [25].

For bacterial classification, we noted a higher performance at taxonomic levels

above genus level, but performance appears to drop at species level (additional

file 3: Fig. S2). We urge caution when working at the species level on this type

of data due to this combined with the instability of species level classification. At

lower taxonomic levels, the retention of BAM files from mOTUs2 could theoret-

ically allow for subsequent investigations at more specific taxonomic nodes (such

as strain level) by investigating single nucleotide variation. Kraken also automat-

ically produces sub-genus level classifications where the input data and reference

database permits. Validating performance at these taxonomic levels would require

extensive performance benchmarking which has not been conducted here. Bench-

marking tools and databases as they emerge is an important task as they greatly
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influence performance. It is hoped that utilities presented here will assist future

benchmarking e↵orts.

The use of SEPATH pipelines on real cancer sequence data suggests overall agree-

ment between Kraken and mOTUs2 but reveals important considerations for sub-

sequent analysis. Kraken appears to be more sensitive than mOTUs in this real

data, possibly due to the di↵ering parameters used due to the shorter read lengths

seen (2x100bp in real sample data compared to 2x150bp in simulated data). Using

sequencing protocols optimized for microbial detection compared to human sequenc-

ing projects is likely to result in higher and more even microbial genome coverage

and subsequently more classifications with mOTUs2 which has been demonstrated

recently in analysis of fecal metagenomes of colorectal cancer patients [55]. In this

study mOTUs2 provided interesting ’unknown’ classifications which would not be

captured by standard Kraken databases. We therefore recommend Kraken as the

primary tool of investigation on tissue, but mOTUs2 has great potential in the

confirmatory setting and for investigating unknown taxa. A consensus approach

of di↵erent tools on much larger real datasets would likely help in distinguishing

between the peculiarities (particularly false positives) of individual tools and true

positive results which would benefit the accurate characterization of human tissue

metagenomes.

Conclusions
A benchmark into metagenomic classification tools has revealed high performing ap-

proaches to process host-dominated sequence data with low pathogenic abundance

on a large selection of challenging simulated datasets. We provide these pipelines

for the experienced user to adjust according to their own resource availability and

provide our simulated metagenomes for others to use freely for independent in-

vestigations. mOTUs2 provides fast and accurate bacterial classification with good

quantitative predictions. MetaSPAdes and Kraken provide bacterial and viral clas-

sification with assembled contigs as a useful downstream output. We have shown

that SEPATH forms a consensus alongside PathSeq to achieve near perfect genus

level bacterial classification performance. Using SEPATH pipelines will contribute

towards a deeper understanding of the cancer metagenome and generate further

hypotheses regarding the complicated interplay between pathogens and cancer.

Methods
Metagenome Simulations

Metagenomes were simulated using a customized version of BEAR (Better Em-

ulation for Artificial Reads) [56] and using in-house scripts to generate propor-

tions for each reference genome (additional file 8: Fig. S7, https://github.com/

UEA-Cancer-Genetics-Lab/BEAR). These proportions were based on previously an-

alyzed cancer data [11]. Firstly, the number of total bacterial reads (in both pairs)

was generated by a random selection of positive values from a normal distribu-

tion function with a mean of 28,400,000 and a standard deviation of 20,876,020.

The number of human reads in the sample was set to the di↵erence between this

number and 600 million (the total number of reads in both pairs). The number

https://github.com/UEA-Cancer-Genetics-Lab/BEAR
https://github.com/UEA-Cancer-Genetics-Lab/BEAR
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of bacterial species were randomly sampled from the reference species available

and the number of bacterial reads available were picked from a gamma distribu-

tion of semi-random shape. The number of reads for each bacterial species were

distributed among contigs proportionately depending on contig length. This pro-

duced a file with contigs and proportions of final reads which was provided to

BEAR to generate paired-end FASTA files for each of the 100 metagenomes with

approximately 300 million reads per paired-end file (complete metagenome com-

positions can be found in additional file 1, viral components in additional file

9). An error model was generated following the BEAR recommendations from

a sample provided by Illumina containing paired-end reads that were 150 base

pairs in read length (https://basespace.illumina.com/run/35594569/HiSeqX_

Nextera_DNA_Flex_Paternal_Trio). This sample was selected to best resemble

data originating from within Genomic England’s 100,000 genomes project. These

simulated metagenomes can be downloaded from the European Nucleotide Archive

(https://www.ebi.ac.uk/ena/data/view/PRJEB31019).

Tool Performance Benchmarking

Samples were trimmed for quality, read length and adapter content with Trimmo-

matic [57] prior to running any classification (default parameters were minimum

read length = 35 and minimum phred quality of 15 over a sliding window of 4).

SEPATH has trimming parameters set as default that prevent any excessive removal

of data (including any reads that may be pathogenic), but these should be adjusted

according to the nature of the data being analyzed.

