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Abstract

Enterohemorrhagic E. coli (EHEC) is a human intestinal pathogen that causes hemorrhagic

colitis and hemolytic uremic syndrome. No vaccines or specific therapies are currently avail-

able to prevent or treat these infections. EHEC tightly attaches to the intestinal epithelium by

injecting the intimin receptor Tir into the host cell via a type III secretion system (T3SS). In

this project, we identified a camelid single domain antibody (nanobody), named TD4, that

recognizes a conserved Tir epitope overlapping the binding site of its natural ligand intimin

with high affinity and stability. We show that TD4 inhibits attachment of EHEC to cultured

human HeLa cells by preventing Tir clustering by intimin, activation of downstream actin

polymerization and pedestal formation. Furthermore, we demonstrate that TD4 significantly

reduces EHEC adherence to human colonic mucosa in in vitro organ cultures. Altogether,

these results suggest that nanobody-based therapies hold potential in the development of

much needed treatment and prevention strategies against EHEC infection.

Author summary

Currently, there is no effective treatment or vaccine against enterohemorrhagic E. coli
(EHEC), a bacterial pathogen that infects human colon after the ingestion of contami-

nated food. It thrives in the colon thanks to its ability to attach intimately to the intestinal

epithelium. Here, we have identified and characterised a small antibody fragment (nano-

body) that recognises Tir, a receptor injected by the bacterium into the host cell to mediate

intimate attachment. This nanobody shows higher affinity against Tir than its natural bac-

terial ligand (intimin) and, most importantly, blocks the intimate attachment of the patho-

gen to the human colonic tissue. Our results show the potential of this nanobody to

prevent and treat EHEC infection.
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Introduction

Enterohemorrhagic E. coli (EHEC) is a major public health concern in industrial countries

with most severe infections linked to serotype O157:H7. In addition to diarrhoea, EHEC can

cause hemorrhagic colitis as well as life-threatening hemolytic uremic syndrome (HUS) dam-

aging the kidneys and central nervous system [1–4]. EHEC naturally resides in the intestinal

tract of cattle, and most infections are acquired by consumption of undercooked beef products

or cross-contaminated vegetables or sprouts [5]. Upon infection, EHEC adheres to the epithe-

lium of the distal ileum and colon by forming attaching and effacing (A/E) lesions, which are

characterized by intimate bacterial attachment and effacement of the brush border microvilli

[6, 7]. This is mediated by the Locus of Enterocyte Effacement (LEE) [8], a pathogenicity island

encoding a filamentous type III secretion system (T3SS) [9, 10], the outer membrane adhesin

intimin and the translocated intimin receptor (Tir), and other effector proteins involved in

pathogenesis [11, 12].

After formation of the translocation filament consisting of EspA proteins, Tir is injected

into intestinal epithelial cells (IECs), where it integrates into the plasma membrane in a hairpin

loop topology, presenting an extracellular domain of about 100 residues (TirM) [13, 14] that

serves as a binding site for the C-terminal lectin-like domain of intimin [15–17]. Binding of

intimin to Tir leads to intimate bacterial attachment, Tir clustering, activation of actin poly-

merization pathways and subsequent formation of actin pedestals and A/E lesions [7, 18–22].

Other key virulence factors of EHEC are the phage-encoded Shiga toxins (Stx) which are

released into the bloodstream and cause the systemic effects associated with HUS [23, 24]. So

far, there is no specific treatment for HUS, and application of antibiotics is discouraged as it

induces Stx expression and thereby increases the risk of developing HUS [25, 26]. Therefore,

there is a need to develop alternative therapies, and the use of antibodies (Abs) has been pro-

posed for treatment of infectious diseases [27]. In particular, members of the family Camelidae
(e.g. dromedaries, llamas) produce a class of Abs devoid of light chains [28, 29]. In these

heavy-chain-only Abs, the antigen-binding site is formed by a single variable domain termed

VHH [30]. The recombinant expression of camelid VHHs yields single domain Ab fragments,

which are also referred to as nanobodies (Nbs) [31]. The VHHs have extended complementar-

ity determining regions (CDRs) capable of adopting novel conformations and recognizing epi-

topes located in otherwise non-accessible clefts or protein cavities, such as active sites of

enzymes [32, 33] and inner regions of surface proteins from pathogens [34]. They also show

strict monomeric behavior, reversible folding properties, higher resistance to proteolysis and

thermal degradation, when compared with the variable domains of conventional antibodies

[31, 35, 36]. In addition, the high similarity between VHHs and human VH3 sequences opens

their potential use in therapeutic applications [31]. These beneficial properties offer opportuni-

ties to use Nbs for the development of therapeutic inhibitors against extracellular pathogens

[37, 38].

We have previously isolated a set of Nbs binding to EspA, the C-terminal receptor-binding

domain of intimin (Int280) and the TirM domain from a library of VHHs obtained after immu-

nization of a dromedary (Camelus dromedarius). Nanobodies were secreted to the extracellular

medium using the hemolysin (Hly) transport system of E. coli and purified from the culture

supernatants [39]. Here, we have investigated the ability of the selected Nbs to inhibit EHEC

adhesion to HeLa cells and human colonic mucosa. We have identified a Nb clone that binds

TirM, named TD4, which reduces the interaction of TirM with Int280 and interferes with

actin pedestal formation and the intimate attachment of EHEC to human cells. Importantly,

using infection of human in vitro organ cultures (IVOC), we demonstrate that Nb TD4 can

also inhibit the attachment of EHEC to human colonic tissue.
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Results

Nanobodies against TirM inhibit EHEC attachment to HeLa cells

To determine if purified Nbs against EspA, Int280 and TirM affected EHEC A/E lesion forma-

tion, HeLa cells were infected with EHEC for 3 h in the presence or absence of Nbs. Actin ped-

estal formation was visualized and quantified by immunofluorescence staining. While EHEC

attachment and pedestal formation was not affected by Nb clones recognizing EspA (EC7) or

