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Abstract. The Random Interval Spectral Ensemble (RISE) is a recently
introduced tree based ensemble time series classification algorithm, where
each tree is built on a distinct set of Fourier, autocorrelation and partial
autocorrelation features. It is a component in the meta ensemble HIVE-
COTE [9]. RISE has run time complexity of O(nm?), where m is the
series length and n the number of train cases. This is prohibitively slow
when considering long series, which are common in problems such as audio
classification, where spectral approaches are likely to perform better than
classifiers built in the time domain. We propose an enhancement of RISE
that allows the user to specify how long the algorithm can have to run.
The contract RISE (c-RISE) allows for check-pointing and adaptively
estimates the time taken to build each tree in the ensemble through
learning the constant terms in the run time complexity function. We show
how the dynamic approach to contracting is more effective than the static
approach of estimating the complexity before executing, and investigate
the effect of contracting on accuracy for a range of large problems.

Keywords: time series classification - spectral features - contract classi-
fier.

1 Introduction

Data sets of increasing size are now common within machine learning. Big data
undeniably has its benefits. However, as advancements in processing capabilities
begin to slow and the complexity of algorithms increase, we are often faced with
more data than we are capable of processing. Even with the rise in popularity
of cloud computing platforms and high performance computer facilities, it often
becomes infeasible to construct a full learning model on all of the available data.
A particularly common area in which the problem arises is the spectral/audio
domain. This is typically down to the sample rate used to record data. Consider
that the standard audio sample rate is 44.1kHz. Creating models from audio data
requires either extensive bespoke preprocessing or adaptations of the learning
algorithms to compensate for the volume. We do not look to challenge or reaffirm
the traditional, volume of data/increase in accuracy paradigm. Instead, we aim to
investigate the relationship between reduced train time and accuracy, assuming
a fixed volume of data.
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All experimental processes strive to make complete use of the training set
and in ideal conditions this will always be preferable. However, in our work with
large datasets we have experienced first hand the problems of extreme train
and test times of approaches. In working through these problems it has become
apparent that very little research has been undertaken in understanding how
reduced training time affects accuracy. Homogeneous ensembles typically require
a large number of trees to be effective. The most basic way of managing train
times is simply to build base models until the time has expired. However, for very
large problems, this may result in very small ensembles. The Random Interval
Spectral Ensemble (RISE) is a Time Series Classification (TSC) algorithm that
uses spectral features. It selects a different random interval of the series for each
base classifier, then calculates spectral coefficients to be used as features. For
large problems, if we happen to select intervals close to the full series length, we
can use all available computation on very few models. To compensate for this,
we investigate whether we can predict the run time, then use this prediction to
guide the interval sampling, ensuring a minimum size ensemble.

Our aims are twofold; firstly, we aim to make RISE more useful by making
it a contract classifier, i.e. a classifier where you can specify approximately the
amount of computational time allowed to build the model. Secondly, we aim to
compare the basic approach and our adaptive, dynamic approach with respect to
their effect on accuracy and ability to adhere to the time contract.

In section 2 we describe RISE in detail and further motivate the need for
contracting. In section 3 we introduce our contract version, c-RISE, and describe
both timing models. In section 4 we outline the experimental procedure and
present the results and in section 6 we conclude.

2 The RISE algorithm

RISE draws on ideas from tree-based ensembles such as random forest [4] and the
TSC interval feature classifier time series forest (TSF) [6]. Like TSF, we build
trees on random intervals from the data to construct a random forest classifier.
A key difference is that T'SF uses time domain features by calculating the mean,
variance, and slope of each interval, but RISE extracts spectral features over
each random interval instead. Once we have derived the spectral features, we
build a decision tree using the random tree algorithm used by random forest.
The base RISE algorithm is described in Algorithm 1. The first tree in RISE is a
special case that uses the whole series. We include this step for continuity with
the previous spectral classifiers used in The Collective of Transformation-Based
Ensembles [3] (COTE) classifier which only used the whole series. The procedure
for building RISE is outlined in Algorithm 1.

