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Abstract. The Elastic-Ensemble [7] has one of the longest build times
of all constituents of the current state of the art algorithm for time series
classification: the Hierarchical Vote Collective of Transformation-based
Ensembles (HIVE-COTE) [8]. We investigate two simple and intuitive
techniques to reduce the time spent training the Elastic Ensemble to con-
sequently reduce HIVE-COTE train time. Our techniques reduce the ef-
fort involved in tuning parameters of each constituent nearest-neighbour
classifier of the Elastic Ensemble. Firstly, we decrease the parameter
space of each constituent to reduce tuning effort. Secondly, we limit the
number of training series in each nearest neighbour classifier to reduce
parameter option evaluation times during tuning. Experimentation over
10-folds of the UEA/UCR time-series classification problems show both
techniques and give much faster build times and, crucially, the combina-
tion of both techniques give even greater speedup, all without significant
loss in accuracy.
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1 Introduction

The current state of the art classifier in time series classification (TSC) is the
Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE)
[8]. The Elastic-Ensemble (EE) [7] is one of five constituent classifiers in the
HIVE-COTE meta-ensemble and key in uncovering discriminatory features in
the time-domain. The discovery of these features leverages 11 nearest-neighbour
classifiers (NN) each coupled with an elastic distance-measure. Consequently,
EE requires a large amount of time to train and forms a bottle-neck in training
HIVE-COTE. Ten of the constituent classifiers in EE use distance measures
with O(m2) run-time complexity (where m is the length of the time-series).
Eight of these each require parameter tuning using leave-one-out-cross-validation
(LOOCV) over 100 parameter options. Therefore the tuning complexity of EE
becomes O(n2m2), an often impractically expensive procedure.

Distance-measures have been studied for a long time in TSC research and
various distance-measure specific speed-ups have been conceived, such as util-
ising lower-bounds. However, further speed-ups can be made to the NN and
parameter tuning aspects of EE such as:
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1. using less parameter options when tuning constituent classifiers. We hy-
pothesise many parameter options perform similarly, therefore a reduced
parameter pool still contains a suitable parameter option.

2. using less train cases when estimating the accuracy of different parameter
options during tuning. We hypothesise that training a NN on a subset of the
train data will perform sufficiently well to evaluate a parameter option and
maintain the relative ranks of parameter options during tuning.

We conducted experiments on various configuration of EE to investigate the
effectiveness of these techniques. Our experiments use the UEA/UCR TSC prob-
lems [2] resampled 10 times at the original train/test distribution. First, we in-
vestigate the effectiveness of reduced parameter pools: 10%, 50% and 100% of the
original parameter pool, chosen arbitrarily. We use the full training set to eval-
uate each parameter option. Second, we investigate the effectiveness of reduced
training sets for parameter tuning: 10%, 50% and 100% of the original train
set size, again chosen arbitrarily. We use the full parameter pool during tuning.
Finally, we combine both techniques to investigate both reducing the parameter
space and reducing the train set for each parameter option evaluation.

Our results demonstrate that either technique results in substantial reduction
of training time without significant loss in test accuracy. Crucially, the subse-
quent combination of both techniques show further reduction of train time whilst
still maintaining no significant loss in test accuracy. We conclude that limiting
parameter pool size and train set size during tuning can speed-up EE by nearly
two orders of magnitude without any significant loss in test accuracy.

2 Background and Related Work

A time-series, T < x1, x2, x3, ..., xl >, is an ordered sequence of l values with
xi ∈ R. TSC is the task of prediction a class given a previously unseen time-
series for which the class is unknown. A TSC classifier is therefore a function
which is learned from the labelled time-series, the train set, to take an input of
an unlabelled time-series, a test case, and output the predicted label.

