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Abstract Pine Island Ice Shelf, in the Amundsen Sea, is losing mass due to increased heat transport by
warm ocean water penetrating beneath the ice shelf and causing basal melt. Tracing this warm deep water
and the resulting glacial meltwater can identify changes in melt rate and the regions most affected by the
increased input of this freshwater. Here, optimum multiparameter analysis is used to deduce glacial
meltwater fractions from independent water mass characteristics (standard hydrographic observations,
(NG), and oxygen isotopes), collected during a ship‐based campaign in the eastern Amundsen Sea in
February–March 2014. (NG) (neon, argon, krypton, and xenon) and oxygen isotopes are used to trace the
glacial melt and meteoric water found in seawater, and we demonstrate how their signatures can be used to
rectify the hydrographic trace of glacial meltwater, which provides a much higher‐resolution picture. The
presence of glacial meltwater is shown tomask theWinterWater properties, resulting in differences between
the water mass analyses of up to 4‐g/kg glacial meltwater content. This discrepancy can be accounted for by
redefining the “pure” Winter Water endpoint in the hydrographic glacial meltwater calculation. The
corrected glacial meltwater content values show a persistent signature between 150 and 400 m of the water
column across all of the sample locations (up to 535 km from Pine Island Ice Shelf), with increased
concentration toward the west along the coastline. It also shows, for the first time, the signature of glacial
meltwater flowing off‐shelf in the eastern channel.

Plain Language Summary Pine Island Ice Shelf in the Amundsen Sea, Antarctica, is melting due
to warm ocean waters. The glacial meltwater that is produced is less salty and carries essential food for
biological organisms, so where the glacial meltwater goes once it leaves the front of the ice shelf is
important to understand: Less salt in the ocean at the surface makes it easier to form sea ice, and increased
productivity from biological organisms can help draw carbon down into the ocean from the atmosphere.
We use (NG) to identify where this glacial meltwater is, as the signature that the meltwater leaves in the
gases is unique like a fingerprint. We use the noble gas meltwater signature to improve our identification of
glacial meltwater using temperature, salinity, and dissolved oxygen (hydrographic observations), which are
easier and cheaper to collect so cover a larger area. Using the improved signature from hydrographic
observations, we identify the presence of glacial meltwater between 150‐ and 400‐m depths everywhere
across the continental shelf. We also show, for the first time, glacial meltwater from the ice shelf flowing
off‐shelf in the easternmost channel. These results are important as they show where glacial meltwater is
affecting the ocean column most.

1. Introduction

The addition of glacial meltwater (GMW) to the ocean results in cooling and freshening of the water masses
that it mixes with. In the seas surrounding Antarctica, studies have shown increasing volumes of GMW
entering the water column, associated with calving of icebergs and basal melt from ice shelves (Pritchard
et al., 2012; Shepherd et al., 2018). This fresher, colder water mass has been linked to freshening of
Antarctic Bottom Water in the Ross Sea (Jacobs & Giulivi, 2010; Schmidtko et al., 2014) and implicated in
changes in sea ice extent and thickness surrounding the continent (Bintanja et al., 2013). In regions with
more in situ observations and focused modeling studies, such as the Amundsen Sea (Heywood et al.,
2016), GMW has been shown to play an important role in modulating the strength of local circulation
(Jourdain et al., 2017; Silvano et al., 2018; Webber et al., 2017). The presence of GMW affects the stratification
andmixing of the upper ocean, resulting in changes in ocean‐atmosphere heat and carbon exchange, altering
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biological and chemical properties of the mixed layer (Biddle et al., 2017; Kim et al., 2016; Randall‐Goodwin
et al., 2015; St‐Laurent et al., 2017). The potential impacts of GMW on the ocean, and linkages to the climate
system, make it important to understand where this water mass is most frequently found and understand its
spatial (horizontal and vertical) and temporal variability.

The Amundsen Sea contains several ice shelves fed by theWest Antarctic Ice Sheet, with Pine Island Ice Shelf
(PIIS), Thwaites Ice Shelf, and Getz Ice Shelves among these (Figure 1). This is also a location where warm
modified Circumpolar DeepWater (mCDW) accesses the continental shelf through glacially carved channels,
in particular through the eastern and central channels (Walker et al., 2007). The warm mCDW flows toward
the grounding line of the ice shelves, resulting in higher basal melting rates (Jacobs et al., 1996, 2011; Payne
et al., 2004) and linked to subsequent unstable retreat. Since the 1990s, multiple field campaigns have taken
place in this region, operated by the British, U.S., Swedish, German, and Korean research communities
(Jacobs et al., 2012; Heywood et al., 2016; Kim et al., 2016; Nakayama et al., 2013). Within these studies, focus
has been placed on identifying the mechanisms for the warm water to access the continental shelf and ice
shelf (Arneborg et al., 2012; Assmann et al., 2013; Mallett et al., 2018; Thoma et al., 2008; Walker et al.,
2007; Wåhlin et al., 2013), and identification of GMW has mainly occurred directly in front of the ice shelves,
with the exception of three more recent studies (Biddle et al., 2017; Kim et al., 2016; Nakayama et al., 2013).
This location bias is mainly due to the reliability associated with the tracers used to identify GMW, as it
was unknown how reliable conservative tracers (and pseudo conservative tracers such as dissolved oxygen
concentration) would be with increasing distance from the ice shelves (Jenkins, 1999).

Recent work has shown that up to 500 km from PIIS, hydrographic tracers (conservative temperature, abso-
lute salinity, and dissolved oxygen concentrations) identify possible GMW signatures (Biddle et al., 2017).
However, these conservative tracers are affected by atmospheric exchange in the mixed layer and deeper
in the water column by other water masses mixing in with the GMW. This will result in a loss of the
meltwater signature. (NG) are used as a reliable indicator of GMW, as the lighter NG (helium, He; neon,
Ne; and argon, Ar) are highly oversaturated when the ice melts into the ocean water, and there are no other
processes known to create this signature in the ocean (Beaird et al., 2015; Hohmann et al., 2002; Loose &

Figure 1. Map showing location of sample region in Antarctica (red box in inset) and enlarged map showing the
conductivity‐temperature‐depth (CTD)‐only stations (pink dots), oxygen isotope and CTD‐only stations (blue squares),
and all tracer stations (yellow triangle). Sections of interest are highlighted in black; A: central channel, B: eastern channel,
C: south of Burke Island, and D: ice shelf section. Bathymetry shown in the background, and local ice shelves are
labeled: AIS, Abbott Ice Shelf; CIS, Cosgrove Ice Shelf; PIIS, Pine Island Ice Shelf; TIS, Thwaites Ice Shelf; Cr, Crosson Ice
Shelf; DIS, Dotson Ice Shelf; GIS, Getz Ice Shelf.
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Jenkins, 2014). The heavier NG, krypton (Kr) and xenon (Xe), are undersaturated in GMW, and so are used
as additional “fingerprints” to identify the GMW (Loose & Jenkins, 2014). The signature of GMW from NG
has some variability associated with physical effects (such as air content in the ice), but this is relatively small
compared to the variability and atmospheric effects seen with the hydrographic tracers. Previous studies
have successfully used NG to identify GMW (Beaird et al., 2015; Huhn et al., 2018; Kim et al., 2016; Loose
& Jenkins, 2014; Nakayama et al., 2013), but noble gas samples are both money and time expensive to
collect and analyze. Oxygen isotope ratios are used in conjunction with absolute salinity to distinguish
ocean water from meteoric water (GMW or local precipitation) or sea ice melt (SIM; Jenkins, 1999;
Randall‐Goodwin et al., 2015; Weiss et al., 1979). Together, these measurements distinguish GMW from
surface input freshwater (from precipitation or SIM).

In this study, we present hydrographic, noble gas, and oxygen isotope data collected from the Amundsen Sea
as part of the 2014 iSTAR research cruise (section 2). We calculate freshwater distribution from oxygen isotope
ratios (section 3) and the distribution of GMW using NG (section 4). The hydrographic GMW calculations are
compared with the NG and improved using the noble gas GMW content as ground truth, revealing a higher
spatial resolution andmore extensive data set of GMWcontent (section 5). Finally, we combine the GMWcon-
tent with current velocity data to identify meltwater pathways across the eastern Amundsen Sea (section 6).