RISE uses several forms of spectral features: the power spectrum, the autocor-
relation function, the partial autocorrelation and the autoregressive model. New
classes are classified using a simple majority vote. Further details can be found
in [9]. The run time for transforming a series is quadratic in the interval length.
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Algorithm 1 BuildRISE(Training data train, number of classifiers r, minimum
interval length minLen)
1: Let F +< Fi...F, > be the trees in the forest.
Let m be the length of series in train
wholeSeriesFeatures < getSpectralFeatures(train)
buildRandomTreeClassifier(F1,wholeSeriesFeatures)
for i + 2 to r do
startPos < randBetween(1, m — minLen)
endPos + randBetween(startPos + minLen,m)
train < removeAttributesOutsideOfRange(train,start Pos,endPos)
interval Features < getSpectralFeatures(train)
buildRandomTreeClassifier(F;,interval Features)

—_

3 The Contracted RISE algorithm

In many areas it may be advantageous or even necessary to constrict the run
time of a classification algorithm. Generally, it is not well understood how
long classification algorithms take to run for a given problem. It is of practical
importance when considering which algorithm to use or how much preprocessing
to perform. This is of particular difficulty when using cloud services where the
computation is charged for per time period, or situations in which there is a
hard deadline or where there is a limit on how long a process is allowed to
run. Two solutions to these problems are check-pointing, periodically saving a
partial version of the classification model to disk, and contracting, limiting the
the amount of computational time an algorithm is allowed. Used together, they
make a classifier more flexible and useful to the practitioner. Check-pointing
RISE is simple, especially with a Java implementation; we can simply serialise
the constructed trees at certain points and adapt RISE to allow the loading from
file. Contracting is also simple: we can keep building trees until we run out of
time or reach the maximum number. However, this simple contracting approach
can result in very small ensembles if the series are very long. We propose an
adaptive scheme that avoids this problem by dynamically estimating the build
time for each particular tree.

3.1 Algorithmic Improvements

A number of small but influential changes are implemented in c-RISE, with the
goal of not significantly decreasing accuracy whilst drastically improving runtime.
These changes are outlined below and a more thorough description provided in
Algorithm 3.

RISE uses power spectrum (PS), autocorellation function (ACF), partial
autocorellation function (PACF) and autoregressive model (AR) features over
each interval. These features are clearly related, but it was found that combining
them created a more accurate classifier than just using one set [9]. However, the
drawback is that although the PS can be found in O(nlog(n)) time if the series
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length is a power of 2, there is no simple way to do this for the PACF and AR
terms. Hence c-RISE does not derive PACF or AR features, and only selects
intervals that are a power of 2. An interval is still selected randomly, but now it is
rounded to the nearest power of two. To correct for intervals exceeding the series
length, the interval is then divided by 2, ensuring a valid interval and favouring
shorter intervals.

3.2 Timing models

Non-adaptive model. The simplest way to limit the train time of tree based
ensemble is to simply set a timer and keep adding trees until the contract is met,
or a maximum number of trees have been built. This is described in Algorithm 2.

Algorithm 2 Build ¢-RISE_Non-adaptive(Training data train, number of classi-
fiers 7, minimum interval length min)

1: Let F << Fi ... F500 > be the trees in the forest.

Let m be the length of series in train

startForest Timer()

for i + 1 to 500 AND queryForestTimer() do
validLengths < getValidPowersOf2(min, instanceLength)
randomLength < randBetween(maxValue(valid Lengths)/2)
r < findClosest(valid Lengths, randomLength)
startPos < randBetween(1,m — )

9: interval < removeAttributesOutsideOfRange(train, startPos,r)

10: interval Features < getSpectralFeatures(interval)

11: buildRandomTreeClassifier(F; interval Features)

12: updateTimer()

Adaptive model c-RISE performs two transformations: A discrete Fourier
transform (DFT) to find the power spectrum and construction of the autocor-
relation function (ACF). With the simplest implementation, each of these is
O(r?), where r is the interval width. We can improve the efficiency of the Fourier
transform to O(rlog(r)) by using the fast Fourier Transform (FFT). To gain the
full benefit we restrict c-RISE to intervals of length the power of 2. However, the
best average case complexity for the ACF is O(r?). Hence, the transformations
will dominate the runtime in relation to the decision tree, so we can reasonably
model the runtime ¢ for a single member of the ensemble of interval length r as

t=a-r>+b-r+ec.

If we fix the contract time ¢ and knew the constant factors a, b and ¢ we
could find the positive root of the quadratic and use that as the maximum
allowable interval for the tree. The quadratic terms will of course be both
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problem and hardware dependent. Hence, we use an adaptive algorithm to learn
these parameters. For each tree we build, we record the selected interval and the
observed run time. Using is data, we refit a least squares linear regression model.
For clarity, we let 21 = r? and x5 = 1, our dependent variable matrix is then,

1,211, 712
1,291,
x = |LTer, T2

1,2k, Tho

the estimates of the parameters are B = (a, b, é)T and our response variable
is Y = (y1,v2,---,4r)T. The least squares estimates are then,

B=(XTXxX)"'xTy.