TSC is an active area of research where many diverse algorithms have been
proposed. These include, but are not limited to, histogram-based approaches
that discriminate cases based on the frequency of reoccurring patterns [10,11];
shapelet algorithms that differentiate class membership through the presence
of discriminatory, phase-independent subsequences [13,4]; and forest ensembles
built on data transformed into different representations [8,3]. Arguably, most
TSC research effort over the last decade has been focused on developing elas-
tic distance measures to couple with simple 1-nearest neighbour (1-NN) classi-
fiers. Such elastic measures are able to mitigate misalignments and phase-shift
within time-series. The most common approach is to use Dynamic Time Warp-
ing (DTW) with a warping window set through cross-validation and a 1-NN
classifier. Related variants of DTW have also been proposed, such as applying a
soft boundaries to warping windows through weighting penalties [5], and warp-
ing directly on first-order derivatives [6]. Alternatives exist that are derived from
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the edit-distance [1], and further hybrid measures have characteristics of both
DTW and edit-distance [9,12].

2.1 The Elastic Ensemble

The performance of alternative elastic distance measures with 1-NN classifiers
were compared in [7] to determine whether one approach outperformed all oth-
ers. The measures included were: Dynamic Time Warping (DTW), Derivative
DTW (DDTW), weighted variants of both DTW and DDTW (WDTW, WD-
DTW), Edit Distance with Real Penalty (ERP), Longest Common Subsequence
(LCSS), Time Warp Edit (TWE) and Move-Split-Merge (MSM). All measures
were coupled with 1-NN classifiers and the eight distance-measures with pa-
rameters were tuned over 100 parameter options each, respectively. Euclidean
distance, full-window DTW and full-window DDTW were used as baselines and
all eight subsequent 1-NN classifiers were compared over 85 TSC datasets [2]. It
was found that no single measure significantly outperformed all others in test ac-
curacy. However, the diversity in performance of each distance-measure inspired
the EE, an ensemble of the 11 1-NN classifiers described above. In training, each
constituent is evaluated using a LOOCV to obtain an estimate of train set accu-
racy and the optimal distance-measure parameter option if required. In testing,
each constituent is given a vote weighted by its training accuracy estimate and
the ensemble predicts the class with the greatest weighted vote.

3 Proposed Enhancements

3.1 Reduced parameter pool size

Eight of the distance measures in EE have a corresponding pool of 100 param-
eters. We hypothesise that there is a large amount of redundancy due to the
similarity in parameter option performance, therefore the pool of parameters
can be reduced whilst still yielding a suitable parameter choice during tuning.
In our experiments we arbitrarily use 10%, 50% and 100% of the full parameter
pool, sampled randomly.

3.2 Reduced neighbourhood size

LOOCV is used to evaluate each parameter option during tuning of the eight
distance measures which required parameters. We hypothesise that parameter
options can be effectively evaluated in a NN using substantially less train cases,
hence reducing the impact of the expensive LOOCV procedure for parameter
tuning. Less training cases reduces the neighbourhood of potential nearest neigh-
bours in the NN, decreasing test time and speeding-up LOOCV. We believe a
sufficiently large neighbourhood should evaluate a parameter option accurately
enough to maintain ranks of parameter options during tuning. In our experiments
we arbitrarily use 10%, 50% and 100% of the training set, sampled randomly.



4 G. Oastler and J. Lines

3.3 Combined Strategies

A subsequent technique is to reduce both the parameter pool size 3.1 and neigh-
bourhood 3.2 size. The effectiveness of this technique is dependent upon the
success of the previous techniques. The two techniques likely impact each other,
as introducing less-accurate parameter evaluation through a limited neighbour-
hood size may not find the optimal parameter option in a reduced parameter
option pool. We designed a subsequent experiment to assess all combinations of
these techniques over the 10%, 50% and 100% limits of parameter pool size and
neighbourhood size respectively.