2. Observations

The analysis included in this paper was conducted using data and water samples collected during the iSTAR
Ocean2ice 2014 research cruise (Heywood et al., 2016) to the Amundsen Sea in theWest Antarctic (Figure 1).
In total, 105 conductivity‐temperature‐depth (CTD) stations were occupied across the continental shelf, also
measuring dissolved oxygen (using SBE911 with a SBE43 dissolved oxygen sensor). Temperature and salinity
values are reported as conservative temperature (Θ) and absolute salinity (SA), following TEOS‐10 (IOC et al.,
2010). The conservative temperature was calibrated using a deep SBE sensor, and dissolved oxygen values
were calibrated using Winkler titrations of water samples.

InΘ, SA, and dissolved oxygen concentration (c(O2)) space (Figure 2), the water masses encountered in 2014
are described in detail by Biddle et al. (2017). The mCDW is found as the warmest, most saline, and least oxy-
genated water mass on‐shelf, while the Winter Water (WW) is cooler, fresher, and more oxygenated through
interaction with the atmosphere (Table 1 and Figure 2a). The GMW appears as a warmer, more saline, and
less oxygenated water mass than the WW due to its admixture with mCDW, but as a pure water mass GMW
is cold, fresh and highly oxygenated (Table 1). All water mass content is reported as grams per kilogram,

Figure 2. Property‐property diagrams showing (a) Θ‐SA and (b) SA‐c(O2). Inset on each figure shows the mixing direction for modified Circumpolar Deep
Water with Winter Water (green) and glacial meltwater (dark blue). The gray dots are all of the conductivity‐temperature‐depth data from the continental shelf
(pink dots in Figure 1); all other colors are consistent with Figure 1. The pink circles highlight the modified Circumpolar Deep Water endpoint. The solid red dot
shows the pure Winter Water endpoint and pink squares in (b) show the different c(O2) saturation values used.
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which is comparable to per mill. Four sections are focused on in this paper (Sections A–D, Figure 1), and the
Θ, SA, and c(O2) sections for these can be found in Heywood et al. (2016), Biddle et al. (2017), and as Figure S1
in the supporting information (Section B).

Water samples for oxygen isotope analysis were taken at 53 stations and for noble gas (helium, neon, argon,
krypton, and xenon) analysis at 31 stations (Figures 1 and S2–S5), with the two techniques coinciding at 19
stations. Noble gas samples (of 45 ml) were collected in copper tubes, which were sealed by crimping at both
ends (Loose et al., 2016). The samples were analyzed in the Isotope Geochemistry Facility at Woods Hole
Oceanographic Institution. Samples are opened at both ends by compressing the chamber along the bellows.
Subsequent to opening the samples, dissolved gas is quantitatively extracted from the water and captured
inside an aluminosilicate glass bulb that is maintained at −196 °C using a liquid nitrogen bath. After gas
extraction, the bulbs are attached to a dual mass spectrometric system and analyzed for He, Ne, Ar, Kr,
and Xe (Stanley et al., 2009). The NG are isolated on two cryogenic traps and selectively warmed to
sequentially release each gas into the Hiden Quadrupole Mass Spectrometer for measurement by peak height
manometry (Lott, 2001). The reproducibility from N=6 duplicate samples was 1.8% for He, 1.6% for Ne, 0.5%
for Ar, 0.1% for Kr, and 0.3% for Xe. Analytical precision is 0.5% or better for Ar, Kr, and Xe and approxi-
mately 1% for He and Ne (Stanley et al., 2009). All gases are reported as micromoles per kilogram. Helium
concentrations are not reported in this study, due to local influence frommantle sources (Loose et al., 2018).

The water samples for oxygen isotope ratios (δ18O) were collected in 100‐ml glass bottles and sealed further
with Parafilm. Samples were transported by dark cool stow to the Natural Environment Research Council
Isotope Geosciences Laboratory at the British Geological Survey. Water samples were analyzed for δ18O
using an Isoprime mass spectrometer. Isotopic ratios are given as per mill deviations from VSMOW2, and
analytical reproducibility was <0.04‰ on duplicates.

We use current velocity data from a RDI 300‐kHz Workhorse lowered acoustic Doppler current profiler unit
fitted to the CTD rosette frame. We are using lowered acoustic Doppler current profiler velocity profiles that
are colocated with the CTD stations and tracers collected.

3. Freshwater Distribution

The freshwater sources in the Amundsen Sea consist of precipitation, GMW, and SIM (and sea ice growth as
a sink). These sources are identified by the use of oxygen isotope ratios, where precipitation and GMW are
grouped together as Meteoric Water Input (MWI), as they both form through snowfall. By using measured
absolute salinity and oxygen isotope ratios, mCDW, MWI, and SIM are calculated and the distribution of
freshwater in the Amundsen Sea observed.

3.1. Calculation of Freshwater From Oxygen Isotopes

To calculate the fractions of mCDW and the two freshwater sources, the oxygen isotope ratios, δ18O, are used
in combination with the absolute salinity (SA) observations, following previous studies (Meredith et al., 2008;
Price et al., 2008; Randall‐Goodwin et al., 2015; equation (1)):

Table 1
Endpoints Used for the Water Masses in the Amundsen Sea

Θ (°C) SA (g/kg) c(O2) (μmol/kg) c(Ne) ×10−3 (μmol/kg) c(Ar) (μmol/kg) c(Kr) ×10−3 (μmol/kg) c(Xe) ×10−3 (μmol/kg) δ18O (‰)

mCDW 1.15 34.87 187 8.12 16.42 4.01 0.604 0.05
WW −1.76 34.27 291 — — — — —

pWW −1.80 34.32 295 — — — — —

AEW — — — 8.43 17.52 4.32 0.660 —

GMW −90.8 0 1125 91.6 44.46 5.84 0.414 —

MWI — 0 — — — — — −25
SIM — 7 — — — — — 2.1

Note. mCDW=modified Circumpolar DeepWater; WW=Winter Water; pWW= pure Winter Water; AEW= air equilibrated water; GMW= glacial meltwater;
MWI = Meteoric Water Input; SIM = sea ice melt.
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δ18OmCDW δ18OSIM δ18OMWI

SA;mCDW SA;SIM SA;MWI

1 1 1
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SA;obs

1

0
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1
CA; (1)

where δ18OmCDW represents the oxygen isotope ratio endpoint for mCDW, F is the water mass fraction, and
δ18Oobs is the observed oxygen isotope ratio.

The mCDW that is present on the eastern Amundsen Sea shelf has a δ18O of 0.05‰ and absolute salinity of
34.87 g/kg (Biddle et al., 2017; Figure 3a and Table 1). Sea ice forms from seawater, which will have an oxy-
gen isotope ratio close to VSMOW2 (δ18O = 0‰), but during sea ice formation, the oxygen isotopes experi-
ence slight fractionation, with the sea ice preferably forming with the heavier oxygen isotopes (Price et al.,
2008). This gives the resulting SIM a slight positive shift from seawater δ18O with an endpoint of 2.1‰
and due to slight brine inclusions an absolute salinity of 7 g/kg (Randall‐Goodwin et al., 2015; Table 1).
MWI around Antarctica has a very low (large negative) oxygen isotope ratio due to the loss of 18O through
precipitation north of the continent, and therefore, the ratio of 18O to 16O decreases. Typical values from
the Antarctic Ice Sheet are between −20‰ and −40‰ (Meredith et al., 2008; Price et al., 2008). Here, we
use a δ18O of −25‰ and salinity of 0 g/kg to define MWI, following a recent study in the same region by
Randall‐Goodwin et al. (2015; Table 1).

