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Abstract 21 

Sialic acid (Neu5Ac) is commonly found in terminal location of colonic mucins glycans where 22 

it is a much-coveted nutrient for gut bacteria including Ruminococcus gnavus. R. gnavus is 23 

part of the healthy gut microbiota in humans but shows a disproportionate representation in 24 

diseases. There is therefore a need in understanding the molecular mechanisms 25 

underpinning its adaptation to the gut. Previous in vitro work demonstrated that R. gnavus 26 

mucin glycan-foraging strategy is strain-dependent and associated with the expression of an 27 

intramolecular trans-sialidase releasing 2,7-anhydro-Neu5Ac instead of Neu5Ac from 28 

mucins. Here, we have unravelled the metabolism pathway of 2,7-anhydro-Neu5Ac in R. 29 

gnavus which is underpinned by the exquisite specificity of the sialic transporter for 2,7-30 

anhydro-Neu5Ac, and by the action of an oxidoreductase converting 2,7-anhydro-Neu5Ac 31 

into Neu5Ac which then becomes substrate of a Neu5Ac-specific aldolase. Having 32 

generated a R. gnavus nan cluster deletion mutant that lost the ability to grow on sialylated 33 

substrates, we showed that in gnotobiotic mice colonised with R. gnavus wild-type and 34 

mutant strains, the fitness of the nan mutant was significantly impaired with a reduced ability 35 

to colonise the mucus layer. Overall, our study revealed a unique sialic acid pathway in 36 



bacteria, with significant implications for the spatial adaptation of mucin-foraging gut 37 

symbionts in health and disease.  38 
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 43 

Introduction 44 

The gastrointestinal (GI) tract is heavily colonized with bacteria that play a vital role in human 45 

health. The gut microbiota composition varies longitudinally along the GI tract but also 46 

transversally from the mucosa to the lumen1. In the colon, the epithelium is covered with a 47 

bi-layer of mucus, with the outer mucus layer providing a natural habitat for the commensal 48 

bacteria whereas the stratified inner mucus layer restricts bacterial access to the epithelium2. 49 

Mucin proteins that form the mucus layer are highly glycosylated with a diverse and complex 50 

array of O-glycan structures containing N-acetylgalactosamine, galactose and N-51 

acetylglucosamine (GlcNAc), and usually terminated by fucose, sialic acid (Neu5Ac) 52 

residues, and sulfate3,4. The terminal mucin glycans have been proposed to serve as 53 

metabolic substrates, providing a nutritional advantage to bacteria that have adapted to the 54 

GI mucosal environment5-7. The proportion of these terminal glycan epitopes varies along 55 

the GI tract with a decreasing gradient of fucose and an increasing gradient of sialic acid 56 

from the ileum to the rectum in humans8,9. Therefore, sialic acid represents a much-coveted 57 

source of nutrients for the gut bacteria inhabiting the mucus niche in the large intestine. 58 

In bacteria, the genes involved in sialic acid metabolism are usually found clustered together 59 

forming different nan gene clusters10-12. The canonical nanATEK cluster was first described 60 

in Escherichia coli encompassing genes encoding the enzymes N-acetylneuraminate lyase 61 

(NanA), epimerase (NanE), and kinase (NanK), necessary for the catabolism of sialic acid 62 

into N-acetylglucosamine-6-P (GlcNAc-6-P) following its transport through the major 63 

facilitator superfamily transporter NanT13,14. An alternative pathway for sialic acid metabolism 64 

has been discovered later in Bacteroides fragilis, relying on the action of an MFS transporter 65 

(NanT), an aldolase (NanL), a novel ManNAc-6-P epimerase (also named NanE), encoded 66 

in the nanLET operon and a hexokinase (RokA), converting Neu5Ac into GlcNAc-6-P15. 67 

GlcNAc-6-P is then converted into fructose-6-P, which is a substrate in the glycolytic 68 

pathway by genes encoding NagA (GlcNAc-6-P deacetylase) and NagB (glucosamine-6-P 69 

deaminase)16. The majority of bacteria that harbour a nan cluster colonize mucus regions of 70 



the human body10-12. To gain access to this substrate, bacteria are dependent on sialic acid 71 

release and uptake. Several gut bacteria species, including strains of Clostridia, Bacteroides, 72 

Bifidobacterium longum, Vibrio cholerae, Ruminococcus gnavus or Akkermansia muciniphila 73 

express sialidases to release sialic acid from their terminal location in mucins10.  74 

Since sialic acid cleavage takes place outside of the cell, bacteria have evolved multiple 75 

mechanisms to capture this important nutrient from their environment12,17. Such transport 76 

mechanisms involve the aforementioned NanT MFS transporter used by E. coli and B. 77 

fragilis, which in E. coli has been demonstrated biochemically to be a H+-coupled 78 

symporter18 or secondary transporters from the sodium solute symport (SSS) family, present 79 

in C. difficile and S. typhimurium19,20. High-affinity transport of sialic acid is mediated by 80 

substrate-binding protein-dependent systems, including a tripartite ATP-independent 81 

periplasmic (TRAP) transporter, SiaPQM, and ATP-binding cassette (ABC) transporters21-25. 82 

The sialic acid ABC transporters are classified into 3 types, SAT, SAT2 and SAT312,17. To 83 

date all these transporters have been shown to transport Neu5Ac, with some being able to 84 

also move the related sialic acid Neu5Gc and KDN26,27. 85 

R. gnavus is an early coloniser of the infant gut28 but persists in adults where it belongs to 86 

the 57 species detected in more than 90% of human faecal samples29. R. gnavus belongs to 87 

the Firmicutes division, Clostridia class and XIVa cluster, Lachnospiraceae family30 and is 88 

considered as a prevalent member of the ‘normal’ gut microbiota29,31. Further, R. gnavus 89 

shows a disproportionate representation in a number of diseases such as inflammatory 90 

bowel disease32-40. The ability of R. gnavus strains to utilise mucin glycans as a source 91 

nutrient is associated with the expression of an intramolecular trans-sialidase (IT-sialidase) 92 

that specifically cleaves off terminal α2–3-linked Neu5Ac from glycoproteins, releasing 2,7-93 

anhydro-Neu5Ac instead of Neu5Ac41-45. In R. gnavus ATCC 29149 and ATCC 35913 94 

strains, the IT-sialidase (RgNanH) is part of a nan cluster, which is induced when the cells 95 

are grown in the presence of mucin and absent in non-mucin glycan-degrading strains such 96 

as R. gnavus E143,45. We enzymatically synthesised 2,7-anhydro-sialic acid derivatives46, 97 

that were used to confirm the ability of IT-sialidase expressing R. gnavus strains to grow on 98 

2,7-anhydro-Neu5Ac as sole carbon source43. We proposed that the ability of R. gnavus 99 

strains to produce and metabolise 2,7-anhydro-Neu5Ac, provide them with a competitive 100 

nutritional advantage in mucus by scavenging sialic acid from mucins in a form that others 101 

do not have access to43,44.  102 

In order to test this hypothesis and gain insights into R. gnavus 2,7-anhydro-Neu5Ac 103 

metabolism pathway, we identified candidate genes of the nan cluster involved in 2,7-104 

anhydro-Neu5Ac transport and metabolism and characterised the proteins. Using 105 

fluorescence spectroscopy, STD-NMR and ITC, we showed that the solute binding protein 106 



(SBP) from R. gnavus ABC transporter was specific for 2,7-anhydro-Neu5Ac. Further 107 

biochemical analyses uncovered an oxidoreductase activity allowing the conversion of 2,7-108 

anhydro-Neu5Ac into Neu5Ac and confirmed the specificity of the sialic acid aldolase for 109 

Neu5Ac. Finally, we showed that the nan cluster was essential to support anaerobic growth 110 

of the bacteria on sialoconjugates in vitro and for in vivo fitness using gnotobiotic mice 111 

colonised with R. gnavus wild-type or nan mutant. These data demonstrate a unique sialic 112 

acid metabolism pathway in bacteria, which provides R. gnavus with a competitive strategy 113 

to colonise the mucus niche. 114 

 115 

Results 116 

Identification of genes involved in 2,7-anhydro-Neu5Ac metabolism in R. gnavus nan 117 

cluster  118 

We first analysed the transcriptional activity of the nan cluster by qRT-PCR in R. gnavus 119 