4 Experimental Design

We ran experiments to assess the impact of techniques from Section 3. Our ex-
periments use the UEA/UCR TSC problems over 10 resamples at the original
train/test ratio. Only 48 of the smallest datasets were investigated due to infea-
sible run-time of full EE, demonstrating the importance of speeding up EE for
realistic usability. These results are indicative of the performance of the training
strategies however, and further results will be added in due course when avail-
able to confirm the findings over the complete repository. All source code can be
downloaded from the provided link12.

5 Results

The results are organised into three separate experiments and findings: parame-
ter pool size reduction, neighbourhood size reduction, and combining both reduc-
tion techniques. For each experiment we report the accuracies and train-times
to assess the impact of each technique upon the performance of EE.

The critical difference (CD) diagrams used throughout these experiments vi-
sually demonstrate the results of comparing all classifiers using pairwise Wilcoxon
signed rank tests, where cliques are formed using the Holm correction to repre-
sent classifiers where there is no significant difference between them.

5.1 Parameter pool size reduction

The results shown in the CD diagram of Figure 1 indicate that using 10% of pos-
sible parameter options during tuning of each EE constituent is not significantly
different to original EE which uses all possible parameter options.

This demonstrates that EE can be trained much faster with no significant
loss in test accuracy. It is worth noting there is a significant difference in 10%
and 50% parameter pool sizes. This indicates the random sampling of 10% of the

1 https://github.com/TonyBagnall/uea-tsc/commit/
07408d166072e8fd3057cb1fcbfd913e603094e3

2 https://github.com/alan-turing-institute/sktime

https://github.com/TonyBagnall/uea-tsc/commit/07408d166072e8fd3057cb1fcbfd913e603094e3
https://github.com/TonyBagnall/uea-tsc/commit/07408d166072e8fd3057cb1fcbfd913e603094e3
https://github.com/alan-turing-institute/sktime
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3 2 1

1.8125 EE 50% P
2.0521 EE 100% P

2.1354EE 10% P

Fig. 1: A CD diagram to compare the test accuracy of EE using reduced param-
eter pool sizes during tuning of each constituent NN of EE. For clarity, ”10% P”
uses only 10% of the available parameter pool during tuning for each constituent
classifier.
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(a) Scatter plot comparing test ac-
curacy of full EE against EE with
10% parameter pool.
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(b) Scatter plot comparing test ac-
curacy of full EE against EE with
50% parameter pool.

Fig. 2

parameter pool may be too few and further investigation is required. We provide
scatter plots in Figure 2 comparing the two reduced parameter pool sizes against
full EE to demonstrate no significant difference in test accuracy.

5.2 Neighbourhood size reduction

The results of reducing the neighbourhood size during tuning of parameter op-
tions are summarised in the CD diagram in Figure 3 and scatter plots in Figure
4.

3 2 1

1.8125 EE 10% N
2.0208 EE 100% N

2.1667EE 50% N

Fig. 3: A CD diagram to compare the test accuracy of EE with reduced neigh-
bourhood sizes for evaluating parameter options during tuning of each con-
stituent NN. For clarity, ”10% N” uses 10% of the training data during tuning
to evaluate a parameter option.

The results demonstrate that there is no significant loss in test accuracy
when using 10% or 50% of training data during tuning of parameter options. This
confirms our hypothesis that parameter options can be sufficiently evaluated and
ranked using much less training data. Therefore, a substantial amount of time
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(a) Scatter plot comparing test ac-
curacy of full EE against EE with
10% neighbourhood size.
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(b) Scatter plot comparing test ac-
curacy of full EE against EE with
50% neighbourhood size.

Fig. 4

can be saved while training EE by using a smaller neighbourhood. We reinforce
the equivalence in test accuracy in the scatter plots in Figure 4.