Int280 (IB10) at concentrations 200 nM (Fig 1A), a Nb clone binding TirM (TD4) significantly

reduced the accumulation of actin beneath the attached bacteria. As clustering of Tir is neces-

sary for A/E lesion formation, we also evaluated the Tir localization in the presence of Nb TD4

or an unrelated Nb. As shown in Fig 1B, localization of Tir beneath adherent EHEC was evi-

dent in samples incubated with the control Nb or non-treated controls, while no Tir accumula-

tion was observed in the presence of TD4. No Tir staining was detected in HeLa cells infected

with EHECΔtir. We quantified the effect of TD4 by determining the mean of pedestals formed

on infected cells under various concentrations of Nb TD4. This revealed a significant decrease

in the number of actin pedestals per infected cell when TD4 Nb was added at concentrations

� 100 nM (Fig 1C).

We wanted to rule out the possibility that the lack of Tir clustering beneath the bound bac-

teria could be due to a block of Tir translocation through the T3SS and not to the direct inter-

action of the Nb TD4 to the exposed region of Tir upon its translocation and insertion in the

plasma membrane of the host cell. We tested this possibility and simultaneously evaluated

whether TD4 can interfere with EHEC actin-pedestal formation when added at different times

during infection. To this end, we increased the infection rate by halving the volume of the

medium and added 200 nM of Nbs TD4 or control (Vamy) simultaneously with the infection,

or at 1 or 2 h post-infection. After a total of 3 h of infection, all samples were stained for Tir

and the HA-tagged Nbs to test for their co-localization (Fig 2). Due to the higher infection

rate, some Tir signal could be observed beneath the bound bacteria with TD4, but the arrange-

ment of Tir staining in the host cells was altered, being distributed in the cytoplasm and show-

ing only weak staining marks at the site of the EHEC adhesion (Fig 2A). Furthermore, we

could detect colocalization of the HA-tagged TD4 with Tir, showing that the interaction

between TD4 and Tir occurs at the surface of infected host cells, once Tir has been translo-

cated, and suggesting that this interaction is responsible for the observed phenotype. In con-

trast, infections incubated with the control Nb (Vamy) showed strong Tir signals accumulated

beneath EHEC bacteria and no staining of the cytoplasm (Fig 2A). Importantly, this inhibitory

effect of TD4 was observed at similar levels independently of the time of addition of the Nb (0,

1 or 2 h post-infection) as determined by quantification of Tir clusters in the infected cells (Fig

2B).

Lastly, we assessed the inhibitory effect of TD4 at longer times of infection. HeLa cells were

infected with EHEC for 6 h in the presence or absence of TD4, and stained for bacteria, Tir

and F-actin. In this experiment fresh medium and Nbs were added after 3 h of infection.

Inspection of these samples revealed the presence of a high number of intimately attached

EHEC bacteria and dense clusters of Tir in the absence of TD4 (Fig 3). The high density of

EHEC bacteria did not allow us to visualize individual bacteria with Tir clustering for quantifi-

cation purposes. Nonetheless, we clearly observed that the presence of TD4 dramatically

reduced the number of EHEC bound to HeLa cells, as well as the intensity of actin and Tir sig-

nals in those bacteria that were bound to the cells (Fig 3). Taken together, the above data

showed that Nb TD4 reduces EHEC attachment, Tir clustering and actin polymerization by

binding to the extracellular TirM domain exposed after Tir translocation. The Nb TD4 shows

this inhibitory activity even when added once infection has begun.
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Fig 1. Influence of Nbs on EHEC adhesion to HeLa cells and Tir clustering. A. Confocal microscopy images of

HeLa cells infected with EHEC for 3 h in the presence of 200 nM purified Nbs against EspA (EHEC+EC7), Int280

(EHEC+IB10), TirM (EHEC+TD4), control Nb or medium control (EHEC), as indicated. Cells were stained for EHEC

(cyan), actin (red) and cell nuclei (white). Bar = 7.5 μm. B. Tir clustering underneath EHEC bacteria in the presence of

Nb TD4. EHEC infection of HeLa cells for 3 h in the presence of media control, 200 nM Nb TD4 or Nb control, as

indicated. EHECΔtir strain was used as negative control. Cells were stained for EHEC (cyan), Tir (green), actin (red)

and cell nuclei (white). Bar = 1 μm. C. Actin pedestal formation per cell was quantified by counting 100 cells per

condition. Data are presented as means and standard deviations. � p< 0.05 versus EHEC control.

https://doi.org/10.1371/journal.ppat.1008031.g001

Fig 2. Visualization of TD4-Tir colocalization and effect of its addition after the beginning of the infection. A.

Images of HeLa cells infected with EHEC for 3 h in the presence of 200 nM of TD4 or Nb control (Vamy). Cells were

stained for Tir (green), HA-tag (red) and DAPI (gray). Bar = 5 μm. B. Nbs were added at the beginning of the infection

(0 h), 1 h or 2 h post infection (h.p.i.)., as indicated. The number of Tir clusters was put in relation with the total

amount of bound bacteria per cell, for 50 cells randomly selected in different microscopic fields of the sample. �

p< 0.05 versus EHEC control.

https://doi.org/10.1371/journal.ppat.1008031.g002
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Nb TD4 has a higher affinity for TirM than its natural ligand Int280

One mechanism by which Nb TD4 could interfere with the attachment of EHEC to human

cells is by directly competing with intimin for binding TirM. To investigate this, ELISA plates

coated with purified TirM were incubated with biotinylated Int280 in the presence of different

Nbs (Fig 4). While Int280:TirM interaction was not affected by the presence of camel pre-

immune serum or Nb EC7 binding EspA (control), incubation with camel immune serum or

Nb TD4 inhibited the interaction. In addition, Nb IB10 (anti-Int280) also reduced Int280:

TirM interaction, but to a lesser extent than TD4. These results show that Nb TD4 is a potent

inhibitor of Int280-TirM interaction.

