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Abstract  

Observed trends, theory and modelling results all suggest increases in future extreme 

precipitation due to climate warming. The largest increases are expected in short-duration 

events with less than a day. Relatively few previous studies have focused specifically on 

the projection of sub-daily precipitation extremes. In this study, a statistical downscaling 

method based on circulation patterns (CPs) is developed to project site-specific extreme 

hourly precipitation over the UK. First, a CP-classification categorizes extreme hourly 

precipitation events based on the underlying atmospheric pressure conditions on each 

day. An analogue day method is then used to find for each future day the most similar day 

in the past by comparing the predictor values of daily precipitation and temperature 

simulated by Regional Climate Models (RCMs) with observations conditioned on different 

CPs and seasons. Finally, the maximum hourly precipitation records on the most similar 

days are extracted and perturbed using precipitation duration-temperature relationships. 

The applied statistical downscaling method is a combination of the analogue and the 

regression-based method. It is found that the statistical downscaling method is able to 

reproduce observed extreme hourly precipitation. In terms of future changes under a 
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warmer climate, it is shown that increases in extreme hourly precipitation can be as high 

as 112% but are highly variable depending on the rainfall stations, the future time periods, 

the emission scenarios, and the different RCM runs. 
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1. Introduction 

On a global scale, extreme precipitation is expected to become more intense due to climate 

warming (Seneviratne et al., 2012). This is physically plausible under the assumption that higher 

temperature can lead to increases in the atmospheric moisture content and evapotranspiration 

(Maraun et al., 2008) resulting in convective precipitation increases (Berg et al., 2013; Molnar 

et al., 2014). Convective precipitation events are often associated with sub-daily precipitation 

extremes (Beck and Bárdossy, 2013; Chan et al., 2014; Lenderink and van Meijgaard, 2008), 

which raises concerns about an increasing risk of flash floods in urban environments, fast 

responding river catchments, or industrial facilities that can be subject to water damage. For 

example, Lenderink and van Meijgaard (2008) demonstrated that changes in short-duration 

precipitation extremes may well exceed expectations from the Clausius–Clapeyron relation (7% 

increase per one degree warming) by analyzing hourly precipitation data. They found increases 

of 14% in extreme hourly precipitation per one degree warming in large parts of Europe. Such 

super Clausius-Clapeyron relation may be explained by the release of latent heat within 

convective storms (Kendon et al., 2018). Not only temperature can affect extreme precipitation, 

but other factors such as changes in atmospheric circulation (Chan et al., 2016; Blenkinsop et 

al., 2015; de Lima et al., 2014), precipitable water (Bao et al., 2017), soil moisture and potential 

feedbacks (Kendon et al., 2010) need to be considered in a changing climate.  
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Global climate models (GCMs) are commonly used to simulate future climate, including 

precipitation, by taking into account the effects of a changing concentration of greenhouse 

gases in the atmosphere. GCM based projections provide spatially consistent information for all 

regions and aim to simulate large-scale modes of variability, e.g. the El-Nino-Southern 

Oscillation (ENSO) and the monsoon systems. In terms of precipitation extremes, however, the 

spatial resolution of GCMs is too coarse to represent all the relevant physical processes, e.g. 

cyclones or convective events (Maraun, 2019; Goodess, 2012; Maraun et al., 2010b). As a 

consequence, downscaling techniques are needed to increase the coarse resolution and 

improve the poor representation of GCM simulated precipitation. Dynamical and statistical 

downscaling are the two commonly used downscaling techniques. 

Dynamical downscaling uses output from a GCM to drive a regional climate model (RCM) with a 

higher spatial resolution over a limited area of interest. RCMs aim to represent the same 

atmospheric and physical processes as the GCMs. A RCM is driven by a range of atmospheric 

parameters provided by the GCM at the boundaries of the RCM, which generally leads to good 

agreement between the large-scale fields in the RCM and the driving GCM (Buonomo et al., 

2007). Differences in the GCM outputs can have considerable impacts on the RCM outputs 

(Deidda et al., 2013). For example, Kendon et al. (2012) noted that a shift in the GCM simulated 

storm tracks lead to considerable changes in the precipitation projections over the UK. In order 

to allow an isolated and more comprehensive assessment of the RCM performances, RCMs can 
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also be driven by reanalysis data (quasi observed boundary conditions) (Maraun et al., 2010b). 

Discrepancies can occur between different RCMs due to differences in the model formulation 

or small-scale internal variability within the RCMs. But even if the simulated results agree with 

each other, it may still be that there are missing processes and deficiencies common to all 

RCMs. For example, RCMs are not able to explicitly resolve processes such as radiation, 

convection, cloud microphysics and land atmosphere interaction. Instead, parameterization 

schemes are applied to simplify the complexity of the real world processes, which contributes 

to model uncertainties. RCMs tend to overestimate the occurrence of wet days due to the 

drizzle effects resulting in an overestimation of the precipitation mean (Buonomo et al., 2007).  

RCMs are also limited in the simulation of convective precipitation events (Svoboda et al., 2016; 

Maraun et al., 2010b), which is important for the representation of extreme hourly 

precipitation (Chan et al, 2013). As a consequence, large differences between RCM simulated 

and observed hourly precipitation extremes are found (Svoboda et al., 2017; Chan et al., 2014; 

Gregersen et al., 2013; Hanel and Buishand, 2010). In order to overcome the current limitations 

in terms of RCM precipitation projections, high resolution (1km to 5km) RCMs have been tested 

(Prein et al., 2017; Ban et al., 2015). Clouds and convection can be better resolved and the 

diurnal precipitation tend to be better reproduced at higher resolutions (Seneviratne et al., 

2012). As a result, RCMs at 1.5km are able to simulate extreme hourly precipitation more 

realistically compared to 12km RCMs (Kendon et al., 2016; Chan et al., 2014; Kendon et al., 
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2014). But even the latest high resolution RCMs cannot provide site-specific projections of 

precipitation extremes and therefore may still misrepresent localized precipitation events. 

Besides, the computational demand limits the number of runs a high resolution RCM can have 

and thus the internal variability may be underestimated. Due to these issues precipitation, and 

especially extreme precipitation, modelled by RCMs need to be applied with great caution and 

statistical downscaling techniques can be considered as an alternative or, as here, an additional 

and complementary method (Hanel and Buishand, 2010). 

Statistical downscaling methods are able to provide projections of precipitation extremes at 

local-scale. They often combine large-scale atmospheric (e.g. sea level pressure) and surface 

variables (e.g. temperature) simulated by climate models to project precipitation extremes. In 

the past, most studies focused on the downscaling of daily precipitation, whereas only few 

attempted to project sub-daily precipitation. Among those, Haberlandt et al. (2014) used a 

statistical model to reproduce sub-daily precipitation extremes and relied on the RCM 

simulated changes in hourly precipitation to predict future changes. Similarly, Peleg et al. 

