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Abstract 

 

The primary aim of this thesis was to use models to study the (a) regional emissions 

of very short-lived (i.e. chlorinated VSLS) and short-lived (i.e. methyl halides) 

halogenated gases, as well as (b) global emissions of long-lived halogenated gases 

(i.e. CFC-114 & CFC-114a). The 3-D dispersion model was employed to determine 

the impact of different source types and regions on the variability of halogenated 

gases measured during the campaigns in Taiwan and Bachok, Malaysia. On the other 

hand, the 2-D global model was used for estimating the emissions of CFC-114 and -

114a in archived remote Southern Hemispheric tropospheric air and firn air data. 

Overall, this thesis has demonstrated that the measured chlorinated VSLS and 

methyl halides were observed at significantly high abundances. In addition, the 

quantitative analyses of the NAME backwards trajectories (i.e. using ArcGIS-

generated shapefile and emissions data of carbon monoxide (CO) taken from 

Representative Concentration Pathway 8.5) and the usage of the cold surge index 

have further shed some light on the potential sources of emission & regions and 

transport of halogenated gases; these in turn could inform as well as guide future 

campaigns. Importantly, the studies highlighted the important roles of the (a) 

Northeast Monsoon’s cold surges and (b) East Asian and South East Asian emissions 

in the enhancements of halogenated substances levels in that regions. 

In addition, this thesis presented the first long-term trends and emissions of CFC-

114 and-114a. The mixing ratios of both isomers were no longer increasing 

significantly but significant global atmospheric emissions have persisted until at 

least 2014, suggesting a need for continual efforts to ensure that these substances 

eventually disappear from the atmosphere. Evidently, complementary ground-

based observations of the Taiwanese air samples in Taiwan suggested the presence 

of persistent emissions of CFC-114a in East Asia. 
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Chapter 1 

Introduction 

 

 

 

Halogenated substances are employed in multiple aspects of life, particularly 

in industrial processes, consumer products, and building materials (Midgley et al., 

1999). Despite their beneficial domestic and industrial applications, there is 

scientific evidence that the production and release of halogenated compounds into 

the atmosphere had considerable ramifications on the atmosphere and the 

environment. This was especially true for the natural balance of the stratospheric 

ozone as well as global warming (Molina et al., 1974). The environmental impact of 

halogenated gases became prominent following the discovery of the Antarctic ozone 

hole in 1985 (Farman et al., 1985). Since then, such compounds have garnered the 

interest of scientists and policymakers, apart from triggering an unprecedented 

level international cooperation which resulted in the enactment of the Montreal 

Protocol in 1987. This protocol was created with the aim of regulating the release of 

halogenated gases, or ozone-depleting substances (ODSs), by reducing and phasing 

out the global production as well as consumption of ODSs. Evidently, the 

stabilisation of the global atmospheric mixing ratios of certain ODSs was proof of 

the success of the Montreal Protocol (Derwent et al., 1998). However, recent 

observations have revealed the existence of unexpected and persistent atmospheric 

emissions of Montreal Protocol ODSs and non-Montreal Protocol ODSs, both of 

which were a potential threat to the recovery of the aforementioned ozone hole 

(Laube et al. (2014), Hossaini et al. (2015). This phenomenon has highlighted the 

need for further investigations and continued efforts to ensure the elimination of 

the said ODSs from the atmosphere, which forms the motivation of this thesis. 

The aim of this chapter is to briefly introduce the relevant aspects of 

atmospheric chemistry, especially halogenated substances and their effects on the 

ozone layer. It starts off with descriptions of the ozone layer, followed by an 

overview of the halogenated substances in the atmosphere and their roles in the 

depletion of stratospheric ozone (Sections 1.1 and 1.2). Meanwhile, Section 1.3 
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introduces the global legislation on the control of the production of halogenated 

substances. Also included are several recent and significant evidences of new and 

increasing threats from halogenated substances on the stratospheric ozone (Section 

1.4). Next, this chapter states the research problems statements of the current thesis 

(Section 1.5). In the final section (Section 1.6), the aims and contents of the 

subsequent chapters are outlined. 

 

1.1 The ozone layer 

 

Natural ozone can be found in two main regions of the atmosphere. Almost 90% of 

ozone occurs in the stratosphere – the region which begins at about 10 - 16 

kilometres above the surface of the Earth and extends up to ~50 kilometres– while 

the rest (~10%) occurs in the troposphere i.e. the lowest region of the atmosphere, 

between the surface of the Earth and the stratosphere (Hegglin et al., 2014). While 

high tropospheric ozone can cause harm to humans, plants and other living system 

(Hegglin et al., 2014), the high concentration of ozone in the stratosphere (otherwise 

referred to as the "ozone layer") acts as a protective layer that reduces the intensity 

of ultraviolet-B (UV-B) radiation from the sun which reaches the surface of the Earth 

(Wallace et al., 2006). Human exposure to UV-B increases the risks of skin cancer, 

immunosuppression, and cataract. In addition, UV-B also disrupts terrestrial plant 

life and aquatic ecosystems (Hegglin et al., 2014) Owing to the great importance of 

stratospheric ozone layer, the maintenance of its concentration is therefore crucial. 

The concentration of ozone in the stratosphere is maintained via a chemical scheme 

(Equations 1.1 – 1.4) proposed by Chapman (1930):  
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The reaction involves the dissociation of O₂ by solar UV radiation (λ < 242 nm) 

(Equation 1.1). The combination of atomic oxygen and molecular oxygen in Equation 

1.2 forms ozone (O₃) and M (which represents N₂ and O₂). The reaction continues 

with the photodissociation of O₃ which occurs in the presence of UV radiation (λ < 

366 nm) (Equation 1.3). Finally, atomic oxygen and O₃ recombine to form O₂ 

(Equation 1.4). 

 

1.2 Halogenated substances in the atmopshere  

 

The concentration of stratospheric ozone as described in Section 1.1 can decrease 

in view of imbalances between the sources and sinks of O3. A good example is the 

presence of halogens (i.e. chlorine and bromine radicals) in the stratosphere 

(Molina et al., 1974). These halogens are released into the atmosphere from a 

variety of anthropogenic and biogenic sources. Table 1.1 summarises the halogen 

source gases as well as their characteristics, uses/ sources, and atmospheric 

lifetimes. 

Table 1.1 Halogen source gases and their characteristics, uses/sources, atmospheric 

lifetimes 

Halogen source gases Characteristics a,c Uses or sources a Atmospheric 

lifetimes a 

Chlorofluorocarbons  

(CFCs) 

 Are long lived 

gases, non- toxic, -

corrosive, and -

flammable  

 Are ozone-

depleting 

substances; 

controlled under 

Montreal Protocol 

 Introduced in the 

1930s, but has been 

replaced by 

hydrofluorocarbons 

(HFCs). HFCs are 

greenhouse gases 

that do not deplete 

stratospheric ozone 

Refrigerants, 

cleaning solvents, 

blowing agents 

for plastic foam, 

maufacturing of 

aerosol sprays 

~ 50 to 600 

years 
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Carbon tetrachloride  

(CCl₄) 

 Is an ozone-

depleting 

substance; 

controlled under 

Montreal Protocol 

 

Industrial 

cleaning solvents, 

feedstock 

fumigants, fire 

extinguishers  

26 years 

Methyl chloroform  

(CH₃CCl₃) 

 Is an ozone-

depleting 

substance; 

controlled under 

Montreal Protocol 

 Toxic  

 

Industrial 

cleaning solvents, 

inks, correction 

fluids 

5 years 

Hydrochlorofluorocarbons 

(HCFCs) 

 Have similar 

structure with 

CFCs, but contain 

at least one 

hydrogen atom 

 Transtitional CFC 

replacement 

 Low toxicity and 

flammability; 

reasonable costc 

 Gives smaller 

impact than CFCs 

on stratopsheric 

chlorined . 

However, HCFCs 

are greenhouse 

gases 

 

Refrigerants, 

solvents, blowing 

agents for plastic 

foam, fire 

extinguishers 

1.2 to 11.9 

years 

Halons  Are bromine-

containing 

halogenated 

hydrocarbons 

 Introduced in the 

1960s 

 Volatile, 

electrically non-

conductive, lack 

damaging residue 

or toxicity 

 Inexpensive to 

produce 

(IPCC/TEAP 

2005) 

 Are ozone-

depleting 

Mobile fire 

extinguishers, 

fire-suppression 

systems (in places 

such as computer 

rooms and 

airplanes), 

explosion- 

protective agents  

2.5 – 16 

years 
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substances; 

controlled under 

Montreal Protocol 

Methyl bromide 

(CH₃Br) 

 Is an ozone-

depleting 

substance; 

controlled under 

Montreal Protocol 

 

Quarantine and 

pre-shipment 

(QPS) uses of 

CH3Br are 

exempted uses 

according to the 

Montreal 

Protocol. Comes 

from natural 

source similar to 

methyl chloride 

0.8 years 

Methy chloride   

(CH₃Cl) 

 Not a controlled 

substance under 

Montreal Protocol 

 

Primarily of 

natural origin  (i.e. 

oceanic and 

terrestial 

ecosystems). 

Minimal 

anthropogenic 

sources. 

0.9 years 

Very short-lived 

substances (VSLSs) 

containing chlorine and 

bromine 

 Not a controlled 

substance under 

Montreal Protocol 

 

Brominated 

species (e.g. 

bromoform, 

CHBr₃) are 

predominantly of 

oceanic origin, 

while chlorinated 

species (e.g. 

dichloromethane, 

CH₂Cl₂) come 

mostly from 

industrial sources 

Less than 6 

months 

Sources: a Carpenter et al. (2014), bHegglin et al. (2014), cKim et al. (2010), dTsai (2002) 

 

Halogenated gases that arise from human activities and mixed sources (human and 

natural emissions) are controlled by the Montreal Protocol (more details on 

Montreal Protocol in Section 1.4) and are classified as ozone-depleting substances 

(ODSs). On the other hand, halogenic substances of mainly natural origin are not 

referred to as ODSs (Table1.1).  
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Figure 1.1 shows the contributions of ODSs and natural halogen source gases to the 

stratospheric chlorine and bromine in 2012. The prime source of tropospheric 

chlorine is predominantly anthropogenic. Chlorofluorocarbons (CFCs), which 

consisted primarily of CFC-11, -12, and -113, accounted for the largest portion of 

man-made sources of tropospheric chlorine in 2012. This was followed by carbon 

tetrachloride (CCl₄), hydrochlorofluorocarbons (HCFCs), and methyl chloroform 

(CH₃CCl₃). Meanwhile, natural halogen source gases were mainly accounted for by 

methyl chloride (CH₃Cl) (about 16%) and very short-lived compounds (VSLSs) 

(approximately 3%).  

Evidently, the contributions of natural and man-made sources towards 

tropospheric bromine are comparable. Halons and methyl bromide are the largest 

sources of stratospheric bromine; other sources include very short-lived 

brominated gases [e.g. bromoform (CHBr₃)], which are responsible for 24% of 

stratospheric bromine.  

 

 

Figure 1.1: Relative contributions of individual and groups of compounds to total 

tropospheric chlorine and total tropospheric bromine in 1996 and 2012 (Carpenter et al., 

2014). 

 

Overall, the amount of chlorine which enters the stratosphere is 150 times that of 

bromine. Nevertheless, the atmospheric concentrations of bromine source gas, i.e. 

CH₃Br are still of great interest because their ozone depletion potential is 25 times 
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that of CH₃Cl. This phenomenon is attributable to the fact that on the atomic basis, 

bromine destroys ozone 60 times more effectively than chlorine (WMO, 2007). 

 

1.3 Effects of halogenated substances on ozone layer  

 

The  following subsection describes the three main stages of stratopsheric ozone 

depletion by halogenated gases. 

 

Stage 1 : Emission, accumulation, and transport of halogenated substances 

from troposphere to stratopshere 

 

The said process starts with the release of the gases from a variety of sources on the 

Earth’s surface. Small quantities of the aforementioned gases are liberated from 

natural sources, while substantial quantities of the same originate from 

anthropogenic emissions, as described in Section 1.2. 

Once emitted, the halogen source gases accumulate in the troposhere prior to being 

transported to the stratosphere. It is important to note that this occurrence is also 

dependent on the lifetimes of the gases. The atmospheric lifetime of a molecule can 

be simply thought of as the time for which it remains in the atmosphere. Specifically, 

the atmospheric lifetime (τ) of trace gas is the time required for the removal or 

chemical transformation of approximately 63% of its global atmospheric burden 

(B). Calculations of the amopsheric lifetimes rely on a basic equation that relates the 

said burden, B, of an atmospheric constituent to its sources (emissions or in situ 

production) to its total global rate of removal, L  (Equation 1.5) (Carpenter et al., 

2014).  

                                                             τ = B (molecules)___                                 (Equation 1.5)                                                   

                                                                L (molecules s-1) 

 

Halocarbon removal from the atmosphere can be achieved via numerous processes, 

including oxidation by hydroxyl radicals, photolysis, as well as uptake by the oceans, 

and terrestrial ecosystems. For instance, long-lived compounds (e.g. CFCs) which 
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are mainly removed through photolysis in the upper troposphere have lifetimes of 

around 100 years (Table 1.1). However, other gases (e.g. VSLSs) that are 

predominantly lost through multiple processes in the troposphere have lifetimes of 

under a year. The difference in lifetimes means that CFCs can remain in the 

atmosphere much longer and get accumulated to a much greater extent as compared 

to VSLSs.  

 

Stage 2: Transport of halogenated substances from troposphere to 

stratopshere 

 

The accumulated halogenated substances are then transported via natural air 

motions from the troposphere to the stratosphere. In general, the transportation of 

trace gases and aerosols from the troposphere to the stratosphere occurs primarily 

at the tropics where convective activities and vertical uplifts are most intense (Oram 

et al., 2017). In order to get to the stratosphere, an air parcel has to pass through the 

tropical tropopause layer (TTL) – the transitional layer which shares the 

characteristics of the  upper troposphere (UT) and lower stratosphere (LS). Apart 

from being the gateway for troposphere-to-stratosphere transportations (TST), TTL 

also plays a key role in the global composition and circulation of the stratosphere 

(Fueglistaler et al., 2009).   

Interestingly, the details of troposphere-to-stratosphere transport are of minor 

importance for long-lived and thus, well-mixed halogenated source gases. However, 

for VSLSs – whose lifetimes may be comparable to the tropospheric transport 

timescales (i.e. weeks to months), transportation processes may strongly impact 

their stratospheric source gas and product gas injections (Carpenter et al., 2014). 

Recent evidences by Oram et al. (2017) have suggested that it was possible for VSLSs 

to be transported from the boundary layer into the stratosphere, where they 

contributed to the stratospheric halogen-loading. In the TTL, higher VSLSs 

concentrations are predicted to occur during winter as compared to the rest of the 

year ((Aschmann et al., 2009, Gettelman et al., 2009). This is because of a 

combination of higher convective cloud tops reach the TTL and have higher vertical 

velocities within the TTL (Gettelman et al., 2009). During winters, deep convection 

currents over the Western Tropical Pacific are the dominant pathway through which 
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surface air is transported to the TTL (altitude: 13 - 17 km) and stratosphere. As such, 

the tropospheric composition and chemistry play a disproportionately large role in 

the determination of the stratospheric composition (Baker et al., 2016). Overall, the 

findings have supported that the Western Tropical Pacific was a region where VSLSs 

emissions could be efficiently transported to the TTL (Aschmann et al., 2009). 

Therefore, these highlight the importance of transport mechanisms in the making of 

VSLSs; previously, the said mechanism has not considered to play a significant role 

in stratospheric ozone depletion. 

 

Stage 3 : Conversion , reaction, and removal of halogenated substances  

 

In the stratosphere, halogenated compounds do not directly react with ozone. 

Instead, they dissociate via photolysis (in the presence of short-wave radiation from 

the sun) and release substantial amounts of halogen which are stable as well as not 

easily degradable (McGivern et al., 2000; Salawitch et al., 2005). Later, these 

halogens will take part in chemical chain reactions and destroy thousands of ozone 

molecules before being removed from the stratosphere (Montzka & Reimann, 2011) 

(Equations 1.6 - 1.8). Consequently, the natural balance between the production and 

loss of ozone is shifted the latter.  

 

It is important to note that the chemical conversion rates of halogenated substances 

depend on their atmospheric lifetimes. Compounds with longer atmopsheric 

lifetimes (in the order of years) circulate multiple times between the troposphere 

and stratosphere before conversion occurs. After a few years, the reactive halogen 

gases, along with the stratospheric air, return to the troposphere and are removed 

via rain/ precepitation or deposition on the surfaces of the ground and oceans 

(Hegglin et al., 2014).   
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1.4 The global legislation to controls the production of 

halogenated substances (ODS) 

 

Concerns over the roles of halogenated compounds in ozone depletion have been 

put forward in the 1970s by two scientists – Molina and Rowland. In 1974, they had 

theorised that CFCs, which originated from aerosol propellants and refrigerants, 

were chemically inert, and that their degradation via photodissociation in the 

stratosphere generated significant amounts of chlorine atoms which eventually led 

to the destruction of the atmospheric ozone. The prominent impact of CFCs has 

acknowledged since the early years of the discovery of the Antarctic ozone hole 

(Farman et al., 1985). Immense efforts have then been channelled towards the 

regulation of CFCs as well as other halogenated compounds. This subsequently 

galvanised the interest of scientists and policymakers, hence prompting 

unprecedented international action. 

The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer was 

enacted with the mission of regulating the release of halogenated gases by 

developed and developing countries, apart from providing a mechanism to reduce 

and phase-out the global production and consumption of ODSs (Derwent et al., 1998, 

Velders et al., 2007) (Figure 1.2). The Montreal Protocol took effect on 1st January 

1989, following which the production of CFCs and other related halogenated 

compounds were to be phased out according to different schedules. For example, 

developed countries had to phase out CFCs by 1 January 1996, while developing 

countries could still produce (and purchase) CFCs until 2010 (AFEAS, 2006). 

Since its inception, a total of eight amendments – which mainly concerned the 

inclusion of additional compounds – have been made to the Protocol (Hegglin et al., 

2014). Currently signed by 197 countries, it has become the first treaty in the history 

of the United Nations to achieve universal ratification (UNEP, 2018). 

ODSs are categorised into Class I or Class II controlled substances. Class I substances 

comprise those which have higher ozone depletion potentials (ODPs) and have been 

completely phased out by now, with a few exceptions. Therefore no production and 
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importing of class I substances are allowed, except for (1) those which are used in 

metered-dose inhalers for the treatment of asthma and chronic obstructive 

pulmonary disease; (2) small quantities of ODSs for laboratory tests and other 

procedures; as well as (3) methyl bromide that is essential for certain agricultural 

processes (e.g. quarantine and pre-shipment applications to prevent the spread of 

plant pests that may have huge economic and/ or environmental consequences).  On 

the other hand, Class II substances are ODSs that have less ozone depletion 

potentials of less than 0.2. These include all HCFCs, which are the transitional 

substitutes for their Class I counterparts.  

 

 

Figure 1.2: Effects of Montreal Protocol and its amendments on long-term changes in terms 

of equivalent effective stratospheric chlorine (EESC). EESC refers to the sum of chlorine and 

bromine which is derived from ODS tropospheric abundances. It acts as a relative measure 

of the stratospheric ozone depletion potential. Projections of the future abundances of mid-

latitude stratospheric ODSs have been made for the following cases: (1) no Protocol 

provisions, (2) provisions of the original 1987 Montreal Protocol, and (3) zero emissions of 

ODSs starting from 2014. The city names and years indicate the sites and times at which 

changes in the original Protocol’s provisions were agreed upon (Hegglin et al., 2014).  
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Enforcements of the 1989 Montreal Protocol and its subsequent amendments have 

resulted in the successful phasing-out of the production and consumption of CFCs 

(apart from relatively minor critical-use exemptions) by industrialised and 

developing nations in 2010. As a result, the atmospheric abundances of most 

documented CFCs started to decline (Montzka et al., 1996, Rigby et al., 2013, 

Carpenter et al., 2014, Laube et al., 2014, UNEP, 2014). Additionally, the Montreal 

Protocol and national regulations have given rise to significant reductions in the 

productions, usage, emissions, and observed atmospheric concentrations of CFC-11, 

CFC113, methyl chloroform, as well as several other ODSs. There is also evidence of 

the recovery of the stratospheric ozone as well (Velders et al., 2007) .  

 

1.5 Emerging challenges in stratospheric ozone recovery  

 

The balance between the emissions and removal of a substance determines the 

changes in its global atmospheric abundance. Following the implementation of the 

1987 Montreal Protocol, the emissions of the majority of ODSs became significantly 

lower than their removal. This explained the decline in their atmospheric 

abundances. As a result, the reduction of stratospheric ozone was halted in the late 

1990s, and the ozone levels in most parts of the stratosphere have remained roughly 

constant since 2000 or so (Carpenter et al., 2014). At present, the long-term 

recovery of the ozone layer from the effects of ODSs is still on track. However, 

significant uncertainties in the predictions of ozone and climate patterns still exist. 

These can be explained by the following three main categories of scientific 

evidences:  

 

 

 

 

 



13 
 

1.5.1 Newly-detected emissions of Montreal Protocol ODSs 

 

The first challenge is the discovery of new emissions of Montreal Protocol 

ODSs; the major cause for concern is the unexpected increase in the atmospheric 

levels of certain CFCs. Hitherto this, enforcements and subsequent amendments of 

the Montreal Protocol have resulted in the successful phasing-out of CFC 

productions and consumptions in industrialised as well as developing nations by 

2010. Therefore, the recent increase in the atmospheric abundance of CFCs has not 

been anticipated (Montzka et al., 2018). Recent study has found a persistent increase 

in the global emissions of ozone-depleting CFC-11 – one of the most abundant CFCs 

other than CFC-12 and -113 (Montzka et al., 1996). Back-trajectory analyses have 

revealed higher mole fractions of the chemical owing to their production at eastern 

Asia. It has been suggested that a possible pathway of inadvertent CFC-11 

production was the fluorination of chlorinated methane to produce HCFC-22, 

although the amount of emission was small. Importantly, this work has highlighted 

that the increase in CFC-11 emission originated from new productions that were (1) 

inconsistent with the agreed phasing-out of CFC production as per the Montreal 

Protocol, as well as (2) have not been reported to the UNEP’s Ozone Secretariat. 

Evidently, CFCs other than CFC-11 have also been detected in the atmosphere, an 

example of which was the discovery of four previously-undetected ODSs – CFC-112 

(CFCl2CFCl2), CFC-112a (CF2ClCCl3), CFC-113a (CF3CCl3), and HCFC-133a (CF3CH2Cl) 

– in the atmosphere (Laube et al., 2014). Even though these compounds are 

regulated under the Montreal Protocol, two of them (i.e CFC-113a and HCFC-133a) 

suprisingly continued to accumulate in the atmosphere. While the abundances of 

these gases were low (i.e. mole fractions of less than 1 part per trillion (ppt) in 

2010), the facts that these four gases were still present in the atmosphere, and that 

two of them were increasing in level, indicated the likely presence of limitations in 

the protocol, which subsequently raised questions over the sources of these gases. 

Following the work of Laube et al. (2004), atmospheric measurements of CFC-113a 

from ground-based stations in Australia, Taiwan, Malaysia, and the United Kingdom 

have been conducted in an attempt to investigate the sources of the said chemicals 

(Adcock et al., 2018). As per the evidences, the emission of CFC-113a was most likely 

attributable to its utilisation as a chemical in the production of hydrofluorocarbons. 
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While the sources of CFC-113a remained unclear, it has been found that significant 

emissions of the same were taking place in East Asia.  

 

1.5.2 Unexpected emissions of Non-Montreal Protocol ODSs 

 

The second possible factor of the uncertainty of the ozone layer’s long-term 

recovery is the unexpected emissions of Non-Montreal Protocol ODSs. Although it is 

well-established that halogens from Montreal Protocol ODSs are the main 

contributors to the stratospheric halogen loading, recent observations have shown 

that increasing emissions of VSLSs are also an important source of stratospheric 

halogens. Historically, VSLSs were not considered as ozone-damaging because they 

had relatively short atmospheric lifetimes and were not expected to reach the 

stratosphere in sufficient quantities to damage the ozone layer. Hence, they were 

excluded from the Montreal Protocol. However, the atmospheric abundance of one 

of these VSLSs – dichloromethane (CH₂Cl₂) – is growing rapidly, and its continuous 

increase in concentration poses a potential threat to the ozone layer. CH₂Cl₂ is 

mainly anthropogenic in origin; its uses range from paint-stripping to agricultural 

fumigation and pharmaceutical production. The atmospheric concentration of this 

substance decreased in the 1990s and early 2000s, but over the past decade, 

dichloromethane has become approximately 60% more abundant (Carpenter et al., 

2014, Hossaini et al., 2015, Leedham et al., 2015). The relative contributions of these 

emissions could become important as the levels of Montreal Protocol-controlled 

ODSs decline (Carpenter et al., 2014). According to Hossaini et al. (2017), the factor 

that drives the growth of dichloromethane is still uncertain. However, it could be 

due to the fact that CH₂Cl₂ is used in the manufacturing of some HFCs – the “ozone-

friendly” gases which have been developed to replace CFCs. This ironically means 

that the production of ozone-friendly chemicals actually releases some ozone-

destroying gases into the atmosphere.  

On another note, the amounts of VSLSs’s halogens that reach the stratosphere 

primarily depend on the location of their emissions (Chipperfield, 2006). This 

highlights the importance of the site of emission because the closer the source of 

emission to the regions where convective activities and vertical uplifts are most 

intense (i.e. the tropics), the higher the chances of the VSLSs to be transported to the 
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stratosphere (Navarro et al. (2015). Studies have provided evidences that East Asia 

– a region that is undergoing rapid industrialisation, has a substantial influence on 

the growth of anthropogenic VSLSs emissions. Evidently, 80% of all East Asian 

halocarbon emissions were identified to originate from China (Li et al., 2011). 

Emissions of pollutants, including ozone-depleting chemicals, in places like China 

are especially damaging because the cold-air surges in this region can rapidly carry 

significant quantities of industrial pollutants to the tropics (Ashfold et al., 2015, 

Oram et al., 2017).  Recent measurements of Cl-VSLSs in Taiwan and Malaysia, as 

well as aircrafts flying above South East Asia, have revealed that (1) there were 

substantial regional emissions of these compounds; (2) these emissions could be 

rapidly transported over long distances into the deep tropics; as well as (3) an 

equally rapid vertical transport of the said substance to the upper tropical 

troposphere was a regular occurrence (Oram et al., 2017). The findings further 

emphasised that the increasing emissions of chlorinated VSLSs from East Asia, in 

conjuction with the transportation of chlorinated VSLSs to tropical regions of the 

western Pacific, could potentially slow down the recovery of stratospheric ozone. 

However, in view of the fact that most of the reported measurements have not been 

made in these two key regions (where the strongest troposphere-to-stratosphere 

transport occurred), there have been limitations in the abovementioned 

assessments.  

 

1.5.3 Relative influence of naturally-emitted halocarbons 

 

Most of the ODSs that contribute to the stratospheric halogens are produced 

by industries. Following the implementations of the Montreal Protocol and its 

amendments, the absence of production will cause the emissions of anthropogenic 

ODSs and hence, atmospheric concentrations of the same to dwindle (Montzka et al., 

2018). As a result, there is less ozone damage. However, this causes the relative 

importance of naturally-produced halocarbons to increase, making them an 

increasingly important factor of future ozone and climactic chemistries. As stated in 

Section 1.2, methyl chloride (CH₃Cl) and methyl bromide (CH₃Br) are the main 

natural sources of stratospheric chlorine and bromine respectively. The 

atmospheric abundance of CH₃Cl currently accounts for around 17% of 
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tropospheric chlorine. On the other hand, atmospheric CH₃Br has recently 

accounted for up to 50% of tropospheric bromine (Carpenter et al., 2014). It is 

estimated that the contributions of natural CH3Cl and CH3Br to the equivalent 

effective stratospheric chlorine will exceed 50% by 2050 (WMO, 2007), thus 

highlighting the significant role of naturally-produced halogenated substances in 

the future stratospheric halogen loading. Previous researches (e.g. Yokouchi et al. 

(2000), Yokouchi et al. (2002), Lee‐Taylor et al. (2005), Blei et al. (2010) have 

identified tropical terrestrial sources of CH₃Cl and CH₃Br (apart from the oceans and 

biomass-burning). However, the sparseness of these methyl halide measurements 

have resulted in huge uncertainties over the nature and strength of the tropical 

sources (Gebhardt et al., 2008). With regards to the global CH₃Br budget, the sinks 

seem to outweigh the sources, hence pointing to an underestimated or still-

unknown source of the same (Gebhardt et al., 2008). The said imbalance also may 

be due to an underestimation of the atmospheric lifetime of CH3Br as well (Reeves, 

2003). 

 

1.6  Problem statement 

 

Uncertainties over the long-term recovery of the ozone layer still exist because some 

halogenated substances are still being emitted from exempted-use items, existing 

equipment, natural processes, unreported activities, or new technologies. Recent 

and significant evidences of the increasing emissions of both Montreal and Non-

Montreal Protocol ODSs (Section 1.5) have highlighted the presence of an emerging 

threat by halogenated substances to the stratospheric ozone.  

 

For Montreal Protocol ODSs like CFCs, the fact that their emissions are yet to hit zero 

until now stresses the importance of monitoring their atmospheric abundances and 

understanding the exact origins of these emissions. Doing so will ensure compliance 

with the Montreal Protocol for the environmental protection against ozone loss. 

Similarly, the recent increase in VSLSs emissions (e.g. dichloromethane) suggests a 

need to investigate the origins of these compounds. Evidently, the lack of global VSLS 

control measures leads to their significant impact on the atmosphere. This will 

consequently offset some of the gains achieved by the Montreal Protocol and further 
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delay the recovery of Earth’s ozone layer. Natural emissions of methyl halides, 

particularly those in tropical regions, are also an emerging problem with regards to 

stratospheric ozone. The relative contributions of these emissions may become 

important as the levels of Montreal Protocol-controlled ODSs decline. Further 

evidences have also suggested that there are high levels of emissions in East Asia, 

and that these can be rapidly transported to Southeast Asia. However, assessments 

of the same are currently limited owing to lack of observational data. This has 

limited the ability to figure out the sites at which there is an increase in VSLSs 

emission, and whether they can have substantial effects on the ozone layer.  

 

Overall, a delay in the recovery of the ozone layer is anticipated, depending on the 

volumes of emissions and atmospheric concentrations of ODSs in the future. Hence, 

there is a need for further regional and global studies on the origins of the 

halogenated gases. These data will provide more descriptions of the halogenated 

compounds, including an analysis of its factors and causes (e.g. sources of emission, 

meteorological processes), apart from providing some guidance for the 

implementation of control measures.  

 

1.7 Aims and structure of thesis 

 

This thesis concerns the tropospheric abundances, emissions, and transportation of 

halogenated substances on regional and global scales, with focus on very short-lived 

gases (chlorinated VSLS), short-lived gases (methyl halides), and long-lived gases 

(CFC-114 and -114a). Overall, the main reason of studying these compounds was 

their importance in stratospheric chemistry and lack of information on their exact 

origins. 

 

This thesis was aimed to conduct a modelling study by using various observational 

datasets to constrain two different numerical models i.e. the 3-D dispersion model 

and 2-D global model. It is important to note that all observational datasets used 

were not generated by myself but kindly provided by others; I was involved in 

neither sample collection nor chemical analysis.   
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 The overall structure of this thesis is as follows: 

 

Chapter 2: Methodology 

This section describes the methods that were used to conduct the study. It includes 

descriptions of different types of modelling systems and various sources of 

observational data that were used to constrain the model.  

 

Chapter 3: Chlorinated VSLSs in East Asia and Southeast Asia 

This chapter described the assessments of the abundances of four chlorinated VSLSs 

in East Asia and Southeast Asia. The findings from the sampling stations in Taiwan 

and Bachok, Malaysia are presented. The specific aims of this chapter are as follows: 

 

1. To assess the variability of chlorinated VSLSs at both sampling locations and 

identify the presence of above-background levels of the chlorinated VSLSs. 

 

2. To investigate the potential source regions and emission sectors that could 

contribute to the variation of chlorinated VSLSs.  

 

3. To examine the influence of meteorological features in the long-range 

transportation of chlorinated VSLSs to Bachok. 

 

Chapter 4: Methyl halides in East Asia and Southeast Asia 

This chapter is similar to the part of the study in Chapter 3, except that the focus is 

on the methyl halides which were measured in Taiwan and Bachok. The specific 

aims of this chapter are as described below: 

 

1. To assess the variability of methyl halides at both sampling locations and 

identify the presence of above-background levels of the methyl halides. 

 

2. To investigate the potential source regions and emission sectors that could 

contribute to the variation of methyl halides.  
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Chapter 5: Long-term trends and emissions of CFC-114 and CFC-114a 

This chapter presents the first long-term measurement of CFC-114 and CFC-114a 

separately. Also presented are their emission estimates that were derived from an 

air measurement dataset from campaigns in Cape Grim and the Antarctic to 

constrain the 2D atmospheric chemistry transport model. The specific aims of this 

chapter are as follows: 

 

1. To derive the “top-down” emissions and compare the same against the 

industries’ “bottom-up” estimates in order to verify the reports of CFC-114 

and CFC-114a usage by the industries. 

 

2. To identify potential sources of CFC-114 and CFC-114a emissions based on 

the data from Taiwan. 

 

Chapter 6: Conclusions 

This section summarises the key research findings and outlines future research 

directions. 
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Chapter 2 

Methodology 

________________________________________________________________________________________________________ 

 

2.1 Introduction 

 

The primary aim of this thesis was to use two different numerical models to study 

(a) the regional emissions of short and very short-lived halogenated gases and (b) 

the global emissions of long-lived halogenated gases. Depending on the specific 

questions which both studies attempt to answer, two different types of modelling 

systems and various sources of observational data to constrain the model have been 

utilised.  The overview of the methodology used to study both groups of gases is 

depicted in Figure 2.1.  

 

For study of short and very short-lived gases, the study required the usage of two 

observational datasets generated from the ground-based campaigns in East Asia 

and South East Asia, regions where emissions of greenhouse and ozone-depleting 

substances are rapidly increasing. The study then used the 3-D dispersion model to 

determine the impact of different source types and regions. In contrast, the study of 

long lived-gases used four sources of measurement data. The air samples collected 

from Cape Grim, Tasmania and extracted from deep firn snow in the Antarctic are 

used to serve as the long-term atmospheric measurement dataset. The combined 

dataset is then used to constrain the 2-D global model for deriving the emission 

estimates of CFC-114 and CFC-114a.  Additionally, to put the study of long-lived 

gases into a wider context and to obtain further insight on the derived emission 

estimates, this study also used upper tropospheric samples collected using a 

commercial aircraft from the CARIBIC project and also air samples collected during 

ground-based campaigns in East Asia. 
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Figure 2.1: Overview of the methodology to study the atmospheric budget of short and very 

short-lived gases (in blue) and long-lived gases (in red). The fundamental components that 

shape the methodology of this study have been identified and were split into three categories 

(in shades of grey). For the source of dataset, the observational dataset generated from air 

sampling campaigns were essential to evaluate and constrain the model simulations, whilst 

the additional datasets were used to support and facilitate the interpretation of the model 

output. Not shown in this diagram is the input data to run the models. The input data will 

be introduced in the section on atmospheric modelling.   

 

 

It is important to note that all observational datasets used were not generated by 

myself but kindly provided by others. My contribution is predominantly conducting 

the modelling study by using the observational datasets to constrain the 3-D 

dispersion model and 2-D global model. As such, the detection, quantification and 

measurement techniques, will not be discussed in detail in this chapter. More 

information can be found in Oram et al. (2017) and Laube et al. (2016). Also, this 

work used a model that was readily available and widely-used. As the focus is mainly 

on the use of the models rather than model development, it is not the intention here 
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to describe in detail the development of the models. Instead, important features of 

the model, the model setup and the methods used to specifically study the 

compounds of interest are described in this chapter. 

Therefore, in this chapter, I have focussed on what I consider to be the most 

important aspects to conduct the study.  In the first section of this chapter, the 

descriptions of all the source of data used in this thesis were outlined. This includes 

a brief description of the campaigns (Section 2.2), air samples collection and analysis 

methods (Section 2.3). The chapter then continues with the detailed description of 

the modelling approaches (Section 2.4). Finally, a summary of this chapter is 

presented in Section 2.5. 

 

 

2.2 Sampling locations 
 

The sampling locations and the general description of the sources of observational 

datasets used in this study are presented in Figure 2.2 and Table 2.1, respectively. 

The details on each dataset are describe in Sections 2.2.1 to 2.2.5. 

