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Abstract 

Tables are a standard form of data representation in business. A variant table lists valid or excluded combi-
nations of product features where each table column refers to a product property and each table row denotes 
a combination of product features. A table cell defines a feature, e.g. Color = Red, as an assignment of its 
value to the column's property. As technology and consumer demand drive ever increasing product choices, 
the number of feature combinations that can be offered for a product increases exponentially and can easily 
exceed the limits of a traditional table. However, variant tables can often be compressed in a way that scales 
both in size and query performance while retaining the tabular paradigm in a manner useful for a business. 
The basic idea is to partition the table rows into unconstrained slices, where each slice consists of all possible 
combinations of the product features it references. Such a slice can be represented as a c-tuple and readily 
stored in a spreadsheet. C-tuple representation is already supported in some product configurators. We give 
examples of products where it is feasible to efficiently represent all valid variants in one overall table using 
c-tuple compression. For cases where c-tuples do not suffice, the stronger compression to a variant decom-
position diagram (VDD), a form of decision diagram, can be used. We propose complexity measures for a 
product based on the compressibility of its variants and discuss their usefulness to the business. We illustrate 
these ideas with examples and present some results on dealing with variant tables from real-world product 
models. We show that compression empowers variant tables by enabling enormous tables to be functionally 
used in a way like regular tables. 

 
Keywords: product configuration, product modeling, table compression, variant table  
 

 

1. INTRODUCTION 

Mass customization (MC) combines product customi-
zation with mass production. Ways are sought to pro-
duce products that are customized to individual needs 
with the cost-efficiency attributed to mass production 
[1, 2]. In this paper, we consider MC products that can 
be defined by enumerating their variants. All variants 
are described using the same product properties (such 
as Size or Color for a T-shirt), but differ in the individual 
values that are assigned to the properties.  
An increase in the number of choices typically causes 
an exponential explosion in the number of product var-
iants. In a real context, the number of variants of a 
product can easily transcend the number of potential 
customers. This means that a business must be pre-
pared to produce a given variant in a lot size of one. 
Tools are needed to support the variability of MC prod-
ucts, which includes defining the valid product vari-
ants, guiding the user interaction when ordering a var-
iant, and ensuring correct fulfillment of the order (e.g. 

manufacturing and invoicing) [3, 4]. Particularly prod-
uct configurators, such as the SAP Variant Configura-
tor (SAP VC) [5], play a central role in this [6, 7]. 
Every configurator has its own methods to model a 
product, i.e. to define its product variants. Tables are 
a natural element of product models and are univer-
sally understood. They are considered a preferred way 
of modeling [5], however the limiting factor with using 
tables is that they don’t scale with an increasing num-
ber of choices. The limits of conventional databases 
and spreadsheets can be quickly reached. 
To overcome this problem, different table compression 
techniques can be applied in a way that retains the 
functionality of a regular table. The basic technique fo-
cussed on in this paper is compression to c-tuples [8]. 
A c-tuple is a table row with multiple values in its cells. 
The other technique is compression to variant decom-
position diagrams, a form of decision diagram [9]. C-
tuples are not new and have been supported in the 
SAP VC [5] since the 1990’s, however their potential 
has not yet been universally recognized, and their use 
is discouraged [10].  
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The objective of this paper is to demonstrate the utility 
of table compression in the context of MC. This ena-
bles handling larger tables more efficiently, and greatly 
empowers tables as a preferred element of MC prod-
uct models. In addition, we define a complexity meas-
ure for product models based on compressibility and 
discuss its usefulness for the business. 
To pursue this objective, the paper gradually intro-
duces the terminology used to describe the table com-
pression techniques. Two MC products are used as 
examples: a mass customizable T-shirt and a model 
of the Renault Megane, which was published by Re-
nault as a benchmark for configurators [11]. The meth-
ods used for the different analyses are presented 
throughout the article as they occur as this makes it 
easier to follow. 

2. BACKGROUND 

2.1 The role of product variants in mass pro-
duction 

When Henry Ford originally mass produced his Model-
T car, it was offered in only one color: black. Given that 
artisans of the time were able to produce vehicles in 
multiple colors to suit individual tastes of their clients, 
the innovation of mass production lay in eliminating the 
variability of a product in favor of the assembly line, 
which enabled a cheaper, stream-lined production pro-
cess [12]. At the time, offering the Model-T in a second 
color might have meant providing a second assembly 
line, perhaps in a separate production plant. Indeed, the 
classical approach to mass production is to define and 
manage each product completely on its own. A product 
key or material number completely identifies a product 
and its specification for purposes of sales and manufac-
turing. Variability must be handled by introducing a 
unique product key for each variation. 
On the other hand, commonalities in the design and 
production processes of similar items have been ex-
ploited to improve efficiency since antiquity. The Pont 
du Gard, a Roman aqueduct in southern France, is a 
complex masonry structure composed of multiple 
stone arches. The local museum there exhibits the Ro-
man design for the construction of a generic stone 
arch, which served as a blue-print that could be anno-
tated with the dimensions for each individual arch 
needed in the construction of the aqueduct 
(http://www.pontdugard.fr/en/espace-culturel/mu-
seum). This allowed for faster design and construction 
of the entire structure. Each arch is a variant of a com-
mon scheme. In MC terms, the arches are product var-
iants of the generic product aqueduct arch. 
The drive to exploit such similarities when offering a 
plurality of products is a basic economic force and may 
even become a necessity. The simple T-shirt, which 
we use as one example in Section 4, consists of 
eleven T-shirt variants. The T-shirt is offered in three 
sizes, four colors, and with two different imprints. The 
business may define eleven separate products that 
may be produced and stocked. However, it can also 
choose to define one product, Simple T-shirt, with 
eleven variants. The latter approach would collect 

most of the product business data, e.g. the material 
master data collected in the MARA table in SAP (see 
[5]), centrally with a single product definition. The pos-
sible variants are then defined separately as in Table 
1. This approach becomes more attractive as variants 
increase and advances in production technology allow 
more and more flexibility in the production processes. 
It becomes a necessity as customer demand and tech-
nology cause the number of offered variants to be-
come too large to handle individually. The modern T-
shirt example in Section 4 offers T-shirts with more 
choices, which results in more than a quarter billion 
possible variants, which cannot be defined as individ-
ual products due to their sheer number. 

2.2 Variant tables 

The term variant table is used in SAP VC modeling 
[10] to refer to a table listing valid (or excluded) com-
binations of product features.  
A variant table column refers to a product property 
(e.g. Imprint, Size or Color for a T-shirt). The value in 
each table cell denotes a value assignment to the 
column's property and defines a product feature, e.g. 
Color = Red. We adopt this term and use it extensively 
throughout this paper. Table 1 is an example of a var-
iant table listing eleven valid combinations of a simple 
T-shirt. 