(2019) calculated factors of change from different RCMs to reparameterize an hourly weather 

generator. Mezghani and Hingray (2009) applied a regression-based model to simulate daily 

precipitation and disaggregated daily to sub-daily precipitation based on an analogue day 

method. Willems and Vrac (2011) assessed different analogue day methods to project sub-daily 

precipitation extremes. The best performances were found for the method which used daily 
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precipitation conditioned on circulation patterns (CPs) as the predictor to find the analogue 

day. The principle of the analogue day method is to find the most similar weather situation in 

the past and then use the corresponding local-scale observation as the projected value. The 

main advantage of the analogue day method is that it captures physical coherence between the 

predictor and predictand, and spatial coherence between different sites (Maraun et al., 2010b). 

It is able to simulate infrequent but observed extreme hourly precipitation (Mezghani and 

Hingray, 2009) by not making restrictive assumption of the precipitation distribution 

(Gangopadhyay et al., 2005). RCM simulated precipitation intensities which can be heavily 

biased (Buonomo et al., 2007; Maraun et al., 2010b) are only used to find the analogue day. The 

analogue day method is also a comparatively simple technique to apply (Zorita and Von Storch, 

1999). However, the common analogue day method is only able to reproduce precipitation 

values which have been observed in the past. This is particularly problematic for the projection 

of precipitation extremes as they are expected to increase in the future. In order to overcome 

this limitation, perturbation factors can be used. For example, Willems and Vrac (2011) applied 

the Clausius-Clapeyron relation to perturb the observed sub-daily precipitation for each 

analogue day. The statistical downscaling technique used in this study to project extreme 

hourly precipitation is based on the analogue day method by using a new perturbation 

approach. 
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This paper is organized as follows. In Section 2, the observed and RCM simulated data sets used 

to estimate UK extreme hourly precipitation are described. Section 3 explains the fuzzy rule-

based CP-classification method and the statistical downscaling method developed in this study. 

In Section 4, the results of four different approaches to find the analogue day are compared. 

The approach that reproduces key characteristics of observed precipitation extremes most 

realistically is used for the projection of UK extreme hourly precipitation presented in Section 5. 

The last section summarizes the main findings and discusses the potential of future 

developments. 

 

2. Data description 

The observed precipitation for the time period 1980-2009 were obtained from the UK Met 

Office Integrated Data Archive System (MIDAS) Land Surface Stations database  

(http://browse.ceda.ac.uk/browse/badc/ukmo-midas). The data set contains more than 12,000 

stations with daily precipitation and 530 stations with hourly precipitation records in the UK. A 

number of quality control and pre-screening steps were undertaken in this study to eliminate 

suspicious precipitation records and to provide homogeneous precipitation time series (see 

supporting information Text S1).  
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A number of criteria were then defined to select the hourly precipitation stations with a high 

level of data completeness and quality: 

1. Only stations with no single missing year and less than 5% missing values for the time 

period 1980-2009 are considered. A large number of hourly precipitation stations in the UK 

started to record in the early 1980s, and hence the period 1980-2009 was chosen.  

2. Only stations with consistent hourly and daily precipitation records are considered. The 

hourly precipitation time series were aggregated to daily time series and compared with the 

corresponding daily time series. The Pearson correlation coefficient 𝜌𝑋,𝑌 and the normalized 

root-mean-square deviation (NRMSD) were calculated. Only the stations with 𝜌𝑋,𝑌 ≥ 0.9 

and NRMSD ≤ 0.05  were used in this study. 

3. The RHtest as described in Etccdi.pacificclimate.org (2012) was applied to identify and 

eliminate stations with an inhomogeneous time series. 

4. For each of the 14 UK extreme precipitation regions defined by Jones et al. (2014), only the 

station with the highest completeness of hourly precipitation records was used. 

For twelve of the 14 UK extreme precipitation regions, at least one station fulfilled the station 

selection criteria. The two regions that are not represented by any station in this study are Mid 

Wales and South Scotland. The twelve finally selected UK hourly precipitation stations are 

shown in Figure 1. The seasonal cycles of extreme hourly precipitation (defined in this study as 

the precipitation at or above the 99.5th percentile) for the twelve selected stations are 
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illustrated in Figure 2. The stations at Tiree, Valley and Camborne do not exhibit much seasonal 

difference. These three stations are most exposed to the North Atlantic and thus more under 

the influence of a maritime climate. It is likely that they are less affected by convective 

precipitation extremes (Chan et al., 2013). In contrast, the stations at Kinloss, Leuchars, 

Aldergrove, Boulmer, Cranwell, Marham, and Northolt exhibit a pronounced maxima of hourly 

precipitation extremes for the warmest months (JJA) of the year. Summer precipitation 

extremes can often be linked with increased convective activity (Chan et al., 2014). Two 

seasons are defined, namely winter (NDJFMA) and summer (MJJASO), on which the statistical 

downscaling method is conditioned. Using more than two seasons would reduce the robustness 

of the statistical downscaling method and is thus not considered in this study. 

The 5° gridded sea level pressure (SLP) data (Hurrell and Trenberth, 2013) were obtained from 

the National Center for Atmospheric Research (NCAR) for the fuzzy rule-based CP-classification   

(Rau, 2016). The NCAR SLP dataset provides the longest continuous daily gridded Northern 

Hemisphere sea-level pressure data starting from 1899.  

Daily mean temperature was extracted from the E-OBS data set v10.0 (Haylock et al., 2008). 

The E-OBS daily mean temperature is defined as the mean between the daily maximum and 

minimum temperature from 0000UTC to 0000UTC of the following day, which is line with the 

RCM simulated daily mean temperature data. For each of the twelve stations, only the E-OBS 

grid point with the smallest distance to the respective station was used.  
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The regional climate model (RCM) data sets used in this study were obtained from the CORDEX 

data archive (http://www.cordex.org/). The EURO-CORDEX (Jacob et al., 2014) is the European 

branch of the international CORDEX initiative (Giorgi et al., 2009). It provides RCM data on a 

0.11° (EURO-11) and 0.44° (EUR-44) spatial grid. In this study, the RCA4 RCM and the 

RACMO22E RCM are used, both at 0.11° spatial resolution. They both cover the time period 

from 1980-2009, which is used as the calibration and validation period in this study. The RCA4 

was developed in Sweden by the Rossby Centre at the Swedish Meteorological and Hydrological 

Institute (SMHI) and is the fourth version of the Rossby Centre’s RCMs. The RACMO22E was 

developed in the Netherlands by the Royal Netherlands Meteorological Institute (KNMI). The 

version used in this study is an update of the RACMO2 version. The two RCMs are either driven 

by ERA-interim reanalysis or global climate model (GCM) data. The ERA-interim driven RCM 

runs cover the time period 1980-2010 (RCA4) and 1979-2012 (RACMO22E). The GCM driven 

RCMs runs cover the reference time period 1980-2005 and the future time period 2006-2100. 

The climate simulations for the future time period are run under two different emission 

scenarios, namely RCP4.5 and RCP8.5. This study used four different GCM driven RCM data, 

namely the CM5A-MR driven RCA4, the ESM-LR driven RCA4, the EC-Earth driven RCA4, and the 

EC-Earth driven RACMO22E. 