Performance estimates were obtained by converting all output files into a common

file format which were compared against the true composition by string matches

and NCBI taxonomic ID. The total number of true positive results, false positive

results and false negative results were used to calculate F1-score, sensitivity and

PPV were calculated as follows:

SSV (recall) =
TP

TP + FN
(1)

PPV (precision) =
TP

TP + FP
(2)

F1� Score =
2

SSV �1 + PPV �1
(3)

Real Cancer Whole Genome Sequence Analysis

Sequencing data from cancer tissue was obtained from the cancer genome atlas

(TCGA-CESC and TCGA-STAD) [5], International Cancer Genome Consortium

(ICGC) PedBrain Tumor Project [58], and ICGC Chinese Gastric Cancer project

[59]. These sequencing reads were pre-processed through a common pipeline to

obtain reads unaligned to the human genome [60] and were additionally quality

trimmed and depleted for human reads using SEPATH standard parameters but

with a database consisting of human reference genome 38, African ’pan-genome’

project sequences and COSMIC cancer genes as previously mentioned. Kraken was

https://basespace.illumina.com/run/35594569/HiSeqX_Nextera_DNA_Flex_Paternal_Trio
https://basespace.illumina.com/run/35594569/HiSeqX_Nextera_DNA_Flex_Paternal_Trio
https://www.ebi.ac.uk/ena/data/view/PRJEB31019
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ran on quality trimmed reads and a confidence threshold of 0.2 was applied to the

reports. mOTUs2 was ran for genus level analysis on the same reads using two

marker gene minimum and a non-standard minimum alignment length of 50 to

account for shorter read length. Kraken files had a minimum read threshold applied

of 100 reads for each classification and mOTUs2 results were left unfiltered.

Computational Tools and Settings

All analysis for figures was carried out in R version 3.5.1 (2018-07-02). All

scripts and raw data used to make the figures can be found in the supple-

mentary information and on https://github.com/UEA-Cancer-Genetics-Lab/

sepath_paper. In addition to the ‘other requirements’ mentioned below, this pa-

per used the following software as part of the analysis: picard 2.10.9, samtools

v1.5, BEAR (https://github.com/UEA-Cancer-Genetics-Lab/BEAR commit:

a58df4a01500a54a1e89f42a6c7314779273f9b2), BLAST v2.6.0+, Diamond v0.9.22,

MUMmer v3.2.3, Jellyfish v1.1.11, Kaiju v1.6.3, Kontaminant (pre-release, git hub

commit: d43e5e7), KrakenUniq (github commit: 7f9de49a15aac741629982b35955b12503bee27f),

MEGAHIT (github commit: ef1bae692ee435b5bcc78407be25f4a051302f74), MetaPhlAn2

v2.6.0, Gottcha v1.0c, Centrifuge v1.0.4, FASTA Splitter v0.2.6, Perl v5.24.1 bzip2

v1.0.5, gzip v1.3.12, Singularity v3.2.1.

Python v3.5.5 was used with the exception of BEAR, which used Python 2.7.12.

Python modules used include: SeqIO of BioPython v1.68, os, sys, gzip, time, sub-

process, glob. R packages used and their versions include: Cowplot v0.9.3, dplyr v

0.7.6, ggExtra v0.8, ggplot2 v3.0.0, ggpubr v0.1.8, ggrepel v0.8.0, purr v0.2.5, gg-

beeswarm v0.6.0, see v0.2.0.9, RColorBrewer v1.1-2, readr v1.1.1, reshape2 v1.4.3,

tidyr v0.8.1, tidyverse v1.2.1.

Availability and Requirements
Project name: SEPATH

Project home page: https://github.com/UEA-Cancer-Genetics-Lab/sepath_

tool_UEA

Operating system(s): Linux based high performance computing cluster environ-

ments

Programming language: Python 3, Bash

Other requirements: Python v3.5, Snakemake v3.13.3, Trimmomatic v0.36, Java

v.8.0 51, bbmap v37.28, mOTUs2 v2.0.1, Kraken 1, Spades v3.11.1, Pysam v0.15.1

License: GPL version 3 or later

List of Abbreviations
BAM – Binary alignment map file format

GB – Gigabytes

IQR – Interquartile range

NCBI - National Center for Biotechnology Information

RAM – Random access memory
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PPV – Positive predictive value (precision)

SSV – Sensitivity (recall)

HPC - High Performance Computing Cluster
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Figures

Figure 1 Human Read Depletion Performance. (A) - Human read removal using BBDuK,
BWA-MEM and Kontaminant. Remaining numbers of human reads was near identical for BBDuK
and Kontaminant (median values of 15,399,252 and 15,399,928 for BBDuK and Kontaminant
respectively.) All conditions retained bacterial reads with near identical performance (additional file
2: Fig. S1). BBDuK was selected for parameter optimization (B-C). This analysis was performed
on raw untrimmed reads of n=11 simulated datasets. (B-C) BBDuk parameter optimization in
terms of remaining human reads (B) and remaining bacterial reads (C). Default BBDuK settings
were used along with alterations of MKF and MCF parameters. The default parameters of
BBDuK removes a sequencing read in the event of a single k-mer match, whereas MCF50
requires 50% of the bases in a read to be covered by reference k-mers for removal and MKF50
requires 50% of k-mers in a read to match the reference for removal. MCF50-Cancer indicates
that BBDuK was ran with a database consisting of GRCh38 human reference genome and a
collection of known mutations in human cancer from the COSMIC database. MCF50 Cancer A
denotes a database consisting of human reference genome 38, COSMIC cancer genes and
additional sequences from a recent African ’pan-genome’ study [44] (B) Default and both MCF50
parameters (with and without cancer sequences) showed the highest removal of human reads.