Table 1 Simple T-shirt table of variants 

Imprint Size Color 

MIB Small (S) Black 

MIB Medium (M) Black 

MIB Large (L) Black 

STW Medium (M) Black 

STW Medium (M) Blue 

STW Medium (M) Red 

STW Medium (M) White 

STW Large (L) Black 

STW Large (L) Blue 

STW Large (L) Red 

STW Large (L) White 
 

A variant table constrains valid combinations of prod-
uct features. Therefore, it naturally functions as a con-
straint in a product model. In this paper, we assume 
that all product properties have a finite domain. In this 
case, any constraining relation between product fea-
tures could be expressed as a variant table. However, 
size is often a limitation that prevents this, due to a 
combinatorial explosion of the way features may be 
combined as choices increase. In some cases, it is 
more efficient to list the invalid combinations (exclu-
sions), when these are fewer than the valid ones. A 
table listing exclusions is termed a negative variant ta-
ble. Negative variant tables are not definitive in them-
selves. They require additional definitions of the un-
derlying domains of the product properties when used 
operationally [13, 14]. 
Subject to their size, variant tables are often the 
method of choice for capturing the valid combinations 
(or conversely the invalid ones) [10]. In this paper, we 
argue that the compression techniques in Sections 3 
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and 6 will largely mitigate the size limitation and make 
variant tables attractive as a primary means for mod-
eling the variability of MC products. If a variant table 
pertaining to an MC product cannot be compressed, 
this is due to irregularities in the product definition, 
which should be reviewed to remain true to the aspect 
of being able to mass produce. Indeed, it should be 
possible to construct a single variant table that enu-
merates all variants of the product. Such a table is very 
wide: its columns encompass all product properties. It 
can be maintained directly, as for the T-shirt example 
in Section 4, or constructed by joining a set of individ-
ual variant table constraints. The latter aspect is be-
yond the scope of this paper. 

2.3 Product variants in mass customization 

We take mass customization (MC) to refer to mass 
production coupled with individualization. By this we 
mean that the number of variants of a product exceeds 
the number of potential customers, allowing everyone 
to potentially own a unique product1. Offering a T-shirt 
with a quarter billion variants can be regarded as mass 
customization (MC) in this sense. 
The production of individualized T-shirts and cars fol-
lows a continuous evolution of production technology, 
which allows increasing flexibility in dealing with prod-
uct variants. The business processes of the value 
chain, i.e. ordering, production, invoicing and delivery 
of a product, all operate on the business data of a com-
mon underlying product, but additionally require the 
specification of an additional set of product features 
that define the specific variant. Different business pro-
cesses may differ in the product features that need to 
be specified. The descriptive properties for sales often 
differ from those for manufacturing and both must be 
reconciled in delivery and invoicing [3]. Technological 
advances in production technology are also a prereq-
uisite for MC: it is now becoming profitable to produce 
products in a lot size of one. 

3. C-TUPLES - BASIC COMPRESSION 

In the following, we assume a finite set of 𝑘 product 
properties with finite domains2 𝐷1, … , 𝐷𝑘. We denote 

the number of values in the j-th domain by 𝑠𝑗: =  |𝐷𝑗|. 

In the special case of an unconstrained MC product 
that allows arbitrary combinations of values from the 
property domains, the overall set of valid combinations 
is just the Cartesian product of the property domains 
𝐷1  ×  𝐷2  × … × 𝐷𝑘. The number of value symbols 
needed to represent this Cartesian product is the sum 
of all the domain sizes (1). The number of combina-
tions this represents is the product of the domain sizes 
(2). In the example of the “individualized T-shirt” in 
Section 4 we have 𝑘 =  9, 𝑁 =  276,480,000, while 

𝑆 =  1044. It is clearly infeasible to have an exten-
sional representation of all these combinations in one 
table, but the Cartesian product can be represented in 
a very compact fashion as a tuple of the domains (3).  

                                                           
1 We consider personalization to be more demanding: sat-
isfying arbitrary customer requests such as producing a T-
shirt in any color, as opposed to just offering many colors. 

 

 S ≔ s1+ s2+ … + sk (1) 
 N ∶=  s1 s2  … sk (2) 
 〈D1, D2, … , Dk〉 (3) 
   

In Table 1, each row equals a tuple of values, which we 
refer to as an r-tuple, short for relational tuple. The con-
cept of a c-tuple extends the concept of an r-tuple in 
allowing a table cell to hold a set of values from the 
column's property in comparison to only one value as in 
an r-tuple. The term c-tuple is short for Cartesian tuple. 
The tuple of domains (3) is an example of a c-tuple. We 
shall refer to the size of the c-tuple as 𝑆 in (1). 
A c-tuple represents an unconstrained subset of valid 
combinations, i.e. no constraints apply within this sub-
set. The approach to simple compression of a variant 
table is to reorganize and partition a variant table into 
unconstrained sets of combinations and to then re-
place each such set by a c-tuple. For example, Table 
1 can be reformulated using two c-tuples as in Table 
2. Multiple values occurring in one cell are separated 
by a semi-colon. Similarly, the quarter of a billion vari-
ants of the unconstrained “individualized T-shirt” intro-
duced above can be captured in a variant table with 
one row (see the first c-tuple in Table 4). 

Table 2 Simple T-shirt represented in c-tuples 

Imprint Size Color 

MIB S; M; L Black 

STW M; L Black; Blue; Red; White 
 

It is important to note that the decomposition of a var-
iant table into c-tuples is not unique, i.e. different de-
compositions may have different sizes. Heuristics are 
key to finding a good decomposition [8]. The compres-
sion results we present in this paper are not based on 
the work in [8], but rather on c-tuples derived from an 
advanced compression to a variant decomposition di-
agram (see Section 6). 

4. EXAMPLE T-SHIRT SCENARIO 

To better illustrate c-tuple compression and motivate the 
discussion on complexity we use the following exemplary 
scenario of a fictional business offering T-shirts: 
At its early inception, the T-shirt business begins by 
selling a small number of T-shirt variants. They pro-
vide T-shirts with one of two possible imprints 
(MIB – “Men In Black”, STW – “Save The Whales”). 
They procure standard white T-shirts in three sizes 
(S (Small), M (Medium), L (Large)) from an outside 
source, which they optionally dye in one of three colors 
(Black, Blue, Red). Two silk-screens are used to make 
the imprint. One is set up for MIB, a print in heavy 
white done only on black T-shirts of all sizes. The other 
for STW, a larger blueish imprint done on T-shirts of 
any color (including Blue), but not for small sizes. Ta-
ble 1 is the definitive list of all eleven T-shirt variants. 
The product is illustrated in Figure 1. 

2 The finiteness requirement may be relaxed (see [23]). 
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Figure 1 Simple T-shirts 

The business expands over time and technology and 
customer expectations advance. A new T-shirt is de-
signed. Five additional properties are added for indi-
vidualization: Style, Neck, Fabric, ImpColor (color of 
imprint), and ImpSize (size of imprint). More T-shirt 
colors are added. The acquisition of a new textile 
printer allows a drastic increase in the number of of-
fered imprints to 1000 that are presented in a catalog. 
The two vintage silk-screen prints are dropped. Lastly, 
customers have the choice of one of three amounts 
charged to offset the environmental impact of produc-
ing the T-shirt: $0.00,  $0.99, and $1.99, which is added 
to the sales price of their T-shirt. A certificate for this 
amount is stamped on the T-shirt sleeve. Table 3 gives 
an overview over the T-shirt properties and their do-
mains. 