ATCC 29149 grown on 2,7-anhydro-Neu5Ac or α2–3-sialyllactose (3’SL) as the sole carbon 120 

source. Expression of all genes constituting the nan cluster was induced upon bacterial 121 

growth on 2,7-anhydro-Neu5Ac or 3’SL as compared to glucose whereas the expression of 122 

the two genes flanking the cluster (RUMGNA_02702, RUMGNA_02690) remained 123 

unchanged (Figure 1). The 3’SL and 2,7-anhydro-Neu5Ac induced the transcription of the 124 

nan genes between 10 and 80-fold. Both substrates induced similar changes, which is not 125 

unexpected as 2,7-anhydro-Neu5Ac is the sialic acid form produced by R. gnavus ATCC 126 

29149 from 3’SL. These results indicate that the R. gnavus nan operon is dedicated to the 127 

metabolism of 2,7-anhydro-Neu5Ac from host sialoglycans.  128 

A sequence similarity network (SSN) analysis was then conducted to identify the proteins 129 

encoded by the nan cluster, which are associated with the ability of the bacteria to 130 

metabolise 2,7-anhydro-Neu5Ac over Neu5Ac. As expected, the IT-sialidase from R. gnavus 131 

strains clustered together with proteins from S. pneumoniae strains whose genomes are 132 

known to encode IT-sialidases (in addition to other sialidases)47,48 (Supplementary Figure 133 

1a). Other co-occurring bacterial species include Rumminococcus torques, Lactobacillus 134 

salivarius, Staphylococcus pseudintermedius, Streptococcus infantis and Streptococcus 135 

mitis. Bacterial species clustering for RgNanH, also shared clusters for proteins encoding 136 

RUMGNA_02698, the predicted solute binding protein (SBP) giving specificity to ABC 137 

transporters, RUMGNA_02692 (sialic acid aldolase), the first protein of the canonical 138 

Neu5Ac metabolism,  and RUMGNA_02695, a putative oxidoreductase, suggesting that 139 

these proteins may be associated with 2,7-anhydro-Neu5Ac metabolism (Supplementary 140 

Figure 1 and Supplementary Table 1). In contrast, RUMGNA_02701 with homology to 141 



sialic acid esterase proteins and RUMGNA_02700 with homology to the YhcH protein family 142 

did not cluster with proteins from the same set of bacteria (Supplementary Figure 1 and 143 

Supplementary Table 1). The candidate genes were then heterologous expressed, and the 144 

recombinant proteins purified as described in Methods. 145 

 146 

Specificity of R. gnavus sialic acid transporter for 2,7-anhydro-Neu5Ac  147 

We first investigated the ligand specificity of the recombinant SBP (RUMGNA_02698), 148 

RgSBP, by measuring changes in the intrinsic protein fluorescence upon addition of potential 149 

ligands. Addition of 10 µM or 20 µM 2,7-anhydro-Neu5Ac resulted in a significant shift at 350 150 

nm, causing an ~16% quench in the fluorescence (Figure 2a). In marked contrast, addition 151 

of Neu5Ac at 10 µM, 20 µM or 70 µM caused no change in the spectrum intensity, 152 

suggesting an absence of binding (Figure 2b). Titration of 0.5 µM RgSBP with 2,7-anhydro-153 

Neu5Ac resulted in a hyperbolic curve with a Kd of 1.349 µM (+/- 0.046) (Figure 2c). To 154 

confirm the specificity of 2,7-anhydro-Neu5Ac over Neu5Ac we monitored sequential 155 

changes in fluorescence following additions of 10 μM of the two ligands. When Neu5Ac was 156 

added first, no change in fluorescence was observed and a quench was observed following 157 

addition of 2,7-anhydro-Neu5Ac (Figure 2d). Conversely, when 2,7-anhydro-Neu5Ac was 158 

added first the quench was observed and additions of 10 μM Neu5Ac caused no further 159 

change in the intensity (Figure 2d), indicating that Neu5Ac is unable to displace 2,7-160 

anhydro-Neu5Ac, and further supporting the specificity of the interaction between RgSBP 161 

and 2,7-anhydro-Neu5Ac.  162 

The affinity of the interaction between RgSBP and sialic acid ligands was further assessed 163 

by isothermal titration calorimetry (ITC). RgSBP bound to 2,7-anhydro-Neu5Ac with a Kd of 164 

2.42 ± 0.27 μM (Figure 3a) and no binding was observed when Neu5Ac was used as the 165 

ligand (Figure 3b), in agreement with the findings from fluorescence spectroscopy. The 166 

binding of 2,7-anhydro-Neu5Ac revealed a thermodynamic signature with both entropic (-167 

T∆S -7.05 ± 0.08 kcal mol-1) and enthalpic (∆H -0.93 ± 0.03 kcal mol-1) components 168 

contributing favourably to the binding process (∆G -7.99 ± 0.05 kcal mol-1 Figure 3a). 169 

To gain structural insights into the unique ligand specificity of RgSBP, saturation transfer 170 

difference nuclear magnetic resonance spectroscopy (STD NMR) studies were conducted 171 

with RgSBP in the presence of 2,7-anhydro-Neu5Ac or Neu5Ac. The transfer of 172 

magnetization as saturation from the protein to the ligand was clearly observed for 2,7-173 

anhydro-Neu5Ac but not for Neu5Ac, confirming that RgSBP preferentially selects 2,7-174 

anhydro-Neu5Ac (Supplementary Figure 2). STD NMR epitope binding revealed that 175 

protons H3, H4 and H6 showed the highest STD (%) factors, indicating the close contacts 176 



present at the interface of binding (Figure 3c). On the other hand, protons H7, H8, H9 and 177 

protons belonging to the CH3 group showed lower STD (%) and are expected to be more 178 

exposed to solvent. For the DEEP-STD NMR experiment, TEMPOL was used to gain 179 

insights into RgSBP binding pocket (Supplementary Figure 3). We found that protons H4, 180 

H6, H7, H8, H9’ were preferentially oriented toward aromatic residues while H3 and protons 181 

belonging to the CH3 group were oriented toward aliphatic residues (Figure 3d). 182 

Together these data demonstrate that RgSBP specifically binds to 2,7-anhydro-Neu5Ac but 183 

not to Neu5Ac, in line with the growth profile of R. gnavus ATCC 29149 on these 184 

substrates43. 185 

 186 

Specificity of R. gnavus sialic acid aldolase for Neu5Ac 187 

The substrate specificity of recombinant sialic acid aldolase (RUMGNA_02692; RgNanA), 188 

was determined using a coupled activity assay where pyruvate released during the 189 

conversion of Neu5Ac to ManNAc is converted to lactate by a lactate dehydrogenase and 190 

the subsequent decrease in absorbance at 340 nm measured as NADH is converted to 191 

NAD+. RgNanA and EcNanA (E. coli Neu5Ac lyase/aldolase used as a control) showed 192 

activity against Neu5Ac whilst neither enzyme showed activity against 2,7-anhydro-Neu5Ac 193 

(Figure 4a). The product of the reaction with Neu5Ac was confirmed to be ManNAc by 194 

HPLC (Supplementary Figure 4). RgNanA showed a kcat of 2.757 ± 0.033 s-1 and a KM of 195 

1.473 ± 0.098 mM (Figure 4b). These kinetic parameters are consistent with values from 196 

other bacterial sialic acid aldolases characterised to date (Supplementary Table 2).  197 

The RgNanA crystal structure presents as a (β/α8) TIM barrel with an adjacent three-helix 198 

bundle (for data collection and refinement statistics see Supplementary Table 3), a fold 199 

shared with characterised Neu5Ac aldolases from Staphylococcus aureus, E. coli, 200 

Fusobacterium nucleatem, Pasteurella multocida, and Haemophilus influenzae49-54 201 

(Supplementary Figure 5a). The active site residues in EcNanA, Ser47, Tyr110, and 202 

Tyr137, identified to be catalytically important are conserved in RgNanA55 (Figure 4c and 203 

Supplementary Figure 5b), supporting Neu5Ac specificity. The crystal structure of the 204 

complex between an inactive mutant, RgNanA K167A, and Neu5Ac showed Neu5Ac in the 205 

open-chain ketone form, with the N-acetyl group oriented out of the active site (Figure 4d). 206 