Figure 3. Figures showing SA‐δ
18O relationship (a) and distribution of mCDW, SIM, and MWI (b)–(d). (a) All δ18O data from the Amundsen Sea. Red circles

show mCDW endpoint, and the inset shows mixing direction between mCDW and SIM (green arrow) or MWI (blue arrow). (b) Vertical distribution for all data
points across Amundsen Sea of mCDW (red), SIM (green), and MWI (blue). Note different axis for mCDW.(c) Vertically integrated SIM (top 500 m). Negative
values indicate sea ice growth. (d) Vertically integrated MWI in the top 500 m. mCDW = modified Circumpolar Deep Water; MWI = Meteoric Water Input;
SIM = sea ice melt.
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We use Monte Carlo simulations to estimate the uncertainties in the water mass calculation. Each endpoint
is perturbed around the reported endpoint (Table 1) by the uncertainty associated with each tracer (environ-
mental and measurement uncertainty). We run 10,000 simulations with endpoint values randomly chosen
within these prescribed bounds. The uncertainty is then represented by the standard deviation of the differ-
ence between the simulated runs and the unperturbed run. We find that the uncertainty associated with the
MWI water mass fractions is 0.5%, or 5 g/kg. This ±5‐g/kg variation in MWI content is anticorrelated with
the SIM content, while mCDW content remains stable.

3.2. Freshwater Distribution in the Amundsen Sea

Using these calculations, we assess the water masses in the Amundsen Sea and describe the vertical and
spatial distribution of the different sources of freshwater. In vertical profile, both SIM and MWI have
maximum concentrations at the surface (36.5 and 33.6 g/kg, respectively), and MWI then decreases with
depth (Figure 3b). The MWI content is most significant above 400 m, where the mean MWI content is
18 g/kg, correlating with the depth at which GMW is observed to flow out from beneath the ice shelf
(Biddle et al., 2017; Naveira Garabato et al., 2017). Negative values of SIM indicate net sea ice formation.
While the surface (<40 m) shows SIM, below 60 m shows a net effect of sea ice growth, with values reaching
−8.7 g/kg. This sea ice growth component decreases with depth to negligible sea ice contributions at depths
below 600 m. As the measurements were taken at the end of the austral summer, the high surface SIM
content reflects the result of the seasonal heating of the upper ocean and also the strong stratification this
produces, shown by the restriction of this signal to the top 40 m. The net sea ice growth throughout the rest
of the water column is consistent with previous studies on the Amundsen Sea continental shelf
(Randall‐Goodwin et al., 2015), where significant sea ice export results in higher sea ice growth rates than
SIM rates (Stammerjohn et al., 2015).

These freshwater distributions are assessed spatially by calculating column inventories. To do this, profiles
with four or more samples (excludes three stations) are linearly interpolated vertically, andMWI or SIM con-
tent is integrated over the top 500 m (Figures 3c and 3d). Out of 50 stations, 36 have negative column inte-
grated SIM (indicating net sea ice growth), with mean SIM of −1.4 m. The stations south of Burke Island
show net sea ice growth (27 out of 30), while half of those at the continental shelf edge show net SIM
(Figure 3c). This agrees with previous studies that have suggested that the region between 70°S and 72°S,
which spans the continental shelf edge, is characterized by sea ice drift (Stammerjohn et al., 2015). This indi-
cates that sea ice will be brought into this area by drift and then melts in location over the summer resulting
in net SIM. Closer to the coast, katabatic winds blow off the ice shelves, allowing sea ice export and net sea ice
growth (Stammerjohn et al., 2015). There are two locations where the SIM signatures do not follow this pat-
tern: a positive SIM signature in the centre of the Pine Island Trough and a negative SIM signature at the
western edge of the eastern channel at the continental shelf edge.

Over all of the stations in the Amundsen Sea, the average MWI content is 7.5 m with a small standard devia-
tion (1.8 m). This relatively small standard deviation is likely due to the combination of GMW and precipita-
tion in the MWI content, as the Amundsen Sea is a region of relatively high precipitation (Lenaerts et al.,
2012). The MWI content is greatest closest to PIIS and around Thwaites Ice Shelf, with values up to
10.7 m (Figure 3d). The mean MWI content for all stations south of Burke Island (Figure 3d) is 8.5 m,
although they all have MWI content >6.1 m, with the exception of the most eastern station in the meridional
section south of Burke Island (5 m). The mean column inventory of 9.5 m at the western end of the section is
similar to values reported by Randall‐Goodwin et al. (2015) 2° further west in 2010–2011. The lowest column
inventories are found in the off‐shelf stations (<3.8 m), while the stations at the continental shelf edge have a
meanMWI content of 6.4 m. The central channel shows lower MWI content than the eastern channel (6.2 m
compared with 6.7 m). The stations that show negative SIM values at the western edge of the eastern channel
also display higher MWI content of up to 8.6 m.

4. Distribution of GMW Using NG

As the oxygen isotope ratios cannot be used to distinguish GMW from local precipitation, we use other tra-
cers measured during the fieldwork. By using a similar method to the one used for oxygen isotope ratios, we
identify different water masses in the Amundsen Sea using noble gas concentrations.
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4.1. Calculation of Water Mass Fractions

As there are more noble gas tracer constraints (plus mass conservation) than there are water masses to be
identified, we use Optimum Multiparameter Analysis (OMPA) to calculate the water mass fractions
(Biddle et al., 2017; Loose & Jenkins, 2014). This method is identical to the one used for hydrographic tracers
(Θ, SA, c(O2)) by Biddle et al. (2017). OMPA uses a least squares regression with a nonnegativity constraint to
solve the overdetermined equation:

χ1;mCDW χ1;AEW χ1;GMW

χ2;mCDW χ2;AEW χ2;GMW

⋮ ⋮ ⋮
χn;mCDW χn;AEW χn;GMW

1 1 1

0
BBBBBB@

1
CCCCCCA

FmCDW

FAEW

FGMW

0
B@

1
CA ¼

χ1;obs
χ2;obs
⋮

χn;obs
1

0
BBBBBB@

1
CCCCCCA
; (2)

where χn,k is the noble gas tracer n of water mass k and Fk is the water mass fraction. The data are normalized
and weighted, to account for variations between properties in measurement or environmental accuracy (in
observations and/or endpoint determination). This approach is discussed further by Biddle et al. (2017).

The reliability of these water mass calculations is estimated using Monte Carlo analysis, where the endpoints
used are varied by up to the largest uncertainty associated with each tracer. We find that the noble gas GMW
concentrations are reliable to ±0.5 g/kg, compared with ±1 g/kg found for the hydrographic tracers (Biddle
et al., 2017).

The water masses used in these calculations for the NG consist of mCDW, air equilibrated water (AEW), and
GMW. The atmospherically influenced water mass (AEW) represents surface saturation values of the NG
(Loose & Jenkins, 2014), which differs slightly from the definition for WW used for identification with Θ,
SA, and c(O2) (Table 1 and section 5), due to the limitations associated with defining an atmospheric end-
point in temperature and salinity. Temperature, salinity and dissolved oxygen are excluded from these
OMPA calculations in order to provide two independent estimates of the GMW content.

The NG are useful for identifying GMW, as the sources and sinks of these gases are well known and they are
not affected by biological or chemical processes within the water column. We use neon, argon, krypton, and
xenon to identify GMW (Figure 4). Neon has low solubility, and so is oversaturated in GMW, with values of
91.6 × 10−3 μmol/kg typical for Antarctic ice shelves (Loose et al., 2009), while argon acts similarly to dis-
solved oxygen and is slightly oversaturated in GMW (44.46 μmol/kg; Table 1 and Figure 4). The heavier
NG, krypton and xenon, are both undersaturated in GMW (Table 1 and Figure 4). The other two water
masses defined by noble gas characteristics are AEW and mCDW. As the concentration of NG in the atmo-
sphere is known, we are able to use AEW as an endpoint, using surface values to represent the interaction of
the atmosphere with the ocean (Table 1 and Figure 4). Due to the few sources of NG in the deep ocean, the
noble gas concentrations in mCDW are well established (Table 1).