 

 
 

Figure 2.2: Map showing the location of sampling stations. 
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Table 2.1: Summary of air sampling campaigns for measuring the short, very short-lived 

and long lived halogenated gases in this study 

 
 

 

2.2.1 Taiwan 

 

The atmospheric sampling in Taiwan was carried out in collaboration with the 

National Central University (NCU) of Taiwan. The aim was to identify compounds 

emitted from across the East Asian region as well as to establish potential source 

areas.  

 

There were two sampling stations: Cape Fuguei located on the north-west coast and 

the Hengchun on the south-west coast (Figure 2.2). In 2013 and 2015, samples were 

collected in the Hengchun and in 2014 and 2016 samples were collected at Cape 

Fuguei. 

 

Both sampling stations offers an ideal location to study the Asian outflow. During 

the springtime, Taiwan experiences winter monsoon wind patterns that are 

typically predominant over East Asia. These coincide with strong continental 

outflows of pollution, particularly from mainland China, Korea and Japan (Ou-Yang 
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et al., 2012). Hence, air masses that pass over the sampling sites in Taiwan should 

give a good representation of outflow from these areas and are likely to contain 

halocarbon species emitted from these regions (Gooch, 2016).  

 

2.2.2 Bachok, Malaysia 

 

The measurements of greenhouse gases, ozone depleting substances, and other 

chemical pollutants were conducted at the atmospheric observation tower built at 

the Bachok Marine Research Station. The station is situated in the Kelantan province 

which is located on the east coast of peninsular Malaysia, within 100 m of the water’s 

edge of the South China Sea (Figure 2.2).  The station was constructed as part of the 

Institute of Ocean and Earth Sciences (IOES) at the University of Malaya (UM). The 

station is extremely well located for studies on the outflow of the rapidly developing 

Southeast Asian countries. 

The Bachok campaigns provided an opportunity to study a number of the tropical 

processes related to atmospheric chemistry. The aim was to measure a large range 

of atmospheric trace gases and to conduct meteorological observations from the 

atmospheric observation tower at the station. The campaign was conducted during 

the East Asian Winter Monsoon, which provides an opportunity to assess the long-

range transport of ozone depleting substances (ODS) during the cold surge event 

and to explore the influence of weather systems i.e. cold surges towards the 

variability of chemical composition measured at Bachok. 

 

2.2.3 Cape Grim, Tasmania 

 

Cape Grim is situated in Tasmania, Australia and ideally placed to monitors very 

clean air which is representative of the mid-latitudes of the Southern Hemisphere. 

Cape Grim is located in an area with low levels of local industry/pollution and 

distanced from other land masses. Therefore, the air masses arriving from the 

south-west over the Southern Ocean  can represent some of the cleanest air in the 

world. Background or baseline atmospheric conditions are classified as being when 

the wind is from the south-westerly sector and wind speeds are > 15 km h-1 (Fraser 
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et al., 1999).   The air sampling was only conducted during baseline atmospheric 

conditions in order to be representative of background conditions rather than 

sampling air coming from the landmasses of mainland Australia or Tasmania.   

Baseline air samples have been collected approximately three months since 1978 

until present and stored at high pressure to form the Cape Grim Air Archive. The 

Cape Grim Air Archive has underpinned many studies on global emissions of 

greenhouse and ozone depleting gases, including this study. Cape Grim data have 

been used extensively in all international assessments of climate change and ozone 

depletion and in many studies deriving global and regional emissions of carbon 

dioxide (CO2), chlorofluorocarbons (CFCs), methane (CH4), nitrous oxide (N2O) and 

synthetic greenhouse gases (SGGs). 

 

2.2.4 Antarctic 

 

In addition to using Cape Grim archive (1978 -2014), it is also possible to derive 

information about past atmospheric concentrations of gases from air trapped in 

polar firn. Firn air is air trapped in the open pores of the compacted snow (firn) 

before it is trapped in ice bubbles. It has been collected and analysed to determine a 

record of trace gases in the Northern and Southern hemispheres from the early-mid 

20th century to the present day.  

The air within the firn is still effectively connected to the atmosphere and can mix 

with other air within the firn via diffusion. Consequently, a smoothed record of 

atmospheric changes are created and therefore the air at any given depth a is 

representative of a range of ages (Butler et al., 1999). The main advantage of firn air 

compared to that trapped within bubbles in ice cores is that a much larger quantities 

of air can be obtained. Thus, making this method very suited for studying trace gases 

which are present in too low concentrations to be detected in the small quantities of 

air extracted from ice cores (Newland, 2013). 

In this study, air samples were extracted from deep firn snow during two Antarctic 

drilling campaigns (Berkner Island and Dome C, see Figure 2.2). The campaigns 

were conducted as part of the European Union-funded CRYOSTAT project 

(Cryospheric Studies of Atmospheric Trends in Stratospherically and Radiatively 
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important gases, http://artefacts.ceda.ac.uk/badc_datadocs/cryostat/). The aim of 

CRYOSTAT was to undertake the first combined measurements of virtually all 

significant greenhouse gases (GHGs), ozone-depleting substances (ODSs), and 

related trace gases in contiguous firn and ice profiles, spanning as much as 200 

years, from both the northern and southern polar ice caps.  

 

2.2.5 CARIBIC aircraft measurements 

 

 

CARIBIC is the acronym for Civil Aircraft for Regular Investigation of the 

Atmosphere Based on an Instrument Container (CARIBIC project, www.caribic-

atmospheric.com). It is an aircraft based scientific project that aims to study and 

monitor important chemical and physical processes in the upper troposphere and 

lowermost stratosphere whilst the aircraft travels regularly all over the world.  The 

project utilises a passenger aircraft (Airbus A340-600, operated by Lufthansa) by 

deploying a container containing equipment for in situ measurements of many types 

of gases including ozone depleting substances and greenhouse gases.  

 

The air samples used here were collected at regular intervals at altitudes of 10-12 

km on a flight between Frankfurt, Germany and Johannesburg, South Africa (Figure 

2.2). The samples provide an opportunity to assess recent interhemispheric mixing 

ratio gradients and their consistency with the inferred tropospheric records of long-

lived gases. 
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2.3 Sample collection and analysis 

 

2.3.1 Sample collection  

 

Air samples from all the surface-based sampling sited were collected in 

electropolished and/or silco-treated stainless steel gas canisters except for those 

from CARIBIC. During CARIBIC, aircraft samples are collected in glass flasks using a 

pumping system. More details on the CARIBIC sampling system can be found in 

Brenninkmeijer et al. (2007).  

For the Antarctic drilling campaigns, the air was pumped directly into stainless steel 

flasks from the firn using a firn air sampling device. The firn air extraction procedure 

is described in Martinerie et al. (2009).  

 

2.3.2 Sample analysis 

 

The collected air samples were shipped to University of East Anglia (UEA) where 

they were analysed for their halocarbon content using gas chromatography–mass 

spectrometry (GC-MS). A full description of this analytical technique can be found in 

Oram et al. (2017) and Laube et al. (2016). 

For firn air samples, it is important to highlight that the firn air samples provide  

concentration depth profiles of trace gases. To convert the concentration depth 

profiles into atmospheric trends of trace gases a combination of firn diffusion 

modelling (i.e. how much a gas can diffuse at a given depth in the firn) and 

atmospheric modelling is used (Figure 2.3) . The firn modelling was done by Patricia 

Martinerie and detailed descriptions on the firn modelling can be found in 

Martinerie et al. (2009). 
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Figure 2.3: Left panel: Observations (filled circles) and modelled depth profile (solid line) 

for the trace gases of interest. Central panel: Firn diffusion modelling was combined with 

2-D atmospheric chemical models to determine the trends of the trace gases of interest. 

Right panel: Atmospheric record of trace gases of interest (black line).  

 

Source : Adapted from Sturrock et al. (2002) and Martinerie et al. (2009) 

 

 

2.4 Atmospheric chemistry models 

 

 The concentrations of chemical species in the atmosphere are affected by 

four general types of processes i.e. emissions, transport, chemistry and deposition. 

Using  numerical tools called chemical transport models (CTMs), the four processes 

can be represented and simulated to describe the spatial and temporal variability of 

chemical species in the atmosphere. The simulations are done by solving the 

continuity equations for mass conservation of the species in the atmosphere 

(Brasseur et al., 2017).  

This study used two types of models i.e. 3-D Numerical Atmospheric-dispersion 

Modelling Environment (NAME) and the 2-D global model (Figure 2.1). This section 

is aimed to introduce both models, starting with the 3-D model (Section 2.4.1) and 

followed by the 2-D global model (Section 2.4.2). Each section provides the overview 

of the models, general features and the model setup and simulations specifically to 

study short, very short-lived gases and long-lived gases.  
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2.4.1 Introduction to 3-D Numerical Atmospheric-dispersion 

Modelling Environment (NAME) 

 

2.4.1.1 Model description  

 

2.4.1.1.1  Overview 

 

The 3-D Numerical Atmospheric-dispersion Modelling Environment (NAME) 

is a model developed by the UK Meteorology Office. NAME was originally designed 

as an emergency-response nuclear accident model. The development was in 

response to the widespread dispersion of the radioactive cloud from the Chernobyl 

power-plant accident in 1986. Since then, NAME has been continuously developed 

and used in a wide range of atmospheric dispersion events including nuclear 

accidents, volcanic eruptions, chemical accidents, smoke from fires, odours, 

airborne animal diseases, as well as the provision of routine air quality forecasts, 

policy support activities and scientific research (Jones et al., 2007).  

NAME is essentially a Lagrangian atmospheric dispersion model. In comparison to 

the conventional Lagrangian trajectory model which tracks movement of an 

individual particle, the Lagrangian dispersion model is more accurate because it 

simulates the complex movement of large number of particles. On top of that, 

Lagrangian dispersion model provides a very realistic representation of transport 

in the planetary boundary layer (PBL) (the lowest portion of the atmosphere (from 

surface to about 1 to 2 km high)) because it incorporates the turbulence, an 

important feature in the PBL (Fleming et al., 2012).  

 

NAME is designed to predict the atmospheric dispersion of air masses by calculating 

the air mass pathways and footprints. The motion of particles is governed by two 

components i.e. mean winds and turbulence (Stohl, 1998). When running the model, 

the air masses spread in a diffusive fashion, in which background air is mixed into 

the air masses by turbulent processes.  
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2.4.1.1.2 Model structure and physical processes 

 

The basic infrastructure of NAME model, its flow processes and core features are 

summarised and briefly described in Figure 2.4 and Table 2.2. The physical 

processes within NAME, input and output data are also presented and are discussed 

in detail in the following sections.  

 

 

 
 

Figure 2.4: A general scheme of NAME structure showing the flow processes starting from 

input data (in red), NAME model (in grey) and finally, the model output (in blue). Also shown 

are the physical processes that are represented within NAME (white box with grey dashed 

line). 
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Table 2.2: Overview of the core NAME characteristics and features. 
 

Basic infrastructure 

1 Model domain 

 

Local, regional and global scale, as specified by the user 

 Local (~10² m to ~10 km) 

 Regional (~10 km to ~10² km) 

 Global (~10²  km to global) 

2 Horizontal resolution  

 

Latitude-Longitude (standard or with a rotated pole); UK 

National Grid; Polar Stereographic projections; Transverse 

Mercator projections 

3 Vertical resolution Height (above ground or above sea level); pressure; flight 

levels in ICAO standard atmosphere; height-based and 

pressure-based hybrid systems (used by NWP models) 

4 Temporal scales Minutes to years 

5 Temporal coverage  Forecast runs (out to 6 days ahead for global; 36 hours for 

UK) 

 Analysis runs (hours to multi-year simulations) 

 Re-analysis data sets available back to 1957 

 ‘Forwards’ and ‘backwards’ run modes 

6 Technical 

characteristic 

Programming language: Fortran 95 

Physical processes 

1 Advection and 

diffusion 

Random-walk techniques 

2 Turbulence schemes Turbulence and meander scales treated independently within 

the boundary layer 

3 Dry deposition  General scheme based on surface resistance / deposition 

velocity 

 Land surface dependent scheme for certain gaseous 

species 

4 Wet deposition Rain out (‘in-cloud’ removal) and wash out (‘below-cloud’ 

removal by rain impaction) 

5 Chemistry Comprehensive sulphur/nitrogen/hydrocarbon chemistry 

scheme based on global atmospheric chemistry model 

STOCHEM 

Meteorological data 

1 Numerical weather 

prediction (NWP) 

Meteorology 

Three-dimensional gridded data parameters from Met Office 

Unified Model (MetUM): UK (1.5 km) to Global (25 km). 

ECMWF forecast and reanalysis products (ERA-40 , ERA-

Interim) 

2 Topography Uses orography from driving NWP meteorological model(s) 

Output data 

1 Model outputs Two-dimensional fields; vertical cross-sections; location-

specific time series; particle trajectory information; model 

diagnostics 

2 Output quantities  Standard dispersion quantities i.e. air concentration,  

 Meteorological and flow variables 

 Gridded chemistry fields 

 Other quantities: particle numbers, travel times, plume 

depth, etc. 

3 Statistical processing Time integrating 

Source: Adapted from NAME User Guide (Jones, 2015) 
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NAME is capable of representing numerous physical processes involved in the 

release of particles, their transport, evolution and removal from the atmosphere 

(Figure 2.4). The transport and dispersion of particles during the simulation is 

predominantly governed by a random walk turbulence scheme. The turbulence 

scheme is one of the physical process represented in NAME. Importantly, NAME 

incorporate effect of turbulent mixing processes in the atmosphere, and their 

parameterisation in NAME, was described. Turbulence can be described as a chaotic 

or irregular flow/ motion or air which are unpredictable. Such turbulent flows or 

eddies caused air parcels to move so that properties such as momentum and 

potential temperature are mixed across the boundary layer. Particles move with the 

resolved wind described by the meteorology plus a random component to represent 

the effects of atmospheric turbulence (Jones et al., 2007). 

 

The particles in the model atmosphere can be removed via loss processes. This 

includes wet and dry wet deposition and dry deposition, gravitational settling, 

radioactive processes, chemical/biological agent decay and resuspension of sand 

and sea salt.  

 

Both the physical and loss processes in NAME can be controlled and selected by user 

depending on the objective of the simulation.  

 

 

2.4.1.2  Model setup and input data requirement 

 

Prior running the model, two type of data were required i.e. the meteorological data 

and run setup (red boxes in Figure 2.4). The latter determined the version of 

meteorological data required for NAME to run.  
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i. Meteorological data 

 

The meteorological input is a time varying 3-dimensional description of 

meteorological parameters output each time step from the Met Office Numerical 

Weather Prediction (NWP) model.  The NWP model outputs a standard set of 

meteorological parameters from the operational forecast system in different ranges 

of resolutions and domains and they are available from 1999 until present (see 

Table 2.3 for examples). Depending on the date of interest, there are various 

versions of datasets available for NAME. A standard set of meteorological 

parameters can currently be read by NAME such as U, V, W component of winds, 

temperature, specific humidity and pressure (see Davies et al. (2005) for more 

information).  The calculation begins by incorporating a vast amount of 

observational data at three hourly intervals into the forecast system. This process is 

continuously repeated to produce a three-dimensional analysis of the state of the 

atmosphere defined by meteorological variables.  

 

Table 2.3: Example of the NWP from Met Office Global NWP Models used in this study 

 

Dates Met Definition 

Name 

Grid resolution 

30/04/2013 - 15/07/2014 UMG Mk7 0.35° longitude by 0.23° latitude 

15/07/2014 - 25/08/2015 UMG Mk8 0.23° longitude by 0.16° latitude 

25/08/2015 - present UMG Mk9 0.23° longitude by 0.16° latitude 

Note: UMG = Unified Model Global.  

 

ii. Run setup  

 

In general, the model is setup depending on the type of run to be performed (e.g. 

forward or backward run), the modelling domain and the temporal scales. For 

example, if NAME was used to calculate backward trajectories starting from a 

measurement site e.g. Taiwan for each day in October 2015, the ‘Backwards’ option 

was specified in the input file setup. The meteorological data i.e. Met Definition 

Name should satisfy the spatial and temporal coverage of interest. In this case, the 
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Met Definition Name called UMG Mk9 (Table 2.3) was selected as it covers the global 

NWP data from 25/08/2015 to present. 

 

For this thesis, NAME was primarily run backward in time to simulate the history of 

particles that arrive at two measurement sites i.e. Bachok and Taiwan (Table 2.4).  

 

Table 2.4: Model setup to run NAME for measurement campaigns in Bachok and Taiwan 

Setup requirements Bachok Taiwan 

Receptor site 

coordinate 

6.009° N, 102.425° E Hengchun, 

22.0547° N, 120.6995° 

E, (2013, 2015) 

 

Cape Fuguei, 

25.297° N, 121.538° E, 

(2014, 2016) 

 

Sampling period. 

Version of 

meteorology and 

topography data are 

noted in parentheses  

 20 Jan – 5 Feb 2014        

(UMG Mk7) 

 19 Nov – 31 Dec 2015           

(UMG Mk8) 

 4 – 27 Jan 2016 (UMG Mk9) 

 

 7 Mar – 5 Apr 2013       

(UMG Mk6) 

 11 Mar – 4 Apr 2014             

(UMG Mk7) 

 12 Mar – 25 Apr 2015          

(UMG Mk8) 

 16 Mar – 29 Apr 2016          

(UMG Mk9) 

 

Note: UMG = Unified Model 

Global 

 

Type of run Backward run 

Number of particle 

released 

30,000 

Travel time 12 days 

Species category Inert tracer 

Output request Air concentration/ particle density 
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Once the information required for the model setup have been identified, the relevant 

input data (files or scripts) need to be prepared prior to running the NAME. There 

are five files or scripts required for each NAME run (Table 2.5).  

 

Table 2.5: Description of input files/scripts required for NAME back-run 

Name of 

file/scripts 

Description 

Daily Script. scr  The script automatically repeats the same basic run for 

every day over N years. For example, if backward 

trajectories need to be conducted each day in the month 

of October 2015 at Bachok, the scripts automatically 

executed the run each day in October 2015 

simultaneously with one single command line. 

 

Input template.txt  This is an input file template comprising of various 

parameters for a set of daily NAME back runs from one 

site.  

 

 This input file can be specified by the user according to 

their needs e.g. the location of the receptor for back 

trajectory calculations, the modelling domain or the 

number of days for these trajectories. 

 

MetDeclarations  This module specifies the version and references the 

directory storing the NWP met data files. 

 

MetRestore_JASMIN.

ksh 

 This is a script designed to run with NAME on the JASMIN 

platform and restores an archived UM met data file from 

the NAME-JASMIN met archive 

 

SourceTermAndOut

putRequests.txt 

 This template specifies the format of source and output 

according to the user’s requirement.  

 

 This source information specifies whether the run is for 

a single species or a complex mixture of many species, a 

simple single point source or a complex collection of 

multiple sources.  

 

 The output information specifies how long the simulation 

should be (e.g. 5 days or 12 days) and the altitude height 

to output the footprint (e.g. 0-100m and 0-16 km) 
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2.4.1.3  Model simulations 

 

The NAME simulations were performed on the JASMIN/LOTUS platform. JASMIN is 

a scientific data analysis environment infrastructure that deploys a High 

Performance Computing (HPC) facility to supports a wide range of scientific 

workflows across environmental science domains, primarily to those that handle 

big data. JASMIN is managed and delivered by the UK Science and Technology 

Facilities Council (STFC) Centre for Environmental Data Archival (CEDA). LOTUS on 

the other hand is a group of physical machines that provides the processing 

component of JASMIN. LOTUS enables efficient scheduling of larger data analysis 

tasks across nodes in the cluster (Lawrence et al., 2013). 

Once all the five input files and scripts in Table 2.5 were ready, the script Daily 

Script. scr was run via the command line in JASMIN/LOTUS, the input template 

Input template.txt was copied and forms the basic structure of the input file. The 

values/information given for certain variables in the script were then copied into 

that input file. NAME also reads the meteorological data stored in 

MetRestore_JASMIN.ksh and, behind the scenes, the meteorological module 

(MetDeclarations) sets up the corresponding version of meteorological data 

required for that run. Once the command is executed, a job ID is prompted, 

indicating that the job has been submitted to LOTUS. NAME then reads the input 

files and perform the runs. The output of the run is defined by the information 

specified in SourceTermAndOutputRequests.txt. 

 

In general, NAME back-runs are performed for 12 days backward calculations for 

batches of 30,000 inert particles from 0-100 m above the surface of measurement 

site. The trajectories were calculated using three-dimensional meteorological fields 

produced by the UK Met Office’s Numerical Weather Prediction tool, the Unified 

Model (UM). At the end of the 12 days travel time, NAME produced a gridded time 

integrated particle density also known as footprints of where the air sampled during 

the campaigns had previously been close to the Earth’s surface.  
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2.4.1.4  Model output  

 

The output of the NAME back-run is often called air history maps or footprints that 

describe where the air masses at a receptor at any given time has travelled over the 

duration of the model run. Examples of NAME footprints are shown in Figure 2.5. 

This output is useful in identifying the origins of an air parcel and possible 

contributory sources for pollution to that air parcel. On the other hand, NAME can 

be requested to output a particle density in a particular grid cell.  In this thesis, the 

time integrated particle density units are used to describe NAME trajectories on a 

grid. The particle density can be expressed in  the form of integrated over time. For 

example, each particle emitted at the start of the run was attributed by a mass of 1 

gram. Therefore, if n particles each with a mass of 1 gram are (a) located in a certain 

grid cell for 15 minutes (900 seconds) time step, and (b) if V is the volume of the grid 

cell, the particle density can be interpreted as follows (Equation 2.1): 

 

𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟐. 𝟏 ∶  

Time integrated particle density per grid cell (g s m⁻³) =
n(g ) x 900 (s)

𝑉 (m−3)
 

 

n is equal to the mass of all the particles in the grid cell in grams (g). 

 

 

2.4.1.5  Post processing of model output 

 

In this thesis, the NAME footprints can be utilised in four ways in order to meet the 

following objectives i.e.  

 

i. To identify the possible source regions 

ii. To quantify the contribution of possible sources regions in (i) 

iii. To derive modelled mixing ratios of CO for estimating the emission of short 

and very short lived gases 

iv. To investigate the influence of meteorological factors on the variability of 

measured compounds. 
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The description on each way of utilizing NAME footprints are presented in the 

Sections 2.4.1.5.1 to 2.4.1.5.4. 

 

2.4.1.5.1  Identification of possible source regions 

 

The NAME footprints tell us about the dispersion of the air masses and the pathways 

of the air particles.  As the air particles travelled, they passed over countries that 

could have emitted chemical species which would then be transported to the 

sampling site (Gooch, 2016).  

 

The identification of possible source regions of our compound of interest was done 

by assessing the monthly NAME footprints i.e. the sum of individual footprint 

generated for each day during each month of sampling. Figure 2.5 provides the 

examples of the sum of individual footprints for the month of November 2015 

generated for Bachok and month of March 2014 generated for Taiwan. The sum of 

the NAME footprints provide an overview of the dispersion of the air masses and 

possible countries that might contribute to air masses that arrived in Bachok and 

Taiwan.   

 

 

(a) 
 

                                       (b) 

 

Figure 2.5: Example of NAME footprints for (a) Bachok and (b) Taiwan. Each sampling 

site is denoted by a black cross mark.                                
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The potential source locations were divided according to the countries that the air 

particles passed over (Figure 2.6). Since this region is quite complex i.e. comprised of 

many islands/land masses and ocean, it is much convenient to divide the area via 

political division. This is because each country is comprised of unique economic 

activities or sectors which could give different type of emission sources.  

 

 

 
 

Figure 2.6: The geographical sector map for Bachok and Taiwan which depicts the possible 

source locations for the air masses sampled during each campaign, assessed from analysis of 

the NAME footprints.  

 

 

Upon completion of the identification of possible source locations, the next step was 

to quantify the contribution of each source locations. Quantifying source locations 

contribution was intended to aid in the explanation of enhanced mixing ratios of 
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chemical species. This was done by performing particle distribution analysis which 

were described in detail in the next section (Section 2.4.1.5.2).  

 

 

2.4.1.5.2  Quantifying the contribution of possible sources regions  

 

The next step was to quantify the contribution of each source location to aid in the 

explanation of enhanced mixing ratios of chemical species as observed at the 

sampling sites. The analysis was started done by dividing the area into countries 

identified in Section 2.4.1.5.1 using shapefiles generated from ArcGIS and then 

extracting the time integrated particle density (g s m⁻³) for each region.  The process 

comprised of two steps:  

 

a. Creating gridded shapefiles  

 

Shapefiles can be described as the geometrical feature that define the 

regions/countries.  First, the world map was to be downloaded from the 

Nature Earth website (http://www.naturalearthdata.com/downloads/) and 

uploaded into QGIS software and the countries of interest are selected and 

modified manually.  

 

A shapefile is created by inputting coordinates (latitude + longitude) into a 

corresponding mapping / Geographic Information System (GIS) program, 

which converts spatial information into a graphical representation, such as a 

map with plotted GPS points. The geometry and location of each feature or 

'shape' is plotted, stored as a set of coordinates and represented as points, 

lines or polygons (areas). 

This created a .txt file listing all the shapefiles to be used for the analysis. 

 

The next step was to create a grid of the shapefile using a Python codes in 

order to match the grid of the shapefile with the gridded NAME output. In 

this code, a technique called pickling was used which essentially converted 
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the python object structure (shapefiles) into byte streams that create a grid 

for each shapefile for each region of interest. The gridded shapefiles was 

kindly generated by Marios Panagi and Zoe Fleming from University of 

Leicester.  

 

b. Process of counting the particles by extracting the NAME output in each 

shapefile created in (a). 

 

Another Python code was used to create a master grid of the shapefiles using 

the information stored (pickled) in the previous code which is then matched 

to the NAME output data. So, think of it as now we have the shapefiles grid 

and the NAME grid overlaying. Then we calculated the particles over each 

region for every 3 hourly NAME outputs using that information. 

 

Finally, the output of the particle distribution analysis (in g s m⁻³) were 

compared with the time-series of chemical species measured during the 

campaigns in order to explain their variations and identify potential major 

source locations.  

 

 

2.4.1.5.3  Estimating emission of VSLSs using modelled mixing ratios of carbon    

                             monoxide 

 

The purpose of estimating the emissions of short and very short lived gases was to 

identify where the emissions were coming from and what category of emissions 

contributed towards the variability of VSLSs measured at Bachok and Taiwan.  The 

NAME particle distribution analysis conducted in Section 2.4.1.5.2 can potentially 

link the NAME particle densities for possible source regions with the variability of 

measured mixing ratios of species of interest, but is limited in quantifying the 

emission strength. 
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The emission strength of a trace gas emitted by each source region was estimated 

using (a) NAME footprints and (b) an emission inventory for the chemical tracer. 

The NAME output was in a form of a time-integrated particle density (g s m-3). A 

slight modification of this unit enabled the contribution of different source locations 

and different emission sectors towards the concentration of a trace gas measured at 

measurement site to be calculated.  

 

This study has selected carbon monoxide (CO) as a chemical tracer because CO is 

commonly used as a tracer of anthropogenic emissions. Its lifetime of 1–2 months is 

long enough to track pollution plumes on intercontinental scales, yet short enough 

to provide enhancements with respect to background. Also, the emission inventory 

of CO is considered to be relatively well established which thereby provides 

confidence in the derived emission estimates. 

The inventory of industrial and combustion CO emissions was taken from the 

Representative Concentration Pathway 8.5 (RCP 8.5) (van Vuuren et al., 2011; Riahi 

et al., 2011; Granier et al., 2011) for the year 2010. RCP 8.5 contains estimated 

emissions of CO and any other compound up to 2100. The emissions were estimated 

based on assumptions about economic activity, energy sources, population growth 

and other socio-economic factors. More information and access to the database can 

be found on the RCP 8.5 website 

(http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=htmlpage&page=welcome).  
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i. Files required  

 

Three input files in netcdf format are required to calculate the modelled mixing ratio 

of CO. The files and descriptions of each file are presented in Table 2.6 below: 

Table 2.6: Description of input files/scripts required to calculate the modelled mixing ratios 
of CO 
 

No. Type of file Description 

1 Monthly NAME output 

file.nc 

 

File containing monthly NAME output i.e. particle 

density (g s m⁻³) generated from backward 

simulation. This file has 3 hourly time resolution and 

are separated by vertical grid. 

 

2 NAME area grid file.nc File containing the area of grid cell (m²). It consists 

of an array of grid cells referenced by rows (305 

latitude) and columns (209 longitude) of numbers. 

This file become the model domain with grid 

resolution of 0.5625◦ longitude by 0.375◦ latitude. 

 

3 Emission datasets.nc File containing CO emission values for industrial 

activities (combustion and processing) (kgm⁻²s⁻¹). 

The inventory of industrial and combustion carbon 

monoxide (CO) emissions are taken from the 

Representative Concentration Pathway 8.5 (RCP 

8.5) and are taken for the year 2010. The grid 

resolution are 0.5◦ longitude by 0.5◦ latitude. The 

dataset can be downloaded from the RCP 8.5 website  

(http://tntcat.iiasa.ac.at:8787/RcpDb/dsd?Action=

htmlpage&page=welcome ). 
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ii. Pre-Calculation  

 

Prior to performing the calculation, the monthly NAME output file need to be 

prepared and the emission dataset need to be downloaded and processed. Noted 

that the NAME backward simulation produced daily output file in a text format. For 

this analysis, the monthly NAME output file in a netcdf format are required. To do 

so, all the daily files for our month of interest need to be converted to a netcdf format 

and summed to produce a monthly NAME output file. For example, to combine all 

daily outputs file in January 2014 (Total files = 31), the following pre-processing 

procedure were required: 

 

1. First, each NAME daily output file for January 2014 was converted from text 

format to netcdf format using a python script on JASMIN.  Running the 

Fazrin_txt_to_nc_Test.sh on JASMIN executed the 

NAME2NetCDF_incload_V1.py script. The location for these files are as 

follows: 

 

../../../group_workspaces/jasmin/name/cache/users/fazrinhanif/ 

Fazrin_txt_to_nc_Test.sh 

 

../../../group_workspaces/jasmin/name/cache/users/fazrinhanif/Python_script/N

AME2NetCDF_incload_V1.py  

 

 

2. Then, the Climate Data Operator (CDO) cat was used to concatenate all 31 

daily netcdf files to generate the monthly output file called ‘January2014.nc’. 

              cdo cat Fields_grid1_C1_T1_20140101_pd_100.nc Fields_grid1_C1_T1_20140102_pd_100.nc 

Fields_grid1_C1_T1_20140103_pd_100.nc Fields_grid1_C1_T1_20140104_pd_100.nc 

Fields_grid1_C1_T1_20140105_pd_100.nc Fields_grid1_C1_T1_20140106_pd_100.nc 

Fields_grid1_C1_T1_20140107_pd_100.nc Fields_grid1_C1_T1_20140108_pd_100.nc 

Fields_grid1_C1_T1_20140109_pd_100.nc Fields_grid1_C1_T1_20140110_pd_100.nc 

Fields_grid1_C1_T1_20140111_pd_100.nc Fields_grid1_C1_T1_20140112_pd_100.nc 

Fields_grid1_C1_T1_20140113_pd_100.nc Fields_grid1_C1_T1_20140114_pd_100.nc 

Fields_grid1_C1_T1_20140115_pd_100.nc Fields_grid1_C1_T1_20140116_pd_100.nc 

Fields_grid1_C1_T1_20140117_pd_100.nc Fields_grid1_C1_T1_20140118_pd_100.nc 

Fields_grid1_C1_T1_20140119_pd_100.nc Fields_grid1_C1_T1_20140120_pd_100.nc 
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Fields_grid1_C1_T1_20140121_pd_100.nc Fields_grid1_C1_T1_20140122_pd_100.nc 

Fields_grid1_C1_T1_20140123_pd_100.nc Fields_grid1_C1_T1_20140124_pd_100.nc 

Fields_grid1_C1_T1_20140125_pd_100.nc Fields_grid1_C1_T1_20140126_pd_100.nc 

Fields_grid1_C1_T1_20140127_pd_100.nc Fields_grid1_C1_T1_20140128_pd_100.nc 

Fields_grid1_C1_T1_20140129_pd_100.nc Fields_grid1_C1_T1_20140130_pd_100.nc 

Fields_grid1_C1_T1_20140131_pd_100.nc January2014.nc 

 

3. Finally, the 'January2014.nc' were re-gridded to match the grid resolution of 

0.5625◦ by 0.375◦ in 'area_NAME_grid.nc'. The re-gridded file was called 

'January2014_regrid.nc'. The cdo operator remapbil was used to re-grid the 

data on to mygrid: 

 

cdo remapbil,mygrid January2014.nc January2014_regrid.nc 

 

iii. Preparing the emission dataset 

 

1. In JASMIN, the cdo command was used to re-grid the gridded ‘emission 

dataset.nc’ at a 0.5◦ by 0.5◦ resolution in order to match the grid resolution 

of 0.5625◦ by 0.375◦ in 'area_NAME_grid.nc'. This was again done using the 

cdo operator remapbil: 

 

cdo remapbil,mygrid emission dataser.nc area_NAME_grid.nc 

 

 

iv. Calculating modelled CO 

 

The next step was to calculate the modelled CO in a python script. First, the Python script 

called the value of NAME particle density from the ‘Monthly NAME output file.nc’.  

Next, the value for surface area of each grid cell and emission of each grid cell were 

read by Python from the files ‘NAME area grid file.nc’ and ‘Emission datasets.nc’, 

respectively.  An additional step was to convert the concentration unit from mol m⁻³ 

to part per billion (ppb). The sum of all the grid cells will give the total concentration 

of modelled CO at the measurement site for each day at 3 hourly resolution. Similar 
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steps were repeated for each day in the ‘Monthly NAME output file.nc’.  Finally, a 

time series of modelled CO can then be derived for comparison with the 

observational data from Bachok and Taiwan. 

 

2.4.1.5.4 Investigating the influence of meteorological factors  

 

For studying VSLSs in Bachok, an additionally meteorological analysis was 

conducted in order to (1) characterize the cold surge events (an important 

meteorological process occurring during the Northeast Monsoon in that region) 

using a cold surge index and (2) to explore the influence of cold surges towards the 

variation of observed VSLSs. 

For identifying and characterising cold surge events during the boreal winters from 

2014 to 2017 within our domain of interest i.e. 2.5°S–7.5°N, 107.5°–117.5°E (Figure 

2.7), the cold surge index defined by Chang et al. (2005) was used. A cold surge index 

is a measure of the strength of the North East Monsoon winds in the South China 

Sea. The index is chosen as the average 925-hPa meridional wind between 110° and 

117.5°E along 15°N, referred as V15 in Figure 2.7.  According to this definition, a cold 

surge event happens when the value of this index exceeds -8 m s-1. It is important to 

note that the definition for the cold surge index in this study uses meridional wind 

(v-wind), i.e. which the intensity of the north-south component of the wind 

movement. As such, higher negative values for the cold surge index indicate stronger 

southward-movement of the cold surge winds.  
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Figure 2.7: The Bachok Marine Research Station (red) located at 6.07 °N, 102.40 °E. The 

black horizontal bars are the locations for the cold surge index. V15 indicates v at 925 hPa 

averaged over 110-117.5°E at 15°N. V8 indicates v at 925 hPa averaged over 102-113°E at 

8°N. 

 

To begin, the meridional wind (v) was downloaded from the ECMWF Public Datasets 

web interface (http://apps.ecmwf.int/datasets/). The v data was selected at 925 

hPa pressure level data, which represents the boundary layer conditions but less 

influenced by local surface processes than the alternative 1000 hPa pressure level 

(Ashfold et al., 2017).  The v data was extracted for the periods covered by the 

dataset (i.e. January to February 2014, November to December 2015 and January 

2016) at a horizontal resolution of 0.125° longitude by 0.125° latitude. The time-

steps was selected at 00:00, 06:00, 12:00 and 18:00 Universal Time (UT), or 

approximately 8:00, 14:00, 20:00 and 02:00 local time (LT). 

In addition, as I am interested in changes in chemical composition in measurement 

site which located in the deep tropics, an alternative index is assigned further south 

and called as V8. This new index defined the cold surge using the same meridional 

winds data i.e. at 925 hPa but extracted over 102-113°E at 8°N (Figure 2.7). 

According to Ashfold et al. (2017), there is no universal definition of a cold surge. 