To further characterize the binding of Nb TD4 to TirM and its inhibitory activity, we com-

pared the affinities of Int280 and TD4 for TirM using surface plasmon resonance (SPR). Bioti-

nylated TirM was immobilized onto a chip for SPR, and purified Int280 and TD4 Nb-HlyA

Fig 3. Effect of TD4 after 6 h-long infection of HeLa cells with EHEC. Images of sample slices were taken at the

confocal microscope after 6 h of infection. The upper panels show the infection control of wt EHEC; the middle panels,

the effect of TD4 (200 nM) to this infection; and the panel in the bottom, the infection of the EHECΔtir mutant.

Fluorescent-staining of F-actin is shown in red, the O157 antigen of EHEC in cyan, TirM of EHEC in green and DNA in

gray.

https://doi.org/10.1371/journal.ppat.1008031.g003
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fusion were passed over the chip at different concentrations in successive rounds of binding

and regeneration. The change in resonance units (RU) with time was recorded as a direct indi-

cation of the binding of these proteins to TirM. The sensograms obtained are represented in

Fig 5. These experiments revealed a distinct pattern of binding of Int280 and TD4 to TirM.

While Int280 quickly bound to and dissociated from TirM after stopping Int280 injection (Fig

5A), TD4 bound to TirM more slowly and the interaction remained stable without any detect-

able dissociation even>300 sec after the injection stopped (Fig 5B). The kinetic constants of

association (kon) and dissociation (koff) of Int280-TirM binding could be calculated directly

from the obtained sensograms (Fig 5A). A model 1:1 Langmuir interaction fitted the binding

curves, suggesting the formation of a 1:1 complex, as observed by protein crystallography of

the EPEC Int280:TirM complex [15]. Using this binding model, we determined a koff of

3.75�10−2 s-1 and a kon of 7.85�105 M-1s-1 for EHEC Int280:TirM interaction. The equilibrium

dissociation constant (KD) for EHEC Int280-TirM interaction was calculated from the ratio of

these kinetic constants (koff/kon) and determined to be 48.1 nM. In contrast to Int280, the fact

that TD4 had no detectable dissociation of TirM during SPR analysis impeded the determina-

tion of its kinetic constants kon and koff from the obtained sensograms. In addition, the KD

could not be determined from RU values at equilibrium since the steady state was only reached

at the highest concentration of TD4 (Fig 5B). Using the RU values closer to an apparent bind-

ing plateau at the different concentrations tested, we could estimate an apparent KD ~4.8 nM

for the TD4:TirM interaction (Fig 5B). The actual KD for this interaction is likely to be below

this estimated value (KD < 4.8 nM) as the actual steady state would be reached with higher RU

Fig 4. Competition of purified Nbs for TirM binding in the presence of Int280. Representation of the binding

signals obtained from Int280-TirM interaction ELISA in the presence of PBS (none), the indicated camel sera or

purified Nbs (EC7, IB10 and TD4). ELISA plates were coated with 5 μg/ml TirMEHEC or BSA control and incubated

with 50 μg/ml biotinylated Int280EHEC in the presence of camel pre-immune and immune sera (1:50 dilution), 50 μg/

ml purified Nbs (EC7, IB10, TD4) or PBS control. Binding of biotinylated Int280 was evaluated by incubation with

Streptavidin-POD and measurement of OD490. Data are presented as means and standard deviations from of two

independent experiments with triplicates. Values are indicated relative to those of Int280-TirM interaction in the

presence of PBS.

https://doi.org/10.1371/journal.ppat.1008031.g004
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values. Hence, this quantitative binding analysis indicated an at least 10-fold higher affinity of

TD4 for TirM than the one of its natural ligand, Int280.

Using SPR we also investigated whether TD4 recognised an epitope of TirM overlapping

the binding site of Int280, taking advantage of the extremely slow dissociation of TD4. We

injected 40 nM of TD4 into the TirM-chip until reaching RU values close to steady state fol-

lowed by 80 nM of Int280 (Fig 5C). We compared the increment of RU values obtained by

Int280 injection in this condition (with bound TD4) with those obtained by injecting the same

concentration of Int280 to the TirM-chip in the absence of TD4. This experiment showed that

the RU values of Int280 binding to TirM were reduced in the presence of TD4, but binding of

Int280 occurred simultaneously to TD4, indicating that the binding sites of Int280 and TD4

are not identical, although they could partially overlap. Interestingly, when Int280 injection

was stopped, Int280 quickly dissociated whereas TD4 remained bound to TirM and the RU in

the assay came back to those of TD4 binding alone. Thus, while Int280 quickly dissociates

from TirM, TD4 remains stably bound to it.

Mapping the Nb TD4 binding site in TirM

To identify the specific binding site of TD4 to TirM, we synthesized 12-mer peptides of EHEC

TirM covering its sequence, with a 10 amino acid (aa) overlap between consecutive peptides

on a PVDF membrane. After incubation with TD4, bound Nb was subsequently detected with

a secondary antibody. This identified two peptides recognized by TD4: VNIDELGNAIPS (aa

296–307) and GVLKDDVVANIE (aa 308–319) (Fig 6A). These consecutive peptides are local-

ized within the interaction interface between Int280 and Tir (Fig 6B) [15–17, 40]. A BLASTP

search [41] with non-redundant DNA sequences in databases (S1 Data) allowed us to deter-

mine that the 24-mer sequence of these peptides is 100% identical (BLASTP score 77.4 in S1

Data) in Tir proteins from all EHEC strains, including O157, O55, O145 and other relevant

non-O157 serotypes [42].