4.2. GMW Signature From NG

We see similar GMW distributions from NG (GMW) through the water column and across the Amundsen
Sea to those previously calculated from hydrographic observations by Biddle et al. (2017; Figures 4e and
4f). The NG show the increased presence of GMW above the draft of the ice shelf at approximately 600 m,
and surface values directly in front of PIIS are up to 18 g/kg. Unlike the MWI content deduced from the oxy-
gen isotopes, NG GMW values decrease at the surface for all CTD stations further than 100 km from PIIS.
This is an artifact due to interaction of the upper ocean with the atmosphere eradicating the noble gas signa-
tures in the surface layer, visible as the inverse correlation between the low surface NG GMW values and
high AEW content (Figure 4e). Of particular interest though is the presence of GMW across all CTD stations
between 50‐ and 400‐mdepths (Figure 4e), which differs from previous studies that reported negligible GMW
content at the continental shelf edge when using hydrographic data (Biddle et al., 2017). The NG indicate
that the presence of GMW is widespread and persistent across the continental shelf.

Following the same method as with the oxygen isotope water mass fractions, we assess the spatial distribu-
tion of NG GMW by calculating column inventories between 150 and 700 m (Figure 4f). This depth range is
selected in order to compare values more easily with the hydrographic GMW content, which cannot be used
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in the upper 150 m due to atmospheric interaction and SIM (Jenkins, 1999). This shows high NG GMW
content along the front of PIIS (4.95 m) and in stations to the west, surrounding Thwaites (4.07 m) and at
the western end of the zonal section south of Burke Island, where values are all higher than 1.9 m. The
higher concentrations of NG GMW content in these locations are as previously reported (Biddle et al.,
2017; Nakayama et al., 2013) and follow expected current patterns associated with geostrophic currents in
the region (Thurnherr et al., 2014; Wåhlin et al., 2013). However, our data also show nonnegligible
quantities of GMW at the continental shelf edge with column inventories up to 1 m and mean values of

Figure 4. Figures showing SA‐c(Ar) relationship colored by Θ (a) and c(Ar)‐ c(Ne), c(Kr) and C(Xe) (b)–(d), colored by SA. Red circles show mCDW endpoint, and
the inset shows mixing direction between mCDW and AEW (green arrow) or GMW (blue arrow). (e) Vertical distribution for all data points across Amundsen
Sea of mCDW (red), AEW (green), and GMW (blue). Note different axis for GMW. (f) Vertically integrated GMW (between 150 and 700 m). AEW= air equilibrated
water; GMW = glacial meltwater; mCDW = modified Circumpolar Deep Water.
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0.68 m. The central channel has mean column inventories of 0.77 m, similar to recent modeling studies
(Nakayama et al., 2014). However, the eastern channel shows higher concentrations than models predict
(up to 0.85 m; Nakayama et al., 2014), although a 10‐year model run recently showed an accumulated 4 m
of GMW here (Nakayama et al., 2017).

5. GMW From Hydrographic Tracers

The hydrographic tracers (Θ, SA, and c(O2)) are used to calculate GMW content with OMPA (equation (2)).
End‐members of mCDW, WW, and GMW are used, as shown in Table 1. Biddle et al. (2017) discussed two
variations of mCDW, namely, mCDW and pseudo‐CDW (pCDW). The pCDW endpoint refers to the precise
properties on the mCDW‐WW mixing line that are able to flow underneath PIIS to cause ocean basal melt
and is specific to each season's characeteristics as the thermocline shoals or deepens (Biddle et al., 2017;
Webber et al., 2017). The Θ‐SA‐c(O2) mCDW endpoint will include GMW from different pCDW characteris-
tics (Biddle et al., 2017). Since the NG mCDW endpoint does not vary between seasons or years, we use the
mCDW endpoint for our hydrographic GMW calculations.

5.1. Comparison Between GMW From Noble Gas and Hydrographic Tracers

The GMW content from noble gas tracers differs to the GMW content calculated from hydrographic tracers,
which are shown for comparison in Figure 5. Close to PIIS (solid lines, Figure 5a), the hydrographic and
noble gas tracers capture the same pattern of GMW presence but with NG GMW approximately 1 g/kg
greater than GMW from hydrographic tracers (Figure 5b). This increases to nearly 2.5 g/kg at 200‐m depth.
A similar disparity between the two tracer methods is seen with distance from PIIS (all stations greater than
300 km from PIIS; dashed lines in Figure 5), where hydrographic tracer values of GMWdrop to 0 in the upper
ocean column (gray line, Figure 5a). This results in an average offset of 2.71 g/kg between the two methods,
but individual sampling locations between 150 and 400 m can differ up to 4.15 g/kg . If we use the NG GMW
content as the representative content of GMW (±0.5 g/kg), this indicates that our hydrographic calculations
have an average error of being nearly 3 g/kg lower than measured with NG.

Since these differences occur at a depth that correlates with the presence of WW (Biddle et al. 2017), it indi-
cates an error with how we are defining our hydrographic water masses. We follow methods described by
Jenkins et al. (2018) to correct our WW to a pure WW (pWW) to account for the presence of GMW within
the hydrographic observations.

5.2. Adjusting for pWW

To obtain the pWW endpoint, we must first make some assumptions, following similar methods to Jenkins
et al. (2018). WW is formed during the winter season and is heavily influenced by atmospheric exchange and
sea ice processes. In the continental shelf seas around Antarctica, this means thatWWwill reach the freezing

Figure 5. Vertical depth profiles of (a) GMW content from NG tracers (red) and hydrogaphic tracers (gray) and (b) the
difference (GMWNG‐GMWT,S,O) between the two methods. Dashed lines and dots represent the mean or point values of
GMW content at the continental shelf edge (>300 km from PIIS), and solid lines and squares show the mean or point
values of GMW content directly in front of PIIS (<100 km). GMW = glacial meltwater; NG = noble gases; PIIS = Pine
Island Ice Shelf.
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point during sea ice formation. Using this knowledge, we extrapolate the existing WW endpoint down to the
freezing temperature line (Figure 2a; red dot). For this data set, this provides a new Θ and SA endpoint for
pWW of −1.86 °C and 34.32 g/kg, which is comparable to values used by Jenkins et al. (2018).

However, for the hydrographic GMW calculation, c(O2) is also used to define the water masses. To derive the
c(O2) pWW endpoint is slightly more complex, as biological activity must be accounted for. The mean c(O2)
saturation in the Amundsen Sea observed in 2014 of approximately 70% is used as a lower bound (Biddle
et al., 2017), and GMW is recalculated with c(O2) pWW values ranging from c(O2) saturation (100%) to the
lower bound of 70% (Figure 2b). The observed mean oxygen saturation is used as the lower bound for the
pWW as the admixture of mCDW‐GMW will act to lower the dissolved oxygen concentration; therefore,
the pWW c(O2) endpoint should not be lower than what is observed for WW. Using this method, the c(O2)
value used for the pWW endpoint is 295 μmol/kg, at 80% saturation.

5.3. Improvement of GMW Calculation From Hydrographic Tracers

The GMW content is recalculated using the hydrographic tracers and mCDW, pWW, and GMW endpoints
(Figures 2a, 2b, and 6). Previously, the hydrographic calculation presented in section 5.1 performed reason-
ably well in front of PIIS (Figure 5a), but both here and at the continental shelf edge showed a significant
offset from the NG GMW content between 150 and 300 m. With the new pWW endpoint, the GMW content
is improved and differences between the GMW content from hydrographic tracers or noble gas tracers
between 150 and 700 m are on average less than 1.06 g/kg across the whole region sampled, with no consis-
tent offset (Figure 6b). This is close to the accepted reliability of the hydrographic GMW calculation (±1 g/kg)
and so can be considered a good improvement in the hydrographic GMW calculation.

The change in the column inventories (calculated as before) from using WW to using pWW averages to an
increase of about 0.53‐m GMW on each station, but it does not significantly change the spatial variability
in GMW content (Figure 7). The average difference between the hydrographic GMW and NG GMW column
inventories is 11 cm (<5% of the mean column inventory values) for comparable stations, with the hydro-
graphic GMW column inventories showing slightly higher values.