Table 3 Features of the individualized T-shirt 

Prop-
erty 

Domain 
Size 

Values 

Style 4 
NoSleeve; HalfSleeve; FullSleeve; 

Hoodie; 

Neck 3 Round; VNeck; Collar 

Fabric 3 Cotton; Synthetic; Mixed 

Size 8 3T; 4T; XS; S; M; L; XL; XXL 

Color 8 
Black; Blue; Red; White; Green; 

Purple; Pink; Yellow 

Imprint 1000 1000 imprints from catalog 

Imp-
Color 

5 Green; Black; Blue; Red; White 

ImpSize 8 
Baby; Tiny; Cute; Small; Medium; 

Big; ExtraBig; Fill 

CO2-
Offset 

3 $0.00; $0.99; $1.99 

 

Initially, the business does not define any constraints: 
any combination of product features from the domains 
is considered valid. Later, customer demand causes 
the reactivation of the two vintage silk-screen imprints: 
MIB, only on black shirts, and STW, not on small 
shirts, bringing the number of offered imprints to 1002. 
The T-shirt variants at this stage can be represented 
in the three c-tuples in Table 4. 
The wildcard symbol “*” has been used as shorthand to 
refer to the entire domain of a product property. For 
space reasons, we omit any column that consists solely 

of wildcards in Table 4 and all the following variant ta-
bles. For any property that is not represented by a col-
umn in a variant table, one can always assume a col-
umn of wildcards. But these omitted columns are con-
sidered when assessing complexity (see Section 7). 
We use some additional shorthand in Table 4: the set 
of vintage prints {MIB}, {STW} will be tagged as ⟨vin-
tage⟩, and we use the label ⟨adult⟩ for the set of sizes 
{M, L, XL, XXL}. The negation operator “¬” is used to 
negate a set, i.e. complement it with respect to the prop-
erty domain. The negated form will be used when it is 
shorter for readability. The vintage imprint MIB will al-
ways be executed in imprint size Fill and the imprint 
STW in imprint size Big. 

Table 4 Individualized T-shirt with vintage prints in c-tuples 

Size Color Imprint ImpColor ImpSize 

* * ¬⟨vintage⟩ * * 

* Black MIB White Fill 

⟨adult⟩ * STW Blue Big 
 

 
Still later, the sales department decides to enforce a 
constraint that the imprint color be distinguishable 
from the T-shirt color to avoid customer dissatisfac-
tion. Table 5 lists the sales variants in seven c-tuples. 

Table 5 Variants of the individualized T-shirt offered for 
sale 

Size Color ImpColor Imprint ImpSize 

* ¬{Black} Black ¬⟨vintage⟩ * 

* ¬{Blue} Blue ¬⟨vintage⟩ * 

* ¬{Red} Red ¬⟨vintage⟩ * 

* ¬{White} White ¬⟨vintage⟩ * 

* * Green ¬⟨vintage⟩ * 

* Black White MIB Fill 

⟨adult⟩ * Blue STW Big 
 

 
The sales constraint affects what is offered by sales, 
but has no direct implication for production. Produc-
tion, on the other hand, is constrained to use the cor-
rect dye for a given fabric and color combination. This 
necessitates adding a tenth product property Dye with 
a suitable domain. The manufacturing constraint is 
given in Table 6, and the overall table of variants from 
the manufacturing perspective is given in 19 c-tuples 
in Table 7. We introduce the label ⟨std⟩ as shorthand 
for the standard colors {Black, Blue, Red, White}. 
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Table 6 Fabric / Color / Dye constraint 

Fabric Color Dye 

* ⟨std⟩ None 

Cotton Green GRCD#1 

Cotton Purple PUCD#3 

Cotton Pink PICD#5 

Cotton Yellow YCD#7 

¬{Cotton} Green GRSD#2 

¬{Cotton} Purple PUSD#4 

¬{Cotton} Pink PISD#6 

¬{Cotton} Yellow YSD#8 
 

Table 7 Manufactured variants of the individualized T-shirt 

Fabric Size Color ImpColor Imprint Dye 

* * ⟨std⟩ * ¬⟨vintage⟩ None 

Cotton * Green * ¬⟨vintage⟩ GRCD#1 

Cotton * Purple * ¬⟨vintage⟩ PUCD#3 

Cotton * Pink * ¬⟨vintage⟩ PICD#5 

Cotton * Yellow * ¬⟨vintage⟩ YCD#7 

¬{Cotton} * Green * ¬⟨vintage⟩ GRSD#2 

¬{Cotton} * Purple * ¬⟨vintage⟩ PUSD#4 

¬{Cotton} * Pink * ¬⟨vintage⟩ PISD#6 

¬{Cotton} * Yellow * ¬⟨vintage⟩ YSD#8 

* * Black White MIB None 

* ⟨adult⟩ ⟨std⟩ Blue STW None 

Cotton ⟨adult⟩ Green Blue STW GRCD#1 

Cotton ⟨adult⟩ Purple Blue STW PUCD#3 

Cotton ⟨adult⟩ Pink Blue STW PICD#5 

Cotton ⟨adult⟩ Yellow Blue STW YCD#7 

¬{Cotton} ⟨adult⟩ Green Blue STW GRSD#2 

¬{Cotton} ⟨adult⟩ Purple Blue STW PUSD#4 

¬{Cotton} ⟨adult⟩ Pink Blue STW PISD#6 

¬{Cotton} ⟨adult⟩ Yellow Blue STW YSD#8 

5. DATABASE QUERIES 

One major point we make in this paper is that tables 
compressed to c-tuples (as well those compressed to 
a VDD, see Section 6) support the database queries 
relevant to product configuration. A product configura-
tor must be able to filter a variant table to obtain those 
combinations/variants3 that match given external (e.g. 
user) selections or exclusions of product features. The 
result set (RS) of a filtering query is again conceptually 
a variant table that may be further filtered and can itself 
be represented in compressed form. The external se-
lections/exclusions can be formulated as a c-tuple. We 
refer to this c-tuple as the query condition (QC). Look-
ing for all cotton T-shirts in non-adult sizes in Table 7 
corresponds to filtering with the c-tuple (4) as the QC.  
 

 ⟨𝐶𝑜𝑡𝑡𝑜𝑛, ¬⟨𝑎𝑑𝑢𝑙𝑡⟩,∗,∗,∗,∗⟩ (4) 
 

                                                           
3 To facilitate formulation, in the sequel we shall use variant 
as the generic term to refer to either a complete specifica-
tion of a product variant or to a combination of a subset of 
its features represented as a row in a variant table. 
4 To be precise, 46,081,152 out of the total of 276,514,560 
variants (see Table 9). 

This yields an RS of around 46 million4 variants, which 
might be subsequently further queried. To check 
whether a given variant is valid can be done using the 
r-tuple representing the variant (a c-tuple comprised of 
singleton sets) as a QC. If this yields the empty RS, 
the variant is not valid. Such a look up can also be 
used to identify the manufacturing variant of a T-shirt 
for a given sales variant. For the T-shirt, the manufac-
turing variant in the RS will additionally include the 
value for the property Dye.  
To identify the still available product features after fil-
tering, it must be possible to determine the resulting 
domain restrictions, the sets of values for each product 
property that occur in the RS of the filtering. The do-
main restrictions are again representable as a c-tuple. 
For example, filtering Table 7 with the QC (4) yields 
domain restrictions that can be formulated as the c-
tuple: 
 

 ⟨𝐶𝑜𝑡𝑡𝑜𝑛, ¬⟨𝑎𝑑𝑢𝑙𝑡 ⟩,∗,∗, ¬{ 𝑆𝑇𝑊 },∗ ⟩ (5) 
 

which differs from the QC (4) only in the exclusion of 
the imprint STW. This domain restriction on the prop-
erty Imprint can be directly applied in query conditions 
for other tables that reference it. This allows a straight-
forward implementation of a local propagation algo-
rithm [15]: restrictions obtained in filtering a table are 
used to further filter other tables, until no further re-
strictions are possible5. 
The above queries can be supported in compressed 
format [14]. We summarize these queries using a 
functional notation. The argument to the queries is 
⟨𝑣𝑡𝑎𝑏⟩, a compressed table. ⟨𝑅𝑆⟩ denotes a result set 
of a filtering query. This is again a compressed table 
and may be further queried. 〈𝑄𝐶〉 denotes a c-tuple 

used as a query condition, and 〈𝐷𝑅〉 denotes a c-tuple 
of domain restrictions obtained from a table or result 
set.  
 