The sequence of TirM is highly conserved among the related A/E pathogens EHEC, entero-

pathogenic E. coli (EPEC) and Citrobacter rodentium (CR) but the sequence of these Tir pep-

tides is not identical in EPEC and CR strains, so we were therefore interested to determine the

affinity of TD4 to purified TirMEPEC and TirMCR. We found that TD4 bound TirMCR with

lower affinity (ca. 10-fold) than TirMEHEC. Surprisingly, no binding of TD4 to TirMEPEC was

detected (Fig 6C). Comparing the aa sequences of the TD4 binding site in TirMEHEC with cor-

responding regions in TirMEPEC and TirMCR (Fig 6D) revealed that TirMEHEC differs from

both TirMEPEC and TirMCR in residues V309, N317 and E319, suggesting that these changes

may affect the affinity of TD4 towards TirM. Moreover, TirMEPEC specifically differs from Tir-

MEHEC in residues E300, L301, V314 and A316, suggesting that these residues may be essential

for TirM recognition by TD4.

Fig 5. SPR analysis of TD4 and Int280 binding to TirM. A. Change in resonance units (RU) with time (sensograms) obtained with

purified Int280EHEC (at the indicated concentrations) passed through a streptavidin chip coated with biotinylated TirMEHEC. Sensograms

were used to calculate the kinetic constants of association (kon) and dissociation (koff), and the equilibrium dissociation constant (KD) using

the BiaEvaluation software. The curves were fitted to a model 1:1 Langmuir interaction (black lines) for the calculation. B. Sensograms

obtained with purified TD4-HlyA (at the indicated concentrations) passed through a streptavidin chip coated with biotinylated TirMEHEC.

The absence of significant dissociation preclude the calculation of kinetic constant of dissociation (koff). The RU shift near the steady state

(at 400 s, indicated with a rectangle) were used to estimate an apparent constant of dissociation (KD) of TD4-HlyA for TirMEHEC

representing the shift in RU values vs concentration of TD4-HlyA (graph on the right). C. Sensograms showing binding to TirMEHEC by 40

nM of TD4 followed by HEPES buffer (green line) or 40 nM TD4 followed by 80 nM Int280EHEC (red line). The blue line represents the

sensogram obtained by 80 nM Int280EHEC (without TD4) followed by HEPES buffer. The black arrows indicate the time of injection of

HEPES buffer. The red arrow indicates the time of injection of Int280EHEC in the chip in which TD4 was previously injected.

https://doi.org/10.1371/journal.ppat.1008031.g005
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TD4 inhibits EHEC binding to human colonic mucosa

We tested the effect of TD4 on EHEC binding to human colonic mucosa by employing IVOC.

Human colonic biopsy samples were infected with EHEC in the presence or absence of TD4

or control Nb (Vamy). In addition, infection with EHECΔtir was included as a negative con-

trol. Immunostaining of biopsy samples showed a significant reduction in the number of

adherent EHEC in the presence of TD4 but not of the control Nb (Fig 7). As expected, very

few adherent bacteria were observed in biopsy samples infected with EHECΔtir (Fig 7). These

results demonstrate that Nb TD4 reduces EHEC binding to human colonic mucosa ex vivo.

Discussion

EHEC infections are associated with severe diseases such as bloody diarrhoea and HUS [1, 2].

Efficient therapies against EHEC infections are lacking, and current treatment is based on

fluid replacement and supportive care [43]. However, increasing knowledge on EHEC viru-

lence factors and infection mechanisms is contributing to the development of new treatment

strategies [44], such as inhibition of quorum sensing [45], use of EHEC LPS-specific bacterio-

cins [46] and inhibition of Stx binding to its host receptor globotriaosylceramide (Gb3) with

antibodies [47, 48] or other ligands [49].

In this work, we tested the possibility of using specific Nbs against the EHEC proteins

EspA, intimin and Tir as an alternative approach to interfere with EHEC infection. Nb clones

binding Int280 (IB10) or EspA (EC7) did not interfere with EHEC infection. Since intimin

covers the entire surface of EHEC, binding of Nb IB10 in the concentration used might not be

sufficient to mask all the Tir-binding sites, despite some inhibitory activity of this Nb in the in
vitro Int280:TirM binding assay. Similarly, binding of Nb EC7 to EspA, which forms the trans-

location filament, did not affect EHEC infection nor inhibit Tir translocation. In contrast, a

Nb binding TirM (TD4) reduced the attachment of EHEC and actin pedestal formation in

HeLa cells. As the TirM domain is exposed on the host cell surface after Tir translocation [13,

14], binding of TD4 appears to block intimin binding. The fact that TirM is only presented on

infected cells, suggests that a relatively low Nb concentration is needed for inhibition.

Staining of Tir after EHEC infection showed that TD4 hindered the formation of actin ped-

estals by preventing the characteristic Tir clustering produced at the bacterial:host interface

[19, 50], which is achieved even after its addition 2 h post infection and is maintained for 6 h.

In vitro protein interaction assays confirmed a strong inhibition of Int280:TirM interaction by

the presence of TD4, which prevents Tir clustering by binding to TirM. SPR analysis of this

interaction demonstrated an extremely slow dissociation rate of TD4. This analysis also

revealed that the affinity for TD4 to TirM (KD� 4 nM) is at least 10 times higher than the

affinity of Int280 to TirM (KD ~40 nM). Strikingly, Int280 showed a fast dissociation of TirM,

suggesting a dynamic interaction.