Figure 2 Performance Estimates for Taxonomic Classification Tools. Methods were applied to
quality filtered and human depleted sequencing reads on 100 metagenome simulations.
Performance is summarized at genus level in terms of sensitivity (A), positive predictive value (B)
and F1 score (C). Computational resources in terms of CPU Time and RAM is also shown for the
top 2 performing tools: Kraken and mOTUs2 (D). Kraken utilized 20 threads for most datasets
whereas mOTUs2 utilized 17. mOTUs2 output was unfiltered, whereas Kraken had a confidence
threshold of 0.2 and a subsequent read threshold of 500 applied to determine positive
classifications. Parameters for each tool in this graphic were selected from the top performing
parameters observed for multiple tests with varying parameters.
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Figure 3 Quantitative Ability for mOTUs2 and Kraken mOTUs2 output reads vs true reads (A)
and Kraken output reads vs true reads (B). For all true positive genera classifications (Spearman’s
rank correlation coe�cients R2 = 0.91 and R2 = 0.69, for n = 2,084 and n = 2,021 true positive
classifications for mOTUs2 and Kraken respectively). All 100 simulated datasets were first quality
trimmed using Trimmomatic and depleted for human reads using the best parameters as
previously mentioned. mOTUs2 classifications were left unfiltered whereas Kraken had a
confidence threshold of 0.2 and a minimum read threshold of 500 applied.

Figure 4 Genus Level Performance of Kraken on Contigs Following Metagenomic Assembly
with MetaSPAdes Performance is summarized by genus level F1 score (A), Sensitivity (B) and
PPV (C). A single dataset failed metagenomic assembly and so data shown is for 99 of 100
simulated datasets. Performance is shown on raw Kraken classifications with no threshold applied
(unfiltered) in dark blue. The light blue is the performance when a minimum of five contigs
assigning to a genera was used. Median values for unfiltered performance were 0.83, 0.88, 0.81 and
for filtered performance were 0.89, 0.85 and 0.94 for F1-score, sensitivity and PPV respectively.
(D) KrakenUniq filtering parameters in relation to detection status. The y-axis indicates the
number of unique k-mers assigned to a particular taxon (log10), the x-axis represents the number
of contigs assigned to a particular taxon (log10) and the color gradient shows the coverage of the
clade in the database (log10). True positive results are larger circles, whereas false positive results
are smaller triangles. The scatter plot shows 10,450 contigs classified at genus level as data points,
the ggplot package alpha level was set to 0.3 due to a large number of overlapping points. k=31

Figure 5 Kraken performance on a single dataset containing both bacterial (A) and viral reads
(B). Performance from metagenomic assembly approach is shown on both unfiltered contigs and
results filtered by a minimum of five contigs required for classification. Kraken performance on
raw reads is shown both unfiltered and filtered by a minimum of 100 reads for classification.
Bacterial performance is classified at Genus level whereas viral performance is regarding species
level due to peculiarities in taxonomy.

Figure 6 mOTUs2, Kraken and Pathseq Form a Consenus With Near-Perfect Genus Level
Classification Performance. Box plots with individual data points forn=11 simulated bacterial
metagenomes showing genus level F1-score (A), PPV (B) and SSV (C) for single tools, an
intersection of classification between two tools, and a consensus of all three tools. PPV obtained
perfect values in the result of an intersection between two tools or a consensus. Sensitivity
generally decreases in the event of combining two tools with an intersection but increases to a
median score of 0.905 in the result of an intersection. This raise in sensitivity resulted in a genus
level F1 score in the consensus approach of 0.95. mOTUs2 output files were unfiltered, whereas
Kraken had a filter of > 4 contigs and PathSeq > 1 reads.

Figure 7 The application of SEPATH pipelines on a range of cancer types. Output genera from
Kraken (left) and mOTUs2 (right) human depleted, quality trimmed reads from whole genome
sequencing files. n=10 for each of Cervical cancer (A-B), Stomach cancer (C-D) and
Medulloblastoma (E-F). For display purposes, mOTUs2 results were filtered to show taxa that
occurred in at least 3 samples. Kraken results were filtered for taxa that were in a minimum of 5
samples, or had a mean read count of over 5,000.

Figure 8 SEAPTH Template Computational Pipeline The top performing pipelines from this
benchmark are provided as a template for users to adjust according to their own job scheduling
systems and resource availability. SEPATH provides two main pathways: a bacterial pipeline using
mOTUs2 classifications on raw sequencing reads and a bacterial & viral pipeline employing
Kraken on metagenomic contigs assembled using non-human reads with MetaSPAdes.
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