Neu5Ac forms extensive interactions with the enzyme active site (Supplementary Table 4). 207 

The Tyr139 α-carbon was shifted 1.8 Å in the mutant compared to wild-type. This movement 208 

is also present in the apo crystal structure, therefore presumably due to the absence of 209 

Lys167 rather than the presence of Neu5Ac (Supplementary Figure 5c).  210 

 211 

Conversion of 2,7-anhydro-Neu5Ac to Neu5Ac by RUMGNA_02695 212 



RUMGNA_02695 is a putative oxidoreductase with a predicted Rossman fold. Therefore, the 213 

activity of the recombinant protein was determined in the presence or absence of NAD+, 214 

NADH or FAD as potential cofactors. Reaction products were analysed by HPLC following 215 

DMB labelling of the sialic acid46. When 2,7-anhydro-Neu5Ac (which cannot be labelled by 216 

DMB) was used as a substrate, Neu5Ac was produced in the presence of NAD+ or NADH, 217 

but not in the presence of FAD or in the absence of a cofactor (Figure 5a). Mass 218 

spectrometry analyses showed a ratio of 1:2 for 2,7-anhydro-Neu5Ac:Neu5Ac 219 

(Supplementary Figure 6a), indicating that the reaction may be reversible. This was 220 

confirmed enzymatically by assaying RUMGNA_02695 against Neu5Ac in the presence of 221 

NAD+ or NADH, producing a 1:2 for 2,7-anhydro-Neu5Ac:Neu5Ac. Additionally, these data 222 

indicate that Neu5Ac is the favourable product (Supplementary Figure 6b). No net change 223 

in NADH concentration was observed during the conversion reaction using 2,7-anhydro-224 

Neu5Ac or Neu5Ac as substrate, suggesting that the enzyme mechanism may involve 225 

oxidation and reduction of NADH cofactor (Supplementary Figure 6c). The kinetic 226 

parameters of the enzymatic reaction were therefore determined using the coupled reaction 227 

described above in the presence of an excess of sialic acid aldolase and increasing 228 

concentrations of 2,7-anhydro-Neu5Ac substrate (Figure 5b). Using these conditions, the 229 

kcat was calculated to be 0.0824 ± 0.0043 s-1 and the KM 0.074 ± 0.014 mM. Taken together 230 

these data indicate that RUMGNA_02695 is an oxidoreductase required for the conversion 231 

of 2,7-anydro-Neu5Ac into Neu5Ac, which will then become a substrate for RgNanA. We will 232 

refer to RUMGNA_02695 as RgNanOx in the rest of the study. 233 

 234 

Impact of R. gnavus nan cluster on in vitro growth and in vivo colonisation of mice 235 

The ClosTron transformation method56 was successfully applied to R. gnavus ATCC 29149, 236 

enabling the generation of nan deletion mutants with an erythromycin resistance gene 237 

present in either the sense or antisense direction (relative to RgNanH). The recombination 238 

event was confirmed by PCR (Supplementary Figure 7a) and the expression of the full 239 

cluster tested by qPCR (Supplementary Figure 7b). The expression of the genes flanking 240 

the cluster, RUMGNA_02690 and RUMGNA_02702, showed levels comparable to the wild-241 

type strain, as also observed for the first three genes of the nan cluster, RUMGNA_02701-242 

02699, however, the nan cluster genes RUMGNA_02698-02691 showed significantly 243 

reduced expression compared to the wild-type strain. R. gnavus ATCC 29149 wild-type 244 

strain was able to utilise both 3’SL and 2,7-anhydro-Neu5Ac as a sole carbon source, while 245 

no growth was detected using the nan deletion mutants on these substrates 246 

(Supplementary Figure 8). 247 



To assess the impact of the nan cluster on the fitness of R. gnavus in vivo, germ-free 248 

C57BL/6J mice were gavaged with 1x108 CFU R. gnavus ATCC 29149 or R. gnavus 249 

antisense nan deletion mutant or a mixture of wild-type and nan mutant strains at 1x108 CFU 250 

each (Figure 6). During mono-colonisation experiments, both strains were detectable in the 251 

faecal content at day 3, 7 and 14 post-gavage at mean levels of between 1x106 and 1x107 252 

bacteria per mg of material (Figure 6a). Both strains were also detected in the caecal 253 

content of mono-colonised mice sacrificed at day 14. The absence of the nan cluster did not 254 

affect the mouse expression response, as shown by RNA seq (Supplementary Figure 9). In 255 

competition experiments,  the wild-type strain reached mean colonisation levels comparable 256 

to the levels obtained during mono-colonisation, whereas the mutant strain was severely 257 

outcompeted, reaching only 2x104 copies per mg at day 3, before decreasing further at day 7 258 

and day 14 below the level of detection in the faecal and caecal contents (Figure 6b). The 259 

impact of the nan deletion on the location of R. gnavus within the mucus layer was 260 

determined in mono-colonised mice by measuring the distance of the nan mutant or wild-261 

type R. gnavus strains to the epithelial layer throughout the colon by fluorescent in situ 262 

hybridization (FISH) staining using confocal microscopy. The data showed that the nan 263 

mutant resided 19.70 µm from the epithelial layer, 5.06 µm further away than the wild-type 264 

strain, 14.64 µm (Figure 6c&d).  265 

 266 

Discussion 267 

Sialic acid comprises a family of 9-carbon acidic sugar found predominantly on the cell-268 

surface glycans of humans and other animals. Neu5Ac, the most common form of sialic acid 269 

in humans, is a major epitope of mucin glycans which can serve as a metabolic substrate to 270 

the gut bacteria which have adapted to the mucosal environment6,10. In vivo, sialic acids may 271 

be modified by O-acetylation, O-methylation 9,10,57-59. Sialic acid metabolism is vital to the 272 

ability of R. gnavus strains to utilise mucin as a nutrient source43-45. R. gnavus ATCC 29149 273 

strain encodes an extended nan operon dedicated to the metabolism of 2,7-anhydro-Neu5Ac 274 

from host sialoglycans.  275 

Before being metabolised, a functional sialic acid transporter is essential for the uptake of 276 

sialic acid derivatives into the bacterial cell. The R. gnavus ATCC 29149 nan cluster 277 

contains a single ABC transporter, orthologous to the uncharacterised Steptococcus 278 

pneumoniae SAT2 system (Sp_1690-2), including two permeases (RUMGNA_02696 and 279 

02697) and RgSBP (RUMNGA_02698). R. gnavus SAT2 transporter is expected to be 280 

coupled with an MsiK-like ATPase encoded elsewhere in the genome, with 281 

RUMGNA_03040 sharing 59% identity with the S. pneumoniae MsiK. Interestingly, in 282 



contrast to S. pneumoniae, R. gnavus does not encode SAT or SAT3 transporters which are 283 

known to recognise Neu5Ac with SAT3 being required for growth on Neu5Ac 60-62. 284 

By studying RgSBP subunit, we have discovered that SAT2 is a specific transporter for 2,7-285 

anhydro-Neu5Ac with a Kd of 2.42 ± 0.27 μM, which does not bind Neu5Ac. Using STD NMR 286 

and DEEP-STD NMR, we characterized the orientation of the ligand in the binding site and 287 

the contribution of aromatic and aliphatic residues in RgSBP 2,7-anhydro-Neu5Ac binding 288 

pocket. The lower affinity as compared to bacterial SAT (SatA) transporters specific for 289 

Neu5Ac characterised to date, which bind in the nM range63, might be consistent with the 290 

‘exclusive’ access of the bacteria to the 2,7-anhydro-Neu5Ac substrate. Taken together 291 

these findings indicate that the ability of R. gnavus strains to grow on 2,7-anhydro-Neu5Ac 292 

(and not on Neu5Ac) can be explained by the exquisite specificity of RgSBP 293 

(RUMGNA_02698) RgSBP is also orthologous (72% identity/86% similarity) with the SBP 294 

from the putative sialic transporters in Streptococcus sanguinis SK36 (SSA_0076) and 295 

Streptococcus gordonii str. Challis substr. CH1 (SGO_0122)12. It would therefore be of 296 

interest to determine the specificity of Streptococcus SBPs towards 2,7-anhydro-Neu5Ac.  297 