SPR experiments also determined that the TirM epitope recognized by TD4 could partially

overlap with the binding region of Int280 as the addition of TD4 reduces the binding of Int280

Fig 6. Identification of the TirM sequence recognised by Nb TD4. A. 12-mer peptides overlapping 10 residues and reconstructing the

sequence of TirMEHEC were synthesized on a PVDF membrane and incubated with purified TD4-HlyA. Bound TD4-HlyA was detected

with anti-E-tag mAb as for Western blots. B. Structure of the crystal 1F02 (PDB) showing the interaction site of Int D3 domain (in pink)

and Tir (in white) of EPEC. The peptides of TirMEHEC recognized by TD4 are coloured in green and blue both in the crystal

representation and in the linear sequence of the TirMEHEC. C. ELISA of purified TD4-HlyA (at the indicated concentrations) against

TirM of EPEC, EHEC and CR. D. Alignment of TirM sequences of EHEC, EPEC and CR. In green and blue are coloured the peptides

recognized by TD4-HlyA in EHEC. Inside the red rectangle are the identified aas for the Int:Tir interaction crystal 1F02. Highlighted in

red are the residues that differ between EPEC TirM and the TirM of EHEC and CR. Highlighted in yellow are the residues that differ

between CR TirM and EHEC TirM.

https://doi.org/10.1371/journal.ppat.1008031.g006
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Fig 7. EHEC binding to human colonic biopsies is reduced in the presence of Nb TD4. A. Biopsy samples from the

transverse colon were infected for 8 h with EHEC wild-type alone (EHEC wt) or in the presence of 200 nM Nb against

Nanobody inhibiting EHEC intimate attachment
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to TirM. We mapped two TirM consecutive non-overlapping peptides bound by TD4: VNI-

DELGNAIPS (296–307) and GVLKDDVVANIE (308–319). It may be possible that each of

these peptides is recognized by different CDRs of the Nb TD4, but this experiment does not

exclude that TD4 may recognize a conformational structure of TirM. Its CDRs could still bind

to the primary structure of these peptides, albeit with reduced affinity. Importantly, these rec-

ognized peptides are fully conserved in all Tir sequences from EHEC strains. We also deter-

mined that TD4 does not bind to TirMEPEC and has a weak interaction with TirMCR, which

are highly similar but not identical to TirMEHEC. This information helped us to narrow the

interaction site of TD4 and TirMEHEC by comparing the TirM sequences of the three patho-

gens. Differences between TirM of EHEC and CR—i.e. V309, N317 and E319- reduce but do

not abolish the interaction with TD4. On the other hand, differences with TirM of EPEC—i.e.

E300, L301, V314 and A316—could be critical for the binding of TD4, likely representing ener-

getic hotspots of protein-protein interaction [51, 52].

We could further localize the residues that may participate in the interaction of TD4 with

TirM based on the crystal structure of Int280 and Tir of EPEC [15]. Within the TirM sequence,

it has been identified the so-called Int280-binding domain (IBD) [13], composed of two long

alpha-helices (HA, residues 271–288, and HB, residues 312–331) separated by a ß-hairpin (res-

idues 294–308). The described complex of EPEC reveals that the Int:Tir interaction is primar-

ily mediated by the lectin-like D3 domain of Int280 and the ß-hairpin and the N-terminal part

of the HB of Tir IBD, corresponding to residues 294–313 of TirMEHEC. The peptides identified

to which TD4 binds (residues 296–319 of TirMEHEC), are enclosed within the IBD of Tir, indi-

cating that TD4 is directly interfering with the Int:Tir interaction.

Importantly, we have shown that TD4 can also block the interaction of EHEC to intestinal

human colonic tissue ex vivo [7], as the number of bacteria bound to the epithelium was signif-

icantly reduced in the presence of this Nb. This result opens the possibility of testing TD4 pro-

tection in humans, which could be administered using a passive immunization strategy. The

fact that TD4 shows inhibitory activity once EHEC infection has already begun opens also the

possibility of using this Nb as a therapeutic Ab to treat infections.

Nbs can be overproduced in bacteria, yeast, plants and mammalian cells to obtain highly

concentrated purified proteins [53–56]. A purified Nb recognising EHEC toxins Stx1 and Stx2

has been administered, in combination with IgG, for the treatment of HUS [57]. However, the

use of purified antibodies is a costly strategy for therapy development. To circumvent this

problem, some studies describe the production of Abs and Nbs in edible plants and seeds. The

production of Abs in edible tissues allows oral passive immunization at the gastric mucosal

surface. For instance, a Nb against rotavirus infection has been expressed in rice and shown to

protect infant mice from severe diarrhoea [58]. Abs contained in seeds enable long-term stor-

age and the direct use for passive immunization with oral administration, which is particularly

advantageous. Interestingly, a Nb against enterotoxigenic E. coli (ETEC) has been fused to the

constant region (Fc) of immunoglobulins and produced in seeds. Piglets fed with these seeds

were protected against ETEC infection [59, 60].

Alternatively, probiotic strains such as E. coli Nissle 1917 (EcN) [61] could be used for deliv-

ery of TD4 to the gastrointestinal tract. EcN is known to compete with EHEC for colonisation

of the mouse intestine [62] through specific mechanisms including the secretion of microcins

TirM (wt + TD4) or amylase (wt + Vamy). Incubations with EHECΔtir were included as negative control. (A) Tissue

samples were stained for EHEC (red) and cell nuclei (blue), bar = 50 μm. B. EHEC colonisation was quantified by

counting numbers of adherent bacteria in a surface area of 1 mm2. Data from five experiments in triplicate are

expressed as means with standard errors of the means, p��� < 0.001 versus wt.

https://doi.org/10.1371/journal.ppat.1008031.g007
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[61, 63]. Hence, secretion of TD4 by EcN could enhance its natural anti-microbial activity and

leads to the development of a superior therapeutic strain against EHEC infection. Other probi-

otic bacteria can be considered for local delivery of Nb TD4. For instance, Gram-positive Lac-
tobacillus strains producing surface-bound or secreted Nbs against rotaviruses have been

shown to reduce the severity and duration of rotavirus-induced diarrhoea in mice [64–66].

Overall, this study demonstrates that a Nb recognising Tir reduces intimate attachment of

EHEC to human cells and colonic tissue by competing with its natural partner, intimin,

thereby preventing colonization of the epithelium. These results open the possibility for pas-

sive immunization and therapeutic strategies that could prevent EHEC adhesion to intestinal

tissues during infection. This could also be applied to reduce the prevalence of EHEC in its

natural bovine host and minimize the risk of EHEC contamination into the food chain.