Different authors typically use a definition that best suits the geographical scope of 

their investigation.  
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For this study, the second location is used based on the following two factors: 

 

(a) I was specifically interested in identifying cold surge events that might bring 

polluted air masses from the north and its impact towards the chemical 

compositions further south, i.e. near to our study area in Bachok (6.07 °N, 102.40 

°E). Therefore, the latitude of V8 was chosen to better represent this transport closer 

to Bachok. Also, I wanted to investigate if there were any differences in meridional 

wind intensity and the time lags between V15 and V8 in order to evaluate the impact 

of cold surges on atmospheric composition. The V15 index is generally accepted and 

commonly employed to represent cold surges in climatology (more details in 

Section 2.4.1.5.4, Chapter 2), whilst the V8 index is an alternative created to 

represent meridional strong transport near our study area.  

 

(b) The observation of common pathways of northerly winds that arrive at the 

sampling site at Bachok. This observation was based on the assessment of the 

pathways of air masses depicted in all NAME footprints generated for each day of 

sampling. On average, the air masses mainly passed through the second location i.e. 

between 102-113°E at 8°N. 

 

In this work, the cold surge indexes (V15 and V8) dataset were used to further explore 

the influence of cold surge events towards the variability of chemical species during 

the campaigns. This was done by comparing the cold surge indices with the time 

series of chemical species measured at the sampling sites.   
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2.4.2  Introduction to the 2-D atmospheric chemistry transport model 

 

2.4.2.1 Model description  

 

2.4.2.1.1 Overview 

 

Two-dimensional global atmospheric chemistry-transport models have often been 

used to describe the global distribution of trace gases. Use of these models assume 

that the concentrations of a species are a function of latitude and altitude and do not 

depend on the longitude (Seinfeld et al., 2006). According to Newland (2013), the 

mixing time of a species in the troposphere around a latitudinal band is on the order 

of two to three weeks. Therefore, for the species with a lifetime longer than this, it 

is a reasonable assumption that within a particular latitude band such a species will 

be fairly homogeneous and so can be represented by a single model cell.  

Originally, the model was developed by Hough (1989) with the focus to investigate 

the distribution and budgets of ozone precursors and tropospheric ozone 

distribution, before computational power allowed the development of 3-D models. 

Since then, the model but with a much simplified chemical mechanism has been used 

to investigate the global emissions of long lived gases (e.g. Fraser et al., 1999; Reeves 

et al., 2005; Laube et al., 2010; Sturges et al., 2012; Oram et al., 2012; Laube et al., 

2012). This model has been proven to work well for a variety of atmospheric trace 

gases and so was used in this work for deriving the top-down global annual 

emissions estimates of the CFC-114 and CFC-114a.  

 

 

In this study, we used a two-dimensional model to deduce the annual global 

emissions of CFC-114 and CFC-114a based on the measurements from Cape Grim 

and firn air in Antarctica. The model allows us to understand the relationship 

between emission changes and changes in ambient concentration of CFC-114 and 

CFC-114a. 
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Figure 2.8: A general scheme for a 2-D chemistry transport model 

 

 

2.4.2.1.2 Model structure and physical processes 

 

The model domain stretches from pole to pole and from the surface of the earth to a 

height of 24 km (Hough 1989). The model comprises of grid boxes which have been 

divided into 24 equal area, zonally-averaged bands and has 12 vertical layers of 2 

km depth. This give a total of 288 cells.  

The model used the same latitudinal distribution of emissions as in previous studies 

of the temporal behaviour and global distribution of other halogenated compounds 

(Reeves et al., 2005, Oram et al., 2012, Kloss et al., 2014, Laube et al., 2014, Laube et 

al., 2016). This distribution is based on 95% of emissions originating from industrial 

activities in the Northern Hemisphere, predominantly from mid-latitudes (in 

agreement with the work by McCulloch et al. (1994)).Using this latitudinal 

distribution, the transport scheme of the model has been shown to reproduce the 

reported global distributions of CFC-11 and CFC-12 to within 5% (Reeves et al., 
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2005). Throughout the current model runs, the latitudinal emission distribution has 

been held constant.  

 

 

2.4.2.2  Model setup and input data requirement 

 

The model was run using FACSIMILE, a computer programme capable of solving the 

differential equations encountered in scientific and engineering problems. To 

simulate the loss process that affect the mixing ratio of CFC-114 and CFC-114a 

within the model domain, the model was setup to include the photolysis of the 

individual isomers. For CFC-114, the absorption cross sections are calculated for 

each grid box as a function of seasonally varying temperature for the wavelengths 

200 – 220 nm (Simon et al., 1988). A log-linear extrapolation of the Simon et al. 

(1988) data, log σ (λ) = -1.8233-0.0913λ was used to derive the absorption cross 

sections for longer wavelengths in the range of 222 – 235 nm (Sander et al., 2011). 

For CFC-114a the absorption data from Davis et al. (2016) were used. The rate 

coefficients of 1.43 x 10-10 and 1.62 x 10-10 cm3 molecule-1 s-1 are applied to the 

reactions of O(1D) with CFC-114 and CFC-114a, based on work by Baasandorj et al. 

(2013) and Baasandorj et al. (2011), respectively. To simulate the stratospheric loss 

through the upper boundary, the gradient across this boundary is defined to give a 

diffusive loss from the model domain. The diffusive loss from the top of the model 

was set by adjusting the mixing ratio of our studied compounds at 25 km (i.e. the 

boundary conditions) such that they were a fraction (F) of those in the top model 

box (23 km) (Newland et al., 2013) (for more details see below).  

 

Once the loss processes have been set up, the model was run long enough with 

constant emission rates for the system to reach a steady state. Steady-state lifetimes 

refer to a lifetime when the emission and removal rates of a species are equal 

(Carpenter et al., 2014). The steady-state lifetime (τ) of a species is defined as the 

ratio of its global atmospheric burden, B (molecules) to its total global loss rate, L 

(molecules s-1) (Carpenter et al., 2014).  
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The vast majority of the loss of both CFC-114 and CFC-114a occurs above the height 

of the model domain so their modelled lifetimes are largely controlled by the values 

assigned to F. Therefore, we used values of 0.922 and 0.837 for F in order to achieve 

the steady-state lifetimes of 189 and 102 years for CFC-114 and CFC-114a, 

respectively, based on the estimates reported in SPARC (2013) and (Carpenter et al., 

2014). This is in agreement with the very recently reported lifetime of 105.3 years 

for CFC-114a, which took into account new UV absorption data (Davis et al., 2016).  

 

2.4.2.3  Model simulations 

 

Model simulations were carried out to reproduce the tropospheric time series of 

CFC-114 and CFC-114a from the southern hemispheric firn air derived trends (1960 

to 2003) and the atmospheric measurements from Cape Grim (1978 to 2014).  

Where there are discrepancies between these two observational data sets, we 

favoured the Cape Grim time series, which we have more confidence in,  

The model simulations started off by using the published emission estimates using 

the bottom-up approach by Alternative Fluorocarbon Environmental Acceptability 

Study (AFEAS). Since 1976, chemical companies that have produced fluorocarbons 

have participated in an AFEAS survey by voluntarily reporting their production and 

sales of fluorocarbon (AFEAS, 2009.). AFEAS then compiles all the information and 

yearly updated emission data are derived.  This information is publicly available on 

the Advanced Global Atmospheric Gases Experiment (AGAGE) website 

(https://agage.mit.edu/data/afeas-data). The AFEAS emission estimates were 

calculated by using two types of data set i.e. (i) the time series of data on production 

and sales by chemical manufactures and (ii) emission functions which represent the 

timing and rate of halocarbon emission to the atmosphere (Martinerie et al., 2009).  

In subsequent model runs, the emission values were adjusted until the 

concentrations for the surface box of the relevant band agreed with the set of 

atmospheric measurements at that location. For example, the model derived 

concentrations of CFC-114 and CFC-114a for (a) the surface box of the band 66.4˚S 

– 90.0˚S agreed with observations in firn air sites in Antarctic (90˚ from 1960 to 

2003 and (b) the surface box of the band 35.7˚S– 41.8˚S agreed with observations in 

Cape Grim, Tasmania (41˚S) from 1978 to 2014. 
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This was an iterative process whereby the process of adjusting the emissions for 

each year was repeated to match the model derived concentrations with the 

measurements.  

 

2.4.2.4 Model output 

 

The process was completed when the model output from the emissions scenario 

provided a good fit to the measurements i.e. by eye using plots rather than 

mathematical fit to the observational data. These modelled mixing ratios were 

termed as ‘best-guess’ emission estimates.  

 

2.4.4.1  Derivation of uncertainty ranges of emission estimates 

 

To determine the uncertainty ranges in the emission estimates of CFC-114 and CFC-

114a, first an uncertainty in the modelled mixing ratios was calculated based on 

uncertainties in the model and measurements and the agreement between the 

model and observed data. This uncertainty was then added to (substracted from) 

the ‘best fit’ modelled mixing ratios for Cape Grim to derive upper (lower) 

uncertainty ranges. Finally, to determine the maximum (minimum) emissions the 

model was rerun to fit the upper (lower) range using the shortest (longest) 

estimated lifetimes (following the methodology of Kloss et al. (2014)). The range of 

lifetimes used for CFC-114 was 153-247 years (SPARC, 2013, Carpenter et al., 2014) 

and a similar relative range of lifetimes (82–133 years) was assumed for CFC-114a. 

More details can be found in Laube et al. (2016) 
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2.5 Summary 

 

This chapter has described and summarised the methodology used to study the 

atmospheric budgets of gases relevant to climate, with emphasis given on the 

modelling approach. Two approaches are discussed: (1) 3-D dispersion modelling 

to determine the impact of different source types and regions on short and very 

short-lived gases by using two observational datasets generated from the ground-

based campaigns in East Asia and South East Asia; (2) 2-D chemistry transport 

modelling for deriving the emission estimates of long-lived gases using the 

observational dataset from the Cape Grim firn air campaign in Antarctic. The result 

and discussion on the model outputs of 3-D model have been split into two chapters 

which deal separately with chlorinated very short-lived halogenated gases (Chapter 

3) and methyl halides (Chapter 4). The 2-D model output are presented and 

discussed in the chapter of long-lived halogenated gases (Chapter 5).  
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Chapter 3 

Chlorinated very-short-lived substances in East Asia 
and South East Asia 
________________________________________________________________________________________________________ 

 

3.1 Introduction 
 

The success of the Montreal Protocol in phasing out the consumption of ozone-

depleting substances has facilitated the gradual healing of the ozone layer. However, 

recent research has revealed that increasing emissions of chlorinated very-short-

lived substances (chlorinated VSLSs) threaten to delay this recovery. VSLSs are 

defined as trace gases whose local lifetimes are comparable to, or shorter than, 

interhemispheric transport timescales (Carpenter et al., 2014). Historically, VSLSs 

were not considered damaging to the ozone layer as they have relatively short 

atmospheric lifetimes (less than six months) and are not expected to reach the 

stratosphere in large quantities. Their short lifetimes and corresponding low ozone 

depletion potentials (ODPs) has led them to be excluded from the Montreal Protocol 

(Hossaini et al., 2015). However, chlorinated VSLSs, which are mainly anthropogenic 

in origin, have been found to be increasing (~1.3 ± 0.3 ppt Cl yr-1, 2008–2012) in 

contrast to the decline of long-lived controlled chlorinated substances (-13.4 ± 0.9 

ppt Cl yr-1) over the same period (Carpenter et al., 2014). Increased anthropogenic 

emissions of VSLSs containing chlorine, particularly from tropical sources, are an 

emerging issue for stratospheric ozone. The relative contribution of these emissions 

could become important as levels of ozone-depleting substances (ODSs) controlled 

under the Montreal Protocol decline (Carpenter et al., 2014). Chapter 1 has provided 

evidence on the growing emissions of chlorinated VSLSs including how they can be 

transported from the boundary layer, reach the upper troposphere and potentially 

pose a threat to the ozone layer in the stratosphere. Therefore, continued research 

into and monitoring of chlorinated VSLSs are essential to ensure environmental 

protection against ozone loss. Further observations are also required to understand 
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the origin of those emissions, especially in the South East Asia and East Asia region, 

which motivates this present study. 

This chapter focuses on the chlorinated VSLSs most widely reported in the 

background atmosphere, dichloromethane (CH₂Cl₂), trichloromethane (CHCl₃), 

tetrachloroethene (CCl₂CCl₂, shortened to C₂Cl₄), and 1,2-dichloroethane 

(CH₂ClCH₂Cl). A summary of sources, sinks and atmospheric lifetime of each 

chlorinated VSLS are presented in Table 3.1. According to Montzka et al. (2011), 

chlorinated VSLSs are primarily anthropogenic in origin, with the exception of 

CHCl₃. For CHCl₃, up to ~50% can be accounted for by anthropogenic sources  

(Trudinger et al., 2004). The abundances of chlorinated VSLSs in the background 

atmosphere have been reported by two main surface networks, the Advanced Global 

Atmospheric Gases Experiment (AGAGE) and the National Oceanic and Atmospheric 

Administration, U.S. (NOAA). The atmospheric abundance of CH₂Cl₂ increased from 

21.7 ppt to 25.1 ppt in 2012 (NOAA, Carpenter et al., 2014). C₂Cl₄ has been found to 

have decreased in the atmosphere, with an abundance of 1.18 ppt in 2012, 63% 

lower than when observations began in 1994 (NOAA, Carpenter et al., 2014). For 

CHCl₃, no significant trend has been seen at present. An average annual mole 

fraction for 2012 was found to be 7.53 ppt (AGAGE, Carpenter et al., 2014). The 

current background concentrations and longer-term trends of CH₂ClCH₂Cl are 

unknown since no long-term atmospheric measurements of CH₂ClCH₂Cl have been 

made or reported for over a decade. Although (1) no current data are available for 

CH₂ClCH₂Cl and (2) C₂Cl₄ as well as CHCl₃ do not exhibit any increases in mixing 

ratios, their tropospheric abundances need to be monitored to allow assessment of 

(1) their current and future changes in tropospheric abundance and (2) their 

contribution to stratospheric chlorine in order to reflect on their impact towards 

stratospheric ozone depletion. This information is crucial in order to make an 

informed decision as to whether chlorinated VSLSs should be covered under the 

Montreal Protocol. 
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Table 3.1 Summary of sources, sinks and atmospheric lifetime of each chlorinated VSLS. 
 

Compound Sources  Local 
Lifetime 

(days) 
WMO 

(2014) 

Atmospheric 
sinks 

Anthropogenic Natural   
 
CH₂Cl₂ 

 
 Paint remover 
 Foam blowing 

agent 
 Chemical 

processes 
 

 
 Biomass burning 
 Phytoplankton 

production 
 

 
144 

 
Troposphere 
 Reaction with 

OH 
 
Stratosphere 
 Photolysis 

 
 

CH₂ClCH₂Cl  Polymer 
 Rubber 

production 
 

 Biomass burning 
 

65 

CHCl₃  Used in the 
production of 
HFC-22 

 

 Biomass burning 
 Soils such as 

drained peat 
land pasture 
soils or blanket 
peat bogs 

 

149 

C₂Cl₄  Dry-cleaning 
solvent 

 Metal 
degreasing 

 

 90 

Source: adapted from Carpenter et al. (2014) 
 

This chapter provides an assessment of the abundances of four chlorinated VSLSs in 

the regions of East Asia and South East Asia. The findings from sampling stations 

located in Taiwan and Bachok are presented. The overall aim of the multiyear 

regional measurements was to improve our knowledge on the tropospheric 

abundances of a wide range of halocarbon compounds including chlorinated VSLSs. 

Specifically, this chapter aims: 

 

1. To assess the variability of chlorinated VSLSs at both sampling locations and 

identify any enhancement above background levels for the chlorinated 

VSLSs. 
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2. To investigate potential source regions and emission sectors that may 

contribute towards the variations in chlorinated VSLS levels. 

 

3. To examine the influence of meteorological features in the long-range 

transport of chlorinated VSLSs to Bachok. 

 
It is important to highlight that the following section will not start off with the typical 

section on methodology. The methodology for this study is presented in Chapter 2 

and is not going to be discussed in detail here. Instead, this chapter will proceed to 

the presentation and discussion of key findings (Section 3.2). Finally, some 

conclusions are made and suggestions of further study are given in Section 3.3. 

 

3.2 Results & Discussion 

3.2.1 Observation of chlorinated VSLS mixing ratios 
 

3.2.1.1 Taiwan 
 

Overall, CH₂Cl₂ contributed the largest fraction of the total chlorinated VSLSs 

measured in Taiwan across the four years of measurements, followed by 

CH₂ClCH₂Cl, CHCl₃ and C₂Cl₄ (Table 3.2). Figure 3.1 and Table 3.2 show the four 

chlorinated VSLS data from Taiwan during the campaigns, which took place 

between 2013 and 2016. Overall, the mixing ratios of all chlorinated VSLSs exceeded 

background levels. For instance, the median values of CH₂Cl₂ measured throughout 

each Taiwan campaign were around a factor of seven to nine greater than the 

median value of CH₂Cl₂ measured in background air samples (Table 3.2). 

The chlorinated VSLSs showed an enhancement of mixing ratios mostly on the same 

days (examples are labelled (a), (c), (d), (e) and (f) in Figure 3.1). The spikes in 

mixing ratios of chlorinated VSLSs generally occurred when the NAME footprints 

showed the air most likely came from the boundary layer over eastern China or the 

peninsula of Korea (examples are indicated by (a), (d), and (e) in Figure 3.1). The 

NAME footprints also suggested an influence from Taiwan on the high mixing ratios 
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of CH₂Cl₂ (examples indicated by (c) and (f)). Whereas when lower mixing ratios 

were observed, the NAME footprints showed that the air masses still originated 

from the north but instead travelled between eastern China and the peninsula of 

Korea, e.g. (b). 

 

Table 3.2: Summary of the chlorinated VSLS data obtained from measurement campaigns in 
Taiwan. For comparison, also shown are the approximate median background concentrations 
and ranges for each chlorinated VSLS in the remote marine boundary layer (MBL), taken from 
the most recent WMO ozone assessment (Carpenter et al., 2014). 
 
 

 2013 2014 

 Median Range Median  Range 

CH₂Cl₂ 239.3 76.8 - 671.8 265.3 77.9 - 741.0 

CH₂ClCH₂Cl 118.5 23.7 - 820.1 82.4 17.6 - 290.2 

CHCl₃ 32.9 11.6 - 199.3 35.1 13.8 - 103.2 

C₂Cl₄ 4.4 1.7 - 16.6 5.5 1.6 - 18.6 
 

 2015 2016 MBL (WMO 2014)a 

 Median Range Median Range Median  Range 

CH₂Cl₂ 198.6 59.4 - 536.7 270.7 84.5 - 1203.4 28.4 21.8 - 34.4 

CH₂ClCH₂Cl b 59.0 12.8 - 355.8 - - 3.7 0.7-14.5 c 

CHCl₃ 28.0 12.7 - 125.1 39.2 14.4 - 149.4 7.5 7.3 - 7.8 

C₂Cl₄ b 4.3 1.8 - 17.7 - - 1.3 0.8-1.7 
 
Note:  
a The WMO data are a compilation of all reported global measurements up to, and including, the year 2012. 
 
b CH₂ClCH₂Cl and C₂Cl₄ data were not available for the 2014 and 2016 campaigns. 
 
c The CH₂ClCH₂Cl MBL data actually date back to the early 2000s. No recent data were reported. 
 
 

 
 
 

 

 

 

 

 



68 
 

 
 

 

 
 
 
 

 
 
 

 
 



69 
 

(a) 21/3/2013 (b) 22/3/2014 

  
 
(c) 28/3/2014 

 
(d) 22/3/2015 
 

 
 

(e) 28/4/2016 (f) 1/4/2013 

  
 

 
 
Figure 3.1: Upper panel: Mixing ratios (ppt) of the four chlorinated VSLSs in 97 air samples 

collected in Taiwan during campaigns between 2013 and 2016. The approximate median 

background concentrations for each chlorinated VSLS in the remote marine boundary layer 

(MBL) in 2012 are represented by the dashed lines. Also shown are examples where the 

observed mixing ratios of four chlorinated VSLSs were unusually high, indicated by (a), (c), 

(d), (e) and (f). For comparison, (b) represents a mixing ratio that is much closer to the 

expected background level. Lower panel, (a) to (f): NAME footprint maps generated from 

a back-trajectory analysis indicating the likely origin of the air sampled in Taiwan, with the 

darker colours indicating greater influence. The colour scale is logarithmic and represents 

the calculated time-averaged concentration within surface layer (0–100 m) during the 12 

days prior to the sampling days given a point release in Taiwan. 

 
 

 



70 
 

3.2.1.2  Bachok 
 

When comparing the contribution of each chlorinated VSLS to total chlorinated 

VSLSs measured in Bachok, CH₂Cl₂ contributed the largest fraction (~70%) during 

both campaigns, followed by CH₂ClCH₂Cl, CHCl₃ and C₂Cl₄ (Table 3.3). 

During both campaigns, in 2013/2014 and 2015/2016, the mixing ratios of the four 

chlorinated VSLSs were above the background levels (Table 3.3 and Figure 3.2). For 

example, the median values of CH₂Cl₂ in 2013/2014 and 2015/2016 were 86.1 ppt 

and 70 ppt, respectively, three and 2.5 times higher than the background value (28.4 

ppt, range = 21.8 – 34.4 ppt). 

 

 

Table 3.3: Summary of the chlorinated VSLS data obtained from measurement campaigns in 

Bachok. For comparison, also shown are the approximate median background concentrations 

and ranges for each chlorinated VSLS in the remote marine boundary layer (MBL), taken from 

the most recent WMO ozone assessment (Carpenter et al., 2014). 

 

 

1st campaign 
(2013/2014) 

2nd campaign 
(2015/2016) 

MBL 
(WMO 2014)a 

 

Median 
(ppt) 

Range 
(ppt) 

Median 
(ppt) 

Range 
(ppt) 

Median 
(ppt) 

Range 
(ppt) 

CH₂Cl₂ 86.1 66.4 - 352.2  70.0 47.4 - 268.0 28.4 21.8 - 34.4 

CH₂ClCH₂Cl 40.6b 16.4 - 119.5 16.0 8.5 - 78.2 3.7 0.7 - 14.5c 

CHCl₃ 15.2 12.8 - 30.5 13.8 9.7 - 35.4 7.5 7.3 - 7.8 

C₂Cl₄ 2.0 1.6 - 9.5 2.1 1.3 - 7.9 1.3 0.8 - 1.7 
 
Note:  
a The WMO data are a compilation of all reported global measurements up to, and including, the year 2012. 
 
b CH₂ClCH₂Cl was only analysed in 16 of the 28 samples during the 2013/2014 campaign. 
 
c The CH₂ClCH₂Cl MBL data actually date back to the early 2000s. No recent data were reported. 

 

Interestingly, some unusual enhancements in the mixing ratios of all chlorinated 

VSLSs were observed on certain days throughout the campaigns (examples are 

labelled (a), (c), (d), (e) and (f) in Figure 3.2). It appears that the variation of 

chlorinated VSLSs measured at Bachok could have been influenced by the pathway 

along which the air masses had travelled prior to reaching Bachok. For example, the 

spikes in mixing ratios usually occurred when the NAME footprints showed that the 

air most likely came from the boundary layer over eastern China, Taiwan or 
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Indochina at some point prior to reaching Bachok (indicated by (a), (c), (d), (e) and 

(f) in Figure 3.2). Whereas when lower mixing ratios were observed, the NAME 

footprints, e.g. (b), showed very little influence from the regions mentioned above. 

Instead there was more influence from marine sector with the air mass having 

travelled predominantly over the South China Sea and Pacific Oceans with some 

influence from the Philippines and Borneo. 

Also noticeable is that CHCl₃ showed additional high mixing ratios on two more days 

during the 2013/2014 campaign (labelled (g) and (h) in Figure 3.2). In contrast, the 

mixing ratios of the three other compounds were low on those two days. The NAME 

footprints for these two days showed that the air masses that arrived at Bachok 

were primarily from the South China Sea and not from the potential source region, 

eastern China. This suggests that the sources of high mixing ratios of CHCl₃ on the 

31st of January and the 1st of February 2014 were mainly natural, i.e. from marine 

or perhaps local sources (detailed discussion in Section 3.2.2.2). This further 

emphasizes that CHCl₃ had some different source types to other chlorinated VSLSs 

on those two days.  
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Figure 3.2: Upper panel: Mixing ratios (ppt) of the four chlorinated VSLSs in 68 air samples 

collected at Bachok during the Northern Hemisphere winters, 2013/2014 and 2015/2016. 

The approximate median background concentrations for each chlorinated VSLS in the 

remote marine boundary layer (MBL) in 2012 are represented by the dashed lines. Also 

shown are the examples where the observed mixing ratios of the four chlorinated VSLS were 

unusually high, indicated by (a), (c), (d), (e), (f), (g) and (h). For comparison, (b) represents 

a mixing ratio that is much closer to the expected background level. Lower panel, (a) to 

(f): NAME footprint maps generated from a back-trajectory analysis indicating the likely 

origin of the air sampled at Bachok, with the darker colours indicating greater influence. 

The colour scale is logarithmic and represents the calculated time-averaged concentration 

within surface layer (0–100 m) during the 12 days prior to the sampling days given a point 

release at Bachok. 
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3.2.1.3  Synthesis 
 

The mixing ratios of the chlorinated VSLSs generally exceeded background levels in 

both Taiwan and Bachok, demonstrating a widespread regional enhancement. The 

mixing ratios were often higher in Taiwan than Bachok, indicating that Taiwan is 

located relatively closer to major source regions. By examining the NAME footprints, 

some preliminary conclusions were drawn on the possible origins of the 

compounds, especially when the mixing ratios were extraordinarily high. The NAME 

footprints suggested the influence of the China region towards the air masses that 

arrived in Bachok and Taiwan when the mixing ratios were extraordinarily high. 

China is an Article 5 country under the Montreal Protocol, meaning it is still allowed 

to produce and use some halocarbons under the terms of the Protocol and its 

Amendments (Shao et al., 2011). Therefore, the elevated mixing ratios of chlorinated 

VSLSs above background levels in Taiwan could have been due to appreciable 

emissions of chlorinated VSLSs from extensive industrial use in China that were then 

transported to Taiwan. The emission sources in China could also have been 

responsible for the higher median concentrations in Bachok, these being higher than 

the global median. The lifetime of these chlorinated VSLSs means that they will 

persist for several weeks and so will be mixed into the regional background air. The 

lower observed concentrations of chlorinated VSLSs in Bachok compared to Taiwan 

is consistent with China being the main source for chlorinated VSLS in this region. 

Additionally, dilution, i.e. mixing with background air, could be the main reason for 

the reduced concentrations of chlorinated VSLSs in Bachok as they have had time to 

mix from emission to detection. 

Although the high mixing ratios of chlorinated VSLSs above the background level as 

observed in Bachok may reflect a substantial contribution from Chinese industrial 

emissions, nonindustrial sources may also be present in the region and could affect 

the observed mixing ratios of chlorinated VSLSs. All chlorinated VSLSs except C₂Cl₄ 

can originate from nonindustrial sources, mainly biomass burning and oceanic 

sources (Leedham et al., 2015). That Bachok is located in a maritime area with 

oceanic source regions nearby and that biomass burning is widespread in the 

tropics suggest the potential influence of nonindustrial sources towards the 

variations in chlorinated VSLSs. 
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It is also highly likely that the peak concentrations of chlorinated VSLS in Bachok 

were influenced by meteorological conditions. Previous literature has suggested 

that the observed enhancements in mixing ratios of several trace gases in the region 

were caused by rapid meridional transport, in the form of “cold surges”, from the 

relatively polluted East Asian land mass. For instance, using trajectory calculations 

and observations for one Northern Hemisphere winter, Ashfold et al. (2015) showed 

that cold surges could rapidly (over a few days) transport polluted air masses from 

East Asia to tropical Southeast Asia. Oram et al. (2017) and Adcock et al. (2018) 

presented further measurements and model results that demonstrated the likely 

importance of this mechanism for transporting large quantities of several 

chlorinated compounds that could deplete ozone from East Asian emission sources 

to the tropics. However, the influence of cold surges towards atmospheric 

composition is still unclear. There are several studies (e.g. Liu et al. (2003), Wang et 

al. (2016)) that have investigated the relationship between cold surges and 

atmospheric composition away from tropics. Nevertheless, little information is 

available on the importance of cold surge for the tropics. This will be discussed in 

detail in Section 3.2.4 in which a quantitative approach is employed in order to test 

if enhancements of mixing ratios of chlorinated VSLS in Bachok coincide with the 

occurrence of cold surge events. 

 

3.2.2  Interspecies correlations of chlorinated VSLS 
 

It is known that measured chlorinated VSLSs do not all originate from the exactly 

the same sources (Table 3.1). However, the temporal patterns of all compounds 

throughout the whole campaign periods both in Taiwan (Figure 3.1) and Bachok 

(Figure 3.2) seem comparable which suggests that the compounds are co-emitted, 

or at least coming from same source location(s). In this section, interspecies 

correlation analysis was performed to identify if any connection exists between the 

four measured chlorinated VSLSs. The strengths of the relationships were measured 

using the Spearman correlation coefficients (R) that inform on how strongly two 

variables are related to each other. The R value varies between 0 and 1 with a perfect 

correlation represented by an R value of 1. High levels of correlation will indicate 

combined emissions or source locations. 
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The interspecies correlations of four chlorinated VSLSs in air samples measured in 

Taiwan and Bachok are discussed in Section 3.2.2.1 and Section 3.2.2.2, respectively. 

 

3.2.2.1  Taiwan 
 

Figure 3.3 shows the correlation plots between CH₂Cl₂ and other chlorinated VSLSs. 

The interspecies correlations for the other three compounds (CH₂ClCH₂Cl, CHCl₃ 

and C₂Cl₄) are presented in the form of correlation matrices (Table 3.4). In most 

cases, CH₂Cl₂ correlated significantly with all chlorinated VSLSs throughout the 

multiyear campaigns. 

 

 
Figure 3.3: Interspecies correlations between CH₂Cl₂ and other chlorinated VSLSs, 
CH₂ClCH₂Cl (left panel), C₂Cl₄ (centre panel) and CHCl₃ (right panel) during multiyear 
campaigns in Taiwan.  

 

Table 3.4 Correlation matrices for three chlorinated VSLSs, CH₂ClCH₂Cl, CHCl₃ and 

C₂Cl₄ measured in Taiwan. The value presented is the correlation coefficient (R). 

Correlations that are significant (p<0.05) are in bold font. 

   

 2013 

 CH₂Cl₂ CH₂ClCH₂Cl CHCl₃ C₂Cl₄ 

CH₂ClCH₂Cl 0.55 1.00 0.92 0.44 

CHCl₃ 0.53 0.92 1.00 0.46 

C₂Cl₄ 0.79 0.44 0.46 1.00 

No. of data 
points 

19 19 19 19 
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 2014 

 CH₂Cl₂ CH₂ClCH₂Cl CHCl₃ C₂Cl₄ 

CH₂ClCH₂Cl 0.96 1.00 0.88 0.84 

CHCl₃ 0.87 0.88 1.00 0.94 

C₂Cl₄ 0.79 0.84 0.94 1.00 

No. of data 
points 

22 22 22 22 

 

 2015 

 CH₂Cl₂ CH₂ClCH₂Cl CHCl₃ C₂Cl₄ 

CH₂ClCH₂Cl 0.94 1.00 0.93 0.64 

CHCl₃ 0.88 0.93 1.00 0.75 

C₂Cl₄ 0.77 0.64 0.75 1.00 

No. of data 
points 

23 23 23 23 

 

 

A reasonable overall correlation suggests that on the whole, the main sources of 

chlorinated VSLS were co-located. However, some significant outliers (Figure 3.4) 

provide an insight into other possible locations that may only be a source of one of 

the compounds. For example, during the 2013 campaign, there are four samples 

[denoted by (a),(b), (c) and (d)] where the points are above the CH₂Cl₂ and 

CH₂ClCH₂Cl regression plot (Figure 3.4 (a), left panel), with three of them with 

particularly high mixing ratios for CH₂ClCH₂Cl. Another example is during the 2015 

campaign (Figure 3.4 (b), right panel) in which there are three high values for 

CH₂ClCH₂Cl [denoted by (e) and (f)] identified above the regression plot. All six 

outliers from Taiwan [labelled (a) to (f) in Figure 3.4 (a)] and five outliers from 

Bachok [labelled (a) to (f) except (c) in Figure 3.4 (b)] showed high mixing ratios of 

CH₂ClCH₂Cl and CHCl₃ but the mixing ratios of CH₂Cl₂ in the same samples were low. 

Therefore, it is speculated that the outliers were from samples that had different air 

mass origins compared to the majority of the samples collected during the Taiwan 

campaigns. 
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(a) (b) 

 
Figure 3.4: (a) Correlation plot of CH₂Cl₂ and CH₂ClCH₂Cl with a focus on the six outliers 
in samples collected in 2013 (circles) and 2015 (triangles). (b): Correlation plot of CH₂Cl₂ 
and CHCl₃ with a focus on the six outliers in samples collected in 2013 (circles) and 2015 
(triangles). 
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Figure 3.5: Particle concentration analysis to assess the air masses that have resided over 
different regions during the 12 days prior to sampling with an insert of NAME footprints to 
give an overview of the origin of air masses for the six affected samples identified in Figure 
3.4. 

 

To investigate the origin of the air masses of the six samples, the individual NAME 

footprints for all affected samples were examined and a particle concentration 

analysis conducted to assess the air masses that have resided over different regions 

during the 12 days prior to sampling. This is to assess to what extent those regions 

influenced the sampled air. The results of the analysis are shown in Figure 3.5. 

In general, these six samples were collected when the air masses had spent a 

significant portion of the previous 12 days over Taiwan, which suggests the source 

of the high concentrations of both the CH₂ClCH₂Cl and CHCl₃ [denoted by (a), (b), 

(d), (e) and (f) in Figure 3.4(a) and (b)] may have been of local origin. Interestingly, 

the sample collected on 27 March 2013 [denoted by (c) in Figure 3.4 (b)] showed 

very high concentrations of CH₂ClCH₂Cl but low concentrations of CHCl₃. The main 

origin of the air mass for that particular sample [(Figure 3.5(c)] appears to have 

been Taiwan, which suggests that Taiwanese air masses might be sources of 

CH₂ClCH₂Cl but not CHCl₃. 

To summarise, all six samples demonstrated (1) the influence of local sources i.e. 

Taiwanese and (2) less influence from East China unlike the majority of the samples 

collected from Taiwan in 2013 and 2015. 
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3.2.2.2  Bachok 
 

Recall that in Section 3.2.1.2, the mixing ratios of CHCl₃ in air samples collected on 

the 31st January 2014 and the 1st February 2014 (Figure 3.2) were high in 

comparison to the other three measured chlorinated VSLSs. Whilst all air samples 

collected in Bachok were taken between 12 noon and 6 pm local time, the two 

samples collected on the 31st January 2014 and the 1st February 2014 were 

collected at 8.00 am local time. 

This means that those two samples were collected when air originated from the land 

prior moving to the sea as part of the local land-sea breeze effect. The NAME particle 

concentration analysis demonstrated in Figure 3.6 shows that there is a diurnal 

pattern in the NAME particles concentrations over the Peninsula Malaysia land area, 

with higher values during the night and early morning. This means that there is a 

greater influence of emissions from the land on the samples collected at the site at 

this time. The high concentrations of CHCl₃ found in these samples could result from 

various natural or local sources such as tropical terrestrial emissions and biomass 

burning. The latter might be possible as on certain days of the campaigns fires were 

started by local people to burn residential rubbish. 

Since the Bachok campaigns aimed to investigate long-range transport to the 

tropics, we are more interested in samples in which the air has travelled across the 

South China Sea with less mixing with local sources. Hence, in this section, I have 

decided to exclude the two samples in my analysis and made several assumptions: 

(1) the air travels across the South China Sea; and (2) all chlorinated VSLSs are 

emitted in the same general location but not necessarily from the same point 

sources. 
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Figure 3.6: Upper panel: The diurnal pattern of concentrations of particles (g s/m³) for air 

masses arriving in Bachok during the 2013/2014 campaign (dashed lines). Higher values 

indicated a greater influence of emissions from the land (i.e. Bachok) rather than marine 

emissions. Also presented are the mixing ratios of CHCl₃ (ppt), represented by blue circles. 

The times on the x-axis are in UTC (Local time = UTC + 8 hours). Lower panel: NAME 

footprints indicating the origin of air masses for samples collected on (a) 31st January 2014 

and (b) 1st February 2014. Both samples demonstrate unusually high mixing ratios of CHCl₃ 

(red circles). 