Since (X7 X) is based on sums of squares, we do not have to recalculate
if from scratch each time. It is also possible to update (X7 X)~! online with
the Sherman-Morrison formula, but we leave that for future work. After the
construction of each tree, we update the remaining contracted time ¢, re-estimate
the coefficients t = a - 72 +b-r + ¢, and calculate a new maximum allowable
interval r. This is used as the maximum for the next iteration.

Algorithm 3 Build ¢-RISE_Adaptive(Training data train, number of classifiers
r, minimum interval length min)
1: Let F <—< F1 ... F500 > be the trees in the forest.
2: Let m be the length of series in train
3: startForestTimer()
4: for i < 1 to 500 AND queryForestTimer() do
: startTreeTimer()

5
6: buildAdaptiveModel()

T max < findMaxIntervalLength()

8: validLengths < getValidPowersOf2(min, maz)

9: randomLength < randBetween(maxValue(validLengths)/2)
10: r < findClosest(valid Lengths, randomLength)

11: startPos < randBetween(1,m — )
12: interval < removeAttributesOutsideOfRange(train, startPos,r)
13: interval Features < getSpectralFeatures(interval)

14: buildRandomTreeClassifier(F; interval Features)
15: y < queryTreeTimer()
16: updateAdaptiveModel(r, y)

4 Results

In order to ensure the following results are comparable, all approaches were
evaluated on 10 stratified random re-samples, of the same 85 datasets from the
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UCR archive. All code is available from the UEA TSC repository!, whereas,
raw results and analysis can can be downloaded from this repository?. The
experimental pipeline and algorithms used were all implemented in Java and
the experiments were carried out on the HPC system at the University of East
Anglia.

4.1 RISE vs c-RISE

RISE has been shown to be significantly better than other spectral based ap-
proaches on the TSC archive data and on simulated data [2] and therefore was
selected as the spectral component for HIVE-COTE. However, RISE is computa-
tionally expensive, since each transformed series is based on an O(r?)operation
(finding the PACF), where r is the series length. This is further impacted by the
derivation of auto regressive and spectral features. In a summary of experiments
over 82 datasets from the UCR archive it was concluded that these features do
not significantly effect accuracy, as shown in figure 1. However computation of
these features represent significant complexity in the algorithm and as such they
have a detrimental effect on runtime. Table 1 presents both the mean, median
train time for RISE and cRISE over 85 datasets from the UCR archive.
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Fig.1. (a) A pairwise scatter diagram showing average train time over 10 random
re-samples of 85 UCR datasets for both RISE and cRISE. (b) A pairwise critical
difference diagram showing the ranks of TSF [6], cRISE, EE [7], RISE [9], BOSS [10]
and ST [8] over the same 10 random resamples of 85 UCR datasets.

However, on investigation of the impact each of these features has on ac-
curacy and runtime, it became apparent that they did not contribute equally.

! https://github.com/TonyBagnall /uea-tsc
2 https:/ /tinyurl.com/y3robhbk
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Fundamentally cRISE behaves in the same manner as RISE when not under
contract. This allows us to attribute any changes in runtime or accuracy to
the removed transformations. The impact on runtime when deriving the PACF
and AR features is unsurprising. Figure 1 (b) is a critical difference diagram
displaying various state of the art classifiers, including both RISE and cRISE.
The impact of removing PACF and AR features has on accuracy was unexpected.
The outcome of these experiments was the removal of PACF and AR derivations.

Table 1. A table showing mean and median train times of RISE and cRISE over all
UCR datasets, as well as average speed up.

cRISE RISE Difference
Mean (seconds) 144 3554 3410
Median (seconds) 145 3794 3649

Moving forward all experimental results are achieved with the updated ar-
chitecute of cRISE.

4.2 Naive vs Adaptive Timing models

In this section we evaluate how the accuracy of cRISE changes as a function of
total training time for both approaches. We also asses how well each approach
adheres to the contract itself.

In order to achieve this, nine pairs of experiments were carried out. For both
approaches a contract is set representing 10% - 90% total training time per
dataset in 10% increments. This allowed us to examine changes in accuracy at 10
evenly spaced points in time as well test each approaches ability to stay within
the contract.

Figure 2 (a) shows how the actual train time changes over different contracts.
Each point represents the mean train time over 85 datasets over 10 folds for each
contract. The contracts themselves are defined as a percentage of full train time
per dataset. This represents 8,500 experiments per approach over 10 contract
percentages.

Figure 2 (a) also shows that the Adaptive approach displays much more
predictable behaviour in the context of adhering to contract time. Adhering to
relatively small contract times presents more of a challenge to both approaches.
This can be explained by the limit imposed on the minimum interval size. Small
contracts are better fulfilled by small intervals as each iteration represents a
smaller proportion of the contract, allowing for finer control over the total time
taken.