 ⟨RS ⟩ ← filter(⟨vtab ⟩, ⟨QC ⟩) (6) 
 ⟨DR ⟩ ← restrict(⟨vtab ⟩, ⟨QC ⟩) (7) 
 

Where tables are representable in uncompressed rela-
tional form in a database, this can be queried using the 
Structured Query Language (SQL) [16]. A formulation 
of the QC as an SQL WHERE clause is given in (8)6. 
 

 WHERE [NOT] 〈𝑣1〉 IN 〈𝑅1〉 AND [NOT] 
〈𝑣2〉 IN 〈𝑅2〉 …  [NOT] 〈𝑣1〉 IN 〈𝑅𝑘〉 ; 

 

(8) 
 

The SQL equivalent of queries for filtering (6) and re-
stricting (7), which are the most relevant for configura-
tion (cf. [14]), are given in (9) and (10), which return an 
RS (9) and a domain restriction (10). 
 

 SELECT * FROM 〈𝑅𝑆〉 WHERE 〈𝑄𝐶〉 ; (9) 
   

5 Local propagation is one basic constraint processing al-
gorithm that has wide-spread use in product configurators 
[15]. It is the central constraint processing algorithm of the 
SAP VC [19]. A detailed discussion of constraint pro-
cessing is beyond the scope of this paper. 
6 Any reference to a column with a wildcard can be omitted 
from the WHERE clause. 
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 SELECT DISTINCT 〈𝑣𝑗〉 FROM 〈𝑅𝑆〉  

 WHERE 〈𝑄𝐶〉 ; (10) 

6. ADVANCED COMPRESSION 

Compression of variant tables to c-tuples is powerful 
and is a method of choice, because c-tuples have a 
standard representation in a spreadsheet and are sup-
ported in other configurator tools. Sometimes a variant 
table has a column with an identifying key or number 
unique to each row. In this case, the only possible c-
tuple decomposition is as the list of r-tuples making up 
the original rows, i.e. compression using c-tuples is 
then not possible. Advanced compression to a deci-
sion diagram (DD) can go further. Our choice is a var-
iant decomposition diagram (VDD), which was de-
signed with table compression in mind7. We consider 
compression to VDDs a side topic here and do not go 
into details, for which we refer to [14]. However, we 
briefly explain the basic idea using the VDD depicted 
in Figure 2, which encodes Table 48. Each node is la-
beled with a set of feature values for a product prop-
erty and has two emanating links, HI and LO9:  

• The HI-link of a node points to a node for an-
other product property or to the terminal sink 
⊤ (true), 

• The LO-link points to a node pertaining to the 
same product property or to the terminal sink 
⊥ (false). 

The VDD construction, which we envision here, is de-
termined uniquely by specifying an ordering of the 
product properties [14]. The VDD in Figure 2 is con-
structed for the property ordering Imprint, ImpColor, 
ImpSize, Color, and Size. Different orders result in 
VDDs with different compression. We believe this or-
dering of the product properties may also be important 
for organizing the business (see Section 8). In Table 8 
we give the number of VDD symbols (see Footnote 9) 
that result from three different orderings of the product 
properties for the sales variants in Table 5, extended 
to all nine product properties Style, Fabric, Neck, Im-
print, ImprintColor, Size, Color, ImprintSize, and CO2 
Offset, listed in this order. 

Table 8 VDD sizes of T-shirt sales variants in different col-
umn orders 

Column order VDD size 

1, 2, 3, 4, 5, 6, 7, 8, 9 1105 

4, 5, 7, 6, 1, 3, 2, 8, 9 1071 

3, 2, 9, 1, 5, 7, 6, 8, 4 3108 
 

                                                           
7 Various common forms of DD can be mapped to each 
other. See [14] on the relationship of VDDs to zero-sup-
pressed binary decision diagrams (ZDDs) and multi-valued 
decision diagrams (MDDs). See [9] on the relationship be-
tween binary decision diagrams (BDDs) and ZDDs. 
8 For brevity, properties Style, Fabric, Neck, and ImpSize 
have been omitted. 
9 For ease of depiction here, a VDD node is labeled with a 
set of values. The actual VDD may be organized to have its 

A VDD entails a decomposition into c-tuples. Each 
node is labeled with a set of values for an associated 
product property. All nodes that can be reached from 
the root node via LO-links are starting points. Each 
path following HI-links from a starting node to the sink 
⊤ defines a c-tuple. The c-tuple compression encoded 
in a VDD can be extracted by iterating over all paths. 
The three c-tuples of Table 4 are directly visible in the 
VDD in Figure 2. Notice that the node labeled 
“(Size, *)” is shared between the first two c-tuples. 

It is the strength of VDDs to exploit commonalities be-
tween c-tuples, when they exist.  
Compression to a VDD is more powerful than a simple 
decomposition to c-tuples regarding both space and 
performance savings (see Section 9) and lends itself 
to a more fine-grained measure of complexity (see 
Section 7). 
In the case of an MC product model containing several 
variant tables, the property ordering is per variant ta-
ble. Different variant tables may use different orders of 
product properties. 

7. PRODUCT VARIANT COMPLEXITY 

We consider the complexity of an MC product to refer 
to the cost its variability adds to a business. This com-
plexity should be kept as low as possible while retain-
ing the competitive edge individualization offers. If 
complexity is higher than expected, then it may be ad-
visable to review the product variability.  
Product complexity can be approached from various 
angles [17]. One approach is to measure the complex-
ity of the underlying product model in terms of the 
number of product properties and features, the num-
ber of constraints and rules, and the required sophis-
tication of the modeling language. In this paper, we fo-
cus on modeling MC products with variant tables 
only10. We take it as an axiom, grounded in experi-
ence, that using tables wherever possible is not only a 
transparent, easy-to-understand modeling technique, 
but also alleviates a central business problem: to 
maintain variant data in a way that is transparently ac-
cessible to the affected business processes. 
The complexity of a product model is an indicator of 
the cost of maintaining the model, but it may also allow 
an estimate of expected configurator performance.  
When all variants of an MC product are enumerable in 
a single table, product configuration reduces mainly to 
making queries of the form (6) and (7) (or their SQL 
equivalents (9) and (10)). In this simple, single-table 

nodes labeled with only one value [14], which is our cur-
rently preferred operational form. The size of a VDD is de-
fined to be the overall number of value references in its 
nodes, regardless of how it is organized internally. 
10 Modeling solely with variant tables is possible given our 
assumptions on the finiteness of the properties and their 
domains. In [23] the finiteness assumptions are relaxed 
while sticking to the tabular paradigm. For a more general 
approach to assessing product model complexity, c.f. [24]. 
 



Haag and Haag 

IJIEM 

161 

model, both the maintenance cost and the perfor-
mance of queries are directly related to the size of the 
compressed table11. 
Hence, we propose a complexity measure for an MC 
product based on compressibility of the set of its vari-
ants. We motivate our approach by discussing the un-
constrained case and then extending it. 

 

7.1 Variant complexity for an unconstrained 
set of variants 

The simplest MC product model applies in the case 
that all product features are freely combinable without 
constraints. This case of an unconstrained product is 
rare in practice. It may be a feasible scenario when 
starting a business: In Section 4 we postulated that the 
T-shirt business first offered the individualized T-shirt 
in completely unconstrained form, without the vintage 
prints. The first c-tuple in Table 4 represents all the 
variants offered at that time. 