 

 

 

The results of the interspecies correlation show that there were very good 

correlations (R > 0.8, p < 0.05) between all four measured chlorinated VSLSs (Figure 

3.7, Table 3.5). This could possibly be because the air masses that transported the 

chlorinated VSLSs to Bachok originated or travelled across the same regions and so 

the chlorinated VSLSs are very likely to have similar source emissions.  
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(a) 
 

 
 

(b) 
 

 
 

(c) 
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(d) 
 

 
 

Figure 3.7: Interspecies correlation of chlorinated VSLSs measured at Bachok.  
(a) Correlation between CH₂Cl₂ and other chlorinated VSLSs – CH₂ClCH₂Cl (left panel), C₂Cl₄ 
(centre panel) and CHCl₃ (right panel) during the Northern Hemisphere winter 2013/2014 
and 2015/2016. (b), (c), (d) The same as (a), but for interspecies correlations of CH₂ClCH₂Cl, 
C₂Cl₄ and CHCl₃ with other chlorinated VSLSs. 

 

 

Table 3.5 Correlation matrices for three chlorinated VSLSs, i.e. CH₂ClCH₂Cl, CHCl₃ and 

C₂Cl₄ measured in Bachok. The value presented is the correlation coefficient (R). 

Correlations that are significant (p<0.05) are in bold font. 

   

 2013/2014 

 CH₂Cl₂ CH₂ClCH₂Cl CHCl₃ C₂Cl₄ 

CH₂ClCH₂Cl 1.00  0.94 0.95 

CHCl₃ 0.94 0.93  0.90 

C₂Cl₄ 0.85 0.95 0.90  

No. of data 
points 

26 26 26 26 

 

 

 2015/2016 

 CH₂Cl₂ CH₂ClCH₂Cl CHCl₃ C₂Cl₄ 

CH₂ClCH₂Cl 0.93  0.93 0.79 

CHCl₃ 0.93 0.84  0.90 

C₂Cl₄ 0.90 0.90 0.90  

No. of data 
points 

40 40 40 40 

 



84 
 

3.2.2.3 Synthesis 
 

Overall, there were good correlations between all species from both Taiwan and 

Bachok, indicating that they were emitted from the same general location. 

Therefore, in the subsequent analysis rather than looking at individual species, only 

CH₂Cl₂ will be used as an example. 

Interestingly, the presence of some significant outliers from the interspecies 

correlations of chlorinated VSLSs observed in Sections 3.2.2.1 and 3.2.2.2 provide 

an insight into other possible locations of the sources of the measured compounds. 

In this study, I have looked at the outliers to try to better understand the sources of 

these compounds. I demonstrated that the affected samples had significantly 

different air mass origins from the majority of the samples. The affected samples 

were influenced by local point sources, which caused the correlation coefficient to 

change slightly. For example, the correlation coefficients for the Taiwan data vary 

from year to year and were not as strong as for Bachok. Taiwan samples were 

expected to be better correlated than Bachok due to the fact that Taiwan is located 

closer to the source region, i.e. East China (based on the NAME footprints). But this 

is not the case when the samples were strongly influenced by local Taiwanese 

sources. 

 

3.2.3 Identification and quantification of possible 

geographical source region(s) of chlorinated VSLSs  
 

To understand the variations in the chlorinated VSLSs’ mixing ratios, the recent 

histories of the air masses that arrived at the measurement sites needed to be 

assessed. For that purpose, analyses of the NAME footprints and their relative 

particle concentrations have been conducted to investigate the possible origins and 

paths of the particles which arrived at the station during the sampling periods. This 

exercise was especially important when the mixing ratios were extraordinarily high. 
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The 2013–2016 measurement campaigns in Taiwan were conducted during the 

springtime (March to May), the season in which the strongest Asian continental 

outflow was observed. The monthly NAME footprints demonstrate that during that 

period, the winter monsoon airflow usually drives Asian continental outflow 

originating in inland China to the Pacific Ocean (Figure 3.8). The footprints covered 

various regions north of the tropics which meant that emissions from any of these 

regions may have impacted air reaching the Taiwanese stations during the periods 

of campaigns. 

 

(a) 2013 campaign  

  
 
 

(b) 2014 campaign  
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(c) 2015 campaign  

  

(d) 2016 campaign  

  
 

Figure 3.8: The monthly sum of the NAME footprints for each month are a combination of the 

daily NAME footprints for each month during the Taiwan campaigns in 2013, 2014, 2015 and 

2016. The twelve-day air mass history footprints were calculated for three hourly periods and 

these have been integrated into monthly footprints. The sum of the NAME footprints provides an 

overview on the dispersion of the air masses and possible countries that might contribute 

emissions to air masses that arrived in that particular month.  

 

The measurement campaigns in Bachok were conducted during the Northern 

Hemisphere winter months (November to February). The first campaign was from 

the 20th January 2014 to the 5th February 2014. The second campaign was 

conducted from the 19th November 2015 to the 27th January 2016. During that 

period of sampling, the air flow was generally dominated by south-eastward 

movement of cold air in the high-pressure Siberian-Mongolian High. This is evident 

in the monthly NAME footprints during the campaign periods 2013/2014 and 

2015/2016 (Figure 3.9), where the cold air then passed the East Asia region and 

travelled to the northern South China Sea and as far as the tropics. 
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Figure 3.9 The monthly NAME footprints for the Bachok campaigns in 2013/2014 and 

2015/2016. The twelve-day air mass history footprints were calculated for three hourly 

periods and these have been integrated into monthly footprints. The sum of the NAME 

footprints provides an overview on the dispersion of the air masses and possible countries 

that might contribute emissions to air masses that arrived in that particular month. 

 

 

All trajectories in their twelve-day journey passed over a combination of countries. 

Figure 3.8 and 3.9 show the NAME footprints covering various countries which 

mean that emissions from any of these countries may have impacted air reaching 

the Taiwan and Bachok stations during the periods of campaigns. The geographical 

sector map for Bachok and Taiwan that depicts the possible source locations for the 

air masses sampled during each campaign assessed from analysis of the NAME 

footprints can be found in Figure 2.6 in Chapter 2, Section 2.4.1.5.1. 

(a) 2013/2014 campaign  

        
 

(b) 2015/2016 campaign  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure x shows an examples of monthly footprints for January 2014 produced from the 
combination of 31 NAME daily outputs in the month of January. for the dispersion of air masses  
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Asian countries can be divided into sub-regions according to the classification 

system of the 2017 United Nations Population Division (United Nations, 2007). This 

exercise was important since China is a big country comprising six provinces. 

Although China belongs to the East Asian region, all its six sub-regions have been 

clustered into a separate region called “China” in this study (Table 3.6). The 

segregation of China from East Asia also enabled the conduction of more detailed 

analyses to determine whether regions apart from East China contribute to the 

variations in the mixing ratios of chlorinated VSLSs. 

 

Table 3.6: Classification of Asian countries by sub-region. 

China East Asia South East Asia Oceanic regions 

 East China 
 South West China 
 South Central 

China 
 North East China 
 North China 
 North West China 

 

 Taiwan 
 Korea 
 Japan 

 Malaysia 
 Indochina 
 (Thailand, Cambodia, 

Laos, Vietnam) 
 Philippines 
 Indonesia 

 

 East China Sea 
 Japan Sea 
 South China Sea 
 Pacific Ocean 

 

 

3.2.3.1 Taiwan 

 

As mentioned in Section 3.2.2, the mixing ratios of CH₂Cl₂ correlated well with other 

chlorinated VSLSs, suggesting that they shared common sources or source regions. 

Therefore, an understanding of the influences of potential regions on the CH₂Cl₂ 

mixing ratio variation would also shed some light on the potential sources of other 

chlorinated VSLSs measured in this work. 

The mixing ratio of CH₂Cl₂ can be regarded as extremely high when it is 

consistently more than 300 ppt (i.e. almost ten times higher than the background 

levels). These samples containing extremely high CH₂Cl₂ were mainly influenced by 

continental air masses, especially from the China (East China) and East Asia regions 

(Figure 3.10). When lower mixing ratios were observed (< 300 ppt), contributions 

from continental air masses reduced. In this situation, the oceanic regions showed a 

strong influence on the air masses, primarily from the East China Sea and the Pacific 
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Ocean. Likewise, the samples collected between 2014 and 2016 inclusive also had 

similar findings (i.e. air masses of continental origin gave rise to CH₂Cl₂ mixing ratios 

of over 300 ppt). Evidently, low mixing ratios reflect greater oceanic influence. 

 

(a) 2013 

 
 
(b) 2014 

 



90 
 

(c) 2015 

 
 
(d)  2016 

 
Figure 3.10 The mean particle concentrations (g s/m³) from potential source regions 

during the 2013 to 2016 campaigns in Taiwan. 
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3.2.3.2 Bachok 
 

In the Bachok campaigns, CH₂Cl₂ mixing ratios that were consistently above 130 ppt 

were regarded as extremely high. On average, the high CH₂Cl₂ mixing ratios in 

2013/2014 were influenced by air masses that originated from the oceanic regions 

(especially from the South China Sea). Air masses from East China and Indochina 

also had an effect on CH₂Cl₂ mixing ratios that were in excess of 130 ppt, even 

though the mean particle concentrations were not as high as those which were 

influenced by air masses from the oceanic regions [Figure 3.11 (a)]. When the CH₂Cl₂ 

mixing ratios were low, the influence of air masses from terrestrial regions (e.g. 

China and Indochina) and oceanic regions (e.g. South China Sea and Pacific Ocean) 

decreased and increased respectively. Clearly, the air masses have very minimal 

contact with East Asia regions i.e. Taiwan, Japan and Korea, suggesting that the East 

Asia regions do not contribute to the variation of CH₂Cl₂ and other chlorinated VSLSs 

at Bachok. Evidently, all the observations during the 2013/2014 campaign were 

similar to those of the 2015/2016 campaigns [Figure 3.11 (b)]. 

 

(a) 2013/2014 
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(b) 2015/2016 
 
 
 

 
 
Figure 3.11: The mean relative particle concentrations (g s/m³) from potential 
 source regions during the (a) 2013/2014 and (b) 2015/2016 campaigns in Bachok. 
 
 
 
 
 

3.2.3.3 Synthesis  

 

The East Asia region has always been known to have the potential to act as a source 

of chlorinated VSLSs due to rapid industrialization in the region. This means various 

trace gases including chlorinated VSLSs could be emitted by the industrial sector in 

substantial concentrations to the atmosphere. The findings from this work are 

consistent with recent publications (e.g. Ashfold et al. (2015), Hossaini et al. (2017), 

Oram et al. (2017)) and provide further evidence that the East Asia region is 

responsible for the emission of chlorinated VSLSs. 

Overall, the analysis conducted in this section suggests China to be the main source 

region of CH2Cl2 observed at both Taiwan [Table 3.7 (a)] and Bachok [Table 3.7(b)]. 

The fact that there are strong observed correlations between CH2Cl2 and the other 

observed chlorinated VSLSs suggests China is also a strong source of other observed 

chlorinated VSLSs. 
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Table 3.7: (a) Association of particle concentrations (g s/m³) from potential source regions with 
the observed mixing ratios of CH₂Cl₂ in Taiwan. The values indicate the Spearman correlation 
coefficients, R. Significant correlations (p < 0.05) are in bold font. 
 

Sub-
regions 

Potential regions 2013 2014 2015 2016 

China 1. East China 0.33 0.60 0.73 0.92 

2. North China 0.43 0.22 0.39 0.08 

3. Northeast China 0.40 -0.23 0.56 0.14 

4. Northwest China 0.28 0.57 -0.13 -0.01 

5. Southcentral China 0.27 0.58 0.66 0.41 

6. Southwest China 0.22 0.66 0.01 0.20 
East Asia 7. Taiwan -0.11 0.24 0.21 -0.07 

8. Japan -0.26 -0.14 0.53 0.03 

9. Korea 0.18 -0.01 0.62 0.31 
South East 

Asia 
10. Indochina -0.27 0.49 -0.01 0.00 

11. Philippines -0.19 0.10 0.03 0.06 
Oceanic 
regions 

12. East China sea 0.39 0.39 0.68 0.13 

13. Japan Sea -0.20 -0.10 0.59 0.41 

14. Pacific Ocean -0.36 0.12 -0.25 -0.07 

15. South China Sea -0.41 0.15 0.07 0.10 
 
 
Table 3.7: (b) Association of particle concentrations (g s/m³) from potential source regions 
with the observed mixing ratios of CH₂Cl₂ in Bachok. The values indicate the Spearman 
correlation coefficients, R. Significant correlations (p < 0.05) are in bold font. 
 

Sub-
regions 

Potential regions 2013/2014 2015/2016 

China 1. East China 0.87 0.68 

2. North China 0.61 0.56 

3. Northeast China -0.49 0.49 

4. Northwest China 0.86 0.61 

5. Southcentral China 0.82 0.80 

6. Southwest China 0.76 0.70 
East Asia 7. Taiwan 0.14 0.47 

8. Japan -0.86 0.20 

9. Korea -0.61 0.44 
South East 

Asia 
10. Indochina 0.34 0.50 

11. Peninsula Malaysia -0.05 -0.22 

12. East Malaysia 0.42 -0.53 

13. Philippines -0.50 -0.65 
Oceanic 
regions 

14. East China sea 0.47 0.46 

15. Japan Sea -0.90 0.38 

16. Pacific Ocean -0.70 -0.57 

17. South China Sea -0.57 -0.57 
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At this stage, it is challenging to pinpoint which industrial sector(s) were 

responsible for emitting the chlorinated VSLS and if the emissions were from single 

or multiple industrial applications. The challenge arises due to limited knowledge of 

Chinese emissions and a lack of official usage reports to regulating bodies (Gooch, 

2016). However, there are known sources of chlorinated compounds in East China 

that could be associated with chlorinated VSLSs. 

 

A recent study by Oram et al. (2017) reported that emissions of CH₂Cl₂, CHCl₃ and 

C₂Cl₄ could be connected with the manufacturing of HCFC-22. Production of HCFC-

22 requires CHCl₃ as a feedstock, with more than 99% of the CHCl₃ made being used 

to produce HCFC-22. Like any other manufacturing process that produces 

chloromethanes, manufacturing CHCl₃ leads to the inevitable co-production of 

CH₂Cl₂ and co-production of C₂Cl₄ (3-5%). The production ratios of CH₂Cl₂:CHCl₃ 

vary within the range of 30:70 to 70:30, depending on the individual plant. The 

chloromethane plants in China represent 60% of global production and, in 2015, 

China produced approximately 600 kt of HCFC-22 (Nolan Sherry Associates, 2015). 

Much of the Chinese HCFC-22 production caters for the growing demand in 

developing countries for HCFC-22 which is used as a replacement for CFCs. Given 

the significant production of HCFC-22 in China and the fact that most HCFC-22 

factory clusters are known to be located on the eastern coast of China, specifically in 

the Shangdong, Jinagsu, Shejian and Sichuan provinces (Stohl et al., 2010), it is 

probable that HCFC-22 plants in East China contribute significantly towards the 

elevated chlorinated VSLSs detected over the Asia region. 

 

As for CH₂ClCH₂Cl, the increased atmospheric emissions in this region could be due 

to the large use of CH₂ClCH₂Cl in vinyl chlorine manufacturing, the precursor of 

polyvinyl chloride (PVC). China is the world’s largest producer of PVC, accounting 

for 27% of global production in 2009 (DCE, 2018). Production has increased rapidly 

in recent years (14% per year over the period 2000–2009; DCE, 2018), which could 

potentially have led to increased atmospheric emissions of CH₂ClCH₂Cl (Oram et al., 

2017). Since most of the industry is located in the eastern coast of China (Adcock et 

al., 2018), this further explains the good correlations observed between variations 

of measured CH₂ClCH₂Cl with air mass particle concentrations from the East Asia 

region. 
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It is interesting to note that other Chinese regions, e.g. Southcentral China, also have 

a significant influence on the variation of chlorinated VSLSs measured in Bachok and 

Taiwan. Significant correlation between particles from Southcentral China and 

chlorinated VSLSs could be due to the industrial sector in that region. There are 

several HCFC-22 plants located in Southcentral China (Stohl et al., 2010) which 

could contribute towards emissions of CH₂Cl₂, CHCl₃ and C₂Cl₄. 

 

The findings also demonstrate the significant effect of other regions such as 

Indochina towards the variation of measured VSLSs, in particular in Bachok during 

2015/2016 campaign. Another source of chlorinated VSLSs such as CH₂Cl₂ and 

CHCl₃ is biomass burning. Previous literature reports that higher chlorinated 

compounds such as CH₂Cl₂ and CHCl₃ are emitted during incomplete combustion 

(Lobert et al., 1999). Indochina is known as one of the main regions in the tropics 

where biomass burning is extensive (Huang et al., 2016) and we suspect that this 

could influence the variability of measured chlorinated VSLSs. However, due to the 

uncertainty in the contribution of biomass burning (Simmonds et al., 2006) and 

insufficient data available within the scope of this study, verification of this theory 

was challenging. 

 

 

3.2.4  Influence of cold surges at Bachok 
 

3.2.4.1 Northeast monsoon winds and cold surges 
 

Prior to investigating the influence of cold surges on the variation of observed 

chlorinated VSLSs, it is essential to understand the features of the monsoon winds 

that affected the South East Asia region during the period of the campaigns. In order 

to characterise the northerly winds and identify cold surge events, two type of 

indices have been employed, the meridional wind, v at 15°N and v at 8°N (more 

details in Section 2.4.1.5.4, Chapter 2). The former index is generally accepted and 

commonly employed to represent cold surges in climatology, whilst the latter index 
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is an alternative created to represent strong meridional transport near our study 

area. 

Comparison between time series of v at 15°N and 8°N are presented in Figure 3.12. 

Notice that v at 15°N is often much larger than at 8°N. For example, between the 

23rd and 25th January 2016, the maximum value of v at 15°N reached -18 m s⁻¹ in 

comparison to v at 8°N which reached -12 m s⁻¹. Also notice that during that same 

period, high values of v at 15°N occurred earlier than those at 8°N. In fact, 

throughout all the campaigns (a) the magnitude of v at 15°N was often larger than 

at 8°N and (b) the changes in v at 15°N often preceded similar changes to v at 8°N. 

This is to be expected because the meridional wind data tracks the intensity of the 

north-south component of the wind with higher negative values indicating the 

southward-moving component of the winds. Also, the fact that there is a time lag 

between v at 15°N and v 8°N is because the air is moving to the south and any 

variations in wind speed will reach 15°N before 8°N. Nevertheless, the differences 

in meridional wind intensity and the time lags between the two indices were not 

significant (p > 0.05). This suggests that the choice of v at 15°N and v at 8°N would 

not significantly change our overall conclusions. Therefore, I have decided to focus 

on v at 8°N rather that the v at 15°N for the subsequent analysis as the index best 

suits the geographical scope of our investigation. 

 

 

Figure 3.12: Time series of averaged 925-hPa meridional wind extracted at 8°N (solid dark 

line) and 15°N (dashed line) during the Bachok campaigns in 2013/2014 (left-hand panel) 

and 2015/2016 (right-hand panel). The red arrows highlight the periods of the cold surge 

events i.e. when both v at 8°N and v at 15°N are < -8 m s⁻¹. 
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The intensity of the northerly winds in Figure 3.12 can be classified based on the 

categories of the northerly winds defined by Chang et al. (2005) and Ashfold et al. 

(2017) and the results are presented in Figure 3.13. Strong winds are defined as v 

at 8°N < -8 m s⁻¹, weak winds are defined as v at 8°N > -4 m s⁻¹ and moderate winds 

are defined as wind speed between the two limits, -4 m s⁻¹ < v at 8°N < -8m s⁻¹. 

During the 2013/2014 campaign (19th January to 5th February 2014), the weak 

winds occurred 38% of the time, strong or cold surge winds 16% of the time and 

moderate winds 46% of the time (Figure 3.13). For the 2015/2016 campaign (19th 

November 2015 to 27th January 2016) the corresponding values for weak, strong 

and moderate winds were 31%, 12% and 58% of the time. During both campaigns 

the northerly wind is mostly moderate, i.e. 4 m s⁻¹ < v at 8°N <-8 m s⁻¹. Yet, cold 

surge events (i.e. when v at 8°N < -8 m s⁻¹) are common during Northeast monsoon 

seasons. During the 2013/2014 winter, the early part of the campaign demonstrated 

the occurrence of cold surge events (denoted by red arrows in Figure 3.12). This is 

evident when v at 8°N is less than -8 m s⁻¹ between 19th January and 23th January 

2014. During 2015/2016, the occurrence of cold surges can be seen more often in 

comparison to 2013/2014. Some examples can be seen: (1) between 15th December 

to 20th December 2015, (2) 31st December 2015 to 1st January 2016 and (3) 24th 

January to 26th January 2016. Comparison between the two campaigns showed that 

the frequency of cold surges in 2015/2016 was three times more than in 2014/2015 

(Figure 3.13). This was because the 2014/2015 campaign was later in the winter 

season after most of the cold surge events had occurred. The cold surge event in 

2013/2014 lasted around five days whilst in 2015/2016 cold surges occurred 

regularly and lasted around three days. 
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Figure 3.13: Categories of northerly wind i.e. v at 8°N during campaigns in 2013/2014 and 

2015/2016. The numbers in each bar indicate the total number of strong, average and weak 

winds. Strong winds are defined as v at 8°N < -8 m s⁻¹, weak winds are defined as v at 8°N > 

-4 m s⁻¹ and moderate winds are defined as wind speed between the two limits, i.e. -4 m s⁻¹ 

< v at 8°N < -8 m s⁻¹.  

 

 

3.2.4.2 Cold surges and atmospheric composition 
 

Figure 3.14 shows the comparison between the cold surge index and the time series 

of CH2Cl2. There are some indications that a relationship exists between the 

magnitude of the northerly wind component and the mixing ratio of CH2Cl2. An 

example would be the sample collected on 17th December 2015, when one of the 

highest mixing ratios of CH2Cl2 was recorded during 2015/2016 campaign and it 

coincided with a cold surge event (v = -9.4 m s⁻¹). This finding suggests the possible 

connection between cold surges and regional atmospheric compositions. 

However, the direct relationship between CH2Cl2 mixing ratios and cold surges is not 

always the case. For example, during the 2013/2014 campaign, a cold surge was 

detected on the 22nd January 2014 when v = -11 m s⁻¹. The mixing ratio of CH2Cl2 

was only recorded to be around 150 ppt but interestingly, the CH2Cl2 mixing ratios 

on the next day were found to be 353 ppt which was unusually high. This implies 

that there may have been a lag between the time when the strong northerly winds 
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were experienced near Bachok and the transport of air polluted with CH2Cl2 from 

further away. 

 

Figure 3.14: Time series of the meridional winds, v at 8°N (black solid line) versus CH₂Cl₂ 

(ppt) (red circles) observed at Bachok during campaigns in 2013/2014 (left panel) and 

2015/2016 (right panel). (a) and (b) are examples of samples that have high mixing ratios 

of CH₂Cl₂ (ppt) that coincide with v values lower than -8 m s-1. 

 

To further understand the relationship between the variation of CH₂Cl₂ mixing 

ratios and northerly winds speeds, the correlation coefficients were computed as 

shown in Table 3.8 and summarised in Figure 3.15. 

During the 2013/2014 campaign, CH₂Cl₂ mixing ratios significantly correlated with 

the northerly winds that occurred one to five days before the sampling date. This is 

consistent with the high mixing ratios of CH2Cl2 on 23rd January 2014 being linked 

to the cold surge that happened a day before. During the 2015/2016 campaign, 

CH₂Cl₂ mixing ratios were found to correlate significantly with the northerly winds 

on the day of sampling and up to two days before sampling. These findings suggest 

that cold surges can lead to increased CH2Cl2 mixing ratios at Bachok during the 

following few days. 
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Table 3.8: Slope and correlation coefficient, R, values for correlation between mixing ratios of 

CH₂Cl₂ (ppt) and meridional wind at 8°N from the day of sampling (T) to seven days before 

sampling. For example, T-1 represents one day before the sampling day.  

 

v at 8°N 
(m s⁻¹) 

2013/2014 2015/2016 

Slope  R p value Slope  R p value 

 T -13.59 0.26 0.005413 -8.90 0.20 0.004211* 

T-1 -17.79 0.39 0.000421* -13.03 0.43 0.000005* 

T-2 -18.24 0.52 0.000015* -8.89 0.19 0.004418* 

T-3 -20.49 0.56 0.000004* -5.33 0.08 0.083463 

T-4 -22.55 0.56 0.000004* 0.98 0.00 0.780228 

T-5 -16.30 0.44 0.000121* 0.05 0.00 0.989367 

T-6 -10.41 0.22 0.012455 -2.44 0.01 0.476217 

T-7 -10.01 0.18 0.024096 3.60 0.03 0.292329 

* p < 0.05 

 
Figure 3.15: Summary of the correlation between mixing ratios of CH₂Cl₂(ppt) and meridional 

wind at 8°N during the sampling day (T) and days before sampling. For example, T-1 

represents one day before the sampling day. 

 

 

The relationships between CH₂Cl₂ mixing ratios and meridional wind speeds at 8°N 

four days prior to sampling (T-4) for 2013/2015 and one day prior to sampling (T-

1) for 2015/2016 (Figure 3.16) suggest that during a cold surge event, i.e. when the 

meridional wind speeds at 8°N are above the threshold (8 ms⁻¹), the CH₂Cl₂ mixing 

ratios are reasonably likely to exceed 150 ppt at Bachok in the following days. A 
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comprehensive analysis with more datasets is required to more robustly to evaluate 

the impact of cold surges on atmospheric composition. 

 
Figure 3.16: Correlation between CH₂Cl₂ mixing ratios (ppt) with meridional wind at 8°N 

four days prior to sampling (T-4) for 2013/2014 (blue circles) and meridional wind at 8°N 

one day prior to sampling (T-1) during 2015/2016 (red circles). 

 

 

3.2.4.3  Synthesis 
 

In this analysis, it was shown that cold surges have a significant impact on the 

variability of chlorinated VSLSs at Bachok. The cold surge events are typical synoptic 

disturbances that occur in this region. They are manifested by the rapid south-

eastward movement of cold air in the high-pressure Siberian-Mongolian High, 

passing through East Asia and terminating south of China (Chang et al., 2005). The 

findings provide further evidence of the potential of cold surges to rapidly transport 

chlorinated VSLSs from mainland China to the tropics, which is in agreement with 

other studies that have reported the impact of cold surges on other ozone-depleting 

substances (e.g. Adcock et al. 2018 and Oram et al. 2017) and ozone (e.g. Ashfold et 

al. 2017) in Southeast Asia. Although the first evidence of cold surges during Bachok 

campaign has been demonstrated (e.g. Oram et al. 2017), this work for the first time 

used the cold surge index to define cold surges (this index is generally used in 

climatology) which strengthens understanding of the relationship between cold 

surges and the variability of chlorinated VSLSs. 
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Additionally, the findings from two years of campaigning have confirmed that cold 

surges can occur regularly throughout the winter periods and can last for several 

days. The occurrences of cold surge events in 2013/2014 were not as regular as in 

2015/2016 due to the stronger winds were less observed in 2013/2014 (Section 

3.2.4.1) compared to 2015/2016. Also, the period of the 2013/2014 campaign was 

much shorter and later than the 2015/2016 campaign, which means that the 

occurrence of cold surges cannot be fully observed in comparison to 2015/2016 

campaign. On the other hand, the winter 2015/2016 was known as an El Nino 

winter. Studies by Inness et al. (2015) and Hou et al. (2016) have found that year-

to-year variations in O3 in the tropical boundary layer are linked to El Nino-Southern 

Oscillation (ENSO), which modifies chemical and transport processes, and drives 

changes in emissions of O3 precursors. Also, in most other parts of South East Asia, 

pollutant levels are higher during El Nino winters (Ashfold et al., 2017). Therefore, 

the frequency and duration of future campaigns should be consistent and increased 

if possible in order to (1) evaluate that the year-to year variation in cold surge 

activity and (2) investigate how the influence of cold surges on the variation of 

atmospheric composition in this region can be affected by El Nino-Southern 

Oscillation (ENSO). 

 

3.2.5  Effect of emission sources on chlorinated VSLS mixing ratio 

 

This section looks into the influences of various emission sectors on the mixing 

ratios of chlorinated VSLS at Taiwan and Bachok with the purpose of identifying the 

likely key sources of chlorinated VSLS emissions. 

As described in Chapter 2, carbon monoxide (CO) surface emission data from the 

representative concentration pathways (RCPs) were used along with the NAME 

footprints to estimate the modelled CO mixing ratios. The modelled CO mixing ratios 

were compared with the chlorinated VSLS mixing ratios at the measurement sites. 

The details of the method are provided in Chapter 2 (Section 2.4.1.5.3). 
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(a) 
 

(b) 

  
 
 

(c) 
 

(d) 

  
 

Figure 3.17: Potential and relevant emission sectors of chlorinated VSLSs. The distribution 

of carbon monoxide (CO) emissions (kgm-2 s-1) for 2010 due to (a) industry (combustion and 

processing), (b) solvents, (c) agriculture (waste burning on fields) and (d) forest burning. 

The white area represents the location of study region also known as the model domain 

(approximately bounded by 75 – 185 ◦E and 10 ◦S – 45 ◦N). The inventories of carbon 

monoxide (CO) emissions were taken from Representative Concentration Pathway 8.5 

(2010) to derive modelled CO to estimate the emissions of chlorinated VSLSs. 
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CO emissions inventories are divided into four categories of emission sectors i.e. 

industry (combustion and process), solvent production, agriculture (waste burning 

on fields), and forest burning (Figure 3.17). These types of emission sectors were 

chosen since they were most likely to represent the emission sources of chlorinated 

VSLSs. 

 

3.2.5.1 Taiwan 

 

The results of the correlation analysis between modelled CO derived from each 

emission sector and CH2Cl2 are presented in Figure 3.18. There was a significant 

correlation (R > 0.5, p > 0.05) between the observed CH₂Cl₂ and modelled CO from 

industrial, solvent production and agricultural emissions in 2013, 2014, 2015 and 

2016 (Table 3.9). The correlations between CH₂Cl₂ were all quite similar with 

industry, solvents and agricultural burning. Interestingly the slopes of the 

correlations were very different, i.e. there were very different emission ratios of 

CO:CH₂Cl₂. This reflects the much larger amounts of CO emitted from industry. 

Looking at the emission distributions from these sectors (Figure 3.17), they are 

fairly similar which implies that these emission sectors are largely co-located. On 

the other hand, the correlations between CH₂Cl₂ and modelled CO due to forest 

burning were found to be insignificant throughout the four campaigns, suggesting a 

minimal contribution of forest burning towards the variability of chlorinated VSLSs 

in Taiwan. 
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Figure 3.18: Correlations of the modelled CO from various emission sectors with CH₂Cl₂ 

(ppt) measured at Taiwan from 2013 to 2016. The modelled CO (ppb) is due to emissions 

occurring within the timescale of the backward trajectories i.e. 12 days.  

 

 

Table 3.9: Association of modelled CO mixing ratios derived from various emission types with the 

observed mixing ratios of CH₂Cl₂ in Taiwan. The values indicate the Spearman correlation 

coefficients (R). Significant correlations (p < 0.05) are in bold.  

Emission type 2013 2014 2015 2016 

1. Industry (combustion and processing) 0.64 0.63 0.79 0.86 

2. Solvent 0.56 0.57 0.64 0.77 

3. Agriculture (waste burning on fields) 0.49 0.51 0.74 0.80 

4. Forest burning -0.11 0.32 0.18 0.02 
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Also, the high CH2Cl2 mixing ratios (> 300 ppt) corresponded to high contributions 

of modelled CO from various sectors [Figure 3.19 (a)]. In contrast, when the mixing 

ratios of CH2Cl2 were low (< 300 ppt), the contribution of modelled CO also 

decreased. These observations were similar to those for the 2014, 2015 and 2016 

campaigns [Figure 3.19 (b–d)]. 

 

(a) 2013 (b) 2014 
 

 

 

 

 
 
(c) 2015 

 
 
(d) 2016 

  

 

 

 

 

 
 

Figure 3.19 Comparison between modelled CO (ppb) from various emission sectors with 

high (> 300 ppt) and low (< 300 ppt) mixing ratios of CH₂Cl₂ in Taiwan between 2013 and 

2016. The modelled CO mixing ratio is accounted for by various emissions within the 

timescale of the backward trajectories (i.e. 12 days prior to the observations). 
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Overall, the variation of CH₂Cl₂ observed in Taiwan from 2013 to 2016 has been 

influenced by emissions due to industry (combustion and processing), the solvent 

industry and biomass emissions (i.e. agriculture burning). 

 

 

3.2.5.2 Bachok 
 

The results of the correlation analysis between modelled CO due to each emission 

sector and chlorinated VSLSs are presented in Figure 3.20 and Table 3.10. For both 

the 2013/2014 and the 2015/2016 campaign, the modelled CO due to emissions 

from industrial, solvents and agriculture (waste burning on fields) were 

significantly correlated (R > 0.69, p > 0.05) with observed CH₂Cl₂ at Bachok. On the 

other hand, the correlation between modelled CO due to forest burning emissions 

and observed CH₂Cl₂ was found to be insignificant in the 2013/2014 campaign but 

significant in the 2015/2016 campaign. 
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Figure 3.20: Correlation of the modelled CO with CH₂Cl₂ (ppt) measured at Bachok in the 

winters of 2013/2014 and 2015/2016. The modelled CO (ppb) is due to emission sectors 

occurring within the timescale of the backward trajectories i.e. 12 days.  

 

Table 3.10: Association of modelled CO mixing ratios derived from various emission types 
with the observed mixing ratios of CH₂Cl₂ in Bachok. The values indicate the Spearman 
correlation coefficients (R). Significant correlations (p < 0.05) are in bold. 
 

Emission type 2013/2014 2015/2016 

1. Industry (combustion and processing) 0.80 0.69 

2. Solvent 0.83 0.71 

3. Agriculture (waste burning on fields) 0.71 0.70 

4. Forest burning 0.27 0.45 

 

Figure 3.21 (a) shows that the high CH2Cl2 mixing ratios (> 130 ppt) corresponded 

to the high contribution of modelled CO from various sectors. In contrast, when the 

mixing ratios of CH2Cl2 were low (< 130 ppt), the contribution of modelled CO also 

decreased. These observations were similar to those of the 2015/2016 campaign 

[Figure 3.21 (b)]. Interestingly, when high CH2Cl2 mixing ratios were recorded in the 
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2015/2016 campaign, much higher contributions of forest burning towards the 

modelled CO were observed. This was not the case during 2013/2014 campaign. 

 

(a) 2013/2014 (b) 2015/2016 

  

 
 

Figure 3.21: Comparison between modelled CO (ppb) from various emission sectors with 

high (> 130 ppt) and low (< 130 ppt) mixing ratios of CH₂Cl₂ in Bachok during 

2013/2014 and 2015/2016. The modelled CO mixing ratio is accounted for by various 

emissions within the timescale of the backward trajectories (i.e. 12 days prior to the 

observations). 

 

 

3.2.5.3 Synthesis 
 

Within the domain of our study area, the results showed that chlorinated VSLSs 

were likely to be emitted from anthropogenic sources, i.e. they were probably 

related to industrial activity that is mainly located in the mid-latitudes (north of 

20˚N) and especially from East China, the region where most of these industrial 

emissions are located (as per suggested in Section 3.2.3.3). The findings are 

consistent with recent publications (e.g. Ashfold et al. (2015), Hossaini et al. (2017), 

Oram et al. (2017)) that suggest and provide evidence that rapid industrialization 

especially in China is responsible for the growing emission of chlorinated VSLSs. 
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The modelled CO was well correlated with observed CH₂Cl₂ in both Taiwan and 

Bachok, suggesting that combustion and processing from industrial sectors were 

likely to be related to the emissions of CH₂Cl₂ and other chlorinated VSLSs. It seems 

unlikely that chlorinated VSLSs were direct products of industrial combustion. Thus, 

the chlorinated VSLSs measured in this work most probably originated from an 

industrial process or processes producing or involving chlorinated VSLSs. 

Chlorinated VSLSs could be associated with the production of HFC and HCFC, which 

is likely responsible for the increased emissions of chlorinated VSLSs in recent years 

(Campbell et al., 2005, Hossaini et al., 2017). 

On the other hand, since CH₂Cl₂ mixing ratios correlated well with CO from the 

solvent industry, it can be suggested that some emissions of CH₂Cl₂ were due to its 

continuing use as a common solvent in various applications which include use in 

metal cleaning/degreasing, paint removal, and use by the pharmaceutical industry 

for preparing drugs. It is also used as blowing agent in production of foam plastics. 

This is also the case for CH₂ClCH₂Cl and C₂Cl₄ which have been predominantly used 

as solvents in the dry-cleaning industry (McCulloch et al., 1996, Montzka et al., 

2011). 