6. Distribution of GMW in the Amundsen Sea

This correction to the hydrographic GMW calculation results in the ability to improve our hydrographic
GMW calculations, resulting in an increase in the spatial resolution of GMW content compared to noble
gas tracers. This gives a more detailed map of GMW content (Figure 7). As shown by the NG GMW content
and as previously described by Biddle et al. (2017), the highest concentrations of GMW are found in front of
PIIS (5.23 m) and to the west around Thwaites Ice Shelf (4.48 m). In both these locations, the highest value is
found at the station furthest to the west, which correlates with the known location of the strongest glacial
outflow from PIIS (Jenkins et al., 2010; Thurnherr et al., 2014). Similarly, we can assume that the high

Figure 6. Vertical depth profiles of (a) GMW content from NG tracers (red) and hydrogaphic tracers, using the pWW
endpoint (gray) and (b) the difference (GMWNG‐GMWT,S,O) between the NGmethod and pWWmethod. Dashed lines and
dots represent the mean or point values of GMW content at the continental shelf edge (>300 km from PIIS) and solid
lines and squares show the mean or point values of GMW content directly in front of PIIS (<100 km). GMW = glacial
meltwater; NG = noble gases; PIIS = Pine Island Ice Shelf; pWW = pure Winter Water.
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GMW value at the west of Thwaites indicates the likely strongest glacial outflow in that location, following
geostrophic currents underneath the ice shelf.

Across the zonal section to the south of Burke Island, the GMW content increases toward the west with
values up to 1.98 m (Section C; Figure 7). Column integrals at the eastern end of this section are the lowest
values (0.35 m) calculated across the continental shelf. North and east of Burke Island, there is a persistent
signature along the eastern channel. On average, column inventories here are 1.33 m, increasing toward the
continental shelf edge. These values were not shown by Biddle et al. (2017) due to the likelihood of a second-
ary source of GMW than PIIS in this region: This GMW signature could be coming from the Bellingshausen
Sea further to the east (Zhang et al., 2016) or local melt from Abbot Ice Shelf or Cosgrove Ice Shelf.

A significant change to previous GMW calculations using hydrographic tracers is that there is now a GMW
presence at the edge of the continental shelf (Sections A and B; Figure 7). In the central channel, this is
0.63 m on average, with only a small variation across the channel. However, in the eastern channel, the col-
umn inventories are all greater than 0.7 m, with an average of 1.08 m. Toward the western edge of this chan-
nel section, the column inventories are consistently over 1.09 m of GMW.

By combining the GMW content with velocity fields measured by the lowered acoustic Doppler current pro-
filer, the distribution of GMW can be related to possible pathways. We use the four zonal sections (Figure 1)
to describe the GMW depth distribution and meltwater pathways, with the velocity fields rotated to along
and across channel directions for each section (Figures 8 and 9). Advection from PIIS off‐shelf is of most
interest for this study and so only the along channel velocities are shown, with across channel velocities in
the supporting information (Figure S6).

All four sections show that the GMW is typically only present above the 27.72 isopycnal, which shoals from
the seabed in front of PIIS (Figure 8a) to approximately 400‐m depth at the continental shelf edge (Figures 9a
and 9c). Themean GMW content between the 27.6 and 27.7 isopycnals reduces by only 0.5 g/kg between PIIS
and the continental shelf edge (3.77 to 3.28 g/kg), while the signature of GMW between 100 and 200 m
reduces dramatically with distance from PIIS from an average of 12.6 to 3.18 g/kg. At the continental shelf
edge, at distance from the ice shelf, the GMW content is approximately evenly distributed between 150
and 400 m. The hydrographic and NG GMW content match well below the 27.7 isopycnal across all of the

Figure 7. Map of vertically integrated glacial meltwater content (between 150 and 700 m) in the eastern Amundsen Sea,
calculated using Θ, SA, and c(O2) with a pure Winter Water endpoint.
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sections, except for the eastern end of the eastern channel (Figure 9c). This is due to a strong presence of the
offshore Upper CDW (UCDW) component, which is less saline and warmer than the Lower CDW
component and so appears as a false GMW signature. This false GMW signature is henceforth ignored in
this discussion.

Directly in front of PIIS (Figure 8a), the hydrographic tracers capture small‐scale changes in GMW content in
the upper 300 m, likely caused by the energetic export of highly buoyant meltwater from the ice shelf
(Garabato et al., 2017). The GMW content is concentrated to the upper 600 m and toward the western end

Figure 8. Figures showing glacial meltwater (GMW) content (g/kg) and along channel velocities (m/s) for Sections D
(a, b) and C (c, d) as located in Figure 1. (a and c) Background color is GMW content from hydrographic tracers, colored
dots show the GMW content from (NG) tracers. Conductivity‐temperature‐depth stations are marked as black dashed
lines, and above relevant stations the column inventories of sea ice melt content (red) and Meteoric Water Input content
(blue) are shown in meters. (b and d) Along channel velocity from lowered acoustic Doppler current profiler measure-
ments, positive values are off‐shelf.
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of the section (Figure 8a). A largely off‐shelf flow coincides with the high GMW content in the western
portion of the section, with a stronger core at 400 m that also has some westward directionality (3.6 km
along section; Figures 8a, 8b, and S1). This agrees with previous studies of the transport of GMW in front
of PIIS (Jenkins et al., 2010; Thurnherr et al., 2014). Below 900‐m depth, the GMW content appears to
increase from a minimum of 1.14 g/kg between 700 and 900 m to 2.52 g/kg. Although there is one noble
gas sample taken at 1,000‐m depth at about 12‐km distance along the section that contains 2.26 g/kg,
there is currently not enough evidence to confirm whether this increase at depth is a real feature.

Figure 9. Figures showing glacial meltwater (GMW) content (g/kg) and along channel velocities (m/s) for Sections A
(a, b) and B (c, d)as located in Figure 1. (a and c) Background color is GMW content from hydrographic tracers, colored
dots show the GMW content from (NG) tracers. Conductivity‐temperature‐depth stations are marked as black dashed
lines, and above relevant stations the column inventories of sea ice melt content (red) and Meteoric Water Input content
(blue) are shown in meters. A false GMW is shaded in gray in (c). (b and d) Along channel velocity from lowered acoustic
Doppler current profiler measurements, positive values are off‐shelf.
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The zonal section to the south of Burke Island (Section C; Figures 1 and 8c) is approximately 200 km from the
front of the ice shelf. The eastern end of the section occurs over a shallow sill that separates the channel to the
east of Burke Island and the main Pine Island Trough (bottom depth reported as 278 m). At this distance
from PIIS, there is still a stronger surface expression of GMW and the mean value of GMW between 100
and 200 m at the western end of the section is 5.5 g/kg. There is a second core of higher GMW content
(5.85 g/kg) toward the western side of Pine Island Trough at 400‐m depth. The lowest column inventories
are found at the eastern end of this section (Figure 7), and this is visible in the low GMW content signature
evident throughout the water column (Figure 8c). Across the section there are two clear flow regimes: a
strong off‐shelf flow on the western end of the section and a strong toward‐PIIS flow at the eastern side
(Figure 8d). The strongest off‐shelf flow occurs at 45‐km distance across the section and, combined with
the across channel velocity, indicates flow toward the west along the coast line and/or off‐shelf. The core
of the strong off‐shelf flow correlates well with the core of higher GMW content (Figures 8c and 8d).

At the edge of the continental shelf, there is no significant increase in GMW content toward the surface
(Figures 9a and 9c). Across the central channel, 535 km from PIIS, the GMW content is lower than in the
eastern channel and all values below 150‐m depth are less than 3.9 g/kg (Figure 9a). This section is also
different to the previous sections, as the highest GMW values are found on the eastern side of the channel
(50‐km section distance, Figure 9a). There is a stronger on‐shelf flow at the eastern end of the section, while
the off‐shelf flow is spread across the western portion (Figure 9b). The water with the higher GMW content to
the east is flowing on‐shelf (Figures 9a and 9b), which suggests that the GMW here may have a source
elsewhere. It could be recirculated PIIS GMW, flowing either westward along the continental shelf edge from
the eastern channel or from the previously modeled and observed circulation patterns at the shelf edge of the
central channel (Assmann et al., 2013).