Once inside the cell, 2,7-anhydro-Neu5Ac needs to be converted back into Neu5Ac to 298 

become a substrate for the sialic acid aldolase. RgNanOx (RUMGNA_02695) was identified 299 

as the oxidoreductase catalyzing the conversion of 2,7-anhydro-Neu5Ac into Neu5Ac, 300 

following a mechanism of action which remains to be determined. Bioinformatic analysis 301 

identified close homologous of this protein in a range of bacterial species, including YjhC 302 

from E. coli (Supplementary Figure 1, Supplementary Table 1).   Neu5Ac is then 303 

converted into ManNAc and pyruvate via the action of RgNanA (RUMGNA_02692), a 304 

Neu5Ac-specific aldolase with conserved structural features with NanA proteins from the nan 305 

canonical pathway. 306 

MultiGeneBlast analysis revealed that predicted homologs of the R. gnavus nan cluster are 307 

shared by a limited number of species, including 37 homologous clusters in S. pneumoniae 308 

isolates, S. suis A7, Blautia hansenii DSM 20583, Blautia sp. YL58 and Intestinimonas 309 

butyriciproducens AF211 (Supplementary Figure 10 & 11 and Supplementary Table 5). 310 

The presence of this cluster in S. pneumoniae suggests that it can also transport this 311 

unusual sialic acid into the cell. A major difference between NanB/NanH IT-sialidase and 312 

NanC sialidase cluster types is the associated transporter class, a carbohydrate ABC 313 

transporter for NanB/NanH as opposed to a sodium:solute symporter in NanC clusters47, 314 

which may indicate a difference in the form of sialic acid being transported. These 315 

bioinformatics analyses support the specialization of the R. gnavus nan cluster. 316 



We confirmed the importance of this metabolic pathway (Supplementary Figure 12) by 317 

generating a R. gnavus nan deletion mutant that was tested in vitro and in vivo using germ-318 

free mice. In in vivo competition experiments, the fitness of the mutant was impaired as 319 

compared to the wild-type strain with a reduced ability to colonise the mucus layer. The nan 320 

cluster is therefore important to maintain the spatial distribution of R. gnavus strains in the 321 

gut. The ability for R. gnavus strains harbouring a nan cluster to penetrate further down into 322 

the mucus layer may contribute to protect the bacteria from the constant mucus turner-over. 323 

This mechanism may serve as a determinant underlying R. gnavus success as one of the 324 

most largely shared species among individuals29,31.  325 

Together these findings provide robust biochemical and in vivo evidence for the role of R. 326 

gnavus nan cluster in the adaptation of this important gut symbiont to the mucosal 327 

environment in the gut, providing defined molecular targets for biomarkers and therapeutic 328 

strategies. 329 

  330 



Methods 331 

 332 

Materials 333 

All chemicals were obtained from Sigma (St Louis, USA) unless otherwise stated. D-glucose 334 

(Glc), N-acetylneuraminic acid (Neu5Ac), were purchased from Sigma-Aldrich (St Louis, 335 

MO). 3′-sialyllactose (3′SL) was purchased from Carbosynth Limited (Campton, UK). 2,7-336 

anhydro-Neu5Ac was prepared as previously described46,64.  337 

 338 

Bacterial strains and media 339 

R. gnavus ATCC 29149 was routinely grown in an anaerobic cabinet (Don Whitley, Shipley, 340 

UK) in BHI-YH as previously described45. Growth on single carbon sources utilized 341 

anaerobic basal YCFA medium65 supplemented with 11.1 mM of specific mono- or 342 

oligosaccharides (2,7-anhydro-Neu5Ac, 3’Sialyllactose (3’SL) or glucose). The bacteria were 343 

grown to late exponential phase for RNA extraction, the culture was performed in 14 ml 344 

tubes. Growth was determined spectrophotometrically by monitoring changes in optical 345 

density at 600 nm compared to the same medium without bacterium (∆ OD595 nm) hourly for 346 

10 hours. 347 

 348 

Quantitative real-time PCR (qRT-PCR) 349 

Total RNA was extracted from 3 ml of mid- to late exponential phase cultures of R. gnavus 350 

ATCC 29149 in YCFA supplemented with one carbon source (Glc, 3′SL or 2,7-anhydro-351 

Neu5Ac). Three biological replicates were performed for each carbon source. The RNA was 352 

stabilized prior to extraction by using RNAprotect Bacteria Reagent (Qiagen, Crawley, UK) 353 

according to the manufacturer’s instructions. The RNA was then extracted after an 354 

enzymatic lysis followed by a mechanical disruption of the cells, using the RNeasy Mini Kit 355 

(Qiagen) according to manufacturer's instructions with an on-column DNAse treatment. The 356 

purity and quantity of the extracted RNA was assessed with NanoDrop 1000 UV-Vis 357 

Spectrophotometer (Thermo Fischer Scientific, Wilmington, DE) and with Qubit 2.0 358 

(Invitrogen). 359 

qPCR was carried out in an Applied Biosystems 7500 Real-Time PCR system (Life 360 

Technologies Ltd). One pair of primers was designed for each target gene using 361 

ProbeFinder version 2.45 (Roche Applied Science, Penzberg, Germany) to obtain an 362 

amplicon of around 60–80 bp long. The primers were between 18 and 23 nt-long, with a Tm 363 

of 59–60°C (Supplementary Table S6). Calibration curves were prepared in triplicate for 364 

each pair of primers using 2.5-fold serial dilutions of R. gnavus ATCC 29149 genomic DNA. 365 

The standard curves showed a linear relationship of log input DNA vs. the threshold cycle 366 



(CT), with acceptable values for the slopes and the regression coefficients (R2). The 367 

dissociation curves were also performed to check the specificity of the amplicons. Each 368 

DNAse-treated RNA (1 µg) was converted into cDNA using QuantiTect® Reverse 369 

Transcription kit (Qiagen) according to the manufacturer’s instructions. DNAse-treated RNA 370 

was also treated the same way but without addition of the reverse-transcriptase (RT−). Each 371 

qPCR reaction (10 µl) was then carried out in triplicate with 1 µl of 1 ng/μl (cDNA or RT−) 372 

and 0.2 µM of each primer, using the QuantiFast SYBR Green PCR kit (Qiagen) according 373 

to the manufacturer’s instructions (except for the combined annealing/extension step which 374 

was extended to 35 s). Data obtained with cDNA were analyzed only when CT values above 375 

36 were obtained for the corresponding RT−. For each cDNA sample, the 3 CT values 376 

obtained for each gene were analyzed using the 2−∆∆CT method using housekeeping gyrB 377 

(RUMGNA_00867) gene as a reference gene and glucose as a reference condition. For 378 

each gene in each condition, the final value of the relative level of transcription (expressed 379 

as a fold change in gene transcription compared to glucose) is an average of 3 biological 380 

replicates, 1-way Annova was used for statistical analysis, using Graph Pad Prism (V 5.03).  381 

 382 

Cloning, expression, mutagenesis and purification of recombinant proteins 383 

R. gnavus ATCC 29149 genomic DNA (gDNA) was purified from the cell pellet of a bacterial 384 

overnight culture (1 ml) following centrifugation (5,000 g, 5 min) using the GeneJET 385 

Genomic DNA Purification Kit (ThermoFisher, UK), according to the manufacturer’s 386 

instructions. 387 

The full-length RgSBP excluding the signal sequence (residues 1–29), the full length 388 

RgNanA and full length RUMGNA_02695 were amplified from R. gnavus ATCC 29149  389 

gDNA, and cloned into the pEHISTEV66 expression system, introducing a His-tag at the N 390 

terminus using primers listed in Supplementary Table S6. DNA manipulation was carried out 391 

in E. coli DH5α cells. Sequences were verified by DNA sequencing by Eurofins MWG 392 

(Ebersberg, Germany) following plasmid preparation using the Monarch Plasmid Miniprep kit 393 

(New England Biolabs). The RgNanA active site mutant, K167A, was generated using the 394 

QuikChange Lightning mutagenesis kit (Agilent) and primers listed in Supplementary Table 395 

S6. E. coli BL21 (New England BioLabs) cells were transformed with the recombinant 396 

plasmid harbouring the gene of interest according to manufacturer's instructions. Expression 397 

was carried out in 800 ml ‘Terrific Broth Base with Trace Elements' autoinduction media 398 