 

3. The statistical downscaling method 
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A fuzzy rule-based classification of synoptic atmospheric conditions is used to categorize five 

CPs and their corresponding relationships to UK extreme hourly precipitation as described in 

Rau (2016). Objective functions are incorporated in the fuzzy rule-based classification process 

to optimise the quality of the CP-classification in distinguishing between dry and wet CPs. In 

order to evaluate the quality of the fuzzy rule-based CP-classification, information measures are 

applied. In general, objective functions and information measures focus on mean precipitation 

characteristics. In this study, one information measure is modified to specifically reflect on the 

CP-classification’s quality to identify extreme precipitation events. This information measure 

assesses how well the CP-classification distinguishes between CPs with a high extreme 

precipitation event probability and those CPs with a low probability of extreme precipitation 

events. Extreme precipitation is defined as an event exceeding the threshold of 10mm/hr. 

CP1 and CP4 are characterized by low pressure systems, CP2 and CP3 are associated with high 

pressure systems and CP5 features westerly airflow over the UK. It was shown that the highest 

extreme precipitation probabilities were found for the two CPs that are associated with low 

pressure systems (CP1 and CP4) over the UK (Rau, 2016). The concept of a fuzzy rule-based CP-

classification has been also used in previous studies (Bárdossy, 2010; Bárdossy and Pegram, 

2011; Haberlandt et al., 2014). For a detailed description of the theoretical background and the 

methodology, the reader is referred to (Bardossy et al., 1995; Bárdossy et al., 2002).  
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As explained in other studies (Bárdossy, 2010; Haberlandt et al., 2014), the relationship 

between CPs and precipitation extremes is unlikely to remain the same in the future climate 

and therefore using CPs as the only predictor is not sufficient to project changes in hourly 

precipitation extremes. Daily precipitation and temperature are used as additional predictors in 

this study. Figure 3 gives an overview of the methodology. The left part of the figure explains 

the calibration of the fuzzy rule-based CP-classification and the statistical downscaling method. 

The right part illustrates the estimation of extreme hourly precipitation based on the RCM 

simulated predictor variables. The applied statistical downscaling method is a combination of 

the analogue and the regression-based method. The observed precipitation events are 

subsampled into a number of CPs and two seasons (or twelve calendar months). The daily 

precipitation and temperature are used as combined predictors to find the most similar day 

(analogue day) in the past. The use of temperature as a predictor is important because hourly 

precipitation extremes are likely to be more intensified by increasing temperature compared to 

daily extremes (Westra et al., 2014).  

Four different approaches of subsampling are compared (see Table 1). M1 subsamples each 

calibration day into each CP and each season, whereas M2 uses calendar months instead of 

seasons. In both M1 and M2, each calibration day 𝑡𝐶  in the past is characterized by its 

normalized daily precipitation 𝑛𝑃(𝑡𝐶) and temperature 𝑛𝑇(𝑡𝐶). On a given day 𝑡 for which 

hourly precipitation is estimated, the normalized daily precipitation 𝑛𝑃(𝑡) and temperature 
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𝑛𝑇(𝑡) are calculated as described in Equation 1 and Equation 2 respectively. The distance 

𝐷𝑃𝑇(𝑡, 𝑡𝐶) in terms of daily precipitation and temperature between a given day 𝑡 and a 

calibration day 𝑡𝐶  within the respective subsample is calculated using Equation 3. The 

calibration day on which the distance is smallest is chosen as the analogue day. In case when 

several days show the same minimal distance to the given day, the analogue day is randomly 

chosen among those days. The selected analogue days are station-specific as the predictor 

variables (daily precipitation and temperature) are different at each station. 

𝑛𝑃(𝑡) =
𝑃(𝑡) − min (𝑃𝑆,𝐶𝑃)

max(𝑃𝑆,𝐶𝑃) −    min (𝑃𝑆,𝐶𝑃) 
 (1) 

Where 𝑛𝑃(𝑡) is the normalized daily precipitation for a given day 𝑡 (or calibration day 𝑡𝐶); 𝑃(𝑡) 

is the daily precipitation for a given day 𝑡 (or calibration day 𝑡𝐶); 𝑃𝑆,𝐶𝑃 is the subsample of daily 

precipitation values for a given season 𝑆 and 𝐶𝑃 over the calibration period. In M2 and M4, 

season 𝑆 is replaced by month 𝑀. 

𝑛𝑇(𝑡) =
𝑇(𝑡) − min (𝑇𝑆,𝐶𝑃)

max(𝑇𝑆,𝐶𝑃) −    min (𝑇𝑆,𝐶𝑃) 
 (2) 

Where 𝑛𝑇(𝑡) is the normalized daily temperature for a given day 𝑡 (or calibration day 𝑡𝐶); 𝑇(𝑡) 

is the daily temperature for a given day 𝑡 (or calibration day 𝑡𝐶); 𝑇𝑆,𝐶𝑃 is the subsample of daily 

temperature values for a given season 𝑆 and 𝐶𝑃 over the calibration period. In M2 and M4, 

season 𝑆 is replaced by month 𝑀. 
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𝐷𝑃𝑇(𝑡, 𝑡𝐶) =  �𝑛𝑃(𝑡) −  𝑛𝑃(𝑡𝐶)� 2 +  �𝑛𝑇(𝑡) −  𝑛𝑇(𝑡𝐶)� 2 (3) 

Where 𝐷𝑃𝑇(𝑡, 𝑡𝐶) is the distance between a given day 𝑡 and calibration day 𝑡𝐶  in terms of daily 

precipitation and temperature. 

The subsampling approaches M3 and M4 use daily precipitation as an additional subsample 

criterion. Similar to M1 and M2, each calibration day is first subsampled into each CP and each 

season (M3) or month (M4). Subsequently, the subsampling process is extended with six daily 

precipitation categories in M3 and M4. The reason for using daily precipitation categories is 

that RCMs cannot be expected to simulate daily precipitation intensities accurately (Fowler and 

Ekström, 2009; Maraun et al., 2010b). Therefore, using daily precipitation categories, instead of 

daily precipitation intensities, may improve the performance of the statistical downscaling 

process. The daily precipitation categories are defined as follows:  

• The first category includes all the calibration days with daily precipitation below 1.0mm.  

• The second category contains the days with daily precipitation exceeding or equal to 

1.0mm and below the 20th percentile.  

• The third, fourth and fifth category includes days with daily precipitation between the 

20th and 40th, 40th and 60th, 60th and 80th percentile, respectively.  

• The sixth category comprises all the days with daily precipitation exceeding or equal to 

the 80th percentile.  
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The different percentiles of daily precipitation are determined separately for each subsample of 

CP and season (M3) or month (M4). In M3 and M4, each calibration day within a certain CP, 

season (or month) and precipitation category is only characterized by its normalized 

temperature value 𝑛𝑇(𝑡𝐶). As a result, the distance 𝐷𝑇(𝑡, 𝑡𝐶) between a given day and a 

calibration day is only calculated in terms of daily temperature (see Equation 4). The calibration 

day for which the distance 𝐷𝑇(𝑡, 𝑡𝐶) is minimal is selected as the analogue day.  