Although a significant contribution is shown to be from industrial sources, 

emissions of VSLSs could also be from biomass burning. Both the Taiwan and 

Bachok data in this section have highlighted that the variability of CH₂Cl₂ can be 

significantly related not only to anthropogenic sources but also nonindustrial 

sources i.e. from agriculture (waste burning on fields) in the mid-latitudes. Field 

burning of crop residues is common both in rural agricultural regions and peri-

urban areas in China as it is a method used to control weeds and clear agricultural 

combustible waste inexpensively (Chen et al., 2017). Interestingly, the 2015/2016 

Bachok data showed that biomass burning in the region south of 20⁰N could have 

also been a potential emitter of chlorinated VSLSs. This could be true since a 

substantial part of biomass burning activities occur in tropical regions and thus may 

be the dominant trace gas source in these areas with otherwise only relatively small 

manmade emissions (Andreae, 1991). However, little information is known on the 

contribution of biomass burning as a potential emission source.  

Although it is evident from this analysis that chlorinated VSLSs are consistently 

associated with emissions from industry and biomass burning, it is still uncertain as 
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to the exact the mechanism or pathway that leads the chlorinated VSLSs to being 

emitted to the atmosphere. This work was restricted to a limited number of 

compounds and further investigation (e.g. correlations with other tracers) may 

enable detailed source pinpointing and provide concrete conclusions as to the 

possible emission sources of each gas. 

 

3.3 Conclusions 
 

The mixing ratios of the chlorinated VSLSs generally exceeded the global 

background values in both Taiwan and Bachok demonstrating a widespread 

regional enhancement. For both campaigns, CH₂Cl₂ was more abundant, followed by 

CH₂ClCH₂Cl, CHCl₃ and C₂Cl₄. The NAME trajectory and the particle concentration 

analysis showed that higher mixing ratios events were associated with continental 

air masses, especially from the region of East Asia. This also explained why the 

mixing ratios of chlorinated VSLSs showed more variation and often higher mixing 

ratios in Taiwan than Bachok as Taiwan is located closer to major source regions. 

This study demonstrates that the enhancement of chlorinated VSLSs in East and 

Southeast Asia most probably originates from anthropogenic sources related to 

industries in the mid-latitudes, primarily in East China. CH₂Cl₂, CH₂ClCH₂Cl and 

CHCl₃ could be associated with the production of HFC and HCFC. As for CH₂ClCH₂Cl, 

the increase in atmospheric abundances in this region could be due to the large use 

of CH₂ClCH₂Cl in vinyl chlorine manufacturing, the precursor of polyvinyl chloride 

(PVC). Interestingly, biomass burning could also potentially contribute towards the 

variability of the measured chlorinated VSLSs. However, ground-based 

measurements, which can provide strong evidence to support the rationale that 

biomass burning activities have extensive influences towards chlorinated VSLSs, 

remain limited. Hence, it is necessary to carry out more investigations, especially in 

the South East Asia region, to further understand the impact of biomass burning 

towards chlorinated VSLSs. More studies at different times of the year could also be 

helpful to compare how different seasons affect the variability of chlorinated VSLSs. 

In addition, the findings provide further evidence that the observed enhancements 

in chlorinated VSLS mixing ratios are caused by rapid meridional transport, in the 
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form of “cold surges”, from the relatively polluted East Asian land mass to the 

tropics. This work for the first time used the cold surge index to define cold surges 

(this index is generally used in climatology) which strengthened understanding of 

the relationship between cold surges and the variability of chlorinated VSLSs. 

Overall, this work has suggested that the sources of chlorinated very-short-lived 

substances (VSLSs) may just be co-located with emission activities generated from 

industry, solvent production, waste burning on agricultural fields found in the 

regions of East Asia and South East Asia. The fact that both regions contain various 

sources of chlorinated VSLSs suggests the importance of the regions as potential 

emitters of chlorinated VSLSs to the atmosphere. This highlights the importance of 

conducting further regional studies not only as few measurements have been made 

so far but also the proximity of this region to prevalent deep convection, which 

increases the chance of pollutants emitted from here being transported into the 

stratosphere and impacting the ozone layer. 
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Chapter 4 

Methyl Halides in East Asia and South East Asia 

________________________________________________________________________________________________________ 

 

4.1 Introduction 
 

The atmospheric mixing ratios of many halogenated substances have declined and 

stabilised. This was in view of the reduction in anthropogenic halocarbon 

contributions to ozone loss as a result of their production limits as per the Montreal 

Protocol (Montzka et al., 2018). Hence, the relative influence of naturally-produced 

halogenated substances towards the future chemistry of the stratospheric ozone 

becomes ever more significant (Gebhardt et al., 2008). The predominant natural 

sources of stratospheric chlorine and bromine are methyl chloride (CH₃Cl) (17%) 

and methyl bromide (CH₃Br) (50%) respectively (Carpenter et al., 2014). 

The mean global surface mixing ratio of CH₃Cl in 2012 was 540 ppt (range = 

537.1 – 542.2 ppt). Also, the abundance of CH₃Cl had declined since the previous 

WMO assessment in 2008 (~546 ppt). Similarly, a declining trend was observed in 

the mean global surface mixing ratio of CH₃Br (7 ppt in 2012 vs ~7.4 ppt in 2008) 

(Carpenter et al., 2014). Unlike the majority of the halogenated substances 

mentioned in Chapter 3, both aforementioned methyl halides are mainly of natural 

origin, and thus their atmospheric abundances are less influenced by anthropogenic 

emissions. Their largest sink reaction is that with hydroxyl radicals (OH). Table 4.1 

summarises the current understanding of the sources and sinks of both gases. 
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Table 4.1: Sources and sinks of atmospheric CH₃Cl and CH₃Br 
 

  
Source type 

Source range (Gg/year)  
Sink type 

Sink range 
(Gg/year) 

 Best 
estimates 

Range Best 
estimates 

Range 

CH₃Cl  Natural sources      

 1. Oceans 700 510 – 910 1. OH reaction 
2. Loss to soil 
3. Loss in 

ocean 
4. Loss in 

stratosphere 

2832 2470  3420 

 2. Terrestrial sources   1058 664 – 1482 

  Tropical and 
subtropical plants, 
Tropical dead leaves 

2040 
 
 

12 
85 

145 
27 
3.7 
15 
n.q. 

1430 – 
2650 

 
 

11 – 12 
1.1 – 170 
128 – 162 

5.5 – 48 
2.7 – 4.9 

9 – 21 
n.q. 

370 
 

146 

296 – 445 

  Mangroves 
 Salt marshes 
 Fungus 
 Wetlands 
 Rice paddies 
 Shrub lands 
 Rapeseed 

  

 3. Biomass burning 
  (open field burning) 
 

355 142 – 569    

 Anthropogenic sources      

 Coal combustion 
 Waste incineration 
 Industrial processes 

 

162 29 – 295    

 Total 
 

3658  Total 4406  

       
CH₃Br Natural sources    

1. OH reaction 
2. Loss to soil 
3. Loss in 

ocean 
4. Loss in 

stratosphere 

 
56 

 
48 – 63 

 1. Oceans 32 22 – 44 30 19 – 41 

 2. Terrestrial sources n.q. n.q. 33 20 – 44 

  Tropical and 
subtropical plants, 
Tropical dead leaves 

 Mangroves 

n.q. 
 
 

1.3 

n.q. 
 
 

1.2 – 1.3 

 
4 

 

  Salt marshes 
 Fungus 
 Wetlands 
 Rice paddies 
 Shrub lands 
 Rapeseed 

7 
2.2 
0.6 
0.7 
0.7 
5.1 

0.6 – 14 
1 – 5.7 

0.1 – 1.3 
0.1 – 1.7 
0.5 – 0.9 
4.0 – 6.1 

  

 3. Biomass burning 
  (open field burning) 

17 7 – 27   

  
Anthropogenic sources 

    

 1. Leaded gasoline 
2. Fumigation – QPS 
3. Fumigation – non-QPS 

0 – 3 
7.4 
2.5 

 
6.9 – 7.8 
1.7 – 3.5 

 

  

 Total 84  Total 123 
 

 

Note : n.q. = not quantified, QPS = Quarantine and pre-shipment          Source : adapted from Carpenter et al. 
(2014) 
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Overall, CH₃Cl and CH₃Br have several common sources, namely oceans, 

terrestrial sources (mangroves, fungi, salt marshes, wetlands, rice fields, and 

shrublands) as well as biomass burning (indoor biofuel use and open field burning). 

CH₃Cl also originates from sources that do not generate CH₃Br. These include 

tropical and subtropical terrestrial sources (e.g. plants and/or their degraded 

materials) as well as coal combustion (i.e. from waste incineration and industrial 

activities). Likewise, CH₃Br has its unique sources (i.e. terrestrial sources like 

rapeseed, leaded gasoline, and fumigation activities). 

Despite the comprehensive measures previously taken to quantify the 

sources and sinks of both gases, the sinks of CH₃Cl and CH₃Br still outweigh the 

sources, and the budgets of both gases remain unbalanced (Gebhardt et al. (2008), 

Hu (2012), Carpenter et al. (2014). Previous studies (e.g. Yokouchi et al. (2000), 

Yokouchi et al. (2002), Lee‐Taylor et al. (2005), Blei et al. (2010)) have proposed 

several tropical terrestrial sources of CH₃Cl and CH₃Br apart from the oceans and 

biomass burning. However, the sparseness of these methyl halides measurements 

has resulted in huge uncertainties over the nature and strengths of the tropical 

sources (Gebhardt et al., 2008). With regards to the global CH₃Br budget, its sinks 

seem to outweigh the sources, thereby suggesting the existence of an 

underestimated or still-unknown (tropical) source (Gebhardt et al., 2008). The 

source–sink imbalance might also be attributable to an underestimation of the 

atmospheric lifetime of CH₃Br (Reeves, 2003). It is estimated that both naturally-

occurring gases contribute up to 25% of the stratospheric halogen loading, and that 

this value will exceed 50% by 2050 (WMO, 2007). For that reason, further 

investigations on the origins of the missing sources are required. Also, the 

atmospheric abundance of said gases should be continuously monitored. Likewise, 

further understanding of their life cycles is important for the development of 

additional global policies and regulations pertaining to ozone-depleting substances 

(Simmonds et al., 2004). 
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This chapter explores the abundances of CH₃Cl and CH₃Br in East Asia and South 

East Asia. Specifically, the Taiwan and Bachok observational datasets are 

interpreted in order to: 

 

1. Assess the variability of methyl halides at both sampling locations and to 

identify the presence of above-background levels of the same. 

 

2. Investigate the potential sources regions and types of emissions that can 

contribute to the variations of the levels of methyl halides. 

 

It is important to highlight that the following section will not start off with the typical 

methodology section. Since the methodology of this study has already been 

presented in Chapter 2, it will not be discussed in detail here. Instead this chapter 

will directly proceed to the presentation and discussion of the key findings (Section 

4.2). Conclusions and suggestions of further studies are put forward in Section 4.3. 

 

4.2 Results & Discussion 

4.2.1 Mixing ratios of methyl halides 
 

4.2.1.1 Taiwan 
 

Figure 4.1 shows the mixing ratios of CH₃Cl and CH₃Br in Taiwan during campaigns 

from 2013 to 2016. Overall, the mixing ratios of both exceeded their background 

atmospheric mixing ratios. For instance, the mean atmospheric mixing ratios of 

CH₃Cl during the said timeframe were 37.9% to 71.1% greater than the global mean 

value of 540 ppt. As for the mixing ratios of CH₃Br, the mean was 2 to 3 times greater 

than the global mean value (7 ppt) (Table 4.2). 

Evidently, the mixing ratios of CH₃Cl and CH₃Br throughout the campaigns were 

highly variable. Both gases appeared to be enhanced simultaneously [examples are 

labelled by (a), (b), (c), and (d) in Figure 4.1]. The NAME footprints showed that the 
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spikes in the methyl halide mixing ratios were associated with the occurrence of 

continental air masses which mainly originated from the boundary layer over 

eastern China [examples are indicated by (a), (c), and (d) in Figure 4.1]. Additionally, 

the high mixing ratios of methyl halides were influenced by Taiwan itself [an 

example is indicated by (b)]. When lower mixing ratios were observed, the NAME 

footprints [as denoted by (e)] showed that the air masses still originated from the 

north, with minimal contact with inland regions such as China and Taiwan. 

 

Table 4.2: Summary of data on methyl halides obtained during measurement campaigns in 

Taiwan 

 2013 2014 2015 2016 Global surface 
mixing ratio a 

Mean 
(ppt) 

Range 
(ppt) 

Mean 
(ppt) 

Range 
(ppt) 

Mean 
(ppt) 

Range 
(ppt) 

Mean 
(ppt) 

Range 
(ppt) 

Mean (ppt) 

CH₃Cl  924.0 756.4 
– 

1237 

744.5 576.5 
– 

1086.8 

770.3 640.9 
– 

1091.4 

826.4 670.8 
– 

1326.4 

540  

CH₃Br 22.5 
 

15.8 – 
48.8 

15.3 8.9 –
25.2 

13.4 8.7 – 
20.6 

17.1 10.5 – 
34 

7 

Note: 
a The global surface mean mole fraction of CH₃Cl and CH₃Br were determined by the NOAA and AGAGE 
global networks in 2012 (Carpenter et al. (2014)) 
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(a) 21/3/2013 01:30:00 UTC (b) 28/3/2014 07:30:00 UTC 
 

 

 

 
 

(c) 22/3/2015 01:30:00 UTC (d) 28/4/2016 04:00:00 UTC 
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(e) 22/3/2014 07:30:00 UTC 

 

 
 

Figure 4.1: Upper panel: Mixing ratios (ppt) of the methyl halides in air samples collected 
in Taiwan in 2013, 2014, 2015 and 2016. The global surface mean mixing ratios for each 
methyl halide in 2012 are represented by the dashed lines. Also shown are the examples 
where the observed mixing ratios of methyl halides are unusually high, indicated by (a), (b), 
(c) and (d). For comparison, (e) represents a mixing ratio that is much closer to the global 
surface mean mixing ratio of each methyl halide. Lower panel: NAME footprint maps 
generated from a back-trajectory analysis indicating the likely origin of the air sampled in 
Taiwan, with the darker colours indicating greater influence. The colour scale is logarithmic 
and represents the calculated time-averaged concentration within surface layer (0–100 m) 
during the 12 days prior to the sampling days given a point release in Taiwan. The NAME 
footprints for samples when the air masses have influence from the potential source regions, 
e.g. East China, are indicated by (a), (b), (c), and (d), whilst (e) is a NAME footprint of air 
that was less affected by potential source regions.  

 

 

4.2.1.2 Bachok 
 

During both the 2013/2014 and 2015/2016 campaigns, the mixing ratios of the 

methyl halides were already higher than their global surface mean mixing ratios 

(Table 4.3, Figure 4.2). Specifically, the mean values of CH₃Cl in 2013/2014 and 

2015/2016 were 778.5 ppt and 709 ppt respectively, which were 44% and 31% 

higher than that of the global value (540 ppt). In terms of CH₃Br, the mean values 

were 11.6 ppt and 9.7 respectively, which were 65% and 39% higher than the global 

value of 7 ppt. 

Table 4.3: Summary of data on methyl halides obtained during measurement campaigns in 

Bachok 

 

1st campaign 
(2013/2014) 

2nd campaign 
(2015/2016) 

Global surface 
mixing ratio a 

 

Mean 
(ppt) 

Range 
(ppt) 

Mean 
(ppt) 

Range 
(ppt) 

Mean (ppt) 

CH₃Cl  778.5 592.8 – 1574.1 709 612.1 – 1017.7 540  

CH₃Br 11.6 8.1 – 20.8 9.7 7.6 – 15.0 7.0 
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(a) 31/01/2014 00:00 UTC (b) 1/2/2014 00:00 UTC 
 

 
 

 

(c) 19/11/2015 09:00 UTC (d) 30/11/2015 09:00 UTC 
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(e) 17/12/2015 09:00 UTC (f) 4/1/2016 03:00 UTC 
 

 

 

 
 

(g) 24/1/2014 10:30 UTC (h) 23/11/2015 09:00 UTC 
 

 
 

 
 

 
(i) 20/1/2016 09:00 UTC 

 

 

 

 

 

 
 
 

 
Figure 4.2: Upper panel: Mixing ratios (ppt) of the methyl halides in air samples collected 
in Bachok during the Northern Hemisphere winters, 2013/2014 and 2015/2016. The global 
surface mean mixing ratios of each methyl halide in 2012 are represented by the dashed 
lines. Also shown is the period of cold surge events (grey shaded regions). This is to highlight 
that differences in meteorological conditions affect the variation of methyl halides. The 
examples where the observed mixing ratios of methyl halides were unusually high are also 
shown, indicated by (a) to (h). For comparison, (i) represents a mixing ratio much closer to 
the global surface mean mixing ratio for each methyl halide. Lower panel: NAME footprint 
maps generated from a back-trajectory analysis indicating the likely origin of the air 
sampled in Bachok, with the darker colours indicating greater influence. The colour scale is 
logarithmic and represents the calculated time-averaged concentration within surface 
layer (0–100 m) during the 12 days prior to the sampling days given a point release in 
Bachok. 
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In addition, some enhancements in the mixing ratios of methyl halides were 

observed on certain days during the campaigns. For example, spikes in the mixing 

ratios of CH₃Cl and CH₃Br were seen on two days of the 2013/2014 campaign 

[labelled by (a) and (b)] and five days of the 2015/2016 campaigns [denoted by (c) 

to (f)]. In all seven instances of elevated methyl halide mixing ratios, the air masses 

had some contact with continental and oceanic regions as per the NAME footprints. 

Also, the footprints showed that the mixing ratios had a certain degree of 

dependence on the amount of contact of air masses with the terrestrial sector. The 

fact that the air substantially dispersed within the marine sector supports the notion 

that the compounds could be primarily of marine origin. This suggests that the 

oceanic production of halocarbons is mostly related to biological processes or 

reactions that make use of decaying organic matter (Gebhardt et al., 2008). 

Interestingly, the mixing ratio enhancements on 31 January and 1 February 2014 

were substantial for CH₃Cl but slight for CH₃Br. As stated in Section 3.2.2.2 in 

Chapter 3, the samples collected on both these days were influenced by the land-sea 

breeze effect, which meant that the air originated from Bachok (i.e. the land) and, to 

a lesser extent, the marine sector. The high mixing ratios of methyl halides were 

unlikely to be attributed to the industrial sources in light of the fact that Bachok is a 

rural area with very minimal industry. Therefore, the high concentrations of both 

methyl halides could come from various natural or local sources such as tropical tree 

emissions and biomass burning. The latter might be possible because on certain 

days of the campaigns, fires were started by locals to burn residential rubbish. 

Apart from the seven days on which the mixing ratios were increased, there were 

isolated spikes in the mixing ratio of CH₃Br on two additional days – i.e. 24 January 

2014 and 23 November 2015 [labelled by (g) and (h) respectively]. In other words, 

the mixing ratios of CH₃Br on both days were elevated relative to its background 

values by a much greater percentage amount than were those of CH₃Cl. On 24 

January 2014, the spike corresponded with the arrival of air that most likely 

originated from the boundary layer over eastern China, as per the NAME footprint 

map. However, the NAME footprint map of 23 November 2015 showed very little 

influence from the terrestrial regions and the eastern China region as depicted by 

(h). Rather, the influence of the marine sector was greater; the air mass 

predominantly originated from the South China Sea and the Pacific Ocean, with 
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some from the Philippines and Borneo. Overall, the different air mass origins on 

those two days suggests that the cause of the elevated CH₃Br mixing ratios but not 

CH₃Cl mixing ratios in Bachok could have been caused by anthropogenic sources on 

one day and natural sources on another.   

 

4.2.1.3 Synthesis 

 

The methyl halide mixing ratios at Taiwan and Bachok were generally higher than 

the background levels, demonstrating widespread regional enhancement. As the 

mixing ratios in Taiwan were slightly higher and more variable than those in 

Bachok, the site in Taiwan was likely to be located relatively closer to the major 

source regions. With reference to the NAME footprints, some preliminary 

conclusions of the possible origins and emission histories of the compounds could 

be drawn, especially when the mixing ratios were extraordinarily high. Overall, the 

air masses spent more time over the South China Sea during the campaigns, which 

implied that oceanic sources had an effect on the observed concentrations. However, 

the NAME footprints depicted in Figure 4.2 suggested that East Asian and South East 

Asian sources were also responsible for the high concentrations of methyl halides in 

Taiwan and Bachok. In Section 4.2.3, the influences of potential regions on the 

variations of the mixing ratios of the methyl halides are further investigated and 

quantified. 

Although the high mixing ratios of methyl halides above the background level as 

observed in Bachok may reflect a substantial contribution from Chinese industrial 

emissions, natural or nonindustrial sources present in the region may affect the 

observed mixing ratios of methyl halides. Both CH₃Cl and CH₃Br predominantly 

originate from natural sources, mainly biomass burning and oceanic sources. 

Bachok is located in a maritime continent, a tropical site with both oceanic and 

terrestrial sources nearby, along with frequent biomass burning. This suggests that 

the abovementioned sources could possibly contribute towards the variations of 

methyl halides. 

It was also highly likely that the peak concentrations of methyl halides in Bachok 

were influenced by meteorological conditions. One cold surge was detected during 
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the earlier part of the 2013/2014 campaign, while two more were detected in the 

middle of the 2015/2016 campaign (denoted by grey shaded regions in Figure 4.2). 

Coincidently, during these cold events, the mixing ratios of the methyl halides were 

enhanced, suggesting that the unusual enhancements in the mixing ratios of methyl 

halides in such regions were caused by unusually strong northerly winds in the form 

of “cold surges”. Therefore, rapid meridional transports are likely to act as an 

important mechanism for transporting large quantities of these short-lived 

chlorinated compounds, with the capacity to deplete stratospheric O3, from East 

Asian emission sources to Bachok and other locations near the tropics (Ashfold et 

al., 2017). 

The findings from this work were found to be consistent with Ashfold et al. (2015), 

who showed that during a Northern Hemisphere winter, cold surges could, over a 

few days, rapidly transport polluted air masses from East Asia to tropical South East 

Asia. In summary, it is evident from this work that meteorological conditions, e.g. 

cold surges, can influence the variability of the measured methyl halides. However, 

since (a) a handful of cold surges were detected during the campaigns and (b) as 

there are still few studies (e.g. Liu et al. (2003) and Wang et al. (2016)) on the 

importance of cold surges in the tropics, further observations are required to 

investigate the influence of cold surges on the atmospheric compositions of the said 

substances in such regions. 

4.2.2 Interspecies correlations of methyl halides 

 

In this section, the outcomes of interspecies correlation analyses are presented to 

shed some light on the potential sources of methyl halides in Taiwan and Bachok. 

The initial analysis was performed to identify the presence of connections between 

CH₃Cl and CH₃Br. A similar analysis was also performed for methyl halides and other 

chlorinated VSLSs – e.g. dichloromethane (CH₂Cl₂), which represents a chlorinated 

VSLS of predominantly anthropogenic origin, as well as chloroform (CHCl₃), which 

arises from both anthropogenic and natural sources (more details in Chapter 3). The 

interspecies correlations are discussed in Sections 4.2.2.1 and 4.2.2.2 respectively. 
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4.2.2.1 Taiwan 

In general, the mixing ratios of CH₃Cl correlated well with CH₃Br (R > 0.6) in most 

years, although a slightly lower correlation coefficient was observed in 2013 [Table 

4.4(a)]. The mixing ratios of CH₃Cl also correlated very well (R > 0.6) with CH₂Cl₂ 

over multiple years. The same (R > 0.6) was true for CH₃Cl versus CHCl3 in 2014, 

2015, and 2016 as well, but not in 2013 [Table 4.4 (a)). Meanwhile, CH₃Br correlated 

well with CH₂Cl₂ in 2014, 2015 and 2016 but not in 2013 [Table 4.4 (b)]. CH₃Br also 

correlated with CH₃Cl in all four years [Table 4.4 (b)]. Evidently, the correlations had 

year-to-year variations. This was probably due to the sampling of air from different 

source regions which in turn were very likely to have different source signatures. 

Table 4.4: Interspecies correlations of mixing ratios between (a) CH₃Cl with other compounds, 

and (b) CH₃Br with other compounds in Taiwan during campaigns from 2013 to 2016. The 

values indicate the Spearman correlation coefficients (R). Correlations that are significant 

(p<0.05) are in bold font. 

(a) CH₃Cl versus other species 
 
 2013 2014 2015 2016 
CH₃Br 0.62 0.75 0.78 0.92 
CH₂Cl₂ 0.63 0.91 0.65 0.90 
CHCl₃ 0.49 0.81 0.65 0.87 
No. of data 
points 

19 22 23 33 

 

(b) CH₃Br versus other species 
 
 2013 2014 2015 2016 
CH₃Cl  0.62 0.75 0.78 0.92 
CH₂Cl₂ 0.52 0.65 0.55 0.90 
CHCl₃ 0.28 0.61 0.63 0.81 
No. of data 
points 

19 22 23 33 

 

It is noteworthy that in 2013, the correlation between CH₃Cl and CH₃Br had a R 

value that was lower (0.62) than those of other years (range: 0.75 – 0.92) (Table 4.4, 

Figure 4.3). To identify the cause of the change in the correlation strength, the 

correlation plots were examined for the presence of significant outliers. Also, 

individual NAME footprints and outcomes of the NAME particle concentration 

analysis were used to provide further insight on the origins of the air masses of the 
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affected samples. In Figure 4.3 (a), there was a point below the CH₃Cl and CH₃Br 

regression plot which denoted a high mixing ratio of CH₃Cl but low mixing ratio of 

CH₃Br [denoted by (a)]. This outlier corresponded to the sample collected on 21 

March 2013, when the air masses had some influence from the East Asian region 

(China, Taiwan, and Korea). Apart from minimal contributions from Taiwan and 

Korea, it is interesting to note that some influence from Indochina was also seen on 

that day. 

Comparisons were also made against the data points that showed high mixing ratios 

of CH₃Cl and CH₃Br. One such point corresponded to the samples taken on 4 April 

2013, when the air masses were under a greater influence from oceanic regions 

rather than continental sites (especially China) [Figure 4.3 (a) and (b)]. The 

contradictory origins of air masses on 21 March 2013 and 4 April 2013 suggested 

that (1) continental air masses, especially those from East Asia, had a more 

significant impact on the mixing ratio of CH₃Cl than that of CH₃Br, as well as (2) the 

air masses from South East Asia, especially Indochina, contributed more to the high 

mixing ratios of CH₃Cl. Overall, CH₃Cl correlated well with CH₃Br in most years, 

indicating that they were very likely to arise from similar source emissions. 

(a) 
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Interestingly, the mixing ratios of CH₃Cl and CH₃Br correlated very well (R > 0.7) in 

2014, 2015, and 2016; the regression slope was also relatively constant during this 

period (Figure 4.4). Hence, these findings suggest that their different lifetimes did 

not have a significant effect on their ratios. 

Also, it is noted that when there were good interspecies correlations (R > 0.5), the 

correlation coefficients between CH₃Cl and other compounds (i.e. CH₂Cl₂ and CHCl3) 

were always higher than those of CH₃Br against CH₂Cl₂ and CHCl3. This implies a 

possible link between the sources of CH₃Cl with those of CH₂Cl₂ and CHCl3. 

 

4.2.2.2 Bachok 

 

A good correlation (R = 0.7) was observed between CH₃Cl and CH₃Br in 2013/2014, 

highlighting that they could have shared similar source type(s) or region(s) (Table 

4.5). CH₃Cl also correlated well (R > 0.6) with other chlorinated VSLSs (i.e. CH₂Cl₂ 

and CHCl₃) [Table 4.5(a)], which suggested that the variability in the mixing ratios 

(b) 

 

 
Figure 4.3: The correlation between CH₃Cl and CH₃Br in which the R value was low in 
comparison to the R values recorded for other years. The NAME footprints and the results of 
the particle concentration analysis are presented to understand the source of air masses for 
affected samples. 
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of CH₃Cl during the 2013/2014 campaign could have been influenced by mixed 

sources or similar source regions. Meanwhile, CH₃Br also correlated well with CHCl₃ 

(R = 0.58) and CH₂Cl₂ (R = 0.61) [Table 4.5(b)]. 

In 2015/2016, some degree of correlation was seen between CH₃Cl and other 

species, although these values were slightly lower than those of 2013/2014 [Table 

4.5(a)]. This was also the case with the correlation coefficients between CH₃Br and 

other species [Table 4.5(b)]. The significant year-to-year variations in the 

correlation coefficients could probably be attributed to the different transport 

pathways taken by the air masses prior to reaching Bachok. During the 2015/2016 

campaigns, the air masses might not have traversed the same regions that emitted 

significant quantities of methyl halides. The differing source regions in each year 

were very likely to contain different source signatures or ratios. 

Table 4.5: Interspecies correlations of mixing ratios of (a) CH₃Cl with other compounds, and 

(b) CH₃Br with other compounds in Bachok during the 2013/2014 and 2015/2016 

campaigns. The values indicate the Spearman correlation coefficients (R). Correlations that 

are significant (p<0.05) are in bold font. 

 

(a) CH₃Cl versus other species 
 
 2013/2014 2015/2016 

CH₃Br 0.70 0.42 

CH₂Cl₂ 0.64 0.31 

CHCl₃ 0.65 0.36 

No. of data points 26 40 
 

 

(b) CH₃Br versus other species 
 

 

 2013/2014 2015/2016 

CH₃Cl  0.70 0.42 

CH₂Cl₂ 0.61 0.13 

CHCl₃ 0.58 0.18 

No. of data points 26 40 
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4.2.2.3 Synthesis 

 

In the Taiwan campaigns, the mixing ratios of CH₃Cl and CH₃Br had very good 

correlations in 2014 (R = 0.75), 2015 (R = 0.78), and 2016 (R = 0.92). Also, the 

gradients in Figure 4.4 (a) were relatively constant from year to year. Similarly, a 

good correlation (R = 0.70) existed between CH₃Cl and CH₃Br in Bachok during the 

2013/2014 campaign [Table 4.5, Figure 4.4 (b)]. These findings suggest that the 

compounds’ different lifetimes did not have a significant effect on their ratios. 

 

(a) Taiwan  (b) Bachok 

  
Figure 4.4: The correlation plots for CH₃Br and CH₃Cl during multiyear campaigns in (a) 
Taiwan and (b) Bachok.  

 

 

Additionally, when good interspecies correlations were observed (R > 0.5), the 

correlation coefficients of CH₃Cl with CH₂Cl₂ and CHCl3 were always higher than 

those of CH₃Br with the same compounds. This suggests the presence of a significant 

link between the sources of CH₃Cl with those of CH₂Cl₂ and CHCl3. 

The lack of correlation between CH₃Cl and CH₂Cl₂ during 2015/2016 campaign in 

Bachok was probably caused by potentially minimal influences of anthropogenic 

sources from East China. The same was also true for CH₃Br versus CH₂Cl₂ in 

2015/2016. In contrast, CH₃Br had some degree of correlation with CH₂Cl₂ in the 
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2013/2014 campaign, which implied that East China was a potential source of 

emissions. However, in all cases, the correlations were not significant (p > 0.05), 

which highlighted that the methyl halides in Bachok did not predominantly 

originate from anthropogenic sources. Instead, natural or nonindustrial sources – 

oceans, biomass burning, and tropical vegetation – could have been the chief 

contributors to the variability in the mixing ratios of methyl halides in Bachok, 

which would also explain the consistent elevation of their mixing ratios above their 

global surface mean mixing ratio. 

 

4.2.3 Identification and quantification of possible geographical 

source region(s) and source type(s) of methyl halides 
 

 

 

4.2.3.1 Potential geographical source region(s) 
 

To understand the variations in the methyl halide mixing ratios, the recent histories 

of the air masses that arrived at the measurement sites needed to be assessed. For 

that purpose, analyses of the NAME footprints and their relative particle 

concentrations have been conducted to investigate the possible origins and paths of 

the particles which arrived at the station during the sampling periods. This exercise 

was especially important when the mixing ratios were extraordinarily high. 

Over the twelve days prior to sampling, the trajectories of all particles traversed a 

combination of countries. Figure 4.5 shows examples of NAME footprints which 

covered various countries. In other words, the emissions from any of these countries 

could have had an impact on the air which arrived at the Taiwan and Bachok stations 

during the campaign periods. The geographical sector map for Bachok and Taiwan 

which depicts the possible source locations for the air masses sampled during each 

campaign, assessed from analysis of the NAME footprints, can be found in Figure 2.6 

in Chapter 2, Section 2.4.1.5.1. 
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(a) Taiwan campaign in March 2016 
 

(b) Bachok campaign in February 2016 

  
 

Figure 4.5: Examples of the monthly sum of the NAME footprints in (a) Taiwan and (b) 
Bachok. The sum of NAME footprints is a combination of the daily NAME footprints that 
provides an overview on the dispersion of the air masses and possible countries that may 
contribute emissions to the air masses that arrived in that particular month.  

 

 

The relevant countries can be divided into sub-regions according to the 

classification system of the 2017 United Nations Population Division (United 

Nations, 2007). This exercise was important since China is a big country comprising 

six provinces. Although China belongs to the East Asian region, its six sub-regions 

have been clustered into a separate region called “China” in this study (Table 4.6). 

The segregation of China from East Asia enabled more detailed analyses to 

determine whether regions apart from East China contribute to the variations in the 

methyl halide mixing ratios. 

 

Table 4.6: Classification of Asian countries by sub-region 

China East Asia South East Asia Oceanic regions 

 East China 
 South West China 
 South Central 

China 
 North East China 
 North China 
 North West China 

 

 Taiwan 
 Korea 
 Japan 

 Malaysia 
 Indochina (Thailand, 

Cambodia, Laos, 
Vietnam) 

 Philippines 
 Indonesia 

 

 East China Sea 
 Japan Sea 
 South China Sea 
 Pacific Ocean 

 

 

(a) 2013/2014 campaign  

        
 

(b) 2015/2016 campaign  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure x shows an examples of monthly footprints for January 2014 produced from the 
combination of 31 NAME daily outputs in the month of January. for the dispersion of air masses  
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4.2.3.1.1 Taiwan 

 

 As mentioned in Section 4.2.2.1, the mixing ratios of CH₃Cl correlated well 

with those of CH₃Br, thereby suggesting that they shared common sources or source 

regions. Therefore, an understanding of the influences of potential regions on the 

CH₃Cl mixing ratio variation would also shed some light on the potential sources of 

CH₃Br. 

The mixing ratio of CH₃Cl can be regarded as extremely high when it is 

consistently more than 900 ppt (i.e. almost double the global surface mixing ratio). 

Overall, eleven out of the nineteen samples obtained in 2013 had very high CH₃Cl 

mixing ratios. From these, nine of the samples contained high mixing ratios of CH₃Br 

(above 20 ppt). These samples were mainly influenced by the air masses which 

originated from oceanic regions, especially the East China Sea and the Pacific Ocean. 

Concurrently, the influences of continental air masses were also seen, especially 

from China (East China), Korea and Taiwan (Figure 4.6). When low mixing ratios 

were observed (< 900ppt), contribution of continental air masses reduced. This time 

much influence was seen coming from the oceanic regions. Likewise, the samples 

collected between 2014 and 2016 inclusive also had similar findings (i.e. air masses 

of continental origin gave rise to CH₃Cl mixing ratios of over 900 ppt). Evidently, low 

mixing ratios reflect greater oceanic influence. 

(a) 2013 
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(b) 2014 
 

 
 
 
 
(c) 2015 
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(d) 2016 
 

 

 
 
Figure 4.6 The mean particle concentration (g s/m³) from potential source regions during 
campaigns in Taiwan from 2013 to 2016. 

 

4.2.3.1.2 Bachok 

 

In the Bachok campaigns, CH₃Cl mixing ratios which were above 800 ppt could be 

regarded as extremely high. Meanwhile, CH₃Br mixing ratios which exceeded 11 ppt 

were considered to be high. On average, the high CH₃Cl mixing ratios in 2013/2014 

were influenced by air masses that originated from the oceanic regions (especially 

the South China Sea). Air masses from East China and Indochina also had an effect 

on CH₃Cl mixing ratios that were in excess of 800 ppt, even though the mean particle 

concentrations were not as high as those which were influenced by air masses from 

the South China Sea [Figure 4.7 (a)]. When the CH₃Cl mixing ratios were low, the 

influence of air masses from terrestrial regions (e.g. China and Indochina) and 

oceanic regions (e.g. South China Sea and Pacific Ocean) decreased and increased 

respectively. Evidently, these observations were similar to those of the 2015/2016 

campaigns [Figure 4.7 (b)]. It is interesting to note that the mean particle 

concentrations in the oceanic regions during the 2015/2016 campaign were much 

higher than that of the 2013/2014 campaign. Specifically, air masses from the South 

China Sea had a high CH₃Cl mixing ratio of 3.8 × 10 ̄³ g s/m³ in 2015/2016, which 

was almost double the value in 2013/2014 (1.7 × 10 ̄³ g s/m³). 
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(a) 2013/2014 
 

 

 
 
 
 
(b) 2015/2016 
 

 

 
Figure 4.7: Mean particle concentrations (g s/m³) from potential source regions during 
2013/2014 and 2015/2016 campaigns in Bachok. 