Initially this appears a major flaw in both approaches. However, this problem
is largely exacerbated by the existence of many small problems in the UCR 85
database. Problems that without intervention take between 1 and 4 hours to
complete.
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Fig. 2. The graphs on the left show the performance of the Adaptive and Non-adaptive
approaches in respect to their ability to adhere to contract time. The graphs on the
right show the predictive accuracy of the Adaptive and Non-adaptive approaches over
10 contracts. The top row displays results averaged over all datasets from the UCR
database. The bottom row displays results averaged over all problems in the UCR
datasets with at least 700 attributes.

In order to remove the bias introduced by smaller datasets the same experi-
ments were repeated with all datasets containing data over 700 attributes.

Figure 2 (c¢) shows how the actual time taken changes over different contract
times for problems from the UCR, archive with 700 or more attributes. Figure
2 (c) shows that both approaches were confounded by smaller problems. It also
illustrates the Adaptive approaches superior ability to adhere more closely to the
contract than the Non-adaptive approach.

Interestingly, these changes in contract accuracy have very little to no effect
on accuracy. Figure 2 (b) and figure 2 (d) show how accuracy changes as a
function of contract time for all UCR datasets and datasets over 700 attributes
respectively. This is important as it confirms that the superior ability of adhering
to contract time comes at no cost to accuracy for the Adaptive approach.
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5 Eigenworms Case Study
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Fig. 3. An image showing an example of Caenorhabditis elegans, the 4 Eigenworm
shapes and an illustration of a corresponding 4 dimensional time series with positional
images [5]

5.1 The dataset

Caenorhabditis elegans is commonly used in genetic studies as a model organism.
Their movements have proven to be a robust indicator in determining behavioural
traits. [5] outline a number of human-defined features [11] as well a procedure to
derive them. It has been shown that all positional variants that the organism
adopts can be expressed as combinations of 4 base shapes, known as eigenworms,
shown in figure 3(B). The raw worm outline is captured and similarity value
assigned to each of the 6 base shapes at each frame of motion.

Using the data collected in [5] worms can be classified as either wild type,
or 1 of 4 mutant types: goa-1, unc-1, unc-38, unc-63. The dataset is split into
a 131 instance train set and a 128 instance test set. The original classification
dataset, available at [1], consists of 6 dimensions of 17,984 attributes. However,
these were concatenated to create instance lengths of 107,903 for this problem.

5.2 Results

Figure 4 (a) shows how the actual train time changes over different contract
times. Each point represents the mean train time over the Eigenworms dataset
over 10 folds for each contract. Interestingly, the Non-adaptive approach appears
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to follow a similar downward trend to that displayed in 2 (c), this is in contrast
to the Adaptive model which has shown improvement as series length increases.

Figure 4 (c) displays the real error in minutes of the 2 approaches. Although
the Non-adaptive approach’s error does vary in respect to contract time, it does
not display a convincing downward trend. This suggests that the error may be
bound to either the series length, number of cases, or both. Conversely, the
Adaptive method produces results that indicate that it is robust to increases
in series length. Figure 4 (b) shows how accuracy changes as a function of
contract time. The Non-adaptive approach displays a more consistent assent
in accuracy as the contract time increases. The performance of the Adaptive
approach contradicts the results shown in figure 2 (b) & (d) which suggest the
accuracy of both models over all contracts do not deviate from one another.
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Fig. 4. (a) shows the performance of the Adaptive and Non-adaptive approaches in
respect to their ability to adhere to contract time. (b) shows displays the predictive
accuracy of the Adaptive and Non-adaptive approaches over 10 contracts. (c) shows
the real error, in minutes, of the Adaptive and Non-adaptive models over the same
contracts.
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6 Conclusions

In conclusion, we present changes to RISE that consistently result in a significantly
faster train time. This result was achieved using an established experimental
design on an established Time Series database. These changes remove two costly
derivations making cRISE at least twice as fast whilst the cost to test accuracy
is shown to be insignificant.

We also present and compare the Adpative and Non-Adaptive timing models
in the context of cRISE. On an established Time Series Database of 85 problems
the experimental design does not show any significant difference in accuracy
between models. Although, one approach did show a superior ability to adhere
to contract.

This superior ability to adhere to a contract time was made further evident
when considering a problem consisting of significantly longer series. It was shown
that the Adaptive model is robust to scaling of series length, whereas the Non-
adaptive approach is bound by series length, number of cases or both.

Although relatively incremental, these changes collectively represent a sig-
nificant improvement in the usability of cRISE and consequently HIVE-COTE.
They also serve to address the commonly unanswered question of, how best to
contract?
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