𝐷𝑇(𝑡, 𝑡𝐶) =   �𝑛𝑇(𝑡) −  𝑛𝑇(𝑡𝐶)� 2 (4) 

Where 𝐷𝑇(𝑡, 𝑡𝐶) is the distance between a given day 𝑡 and calibration day 𝑡𝐶  in terms of 

temperature. 

The process of perturbing the observed hourly precipitation records is based on precipitation 

duration and temperature relationships. Precipitation duration often decreases with higher 

temperature (Hardwick Jones et al., 2010; Beck and Bárdossy, 2013). By perturbing the 

observed hourly precipitation records, the statistical downscaling method should be capable of 

projecting extreme precipitation events that have not been observed in the past. For this 

purpose, a linear regression is fitted using an ordinary least squares approach to represent 

precipitation duration (in hours) as a function of daily temperature for each station, season and 

CP separately. If the linear regression fulfils the 5% significance criterion based on the p-value 

test and its root mean square error (RMSE) value is smaller than 1, the linear regression slope 

𝛽𝑠,𝑆,𝐶𝑃 for a given station, season and CP is used. Otherwise, the linear regression slope is 
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calculated unconditional of the given CP. For a detailed summary of the regression analysis, the 

interested reader is referred to Rau (2016). 

In the next step, the observed maximum hourly precipitation record on the analogue day is 

perturbed as described in Equation 5 and Equation 6. The perturbed maximum hourly 

precipitation value 𝑀𝐻𝑃 (𝑡) represents the estimated hourly precipitation for a given day 𝑡.  

𝑃𝐷 (𝑡) =  𝑃𝐷𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒 + �𝑇(𝑡) −  𝑇𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒� × 𝛽𝑠,𝑆,𝐶𝑃 =  1 , 2 , 3, … , 24  (5) 

Where 𝑃𝐷 (𝑡) is the estimated precipitation duration on a given day 𝑡; 𝑃𝐷𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒 is the 

observed precipitation duration on the analogue day; 𝑇(𝑡)  is the temperature on a given day 𝑡; 

𝑇𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒 is the temperature on the analogue day; 𝛽𝑠,𝑆,𝐶𝑃 is the statistically significant 

regression slope conditioned on station 𝑠, season 𝑆 and 𝐶𝑃 (or alternatively station 𝑠 and 

season 𝑆). 

𝑀𝐻𝑃(𝑡) =  𝑀𝐻𝑃𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒 ×
𝑃𝐷𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒
𝑃𝐷 (𝑡)

 (6) 

Where 𝑀𝐻𝑃 (𝑡) is the perturbed maximum hourly precipitation value on a given day 𝑡; 

𝑀𝐻𝑃𝑎𝑛𝑎𝑙𝑜𝑔𝑢𝑒 is the observed maximum hourly precipitation value on the analogue day. 

 

In order to validate the statistical downscaling method, the differences between the 99.5th 

percentile of the observed and estimated maximum hourly precipitation value are averaged 

over 100 bootstrapping samples. Each bootstrapping sample consists of the same number of 
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validation days. Those validation days are selected with replacement from the total population 

of validation days for each of the 100 bootstrapping samples separately. It means that in each 

bootstrapping sample, some validation days exist multiple times whereas others are not 

included at all.  

 

4. Results 

In the following, the results of the statistical downscaling method to estimate site-specific 

extreme hourly precipitation are presented. At first, the estimates are derived from ERA-

interim driven RCM data under quasi-observed boundary conditions. Similarly to the quantile 

verifications score described in Maraun et al. (2010a), the differences between the 99.5th 

percentiles of the observed and estimated hourly precipitation are assessed in order to validate 

the performance of the statistical downscaling method. Table 2 shows the 99.5th percentile 

differences averaged over 100 bootstrapping samples for each of the RCA4 and the RACMO22E 

RCM run. The differences are assessed for the ten warmest summers for each station between 

1980 and 2009. This is to test the assumption that the statistical downscaling method remain 

valid under a warming climate. Overall, the estimated extreme hourly precipitation show good 

agreement with the observed extremes. M1 leads to the best results on average for the two 

RCMs and the twelve different stations. The same holds true for the estimates based on 
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observed predictors (see Table 3). Therefore in the following, the subsampling approach M1 is 

used to project extreme hourly precipitation.  

It should be noted that the mean temperature of the 10 warmest summers is only higher than 

the 20 coldest summers by 0.8°C to 1.3°C depending on the station for the time period 1980-

2009. In contrast, the projected temperature increases in summer averaged over the four 

different GCM driven RCMs for the future time period 2075-2100 under the emission scenario 

RCP8.5 are between 2.2°C and 3.4°C in comparison to the reference period 1980-2005. As a 

consequence, the ability of the downscaling method to project extreme hourly precipitation 

under a warmer climate which could be much warmer than the one it was calibrated on, can 

only be assessed to a limited degree. 

In terms of the RCM predictors, it can be found that the daily precipitation variable is 

considerably overestimated by the RCA4 RCM in summer (see Figure 4) and winter (not shown). 

Daily temperature tend to be underestimated by both, the RCA4 and the RACMO22E RCM, in 

summer (see Figure 5) and winter (not shown). However, any biases in the RCM predictor 

variables are unlikely to have an adverse effect on the estimates of hourly precipitation as the 

statistical downscaling process uses normalized values of the predictor variables. Regarding the 

large-scale atmospheric variability, the observed CP frequencies are realistically reproduced by 

both RCMs in summer (see Table 4) and winter (not shown). 
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Projections are produced for two different future time periods, 2030-2055 and 2075-2100, 

derived from four different GCM driven RCM data sets. Three different combinations of the 

time periods and RCPs include 2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 2075-2100 

(RCP8.5). For the future time period 2030-2055, only the emission scenario RCP4.5 is 

considered because the respective changes in the climate are expected to be similar over this 

time period between the different emission scenarios (Kirtman et al., 2013). For this time 

period and emission scenario, the simulated daily temperature increase in summer averaged 

over the four different GCM driven RCMs ranges from 0.7°C (Tiree) to 1.1°C (Boscombe Down, 

Northolt and Marham). For the future time period 2075-2100, two different emission scenarios 

(RCP4.5 and RCP8.5) are considered. The average simulated daily temperature increase in 

summer for 2075-2100 under RCP4.5 is between 1.3°C (Tiree) and 1.7°C (Boscombe Down, 

Northolt, Marham and Cranwell). For 2075-2100 under the high emission scenario RCP8.5, the 

average daily temperature increase in summer ranges from 2.2°C (Tiree) to 3.4°C  (Boscombe 

Down and Northolt).  