Methods

Ethics statement

This study was performed with approval from the University of East Anglia Faculty of Medi-

cine and Health Ethics Committee (ref 2010/11-030). All samples were registered with the

Norwich Biorepository which has approval from the National Research Ethics Service (ref 08/

h0304/85+5). Biopsy samples from the transverse colon were obtained with informed written

consent during colonoscopy of adult patients. All samples were anonymized.

Bacterial culture

All E. coli strains used in this work are listed in Table 1. Bacteria were grown at 37˚C on Lysog-

eny broth (LB) agar plates (1.5% w/v), in liquid LB or Dulbecco’s Modified Eagle’s Medium

(DMEM). Ampicillin (Ap, 150 μg/ml), Chloramphenicol (Cm, 30 μg/ml) and Kanamycin

(Km, 50 μg/ml) were added for plasmid selection as required. For infection of HeLa cells,

EHEC strains were grown for 8 h at 37˚C (200 rpm) in a flask with 10 mL of liquid LB, inocu-

lated in capped Falcon tubes (BD Biosciences) with 5 mL DMEM, and incubated o/n at 37˚C

in a CO2 incubator (static) for the induction of the T3SS. For infection of biopsy samples, 2 ml

of LB media were inoculated with an EHEC colony from an LB-agar plate and grown standing

at 37 oC overnight (o/n).

Plasmids, DNA constructs, and oligonucleotides

Plasmids used in this study are listed in Table 1. Strain E. coli DH10B-T1R was used as a host

for the cloning and propagation of plasmids. TD4-HlyA and Vamy-HlyA DNA fragments

were excised with BglII from pEHLYA5-TD4 and pEHLYA5-Vamy, respectively, and cloned

into the same site of pVDL9.3 [71]. TirM sequences of EPEC (aa 255–363) and CR (aa 253–

360) were amplified by PCR using primers listed in Table 2, cloned after EcoRI-HindIII diges-

tion into the same sites of pET28a plasmid backbone. The TirM constructs in this plasmid are

under the T7 promoter and fused to an N-terminal His-tag for purification. PCR reactions

were performed with Taq DNA polymerase (Roche, NZyTech) for standard amplifications in

screenings. All DNA constructs were fully sequenced (Secugen SL, Madrid, Spain).

Purification of antigens

Cultures of E. coli BL21(DE3) carrying the corresponding pET28a-derivative were grown at

30˚C in 500 ml of LB with Km to an optical density at 600 nm (OD600) ~0.5 and subsequently

induced with 1 mM isopropyl-1-thio-β-D-galactoside (IPTG) for 2 h. Bacteria were harvested

by centrifugation (10 min, 10,000 x g, 4˚C), resuspended in 20 ml of 50 mM NaPO4 pH 7, 300
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mM NaCl, DNase (0.1 mg/ml; Roche) and protease inhibitor cocktail (Roche), and lysed by

passing through a French-Press at 1200 psi three times. The resultant lysate was ultracentri-

fuged (60 min, 40000 x g, 4˚C) to obtain a cleared lysate supernatant. For purification of the

His-tagged Int280EHEC, TirMEHEC, TirMEPEC and TirMCR, lysates were passed through 2 ml of

pre-equilibrated Cobalt-containing resin (TALON, Takara) in a chromatography column and

washed with 20 mM HEPES pH 7.4, 200 mM NaCl. The bound His-tagged proteins were

eluted by adding the same buffer complemented with 150 mM imidazole. The eluted fractions

were dialyzed against HEPES-buffer (sterile filtered and degassed) and concentrated 10-fold in

a 3-kDa centrifugal filter unit (Amicon Ultra-15). Proteins were loaded onto a gel filtration

column (HiLoad 16/600 Superdex 75 preparative grade, GE Healthcare), pre-equilibrated with

HEPES-buffer and calibrated with protein markers (Gel Filtration Standards, Bio-Rad) and

Blue dextran (for exclusion volume Vo; Sigma). Fractions of 1 ml containing the purified pro-

teins were collected and checked for purity by SDS-PAGE. Protein concentration was esti-

mated using the Bicinchoninic acid protein assay kit (Thermo Scientific).

Purification of Nb-HlyA fusions

Cultures of E. coli strain HB2151 carrying pVDL9.3 (hlyB hlyD) and the indicated pEHLYA5--

derivative, or pVDL9.3-derivatives with Nb-HlyA fusions (Table 1), were grown o/n at 30˚C

(170 rpm) in liquid LB with the appropriate antibiotics. Next, bacteria were inoculated in fresh

Table 1. Bacterial strains and plasmids used in this work.

Name Relevant characteristics Source or Reference

DH10B-T1R (F- λ-) mcrA Δmrr-hsdRMS-mcrBC φ80lacZΔM15, ΔgalU galK rpsL(StrR), nupG tonA Invitrogen, [67]

HB2151 Δlac-pro, ara, nalR, thi, F’(proAB lacIQ lacZΔM15) [68]

BL21 (DE3) F-; ompT hsdSB(rB–, mB–) gal dcm lon λ(DE3[lacI lacUV5-T7 gene1 ind1 sam7 nin5]) Novagen-Merck, [69]

EHEC O157:H7 EDL933 stx1- stx2- [4]