 

During the 2013/2014 campaign, there were two days in which the CH₃Cl mixing 

ratios were unusually high (Section 4.2.1.2). On 31 January and 1 February 2014, the 

aforementioned ratios were 1554 and 1574 ppt respectively – around three times 

higher than the global surface mean mixing ratio (540 ppt) and almost two times 
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higher than the threshold of high CH₃Cl mixing ratios (above 800 ppt) recorded 

during both 2013/2014 and 2015/2016 campaigns (Figure 4.2). The mixing ratios 

of CH₃Br were also elevated on these days, but their magnitudes were not as 

outstanding compared those of CH₃Cl. As mentioned in Section 4.2.1.2, the samples 

taken on these days were influenced by the land-sea breeze effect, which meant that 

the air masses spent more time over the land (Peninsular Malaysia) rather than the 

sea. Similar magnitude CH₃Cl mixing ratios, i.e. as high as 1500 ppt, have also been 

detected at Cape Hedo, Okinawa, Japan (26.9⁰N, 128.3⁰E) on a calm night (Yokouchi 

et al., 2000). A possible reason for this occurrence was the immense production of 

CH₃Cl in the island’s surrounding coastal waters (marine bioactivity). However, 

Moore et al. (1996) suggest that the emission of CH₃Cl was not only related to 

marine bioactivity and coastal waters; instead, land sources of CH₃Cl might also have 

been responsible for the increase. Bachok district in the state of Kelantan is a rural 

area whose primary economic activity is tobacco and kenaf plantations. Other 

agrarian activities in Kelantan include the production of rice and rubber (Farren et 

al., 2019). Those activities could be potential emitters of methyl halides. Since the 

unusually high CH₃Cl mixing ratios were recorded on the two days when the air 

masses spent more time over Peninsular Malaysia, the occurrence could be related 

to the biogenic emission which is released by many kinds of terrestrial plants 

(Zimmerman et al., 1979; Yokouchi et al., 1981). 

Overall, with reference to the influence of continental air masses, unusually high 

mixing ratios of particle concentrations were also observed in air masses coming 

from Peninsular Malaysia (Figure 4.8). This was contrary to the fact that high mixing 

ratios of CH₃Cl always corresponded to continental air masses which came from 

East China (Figure 4.7). Therefore, there was a good chance that the air masses 

sampled on those two days had spent a significant portion of time at Bachok. In other 

words, the outlier CH₃Cl mixing ratio peaks recorded on those two days were likely 

to be affected by local activities in Bachok. 
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Figure 4.8: Mean particle concentrations (g s/m³) of samples collected on 31 January and 
1 February 2014.  

 

 

 

4.2.3.2 Potential source type(s) 
 

This section examines the influences of various emission sectors on the mixing 

ratios of methyl halides at Taiwan and Bachok with the purpose of identifying the 

likely key sources of methyl halide emissions. 

As described in Chapter 2, carbon monoxide (CO) surface emission data from the 

representative concentration pathways (RCPs) were used along with the NAME 

footprints to estimate the modelled CO mixing ratios. The modelled CO mixing ratios 

were compared with the methyl halide mixing ratios at the measurement sites. The 

details of the method are provided in Chapter 2 (Section 2.4.1.5.3). 

The CO emission inventories were divided into seven emission sectors: (1) industry 

(combustion and processing), (2) surface transportation, (3) agriculture (waste 

burning in fields), (4) waste (landfills, waste water, waste incineration), (5) forest 

burning, (6) grassland burning, as well as (7) agriculture (animals, rice, soil). These 

types of emission sectors were chosen since they most likely represented the 

sources of methyl halide emissions (as described in Table 4.1, Section 4.1). 
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4.2.3.2.2 Taiwan 

 

Table 4.7 presents the Spearman correlation coefficients (R) for the association of 

the modelled CO mixing ratios (which were derived from various emission 

categories) with the mixing ratios of CH₃Cl and CH₃Br. This analysis aimed to assess 

the extent to which these categories of emissions influenced the mixing ratios of 

methyl halides in the air masses that arrived at Taiwan and Bachok. Doing so would 

shed some light on the potential source(s) of methyl halides. 

 

Table 4.7: Association of modelled CO mixing ratios derived from various emission types with 

the observed mixing ratios of (a) CH₃Cl and (b) CH₃Br in Taiwan. The values indicate the 

Spearman correlation coefficients (R). Correlations that are significant (p < 0.05) are in bold.  

(a) 

Emission type 2013 2014 2015 2016 

1. Industry (combustion and processing) 0.59 0.72 0.47 0.82 

2. Surface transportation 0.51 0.34 0.47 0.48 

3. Agriculture (waste burning on fields) 0.51 0.59 0.34 0.80 

4. Waste (landfills, waste water, incineration) 0.14 0.04 0.22 0.27 

5. Forest burning 0.09 0.29 0.34 0.05 

6. Grassland burning 0.13 0.24 0.37 0.17 

7. Agriculture (animals, rice, soil) 0.47 0.21 -0.03 0.02 
 

(b) 
 

Emission type 2013 2014 2015 2016 

1. Industry (combustion and processing) 0.40 0.55 0.49 0.85 

2. Surface transportation 0.28 0.39 0.41 0.60 

3. Agriculture (waste burning on fields) 0.33 0.42 0.38 0.74 

4. Waste (landfills, waste water, incineration) 0.05 -0.10 0.24 0.34 

5. Forest burning -0.21 -0.04 0.12 0.34 

6. Grassland burning -0.01 -0.09 0.22 0.03 

7. Agriculture (animals, rice, soil) 0.15 0.20 0.04 0.02 
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The results showed that the modelled CO mixing ratios, which were derived from 

industries (combustion and processing), surface transportation, and agriculture 

(waste burning in fields), correlated significantly with multiple years’ CH₃Cl mixing 

ratios, particularly in 2013 and 2016 [Table 4.7 (a)]. In 2014, significant correlations 

were observed between CH₃Cl mixing ratios with the modelled CO derived from 

industries (combustion and processing) and agriculture (waste burning in fields). In 

2015, modelled CO derived from industries (combustion and processing) and 

surface transportation correlated significantly with mixing ratios of CH₃Cl. 

As for CH₃Br [Table 4.7 (b)], the mixing ratios mainly correlated with modelled CO 

mixing ratios that were derived from industries (combustion) from 2014 until 2016. 

Unlike CH₃Cl, much stronger and significant correlations between CH₃Br mixing 

ratios and modelled CO derived from surface transportation and agriculture (waste 

burning in fields) were only seen in 2016. 

Interestingly, the plot patterns in Figure 4.9 imply that there were highly similar 

geographical distributions of three significant emissions of modelled CO (i.e. 

industry (combustion and processing), surface transportation and agriculture 

(waste burning in fields)). As these emission sectors are largely co-located, it is 

challenging to determine the exact source(s) of methyl halides. 
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4.2.3.2.2 Bachok 

 

In the 2013/2014 campaigns, significant correlations were observed between the 

mixing ratios of CH₃Cl and the modelled mixing ratios of CO that were derived from 

all emission types except for waste (landfills, waste water, incineration) and 

agriculture (animals, rice, soil) [Table 4.8 (a)]. However, the strengths of the 

correlations reduced during 2015/2016 campaigns; significant correlations were 

observed only between the mixing ratios of CH₃Cl and modelled CO mixing ratios 

that were derived from forest burning. 

Similarly, for CH₃Br, the 2013/2014 mixing ratios correlated significantly with the 

modelled mixing ratios of CO that were derived from all emission types except for 

(a) 2013 (b) 2014 

 

 

 

  
(c) 2015 
 

(d) 2016 

  

  

  

           
 
Figure 4.9: Comparison between modelled CO (ppb) from various emission sectors with high 
(> 900 ppt) and low (< 900 ppt) mixing ratios of CH₃Cl in Taiwan between 2013 and 2016. 
The modelled CO mixing ratio is accounted for by various emissions within the timescale of 
the backward trajectories (i.e. 12 days prior to the observations). 
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waste (landfills, waste water, incineration) and agriculture (animals, rice, soil) 

[Table 4.8 (b)]. In contrast, no significant correlations were observed between the 

mixing ratios of CH₃Br and the modelled CO mixing ratios that were derived from 

any of the sectors during the 2015/2016 campaigns. 

Table 4.8: Association of modelled CO mixing ratios derived from various emission types with 

the observed mixing ratios of (a) CH₃Cl and (b) CH₃Br in Bachok. The values indicate the 

Spearman correlation coefficients (R). Correlations that are significant (p < 0.05) are in bold. 

(a) 
 

Emission type 2013/2014 2015/2016 

1. Industry (combustion and processing) 0.51 0.12 

2. Surface transportation 0.61 0.21 

3. Agriculture (waste burning on fields) 0.41 0.10 

4. Waste (landfills, waste water, incineration) -0.37 0.22 

5. Forest burning 0.71 0.44 

6. Grassland burning 0.61 0.16 

7. Agriculture (animals, rice, soil) n.a 0.14 

 
 (b) 
 

Emission type 2013/2014 2015/2016 

1. Industry (combustion and processing) 0.48 0.03 

2. Surface transportation 0.51 0.11 

3. Agriculture (waste burning on fields) 0.43 0.01 

4. Waste (landfills, waste water, incineration) -0.46 0.10 

5. Forest burning 0.40 0.13 

6. Grassland burning 0.47 -0.06 

7. Agriculture (animals, rice, soil) n.a. -0.12 
Note: n.a. = data not available 

 

The plot patterns in Figure 4.10 imply highly similar geographical distributions of 

the five significant emissions of modelled CO (i.e. Industry (combustion and 

processing), surface transportation, agriculture (waste burning in fields), forest 

burning and grassland burning). As these emission sectors are largely in the same 

region, the exact sources of the methyl halides measured in Bachok are hard to 

specify. 
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(a) 2013/2014 (b) 2015/2016 
 

 

 

 

 
 

Figure 4.10: Comparison between modelled CO (ppb) from significant emission sectors with 
high (> 800 ppt) and low (< 800 ppt) mixing ratios of CH₃Cl in in Bachok during the 
2013/2014 and 2015/2016 campaigns. The modelled CO mixing ratio is accounted for by 
various emissions within the timescale of the backward trajectories (i.e. twelve days prior 
to the observations).  

 

 

4.2.3.3 Synthesis 
 

 Methyl halides are predominantly of natural origin, with little influence from 

anthropogenic sources. Therefore, significant natural sources and probably some 

anthropogenic sources around Taiwan and Bachok should have affected the 

variability of the measured methyl halide mixing ratios. Overall, when high mixing 

ratios of methyl halides in both Taiwan and Bachok (CH₃Cl > 800 ppt, CH₃Br > 11 

ppt) were observed (Section 4.2.3.1), air masses were found to be predominantly 

from oceanic regions, with some influence from continental regions (i.e. China, East 

Asia, and South East Asia). In contrast, when low mixing ratios of methyl halides 

were recorded (CH₃Cl < 800 ppt, CH₃Br < 11 ppt), the involvement of oceanic 

regions was much more profound, and the influence of continental air masses 

reduced. 
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However, when looking at the correlation between potential source regions and 

methyl halides in Taiwan (Table 4.9), significant multiyear correlations were shown 

between CH₃Cl mixing ratios and the continental air masses, such as from East 

China. Whilst for CH₃Br, correlations between the mixing ratios and Southcentral 

China were found to be significant. There were also some significant correlations 

observed between methyl halides and oceanic regions (e.g. East China Sea and Japan 

Sea), but only for certain years. 

 

Table 4.9: Association of particle concentration (g s/m³) from potential source regions with the 

observed mixing ratios of (a) CH₃Cl and (b) CH₃Br in Taiwan. The values indicate the Spearman 

correlation coefficients (R). Correlations are significant (p < 0.05) is when R > 0.5.  

(a) 

Sub-
regions 

Potential regions 2013 2014 2015 2016 

China 1. East China 0.31 0.63 0.40 0.86 

2. North China 0.25 0.29 0.09 0.19 

3. Northeast China 0.71 -0.18 0.25 0.20 

4. Northwest China 0.01 0.67 0.10 -0.08 

5. Southcentral China 0.32 0.69 0.40 0.31 

6. Southwest China 0.23 0.75 0.24 0.09 
East Asia 7. Taiwan -0.17 0.19 0.28 -0.14 

8. Japan 0.04 -0.17 -0.03 -0.14 

9. Korea 0.46 0.02 0.26 0.39 
South East 

Asia 
10. Indochina -0.03 0.52 0.31 -0.11 

11. Philippines -0.02 0.19 0.34 -0.11 
Oceanic 
regions 

12. East China sea 0.74 0.38 0.43 0.06 

13. Japan Sea 0.26 -0.12 0.16 0.42 

14. Pacific Ocean -0.25 0.09 -0.09 -0.12 

15. South China Sea -0.39 0.23 0.33 -0.07 
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(b) 

Sub-
regions 

Potential regions 2013 2014 2015 2016 

China 1. East China -0.13 0.45 0.37 0.86 

2. North China 0.25 0.20 0.21 -0.03 

3. Northeast China 0.40 -0.18 0.17 0.13 

4. Northwest China -0.04 0.49 0.02 -0.17 

5. Southcentral China -0.19 0.60 0.48 0.42 

6. Southwest China -0.20 0.59 0.07 0.16 
East Asia 7. Taiwan -0.17 0.20 0.29 -0.01 

8. Japan -0.08 -0.11 0.01 0.02 

9. Korea 0.31 0.03 0.33 0.42 
South East 

Asia 
10. Indochina -0.41 0.38 0.12 0.04 

11. Philippines -0.11 0.19 0.30 0.01 
Oceanic 
regions 

12. East China sea 0.23 0.17 0.52 0.20 

13. Japan Sea 0.01 0.04 0.21 0.51 

14. Pacific Ocean -0.22 0.18 -0.08 -0.03 

15. South China Sea -0.33 0.28 0.19 0.06 

 

For Bachok, significant correlations were consistently found between both methyl 

halides and continental air masses from East China, Northwest China, Southcentral 

China, Southwest China and Indochina (Table 4.10). This was the case for 

2013/2014 campaign but not during 2015/2016. Unlike during the Taiwan 

campaign, no significant correlations were observed between mixing ratios of 

methyl halides and oceanic regions, suggesting that the variability of methyl halides 

observed in Bachok was mainly influenced by the air masses from continental 

regions. 
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Table 4.10: Association of particle concentration (g s/m³) from potential source regions 
with the observed mixing ratios of (a) CH₃Cl and (b) CH₃Br in Bachok. The values indicate 
the Spearman correlation coefficients (R). Correlations are significant (p < 0.05) is when R 
> 0.5. 
 
(a) 
 

Sub-regions Potential regions 2013/2014 2015/2016 

China 1. East China 0.58 0.16 

2. North China 0.17 0.08 

3. Northeast China -0.73 0.07 

4. Northwest China 0.54 0.07 

5. Southcentral China 0.52 0.20 

6. Southwest China 0.45 0.05 
East Asia 7. Taiwan -0.06 -0.11 

8. Japan -0.63 0.07 

9. Korea -0.74 0.01 
South East 

Asia 
10. Indochina 0.82 0.32 

11. Peninsular Malaysia 0.13 0.26 

12. East Malaysia 0.25 -0.18 

13. Philippines -0.68 -0.01 
Oceanic 
regions 

14. East China sea 0.16 -0.01 

15. Japan Sea -0.69 0.03 

16. Pacific Ocean -0.81 -0.04 

17. South China Sea -0.64 0.01 
 

 

 

(b) 
 

Sub-regions Potential regions 2013/2014 2015/2016 

China 1. East China 0.59 0.02 

2. North China 0.38 -0.24 

3. Northeast China -0.43 0.00 

4. Northwest China 0.58 -0.25 

5. Southcentral China 0.52 0.05 

6. Southwest China 0.47 -0.03 
East Asia 7. Taiwan -0.06 -0.06 

8. Japan -0.59 -0.05 

9. Korea -0.61 0.00 
South East 

Asia 
10. Indochina 0.47 0.14 

11. Peninsular Malaysia -0.17 0.11 

12. East Malaysia 0.14 0.05 

13. Philippines -0.63 0.08 
Oceanic 
regions 

14. East China sea 0.28 0.04 

15. Japan Sea -0.60 -0.11 

16. Pacific Ocean -0.64 0.00 

17. South China Sea -0.61 -0.04 
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Overall, the analyses of the impact of potential source regions’ surface properties on 

the variations of the measured methyl halide mixing ratios have suggested that 

continental air masses were consistently the main source. China (mainly East China) 

contributed the most to the atmospheric methyl halides. The mixing ratios of methyl 

halides strongly correlated with air masses which originated from East China, 

thereby suggesting that East China was the main source region of the atmospheric 

methyl halides at Taiwan and Bachok. This is plausible because East China is the 

most populated and developed part of the country in view of the more habitable 

physical geographical conditions of East China relative to mid- and west-China 

(which mostly comprise mountains and deserts with extreme weather). Therefore, 

areas in East China rapidly develop and are immensely industrialised to 

accommodate the high population density. Therefore, it is likely that industries, 

surface transportation, and agriculture (waste burning in fields) in East China are 

also the main sources of methyl halides in East Asia. On another note, the particle 

concentration analysis revealed contributions from other sub-regions of China. This 

could have been due to the northern origin of the air due to the prevailing direction 

of wind at the time of year the samples were collected. Thus, all the sampled air 

masses probably have spent a significant portion of time in China, even though they 

did not pick up any methyl halides emissions apart from those from East China. 

Hence, this could explain the better correlation of methyl chloride with air masses 

from East China but not with other sub-regions of China. 

 

 On the other hand, influences from other industrial regions were also noted 

(i.e. East Asian countries such as Korea; and South East Asian regions, especially 

Indochina). Indochina is less industrialised in comparison with other East Asian 

regions; its economic activities were primarily dependent on agriculture and 

farming. However, since Indochina is known to be one of the main tropical regions 

where biomass burning is extensive (Huang et al., 2016), it is suspected that biomass 

burning could have influenced the variability of measured mixing ratios of methyl 

halides. However, owing to the lack of data which would have befitted the scope of 

this study, verification of this theory is challenging. 
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On the other hand, the mixing ratios of CH₃Cl and CH₃Br in both Taiwan and 

Bachok significantly correlated with modelled CO mixing ratios that were derived 

from three emission categories, industries (combustion and processing), surface 

transportation, and agriculture (waste burning in fields). Among the three emission 

categories, agriculture (waste burning on fields) is a known source of both gases. 

These findings were consistent with studies that have shown that biomass burning 

is a major source of methyl halides (Lobert et al., 1993, Andreae et al., 2001, Mead 

et al., 2008). Agricultural residues include (1) all leaves, straw, and husks left in the 

field after harvest; (2) hulls and shells removed during crop-processing at the mills; 

(3) animal dung (Yevich et al., 2003). Burning of agricultural waste in fields was 

mainly conducted to prepare the fields for new planting or harvesting seasons 

(Mead et al., 2008). It has been reported that methyl halides – CH₃Cl, CH₃Br, and 

CH₃I – were predominantly released during the smouldering of a fire, probably due 

to the reaction between methanol and HCl which is catalysed by the glowing char 

surfaces or radical reactions in the flames (Reinhardt et al., 1995, Andreae et al., 

2001). However, since the agricultural emission ratios of CO:CH₃Cl and CO:CH₃Br 

were lower than those of industries and surface transportation, the predominant 

source of the methyl halides at both stations was unlikely to be agriculture (waste 

burning in fields). Industrial sources could emit more CH₃Cl than CH₃Br (Carpenter 

et al., 2014). The main industrial process that gave rise to CH₃Cl emissions is coal 

combustion (waste incineration and industrial activities). Some of the chlorine in 

coal is released in the form of CH₃Cl during combustion, and it is expected that some 

of the chlorine in the municipal waste employed the same chemical pathway 

(McCulloch et al., 1999). 

 

 On top of the abovementioned three emission sectors, two additional sectors 

i.e. forest burning and grassland burning have been found to be significantly 

correlated with mixing ratios of methyl halides in Bachok, suggesting that both 

nonindustrial emissions potentially contribute towards the variation of methyl 

halides measured in Bachok, but not in Taiwan. On the other hand, the significant 

correlations seen between mixing ratios of methyl halides in Taiwan and oceanic 

regions could also suggest the contribution of marine sources towards the 

variability of methyl halides. However, in the oceans (seawater), numerous physical, 

chemical, and biological processes could be summarised into a single effect. Taking 
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into account the limitations of the relatively sparse datasets in this study, the 

identification of the exact production pathways of methyl halides in the oceanic 

regions remain challenging. Nevertheless, there are several possible ways by which 

oceans became the contributor of atmospheric methyl halides in this region. One of 

these is mostly linked to phytoplankton bloom. This was mostly true for CH₃Br in 

light of the evidence that CH₃Br can be produced by both macroalgal and 

phytoplankton species in the oceans (Baker et al., 2001). Although the trace gases 

were all related to phytoplankton, the production mechanisms of each specific gas 

are complex and some are still unclear (Zhai et al., 2018). However, both compounds 

were most probably directly released from phytoplankton (Gebhardt et al., 2008). 

 

4.3 Conclusions 

 

 In Taiwan and Bachok the mixing ratios of the methyl halides generally 

exceeded the global background values, thereby demonstrating widespread 

regional enhancements. In all campaigns, methyl chloride was much more abundant 

than methyl bromide. Strong contributions of these compounds by air masses which 

originated from the continental regions implied that such regions predominantly 

influenced the observed methyl halide concentrations. The NAME trajectories and 

particle concentration analyses showed that the events of higher mixing ratios were 

associated with continental air masses, especially those from East Asia. This also 

explained the greater variations in the methyl halide mixing ratios and frequently 

higher methyl halide mixing ratios at Taiwan relative to Bachok indicating that 

Taiwan is located relatively closer to major source regions. Cold surges and the land-

sea breeze also had important effects on the variation of the methyl halide mixing 

ratios. 

 To summarise, there were two main possible shared sources of methyl 

halides at Taiwan and Bachok, namely (1) Industry (combustion and processing) 

and (2) agriculture (waste burning on fields). Additionally, (1) forest burning and 

grassland burning emissions were suspected to also contribute to the methyl halide 

variations, especially at Bachok and (2) oceanic emissions potentially influence the 

variability of methyl halides in Taiwan. 
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 This work suggests that emissions from industry, waste burning on 

agricultural fields, forest burning, grassland burning and marine in the region of 

East Asia and South East Asia may be co-located with the sources of methyl halides. 

These regions are important due to fact that both regions have various potential 

sources of methyl halides. Therefore, there is a need for further regional studies not 

only due to the lack of measurements made so far but also the proximity of these 

regions to the inter-tropical convergence zones (ITCZs) – a region of prevailing deep 

convections which increases the chances of the methyl halides being transported to 

the stratosphere. 
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Chapter 5 

Atmospheric emission estimates of CFC-114 and      

CFC-114a 

________________________________________________________________________________________________________ 

 

The research presented in this chapter has been published in Laube et al. (2016). 

My main contribution to the published work was to run two types of models to 

generate outputs for the interpretation of CFC-114 and CFC-114a observational 

data. I used a 2-D global model to derive the ‘top-down’ emissions of CFC-114 and 

CFC-114a. The output was used to generate Figures 5.5 to 5.11. In addition, I have 

used a second model, the 3-D NAME dispersion model, to perform back-trajectory 

analyses and I generated the footprints (presented in Figure 5.14) for identification 

of the possible source regions of measured species in Taiwan. During the 

development of the manuscript for Laube et al. (2016), I provided material in the 

form of a literature review for Section 1 and I also wrote Section 2.5 on emission 

modelling. 

 

5.1 Introduction 

 

Anthropogenic trace gases, particularly chlorofluorocarbons (CFCs), emitted into 

our atmosphere have had a substantial influence on the Earth’s climate system.  It 

has been recognised since the mid-1970s that CFCs are strong greenhouse gases that 

can significantly impact radiative forcing, as well as being substances that contribute 

towards stratospheric ozone depletion (Hodnebrog et al., 2013). Due to the absence 

of significant tropospheric loss process, CFCs remain in the atmosphere long enough 

to reach the stratosphere. In the stratosphere, they are eventually broken down and 

release reactive chlorine, which destroys ozone (Rowland et al., 1975). The impact 

of CFCs was first recognised in the atmosphere with the discovery of the Antarctic 

ozone hole (Farman et al., 1985). As a result, great attention was given to regulating 
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CFCs and other halogenated compounds, which subsequently had galvanized the 

interest of scientists and policy makers, and prompted unprecedented international 

action i.e. establishment of the Montreal Protocol in 1987. This protocol was created 

with the mission to regulate halogenated gases in developed and developing 

countries for the protection of the ozone layer via controlling of the global 

production and consumption of ODSs (Derwent et al., 1998). The enforcement and 

subsequent amendments of the Montreal Protocol on Substances that Deplete the 

Ozone Layer (1989)  have resulted in the successful phase-out of CFC production  

and consumption in industrialised and developing nations by 2010 (apart from 

relatively minor critical-use exemptions).  Consequently, the abundance of most 

documented CFCs in the atmosphere have started to decline (Montzka et al., 1996, 

Rigby et al., 2013, Carpenter et al., 2014, Laube et al., 2014, UNEP, 2014).  

One compound has received little attention in the literature and has been 

understudied to date, namely CFC-114 (C2Cl2F4). It is categorised under the minor 

CFCs, along with CFC-115 and CFC-13, since its industrial applications are not as 

extensive as major CFCs (e.g. CFC-11, CFC-12 & CFC-113). Therefore, the amount of 

information on its atmospheric trends and emissions are limited relative to the 

major CFCs, which are well documented. In this study, our particular interest is to 

differentiate between CFC-114 (CClF2CClF2) and its asymmetric isomeric form CFC-

114a (CF3CCl2F). Previously, published atmospheric long-term measurements have 

represented the sum of both CFC-114 (CClF2CClF2) and its isomer CFC-114a 

(CF3CCl2F). 

CFC-114 was first used in industrial application in the 1930s as an aerosol 

propellant, as a foam blowing agent and in large centrifugal chillers and heat pumps 

(Fisher et al., 1993). The application of CFC-114 also was reported in the enrichment 

of uranium (EIA, 1996).  Minor remaining uses of CFC-114 were for cooling 

processes e.g. in naval vessels (Andersen et al., 2007). Like other CFCs, the 

application of CFC-114 in various industries was assumed to be safe to the 

environment due to its unique characteristics e.g. good chemical stability, low 

toxicity, non-flammable, low gas phase thermal conductivity, low production cost, 

low corrosiveness during use, low toxicity (IPCC, 2000, UNEP, 2012). As a result of 

the Montreal Protocol regulations, HFCs were introduced as alternatives for CFCs, 
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one of these being HFC-134a an alternative to CFC-114 in chillers. CFC-114a has 

reportedly been used in the production of HFC-134a (Banks et al., 1994). 

 

The major loss process of CFCs occurs in the stratosphere, via two reactions i.e. 

photolysis by ultraviolet radiation and reaction with excited-state atomic oxygen, 

O(1D). For CFC-114 and CFC-114a, the dominant loss process is the former, with the 

latter thought to be responsible for 25% of its total stratospheric loss (Liang et al., 

2008). Additionally, as CFC-114a has two chlorine atoms on the same carbon, CFC-

114a is more prone to photolysis than CFC-114, making the lifetime of CFC-114a 

much shorter in comparison to CFC-114 (Oram, 1999). The total atmospheric 

steady-state lifetimes of CFC-114 and CFC-114a are currently estimated to be ~189 

and ~102 years respectively (Burkholder et al., 2013, Carpenter et al., 2014, Davis 

et al., 2016). 

Both isomers have almost identical boiling points (3.50C) which make them difficult 

to separate and analyse chromatographically. Also, the similarity of their mass 

spectra complicates even their separate detection with mass spectrometric 

techniques (Oram, 1999). Therefore, published atmospheric long-term 

measurements have been assumed to represent the sum of both isomers. The 

contribution of CFC-114a was reported to be ~10% of the sum of isomers and has 

remained constant to date (Carpenter et al., 2014). 

The earliest reported atmospheric measurement of CFC-114 was in the 1990s. At 

that time, the observed concentration in northern hemisphere mid-latitudes and 

Antarctica was around 15 pptv and 14 pptv, respectively (Chen et al., 1994). The 

global mixing ratios are updated regularly in the WMO Scientific Assessments of 

Ozone Depletion.  Reimann et al. (2004) reported that atmospheric abundances of 

CFC-114 had stabilised with no upward trend of tropospheric abundances of CFC-

114 observed at Jungfraujoch, a high-altitude station in Switzerland. Moreover, the 

study of Chan et al. (2006) found no substantial emissions from the heavily 

industrialised region of the Pearl River Delta in China. 

 

None of these studies distinguishes between the two isomeric forms of CFC-114. The 

first attempt to distinguish between the two isomeric forms of CFC-114 was made 

by Lee (1994), followed by Oram (1999) who reported the first tropospheric 
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measurements of the individual isomers in the southern hemisphere and their 

individual emission estimates from 1978-1995. Findings by Oram (1999) showed 

that the mixing ratios of CFC-114 and CFC-114a were 16.5 ppt and 1.75 ppt at the 

end of the record. Importantly, this work provided crucial input to the WMO ozone 

assessments, that is the fraction of CFC-114a relative to CFC-114 has increased from 

6.5% to 10.7% over the same period and assumed to remain constant until now. 

 

Previous studies have shown that historical trends for CFC-114 or the sum of CFC-

114 and CFC-114a can also be reconstructed using firn data. The first attempt was 

made by Sturrock et al. (2002) who used inverse firn modelling techniques 

constrained with firn air data from an Antarctic site (Law Dome) and air archive 

data from an observatory at Cape Grim, Australia (40.70 S, 144.70E; Oram, 1999), to 

reconstruct a CFC-114 + CFC-114a atmospheric trend. They concluded that 

southern hemispheric concentrations were negligible before 1960. Their firn air-

based data (calibration first reported in Prinn et al. (2000)) were compared with 

University of East Anglia (UEA) data of CFC-114 (fully separated from CFC-114a) 

from Cape Grim on an earlier UEA calibration scale (Lee, 1994) and a calibration 

difference (factor of 0.94, constant over time) was found. The second attempt was 

made by Martinerie et al. (2009). They used Alternative Fluorocarbons 

Environmental Acceptability Study (AFEAS) emissions and an atmospheric 

chemistry model to calculate atmospheric trends that were compared to firn data at 

five sites from Antarctica and Greenland using a forward firn modelling approach. 

They concluded that the AFEAS-emissions-based trend, which gave significant 

atmospheric concentrations before 1960, is inconsistent with the firn and 

atmospheric data-based trend from Sturrock et al. (2002) and that the Sturrock et 

al. (2002) trend is more consistent with their northern hemispheric firn data than 

the AFEAS-based trend. The firn data used in Martinerie et al. (2009) are a 

combination of UEA CFC-114 measurements at North GRIP, Berkner Island and 

Dome C (earlier calibration scale) and NCAR CFC-114 + CFC-114a measurements at 

Devon Island, North GRIP and Dronning Maud Land. 
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5.1.1 Objective and specific aims of this chapter 

 

Global networks of measurement stations routinely monitor the atmospheric 

concentrations of many ODSs and greenhouse gases. Therefore, those measurement 

dataset are very valuable for use in conjunction with atmospheric models to 

establish historical records of the global emissions of ODSs and greenhouse gases. 

This work takes advantage of the improved measurement since the first CFC-114 

and CFC-114a measurement in the 1990s. This advancement provides us the 

opportunity to evaluate and update the abundances, temporal and emissions of the 

isomers. The specific aims of this research are: 

 

1. To use the atmospheric measurements and modelling to estimate CFC-114 

and CFC-114a emissions. Two types of air measurement dataset have been 

used to constrain the 2-D atmospheric chemistry transport model. The 

measurement sources include (a) air samples collected directly from the 

atmosphere in Cape Grim, Tasmania from 1978 until 2014 and (b) air 

trapped in polar firn at two Antarctic drilling sites (Berkner Island and Dome 

C), covering the period of 1960 to 2003. The usage of both datasets represent 

the longest historical record of CFC-114 and CFC-114a. 

 

2. To compare our derived ‘top-down’ emissions  to ‘bottom-up’ estimates by 

industry in order to verify the usage of CFC-114 and CFC-114a reported by 

industry. 

 

3. Ultimately, this work aims to demonstrate whether or not emissions 

continue to fall as required under the Montreal Protocol or are there any 

persisting emissions to the atmosphere.  
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5.2  Methodology 
 

The overview of the model, general features and the model setup have been 

introduced in Section 2.4.2 on Chapter 2. This section focuses on the types of model 

simulations used to derive the emission estimates of both isomers. 

 

5.2.1  Derivation of emission estimates of CFC-114 and CFC-114a 

 

Essentially, the emissions in the model were adjusted until the concentrations for 

the surface box of the relevant band agreed with the set of atmospheric 

measurements at that location. This was an iterative process whereby the process 

of adjusting the emissions for each year was repeated to improve the fit of the model 

output with the measurements. The process was completed when the model output 

from the emissions scenario provided a good fit (done by eye using plots) to the 

measurements. A similar approach has been used in previous studies e.g. Newland 

et al. (2013), Kloss et al. (2014), Laube et al. (2014). 

 

In this study, three types of model runs have been carried out to estimate the 

emission of both CFC-114 and CFC-114a. Table 5.1 summarised the respective 

model runs and the type of observational dataset used to constrain the model.  
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Table 5.1 Model runs used to derive the emission estimates of CFC-114 and CFC-114a 

Name of 

run 

Descriptions 

Run A • This was done by adjusting the annual emissions until the model 

derived concentrations for the surface box of the band 35.7˚S– 41.8˚S 

agreed with observations in Cape Grim, Tasmania (41˚S) from 1978 to 

2014. 

 

Run B • This was done by adjusting the annual emissions until the model 

derived concentrations for the surface box of the band 66.4˚S – 90.0˚S 

agreed with observations in firn air sites in Antarctic (90˚S from 1960 

to 2003). 

 

• This is because the measurement of air in the firn directly provides 

information on past evolution prior to available atmospheric records. 

The firn air measurements can be used as an extension of the records 

of CFC-114 and CFC-114a measured in situ at Cape Grim and in the 

Cape Grim archive  

 

• The past abundances of both isomers have been reconstructed from the 

deep polar firn which provide a natural archive of atmospheric 

composition up to about century back in time. 

 

Run C • A combination of the southern hemispheric firn air derived trends 

(1960 to 2003) and the atmospheric measurements from Cape Grim 

(1978 to 2014) are used to constrain the model.   

 

• This combination of two datasets allows (a) extension of the emissions 

estimates derived from Cape Grim, which we have more confidence in, 

backwards based on the firn trend prior to 1978 and (b) reconstruction 

of the longest histories and emissions of CFC-114 and CFC-114a going 

back to the early use of both gases in the industry.  

 

• This was done by adjusting the annual emissions to match the firn air-

derived pre -1978 trends (within the constraint from the mixing ratio 

uncertainty ranges of the firn air record (dashed lines in Figure 5.4)) 

up to 1978 and then to fit the  Cape Grim-derived record from 1978 

onwards. 
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a) Comparison between observed and modelled mixing ratios 

 

The model output from Run A, B and C are presented in Figure 5.1, Figure 5.2 and 

Figure 5.3 & 5.4, respectively.  Here, the modelled mixing ratio for Run A, Run B and 

Run C was compared to observed concentrations at (a) Cape Grim, Tasmania (41˚S) 

(b) firn air sites in Antarctic (90˚) and (c) both Cape Grim, Tasmania (41˚S) and 

Antarctic (90˚), respectively.  