                                                           
11 We have already argued that there is no direct correla-
tion between complexity and the total number of variants 
offered. The individualized T-shirt in Section 4 looks fairly 

In the unconstrained case, modeling is reduced to de-
fining the variant properties and maintaining their do-
mains. As defined in (1) there are a total of 𝑆 possible 
features, each represented by a symbol that can be 
associated with additional data needed for the busi-
ness, such as surcharges (see Section 8). The uncon-
strained set of variants can be represented as one c-

tuple using 𝑆 value symbols or as a VDD of size 𝑆 (see 
Footnote 9). The performance of querying a VDD can 
be guaranteed based on its size (see [14]), We define 
the complexity of an unconstrained set of variants as: 
 

 𝑢_𝑐𝑚𝑝𝑙𝑥 ∶=  𝑐0𝑆 (11) 
 

where 𝑐0 is a constant that allows calibrating for a par-
ticular platform, so that a query to the VDD can be 
guaranteed to take at most 𝑢_𝑐𝑚𝑝𝑙𝑥 milliseconds. We 
will set 𝑐0 =  1 for simplicity of exposition and take 

𝑢_𝑐𝑚𝑝𝑙𝑥 =  𝑆, except where otherwise noted in Sec-
tion 9.3. 

simple, but has more than a quarter billion variants. Cf. [14] 
on the performance of queries for VDD compression and 
[8] on c-tuple compression. 

Figure 2 VDD with nodes labeled by value sets for Table 4 
HI-links are represented by solid arrows, LO-links are represented by dotted arrows. T = true and F = false are terminal sinks 
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7.2 Complexity of a variant decomposition 

A decomposition of a set of variants to c-tuples effectively 
subdivides or slices the variants into unconstrained sub-
sets, each with a complexity defined by the number of 
features that it mentions as in (11). If this decomposition 
is explicitly represented in simple compression as a list 
of c-tuples, the arguments about performance and space 
for the unconstrained case in Section 7.1 apply to each 
c-tuple and the complexity of the decomposition is just 
the sum of the complexities of the individual c-tuples 
making up the composition. This measure can be applied 
to any set of variants of an MC product, e.g. also to the 
variants in the result set of a filtering query. If there are 𝑀 
c-tuples with sizes 𝑆1, 𝑆2, … , 𝑆𝑀 in the decomposition of a 
set of variants, then the complexity of this decomposition 
can be expressed as: 
 

 𝑐_𝑐𝑚𝑝𝑙𝑥 ∶=  𝑐0 (𝑆1 + 𝑆2 + … + 𝑆𝑀) (12) 
 

Advanced compression is potentially more powerful 
than simple compression to c-tuples. The size of a 
VDD is defined as the number of value references 
made by its nodes (see footnote 9) and will generally 
be less than the sum of the sizes of all its c-tuples. 
Query performance can be guaranteed based on the 
VDD size [14]. Similar to c-tuple compression, we de-
fine the complexity of advanced compression as the 
VDD size, again adjusted by the calibrating factor 𝑐0 

as in Section 7.1. For a VDD of size 𝑛, we define the 
its complexity 𝑣_𝑐𝑚𝑝𝑙𝑥 as: 
 

 𝑣_𝑐𝑚𝑝𝑙𝑥 ∶=  𝑐0 𝑛 (13) 
 

We set 𝑐0 =  1, except where otherwise noted in Sec-
tion 9.3. 

7.3 Complexity of a negative representation 

We can think of a value assignment to 𝑘 product prop-
erties as a point in a 𝑘-dimensional space. Error! Ref-
erence source not found. suggests a variant space of 
two dimensions. Each point in the plane represents a 
combination of Color and Imprint. The left part of the 
figure represents a positive variant table: points that 
represent valid combinations are dark; points for invalid 
combinations are white. In this figure, there is only one 
combination of imprint and color that is not valid, which 
is represented by the white square in the middle. The 
right part of the figure represents a negative variant ta-
ble. Here, the depiction is the other way around: points 
that represent invalid combinations are dark, points for 
valid combinations are white. The invalid combination is 
represented by the dark square. The white outlined rec-
tangles correspond to combinations that are valid and 
lie in the solution space of all possible combinations. 

 

 
Figure 3 Positive (left) and negative (right) depiction of a 
variant relation  

 
In the general 𝑘-dimensional space, the variants in a c-
tuple form a cuboid. In the two-dimensional case this is 
a rectangle. The positive variant table on the left side of 
Figure 3 consists of six c-tuples: the six rectangles with 
a filled dark background. The negative variant table on 
the right side of Figure 3 consists of one c-tuple: the one 
point in the middle. The positive variant table implies the 
domains for the properties: only those values for a prop-
erty that occur in a valid variant need to be considered 
in practice. This is not true for a negative variant table. 
However, when finite domains for all the product prop-
erties are known, then a list of all excluded variants is 
an alternate definition of the variants, because it is then 
possible to calculate the complement of the negative ta-
ble with respect to the solution space of all combina-
tions possible with the given domains. Moving from the 
positive representation on the left of Figure 3 to the neg-
ative one on the right, then means inverting the back-
ground fill of all the rectangles. 
In the example, it is evident that the negative repre-
sentation is more compact. However, investigations in 
[18] indicate that it does not make much difference for 
complexity in practice, whether the positive set of valid 
variants or the negative set of excluded variants is 
compressed to a VDD, and even in the extreme cases, 
where it does make a difference, both forms can be 
readily calculated and represented. 

7.4 Complexity for a model comprised of sev-
eral variant tables 

In the absence of a manageable, easy-to-use tabular 
representation of the overall set of variants, a preferred 
way of modeling an MC products is as a set of con-
straints over the product properties and their domains. 
For the purposes of interactive configuration, local con-
straint propagation [15] is used to determine the domain 
restrictions that result from a query by the user to the 
combined set of variant tables. Local propagation is one 
basic constraint processing algorithm that has wide-
spread use in product configurators. It is the central 
constraint processing algorithm of the SAP VC [19]. 
Performance of local propagation depends on the exact 
implementation, but is generally good in practice. 
In the finite case, all constraints can be conceptually 
thought of as tables. The Renault Megane benchmark 
model we refer to in Section 9 is made up of 113 vari-
ant tables, some of them large. The underlying basic 
restriction operation (7) is very efficient on com-
pressed tables. The performance of each query to a 
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table can be guaranteed based on the complexity 
𝑐_𝑐𝑚𝑝𝑙𝑥 (12) or 𝑣_𝑐𝑚𝑝𝑙𝑥 (13) applied to the table itself 
or to the reduced RS of previous filter queries. Thus, 
the simple compression in Section 3 and more specif-
ically the advanced compression in Section 6 directly 
facilitate local propagation between tables. 
Negative tables require special consideration for local 
propagation (see [13]). A straightforward approach 
would be to negate a negative table to obtain a posi-
tive one for processing. 