In terms of the GCM driven RCM projections of daily precipitation extremes (99.5th percentile) 

in summer (Table 5) and winter (not shown), results vary for 2030-2055 under RCP4.5, mostly 

increases are simulated for 2075-2100 under RCP4.5 and only increases are projected for 2075-

2100 under RCP8.5. It seems reasonable that the increases in daily precipitation extremes are 

most pronounced for the future scenario, where the temperature increases are most dominant. 
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Table 6 summarizes the changes in the estimated medians of extreme hourly precipitation 

(99.5th percentile) over 100 bootstrapping samples for each station and GCM driven RCM data 

set. Figure S1-S4 illustrates the ranges of the 100 different bootstrapping samples for each 

station and GCM driven RCM data set. The projections include three combinations, namely 

2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 2075-2100 (RCP8.5), respectively. Similarly to 

daily extreme precipitation, increases in extreme hourly precipitation are most pronounced for 

2075-2100 (RCP8.5), which coincides with the strongest temperature increase. For 2075-2100 

(RCP8.5), all twelve stations exhibit increases in extreme hourly precipitation for all RCM-GCM 

combinations and the future increases are higher in magnitude compared to 2030-2055 

(RCP4.5) and 2075-2100 (RCP4.5). Regarding 2030-2055 and 2075-2100 under RCP4.5, the 

increases in extreme hourly precipitation clearly outweigh the small number of decreases 

projected for certain stations using certain GCM driven RCM data sets. In terms of magnitude, 

future increases in extreme hourly precipitation tend to be higher for 2075-2100 (RCP4.5) 

compared to 2030-2055 (RCP4.5). The average increases in extreme hourly precipitation for 

2075-2100 (RCP8.5) can be as high as 112% at Kinloss based on the EC-EARTH driven RCA4. But 

results can highly vary between the four different GCM driven RCM data sets. For example, 

estimates based on the CM5A-MR driven RCA4 suggest only an average increase of 37% for 

Kinloss and 2075-2100 (RCP8.5). There are no considerable differences in the simulated future 

responses of the three predictor variables amongst the four different GCM driven RCM data 
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sets in summer (see Figure S5-S7) and winter (not shown). This suggests it is likely that certain 

weather conditions with the potential of causing extreme hourly precipitation occur more often 

in some GCM driven RCMs than in others. For example, at Kinloss 19 summer days with daily 

spatially averaged precipitation between 8mm-15mm, daily mean temperature between 

14.2°C-16°C and westerly airflow over the UK (CP5) are simulated by the EC-EARTH driven RCA4 

for the time period 2075-2100 under RCP8.5. In contrast, only four days with the same 

predictor characteristics are found in the CM5A-MR driven RCA4. Those particular predictor 

characteristics lead to an estimated extreme event of 16.2mm/hr for the station at Kinloss. 

Future increases in hourly precipitation extremes also exhibit high spatial variability. Figure 6 

shows the changes of the estimated median of the 99.5th hourly precipitation percentile based 

on the 100 bootstrapping samples for 2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 2075-2100 

(RCP8.5). Overall, the average increases at Tiree are the smallest. They are 0%, 5% and 12% for 

2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 2075-2100 (RCP8.5), respectively. This station is 

highly exposed to the North Atlantic and less likely to be affected by convective precipitation 

events, which may explain why it exhibits the smallest increases. The highest increases can be 

found at Kinloss. They are 19%, 44% and 75% for 2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 

2075-2100 (RCP8.5), respectively. Two other stations, namely Eskdalemuir and Northolt, also 

show strong increases in future extreme hourly precipitation. It is interesting to note that 

Kinloss, Eskdalemuir and Northolt are not only the three stations with the highest increases in 
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extreme hourly precipitation but also the stations with the highest maximum hourly 

precipitation records in the past (1980-2009). It seems reasonable that those stations that have 

experienced the most extreme precipitation events in the past will be most affected by warmer 

and thus more extreme conditions in the future. Kinloss is the station furthest north in this 

study and temperature tend to be lower resulting in reduced convective activity compared to 

stations in the south. However, under a warmer climate, convective activity will increase and 

extreme precipitation will be intensified. Similarly at Eskdalemuir, the observed temperature 

values are lower compared to stations in the south and convective activity can be expected to 

be reduced. The limited sampling variability of convective precipitation events in the past may 

explain the high variability of future increases in hourly precipitation extremes among the 100 

bootstrapping samples at Kinloss and Eskdalemuir (see Figure S3 and S4).  The third station with 

high increases in extreme hourly precipitation is Northolt. This station is located in London, 

where the urban environment considerably influences the local climate (Kendon et al., 2018). 

This may explain the higher increases at Northolt compared to the nearby station at Boscombe 

Down. Northolt is also the station with the highest mean and extreme temperature records. 

Therefore, strong convective activity can be expected at this station. We suggest that the high 

increases in extreme hourly precipitation at Kinloss, Eskdalemuir and Northolt can be strongly 

linked with changes in the frequency occurrence and intensity of convective precipitation 

events under a future warmer climate. This is in line with previous studies (Berg et al., 2013; 
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Lenderink and van Meijgaard, 2008) that found high increases in convective precipitation 

beyond the 7% increase per degree temperature suggested by the Clausius-Clapeyron 

relationship.  

In order to assess the contribution of the final perturbation process based on precipitation 

duration and temperature relationships (see Equation 5 and Equation 6), Table 7 shows the 

differences between the estimates of extreme hourly precipitation using the perturbation 

process and the estimates not using the perturbation process. As expected, perturbing the 

observed hourly precipitation records leads to higher projections of extreme hourly 

precipitation in most cases. The differences tend to be highest for the future period 2075-2100 

under emission scenario RCP8.5. This is the future scenario with the highest temperature 

increase. However, it needs to be noted that the influence of the perturbation factor is small 

overall. Most of the differences between perturbed and non-perturbed estimates are smaller 

than 5% and are not statistically significant. It should be also mentioned that the three stations 

(Kinloss, Eskdalemuir and Northolt) with the highest increases in extreme hourly precipitation 

show very different responses to the perturbation process. This is probably due to the different 

geographical characteristics of the three stations. 

 

5. Conclusions 
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In this study, a CP-based statistical downscaling method is developed to project site-specific 

extreme hourly precipitation for twelve different stations. Daily precipitation and temperature 

conditioned on five (plus one unclassified) CPs are used as the predictors within the statistical 

downscaling process. In the second step, the daily maximum hourly precipitation on each 

analogue day is perturbed based on precipitation duration and temperature relationships. The 

estimated 99.5th percentiles of extreme hourly precipitation by the statistical downscaling 

method are assessed over the ten warmest summers for the validation period 1980-2009. It is 

found that the statistical downscaling method is able to provide reliable estimates of extreme 

hourly precipitation under warmer conditions for both RCM data sets. Four different 

approaches of finding the analogue day are compared and the approach M1 obtained the best 

results. This approach subsamples all the available calibration days into two seasons, instead of 

using the twelve calendar months as a subsample criterion. In M1, the analogue days are found 

by using daily precipitation and temperature as equally important predictors. 