EHECΔtir O157:H7 EDL933 stx1- stx2- Δtir [70]

pEHlyA5-TD4 ApR; pUC ori, lac promoter, N-terminal His tag, Nb TD4, HA- and E-tags, C-HlyA [39]

pEHlyA5-IB10 ApR; pUC ori, lac promoter, N-terminal His tag, Nb IB10, HA- and E-tags, C-HlyA [39]

pEHlyA5-EC7 ApR; pUC ori, lac promoter, N-terminal His tag, Nb EC7, HA- and E-tags, C-HlyA [39]

pEHlyA5-Vamy ApR; pUC ori, lac promoter, N-terminal His tag, Nb Vamy, HA- and E-tags, C-HlyA [39]

pVDL9.3 CmR; pSC101 ori, lac promoter, hlyB hlyD [71]

pVDL9.3-TD4 pVDL9.3 derivative; operon expressing TD4-HlyA, HlyB and HlyD This work

pVDL9.3-Vamy pVDL9.3 derivative; operon expressing Vamy-HlyA, HlyB and HlyD This work

pET28a KmR; pBR ori, T7 promoter, N-terminal His-tagged fusions Novagen-Merck

pET28a-TirMEHEC pET28a derivative; expression of His-tagged TirM of EHEC [39]

pET28a-Int280EHEC pET28a derivative; expression of His-tagged Int280 of EHEC [39]

pET28a-TirMEPEC pET28a derivative; expression His-tagged TirM of EPEC This work

pET28a-TirMCR pET28a derivative; expression His-tagged TIrM of C. rodentium This work

https://doi.org/10.1371/journal.ppat.1008031.t001

Table 2. Oligonucleotides used in this work.

Name Sequence

BamEcoTirM-EPEC CGCGGATCCGAATTCCAGGCGTTGGCTTTGACACCGG

XhoHindTirM-EPEC CCGCTCGAGAAGCTTACCCGATGAAAGCTGTAATTCCTCCTG

BamEcoTirM-CR CGCGGATCCGAATTCCAGGCGGTTGCTTTGACACCAGC

XhoHindTirM-CR CCGCTCGAGAAGCTTTATGATGAGAGATCCAATTCCTGCCGC

https://doi.org/10.1371/journal.ppat.1008031.t002
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medium (200 ml of liquid media in 1L flask) and grown at 37˚C (170 rpm) until OD600

reached 0.4. At this point, bacteria were induced with 1 mM (IPTG and further incubated for

6 h with shaking (100 rpm). The cultures were centrifuged twice (10 min, 10000 g, 4˚C) to

retrieve the supernatants, which were mildly sonicated (3 pulses of 5 seconds) and filtered

(0.2 μm syringe filters). Then, they were loaded in columns for metal affinity chromatography

(IMAC) purification. The supernatants were loaded at ca 4 ml/min onto chromatography col-

umns with pre-equilibrated Cobalt-containing resin (TALON, Takara). Columns were washed

with Tris pH 7.5 (50 mM) NaCl (150 mM) or HEPES buffer and eluted with a gradient of

imidazole reaching 500 mM. A second purification step by gel filtration was performed for

His-tagged antigens and Nb-HlyA fusions used in Surface Plasmon Resonance (SPR). Frac-

tions eluted from metal-affinity chromatography were dialysed against HEPES-buffer (sterile

filtered and degassed) and concentrated to 2 ml in a 3 kDa centrifugal filter unit (Amicon

Ultra-15, Millipore). Next, protein samples were loaded onto a calibrated gel filtration column

(HiLoad 16/600 Superdex 75, GE Healthcare), pre-equilibrated with HEPES-buffer. The elu-

tion of Nb-HlyA proteins was performed using HEPES buffer and collecting 1 ml fractions.

Protein concentration was estimated using the BCA protein assay kit (Thermo Scientific).

Synthesis and recognition of TirMEHEC peptides by TD4-HlyA

For the generation of 12-mer TirMEHEC peptides on a PVDF membrane, a MultiPep RSi syn-

thesizer (Intavis) with SPOT module (Proteomics Service, CNB-CSIC) was used. The resulting

membrane was blocked in PBS containing 0.1% Tween 20 (PBST) and 3% (w/v) skimmed

milk for 1 h at room temperature (RT) and subsequently incubated in purified TD4-HlyA dis-

solved in PBST, 3% skimmed milk for 2 h. After washing in PBST, the membrane was sequen-

tially incubated with anti-E tag mAb (Phadia, 1:5000) and secondary rabbit anti-mouse

IgG-POD (1:5000, Sigma). Signal detection was performed using the Clarity Western ECL

Substrate kit (Bio-Rad) and exposure to X-ray films (Agfa).

Enzyme-linked immunosorbent assay (ELISA)

ELISA was performed as described previously [39]. Briefly, 96-well immunoplates (Maxisorp,

Nunc) were coated for 2 h at RT with 5 μg/ml of purified TirM (from EHEC, EPEC or CR, as

indicated) diluted in PBS. Bovine serum albumin (BSA, Roche) was used as a negative control

antigen. Nb-HlyA fusions were added at the indicated concentrations for 1 h and plates were

subsequently washed three times with PBS. For detection of bound Nb-HlyA fusions, anti-E-

tag mAb (1:2000; Phadia) and anti-mouse IgG-POD (1:2000; Sigma), as secondary antibody,

were added. The reaction was developed with o-phenylenediamine (Sigma) and H2O2

(Sigma), as previously reported [72], and the OD490 was determined using a microplate reader

(iMark ELISA plate reader, Bio-Rad).

For the neutralization assay, 1 mg/ml Int280 was biotinylated using a 20-fold molar excess

of Biotinamidocaproate N-hydroxysuccinimide ester (Sigma). After incubation on a gyratory

wheel for 1 h at RT, the reaction was stopped by addition of 50 mM Tris-HCl pH 7.5, and

placement on ice for 1 h. The reaction mix was subsequently loaded onto a pre-packed column

for gel filtration chromatography (Sephadex G25 PD-10; GE Healthcare) and the biotinylated

protein was eluted in 500-μl fractions with PBS. Protein concentrations were estimated using

the BCA protein assay kit (Thermo Scientific). For the assay, 5 μg/ml non-biotinylated TirM

was bound to plastic 96 wells plates for 2 h. The wells were blocked with 3% (w/v) skimmed

milk in PBS for 1 h. At the same time, biotinylated Int280 (50 μg/ml) was incubated with a

1:50 dilution of the camel immune or preimmune serums or 1 μM (50 μg/ml) of the corre-

sponding purified Nb-HlyA. These solutions were added to the microtiter wells for 1 h
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incubation after removing the blocking solution. Then, the wells were developed as a standard

ELISA using Streptavidin-POD (Roche, Sigma).