8. BUSINESS UTILITY OF COMPRESSION 

8.1 Business complexity for unconstrained T-
shirt 

 

Figure 4 Production process of the simple personalized T-
shirt 

Figure 4 shows a possible production line for the uncon-
strained modern T-shirt used as a motivating example 
in Section 7.1. The business must set up for procur-
ing/stocking T-shirts, dyeing them, imprinting them, 
stamping the appropriate CO2-Offset label on T-shirts, 
as well as for the shipping and invoicing processes. 
Some of these processes depend on the number of 
features offered and their business attributes. We may 
imagine that dyeing may have to be set up for each 
offered color individually, each at a different cost. And 
we may imagine that each of the 1000 non-vintage im-
prints may have its own different licensing cost and im-
age size. The cost of stamping the CO2-Offset certifi-
cate carries with it a fixed cost that may depend on the 
number of different labels offered. On the other hand, 
the cost associated with the processes of procuring T-
shirts, of maintaining the textile printing itself, and the 
invoicing and delivery processes is fixed and does not 
depend on the number of features offered12. 
The unconstrained T-shirt example suggests that the 
effect of variability on the cost of setting up the busi-
ness can be modeled as fixed costs on product prop-
erties as a whole and/or surcharges on individual 
product features. The cost for procurement/stocking is 
fixed and does not depend on variability, dyeing costs 
can be directly attributed to the individual available col-
ors, and each imprint has its own individual cost (which 
might be zero). In addition, the property Imprint is fur-
ther associated with the fixed cost of the printer. The 
stamping of CO2-Offset certificates would also have a 
fixed cost attributable to the process. 
So, for this example, business cost can be defined in 
a very similar manner to the unconstrained complexity 
𝑐_𝑐𝑚𝑝𝑙𝑥 (12), except that summing the surcharges 
and fixed costs replaces simply counting the occurring 
value symbols: 
 

                                                           
12 Realistically, the number of T-shirts held on stock may 
need to become larger as choices of Style, Size, Fabric, 
and Neck increase. 

 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑐𝑜𝑠𝑡 =  ∑ 𝐹𝑗

Fixed property costs

+ ∑ 𝑤𝑖𝑗

Value surcharges

 

(14) 

 

where 𝐹𝑗 is the fixed costs associated with the 𝑗-th 

product property, and the 𝑤𝑖𝑗 is the surcharge associ-

ated with the 𝑖-th value for the 𝑗-th product property.  
The effect on cost of adding/removing a feature is 
given by its surcharge 𝑤𝑖𝑗. The effect on cost of add-

ing/removing an entire product property is given by its 
fixed cost 𝐹𝑗, as well as any surcharges for its values. 

8.2 Business complexity for the individualized 
T-shirt 

Figure 5 shows a possible business setup for the mod-
ern individualized T-shirt with vintage prints. Table 4 
lists all variants in three c-tuples. These c-tuples are 
mirrored in the VDD structure shown in Figure 2. The 
VDD uses the property ordering Imprint, ImpColor, 
ImpSize, Color, and Size, which suggests that the first 
decision on the imprint determines the production line 
‘Standard’, ‘Special 1’ or ‘Special 2’ in Figure 5. 
 

 

Figure 5 Three production lines of the personalized T-shirt 

This example suggests that the business cost of vari-
ability can be assessed based on a VDD as in Figure 
2. The cost of setting up the business is then given by 
summing the fixed costs and surcharges for all value 
references in the node labels (15):  
 

 𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑐𝑜𝑠𝑡 =  ∑ 𝐹𝑗

Fixed property costs

+ ∑ 𝑤𝑖𝑗

Surcharges for 
VDD value references

 

(15) 

 

Adding or removing non-vintage prints will greatly affect 
the number of variants offered, but not the cost of the 
business. Removing a vintage print, on the other hand, 
will remove only a few thousand of the hundreds of mil-
lions of variants but will have a great effect on cost. 
The investigation of how compression relates to busi-
ness complexity is ongoing, but we think this example 
motivates following up on this idea. 
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8.3 Business with indeterminate variants 

Due to wide-spread use of relational representation in 
business, a product variant is classically defined as a 
value assignment to each of its product properties. 
This is neither ideal nor sufficient in practice. Some 
degree of indeterminism in a variant is needed when a 
variant is to be further specialized in a later business 
process (e.g., at the customer's site). For example, a 
pump may be sold with a connection that fits several 
different sizes of hoses. The end customer may have 
to make a manual adjustment for the particular hose 
they want to attach by cutting off a part of the provided 
connector. The pump being sold to the customer by 
the business is a variant of their MC “pump” product 
that allows further personalization at the customer's 
site. We observe that in general, variants that result as 
output of one business process may be refined or spe-
cialized in subsequent business processes. 
Allowing a variant to be defined by a c-tuple is an ap-
proach to dealing with this. However, it means moving 
from a purely relational data representation to one al-
lowing c-tuples. 

9. RESULTS 

The RM benchmark, which we make use of here, was 
published by Renault as a constraint satisfaction prob-
lem (CSP) some years ago as a benchmark for config-
urators and constraint solvers [10, 19]. It consists of 99 
product properties and 113 constraints that can be rep-
resented as variant tables. We have constructed an 
overall variant table in compressed form by joining 
these 113 tables using the SALADD system [21] as a 
tool. This was done purely for purposes of comparing 
complexity of the Renault Megane as a product with our 
exemplary T-shirt products and for experiments with 
performance in Section 9.3. Assessing the utility of 
making such joins available as part of productive variant 
table management system is a topic of future work. 

9.1 Compression of overall set of MC variants 

In this section, we summarize the compression and 
complexity results for the case that all variants are rep-
resented in a single compressed table. Table 2, Table 
4, Table 5, and Table 7 each represent such a case 
and pertain to fairly simple products with a multitude of 
variants. Additionally, we also include a table repre-
senting all the variants for the Renault Megane (RM) 
benchmark. Table 9 gives an overview of the relevant 
compression results for these tables: 

Table 9 Complexity comparison between product variants 

Variant 
Table 

#variants 
#c-tu-
ples 

c_cmplx v_cmplx 

Simple  
T-shirt 

11 2 12 12 

T-Shirt 
all 

276,514,560 3 1100 1058 

T-Shirt 
sales 

241,954,560 7 5252 1105 

T-shirt 
mfg 

276,514,560 19 9230 1092 

Renault 
Megane 

2,673,852,735,568 895,972 14,417,790 120,217 

c_cmplx: complexity after c-tuple compression 

v_cmplx: complexity after VDD compression 
mfg = manufacturing 
T-shirt examples from top to bottom: Table 2,Table 4,Table 5, and Ta-
ble 7 

 

If we define the compression ratio of the variants sep-
arately for the representation as c-tuples and as a 
VDD as in (16) and (17) 
 

 
𝜌𝑐 =  1 − 

#𝑐_𝑐𝑚𝑝𝑙𝑥

#𝑐𝑒𝑙𝑙𝑠
 

(16) 

   
 

𝜌𝑣 =  1 − 
#𝑣_𝑐𝑚𝑝𝑙𝑥

#𝑐𝑒𝑙𝑙𝑠
 

(17) 

 

then the compression of all the above tables is more 
than 99.99 %, except for the “simple T-shirt” in Table 
2. The other T-shirts are compressed from a quarter of 
a billion rows to a small number of c-tuples. The com-
plexity measures 𝑐_𝑐𝑚𝑝𝑙𝑥 for c-tuples grows with the 

number of required c-tuples to around 10,000 symbols. 
In advanced compression, the complexity measure 
𝑣_𝑐𝑚𝑝𝑙𝑥 is only about 1000 for these tables. The com-
pression of the “T-shirt sales” (Table 5) has approxi-
mately one third as many c-tuples and half as many 
symbols as the larger table “T-shirt manufacturing” 
(Table 7), but the VDD size is about the same. These 
compressed sizes are very reasonable and compare 
with results from prior work [14, 18]. The Renault Me-
gane has 2 ∗  1013 variants, compressible to almost 
one million c-tuples. Its 𝑐_𝑐𝑚𝑝𝑙𝑥 measure is more than 

14 million, the 𝑣_𝑐𝑚𝑝𝑙𝑥 is only around 120 thousand. 
Interestingly, its 𝑣_𝑐𝑚𝑝𝑙𝑥 measure is only about 100 

times larger than the 𝑣_𝑐𝑚𝑝𝑙𝑥 of the much simpler T-
shirt variants.  
These MC products span the spectrum of products 
reaching from fairly simple T-shirts to cars. For all of 
them it is seems feasible to deal with an overall table 
of variants, if desired. 