In terms of future changes, extreme hourly precipitation is projected based on four different 

GCM driven RCM data sets, namely the CM5A-MR driven RCA4, the ESM-LR driven RCA4, the 

EC-EARTH driven RCA4 and the EC-EARTH driven RACMO22E. Two different future time periods, 

2030-2055 and 2075-2100, and two different emission scenarios, RCP4.5 and RCP8.5, are 

considered. It is found that increases in extreme hourly precipitation are most pronounced for 

the future time period 2075-2100 under RCP8.5 which coincides with the strongest 
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temperature increase. The increase in extreme hourly precipitation can be as high as 111.9% 

relative to the reference period 1980-2005. It needs to be noted, however, that changes highly 

vary amongst the twelve stations. Projections of extreme hourly precipitation also vary 

between the four different GCM driven RCM data sets.  This may be partly due to limitations in 

the statistical downscaling process and in the RCM simulated predictors. 

One main limitation of the statistical downscaling process is the restricted time length (1980-

2009) for calibration purposes of the downscaling method. It limits the number of extreme 

hourly precipitation events that can be included within the downscaling process. A longer 

calibration period would enable the downscaling method to represent a wide range of extreme 

events that can occur more often under a warmer climate. To overcome this limitation, the 

observed hourly precipitation records are perturbed based on precipitation duration and 

temperature to extrapolate extreme events in response to higher temperature. However, it 

could be argued that the duration-temperature relationships represent average weather 

conditions and the response to higher temperature may be very different under extreme 

weather conditions (e.g. thunderstorms).  

In terms of the RCM simulated variables, both RCMs used in this study rely on parameterization 

schemes to simulate convective precipitation events. This leads to uncertainties (Maraun et al., 

2010b) in the RCM daily precipitation variable, which is used as a predictor within the 

downscaling process. Using a larger number of RCMs could represent a better range of the 
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uncertainties associated with the RCM based predictors. Another option is the use of very high 

resolution RCMs at ca. 1-5 km. Those RCMs are able to explicitly resolve convectional processes 

and hence represent convective precipitation events more realistically (Kendon et al., 2012). 

However, they still tend to overestimate hourly precipitation extremes (Kendon et al., 2014). 

Incorporating the output of the high resolution RCMs into the statistical downscaling process 

presented in this study could reduce the biases in the high resolution RCMs.  

To enhance the reliability of the extreme hourly precipitation estimates presented in this study, 

additional predictor variables (e.g. measures of humidity or the Convective Available Potential 

Energy (CAPE) index) could be introduced into the statistical downscaling method. They can 

provide information of the moisture flux in the atmosphere and could improve the 

representation of convective precipitation events. 

The statistical downscaling method developed in this study can be readily applied to assess the 

potential higher risk of flash floods in the future. It is able to project UK extreme hourly 

precipitation at any site for which observed hourly precipitation records are available. However, 

projections of extreme hourly precipitation can vary considerably between the different GCM 

driven RCM data sets. We therefore suggest that the projected changes in extreme hourly 

precipitation should be rather interpreted as indicative of the magnitude and direction. 
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Table captions 

Table 1. The four different approaches of subsampling within the process of finding the 

analogue day. 

Table 2. The 99.5th percentile differences between observed and estimated hourly precipitation 

in [%] over the ten warmest summers for the time period 1980-2009. The estimates are derived 

from the ERA-interim driven RCA4 and RACMO22E data, respectively. M1-M4 are explained in 
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Table 1. The mean temperature difference between the ten warmest summers and the 20 

coldest summers is given in parenthesis after each station name. 

Table 3. Same as Table 2 but estimates are derived from observed predictors instead of using 

ERA-interim driven RCM data.  

Table 4. The simulated and observed CP frequencies in summer over the reference period 

1980-2005 in [%]. U stands for unclassified. 

Table 5. Changes in [%] of the projected 99.5th percentile of daily precipitation in summer 

relative to the reference period 1980-2005. The projections include three combinations, namely 

2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 2075-2100 (RCP8.5). Negative changes are shown 

in italic. 

Table 6. Changes in [%] of the estimated median of the 99.5th percentile of daily maximum 

hourly precipitation relative to the reference period 1980-2005. The projections include three 

combinations, namely 2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 2075-2100 (RCP8.5). The 

median is calculated using 100 bootstrapping samples for each GCM driven RCM data set. 

Negative changes are shown in italic. The highest increase is highlighted in bold.  

Table 7. The differences in [%] between the estimated median changes of the 99.5th percentile 

of daily maximum hourly precipitation using the perturbation process and the estimated 

median changes of the 99.5th percentile of daily maximum hourly precipitation not using the 
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perturbation process. The changes are given relative to the reference period 1980-2005. The 

projections include three combinations, namely 2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 

2075-2100 (RCP8.5). The median is calculated using 100 bootstrapping samples for each GCM 

driven RCM data set. Negative differences are shown in italic, differences that are significant (at 

the 5% level) based on the p-value test are highlighted in bold. 

 

Figure captions 

Figure 1. The twelve final selected hourly precipitation stations across the UK based on the 

station selection criteria. The 14 different UK extreme precipitation regions as described in 

Jones et al. (2014) are represented by different colours.  

Figure 2. Annual cycle of the 99.5th hourly precipitation percentiles between 1980-2009 for the 

twelve selected stations. 

Figure 3. The flowchart diagram of the applied method to downscale extreme hourly 

precipitation. SLP stands for sea level pressure, P for precipitation and T for temperature. 

Figure 4. Frequency distribution (above 0.6) of the simulated and observed daily precipitation in 

summer over the reference period 1980-2005 at Boscombe Down. 

Figure 5. Frequency distribution of the simulated and observed daily temperature in summer 

over the reference period 1980-2005 at Boscombe Down. 
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Figure 6. Changes in [%] of the projected 99.5th percentile of daily maximum hourly  

precipitation in comparison to the reference period 1980-2005 for the twelve final selected  

stations across the UK with the elevation map. The projections include three combinations:  

The left number shows the changes for 2030-2055 (RCP4.5), the centred number for 2075-2100  

(RCP4.5) and the right number for 2075-2100 (RCP8.5). The changes are  

averaged over 100 bootstrapping samples for each GCM driven RCM data set.  
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Table 1. The four different approaches of subsampling within the process of finding the 

analogue day. 

Approach Description 

M1 Calibration days are subsampled into two seasons (NDJFMA and MJJASO) and 
5 (+1) CPs 
 

M2 Calibration days are subsampled into twelve calendar months and 5 (+1) CPs 
 

M3 Calibration days are subsampled into two seasons (NDJFMA and MJJASO), 5 
(+1) CPs and daily precipitation categories (6) 
 

M4 Calibration days are subsampled into twelve calendar months, 5 (+1) CPs and 
daily precipitation categories (6) 
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Table 2. The 99.5th percentile differences between observed and estimated hourly precipitation 

in [%] over the ten warmest summers for the time period 1980-2009. The estimates are derived 

from the ERA-interim driven RCA4 and RACMO22E data, respectively. M1-M4 are explained in 

Table 1. The mean temperature difference between the ten warmest summers and the 20 

coldest summers is given in parenthesis after each station name. 