(ForMedium, Dundee, UK) growing cells for 3 h at 37 °C and then at 16 °C for 48 h, with 399 

shaking at 250 rpm. The cells were harvested by centrifugation at 10,000 g for 20 min. The 400 

His-tagged proteins were purified by immobilized metal affinity chromatography (IMAC) and 401 

further purified by gel filtration (Superdex 75 column) on an Akta system (GE Health Care 402 



Life Sciences, Little Chalfont, UK). Protein purification was assessed by standard SDS–403 

polyacrylamide gel electrophoresis using NuPAGE Novex 4–12% Bis-Tris gels (Life 404 

Technologies, Paisley, UK). Protein concentration was measured with NanoDrop 1000 UV-405 

Vis Spectrophotometer (Thermo Fischer Scientific, Wilmington, DE) and using the extinction 406 

coefficient calculated by Protparam (ExPASy-Artimo, 2012) from the peptide sequence. 407 

 408 

Fluorescence spectroscopy  409 

All protein fluorescence experiments used a FluoroMax 3 fluorescence spectrometer with 410 

connecting water bath at 37°C. Because of the presence of 15 tyrosine residues, the protein 411 

was excited at 297 nm with slit widths of 5 nm. Under these conditions, the protein has a 412 

maximal emission at 331 nm. RgSBP was used at a concentration of 0.2 µM in 50 mM Tris 413 

pH 7.5 for all fluorescence experiments. Cumulative fluorescence changes from titration of 414 

the protein with ligand were plotted in GraphPad and fitted to a single rectangular hyperbola. 415 

The Kd values reported were averaged from three separate ligand titration experiments.  416 

 417 

Isothermal titration calorimetry (ITC) 418 

Isothermal titration calorimetry (ITC) experiments were performed using the PEAQ-ITC 419 

system (Malvern, Malvern, UK) with a cell volume of 200 µl. Prior to titration, protein samples 420 

were exhaustively dialysed into 50 mM Tris-HCl pH 7.5. The ligand was dissolved in the 421 

dialysis buffer. The cell protein concentration was 100 µM and the syringe ligand 422 

concentration was 2 mM. Controls with titrant (sugar) injected into the buffer only were 423 

subtracted from the data. The analysis was performed using the Malvern software, using a 424 

single-binding site model. Experiments were carried out in triplicate. 425 

 426 

Sialic acid aldolase activity assays  427 

Aldolase activity was measured by monitoring the decrease in absorbance at 340 nm 428 

(A340nm) as NADH is converted to NAD by lactate dehydrogenase in a coupled reaction 429 

where pyruvate is released from sialic acid by the aldolase. Reactions were performed in a 430 

100 µl volume with final concentrations of 150 µM NADH (Sigma, St Louis, USA), 0.5 U LDH 431 

(Sigma, St Louis, USA), 10 mM sialic acid (Neu5Ac or 2,7-anhydro-Neu5Ac) and 1.5 µg 432 

purified RgNanA or EcNanA (E. coli aldolase CAS: 9027-60-5, Carbosynth, UK) in 50 mM 433 

Na-phosphate buffer (pH 7.0).  The reactions were performed at 37 °C and monitored using 434 

FLUOstar OPTIMA (BMG LABTECH). For kinetics experiments, the sialic acid concentration 435 

was varied at 20, 10, 5, 4, 2, 1, 0.4, 0.2, 0.1 mM and the initial rate of reaction determined for 436 

each concentration in triplicate before analysis was performed by fitting the data to a 437 

Michaelis-Menten using Graph Pad Prism (V 5.03). 438 



To monitor the production of ManNAc during the aldolase-catalyzed reactions, 2-AB labelling 439 

was carried out on the products from the above reactions. Briefly, 50 ng GlcNAc was added 440 

to 10 µl of each sample as an internal reference, before drying using a Concentrator Plus 441 

(Eppendorf). 5 μl of labelling reagent was added and incubated at 65 °C for 3 h. The 442 

labelling reagent was prepared by dissolving 50 mg 2-aminobenzamide in a solution 443 

containing 300 μl acetic acid and 700 μl DMSO, before 60 mg sodium cyanoborohydride is 444 

added. Following addition of H2O to reach 100 μl total volume, the sample was transferred to 445 

a HPLC vial and 10 µl loaded onto a HyperClone 3u ODS (C18) 120A 150x4.6 mm 3 μ 446 

column. Mobile phases of 0.25% n-butylamine, 0.5% phosphoric acid, 0.1% 447 

Tetrahydrofurane; 50% methanol; Acetonitrile and H2O were used at a 0.7 ml/min flow rate.  448 

 449 

Bioinformatics analyses 450 

Sequence Similarity Networks (SSN) The InterPro families for RgNanH (Glycoside 451 

Hydrolase, family 34; IPR001860) and RgNanA (N-acetylneuraminate lyase; IPR005264) 452 

were identified using the UniProt database, this family identifier was used to extract protein 453 

sequences using Enzyme Function Initiative (EFI) Enzyme Similarity tool67. For the other 454 

proteins, the families found in the InterPro database were too large to be analysed, so the 455 

sequence BLAST tool was used with a maximum of 2500 protein sequences extracted. From 456 

this sequence similarity networks were generated and viewed in Cytoscape version 3.668. 457 

Cluster analysis Homologous gene clusters were identified for the R. gnavus ATCC 29149 458 

nan cluster45 using MultiGeneBlast69. The BCT (Bacteria) GenBank subdivision was queried 459 

with the sequence spanning locus tags RUMGMA_RS11835 – RUMGNA_RS11885 (from 460 

scaffold AAYG02000020_1). The data was manually curated, excluding all clusters that do 461 

not contain a predicted sialidase or are homologous to the functionally characterized S. 462 

pneumoniae NanC cluster47,70 and the clusters are summarized by organism and predicted 463 

gene content in Supplementary Table S5. 464 

 465 

RUMGNA_02695 enzymatic activity assay 466 

To assay RUMGNA_02695 activity against 2,7-anhydro-Neu5Ac, the purified recombinant 467 

protein was incubated in 100 μl reactions at 37 °C overnight with 1 mM 2,7-anhydro-468 

Neu5Ac, 50 mM sodium phosphate buffer pH 7.0 and 500 μM NADH, NAD, FAD or no 469 

cofactor. The reactions were dried using a Concentrator Plus (Eppendorf) for 1 h. Samples 470 

were then resuspended in 50 µl of water and 50 µl of reaction buffer (1.74 mg of 1,2-471 

Diamino-4,5-methylenedioxybenzene dihydrochloride (DMB, Carbosynth, UK), 324.6 µl 472 

MilliQ water, 88.6 µl glacial acetic acid, 58.2 µl of β-Mercaptoethanol and 79.3 µl of sodium 473 

hydrosulphite) and incubated for 2 h at 55 °C in the dark. The samples were then centrifuged 474 



for 1 min and filtered using a 0.45 µm filter into a glass HPLC vial and directly analysed by 475 

HPLC.  476 

DMB-labelled samples were analysed by injecting 10 μl onto a Luna 5 µm C-18(2) LC 477 

column 250x4.6 mm (Phenomenex) at 1 ml/min. Mobile phases methanol/acetonitrile/water 478 

were used for separation of fluorescently labelled sialic acids46. The settings of the 479 

fluorescence detector were 373 nm excitation and 448 nm emission. Samples were run 480 

alongside a Neu5Ac standard.  481 

To determine the kinetic parameters of RUMGNA_02695 enzymatic reaction, a coupled 482 

reaction with lactate dehydrogenase and sialic acid aldolase was carried out as described 483 

above but with 15 μg of RgNanA and 10 μg RUMGNA_02695 in each reaction. For the 484 

kinetics assays, 1, 0.4, 0.2, 0.1, 0.04, 0.02 and 0.01 mM 2,7-anhydro-Neu5Ac was used and 485 

the initial rate of reaction determined for each concentration in triplicate before analysis was 486 

performed by fitting the data to a Michaelis-Menten using Graph Pad Prism (V 5.03). 487 

Electrospray ionisation spray mass spectrometry (ESI-MS) analysis was performed using the 488 

Applied Biosystems 4000 Q-TRAP. The full 100 µl reaction was diluted with 500 ul of 50% 489 