The zonal section across the eastern channel (Figure 9c) is 430 km from PIIS and is the longest section
included in this analysis. Except for the anomalous UCDW GMW signature, GMW content here is typically
below 5 g/kg, with higher values toward the western edge of the section. In the first 80 km of the section there
is an elevated surface signature (values up to 4.68 g/kg) and another increase in GMW content at about
300‐m depth along the same isopycnal as the GMW signature at depth on Section C (Figures 8c and 9c).
There is a strong off‐shelf flow that characterizes much of the section (from 0–160 km), with the eastern
end of the section showing an on‐shelf flow dominated by a strong eddy‐type feature that is associated with
the UCDW signature. The location of higher GMW content (Figure 9c) is flowing off‐shelf, implying that the
GMW identified likely has an origin from the Amundsen Sea.

Our analysis has confirmed previous studies that focused on GMWpathways directly in front of PIIS and has
strengthened the analysis by Biddle et al. (2017) that the strongest GMWoutflow occurs at the western end of
PIIS. The GMW then flows along the coast to the west, as seen in the zonal section south of Burke Island
(Figures 8c and 8d). We have also revealed new observations about the GMW at the continental shelf edge,
showing off‐shelf flow of GMW in the eastern channel and possible recirculation in the central channel
(Figure 9).

7. Discussion

We have presented new data sets from the iSTAR 2014 research cruise, including oxygen isotope ratios and
noble gas concentrations. The oxygen isotope ratios provide estimates of SIM and MWI to the water column.
We detected a strong signature of sea ice growth across the continental shelf and SIM at the continental shelf
edge, which agrees with satellite observations of sea ice concentrations in the Amundsen Sea (Stammerjohn
et al., 2015). In particular, the MWI distribution highlights the increase in freshwater toward the western end
of the eastern channel. Overall, the MWI was on average 4.8 m greater than the column inventories of GMW,
possibly indicating either a longer residence time associated with oxygen isotopes or a high precipitation con-
tent in the water column, which has been reported for this region before (Lenaerts et al., 2012).

The use of NG to quantify GMW provides reliable estimates that are used as a ground truth for our other
water mass calculations. The NG revealed a persistent signature between 150‐ and 400‐m depths of GMW
across all of the stations sampled, which has not been reported in the eastern Amundsen Sea before. It is
likely that close to PIIS there is a significant GMW content that is excluded from this study between the sur-
face and 150 m, but due to atmospheric effects, these depths have been excluded. This indicates our column
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inventories of GMW content are likely underestimates. GMW content from the noble gas concentrations
showed nonnegligible values at the edge of the continental shelf, up to 535 km away from PIIS. These column
inventories also showed GMW in the eastern channel for the first time using observational data.

The GMW content from NG was used to improve our calculations of GMW from hydrographic tracers (tem-
perature, salinity, and dissolved oxygen). The differences between using NG or hydrographic tracers to cal-
culate GMW content highlighted an error in the setting of the WW endpoint, as previously the in situ
hydrographic observations were used to specify this endpoint. The GMW content from NG showed that
GMW exists at the depth of WW (150–350 m), and so the observed “WW” content must first be corrected
for the presence of GMW, creating the “pure Winter Water” (pWW) endpoint. While Jenkins et al. (2018)
used the concept of pWW, we have shown the quantifiable difference using this endpoint makes when com-
pared with the GMW from NG.

When the improved WW endpoint is used in the revised hydrographic calculation, the differences between
the two methods decrease significantly and the GMW signature is traced as it travels from PIIS. The strong
surface (150 m) expression rapidly decreases but is still visible in the section across Pine Island Trough
approximately 200 km from PIIS. At the continental shelf edge, there is no significant signature of GMW
at 150‐m depth. A second signature of GMW between 400 and 600 m was recognizable across all stations,
between the isopycnals of 27.5 and 27.7. This was seen clearly in the central Pine Island Trough, flowing
off‐shelf, and was the main contributor to the GMW column inventories at the continental shelf edge.

By combining the GMWpatterns with observed velocity profiles, wewere able to infer themeltwater pathways.
This confirms the previously reported pathway of GMW from the western side of PIIS, flowing along the coast-
line to the west and toward the north, off‐shelf. It supports both previous observations (Biddle et al., 2017;
Nakayama et al., 2013) and modeling studies (Nakayama et al., 2014, 2017). The GMW signature observed at
thewestern end of the eastern channel was shown to beflowing off‐shelf, which has not been reported in obser-
vations as a pathway for GMW previously. The model results presented by Nakayama et al. (2014, 2017) pre-
dicted that the central channel should contain higher GMW content than the eastern channel, yet our data
showgreater values in the eastern channel,with theGMWcontent in the central channel associatedwith a recir-
culation and GMW flowing on‐shelf. This emphasizes our need to improve the understanding of the transport
across these channels at the continental shelf edge and how and where GMW flows off the continental shelf.

While the use of oxygen isotope ratios and noble gas concentrations are critical for identifying SIM and reliable
GMW content, the improvements we have made to the hydrographic GMW content indicate that when these
tracers are not available we are still able tomake a good estimate of it. If noble gas concentrations are not avail-
able for ground truth, we can use the assumptions that the pWW endpoint can be extrapolated from the exist-
ing in situ WW to the freezing temperature with associated salinity and that the oxygen concentrations will be
undersaturated (at 80% in the eastern Amundsen Sea). The user can also run Monte Carlo simulations with
small perturbations of their new pWW endpoints to determine the sensitivity of their results. As our pWW
endpoints in Θ, SA, and c(O2) are similar to those used by Jenkins et al. (2018) to the west of PIIS in front of
Dotson Ice Shelf for 2014 data, this suggests that the pWW endpoint used here is reliable over a reasonable
geographic area (approximately 20° longitude) but is likely to be variable on time scales greater than a year.

The noble gas sampling locations where there are larger differences between the NG and hydrographic
GMW contents may indicate the effects of other processes affecting the tracer signatures, in particular,
biological activity. The presence of GMW is often associated with biological productivity (St‐Laurent et al.,
2017), which can increase the concentration of dissolved oxygen. Due to the admixture of mCDW‐GMW
having lower c(O2) values than WW, the biological productivity skews the apparent GMW content toward
lower values. Further work is required to understand the relationship between GMW and biological
activity—does it support productivity and respiration, and how does this ratio vary across the continental
shelf? In addition, this data set has revealed more detail on the spatial and vertical distribution of GMW that
can be used to validate existing circulation models for this region.

8. Conclusions

We have demonstrated the value of oxygen isotope ratios and noble gas concentrations in determining fresh-
water distribution across Amundsen Sea. Noble gas concentrations enable a reliable calculation of GMW
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content that is used as a ground truth for hydrographic water mass calculations to be tuned to, using the
pWW endpoint.

Our new observations of meltwater pathways across the eastern Amundsen Sea show the persistent presence
of GMW between 150 and 400 m across the entire continental shelf sampled. Combining GMW content with
velocity fields show strong outflows at the westernmost stations of both PIIS and Thwaites Ice Shelf, with the
GMW flowing off‐shelf and along the coast to the west. We have also shown that an important location of
GMW export off the continental shelf exists in the eastern channel.

Finally, the pWW endpoint should be used for future GMW calculations, even when noble gas tracers are not
available for ground truthing. The extrapolation of the in situ WW endpoint to the freezing temperature and
salinity, with an undersaturated oxygen concentration provides a more reliable GMW content than the
observed WW endpoint.