In general, the CFC-114 and CFC-114a modelled mixing ratio generated from Run A 

(Figure 5.1) and Run B (Figure 5.2) agreed well with the measured mixing ratio 

observed in each sampling site. For Run C, the model run was successful in matching 

the pre-1978 modelled mixing ratio within the constraint from the mixing ratio 

uncertainty ranges of the firn air record (Figure 5.3a and 5.4a). The model fit 

however would have a significant impact towards the exact temporal shape of the 

pre-1978 emission record. This is discussed further in Section 5.2.5.4 (b). On the 

other hand, the modelled concentrations from Run C gave excellent agreement with 

the Cape Grim-derived record from 1978 onwards (Figure 5.3b and 5.4b).   
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(a) 

 

 

(b) 

Figure 5.1: Output of run A. (a) CFC-114 and (b) CFC-114a modelled and observed mixing 

ratios at Cape Grim (1978 – 2014) 
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(a) 

 

 

(b) 

 

Figure 5.2: Output of Run B. (a) CFC-114 and (b) CFC-114a modelled and observed mixing 

ratios from firn-based record (1960-2003) 
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(a) 

 

 

(b) 

 

Figure 5.3: Output of Run C. Mixing ratio time series of CFC-114 at the (a) latitude of 

Antarctic and (b) Cape Grim. Circle represent the measured mixing ratios within their 

respective limits. Solid line (blue) showed the model fits used to determine the best fit 

emission. 
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(a) 

 

 

(b) 

Figure 5.4: Output of Run C. Mixing ratio time series of CFC-114a at the (a) latitude of 

Antarctic and (b) Cape Grim. Circle represent the measured mixing ratios within their 

respective limits. Solid line (red) showed the model fits used to determine the best fit 

emission scenarios. 
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b) Emission estimates derived by fitting the Cape Grim and firn-based 

records  

 

The emission estimates derived by performing Run A and Run B are presented in 

Figure 5.5. Despite the firn derived atmospheric mixing ratio records fitting those 

observed at Cape Grim well for the overlap period within the uncertainties (Figure 

5.5), it is apparent in Figure 5.5 that both Run A and Run B lead to a slightly different 

emission trends. For example, the curvature for emissions derived purely from the 

atmospheric records derived from the firn air data (dotted lines in Figure 5.5), are 

smoothed out and the timings for the emission to reach their maximum values are 

much earlier compared to the emissions derived purely from the Cape Grim records 

(solid lines in Figure 5.5). This illustrates the limitations of that methodology when 

relying on data from only two sites.  Emission estimates strongly depend on the 

annual growth rates, and thus small discrepancies between the curvature of the firn 

derived trends and the Cape Grim-based atmospheric records translate into large 

changes in the estimated emissions. The limited accumulation rate of the two firn 

sites used here prevents a high temporal resolution of the respective record and 

results partly in smoothing and partly in a shift of the timing of the derived 

maximum emissions. However, the total emissions estimated from the firn record 

are 530 Gg (range: 505 to 557 Gg, period from 1960 to 2003), which agrees very 

well with those from the Cape Grim-based trend over the same period, as well as the 

AFEAS data (see Section 5.3.2) when including emissions reported from 1934 

onwards. 
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Figure 5.5: Global emissions of CFC-114 and CFC-114a derived from Cape Grim observations 

(solid lines) (Run A) with uncertainties represented by dashed lines. The dotted lines 

represent emissions derived from firn air data (Run B). 

 

 

Figure 5.6 shows the results of Run C (Table 5.1), which was successful in 

matching the firn-derived pre-1978 trend (within the uncertainty range of the 

firn-based mixing ratio) and the Cape Grim-derived record from 1978 onwards. 

The exact temporal shape of this pre-1978 emission record is very uncertain as 

the uncertainty range in the firn air-derived mixing ratios allows a large range of 

growth rates and therefore emission scenarios.  

 

Overall, it can be concluded that the good agreement between the model runs 

based on the measured mixing ratios at Cape Grim and the measurements in the 

firn suggests that the two datasets can be used together to give the longest 

historical record of the atmospheric mixing ratios of CFC-114 and CFC-114a. Also, 

the near-complete emission records derived from our observation-based 

approach would be extremely useful when comparing with bottom-up inventory-

based emission estimates. This is discussed further in Section 5.3.3. 
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Figure 5.6: Global emissions of CFC-114 (blue) and CFC-114a (red) derived from Cape 

Grim observations (solid lines) with uncertainties represented by dashed lines (Run C). 

The dotted lines represent emissions derived from firn-derived pre-1978 trend (within the 

uncertainty range of the firn-based mixing ratio). 
 

 

 

5.3 Results & Discussions 

 

The outline of this section is as follows. Firstly, the results from long-term trend and 

emission estimates for each individual isomers (Section 5.3.1.1 and 5.3.1.2) are 

presented, followed by discussion on the results in Section 5.3.1.3 and 5.3.1.4. In 

Section 5.3.2, the top-down emission estimates for both isomers derived from this 

study are compared and discussed with bottom-up estimates by AFEAS. In order to 

relate the emission estimates derived in this work to a wider context, the results 

from aircraft-based observations and samples collected in East Asia I are 

demonstrated and discussed in Section 5.3.3.  
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5.3.1  Long-term tropospheric trends and estimated global annual 

emission of CFC-114 and CFC-114a  

 

The atmospheric abundances of any long-lived gas is indicative of its cumulated 

emissions into the atmosphere (Laube et al., 2016). Therefore this section attempts 

to relate the CFC-114 and CFC-114a atmospheric records and their emission 

estimates in order to understand their long term changes in the atmosphere. The 

long-term atmospheric records of CFC-114 and CFC-114a from 1960 to 2014 was 

provided from both firn and Cape Grim air archives. Analysis of the composition of 

unpolluted air samples extracted from deep firn snow at two Antarctic sites (1960-

2012) and collected in Cape Grim, Tasmania (1978 and 2014) has allowed the 

identification and quantification of CFC-114 and CFC-114a in the atmosphere.  The 

merging of both records has allow an acquisition of a near-complete record of both 

isomers since their initial production and release in the 1930s (Laube et al., 2016). 

In this section, for each isomer, both atmospheric abundance and emission 

estimates are shown in the same figure and examined at the same time.  

 

 

 

5.3.1.1  CFC-114 

 

At the beginning of the record i.e. in 1960s, the atmospheric abundances for CFC-

114 were extremely low and then they increased rapidly until late 1970s (Figure 

5.7). This can be explained by looking at the emission estimates of CFC-114 from 

Run C which was done by matching the model to the firn trends prior to 1978 and 

to the Cape Grim observations after 1978. The pre-1978 emission had to be 

reasonably substantial to explain the accelerating abundance of CFC-114 during that 

period. However, the exact temporal shape of our pre-1978 emission record is very 

uncertain, due to the the large uncertainty range in the firn air-derived mixing ratios 

(Laube et al., 2016). From 1978 until the 1990s, further steady increase in 

atmospheric abundances in both air archives (firn and Cape Grim) were found, 

followed by weakening in growth. The derived emissions rose from 1978 until 

1990s, reaching a maximum value of at 18.2 Gg yr-1 in 1986. The atmospheric 
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abundances of CFC-114 stopped increasing around 1993, which is consistent with a 

substantial decline in emissions in the mid-1990s. It is noteworthy that it can take 

on the order of a year for the gases such as CFC-114 that are emitted primarily in 

the northern hemisphere to reach to southern hemisphere, the location of the 

observed trends.  

 

At the end of our record, CFC-114 is the fourth most abundant CFC in the 

atmosphere, although its mixing ratios are substantially lower than the three others 

(CFC-11=236.3, CFC-12=524.4 and CFC-113=73.8 ppt, NOAA global average in 2012, 

Carpenter et al., 2014). Its average mixing ratios decreased at a rate of 0.01 ppt yr-1 

between 2008 and 2014. This is in agreement with Carpenter et al. (2014), who 

reported an average decrease of 0.01 ppt yr-1 between 2008 and 2012.  

 

 

Figure 5.7: CFC-114 observed mixing ratios derived from two Antarctic firn air profiles (1960-

2012) and at Cape Grim (1978 and 2014). The estimated global annual emission of CFC-114 

from Run C which was based on matching the model to the firn trends prior to 1978 to the 

Cape Grim observations after 1978. 
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5.3.1.2  CFC-114a 

 

Similar to CFC-114, the atmospheric abundances of CFC-114a were very low in the 

1960s but continued to rapidly increase until 1990s, followed by weakening in 

growth (Figure 5.8). This is consistent with the CFC-114a emissions which were 

extremely small in the 1960s, rapidly increase until they reach a peak in 1988 at 

1.79 Gg yr-1 before substantially decline and stopped in the mid-1990s. The mixing 

ratio of CFC-114a continued to increase until around 2000 whilst the emissions 

continue to decline and reach to 0.25 Gg yr-1 in 2014. At the end of our record, CFC-

114a is found to be the seventh most abundant CFC in the atmosphere, after CFC-

115 and CFC-13, its growth rate not turning negative until 2008 with a subsequent 

average decrease of 0.001 ppt yr-1. 

 

Figure 5.8: CFC-114a observed mixing ratios derived from two Antarctic firn air profiles 

(1960-2012) and at Cape Grim (1978 and 2014). The estimated global annual emission of CFC-

114a derived by matching the pre-1978 firn-based emissions (within the uncertainty range of 

the firn-based mixing ratio) to the Cape Grim-based emission record in 1978. 
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5.3.1.3  Synthesis  

 

Figure 5.9 compares the changing atmospheric abundances of CFC-114 and CFC-

114a from 1960 to 2014.  Prior to 1960, the atmospheric abundances of both 

isomers were negligible (<0.3 ppt). The firn air archive indicate that both 

compounds are entirely anthropogenic, as they are not detectable in air dated from 

before the 1960s. 

 

 

Figure 5.9: Mixing ratios of CFC-114 and CFC-114a as measured in air samples collected at 

Cape Grim, Australia, between 1978 and 2014 (diamonds) and derived from Antarctic firn air 

profiles (lines). Uncertainties are 1σ standard deviations for Cape Grim data and a 

combination of the former and a firn modelling uncertainty for the latter (shown as dashed 

lines). 

 

Our Cape Grim record also demonstrates that the mixing ratio of CFC-114 has 

doubled from 7.9 to 14.8 ppt whilst the mixing ratio of CFC-114a trebled from 0.35 

to 1.03 ppt, between 1978 and 2014. Owing to their long atmospheric lifetimes 

(CFC-114 = ~189 years, CFC-114a = ~102 years), both isomers still persist in the 

atmosphere but were no longer increasing significantly at the end of record in 2014. 

In 2012, the average atmospheric abundances of CFC-114 and CFC-114a at Cape 

Grim were 15.2±0.3 and 1.05±0.01 ppt respectively. This means that our result 
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agrees well with the combined mixing ratio of 16.33 ppt given in Carpenter et al. 

(2014) at this point in time.   

 

 

5.3.1.4  Ratio of mixing ratios and ratio of emissions of CFC-114a and  

                             CFC- 114a  

 

The previous sections have highlighted that some significant differences are 

identified between CFC-114 and CFC-114a in terms of the long-term tropospheric 

trends and the estimated global annual emission. For example: 

i. The mixing ratios of CFC-114 stabilise a bit earlier at around 1993 whilst for 

CFC-114a, the mixing ratio continued to increase until it stabilised around 

2000. This suggests a difference in the source of emissions although both 

isomers. 

ii. Throughout our Cape Grim record, the fraction of CFC-114a mixing ratio 

relative to that of CFC-114 increased from 4.3% to 6.9% over the 37-year 

period, which is inconsistent with the ~10% contribution of CFC-114a to the 

sum of the isomers has been assumed constant reported in the previous 

assessments. 

Therefore, to further discuss and understand those dissimilarities, the ratio of 

mixing ratios and ratio of emissions (i.e. CFC-114a/CFC-114) is presented as 

percentages.  

For this study, the information on ratios is useful in various ways i.e.  

i. To quantify the connection of CFC-114 and CFC-114a and calculate the 

contribution of CFC-114a to the sum of isomers (CFC-114 + CFC-114a). This 

also allow us to compare with the current ~10% assumption used in 

previous assessment 

ii. To evaluate whether the ratio of mixing ratio or emission is constant or 

changing over number of years. The evolution of the ratio will shed light on 

the budget of both isomers.  
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CFC-114 and CFC-114a are always thought to be emitted as a mixture because both 

isomers have same molecular mass and similar physicochemical properties e.g. 

boiling point (Oram, 1999). In theory, they should have approximate similar 

emission rate and undergo similar environmental fate process which then reflects 

their relative abundances in the atmosphere (Tobiszewski et al., 2012). However 

that is not the case due to their different atmospheric lifetimes. This is obvious when 

comparing the pre-1991 ratio of mixing ratio of CFC-114a/CFC-114 with their ratio 

of emission.  

First, let us begin by observing our Cape Grim record from 1978 to 1991 (Figure 

5.10). The CFC-114a / CFC-114 ratio of mixing ratios increased rapidly from 4% in 

1978 to around 7% by 1991. However, that is not the case for their ratio of 

emissions, which remained nearly constant at around 9% over the same period. It 

would be expected that if CFC-114 and CFC-114a were emitted in a constant ratio, 

they will reach steady state at the same time (if they have similar lifetimes) and 

hence the ratio of mixing ratios should be constant too.  However, their relative 

atmospheric abundances also depend on the lifetime of the isomers.   

The lifetime of CFC-114a (102 years) is much shorter in comparison to CFC-114 

(189 years).  Therefore, with a constant emission during 1978 to 1991, the rate of 

growth of CFC-114a would be expected to be slower. However, that is not happening 

but instead the CFC114a/CFC-114 ratio of mixing ratios increases. This may seem 

odd at first but what this telling us is that prior to 1978,  more CFC-114 must have 

being emitted relative to 114a and that caused CFC-114 to already be closer to its 

steady state. This is apparent when looking at the low ratio of emissions prior to 

1978 (solid green line in Figure 5.10). This is confirmed when looking at the ratio of 

the mixing ratios in both the Cape Grim record and the firn-based record that give 

less than 4.5%. This finding could point to change in manufacturing process or a 

partly independent source(s). 
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Figure 5.10: CFC-114a / CFC-114 ratio of mixing ratios at Cape Grim (left axis, black 

diamonds) and derived from Antarctic firn (left axis, black line), as well as the ratio of their 

emissions derived from these observations (right axis, green and blue line).  

 

From 1991 to around 1995, a sharp increase of CFC-114a emissions was found 

relative to those of CFC-114. While emissions of both isomers decrease substantially 

throughout the 1990s, those of CFC-114a decline much more slowly. The isomeric 

emission ratio (Figure 5.9) only starts to decrease again after CFC-114 emissions 

stop declining in 1996. In contrast to CFC-114, emissions of CFC-114a continue to 

decline until 2010. This could perhaps be due to the aforementioned involvement of 

pure CFC- 114a in the production of HFC-134a (Banks et al., 1994). Interestingly, the 

abundance of HFC-134a started increasing in the atmosphere in the early 1990s 

(Montzka et al., 1996b; Oram et al., 1996) as it replaced CFCs predominantly in 

mobile air conditioning. However, our CFC-114a emission data suggest that it is not 

an impurity in all the HFC-134a produced as emissions of the latter continue to 

increase to date (Carpenter et al., 2014). CFC-114a is only an intermediate in one of 

the pathways to synthesise HFC-134a. Our CFC-114a emission data are consistent 

with two possible scenarios, i.e. (a) emissions of CFC-114a as an impurity in HFC-

134a produced via that pathway, as well as (b) emissions at the HFC-134a 

production level. 
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On the other hand, the fraction of CFC-114a mixing ratio relative to that of CFC-114 

increased from 4.3% to 6.9% over the 37-year period (Figure 5.10). An important 

implication of these findings is that (i) the 10% contribution of CFC-114a which has 

been assumed in Carpenter et al. (2014) and previous WMO/UNEP ozone 

assessments appears to have been an overestimate and (ii) the contribution of CFC-

114a to the sum of the isomers differs from the current tacit assumption used in 

previous assessment that both isomers have been largely co-emitted and that their 

atmospheric concentration ratio has remained approximately constant (~10%) in 

time. 

 

 

5.3.2 Comparison with bottom-up emission 

 

Comparison between our observation-based top-down emission estimates with the 

bottom-up inventory-based bottom-up estimates by the Alternative Fluorocarbons 

Environmental Acceptability Study (AFEAS) are presented in (Figure 5.11). The 

bottom-up emission estimates by AFEAS are available from 1934 until 2003. No 

estimates are available after 2003 because the companies responding to AFEAS 

represented a small and diminishing fraction of global CFC production (less than 

16% in 2004) which lead to no CFC data being sought or reported (AFEAS, 2009.).  

In contrast, my top-down emission estimates based on Cape Grim observation start 

and end later, i.e. from1978 until 2014. Therefore, I rely on the firn-derived emission 

estimates prior to 1978 (Run C). It is noteworthy to highlight that the emissions of 

CFC-114 and CFC-114a are not reported separately by AFEAS, but instead as the sum 

of isomers. Therefore, I combined our derived emission of CFC-114 with CFC-114a 

(Figure 5.11).   
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Figure 5.11: Atmospheric observation-based top-down emissions of the sum of CFC-114 and 

CFC-114a (black line with black dashed lines representing uncertainty ranges) in comparison 

with bottom-up emissions from the AFEAS inventory (in red). The dashed blue line represents 

the firn derived emissions. 

 

There are noticeable difference between our best estimates of the sum of CFC-114 

and CFC-114a and AFEAS estimates, particularly during the pre-1978 period. For 

example, the temporal shape of our top-down estimated emissions from 1934 to 

1978 is different from the emission estimates derived by AFEAS. As previously 

mentioned in Section 5.2.5.4, the uncertainties in firn air-derived mixing ratios allow 

a large range of growth rates and therefore cause the exact temporal shape of our 

emission record to be extremely uncertain (Laube et al., 2016). However, it can be 

deduced that our estimated pre-1978 cumulative emissions for the sum of the 

isomers are 6% lower than the AFEAS emission estimates, although the difference 

between the two estimates is insignificant (p>0.05). In addition, timing of the 

emission estimated by AFEAS is somewhat inconsistent with our derived emission 

estimates. For example, in the late 1940s, AFEAS emissions increased rapidly to 

more than 5 Gg yr-1 while our estimated emission is extremely lower during 1940s. 

Our derived emissions only reached more than 5 Gg yr-1 in early 1960s. Another 

example is also observed during the period of 1960 to 1978 whereby a high 
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emission is observed using our top-down approach while that is not the case for the 

emission estimates by AFEAS, although this difference is insignificant. 

From 1978 until early 1990s, both emission estimates agree reasonably well within 

the uncertainty range of the Cape Grim record. From 1990 to 1993 our emissions 

were significantly higher than the AFEAS data (Figure 5.11). It should be noted that, 

while no uncertainties are given in the AFEAS database, there are considerable 

uncertainties related to bottom-up methods, which are difficult to quantify. This 

especially applies to the timing of the release to the atmosphere. Differences 

between the two emission data sets (release data for AFEAS) reach up to 4.5 Gg yr-1 

in 1991, but this discrepancy all but disappears after 1993. Both data sets also agree 

that emissions decreased rapidly and stabilised between 2.0 and 2.3 Gg yr-1 from 

2000 onwards, demonstrating the success of the Montreal Protocol. Cumulative 

emissions from our top-down approach reach 537 Gg in 2003 (uncertainty range 

from 436 to 627 Gg) and agree very well with both AFEAS production and release 

figures between 1934 and 2003, which have been reported at 520 and 511 Gg 

respectively (AFEAS, 2009). The aforementioned discrepancy in the early part of the 

record may therefore originate from pre-1960 production which was released to the 

atmosphere later than predicted by AFEAS. 

For the post-2003 part, a substantial amount of CFC-114 (containing a fraction of 

CFC-114a) is believed to have been in “banks”. Although CFCs are no longer being 

produced, they are still being released to the atmosphere from existing “CFCs bank’’. 

That is, the stockpile of CFCs which remain unused in old and long- lived equipment 

and yet to be either released or destroyed. The “CFCs bank’’ are calculated by 

subtracting the specific estimates of the cumulative emission from the estimates of 

cumulative production (Newland, 2013). Interestingly, the AFEAS database itself 

does not fully reflect this in their emissions as only 8.8 Gg remained “unreleased” to 

the atmosphere in 2003. If current emissions are from existing equipment, then such 

a small “bank” is not consistent with current persisting emissions of 1.80 Gg yr-1 

(range: 1.0 to 2.7 Gg yr-1) of CFC-114 and 0.25 Gg yr-1 (range: 0.18 to 0.32 Gg yr-1) of 

CFC-114a in 2014, giving cumulative emissions for those 11 years of 23 Gg (13 to 34 

Gg).  
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5.3.3 Possible sources of CFC-114 and CFC-114a 

 

Emission of trace gases are mainly originated from the Northern Hemisphere. Most 

industrialised countries are located in the Northern Hemisphere, which is why trace 

gases of predominantly anthropogenic origin are known to show interhemispheric 

gradients (e.g. Carpenter et al., 2014). Our results from interhemispheric flights of 

the CARIBIC aircraft are shown in Figure 5.12. Even though slightly higher mixing 

ratios are found in the Northern Hemisphere, the gradient with latitude is 

insignificant for either CFC-114 or CFC-114a (within the 1σ measurement 

uncertainty, i.e. 1.2% on average for both gases – compared to gradients of 0.8 and 

1.0% for CFC-114 and CFC-114a respectively when looking at the variability of the 

atmospheric mixing ratios averaged over both flights). This is consistent with the 

Cape Grim data that indicate that global emissions of both of these gases have largely 

ceased. As the GC-MS analyses of the CARIBIC air samples revealed no exceptionally 

high mixing ratios of many other trace gases (e.g. CFC-11, H-1301, HCFC-142b, HFC-

134a), it can be concluded that the sampled air masses are representative of well-

mixed mid and upper tropospheric background air during February 2015. 

 

 

 

Figure 5.12: CFC-114 and CFC-114a observations from air samples collected during two 

interhemispheric aircraft flights from Germany to South Africa and back on 10–11 February 

2015.  
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However, although the global estimated emissions of both of these gases have 

largely ceased, we can see clearly in Section 5.3.2 that they do not reach zero by the 

end of the record for either isomer. As previously discussed in Section 5.3.2, a 

substantial bank of the CFCs within long-lived applications can potentially produce 

continued emissions to the atmosphere (AFEAS, 2009.). Alternatively, the persisting 

emissions could also be generated by the industry that produce or consume CFC-

114 and CFC-114a in their manufacturing process.  

To understand and assess the relationship between the emissions in developing 

countries and persisting emissions of CFC-114 and CFC-114a, we utilised our 

measurements during the field campaign in southern Taiwan in 2015 (Hengchun 

site, 22.1N, 120.7E; 7m a.s.l.; similar to the 2013 campaign reported by Vollmer et 

al., 2015). However, our observational data is limited to further asses the origin of 

those emissions, which suggest the importance to conduct more atmospheric 

observation in the East Asian region.  

CFC-114a exhibited mixing ratios that, on average, were 17% higher than the 

average mixing ratios observed at Cape Grim (Figure 5.13). Even samples that show 

no significantly elevated mixing ratios for several other trace gases that are known 

to have continuing strong East Asian sources (e.g. HCFC-141b, HFC-227ea) exhibited 

CFC-114a mixing ratios more than 2% higher than at Cape Grim. In contrast, mixing 

ratios of CFC-114 are not enhanced significantly throughout the campaign 

confirming that the regional source of CFC-114a is not due to the emission of an 

isomeric mixture. 

I also performed the NAME trajectory analysis in order to identify the possible 

source regions of both isomers measured in Taiwan. The air masses predominantly 

originated from China and the Peninsular of Korea with no significant influence from 

the local industrial regions in Taiwan.  Figure 5.14 shows examples of NAME 

footprints during 2 days that relate to the highest mixing ratios (range: 1.15 -

1.25ppt) of CFC-114a during our sampling. Footprints for the rest of the days that 

we have measurement are provided in Appendix. 
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Figure 5.13: Mixing ratios of CFC-114 and CFC-114a from samples collected during a 

ground-based campaign near Hengchun, Taiwan, in early 2015 (diamonds) compared to 

mixing ratios observed at Cape Grim averaged from 2012 to 2014 (lines). Uncertainties 

(error bars and dashed lines) are 1 σ standard deviations. 

 

 

 

(a) (b) 

 

Figure 5.14: NAME footprints derived from 12-day backward simulation showing the time 

integrated density of particles below 100 m altitude on (a) 22/03/2015 and (b) 

23/03/2015. Both days experienced large enhancements of CFC-114a mixing ratios during 

the 2015 campaign in Taiwan. 
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During this campaign, HFC-134a showed mixing ratios close to background (six 

samples between 84 and 88 ppt) as well as enhancements of up to 132 ppt. However, 

we find no significant correlation (R2 < 0.1) with CFC-114a, implying that either (i) 

most of the regional HFC-134a emissions originate from production pathways not 

involving CFC-114a and/or (ii) HFC-134a does not contain CFC-114a as an impurity 

and the latter is only emitted during HFC-134a production. The connection of these 

regional CFC-114a emissions to HFC-134a production processes is however 

supported by the fact that we see the biggest enhancements of CFC-115 (between 5 

and 10% above background) and CFC-113a (between 90 and 200 %) in the four 

samples with the highest CFC-114a mixing ratios– with both these compounds being 

involved in the same HFC-134a production process (where CFC-113 is isomerised 

to form CFC-113a, which is then fluorinated to produce CFC-114a, followed by 

hydrogenolysis to HFC-134a, with CFC-115 being a small by-product as a result of 

overfluorination; Banks et al., 1994). In addition we cannot rule out the possibility 

of a new onset of CFC-114a emissions as the Taiwan samples were collected after 

the end of our current Cape Grim record. 

 

5.4 Conclusions 

 

This study has filled the gap in knowledge of 2 of the so-called neglected CFCs i.e. 

CFC-114 and 114a. For the first time, we achieved a complete quantification of CFC-

114 and CFC-114a and successfully report the long term trend and emissions of the 

two isomeric forms separately.  

The full separation of the two isomers reveals some additional new information. In 

the past, the isomers have routinely been reported as the sum of the isomers with 

the assumption that the abundance of CFC-114a is 10% that of CFC-114. However, 

we found that that the fraction of CFC-114a mixing ratio relative to that of CFC-114 

increased from 4.2 to 6.9% over the 37-year period. This contradicts the current 

tacit assumption used in international climate change and ozone depletion 

assessments that both isomers have been largely co-emitted and that their 

atmospheric concentration ratio has remained approximately constant in time 

Carpenter et al. (2014).  
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Furthermore, we also present how we used the observational dataset (firn air and 

Cape Grim archive) in combination with a 2D global model to reconstruct 

atmospheric histories of these compounds for assessing their global emissions. We 

estimate global cumulative emissions of 514 Gg (range: 415 to 617 Gg) of CFC-114 

and 39 Gg (32 to 47 Gg) of CFC-114a up until 2014, which is broadly consistent with 

bottom-up estimates derived by industry. The emissions for both compounds grew 

steadily during the 1980s, followed by a substantial reduction from the late 1980s 

onwards, which is consistent with the reduction of emission in response to the 

Montreal Protocol demonstrating the success of the Montreal Protocol regulations, 

which banned production and consumption in developed countries from 1996 

(UNEP, 2014). Nevertheless, there is evidence of small continuing, but significant, 

emissions of both isomers still in 2014. From our derived emission estimates and 

comparison with the AFEAS bottom-up emission estimates, we can conclude that 

there is a persisting emission of 1.8Gg yr-1  (range: 1.0 to 2.7 Gg yr-1) and 0.25 Gg yr-

1(range: 0.18 to 0.32 Gg yr-1), for CFC-114 and CFC114a, respectively. Moreover the 

inferred changes to the ratio of emissions of the two isomers since the 1990s also 

indicate that the sources of the two gases are partly unrelated. Ultimately, the source 

and trends of each isomer have varied over time, which suggest that CFC-114 and 

CFC-114a were not always being co-produced or co-emitted. This is further 

supported by the datasets from Taiwan and CARIBIC, which shows a source of CFC-

114a from East Asia but not of CFC-114. 

In conclusion, based on the differences in trends and emissions of both isomers 

presented in this study, we recommend that the two isomers should be reported 

separately in the future, or that time-dependent speciation factors, should be used 

to approximate global concentrations of CFC-114 and CFC-114a. Also, the fact that 

the emissions do not reach zero by 2014 highlights the importance of continued 

research and monitoring of all ozone-depleting substances (ODSs) in order to 

ensure compliance with the Montreal Protocol for environmental protection against 

ozone loss. Further observations are also required to understand the origin of these 

emissions, especially in the East Asian region. It should however be noted that such 

emissions are not necessarily in breach of the Montreal Protocol given that CFCs 

used as intermediates in the production of other compounds (such as HFC-134a) do 

not have to be reported under that treaty. 
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Chapter 6 

Conclusions 

________________________________________________________________________________________________________ 

 

The main results of this thesis are summarised in this chapter. Section 6.1 

provides an overview of each of three result-related chapters and highlights the 

principal scientific findings. The aforementioned chapters focused on the three 

different halocarbon subgroups, namely (1) very short-lived (VSLS) gases (i.e. 

chlorinated VSLSs), (2) short-lived gases (i.e. methyl halides), as well as (3) long-

lived gases (i.e. CFC-114 and -114a). Meanwhile, Section 6.2 suggests the potential 

methods and techniques to address the limitation of this thesis. These lay the 

foundation for further expansions of this study, with reference to its findings. 

 

6.1 Significant findings 

 

6.1.1 Regional studies on halogenated substances 

 

The outcomes of the regional studies on chlorinated VSLSs and methyl 

halides have been presented in Chapters 3 and 4 respectively.  

As per Chapter 3, during the regional campaigns in East Asia and South East 

Asia, the mixing ratios of four species of interest – dichloromethane (CH₂Cl₂), 

dichoroethane (CH₂ClCH₂Cl), chloroform (CHCl₃), and tetrachloroethene or PCE 

(C₂Cl₄) – were generally higher than their respective background levels, thereby 

demonstrating widespread regional enhancements. The fact that the mixing ratios 

at Taiwan were often higher than those of Bachok, indicated that the former was 

located relatively closer to the major source regions. Moreover, examinations of the 

NAME footprints and relative particle concentrations suggested that the 

enhancements of mixing ratios of chlorinated VSLSs in East and Southeast Asia were 

mostly attributable to anthropogenic sources at the mid-latitude, primarily East 
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China. Evidently, the elevated mixing ratios of all chlorinated VSLS were consistently 

associated with industrial emissions. Meanwhile, biomass-burning was also a 

potential contributor to the variability of the abovementioned mixing ratios. 

Nevertheless, there are still limited robust ground-based measurements which can 

support the rationale that biomass-burning has an extensive influence towards the 

mixing ratios of chlorinated VSLS. It is important to note that this thesis has 

attempted to use a more quantitative approach to thoroughly analyse the 

contributions of each sector (natural/ anthropogenic) and each potential region to 

the variability of the halogenated substance levels at Taiwan and Bachok. In 

previous works, qualitative analyses (i.e. comparisons of the time series of 

halogenated substances with their daily NAME air history maps) enabled the 

formulation of somewhat general conclusions on the possible source regions of the 

same. This thesis has employed an ArcGIS-generated shapefile whereby the NAME 

runs were split subjectively into the main geographical areas with differing source 

characteristics. As a result, the contribution of each source location can be quantified 

and subsequently helped explain the chemical species’ mixing ratio enhancements 

at the sampling sites. Notably, this study has utilised an improved version of the 

particle concentration analysis. Previously, the regional divisions were rather crude 

and not accurately representative. For example, there were mixtures of land and sea 

areas. However, using the shapefile, the regions were accurately represented; 

thereby allowing the contributions of specific regions to be assessed correctly.   

 

Similar to Chapter 3, Chapter 4 has also focused on interpretations of the 

observational datasets that were generated from the ground-based campaigns in 

East Asia and South East Asia. However, in the latter chapter, the species of interest 

were methyl halides – methyl chloride (CH₃Cl) and methyl bromide (CH₃Br). At both 

Taiwan and Bachok, the mixing ratios of the methyl halides also exceeded their 

respective global background values, hence demonstrating widespread regional 

enhancements once again. Unlike most of halogenated substances in Chapter 3, the 

atmospheric abundances of CH₃Cl and CH₃Br were influenced by emissions 

originated from multiple type of sources. There were two main possible shared 

sources of methyl halides at Taiwan and Bachok, namely (1) Industry (combustion 

and processing) and (2) agriculture (waste burning on fields). Additionally, (1) 

forest burning and grassland burning emissions were suspected to also contribute 
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to the methyl halide variations, especially at Bachok and (2) oceanic emissions 

potentially influence the variability of methyl halides in Taiwan. In addition, 

terrestrial emissions were suspected to contribute to the extraordinarily high 

mixing ratios of CH₃Cl, especially at Bachok. However, their contributions to the said 

ratios have not been quantified in this study. As such, further investigations on the 

same are warranted in the future. 

 

Interestingly, in the regional studies on halogenated substances, some of the 

strongest enhancements of the gases have also been observed concurrently with the 

cold surges – an important meteorological process during the Northeast Monsoon. 

In this thesis, a new cold surge index has been devised to enable more thorough 

analyses of cold surges and their influences on the variations in the halogenated 

substances’ mixing ratios. As mentioned, the results have shown that high 

concentrations of halogenated substances corresponded to the occurrence of the 

Northeast Monsoon’s cold surges. Thus, these findings have provided further 

evidence of the ability of cold surges to rapidly transport gases of relatively short 

atmospheric lifetimes (~1 year) from highly industrialised regions (i.e. East Asia) to 

the tropics. Even though evidences of cold surges during the Bachok campaigns have 

been demonstrated (e.g. Oram et al., 2017), this work has, for the first time, utilised 

a cold surge index (which is generally used in climatology) to define the same, 

thereby strengthening the understanding of the associations of cold surges with the 

variability of very short-lived and short-lived gases. Additionally, an alternative 

index is assigned further south and called as V8 to better represent the transport of 

trace gases closer to Bachok 

 

Importantly, both studies in Chapters 3 and 4 have provided further 

evidences of the elevated emissions of VSLSs and short-lived gases. Historically, 

these have not been considered as ozone-damaging in light of the belief that their 

relatively short atmospheric lifetimes would not enable them to reach the 

stratosphere in large quantities. As such, they have not been controlled under the 

Montreal Protocol at that time. However, their impact on the climate, particularly in 

terms of stratospheric ozone-depletion, depended on the location at which they 

were liberated. Emissions that were close to the major stratospheric input regions 
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were of far greater significance with regards to ozone-depletion. On another note, 

the aforementioned studies have also demonstrated the important roles of the 

Northeast Monsoon’s cold surges as well as East Asian and South East Asian 

emissions in the enhancement of halogenated substance mixing ratios in those 

regions. Evidently, East Asia and South East Asia were of particular importance 

because (1) they can be potential emitters since the sources of chlorinated VSLSs 

and methyl halides found to be co-located with various emissions generated either 

from industrial, non-industrial or natural activities found in the regions, and that (2) 

they had the potential to increase the contribution of halogenated substances to the 

stratospheric halogens loading. As we have no control over the natural weather 

patterns (including cold surges, our main concern should be over the copious 

emissions of halogenated substances from East Asia. In the absence of control over 

regional emissions, the contributions of chlorinated VSLSs and methyl halides to the 

stratospheric halogens loading would be likely to substantially increase in the 

coming years, which in turn would give rise to delays in the long-term recovery of 

the ozone layer. This highlights the importance of conducting further regional 

studies not only as few measurements have been made so far but also the proximity 

of this region to prevalent deep convection, which increases the chance of pollutants 

emitted from here being transported to the upper tropical troposphere – the point 

of entry into the stratosphere and subsequently impacting the ozone layer. 

 

 

6.1.2 Global study on halogenated substances 

 

The study in Chapter 5 has filled the knowledge gap in terms of the so-called 

neglected long-lived gases (i.e. CFC-144 and -144a). For the first time, complete 

quantifications of CFC-114 and -114a have been achieved. Likewise, the long-term 

trends and emissions of the two isomeric forms have been successfully reported 

separately. Evidently, these achievements were attributable to analyses of a 

combination of archived remote Southern Hemispheric tropospheric air and firn air 

data that enabled the reconstruction of tropospheric records from 1960 to 2014. 

Overall, the mixing ratios of both isomers no longer increased significantly at the 
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end of that record. Also, the stabilisation of the global atmospheric mixing ratios of 

both CFCs was proof of the success of the Montreal Protocol. 

Chapter 5 has also presented the top-down estimated global annual 

emissions of CFC-114 and -114a via a two-dimensional atmospheric chemistry-

transport model. In general, the emissions of both compounds have increased from 

around 1960 to the 1980s. A substantial reduction of the same since the late 1980s 

was in line with the reduction of emissions in response to the Montreal Protocol. 

However, substantial emissions of both isomers were still the case in 2014. 

Moreover, changes in the emission ratio of the two isomers since the 1990s have 

confirmed that the sources of the same were partly unrelated. Complementary 

ground-based observations of the Taiwanese air samples supported this hypothesis 

and suggested the presence of a persistent source of CFC-114a in East Asia.  