Acetonitrile and 0.1 % formic acid and samples analysed in negative ion mode using direct 490 

injection. 491 

 492 

ClosTron mutagenesis 493 

R. gnavus mutants were generated using the ClosTron methodology56, which inserts an 494 

erythromycin resistance cassette into the gene of interest. The target site (270a) was 495 

identified using the Perutka method71. The re-targeted introns were synthesised and ligated 496 

into the pMTL007C-E2 vector by ATUM (MenloPark, USA). The plasmids were then 497 

transformed into E. coli CA434 using the heat-shock 42°C for 45 seconds followed by 2 min 498 

on ice before the recombinant clones were selected for chloramphenicol resistance (25 499 

µg/ml). Recombinant E. coli cells were grown overnight aerobically in 10 ml LB, 1 ml of the 500 

overnight culture was pelleted and washed with PBS. Continuing under anaerobic conditions 501 

the E. coli cell pellet was resuspended in 200 μl of an R. gnavus overnight culture and the 502 

cell suspension spotted onto a non-selective BHI-YH plate. Following incubation for 8 h at 37 503 

°C the bacteria were washed from the plate using PBS and plated onto BHI-YH 504 

supplemented with cycloserine (250 μg/ml) and thiamphenicol (15 μg/ml) and grown for 72 h 505 

to select against E. coli and for transfer of the plasmid to R. gnavus. Individual colonies were 506 

grown in non-selective BHI-YH broth overnight to allow expression of the plasmid and 507 

genomic recombination. The culture was then plated onto a BHI-YH medium containing 508 

cycloserine (250 μg/ml) and erythromycin (10 μg/ml) to select clones with successful 509 



genomic recombination. PCR and sequencing were used to confirm recombination in the 510 

gene of interest. 511 

Expression of the nan cluster genes in the generated mutants was assessed as described 512 

above using RNA samples from growth on YCFA supplemented with glucose. 513 

The ability of the mutants to utilise sialic acids and sialoconjugates was assessed by 514 

supplementing YCFA with 11.1 mM of 2,7-anhydro-Neu5Ac, 3’SL, glucose or Neu5Ac in 515 

triplicate 200 µl cultures in 96-well microtiter plates. The OD595 nm was measured hourly for 516 

10 h in an infinite F50 plate reader (Tecan, UK) housed within an anaerobic cabinet 517 

connected to Magellan V7.0 software. 518 

 519 

Saturation Transfer Difference (STD) NMR Spectroscopy.  520 

An amicon centrifuge filter unit with a 10 kDa MW cut-off was used to exchange the protein 521 

in 25 mM d19-2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol pH* 7.4 (uncorrected for the 522 

deuterium isotope effect on the pH glass electrode) D2O buffer and 50 mM NaCl. 2,7-523 

anhydro-Neu5Ac and Neu5Ac were dissolved in 25 mM d19-2,2-bis(hydroxymethyl)-2,2′,2″-524 

nitrilotriethanol pH 7.4, 50 mM NaCl. Characterization of ligand binding by Saturation 525 

Transfer Difference NMR Spectroscopy72 was performed on a Bruker Avance 800.23 MHz at 526 

298 K. The on- and off-resonance spectra were acquired using a train of 50 ms Gaussian 527 

selective saturation pulses using a variable saturation time from 0.5 s to 4 s, for binding 528 

epitope mapping determination while only 0.5 s of saturation time for each selected 529 

frequency was used to perform the DEEP-STD NMR experiments42. The water signal was 530 

suppressed by using the excitation sculpting technique73, while the remaining protein 531 

resonances were filtered using a T2 filter of 40 ms. All the spectra were performed with a 532 

spectral width of 10 KHz and 32768 data points using 256 or 512 scans. This time due to the 533 

absence of a 3D structure it was impossible to derive the resonances for saturation of 534 

aliphatic and aromatic residues found in the binding site as required by the DEEP-STD NMR 535 

technique. Moreover, RgSBP being a high molecular weight protein the NMR spectra 536 

assignment is precluded. For this we adopted a search for druggable sites strategy using 4-537 

hydroxy-1-oxyl-2,2,6,6-tetramethylpiperidine (TEMPOL) as previously described74.  538 

1H-1H TOCSY spectra of the protein (500 μM) were acquired in the presence and in the 539 

absence of TEMPOL (2.5 mM and 12.5 mM). The spectra were performed with a spectral 540 

width of 10 kHz using a time domain of 2056 data points in the direct dimension and 32 541 

scans. The indirect dimension was acquired using the non-uniform sampling (NUS) 542 

technique acquiring a NUS amount of 50% of the original 256 increments resulting in 64 543 

hypercomplex points. The spectra were processed with the Topspin 3.1 compressed sensing 544 

(cs) routine. The final selected resonances were those identified by the TEMPOL PRE effect, 545 



and not overlapping with ligand signals. The DEEP-STD NMR data obtained were used to 546 

derive the average orientation of the ligand bound to RgSBP by averaging the DEEP-STD 547 

factors obtained from each saturated region. The DEEP-STD NMR and binding epitope 548 

mapping analysis were performed using previously published procedures42,74,75. 549 

 550 

Crystal structure determination 551 

Sitting drop vapour diffusion crystallisation experiments of RgNanA wt were set up at a 552 

concentration of 20 mg/ml and monitored using the VMXi beamline at Diamond Light 553 

Source76. The described RgNanA wild-type crystal structure was acquired from a crystal 554 

grown in the Morpheus screen (Molecular Dimensions), 0.2 M 1,6-hexandiol, 0.2 M 1-555 

butanol, 0.2 M 1,2-propanediol, 0.2 M 2-propanol, 0.2 M 1,4-butanediol, 0.2 M 1,3-556 

propanediol, 0.1 M Hepes/MOPS pH 6.5, 20% ethylene glycol, 10% PEG 8000. The 557 

diffraction experiment was performed on beamline I24 beamline at Diamond Light Source 558 

Ltd at 100K using a wavelength of 0.9686 Å. The data were processed with Xia2 making use 559 

of aimless, dials, and pointless (for data collection and refinement statistics see 560 

Supplementary Table S3). The structure was phased using MrBump through CCP4 online 561 

and Molrep77-79, by CdNaI from C. difficile (PDB 4woq) prepared using Chainsaw. 562 

Refinement was carried out using Refmac, Buster, and PDB redo80-84. Coot and ArpWarp 563 

were used for model building and Molprobity for structure validation85. It was not possible to 564 

crystallise RgNanA wt in the presence of Neu5Ac as it caused protein precipitation and 565 

RgNanA crystals dissolved in Neu5Ac soaking experiments, as also observed previously 566 

with P. multocida Neu5Ac aldolase53, possibly due to conformational changes during 567 

substrate binding or catalysis. Experiments with RgNanA K167A mutant were set up at 25 568 

mg/ml. Diffracting crystals grew in 0.1 M Tris/BICINE pH 8.5, 20% ethylene glycol, 100 mM 569 

MgCl2, 10% PEG 8000 and diffraction experiments performed on beamline I04 at Diamond 570 

Light Source using a wavelength of 0.9795 Å. The crystal structure was phased with 571 

PHASER using the RgNanA wild-type crystal structure86. A 60 second 5 mM Neu5Ac soak 572 

prior to freezing generated the RgNanA K167A Neu5Ac complex. Due to data anisotropy, we 573 

processed the data in autoPROC86,87 with the STARANISO option88 and used these data for 574 

refinement with Buster using the previously obtained models of RgNanA wild-type and 575 

K167A Neu5Ac complex. 576 

 577 

In vivo colonisation and analyses 578 

The impact of the nan deletion mutation on R. gnavus fitness was assessed by its ability to 579 

colonise germ-free C57BL/6J mice. Groups containing four 7-9 week old germ-free mice 580 

(two male, two female) were gavaged with 1x108 CFU of R. gnavus ATCC 29149 wild-type 581 



or antisense nan mutant in 100 µl PBS, individually or in combination. Sample size was 582 

selected following the 3 R's principles of reduction, replacement, refinement, whilst ensuring 583 

data collected allowed for statistical analysis, randomization was not possible due to the 584 

constraints of germ-free isolators, scientists were blinded for the FISH analysis. Care and 585 

treatment of animals was in accordance guidelines from and approval by the University of 586 