Surface Plasmon Resonance (SPR)

SPR experiments were performed using BiaCore3000 (GE Healthcare). All proteins solutions

were dialyzed against HEPES-buffer (sterile filtered and degassed) at 4˚C for 2 h. TirMEHEC

was biotinylated (as described above) at 0.1 μg/ml and immobilised on a Streptavidin SA chip

(GE Healthcare) at 150 response units (RU) at a flow rate of 10 μl/min in HEPES-buffer con-

taining 0.005% (v/v) of the surfactant Polysorbate 20 (P20, GE Healthcare). To determine

binding kinetics, dilutions of purified TD4-HlyA or Int280 (as indicated) were run at 30 μl/

min in HEPES-buffer and sensograms were generated. Regeneration of TD4-HlyA was per-

formed by sequential injections of 10 μl 10 mM glycine-HCl pH 1.7, 5 μl 5 mM NaOH and

10 μl 10 mM glycine-HCl pH 1.7. No regeneration was needed for Int280. Sensograms with

different concentrations of analyte were overlaid, aligned and analysed with BIAevaluation 4.1

software (GE Healthcare) under assumption of the 1:1 Langmuir model and using both the

simultaneous kinetics model and the steady-state equilibrium analysis [73].

EHEC infection of HeLa cells

The human cervix carcinoma cell line HeLa (ATCC, CCL-2) was grown in DMEM supple-

mented with 10% fetal bovine serum and 2 mM glutamine at 37˚C in a 5% CO2 atmosphere.

For infection, cells were seeded out on glass coverslips in 24-well plates at a concentration of

105 cells/well. Cells were inoculated with EHEC at a multiplicity of infection (MOI) of 1000 for

3 h at 37˚C in a 5% CO2 atmosphere. The purified Nb-HlyA fusions, at the indicated concen-

trations, were added to the cells simultaneously with EHEC bacteria, or 1 h or 2 h post-infec-

tion, as indicated, in a final volume of 0.5 or 1 ml. The infection was stopped by three washes

with sterile PBS. In the case of EHEC infections for 6 h, cells were washed with PBS after 3 h of

infection, fresh medium and Nbs were then added, and incubation was continued for another

3 h.

Immunofluorescence microscopy

Cells were fixed with 4% (w/v) paraformaldehyde in PBS for 20 min at RT and permeabilized

in 0.1% (v/v) of saponin (Sigma) in PBS for 10 min. All antibodies were diluted in PBS with

10% goat serum (Sigma), and mouse monoclonal anti-O157 (Abcam, 1:500), mouse monoclo-

nal anti-HA (Cambridge bioscience, 1:200) and rabbit polyclonal anti-TirEHEC (1:200) were

used to detect EHEC bacteria, HA-tag and TirEHEC, respectively. After incubation for 1 h at

RT, coverslips were washed three times with PBS, and incubated for 45 min with secondary

antibodies, Alexa477-conjugated goat anti-mouse IgG or Alexa647-conjugated goat anti-rab-

bit-IgG (1:500, ThermoFisher Scientific), Tetramethylrhodamine (TRITC)-conjugated phal-

loidin (1:500, Sigma) and 4’,6-Diamidino-2-phenylindole (DAPI) (1:500, Sigma) to label F-

actin and DNA, respectively. Coverslips were washed 3 times with PBS after incubation,

mounted in of ProLong Gold anti-fade reagent (ThermoFisher Scientific), and analysed with

an SP5 confocal microscope (Leica).

In vitro organ culture (IVOC) of human colonic biopsies

Biopsy samples from the transverse colon were taken from macroscopically normal areas,

transported to the laboratory in IVOC medium and processed within the next hour. IVOC

was performed as described previously [74]. Briefly, biopsies were mounted on foam supports
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in 12 well plates and incubated with 30 μl EHEC standing overnight culture (approximately

107 bacteria) and 200 nM of TD4 or Nb control (Vamy). Samples were incubated for 8 h on a

rocking platform at 37˚C in a 5% CO2 atmosphere with medium changes after 4 and 6 h of

incubation. At the end of the experiment, tissues were washed in PBS to remove the mucus

layer and fixed in 3.7% formaldehyde/PBS for 20 min at RT. Samples were permeabilised with

0.1% Triton X-100/PBS, and blocked with 0.5% BSA/PBS for 20 min. Tissues were incubated

with goat polyclonal anti-E. coli (1:400, Abcam) for one hour, followed by incubation in Alexa

Fluor 568-conjugated donkey anti-goat IgG (1:400,ThermoFisher Scientific) and DAPI for 30

min to counterstain cell nuclei. Biopsy samples were mounted with Vectashield mounting

medium (Vector Labs) and analysed using an Axio Imager M2 motorized fluorescence micro-

scope (Zeiss). EHEC colonisation of colonic biopsies was quantified by counting adherent bac-

teria in a surface area of 1 mm2.

Statistics

Means and standard errors of experimental values were calculated using Prism 5.0 (GraphPad

software Inc). Statistical analyses comparing multiple groups were performed using one-way

ANOVA and Dunnett’s post- test. Statistics for Fig 2 were done using One Way ANOVA anal-

ysis doing logarithms for normal distribution. Data was corrected with the Bonferroni test. A

value of p<0.05 was considered significant.

Supporting information

S1 Data. Taxonomy report obtained after BLASTP search of non-redundant databases

with TirM peptide "VNIDELGNAIPSGVLKDDVVANIE" (residues 296–319) from EHEC

O157:H7 strain EDL933. The generated HTML file shows full conservation of this TirM pep-

tide among EHEC strains (score = 77.4).

(HTML)
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