  CAM
BO

RN
E (1.1°C) 

BO
SCO

M
BE DO

W
N

 (1.1°C) 

N
O

RTHO
LT (1.3°C) 

M
ARHAM

 (1.2°C) 

CRAN
W

ELL (1.3°C) 

VALLEY (1.0°C) 

ESKDALEM
U

IR (1.0°C) 

BO
U

LM
ER (1.1°C) 

ALDERSGRO
VE (0.9°C) 

LEU
CHARS (0.9°C) 

TIREE (0.8°C) 

KIN
LO

SS (0.8°C) 

M
EAN

 

M1 RCA4 8.0 9.2 11.5 10.1 17.8 18.1 27.6 8.8 14.0 18.2 9.5 18.1 14.2 

 RACMO22E 9.5 19.0 18.0 10.9 13.2 7.1 11.7 11.3 13.6 31.4 17.8 15.6 14.9 

M2 RCA4 10.2 10.0 15.6 8.4 22.1 27.4 30.7 16.0 10.4 20.4 8.9 17.4 16.5 

 RACMO22E 6.8 8.2 11.1 14.7 14.6 26.2 4.8 8.7 10.4 29.8 17.4 10.0 13.6 

M3 RCA4 15.2 14.8 24.3 16.0 24.4 10.2 24.4 14.9 13.5 18.6 7.5 75.5 21.6 

 RACMO22E 14.8 11.7 10.5 13.5 8.0 5.3 15.1 28.3 12.4 13.2 26.3 64.7 18.7 

M4 RCA4 17.1 10.4 20.4 7.1 29.7 23.8 28.0 29.0 13.9 35.8 16.2 9.3 20.1 

 RACMO22E 12.5 13.8 11.1 10.3 7.1 45.4 10.8 32.6 17.6 18.8 14.4 13.8 17.4 
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Table 3. Same as Table 2 but estimates are derived from observed predictors instead of using 

ERA-interim driven RCM data.  

 CAM
BO

RN
E (1.1°C) 

BO
SCO

M
BE DO

W
N

 (1.1°C) 

N
O

RTHO
LT (1.3°C) 

M
ARHAM

 (1.2°C) 

CRAN
W

ELL (1.3°C) 

VALLEY (1.0°C) 

ESKDALEM
U

IR (1.0°C) 

BO
U

LM
ER (1.1°C) 

ALDERSGRO
VE (0.9°C) 

LEU
CHARS (0.9°C) 

TIREE (0.8°C) 

KIN
LO

SS (0.8°C) 

M
EAN

 

M1 6.8 15.6 10.5 4.8 7.7 8.2 6.7 8.0 11.9 7.7 7.6 11,1 8.8 

M2 8.1 17.5 8.6 7.9 6.4 7.4 6.0 10.2 21.5 9.1 7.1 19.3 10.8 

M3 9.5 11.3 15.7 7.0 8.9 9.3 18.3 8.7 10.8 6.9 6.2 9.7 10.2 

M4 8.1 20.5 15.1 7.4 6.9 7.3 5.7 12.7 10.9 7.2 5.5 16.6 10.3 
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Table 4. The simulated and observed CP frequencies in summer over the reference period 

1980-2005 in [%]. U stands for unclassified. 

RCM GCM 
 

CP1 CP2 CP3 CP4 CP5 U 

RCA4 ERA-Interim 7.1 15.6 28.5 25.2 18.5 5.1 

RCA4 CM5A-MR 7.3 14.7 28.0 27.5 17.3 5.1 

RCA4 ESM-LR 6.9 13.1 30.0 25.6 19.0 5.4 

RCA4 EC-EARTH 8.6 13.9 29.0 24.9 18.6 5.2 

RACMO22E ERA-Interim 8.0 14.7 29.6 25.2 17.6 4.9 

RACMO22E EC-EARTH 10.0 13.6 27.5 25.7 19.4 3.8 

Observed -- 7.8 15.9 29.3 24.8 18.0 4.3 
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Table 5. Changes in [%] of the projected 99.5th percentile of daily precipitation in summer 

relative to the reference period 1980-2005. The projections include three combinations, namely 

2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 2075-2100 (RCP8.5). Negative changes are shown 

in italic. 

RCM GCM CAM
BO

RN
E 

BO
SCO

M
BE 

DO
W

N
 

N
O

RTHO
LT 

M
ARHAM

 

CRAN
W

ELL 

VALLEY 

ESKDALEM
U

IR 

BO
U

LM
ER 

ALDERSGRO
VE 

LEU
CHARS 

TIREE 

KIN
LO

SS 

2030-2055 (RCP 4.5) 

RCA4 CM5A-MR 16.3 -10.3 9.8 -9.6 -1.4 -5.9 2.5 16.3 5.1 10.0 6.3 -13.5 

RCA4 ESM-LR -5.5 -3.2 7.0 -8.5 3.4 1.4 2.6 -7.3 -8.5 4.0 -9.2 4.0 

RCA4 EC-EARTH 8.1 11.1 4.5 -4.2 -5.6 11.2 11.5 -3.8 13.1 -4.0 -1.7 -6.0 

RACMO22E EC-EARTH 7.4 9.1 -1.3 12.2 7.1 -2.2 -1.0 17.0 -5.9 13.7 10.0 20.6 
MEAN 8.8 1.7 5.0 -2.5 0.9 1.1 3.9 5.6 1.0 5.9 1.4 1.3 

2075-2100 (RCP 4.5) 
RCA4 CM5A-MR 28.0 15.9 9.1 6.3 13.8 4.3 10.1 28.7 -3.4 13.4 10.7 13.9 

RCA4 ESM-LR -4.3 2.2 -1.5 -0.2 2.7 -2.0 -0.7 -0.3 -7.5 14.4 7.0 -3.9 

RCA4 EC-EARTH 11.2 25.5 2.5 4.3 16.9 7.5 14.5 8.4 4.5 9.2 6.9 -7.3 

RACMO22E EC-EARTH 1.3 3.6 -0.2 21.4 22.2 29.7 1.5 12.1 3.2 17.9 9.3 4.1 
MEAN 9.1 11.8 23.1 8.0 13.9 9.9 6.4 12.2 -0.8 13.7 8.5 1.7 

2075-2100 (RCP 8.5) 
RCA4 CM5A-MR 5.3 8.9 10.0 1.6 17.4 12.4 24.8 28.7 22.7 9.2 21.7 26.8 

RCA4 ESM-LR 16.2 8.5 20.6 10.4 3.8 17.8 9.6 11.9 11.3 14.1 12.9 9.5 

RCA4 EC-EARTH 24.6 27.6 17.1 13.6 14.9 24.3 22.7 8.6 18.5 19.9 5.7 3.0 

RACMO22E EC-EARTH 11.0 13.4 22.9 26.6 24.2 19.6 13.7 18.9 11.4 18.0 27.6 8.2 
MEAN 14.3 14.6 17.7 13.1 15.1 18.5 17.7 17.0 16.0 15.3 17.0 11.9 
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Table 6. Changes in [%] of the estimated median of the 99.5th percentile of daily maximum 

hourly precipitation relative to the reference period 1980-2005. The projections include three 

combinations, namely 2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 2075-2100 (RCP8.5). The 

median is calculated using 100 bootstrapping samples for each GCM driven RCM data set. 