East Anglia Disease Modelling Unit and all animal experiments were conducted in strict 587 

accordance with the Home Office Animals (Scientific Procedures) Act 1986. Faecal samples 588 

were collected from each mouse at 3,7 and 14 days post gavage, and caecal content taken 589 

at day 14. DNA was extracted from these samples using the MP Biomedicals Fast 590 

DNA™ SPIN kit for Soil DNA extraction with the following modifications. The samples were 591 

resuspended in 978 µl of sodium phosphate buffer before being incubated at 4 °C for one 592 

hour following addition of 122 µl MT Buffer. The samples were then transferred to the lysing 593 

tubes and homogenised in a FastPrep® Instrument (MP Biomedicals) 3 times for 40 s at a 594 

speed setting of 6.0 with 5 min on ice between each bead-beating step. The protocol was 595 

then followed as recommended by the supplier.  596 

Colonisation was quantified using qPCR carried out in an Applied Biosystems 7500 Real-597 

Time PCR system (Life Technologies Ltd). In competition experiments, primers based on the 598 

insertion in the RgNanH gene were used to distinguish between wild-type and nan mutant. 599 

One pair of primers was designed to specifically target R. gnavus wild-type strain by 600 

spanning the area of insertion into the nan cluster and one pair of primers was designed to 601 

specifically amplify the inserted DNA, therefore targeting the nan mutant (Supplementary 602 

Table S6). The primers were between 18 and 23 nt-long, with a Tm of 59–60°C. Standard 603 

curves were prepared in triplicate for both primer pairs using a 10-fold serial dilution of DNA 604 

corresponding to 1x107 copies of RgNanH/2ul to 1x102 copies/2ul diluted in 5 µg/ml Herring 605 

sperm DNA. The standard curves showed a linear relationship of log input DNA vs. the 606 

threshold cycle (CT), with acceptable values for the slopes and the regression coefficients 607 

(R2). The dissociation curves were also performed to check the specificity of the amplicons. 608 

Each qPCR reaction (10 µl) was then carried out in triplicate with 2 µl of 1 ng/μl DNA (diluted 609 

in 5 µg/ml Herring sperm DNA) and 0.2 µM of each primer, using the QuantiFast SYBR 610 

Green PCR kit (Qiagen) according to the manufacturer’s instructions (except that the 611 

combined annealing/extension step was extended to 35 s instead of 30 s). Data obtained 612 

were analysed using the prepared standard curves. 613 

 614 

RNAseq analysis 615 

For RNAseq analysis, the colonic tissues from mono-colonised mice were gently washed 616 

and stored in RNAlater at -80ºC until extraction. RNA extraction was performed using the 617 



RNeasy mini kit (QIAGEN) following the manufacturer’s instructions for purification of total 618 

RNA from animal tissues, including the on-column DNase digestion. Homogenisation was 619 

achieved with acid washed glass beads using the FastPrep®-24 (MP Biomedicals, Solon, 620 

USA) by 3 intermittent runs of 30 s at 6 m/s speed every 5 min, at room temperature. Elution 621 

was performed as recommended with 50 μl RNAse-free water. The quality and 622 

concentration of the RNA samples was assessed using NanoDrop 2000 Spectrophotometer 623 

Nanodrop, the Qubit RNA HS assay on Qubit® 2.0 fluorometer (Life Technologies) and 624 

Agilent RNA 600 Nano kit on Agilent 2100 Bioanalyzer (Agilent Technologies, Stockport, 625 

UK). 626 

RNAseq was carried out by Novogene (HK) (Hong Kong). Briefly, mRNA was enriched using 627 

oligo(dT) beads, fragmented randomly in fragmentation buffer, followed by cDNA synthesis 628 

using random hexamers and reverse transcriptase. After first-strand synthesis, a custom 629 

second-strand synthesis buffer (Illumina) was added with dNTPs, RNase H and Escherichia 630 

coli polymerase I to generate the second strand by nick-translation. The final cDNA library 631 

was obtained after a round of purification, terminal repair, A-tailing, ligation of sequencing 632 

adapters, size selection and PCR enrichment. Library concentration was first quantified 633 

using a Qubit® 2.0 fluorometer (Life Technologies), and then diluted to 1 ng/µl before 634 

checking insert size on an Agilent 2100 and quantifying to greater accuracy by qPCR (library 635 

activity >2 nM). Sequencing of the library was carried out on Illumina Hiseq platform and 636 

125/150 bp paired-end reads were generated. 637 

FASTQ files containing base calls and quality information for all reads that passed quality 638 

filtering were generated. Reads were mapped to the mouse reference genome using 639 

TopHat289. The mismatch parameter was set to two, and other parameters were set to 640 

default. Appropriate parameters were also set, such as the longest intron length. Filtered 641 

reads were used to analyze the mapping status of RNA-seq data to the reference genome. 642 

The HTSeq software was used to analyze the gene expression levels, using the union 643 

mode90. In order for the gene expression levels estimated from different genes and 644 

experiments to be comparable, the FPKM (Fragments Per Kilobase of transcript sequence 645 

per Millions base pairs sequenced) was used to take into account the effects of both 646 

sequencing depth and gene length. The differential gene expression analysis was carried 647 

out using the DESeq package90 and the readcounts from gene expression level analysis as 648 

input data. An adjusted p value (padj) cut-off of 0.05 was used to determine differential 649 

expressed transcripts. 650 

 651 

Fluorescent in situ hybridization (FISH) staining  652 



For FISH analysis, the colonic tissue was fixed in methacarn (60% dry methanol, 30% 653 

chloroform and 10% acetic acid), processed and embedded in paraffin as previously 654 

described2. Tissue sections were prepared at 8-10 µm. Paraffin sections were dewaxed and 655 

washed in 95% ethanol. The tissue sections were incubated with 100 µl of Alexa Fluor 555-656 

conjugated Erec482 probe (5’ – GCTTCTTAGTCARGTACCG -3’) at a concentration of 10 657 

ng/µl, in hybridisation buffer (20 mM Tris-HCl, pH 7.4, 0.9M NaCl, 0.1% SDS) at 50oC 658 

overnight. The sections were then incubated in a 50oC prewarmed wash buffer (20m M Tris-659 

HCl, pH 7.4, 0.9 M NaCl) for 20 min. All subsequent steps were performed at 4oC. The 660 

sections were washed with PBS, the blocked with TNB buffer (0.5% w/v blocking reagent in 661 

100 mM Tris-HCl, pH 7.5, 150 mM NaCl) supplemented with 5% goat serum. To detect 662 

mucin, the sections were then counterstained with a Muc2 antibody (sc-15334) at 1:100 663 

dilution in TNB buffer overnight. The sections were washed in PBS, then goat anti-rabbit 664 

antibodies (diluted 1:500) were used for immunodetection. The sections were counterstained 665 

with Sytox blue (S11348, ThermoFisher) diluted 1:1000 in PBS and mounted in Prolong gold 666 

anti-fade mounting medium. The slides were imaged using a Leica TCS SP2 confocal 667 

microscope with a x63 objective. The distance between the leading front of bacteria and the 668 

base of the mucus layer was measured with FIJI91. A total of 70 images from 8 mice were 669 

analysed, and scientists were blinded for the analysis due the subjectivity of determining the 670 

leading front of bacteria and base of the mucus layer.  The association between genotype 671 

and distances was estimated by a linear mixed model, including fixed effects of genotype 672 

and area and random effects of mouse and each individual image. There was substantial 673 

spatial correlation between adjacent observations and so an AR(1) correlation structure was 674 

added. The resulting model had no residual autocorrelation as judged by visual inspection of 675 

autocorrelation function.  The nmle package version 3.1-137 using R version 3.5.3 was used 676 

to estimate the model. 677 

 678 

Data Availability 679 

Genome and protein sequences are available from NCBI and referenced within the text or 680 

supplementary information. Accession numbers of all genomes used for multigene 681 

alignments, are available in Supplementary Table 5. Raw FASTQ files for the RNA-seq 682 

libraries were deposited to the NCBI Sequence Read Archive (SRA), and have been 683 

assigned BioProject accession PRJNA559470. The crystal structures described in this 684 

paper have been deposited in the protein data bank (ODB) with the following identifiers 685 