References
Arneborg, L., Wåhlin, A. K., Björk, G., Liljebladh, B., & Orsi, A. H. (2012). Persistent inflow of warm water onto the central Amundsen

Shelf. Nature Geoscience, 5(12), 876–880. https://doi.org/10.1038/ngeo1644
Assmann, K. M., Jenkins, A., Shoosmith, D. R., Walker, D. P., Jacobs, S. S., & Nicholls, K. W. (2013). Variability of Circumpolar Deep Water

transport onto the Amundsen Sea Continental shelf through a shelf break trough. Journal of Geophysical Research: Oceans, 118,
6603–6620. https://doi.org/10.1002/2013JC008871

Beaird, N., Straneo, F., & Jenkins, W. (2015). Spreading of Greenland meltwaters in the ocean revealed by noble gases. Geophysical Research
Letters, 42, 7705–7713. https://doi.org/10.1002/2015GL065003

Biddle, L. C., Heywood, K. J., Kaiser, J., & Jenkins, A. (2017). Glacial meltwater identification in the Amundsen Sea. Journal of Physical
Oceanography, 47, 933–954. https://doi.org/10.1175/JPO‐D‐16‐0221.1

Bintanja, R., Oldenborgh, G. J. V., Drijfhout, S. S., Wouters, B., & Katsman, C. A. (2013). Important role for ocean warming and increased
ice‐shelf melt in Antarctic sea‐ice expansion. Nature Geoscience, 6(4), 1–4. https://doi.org/10.1038/ngeo1767

Naveira Garabato, A. C., Forryan, A., Dutrieux, P., Brannigan, L., Biddle, L. C., Heywood, K. J., et al. (2017). Vigorous lateral export of the
meltwater outflow from beneath an Antarctic ice shelf. Nature, 542(7640), 219–222. https://doi.org/10.1038/nature20825

Heywood, K. J., Biddle, L. C., Boehme, L., Dutrieux, P., Fedak, M., Jenkins, A., et al. (2016). Between the devil and the deep blue sea: The
role of the Amundsen Sea continental shelf in exchanges between ocean and ice shelves. Oceanography, 29, 118‐129.

Hohmann, R., Schlosser, P., Jacobs, S., Ludin, A., & Weppernig, R. (2002). Excess helium and neon in the southeast pacific: Tracers for
glacial meltwater. Journal of Geophysical Research, 107(C11), 3198. https://doi.org/10.1029/2000JC000378

Huhn, O., Hattermann, T., Davis, P. E. D., Dunker, E., Hellmer, H. H., Nicholls, K. W., et al. (2018). Basal melt and freezing rates
from first noble gas samples beneath an ice shelf. Geophysical Research Letters, 45, 8455–8461. https://doi.org/10.1029/
2018GL079706

IOC, SCOR, & IAPSO (2010). The international thermodynamic equation of seawater—2010: Calculation and use of thermodynamics
properties, Intergovernmental oceanographic commission, manuals and guides no. 56 pp. 196): UNESCO (English).

Jacobs, S. S., & Giulivi, C. F. (2010). Large multidecadal salinity trends near the Pacific‐Antarctic Continental Margin. Journal of Climate,
23(17), 4508–4524. https://doi.org/10.1175/2010JCLI3284.1

Jacobs, S. S., Hellmer, H. H., & Jenkins, A. (1996). Antarctic ice sheet melting in the Southeast Pacific. Geophysical Research Letters, 23(9),
957–960.

Jacobs, S. S., Jenkins, A., Giulivi, C. F., & Dutrieux, P. (2011). Stronger ocean circulation and increasedmelting under Pine Island Glacier ice
shelf. Nature Geoscience, 4(8), 519–523. https://doi.org/10.1038/ngeo1188

Jacobs, S. S., Jenkins, A., Hellmer, H. H., Giulivi, C. F., Nitsche, F., Huber, B., & Guerrero, R. (2012). The Amundsen Sea and the Antarctic
Ice Sheet. Oceanography, 25(3), 154–163. https://doi.org/10.5670/oceanog.2012.90

Jenkins, A. (1999). The impact of melting ice on ocean waters. Journal of physical oceanography, 29, 2370–2381.
Jenkins, A., Dutrieux, P., Jacobs, S. S., McPhail, S. D., Perrett, J. R., Webb, A. T., & White, D.(2010). Observations beneath Pine Island

Glacier in West Antarctica and implications for its retreat. Nature Geoscience, 3(7), 468–472. https://doi.org/10.1038/ngeo890
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., & Lee, S. H. (2018). West Antarctic Ice Sheet retreat in the Amundsen Sea

driven by decadal oceanic variability. Nature Geoscience, 11, 733‐738 https://doi.org/10.1038/s41561‐018‐0207‐4
Jourdain, N. C., Mathiot, P., Merino, N., Durand, G., Le Sommer, J., Spence, P., et al. (2017). Ocean circulation and sea‐ice thinning induced

by melting ice shelves in the Amundsen Sea. Journal of Geophysical Research: Oceans, 122, 2550–2573. https://doi.org/10.1002/
2016JC012509

Kim, I., Hahm, D., Rhee, T. S., Kim, T. W., Kim, C. S., & Lee, S. H. (2016). The distribution of glacial meltwater in the Amundsen Sea,
Antarctica, revealed by dissolved helium and neon. Journal of Geophysical Research: Oceans, 121, 1654–1666. https://doi.org/10.1002/
2015JC011211

Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E., & Kuipers Munneke, P. (2012). A new, high‐resolution
surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophysical Research Letters, 39,
L04501. https://doi.org/10.1029/2011GL050713

Loose, B., Garabato, A. C. N., Schlosser, P., Jenkins, W. J., Vaughan, D., & Heywood, K. J. (2018). Evidence of an active volcanic heat source
beneath the Pine Island Glacier. Nature Communications, 9, 1–9. https://doi.org/10.1038/s41467‐018‐04421‐3

Loose, B., & Jenkins, W. J. (2014). The five stable noble gases are sensitive unambiguous tracers of glacial meltwater. Geophysical Research
Letters, 41, 2835–2841. https://doi.org/10.1002/2013GL058804

Loose, B., Jenkins, W. J., Moriarty, R., Brown, P., Jullion, L., Naveira Garabato, A. C., et al. (2016). Estimating the recharge properties of the
deep ocean using noble gases and helium isotopes. Journal of Geophysical Research: Oceans, 121, 5959–5979. https://doi.org/10.1002/
2016JC011809

Loose, B., Schlosser, P., Smethie, W. M., & Jacobs, S. (2009). An optimized estimate of glacial melt from the Ross Ice Shelf using noble gases,
stable isotopes, and CFC transient tracers. Journal of Geophysical Research, 114, C08007. https://doi.org/10.1029/2008JC005048

10.1029/2019JC015133Journal of Geophysical Research: Oceans

BIDDLE ET AL.

Acknowledgments
We acknowledge funding for the
Ocean2ice project at UEA from the U.K.
Natural Environment Research
Councils iSTAR program through
Grant NE/J005703/1, which supported
K. J. H. and L. C. B. as well as the ship‐
based campaign. We thank all involved
with RRS James Clark Ross Cruise 294
for making these observations possible.
We acknowledge U.S. National Science
Foundation Award1341630 for support
of B. L. and for noble gas analysis. Noble
gas samples are available from the
IEDA Earthchem Library (https://ecl.
earthchem.org/view.php?id=1152). All
other data described here can be
obtained from the British
Oceanographic Data Centre (www.
bodc.ac.uk.) L. C. B. is now supported
by a Wallenberg Academy Fellowship
of S. Swart (WAF 2015.0186).

6869

https://doi.org/10.1038/ngeo1644
https://doi.org/10.1002/2013JC008871
https://doi.org/10.1002/2015GL065003
https://doi.org/10.1175/JPO-D-16-0221.1
https://doi.org/10.1038/ngeo1767
https://doi.org/10.1038/nature20825
https://doi.org/10.1029/2000JC000378
https://doi.org/10.1029/2018GL079706
https://doi.org/10.1029/2018GL079706
https://doi.org/10.1175/2010JCLI3284.1
https://doi.org/10.1038/ngeo1188
https://doi.org/10.5670/oceanog.2012.90
https://doi.org/10.1038/ngeo890
https://doi.org/10.1038/s41561-018-0207-4
https://doi.org/10.1002/2016JC012509
https://doi.org/10.1002/2016JC012509
https://doi.org/10.1002/2015JC011211
https://doi.org/10.1002/2015JC011211
https://doi.org/10.1029/2011GL050713
https://doi.org/10.1038/s41467-018-04421-3
https://doi.org/10.1002/2013GL058804
https://doi.org/10.1002/2016JC011809
https://doi.org/10.1002/2016JC011809
https://doi.org/10.1029/2008JC005048
https://ecl.earthchem.org/view.php?id=1152
https://ecl.earthchem.org/view.php?id=1152
www.bodc.ac.uk.
www.bodc.ac.uk.