In conclusion, significant global atmospheric emissions of CFC-114 and -114a 

have persisted until at least 2014, thus highlighting the need for continual efforts to 

ensure that these substances eventually disappear from the atmosphere. Since the 

exact factors that contributed to the abundances of both isomers post-

implementation of the Montreal Protocol are yet to be identified, further 

investigations are necessary to determine the origins of the said compounds, 

especially in East Asia. Given the differences in the trends and emissions, the 

differentiation of CFC-114 & -114a should be taken into consideration when 

reporting to the Montreal Protocol in the future. 
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6.2  Suggestions and future research directions 

 

In general, further observations are required to assess the abundances of 

halogenated substances and locate the exact origins of the emissions, especially in 

East Asia and South East Asia. Although this thesis has characterised the East Asian 

and South East Asian emissions according to the source regions and types, further 

evaluations should be done in order to generate more solid conclusions which can 

inform and guide future campaigns. At this stage, the exact mechanisms or pathways 

of the regional emissions of short-lived, very short-lived, and long-lived gases are 

still uncertain. Therefore, I recommend the following improvements to expand this 

work further: 

1. The frequencies and durations of the campaigns should be increased. While 

Taiwan is an ideal location to study the Asian outflow of trace gases including 

ozone-depleting substances (ODS), constant monitoring at Bachok will 

provide an opportunity to assess the long-range transportation of ODS from 

neighbouring regions, apart from further exploring the influences of weather 

systems (e.g. cold surges) on the variability of the chemical compositions. 

 

2. A more robust modelling approach i.e. combining NAME dispersion studies 

with source apportionment models that extract the source of the emissions 

to more than just a region but to a particular type of natural or anthropogenic 

emission. 

 

3. Correlations with other tracers can also be helpful since this thesis has been 

restricted to the available compounds. For example, observational datasets 

of acetonitrile (CH₃CN) concentrations may indicate the contributions of 

biomass-burning to the anthropogenic release of halogenated substances. 

Also, correlations can be established between the mixing ratios of naturally-

emitted gases and certain parameters like chlorophyll abundance (as marker 

for phytoplankton abundance) in order to attribute the variations in the 

mixing ratios of the naturally produced halogenated substances (e.g. methyl 

halides) to the air masses that originate from the oceanic regions. Also, a 

more detailed survey of the possible contributors (plants, soil, leaf litter, etc.) 
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will complement the knowledge of the separate sources and sinks within the 

terrestrial ecosystem. 

 

4. Datasets of the concentrations of short-lived and very short-lived 

halogenated substances need to be generated during aircraft campaigns that 

collect East Asian and South East Asian air samples at altitudes of 10 - 12 km. 

These samples will provide an opportunity to determine whether the short-

lived and very short-lived halogenated substances can be rapidly channelled 

to the upper tropical troposphere (lower TTL) and have the impact on the 

stratospheric ozone. 

 

5. Inter-annual comparisons of cold surges should be executed to enable the 

identification of the presence of consistent or usual year-on-year patterns of 

the cold surge. Also multi-winter comparison will help determine the 

existence of a relationship between cold surges and climate change (e.g. El-

Nino events). 

 

To summarise, it is hoped that the outcomes of this thesis can assist future 

investigation of the tropospheric abundances, emissions, and transportation of 

halogenated substances at the regional as well as global scales. Also, it is hoped that 

research and monitoring of halogenated substances would be continuously 

conducted in order to ensure compliance with the Montreal Protocol for the 

protection of the environment against ozone loss. 
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Appendix 

_______________________________________________________________ 

 

Chapter 3 & Chapter 4 
 

Appendix A: Mixing ratios of chlorinated VSLS and methyl halides in Taiwan 

during campaigns in 2013, 2014, 2015 and 2016 

 

Date and Time 
(UTC) 

Mixing ratios (ppt) 

CH₂Cl₂ CH₂ClCH₂Cl CHCl₃ C₂Cl₄ CH₃Cl CH₃Br 

07/03/2013 03:20 171.81 95.33 22.38 3.81 885.77 18.65 

08/03/2013 03:00 328.51 40.23 19.72 2.73 789.67 15.85 

11/03/2013 03:33 207.99 103.44 25.95 4.25 806.75 16.87 

12/03/2013 02:56 354.61 196.45 40.26 4.38 925.45 35.06 

13/03/2013 02:40 226.50 258.97 58.10 3.05 875.82 22.86 

14/03/2013 03:00 331.42 140.15 36.08 7.72 912.12 20.60 

15/03/2013 01:50 137.56 56.24 19.79 4.64 756.39 18.31 

18/03/2013 01:55 108.13 33.12 14.71 2.55 928.96 17.66 

19/03/2013 02:30 193.20 80.77 20.42 4.02 861.09 17.40 

20/03/2013 01:30 90.26 473.30 91.57 2.20 856.54 16.06 

21/03/2013 01:20 671.78 327.72 69.84 16.56 1236.97 23.53 

22/03/2013 02:45 408.45 182.89 38.41 6.64 1082.50 34.64 

25/03/2013 01:50 296.93 118.51 32.80 7.31 939.89 23.88 

27/03/2013 03:20 351.19 820.06 32.99 6.05 1056.66 18.95 

28/03/2013 02:40 157.49 65.01 22.37 3.65 923.97 16.85 

01/04/2013 02:40 248.54 494.84 199.26 4.69 977.27 17.25 

03/04/2013 02:27 476.81 186.62 57.23 10.76 1037.42 23.12 

04/04/2013 02:15 239.27 93.26 32.95 6.36 1111.36 48.76 

05/04/2013 03:02 76.77 23.67 11.55 1.66 818.90 21.42 

11/03/2014 10:22 208.49 63.26 40.79 5.97 726.79 22.86 

13/03/2014 15:50 675.41 290.20 85.13 18.55 1086.76 19.76 

14/03/2014 14:15 354.85 143.20 55.99 11.34 777.16 17.80 

15/03/2014 14:30 209.46 75.86 35.70 6.39 699.12 11.57 

16/03/2014 14:22 359.39 166.11 44.92 7.60 772.37 12.77 

17/03/2014 14:23 459.94 188.83 44.57 8.33 819.63 16.47 

18/03/2014 14:27 331.99 81.93 34.39 4.53 841.31 16.75 

19/03/2014 14:40 303.74 90.95 33.53 4.36 802.95 18.53 

21/03/2014 14:21 92.46 23.53 21.53 3.58 576.64 9.34 

22/03/2014 14:20 77.87 18.96 14.78 3.04 613.32 8.90 

24/03/2014 14:15 79.13 17.64 14.71 2.70 613.05 9.28 

25/03/2014 14:15 495.50 142.12 42.33 4.57 753.43 12.29 

26/03/2014 14:25 204.90 35.89 19.00 3.43 679.23 18.53 

27/03/2014 14:20 307.13 95.97 25.72 5.09 735.65 13.84 
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28/03/2014 14:15 741.02 244.28 61.33 14.88 981.68 18.57 

29/03/2014 14:05 78.20 18.17 13.82 1.65 602.63 13.48 

30/03/2014 15:20 665.30 245.85 103.23 16.64 1048.54 19.42 

31/03/2014 14:20 407.37 122.49 55.33 8.57 947.47 25.17 

01/04/2014 14:25 208.29 63.91 31.42 5.30 761.69 13.56 

02/04/2014 14:10 226.80 82.82 34.47 5.67 695.13 15.71 

03/04/2014 14:25 197.02 63.71 30.82 4.94 676.32 10.66 

04/04/2014 14:15 190.52 58.30 36.42 5.61 673.14 11.17 

12/03/2015 17:35 97.39 24.22 20.87 4.33 771.22 15.09 

17/03/2015 11:26 66.60 15.44 13.65 2.02 640.91 8.98 

18/03/2015 10:40 59.38 12.80 12.73 1.78 711.86 14.21 

19/03/2015 10:40 211.49 87.82 27.31 2.38 815.78 10.93 

20/03/2015 10:42 225.50 355.80 125.09 3.03 965.95 16.62 

21/03/2015 08:45 82.47 18.93 13.47 1.85 734.56 10.77 

22/03/2015 10:20 510.22 215.12 103.84 17.73 1091.42 20.61 

23/03/2015 10:11 391.82 126.66 69.00 8.86 1009.04 18.09 

24/03/2015 13:03 135.18 45.32 34.65 4.92 677.92 8.74 

25/03/2015 10:20 109.84 30.52 26.10 4.79 693.20 12.53 

26/03/2015 10:10 100.65 27.20 20.55 3.46 676.16 9.61 

27/03/2015 09:45 325.83 221.50 65.52 4.75 1005.11 19.49 

28/03/2015 13:07 536.68 144.05 38.85 7.19 783.44 15.06 

29/03/2015 08:50 237.14 77.86 24.72 3.91 751.95 10.51 

30/03/2015 09:38 128.74 35.21 18.72 2.53 814.32 11.37 

31/03/2015 10:12 88.89 19.05 15.22 2.24 672.28 12.00 

22/04/2015 19:45 238.15 100.43 39.40 7.35 660.93 11.15 

23/04/2015 10:04 233.11 63.01 33.23 5.80 792.27 15.07 

23/04/2015 17:50 235.45 70.15 35.43 5.05 788.08 16.38 

24/04/2015 10:40 198.63 58.98 29.16 5.01 770.28 11.70 

24/04/2015 17:40 306.15 99.32 44.56 4.62 875.08 15.57 

25/04/2015 10:40 175.61 49.11 27.96 3.90 735.62 13.94 

25/04/2015 17:20 138.67 39.75 24.29 3.33 645.44 9.20 

16/03/2016 17:14 158.15 
 

14.36 
 

874.90 15.75 

20/03/2016 12:16 401.20 
 

50.60 
 

958.93 19.42 

21/03/2016 13:52 167.87 
 

30.18 
 

790.19 11.65 

24/03/2016 12:34 84.46 
 

17.93 
 

670.75 10.62 

24/03/2016 14:22 85.15 
 

17.82 
 

702.07 10.50 

25/03/2016 12:17 91.55 
 

19.17 
 

705.92 12.26 

25/03/2016 14:18 92.27 
 

21.01 
 

703.12 13.39 

26/03/2016 12:19 546.47 
 

93.70 
 

1040.74 19.42 

26/03/2016 14:07 530.94 
 

95.03 
 

1119.71 17.16 

27/03/2016 12:41 270.66 
 

66.19 
 

910.37 16.43 

08/04/2016 12:16 423.56 
 

56.31 
 

1162.36 26.84 

08/04/2016 14:09 334.22 
 

46.38 
 

859.10 18.03 

09/04/2016 10:01 225.93 
 

28.30 
 

821.15 15.31 

09/04/2016 11:51 226.20 
 

27.95 
 

794.66 16.68 

10/04/2016 11:54 202.64 
 

27.26 
 

785.65 13.15 

11/04/2016 12:56 116.76 
 

19.42 
 

774.31 12.46 

11/04/2016 14:06 112.26 
 

18.20 
 

790.12 11.72 
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12/04/2016 12:19 164.59 
 

27.83 
 

747.92 13.73 

12/04/2016 14:12 157.11 
 

26.89 
 

826.37 14.15 

14/04/2016 11:09 623.30 
 

49.63 
 

879.09 22.64 

14/04/2016 12:09 636.92 
 

48.90 
 

899.74 20.38 

14/04/2016 14:44 470.59 
 

36.81 
 

892.89 17.17 

15/04/2016 10:06 175.00 
 

24.97 
 

738.56 11.17 

15/04/2016 12:13 191.40 
 

26.26 
 

773.54 13.85 

18/04/2016 12:20 242.05 
 

51.13 
 

804.14 11.85 

19/04/2016 11:37 284.40 
 

41.87 
 

816.55 14.69 

25/04/2016 12:08 354.64 
 

40.59 
 

807.79 14.92 

25/04/2016 14:03 348.18 
 

39.22 
 

837.04 14.22 

28/04/2016 11:57 1203.40 
 

136.95 
 

1326.38 34.03 

28/04/2016 14:07 1040.18 
 

113.52 
 

1160.79 21.63 

29/04/2016 10:17 1106.59 
 

149.43 
 

1268.84 27.33 

29/04/2016 12:05 1173.34 
 

147.23 
 

1291.08 28.21 

29/04/2016 13:57 1110.87 
 

136.15 
 

1260.54 24.50 

 

 

Appendix B: Mixing ratios of chlorinated VSLS and methyl halides in Bachok 

during campaigns in 2013/2014 and 2015/2016  

Date and Time 
(UTC) 

Mixing ratios (ppt) 

CH₂Cl₂ CH₂ClCH₂Cl CHCl₃ C₂Cl₄ CH₃Cl CH₃Br 

20/01/2014 04:05 132.17 50.76 19.74 3.41 804.55 14.24 

20/01/2014 08:10 170.36 61.30 20.35 4.26 831.44 18.17 

21/01/2014 04:10 200.77 69.90 22.80 4.89 873.92 15.60 

22/01/2014 03:45 162.51 62.16 26.09 4.83 835.00 15.67 

23/01/2014 04:50 352.22 119.51 30.48 9.48 882.83 12.91 

24/01/2014 09:40 183.14 66.47 27.16 4.79 781.24 20.75 

25/01/2014 04:08 175.39 66.07 26.76 4.50 864.23 11.76 

26/01/2014 04:15 158.50 53.09 22.37 4.24 793.43 9.83 

27/01/2014 09:55 92.93 30.52 17.16 2.12 664.36 9.87 

28/01/2014 04:25 75.36 21.51 14.68 2.06 606.10 11.41 

28/01/2014 09:05 72.67   14.44 2.03 592.83 8.10 

29/01/2014 09:00 80.13   14.68 1.99 613.38 9.31 

30/01/2014 03:55 92.48   16.25 2.43 642.46 10.40 

30/01/2014 09:45 86.99   15.00 2.00 647.43 9.84 

30/01/2014 11:40 82.05   14.62 1.88 679.02 9.39 

30/01/2014 15:59 82.83 25.20 14.52 1.86 614.84 8.43 

31/01/2014 00:00 88.98 27.05 23.23 2.61 1554.32 12.49 

31/01/2014 04:00 83.52   14.81 1.95 698.11 8.86 

31/01/2014 08:00 81.89   14.04 1.87 633.76 10.26 

31/01/2014 12:00 85.16   15.37 1.85 625.33 8.66 

31/01/2014 15:59 101.10   17.37 2.32 768.40 11.74 

01/02/2014 00:00 89.58 28.90 24.18 3.15 1574.10 17.77 

01/02/2014 04:00 81.92   14.95 2.01 716.74 9.32 

01/02/2014 08:00 76.44 21.66 14.65 1.85 616.02 8.78 

01/02/2014 12:00 73.65   13.50 1.79 687.12 12.18 
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02/02/2014 04:10 73.83 20.01 14.70 1.90 701.05 9.09 

03/02/2014 06:15 66.38 16.43 12.81 1.57 784.29 11.70 

05/02/2014 09:55 69.34   13.75 1.57 712.83 8.95 

19/11/2015 08:10 49.93 10.97 12.92 1.67 1010.06 15.04 

22/11/2015 09:10 67.85 10.41 13.27 4.42 739.36 7.56 

23/11/2015 08:38 51.25 8.46 12.88 1.36 709.25 14.27 

25/11/2015 09:49 70.79 12.77 13.73 2.39 695.04 9.78 

26/11/2015 09:21 69.15 16.14 13.27 2.12 642.24 8.75 

29/11/2015 08:45 53.96 12.32 11.43 1.55 661.94 8.28 

30/11/2015 09:33 79.88 12.15 18.29 4.00 1014.67 10.05 

01/12/2015 09:18 56.34 13.33 13.05 1.53 625.39 8.50 

02/12/2015 08:40 90.83 22.13 19.30 2.50 634.71 8.27 

03/12/2015 08:30 84.18 23.33 18.06 2.89 728.98 11.06 

06/12/2015 09:11 64.09 13.30 12.91 1.56 773.01 9.53 

08/12/2015 08:47 62.18 13.17 11.79 1.53 659.93 9.01 

09/12/2015 08:58 51.20 10.08 11.24 1.65 653.09 9.42 

12/12/2015 09:33 236.58 65.90 35.41 7.18 833.22 10.50 

13/12/2015 09:12 86.81 21.52 15.48 2.58 706.07 8.75 

16/12/2015 09:53 128.74 38.67 16.78 3.66 743.98 9.78 

17/12/2015 08:24 267.96 78.17 30.43 7.85 831.82 12.54 

20/12/2015 08:50 204.73 71.61 29.09 7.25 751.63 9.66 

27/12/2015 08:30 67.54 15.88 14.10 2.03 645.54 12.90 

28/12/2015 08:36 82.40 23.20 16.94 2.67 695.11 10.64 

29/12/2015 09:15 110.48 36.21 21.60 3.72 640.72 11.85 

30/12/2015 08:29 96.98 31.98 18.47 3.62 641.23 7.98 

31/12/2015 05:24 95.81 30.05 17.90 3.74 681.60 8.41 

04/01/2016 02:41 98.84 25.55 19.41 2.91 793.39 9.15 

04/01/2016 08:26 97.06 24.87 14.95 3.03 634.59 9.25 

05/01/2016 08:39 49.36 9.56 11.00 1.44 612.06 7.96 

06/01/2016 08:44 61.67 11.29 12.33 1.48 632.82 8.33 

10/01/2016 09:25 69.18 20.33 12.34 1.89 710.61 9.56 

11/01/2016 08:34 77.53 18.72 13.95 1.99 681.71 9.44 

12/01/2016 08:50 88.35 22.59 14.39 2.16 684.52 9.67 

13/01/2016 08:24 66.85 12.98 12.50 1.44 731.87 9.51 

14/01/2016 08:21 54.05 9.64 11.72 1.33 702.23 8.50 

17/01/2016 07:40 60.32 13.96 11.99 1.54 699.58 8.53 

18/01/2016 08:35 54.82 13.17 10.84 1.57 680.61 10.56 

19/01/2016 07:44 47.35 10.35 9.94 1.33 663.37 9.21 

20/01/2016 08:16 48.96 10.78 9.58 1.27 647.87 8.57 

21/01/2016 07:24 53.09 12.92 10.47 1.43 662.15 9.69 

24/01/2016 08:53 103.09 28.96 16.50 2.78 698.21 10.83 

26/01/2016 12:23 171.24 64.24 24.87 6.72 715.08 8.56 

27/01/2016 07:44 137.65 44.99 22.68 5.30 690.22 8.04 
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Appendix C: Meridional wind extracted at 8°N and 15°N during the Bachok 
campaigns in 2013/2014 and 2015/2016. 

Day 
V= 8⁰N V= 15⁰N  

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 

1 Jan 2014 -8.45 -7.78 -8.00 -8.39 -7.50 -6.07 -5.60 -3.66 

2 Jan 2014 -6.69 -4.55 -3.65 -4.69 -2.40 -0.18 -0.36 1.29 

3 Jan 2014 -5.07 -4.20 -4.87 -5.35 1.76 -2.03 -4.84 -4.44 

4 Jan 2014 -5.83 -5.75 -7.05 -6.41 -6.54 -9.32 -9.79 -8.21 

5 Jan 2014 -6.54 -6.96 -7.45 -6.38 -8.51 -5.48 -5.65 -2.17 

6 Jan 2014 -5.31 -5.96 -6.35 -5.30 -3.51 -2.14 -2.46 -1.59 

7 Jan 2014 -5.34 -4.64 -6.94 -6.62 -2.29 0.61 -1.26 -0.31 

8 Jan 2014 -6.24 -3.95 -6.10 -6.57 -1.67 -4.36 -7.38 -7.74 

9 Jan 2014 -6.23 -6.88 -7.84 -5.87 -9.58 -8.14 -9.29 -7.34 

10 Jan 2014 -6.88 -5.52 -7.13 -5.15 -8.33 -6.41 -6.92 -4.71 

11 Jan 2014 -6.06 -6.53 -7.77 -8.15 -5.54 -5.75 -7.15 -5.81 

12 Jan 2014 -8.43 -8.15 -9.71 -8.98 -8.27 -9.62 -11.05 -10.29 

13 Jan 2014 -9.95 -8.98 -9.69 -9.17 -11.88 -12.69 -14.54 -12.92 

14 Jan 2014 -8.79 -9.58 -10.64 -9.51 -15.50 -13.34 -13.66 -12.11 

15 Jan 2014 -10.25 -9.67 -9.21 -8.03 -13.86 -11.67 -11.92 -8.64 

16 Jan 2014 -7.61 -7.46 -8.66 -7.51 -9.23 -7.15 -8.64 -8.58 

17 Jan 2014 -8.29 -8.76 -9.07 -8.74 -10.56 -10.67 -13.14 -11.87 

18 Jan 2014 -10.04 -10.63 -11.33 -9.10 -12.71 -13.08 -13.60 -10.01 

19 Jan 2014 -9.97 -8.45 -9.36 -9.24 -8.65 -7.17 -9.33 -6.90 

20 Jan 2014 -8.86 -7.23 -7.88 -8.78 -9.19 -9.27 -10.91 -10.55 

21 Jan 2014 -9.10 -10.04 -10.58 -9.76 -13.57 -12.73 -14.23 -11.58 

22 Jan 2014 -10.90 -10.06 -9.49 -8.14 -13.43 -12.17 -13.85 -10.57 

23 Jan 2014 -8.09 -6.83 -7.37 -4.90 -9.70 -7.73 -7.99 -4.57 

24 Jan 2014 -5.16 -5.52 -5.57 -2.90 -4.80 -4.23 -3.54 1.20 

25 Jan 2014 -3.18 -1.92 -3.35 -3.99 -0.72 -2.69 -3.84 -2.41 

26 Jan 2014 -3.89 -3.68 -4.97 -4.74 -3.82 -4.96 -7.02 -6.32 

27 Jan 2014 -4.80 -4.55 -4.85 -4.46 -7.43 -5.55 -6.70 -4.26 

28 Jan 2014 -5.39 -4.70 -5.77 -4.34 -5.12 -5.62 -6.24 -4.34 

29 Jan 2014 -4.60 -5.17 -6.44 -4.45 -5.22 -4.28 -6.22 -4.36 

30 Jan 2014 -5.54 -5.39 -7.10 -6.04 -4.49 -4.45 -5.52 -2.48 

31 Jan 2014 -5.15 -3.71 -6.09 -4.92 -3.34 -3.91 -3.97 -4.01 

1 Feb 2014 -4.47 -3.24 -5.03 -3.60 -4.33 -5.10 -7.11 -4.38 

2 Feb 2014 -2.04 -1.67 -2.54 -1.42 -3.71 -1.27 -1.69 0.48 

3 Feb 2014 -1.66 -0.79 -1.13 -1.34 -0.85 0.28 -0.90 0.08 

4 Feb 2014 -0.99 -0.16 -1.66 -0.79 -0.83 -0.13 0.08 0.73 

5 Feb 2014 -0.58 -0.58 -1.69 -0.43 -0.67 0.78 0.71 2.24 

6 Feb 2014 -0.46 -0.36 -1.68 -0.98 1.54 2.17 1.44 4.35 

7 Feb 2014 -0.50 -0.50 -0.18 -0.65 1.49 2.08 0.69 1.90 

8 Feb 2014 -0.48 -1.99 -2.18 -1.22 1.08 1.36 2.10 3.33 

9 Feb 2014 -1.79 -1.83 -2.64 -1.97 1.68 1.78 1.18 -0.30 

10 Feb 2014 -3.19 -3.15 -4.26 -3.64 -4.52 -5.09 -7.62 -7.25 

11 Feb 2014 -4.10 -4.53 -5.36 -3.90 -9.53 -6.93 -6.69 -5.91 

12 Feb 2014 -4.17 -3.97 -3.97 -2.82 -6.54 -4.78 -3.26 -2.07 
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13 Feb 2014 -4.46 -6.32 -6.58 -6.10 -4.62 -3.03 -6.12 -6.34 

14 Feb 2014 -5.69 -6.27 -7.04 -5.74 -9.91 -8.53 -9.94 -6.18 

15 Feb 2014 -5.50 -6.14 -5.37 -2.79 -6.44 -5.46 -3.67 -2.07 

16 Feb 2014 -2.77 -3.40 -3.79 -1.55 -1.71 -0.38 -0.39 1.58 

17 Feb 2014 -1.28 -2.18 -3.06 -1.87 0.49 1.66 1.93 1.36 

18 Feb 2014 -1.41 -2.02 -2.51 -1.35 1.01 1.87 1.01 -0.29 

19 Feb 2014 -1.91 -1.79 -3.95 -4.86 -4.29 -5.33 -10.14 -9.50 

20 Feb 2014 -5.32 -4.24 -4.95 -3.96 -10.35 -8.57 -8.78 -7.10 

21 Feb 2014 -5.59 -4.28 -6.20 -5.35 -8.13 -5.03 -5.74 -4.94 

22 Feb 2014 -7.06 -6.78 -7.24 -5.29 -6.12 -5.33 -6.48 -6.59 

23 Feb 2014 -5.25 -6.61 -7.58 -5.98 -6.50 -4.70 -6.00 -3.62 

24 Feb 2014 -5.13 -4.42 -5.26 -3.25 -3.26 -1.72 -0.91 1.95 

25 Feb 2014 -3.74 -3.74 -4.91 -2.77 0.91 0.57 -0.30 1.26 

26 Feb 2014 -2.40 -1.85 -3.77 -3.45 -1.21 -0.66 -1.50 -1.73 

27 Feb 2014 -3.56 -3.53 -4.72 -3.40 -3.34 -3.29 -2.17 0.46 

28 Feb 2014 -2.84 -1.82 -2.69 -1.09 -0.32 1.72 2.20 2.48 

1 Nov 2015 -3.36 -4.60 -4.21 -2.97 -5.95 -4.80 -6.94 -5.84 

2 Nov 2015 -4.04 -4.81 -5.35 -2.73 -7.63 -6.92 -8.53 -6.16 

3 Nov 2015 -3.62 -2.88 -4.86 -4.67 -6.82 -5.69 -5.66 -4.22 

4 Nov 2015 -3.70 -0.22 -0.65 -1.74 -2.94 1.27 0.11 2.34 

5 Nov 2015 -0.09 0.23 0.58 0.98 0.75 0.45 -1.40 -0.20 

6 Nov 2015 1.46 1.37 -0.19 0.26 -1.10 0.53 -0.27 0.85 

7 Nov 2015 -0.49 -1.06 -2.35 -1.58 -0.57 -1.33 -2.46 -2.04 

8 Nov 2015 -0.91 -0.40 -2.55 -1.32 -1.84 -1.00 -3.10 -1.97 

9 Nov 2015 -1.34 -0.62 -1.49 -0.86 -3.96 -3.39 -3.91 -2.37 

10 Nov 2015 -1.82 -1.93 -3.11 -0.99 -3.67 -2.88 -3.29 -1.29 

11 Nov 2015 -1.30 -0.71 -1.65 0.18 -1.38 -0.66 -1.63 -0.74 

12 Nov 2015 -0.34 0.65 -1.01 -0.28 -0.83 -1.32 -2.18 -0.28 

13 Nov 2015 0.07 0.32 -1.74 -1.26 -0.24 1.34 -0.75 -1.35 

14 Nov 2015 -1.70 -0.54 -1.82 -0.61 -0.71 -0.19 -1.39 -1.12 

15 Nov 2015 -1.81 -3.73 -3.97 -2.01 -1.46 -0.60 -1.62 -0.66 

16 Nov 2015 -2.60 -1.28 -0.59 0.74 -0.58 -0.36 0.58 1.27 

17 Nov 2015 -0.78 -0.64 -0.88 0.89 -0.37 -1.07 -0.16 0.08 

18 Nov 2015 -0.36 0.12 -2.38 -1.79 -0.95 -2.09 -4.22 -4.02 

19 Nov 2015 -3.12 -3.41 -4.84 -3.31 -3.46 -2.89 -3.14 -3.63 

20 Nov 2015 -4.65 -5.63 -4.23 -2.94 -3.07 -1.10 -1.20 -1.36 

21 Nov 2015 -3.04 -3.40 -4.10 -1.88 -3.53 -2.16 -4.80 -3.93 

22 Nov 2015 -1.45 -0.78 -2.74 -2.39 -4.71 -4.01 -5.39 -5.11 

23 Nov 2015 -3.54 -2.29 -4.79 -4.08 -7.12 -7.14 -8.31 -7.12 

24 Nov 2015 -3.89 -2.60 -3.80 -2.93 -7.06 -5.93 -6.40 -4.91 

25 Nov 2015 -3.57 -3.29 -4.62 -5.13 -7.02 -6.99 -9.60 -10.15 

26 Nov 2015 -5.96 -5.34 -7.53 -6.94 -11.79 -9.94 -10.05 -7.22 

27 Nov 2015 -6.14 -2.89 -3.17 -2.78 -7.89 -5.63 -4.92 -3.55 
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28 Nov 2015 -4.28 -3.24 -4.16 -3.62 -4.95 -5.32 -6.41 -5.25 

29 Nov 2015 -4.64 -4.26 -5.21 -3.37 -4.84 -4.98 -5.87 -6.78 

30 Nov 2015 -3.39 -1.97 -2.46 -1.02 -8.21 -6.48 -6.04 -5.03 

1 Dec 2015 -2.65 -3.76 -3.67 -2.12 -4.65 -4.21 -4.31 -2.82 

2 Dec 2015 -2.52 -3.04 -3.15 -2.94 -3.81 -3.84 -4.13 -3.37 

3 Dec 2015 -2.86 -3.75 -4.41 -1.78 -5.38 -4.27 -4.65 -5.82 

4 Dec 2015 -2.36 -2.89 -4.14 -2.15 -4.96 -3.27 -2.94 -1.24 

5 Dec 2015 -1.40 -1.14 -3.97 -4.86 0.58 0.87 -4.21 -5.83 

6 Dec 2015 -5.27 -5.18 -6.35 -5.67 -8.34 -7.06 -8.65 -8.45 

7 Dec 2015 -5.82 -5.05 -5.84 -5.35 -10.52 -9.64 -10.75 -7.60 

8 Dec 2015 -5.27 -4.00 -3.94 -1.72 -5.93 -3.63 -1.36 1.72 

9 Dec 2015 -2.59 -1.97 -1.69 -1.35 2.87 3.50 1.58 0.01 

10 Dec 2015 -3.19 -3.12 -3.36 -3.02 -2.42 -3.83 -4.87 -3.55 

11 Dec 2015 -2.85 -2.56 -3.48 -2.09 -4.36 -4.57 -6.91 -4.43 

12 Dec 2015 -3.16 -3.13 -4.03 -3.50 -4.41 -3.03 -3.98 -3.48 

13 Dec 2015 -4.08 -2.46 -4.75 -4.17 -4.08 -4.91 -5.11 -4.93 

14 Dec 2015 -5.37 -6.60 -6.73 -5.46 -6.91 -6.35 -7.68 -8.90 

15 Dec 2015 -5.99 -6.78 -6.78 -8.79 -11.75 -12.94 -14.34 -14.52 

16 Dec 2015 -7.95 -9.66 -10.39 -9.50 -17.72 -16.83 -18.19 -15.90 

17 Dec 2015 -10.24 -9.64 -11.05 -10.46 -18.76 -16.61 -14.89 -11.12 

18 Dec 2015 -10.63 -10.11 -10.38 -10.74 -13.09 -11.16 -11.63 -10.43 

19 Dec 2015 -9.63 -9.73 -10.21 -9.56 -10.92 -7.27 -7.68 -6.99 

20 Dec 2015 -8.72 -5.88 -7.18 -6.81 -6.25 -3.86 -3.29 -0.19 

21 Dec 2015 -4.12 -2.80 -2.85 -0.15 0.74 1.51 0.40 1.72 

22 Dec 2015 1.02 2.12 0.80 1.45 1.67 2.71 0.35 0.91 

23 Dec 2015 0.97 0.55 -1.49 -1.49 -0.37 -0.70 -0.41 -0.97 

24 Dec 2015 -1.35 -1.90 -2.79 -1.81 -1.49 0.55 -2.68 -4.21 

25 Dec 2015 -3.61 -4.23 -5.80 -4.68 -5.78 -6.73 -8.72 -7.09 

26 Dec 2015 -5.43 -6.06 -5.86 -5.19 -4.86 -2.33 -3.34 -3.43 

27 Dec 2015 -7.45 -7.49 -6.38 -4.82 -4.31 -4.90 -7.22 -4.61 

28 Dec 2015 -6.18 -7.20 -7.42 -6.85 -8.49 -7.90 -7.68 -5.28 

29 Dec 2015 -8.07 -8.29 -8.17 -6.25 -7.02 -4.18 -6.82 -6.40 

30 Dec 2015 -7.62 -6.67 -7.49 -6.28 -8.21 -6.23 -8.01 -9.72 

31 Dec 2015 -7.72 -8.31 -9.28 -9.40 -10.55 -9.81 -12.16 -10.04 

1 Jan 2016 -9.58 -9.32 -9.78 -7.30 -9.70 -8.06 -8.29 -4.57 

2 Jan 2016 -6.09 -4.49 -4.53 -3.36 -3.09 -0.18 -1.06 0.26 

3 Jan 2016 -4.07 -2.60 -2.87 -1.29 0.50 1.37 0.61 1.09 

4 Jan 2016 -1.45 -1.69 -2.19 -1.03 1.09 1.91 1.46 1.90 

5 Jan 2016 -2.16 -2.50 -3.42 -2.23 1.77 1.43 -1.36 -1.07 

6 Jan 2016 -2.78 -2.94 -3.87 -3.46 -1.02 -3.14 -5.27 -5.31 

7 Jan 2016 -3.66 -3.52 -4.03 -2.69 -5.27 -3.03 -6.03 -3.54 

8 Jan 2016 -3.41 -4.17 -4.07 -3.81 -5.30 -5.61 -5.96 -4.29 

9 Jan 2016 -3.19 -2.98 -3.47 -2.53 -4.81 -3.62 -2.92 -1.31 

10 Jan 2016 -2.54 -1.59 -1.87 -0.59 0.04 2.67 2.26 2.92 

11 Jan 2016 -0.76 -1.71 -3.12 -2.38 0.55 0.46 -1.88 -2.37 

12 Jan 2016 -3.12 -2.49 -2.72 -2.43 -3.84 -2.74 -3.46 -3.50 

13 Jan 2016 -2.35 -2.83 -2.84 -2.83 -4.59 -4.18 -4.92 -5.47 

14 Jan 2016 -4.16 -2.01 -3.35 -1.26 -4.57 -2.27 -2.03 -1.45 
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15 Jan 2016 -0.73 -0.38 -1.33 0.34 -1.05 1.98 1.60 0.89 

16 Jan 2016 -0.34 -0.55 -0.64 0.12 0.39 3.52 2.60 3.64 

17 Jan 2016 -0.59 0.85 -0.73 -0.52 3.94 3.01 0.92 -1.00 

18 Jan 2016 -0.68 -2.20 -2.78 -2.56 -2.13 1.01 -0.36 0.57 

19 Jan 2016 -2.42 -2.44 -2.39 -1.88 -0.16 0.33 -0.73 0.49 

20 Jan 2016 -2.59 -2.38 -2.07 -1.52 1.03 2.52 1.61 3.52 

21 Jan 2016 -3.21 -3.45 -3.18 -1.70 2.36 3.27 2.09 2.04 

22 Jan 2016 -2.23 -3.18 -4.26 -3.22 -0.15 -0.05 -1.03 -2.12 

23 Jan 2016 -3.62 -3.73 -5.40 -5.06 -5.08 -7.09 -12.70 -12.44 

24 Jan 2016 -6.69 -8.06 -10.56 -11.25 -15.01 -16.32 -18.56 -16.79 

25 Jan 2016 -11.75 -11.80 -11.73 -8.93 -15.31 -12.11 -10.74 -8.45 

26 Jan 2016 -7.23 -6.12 -4.59 -3.94 -5.74 -2.92 -2.35 -0.59 

27 Jan 2016 -4.05 -2.93 -2.49 -2.07 -0.13 1.76 1.31 2.25 

28 Jan 2016 -2.36 -2.10 -2.84 -2.23 4.30 6.73 4.49 2.65 

29 Jan 2016 -3.15 -3.60 -3.52 -2.54 0.78 1.06 0.16 0.34 

30 Jan 2016 -2.88 -3.21 -3.24 -3.78 -2.21 -1.92 -2.90 -2.82 

31 Jan 2016 -4.08 -4.35 -5.30 -3.71 -2.83 -2.08 -1.09 -0.25 
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Chapter 5 
 

Appendix D: NAME footprints for the Hengchun, Taiwan during 2015 campaign 
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