9.2 Compression of individual variant tables 

In this section, we present some empirical data we 
have collected for three sets of variant tables. 
The three sets of variant tables are: 

• The 113 individual constraints of the RM model as 
variant tables – labeled RM.  
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• The set of 238 variant tables which we used in our 
workshop paper on VDD compression [18]13 – la-
belled CWS15. 

• A “random sample” of 20,576 variant tables from 
678 actual SAP product models14 – labeled “Ran-
dom Sample”. 

Interestingly, 1407 of the tables in the “random sam-
ple” were already maintained in c-tuple format by cus-
tomers, as opposed to 19,169 relational variant tables. 
This shows that the c-tuple format is in use despite be-
ing discouraged as a “best practice” in [10], albeit only 
for a small percentage. Table 10 summarizes the span 
of table sizes for the three sets. The maximum and av-
erages are given for the number of rows (relational tu-
ples), the number of columns (arity), and the 
load/compression times from relational tables (Time). 
The statistics for “Random Sample” include more ex-
treme values. The average number of columns is uni-
formly between four and five. RM has by far the largest 
average table size. 

Table 10 Summary of compression of different variant table 
sets 

 #Rows  #Columns  
Compression 

Time (ms) 

Table 
set 

Max Avg  Max Avg  Max Avg 

RM 48271 1724.0  10 4.91  600 16.7 

CWS15 21,372 238.5  16 4.29  598 9.8 

Random 
Sample 

1,152,832 429.9  71 4.15  516 2.9 

 

For space reasons, we limit the presentation mainly to 
the relationship between the uncompressed table size, 
embodied by the number of cells, and the VDD size, 
embodied by the VDD complexity measure 𝑣_𝑐𝑚𝑝𝑙𝑥. 
Figure 6 (A – C) depicts this for the three data sets, 
respectively. Values have been logarithmically trans-
formed, and the 45-degree line through the origin 
(dashed) and the linear regression line (solid) have 

been drawn in all figures15. 
The 45-degree line through the origin marks the line 
where no compression takes place, i.e. any tables be-
low this line are compressed. The flatter the slope of 
the linear regression line, the better the overall com-
pression of the set. The slope is very similar for 

                                                           
13 This set collects the variant tables of four working prod-
uct models for different products, each not modeled exclu-
sively using tables. Switching the table filtering to use 
VDDs when configuring these products with the SAP Inter-
net Pricing & Configurator (SAP IPC) product configurator 
(see [5]) resulted in a noticeable performance gain [18]. 
14 Since product data is highly confidential, it is not easy to 
obtain real data to work with. The 20,576 tables were com-
pressed by eSpline (http://espline.com), a company spe-
cializing in software tools to supplement and improve the 
modeling experience with configurator applications, particu-
larly for SAP VC and SAP IPC customers. eSpline com-
pressed all tables from its own site by calling our compres-
sion API over the web (https://www.vbase18.com). eSpline 
obfuscated the data and only returned the analysis results 

CWS15 and “Random Sample”. The RM set behaves 
noticeably better. RM was probably the only model for-
mulated entirely using tabular constraints and we 
might conjecture that these variant tables may have 
received more thought and attention. 
Lastly, Figure 6D compares the results for VDD com-
pression against c-tuple compression of the “Random 
Sample”. It shows that VDD compression is stronger 
than c-tuple compression over this sample. In particu-
lar, there are some large tables where the additional 
compression is significant. These are the cases where 
VDD compression shows a real benefit. 

9.3 Selected performance results 

We make use of the Renault Megane (RM) benchmark 
to present performance results. As published, there 
are 99 product properties and 113 variant tables. We 
have also constructed a join of the 113 tables to a sin-
gle overall variant table of all RM variants [21]. In both 
cases, we have added a table for the entire solution 
space – the set of all possible combinations given the 
finite property domains – which does not add a con-
straint or affect the solution. The purpose of the solu-
tion space table is that it allows tracking the overall ef-
fect of the filtering query together with local propaga-
tion between the tables (see Footnote 5). We have 
identified a sequence of 30 feature selections that to-
gether result in a unique solution. 
Two test sequences are performed separately with 
100 repetitions of the same configuration for each of 
the two test cases: 

• The 113 individual variant tables with the solution 
space table. 

• The one joined overall table with the solution 
space table. 

A configuration consists of selecting 30 features from 
99 product properties16 and is identical in both cases. 
The test set-up mimics what would happen in an inter-
active configuration process: 

• The variant tables are loaded once for repeated 
execution of the test configuration. 

• An initial local propagation is performed on loading 
to eliminate any choices that can never be chosen. 
This is the initial state. 

to us. We never saw the tables themselves. Only the com-
pression analysis was returned to us. We do not know their 
purpose, quality, or state. 
15 The statistical analyses presented here are derived using 

the R package. The log() function in R calculates the natu-
ral logarithm.  
16 The sequence of 30 features from the product properties 

(vp) is: vp1 = D64, vp3 = MD, vp5 = ALLE, vp66 = JANTOL, 
vp80 = CRIT4X15KI, vp90 = ANTID, vp40 = EMBPIL, vp15 = 
PBCH, vp29 = DRA, vp79 = SSABCO, vp85 = CDCOF, vp12 = 
GALERI, vp13 = CHAUFO, vp11 = ABS, vp49 = Autre310, vp47 = 
LVAVEL, vp57 = SAILAR, vp23 = PROJAB, vp14 = TO, vp21 = 
RETROE, vp78 = FIPOU, vp52 = CORHLO, vp51 = SGACHA, vp34 
= Autre167, vp60 = SLAVPH, vp22 = REGSIT, vp25 = CUSFIX, 
vp65 = PLAFT, vp63 = VOLRH, vp41 = PNERFL 
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• A selection of the first feature is performed yielding 
a filtered result set and domain restrictions for the 
product properties. 

• The number of variants left in the solution space 
after local propagation of the selection is printed 
to the terminal (stdout) to simulate user interac-
tion. 

• The next feature in the list is selected as a filtering 
query on the result set of the previous query yield-
ing a further restriction. The number of variants left 
in the solution space after local propagation is 
again printed to the terminal (stdout). 

• Selections are made until either a unique remain-
ing variant is left, or an empty result set signaling 
inconsistency is encountered. The test sequence 
is set up in a way that a unique solution is found 
after making all 30 selections.  

• The configuration state is reset to the initial state. 

The overall time of each test sequence consisting of 
100 configurations is measured using the Java timer 
which outputs nanoseconds. The time for loading and 
compressing the table is measured separately. We 
choose the same hardware platform17 as was used to 
obtain the results in the workshop contribution [18] to 
have the results comparable. The measurements in 
[18] were based on a prototype written entirely in Java. 
Our current implementation is largely based on native 
code, called from Java using a JNI interface. The re-
sults are given for 100 repetitions in milliseconds (ms) 
in Table 11. The load times are given in Table 12. 