Lott, D. E. (2001). Improvements in noble gas separation methodology: A nude cryogenic trap. Geochemistry, Geophysics, Geosystems, 2,
1068. https://doi.org/10.129/2001GC000202

Mallett, H. K. W., Boehme, L., Fedak, M., Heywood, K. J., Stevens, D. P., & Roquet, F. (2018). Variation in the distribution and properties of
circumpolar deep water in the eastern amundsen sea, on seasonal timescales, using seal‐borne tags. Geophysical Research Letters, 45,
4982–4990. https://doi.org/10.1029/2018GL077430

Meredith, M. P., Brandon, M. A., Wallace, M. I., Clarke, A., Leng, M. J., Renfrew, I. A., et al. (2008). Variability in the freshwater balance of
northern Marguerite Bay, Antarctic Peninsula: Results from δ18O. Deep Sea Research Part II: Topical Studies in Oceanography, 55(3‐4),
309–322. https://doi.org/10.1016/j.dsr2.2007.11.005

Nakayama, Y., Menemenlis, D., Schodlok, M., & Rignot, E. (2017). Amundsen and bellingshausen seas simulation with optimized ocean,
sea ice, and thermodynamic ice shelf model parameters. Journal of Geophysical Research: Oceans, 122, 6180–6195. https://doi.org/
10.1002/2016JC012538

Nakayama, Y., Schröder, M., & Hellmer, H. H. (2013). From circumpolar deep water to the glacial meltwater plume on the eastern
Amundsen Shelf. Deep Sea Research Part I: Oceanographic Research Papers, 77, 50–62. https://doi.org/10.1016/j.dsr.2013.04.001

Nakayama, Y., Timmermann, R., Rodehacke, C. B., Schröder, M., & Hellmer, H. H. (2014). Modeling the spreading of glacial meltwater
from the Amundsen and Bellingshausen Seas. Geophysical Research Letters, 41, 7942–7949. https://doi.org/10.1002/2014GL061600

Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J., & Rignot, E. (2004). Recent dramatic thinning of largest west antarctic ice stream
triggered by oceans. Geophysical Research Letters, 31, L23401. https://doi.org/10.1029/2004GL021284

Price, M. R., Heywood, K. J., Nicholls, K. W. (2008). Ice‐shelf‐ocean interactions at Fimbul Ice Shelf ,Antarctica from oxygen isotope ratio
measurements. Ocean Science, 4, 89–98. https://doi.org/10.5194/os-4-89-2008

Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., & Padman, L. (2012). Antarctic ice‐sheet loss
driven by basal melting of ice shelves. Nature, 484(7395), 502–5. https://doi.org/10.1038/nature10968

Randall‐Goodwin, E., Meredith, M. P., Jenkins, A., Yager, P. L., Sherrell, R. M., Abrahamsen, E. P., et al. (2015). Freshwater distributions
and water mass structure in the Amundsen Sea Polynya region, Antarctica. Elementa: Science of the Anthropocene, 3(1), 000065.
https://doi.org/10.12952/journal.elementa.000065

Schmidtko, S., Heywood, K. J., Thompson, A. F., & Aoki, S. (2014). Multidecadal warming of Antarctic waters. Science, 346(6214),
1227 LP–1231. https://doi.org/10.1126/science.1256117

Shepherd, A., Fricker, H. A., & Farrell, S. L. (2018). Trends and connections across the Antarctic cryosphere. Nature, 558, 223–232.
https://doi.org/10.1038/s41586‐018‐0171‐6

Silvano, A., Rintoul, S. R., Peña‐Molino, B., Hobbs, W. R., Wijk, E. V., Aoki, S., et al. (2018). Freshening by glacial meltwater enhances
melting of ice shelves and reduces formation of Antarctic Bottom Water. Science Advances, 4, 1–12.

St‐Laurent, P., Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., & Dinniman, M. S. (2017). Pathways and supply of dissolved iron in the
Amundsen Sea (Antarctica). Journal of Geophysical Research: Oceans, 122, 7135–7162. https://doi.org/10.1002/2017JC013162

Stammerjohn, S. E., Maksym, T., Massom, R. A., Lowry, K. E., Arrigo, K. R., Yuan, X., et al. (2015). Seasonal sea ice changes in the
Amundsen Sea, Antarctica, over the period of 1979–2014. Elementa: Science of the Anthropocene, 3(1). https://doi.org/10.12952/journal.
elementa.000055

Stanley, R. H. R., Jenkins, W. J., Lott, D. E., & Doney, S. C. (2009). Noble gas constraints on air‐sea gas exchange and bubble fluxes. Journal
of Geophysical Research, 114, C11020. https://doi.org/10.1029/2009JC005396

Thoma, M., Jenkins, A., Holland, D., & Jacobs, S. (2008). Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental
shelf, Antarctica. Geophysical Research Letters, 35, L18602. https://doi.org/10.1029/2008GL034939

Thurnherr, A. M., Jacobs, S. S., Dutrieux, P., & Giulivi, C. F. (2014). Export and circulation of ice cavity water in Pine Island Bay, West
Antarctica. Journal of Geophysical Research: Oceans, 119, 1754–1764. https://doi.org/10.1002/2013JC009307

Wåhlin, A. K., Kalén, O., Arneborg, L., Björk, G., Carvajal, G. K., Ha, H. K., et al. (2013). Variability of warm deep water inflow in a sub-
marine trough on the Amundsen Sea shelf. Journal of Physical Oceanography, 43(10), 2054–2070. https://doi.org/10.1175/JPO‐D‐12‐
0157.1

Walker, D. P., Brandon, M. A., Jenkins, A., Allen, J. T., Dowdeswell, J. A., & Evans, J. (2007). Oceanic heat transport onto the Amundsen Sea
shelf through a submarine glacial trough. Geophysical Research Letters, 34, L02602. https://doi.org/10.1029/2006GL028154

Webber, B. G. M., Heywood, K. J., Stevens, D. P., Dutrieux, P., Abrahamsen, E. P., Jenkins, A., et al. (2017). Mechanisms driving variability
in the ocean forcing of Pine Island Glacier. Nature Communications, 8, 1–8. https://doi.org/10.1038/ncomms14507

Weiss, R. F., Östlund, H. G., & Craig, H. (1979). Geochemical studies of the Weddell Sea. Deep Sea Research Part A. Oceanographic Research
Papers, 26(10), 1093–1120. https://doi.org/10.1016/0198‐0149(79)90059‐1

Zhang, X., Thompson, A. F., Flexas, M. M., Roquet, F., & Bornemann, H. (2016). Circulation and meltwater distribution in the
Bellingshausen Sea: From shelf break to coast. Geophysical Research Letters, 43, 6402–6409. https://doi.org/10.1002/2016GL068998

10.1029/2019JC015133Journal of Geophysical Research: Oceans

BIDDLE ET AL. 6870

https://doi.org/10.129/2001GC000202
https://doi.org/10.1029/2018GL077430
https://doi.org/10.1016/j.dsr2.2007.11.005
https://doi.org/10.1002/2016JC012538
https://doi.org/10.1002/2016JC012538
https://doi.org/10.1016/j.dsr.2013.04.001
https://doi.org/10.1002/2014GL061600
https://doi.org/10.1029/2004GL021284
https://doi.org/10.1038/nature10968
https://doi.org/10.12952/journal.elementa.000065
https://doi.org/10.1126/science.1256117
https://doi.org/10.1038/s41586-018-0171-6
https://doi.org/10.1002/2017JC013162
https://doi.org/10.12952/journal.elementa.000055
https://doi.org/10.12952/journal.elementa.000055
https://doi.org/10.1029/2009JC005396
https://doi.org/10.1029/2008GL034939
https://doi.org/10.1002/2013JC009307
https://doi.org/10.1175/JPO-D-12-0157.1
https://doi.org/10.1175/JPO-D-12-0157.1
https://doi.org/10.1029/2006GL028154
https://doi.org/10.1038/ncomms14507
https://doi.org/10.1016/0198-0149(79)90059-1
https://doi.org/10.1002/2016GL068998


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