Negative changes are shown in italic. The highest increase is highlighted in bold.  

RCM GCM CAM
BO

RN
E 

BO
SCO

M
BE 

DO
W

N
 

N
O

RTHO
LT 

M
ARHAM

 

CRAN
W

ELL 

VALLEY 

ESKDALEM
U

IR 

BO
U

LM
ER 

ALDERSGRO
VE 

LEU
CHARS 

TIREE 

KIN
LO

SS 

2030-2055 (RCP 4.5) 
RCA4 CM5A-MR 6.3 -5.9 25.5 2.3 0.0 4.3 38.4 1.9 16.7 23.9 4.1 43.3 

RCA4 ESM-LR 12.0 12.1 27.6 3.7 6.2 3.3 27.1 -4.6 -3.4 8.6 1.6 6.8 

RCA4 EC-EARTH -6.9 15.8 27.1 1.4 1.7 2.2 12.7 3.7 22.7 12.6 -0.9 7.2 

RACMO22E EC-EARTH 5.9 -0.1 9.8 2.0 -1.1 -1.6 51.5 9.6 2.4 11.9 -7.3 19.8 
MEAN 4.3 5.5 22.5 2.4 1.7 2.1 32.4 2.7 9.6 14.3 -0.6 19.3 

2075-2100 (RCP 4.5) 
RCA4 CM5A-MR 21.0 2.9 36.7 3.1 16.6 4.6 62.7 20.6 -2.4 26.0 10.1 14.2 

RCA4 ESM-LR 8.9 13.4 22.4 7.9 7.3 -0.5 19.9 3.7 9.6 12.9 2.0 75.9 

RCA4 EC-EARTH 8.4 26.4 32.8 0.7 3.5 0.0 5.2 3.6 17.1 22.6 10.2 59.2 

RACMO22E EC-EARTH 2.1 -5.3 0.4 4.2 13.3 4.9 2.3 17.3 6.3 22.4 -3.0 25.4 
MEAN 10.1 9.4 23.1 4.0 10.2 2.3 22.5 11.3 7.7 21.0 4.8 43.7 

2075-2100 (RCP 8.5) 
RCA4 CM5A-MR 22.1 13.1 41.9 14.2 29.4 28.0 37.1 31.8 25.2 39.5 24.8 36.9 

RCA4 ESM-LR 21.9 15.0 43.9 10.5 27.7 25.7 36.2 9.8 11.0 18.8 13.1 85.8 

RCA4 EC-EARTH 10.8 28.9 46.2 15.6 18.2 9.3 31.7 15.9 29.8 23.2 9.2 111.9 

RACMO22E EC-EARTH 22.0 12.2 21.3 12.2 10.2 18.6 78.0 20.9 13.0 23.8 1.2 65.9 
MEAN 19.2 17.3 38.3 13.1 21.4 20.4 45.8 19.6 19.8 26.3 12.1 75.0 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

Table 7. The differences in [%] between the estimated median changes of the 99.5th percentile 

of daily maximum hourly precipitation using the perturbation process and the estimated 

median changes of the 99.5th percentile of daily maximum hourly precipitation not using the 

perturbation process. The changes are given relative to the reference period 1980-2005. The 

projections include three combinations, namely 2030-2055 (RCP4.5), 2075-2100 (RCP4.5) and 

2075-2100 (RCP8.5). The median is calculated using 100 bootstrapping samples for each GCM 

driven RCM data set. Negative differences are shown in italic, differences that are significant (at 

the 5% level) based on the p-value test are highlighted in bold. 

RCM GCM CAM
BO

RN
E 

BO
SCO

M
BE 

DO
W

N
 

N
O

RTHO
LT 

M
ARHAM

 

CRAN
W

ELL 

VALLEY 

ESKDALEM
U

IR 

BO
U

LM
ER 

ALDERSGRO
VE 

LEU
CHARS 

TIREE 

KIN
LO

SS 

2030-2055 (RCP 4.5) 

RCA4 CM5A-MR -0.2 1.9 -3.6 0.2 0.5 -4.4 -36.4 0.8 -3.7 1.9 -2.1 1.3 

RCA4 ESM-LR 3.0 -0.4 4.0 2.6 3.0 -1.4 -0.9 0.0 0.1 2.0 -1.4 -3.0 

RCA4 EC-EARTH 1.1 3.3 3.1 0.5 1.1 0.7 0.5 0.7 1.0 -0.1 0.5 -0.8 

RACMO22E EC-EARTH 0.4 -0.3 1.3 0.2 0.8  -3.7 27.8 -4.2 -2.1 0.5 -4.4 0.0 

MEAN 1.1 1.1 1.2 0.9 1.4 -2.2 -2.3 -0.7 -1.2 1.1 -1.9 -0.6 

2075-2100 (RCP 4.5) 

RCA4 CM5A-MR 0.8 1.5 2.9 0.0 8.2 -0.6 -19.6 7.7 -1.4 0.2 0.1 3.6 

RCA4 ESM-LR -0.9 -0.5 2.0 2.0 2.7 -0.2 -12.1 -0.4 -0.4 1.0 1.7 3.1 

RCA4 EC-EARTH  0.7 5.2 7.4 -0.5   9.8    5.6 -2.2 1.0 2.0 1.2 2.0 -2.5 
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RACMO22E EC-EARTH 1.3 0.5 2.1 -2.8 -1.0 -1.0 2.8 -2.5 -0.6 -1.9 -1.3 -0.7 

MEAN 0.5 1.7 3.6  -0.3 4.9 1.0 -7.8 1.5 -0.1 0.1 0.6 0.9 

2075-2100 (RCP 8.5) 

RCA4 CM5A-MR 4.1 2.8    6.3 7.4 9.7 2.9 -38.0 1.4 0.5 0.4 -0.4 -1.3 

RCA4 ESM-LR 1.2 1.0    6.5 4.2 8.6 2.5 -25.8 0.2 -0.4 3.2 -0.6 0.2 

RCA4 EC-EARTH 0.2 6.1    8.5 3.5 8.6 0.0 -2.6 5.3 -1.8 1.2 3.1 -1.1 

RACMO22E EC-EARTH -1.4 1.2    3.3 -0.1 1.9 -0.7 -12.3 -5.2 -0.9 -3.1 -2.8 5.3 

MEAN 1.0 2.8     6.2 3.8 7.2 1.2 -19.7 0.4 -0.7 0.4 -0.2 0.8 
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A statistical downscaling method 

based on circulation patterns (CPs) 

is developed to project site-specific 

extreme hourly precipitation for 12 

different precipitation regions 

across the UK. The applied 

statistical downscaling is best 

described as a hybrid of the 

analogue and the regression-based 

method. It is found that increases 

in extreme hourly precipitation can 

be as high as 112% but are highly 

variable depending on the rainfall 

stations, the future time periods, 

the emission scenarios and the 

different RCM runs. 
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