6RAB (WT), 6RB7 (K167A), and 6RD1 (K167A Neu5Ac complex). All other data are 686 

available upon request from the corresponding author. 687 



Computer code for statistical analysis is available on request from the corresponding 688 

author. 689 
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 Figure legends 1006 

Figure 1 R. gnavus ATCC 29149 nan operon a) Diagram depicting the genomic 1007 

organisation of the nan operon RUMGNA_02701 (putative sialic acid esterase; tan) 1008 

RUMGNA_02700 (putative YhcH family protein; dark blue), RUMGNA_02699 (predicted 1009 

transcriptional regulator; purple), RUMGNA_02698 – 02696 (putative sialic acid ABC 1010 

transporter of the SAT2 family; green), RUMGNA_02695 (putative oxidoreductase, pink), 1011 

RUMGNA_02694 (RgNanH (Intramolecular trans sialidase), gold), RUMGNA_02693 (NanE 1012 

(epimerase), blue), RUMGNA_02692 (NanA (aldolase), dark green), RUMGNA_02691 1013 

(kinase) (NanK, red). b) qPCR analysis showing fold changes in expression of nan genes 1014 

when R. gnavus was grown with 3’SL or 2,7-anhydro-Neu5Ac compared to glucose using 1015 

∆∆Ct calculation. Error represent standard deviation and are based on three biological 1016 



replicates analysed in triplicate. Statistical significance was determined using a 1-way 1017 

ANOVA with a Dunnett’s multiple comparison test. NS – no significant change in expression 1018 

(p > 0.05), * - p 0.05 – 0.01, ** - p 0.01 – 0.001, *** - p < 0.001.  1019 

 1020 

Figure 2 Steady-state fluorescence analysis of ligand binding to RgSBP.  Fluorescence 1021 

emission spectrum of 0.5 µM RgSBP excited at 297 nm in the presence or absence of a) 1022 

2,7-anhydro-Neu5Ac or b) Neu5Ac. The data shown are representative of triplicate readings. 1023 

c) Titration of 0.5 µM RgSBP with 2,7-anhydro-Neu5Ac. The data represents the mean of 1024 

triplicate readings. d) Displacement of Neu5Ac with 2,7-anhydro-Neu5Ac, six sequential 1025 

additions of 10 μM Neu5Ac to 0.5 µM RgSBP followed by one addition of 10 µM 2,7-1026 

anhydro-Neu5Ac, and displacement of 2,7-anhydro-Neu5Ac with Neu5Ac, one addition of 10 1027 

μM 2,7-anhydro-Neu5Ac followed by 6 subsequent additions of 10 μM Neu5Ac. The data 1028 

shown are representative of triplicate experiments, the signal peaks are artefacts attributed 1029 

to external light during sample addition.  1030 

Figure 3 Biophysical analysis of ligand binding to RgSBP. ITC Isotherms of RgSBP 1031 

binding to a) 2,7-anhydro-Neu5Ac or b) Neu5Ac, showing both DP – differential power and 1032 

∆H – enthalpy change. The data shown are representative of triplicate experiments. c) 1033 

Saturation Transfer Difference (STD) NMR binding epitope mapping of 2,7-anhydro-Neu5Ac 1034 

interacting with RgSBP. The initial slopes STD0 (%) were normalized against the highest 1035 

STD0, assigned as 100%. The obtained factors were then classified as weak (0-60 %), 1036 

intermediate (60-80 %), and strong (80-100%) and used to identify the close contacts found 1037 

at the interface of binding, data is representative of triplicate readings d) Average Differential 1038 

Epitope Mapping (DEEP) STD factors for 2,7-anhydro-Neu5Ac obtained saturating RgSBP 1039 

in spectral regions 0.6, 0.78, 1.44 ppm for aliphatic and 7.5, 7.23, 7.27 ppm for aromatic 1040 

residues. Each differential mapping epitope obtained using different saturation frequencies 1041 

are combined and the average DEEP STD is calculated resulting in five points for each 1042 

frequency and a total of fifteen points for each proton receiving saturation. The data reported 1043 

are the mean ± SEM of a sample of data of fifteen points for each proton receiving 1044 

saturation. 1045 

Figure 4 R. gnavus sialic acid aldolase enzymatic reaction. a) Change of A340nm over 1046 

time using R. gnavus sialic acid aldolase (RgNanA) with Neu5Ac (pink) or 2,7-anhydro-1047 

Neu5Ac (orange), or E. coli sialic acid aldolase (EcNanA) with Neu5Ac (black) or 2,7-1048 

anhydro-Neu5Ac (green) reactions coupled to lactate dehydrogenase, error bars represent 1049 

standard error from 3 independent experiments. b) Michaelis-Menten plot of RgNanA rate of 1050 

reaction with increasing concentration of Neu5Ac, error bars represent standard error. The 1051 

rate of reaction at each concentration (µM NADH) was determined in triplicate by measuring 1052 



A340nm change using a standard curve. The mean value is plotted with standard error of the 1053 

meaning shown with error bars c) Cartoon representation of the wild type RgNanA crystal 1054 

structure showing the (β/α8) TIM barrel organisation and Lys167 as yellow sticks. d) The 1055 

RgNanA K167A active site is shown in orange with bound Neu5Ac in the open-chain ketone 1056 

form shown in cyan. The green mesh represents the Neu5Ac Fo-Fc difference map at the 3σ 1057 

level (for a stereo image of Neu5Ac and Fo-Fc difference map see Supplementary Figure 1058 

5d). Hydrogen bonding interactions are depicted using black dashed lines. In addition, the 1059 

unbound RgNanA wt active site is shown in grey. 1060 

Figure 5 RUMGNA_02695 catalyses the conversion of 2,7-anhydro-Neu5Ac to Neu5Ac. 1061 

a) High Performance Liquid Chromatography (HPLC) expand acronyms number replicates 1062 

with same outcome analysis of DMB labelled RUMGNA_02695 reactions with 2,7-anhydro-1063 

Neu5Ac using different co-factors. NAD (black), NADH (pink), FAD (blue), no co-factor 1064 

(brown), and a Neu5Ac standard (green), data is representative of five independent 1065 

experiments. b) Michaelis-Menten plot of the rate of reaction for RUMGNA_02695 with 1066 

increasing concentration of 2,7-anhydro-Neu5Ac. The rate of reaction (µM NADH) at each 1067 

concentration was determined in triplicate by measuring A340nm change and using a 1068 

standard curve, the mean value is plotted with standard error of the meaning shown with 1069 

error bars 1070 

Figure 6 Colonisation of germ-free C57BL/6J mice with R. gnavus ATCC 29149 wild-1071 

type or nan mutant strains. Mice were monocolonised with a and b sample size (n) and 1072 

define centre measure mean(a) R. gnavus wild-type (black; n = 4) or nan mutant (red; n = 4) 1073 

strains individually or (b) in competition (n = 4). Mice were orally gavaged with 1x10
8
 of each 1074 

strain, faecal samples were analysed at 3,7 and 14 days after inoculation and caecal 1075 

samples at 14 days after inoculation using qPCR, centre line denotes the mean. (c) 1076 

Fluorescent in situ hybridisation (FISH) and immunostaining of the colon from R. gnavus 1077 

monocolonised C57BL/6 mice. R. gnavus ATCC 29149 and R. gnavus nan mutant are 1078 

shown in red. The mucus layer is shown in green and an outline of the mucus is shown in 1079 

the first panels. Cell nuclei were counterstained with Sytox blue, shown in blue. Scale bar: 1080 

20 μm. Image is representative of 70 total images (d) Quantification of the distance between 1081 

the leading front of bacteria and the base of the mucus layer. A total of 70 images of stained 1082 

colon from 8 R. gnavus monocolonised mice were analysed. The asterisks (***) show the 1083 

significance (P=0.0135, by linear mixed model analysis, including fixed effects of genotype 1084 

and area and random effects of mouse and each individual image.  There was substantial 1085 

spatial correlation between adjacent observations and so an AR(1) correlation structure was 1086 

added.  The resulting model had no residual autocorrelation as judged by visual inspection 1087 



of autocorrelation function.  The nmle package version 3.1-137 using  R version 3.5.3 was 1088 

used to estimate the model), centre point indicates the mean, box limits, upper and lower 1089 

quartiles; whiskers, minimum and maximum.  1090 
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