 

                                                           
17 An Apple Mac mini with 2.5 GHz Intel Core i5 and 8GB 
memory. 
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A B

C D

Figure 6 The effect of compression  
Each dot represents a table which was compressed using VDD or c-tuple compression. The effect of compression is illus-
trated by comparing the complexity measure v_cmplx to the original size (number of cells) or to c_cmplx. The solid line repre-
sents the linear regression line. The 45-degree dashed line through the origin shows the points of no compression. 
(A) Effect of VDD compression on the Renault Megane model (RM). 
(B) Effect of VDD compression on a set of variant tables from four working product models (CWS15). 
(C) Effect of VDD compression on over 20,000 variant tables from 680 SAP product models (random sample). 
(D) Comparison between c-tuple and VDD compression on the same tables used in (C) (random sample). 
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Table 11 Comparing the configuration performance for the 
RM benchmark using individual tabular constraints (with lo-
cal propagation) versus one joined tabular constraint 

Test case Execution time (ms) 

113 tabular constraints 1727 

Joined tabular constraint 8221 
 

It was surprising to us that the local propagation be-
tween the 113 tables and the solution space was about 
four times faster than querying the joined table and 
propagating only to the solution space, which cannot 
produce any additional restrictions and does not itself 
cause further propagation. 

Table 12 Loading times for the RM benchmark 

Source format Load time (ms) 

113 relational tables 2905 

113 tables from c-tuple format 466 

113 tables from internal format 286 

One joined table (internal format) 103 

10. DISCUSSION 

Variant tables that record valid combinations of prod-
uct features are an established popular element of MC 
product models. The compelling advantages of using 
tables are: 

• They are universally understood. 

• They are an accepted best modeling practice. 

• Content can be maintained and versioned inde-
pendently of the product model. 

However, their use has been severely limited by their 
lack of scalability. In this article, we showed that table 
compression techniques can overcome this limitation. 
We argued that variant tables should compress well 
due to regularities in the underlying products. Our re-
sults corroborated this (Section 9). We showed by ex-
amples ranging from T-shirts to cars that it is even of-
ten possible to represent the overall enormous num-
ber of variants as a single table in compressed form. 
Nevertheless, the random sample of SAP VC variant 
tables presented in Section 9 shows that c-tuple com-
pression has not yet been used as much as would be 
expected. Only 7% of the tables in the sample were in 
c-tuple format (rows with multiple values in the table 
cells). We conjecture that this has two causes: 

• Where compression becomes essential, it is no 
longer possible to expand the table to uncom-
pressed relational form due to the resulting size. 
However, a relational format is often required for 
compatibility with other existing processes. 

• Suitable tools for managing tables in compressed 
form do not yet exist, i.e. c-tuples are not easy to 
read for humans without additional tools. 

A misperception about the potential of compression  in 
combination with the above problems may have led to 
the fact that c-tuple compression is discouraged as a 
best modeling practice for the SAP VC [10]. A major 

aim of our work was to set right this misperception: we 
showed that conventional database functionality can 
be smoothly extended to the compression formats we 
have discussed (c-tuple and variant decomposition di-
agram (VDD) (Section 6)). Operationally, queries on 
substantially compressed tables are much faster than 
queries on their relational uncompressed counter-
parts. What remains is to enhance tools for table 
maintenance directly in compressed format, which is 
ongoing work. 
A great benefit of c-tuples is that they can be stored 
and exchanged by using established, transparent, and 
non-proprietary formats that are readily understood, 
e.g. csv files. An import and export of SAP VC variant 
tables in c-tuple format to csv files is described in [22]. 
C-tuples in csv files come close to being an accepted 
standard. Standards are important for business suc-
cess. For this reason, we consider the c-tuple format 
to be the current compression format of choice. 
Although advanced compression to a variant decom-
position diagram (VDD) is stronger, there is not yet a 
public exchange format for this. While we have been 
able to load the MDD (see Footnote 7) compiled from 
the 113 RM tables compiled from the SALADD system 
[21], there is to our knowledge no currently published 
format for storing and exchanging decision diagrams. 
A variant table functions naturally as a constraint in a 
product model. Enabling larger tables by utilizing com-
pression techniques allows more constraints to be ex-
pressed in tabular form with all the advantages asso-
ciated with that. 
Another key observation we made is that compression 
size can serve as a measure of product complexity, 
useful both to assess configurator performance and the 
business cost incurred by the variability offered with a 
product. We argued in Section 8 that our approach may 
offer a more concise approach to correlating the cost of 
adding or removing product features than simply trying 
to curb the overall number of variants. 
Using the example of the T-shirt, we discussed in Sec-
tion 8 that VDD compression may also be useful in an-
alyzing business costs. Our construction of a VDD de-
pends on the order in which the product properties are 
considered. This ordering might have a relationship 
with the order in which decisions needed to be made 
in producing the underlying product. In other words, 
the business set-up may prescribe an ordering of the 
variant properties for constructing an associated VDD. 
Vice versa, efficient compression may provide insight 
on how production steps might be ordered. These 
ideas are speculative and require verification in the 
field. This is a topic for further investigation. 
The examples we used throughout this paper suggest 
that it is often possible to consider an overall table of all 
variants for an MC product. The advantages and disad-
vantages of such a table versus modeling with a plural-
ity of constraints are not yet clear. It can be seen as a 
clear advantage that it is easy for any business process 
to query the overall table with normal SQL-like queries. 
In contrast, if the product model is made up of a set of 
constraints (like the 113 RM variant tables), a tool such 
as a configurator must be used to facilitate queries to 
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the model. We have remarked that local propagation 
between tabular constraints can be supported very effi-
ciently using the compressed format. 
Contrary to our expectation, the performance meas-
urements in Section 9.3 indicate that local propagation 
among the 113 RM variant tables turned out to be 
faster than queries to the overall large table (although 
that was also very fast). Since we cannot assess the 
quality of the overall table used in the measurement in 
Section 9.3 (it may be possible to achieve better com-
pression), we cannot draw general conclusions from 
this, except to observe that local propagation should 
not be dismissed as an inferior method out of hand. 
The problem of joining individual variant tables to an 
overall variant table is beyond the scope of this paper. 
It is a topic of systems that compile suitable product 
models to some form of decision diagram. It would be 
desirable to have a published format to exchange such 
compilation results, i.e. it would be interesting to see if 
other decision diagrams beside SALDD MDDs can be 
imported as a VDD. 

11. CONCLUSIONS AND FUTURE 
RESEARCH 

Our main contribution in this work is to show that uti-
lizing table compression will greatly empower the use 
of huge variant tables, overcoming the limitations per-
ceived so far. The compression techniques discussed 
are available now for practical use in business.  
We propose several levels of empowerment of variant 
tables: 

1. Obtaining the complexity measure associated with 
compression size for a set of variants or an indi-
vidual variant table may have a value of its own for 
a business. 

2. Using tools that use compression internally can 
provide a noticeably faster interaction for anyone 
working with existing large variant tables. 

3. Using variant tables in a c-tuple format where this 
is supported allows incorporating much larger ta-
bles in existing product modeling projects. 

4. Filtering queries to variant tables in existing con-
figurators can be modified to use a compressed 
format where available. A noticeable performance 
improvement for the SAP IPC (SAP sales config-
urator, see [5]) achieved by this is reported in [18]. 
Configurators that already make use of c-tuples, 
such as the SAP VC, benefit directly by compress-
ing tables to c-tuples18.  

The complexity measure we introduce for variant ta-
bles is based on their compressibility and may provide 
important insights for an MC business. 
We identify three main areas for future research: 

• Developing tools for maintaining tables in com-
pressed format. 

                                                           
18 We have recently demonstrated enhanced performance 
with the SAP VC by utilizing a c-tuple format [22]. 

• Assessing the utility of having an overall joined ta-
ble versus multiple variant tables as constraints for 
a productive variant table management system. 

• Continuing with the business complexity approach 
introduced in this paper. 
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