5.3 Combined techniques: reduced parameter pool size and reduced
neighbourhood size

The results presented in Sections 5.2 and 5.1 can be combined to further speed-up
the training of EE. These results show there is no significant difference between
full EE against EE with 10% parameter pool size, and no significant difference
between full EE against EE with 10% neighbourhood size. These techniques can
be combined to investigate further speed-up, again arbitrarily using the values
of 10% and 50% to produce four combinations of each (10%/10%, 10%/50%,
50%/10%, and 50%/50%) alongside full EE with 100% neighbourhood size and
100% parameter pool size. These results are summarised in the critical difference
diagram in Figure 5 and scatter plot in Figure 6.

5 4 3 2 1

2.5938 EE 50% N 50% P
2.7396 EE 100% N 100% P

3 EE 10% N 50% P
3.2292EE 50% N 10% P
3.4375EE 10% N 10% P

Fig. 5: A CD diagram to compare the test accuracy performance of EE using
various neighbourhood sizes (N) and parameter pool sizes (P). For clarity, 50%
N and 10% P corresponds to tuning each constituent NN of EE using 10% of
the full parameter pool and evaluates each parameter option 50% of the training
data.

The results in Figure 5 confirm that there is no significant difference in the
test accuracies of full EE and EE trained using only 10% of parameter options
and 10% of training data during tuning (EE-10%). This does not lower the run-
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Fig. 6: Scatter plot comparing test accuracy of full EE against recommended EE
configuration with 10% neighbourhood size and 50% parameter pool size.

Table 1: Table of accuracies and timings over UEA/UCR TSC datasets com-
paring EE with different configurations of neighbours and parameters. N corre-
sponds to percentage of neighbours, P corresponds to the percentage of param-
eters.

Dataset 100% N
100% P

50% N
50% P

10% N
50% P

50% N
10% P

10% N
10% P

Accuracy (%) 0.8478 0.8491 0.8477 0.8466 0.8465
Train time (minutes) 37.1200 17.8101 2.4314 15.1747 0.9948
Train time (% of full EE) 100.0000 47.9800 6.5500 40.8800 2.6800

time complexity of EE but does decrease the train time to approximately 3% of
full EE as outlined in Table 1.

Note that the test accuracy of EE-10%, whilst not significantly different to
full EE, is significantly worse than the best performing variants which use 50%
of parameter options. Table 1 indicates reducing neighbourhood size provides
better speed-up than reducing parameter pool size. Therefore, reducing param-
eter pool size beyond 50% whilst also reducing neighbourhood size significantly
decreases test accuracy. Practitioners are advised to use 50% parameter pool
size and 10% neighbourhood size as a sufficient compromise to reduce train time
whilst preserving test accuracy. The recommended EE with 50% parameter pool
size and 10% neighbourhood size was ranked 3rd overall in Figure 5 and was not
significantly outperformed by any other technique. Furthermore, the timing re-
sults in Figure 1 show that this configuration requires approximately only 6.6%
of the time of full EE - nearly two orders of magnitude faster than the original
EE. We demonstrate the equivalence in test accuracy between the recommended
configuration and the full EE in Figure 6.

6 Conclusions and future work

In this work we have investigated two techniques for reducing the training time
required to run EE. First, we proposed a technique to reduce the distance mea-
sure parameter pool size (using random sampling) for each constituent NN classi-
fiers of EE during tuning. Second, we proposed a technique to use less neighbours
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(via random sampling) in the NN constituent classifiers to evaluate a parame-
ter option whilst tuning. We hypothesised that both could lead to substantial
speed-ups in train times without significant loss in accuracy as a suitable param-
eter option is still found. We validated these claims through two independent
experiments looking at either technique and conclude that using either 10%
neighbourhood size or 10% parameter pool size does not significantly reduce
test accuracy.

Inspired by these findings, we combined both techniques to build EE with a
reduced parameter pool size and neighbourhood size. We found that EE could
be sped-up to approximately 3% of the original train-time of full EE at best.
We also conclude that using the recommended, and crucially not significantly
worse, configuration of 10% neighbourhood size and 50% parameter pool size
takes approximately only 6.6% train-time versus full EE.
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